WorldWideScience

Sample records for bulk chemical composition

  1. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2008-01-01

    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  2. Bulk Chemical Composition of the Ningqiang Carbonaceous Chondrite:An Issue of Classification

    Institute of Scientific and Technical Information of China (English)

    WANG Guiqin; LIN Yangting

    2007-01-01

    The Ningqiang meteorite is a fall carbonaceous chondrite, containing various Ca-, Al-rich inclusions that usually escaped from secondary events such as high-temperature heating and lowtemperature alteration. However, it has not yet been classified into any known chemical group. In order to address this issue, 41 elements of the bulk Ningqiang meteorite were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atom emission spectrometry (ICP-AES) in this study. The Allende (CV3) carbonaceous chondrite and the Jilin (H5)ordinary chondrite were also measured as references, and our analyses are consistent with the previous results. Rare earth and other refractory lithophile elements are depleted in Ningqiang relative to both Allende and mean CK chondrites. In addition, the REE pattern of Ningqiang is nearly flat, while that of Allende shows slight enrichment of LREE relative to HREE. Siderophile elements of Ningqiang are close to those of mean CK chondrites, but lower than those of Allende. Our new analyses indicate that Ningqiang cannot be classified into any known group of carbonaceous chondrites, consistent with previous reports.

  3. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel;

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  4. Calculation of elastic properties in lower part of the Kola borehole from bulk chemical compositions of core samples

    Energy Technology Data Exchange (ETDEWEB)

    Babeyko, A.Yu.; Sobolev, S.V. [Shmidt Institute of Physics of the Earth, Moscow (Russian Federation)]|[Univ. of Karlsruhe (Germany); Sinelnikov, E.D. [Shmidt Institute of Physics of the Earth, Moscow (Russian Federation)]|[State Univ. of New York, Stony Brook, NY (United States); Smirnov, Yu.P. [Scientific Center SG-3, Zapoliarniy (Russian Federation); Derevschikova, N.A. [Shmidt Institute of Physics of the Earth, Moscow (Russian Federation)

    1994-09-01

    In-situ elastic properties in deep boreholes are controlled by several factors, mainly by lithology, petrofabric, fluid-filled cracks and pores. In order to separate the effects of different factors it is useful to extract lithology-controlled part from observed in-situ velocities. For that purpose we calculated mineralogical composition and isotropic crack-free elastic properties in the lower part of the Kola borehole from bulk chemical compositions of core samples. We use a new technique of petrophysical modeling based on thermodynamic approach. The reasonable accuracy of the modeling is confirmed by comparison with the observations of mineralogical composition and laboratory measurements of density and elastic wave velocities in upper crustal crystalline rocks at high confining pressure. Calculations were carried out for 896 core samples from the depth segment of 6840-10535m. Using these results we estimate density and crack-free isotropic elastic properties of 554 lithology-defined layers composing this depth segment. Average synthetic P-wave velocity appears to be 2.7% higher than the velocity from Vertical Seismic Profiling (VSP), and 5% higher than sonic log velocity. Average synthetic S-wave velocity is 1.4% higher than that from VSP. These differences can be explained by superposition of effects of fabric-related anisotropy, cracks aligned parallel to the foliation plain, and randomly oriented cracks, with the effects of cracks being the predominant control. Low sonic log velocities are likely caused by drilling-induced cracking (hydrofractures) in the borehole walls. The calculated synthetic density and velocity cross-sections can be used for much more detailed interpretations, for which, however, new, more detailed and reliable seismic data are required.

  5. Origin, Bulk Chemical Composition and Physical Structure of the Galilean Satellites of Jupiter: A Post-Galileo Analysis

    Science.gov (United States)

    Prentice, A. J. R.

    1999-01-01

    Callisto, NH3 ice makes up -5% of the condensate mass next to h-rock (approximately 50%) and H2O ice (approximately 45%). Detailed thermal and structural models for each of Europa, Ganymede and Callisto are constructed on the basis of the above initial bulk chemical compositions. For Europa (E), a predicted 2-zone model consisting of a dehydrated rock core of mass 0.912 M (sub E) and a 150 km thick frozen mantle of salty H2O yields a moment-of-inertia coefficient which matches the Galileo Orbiter gravity measurement. For Ganymede (G), a 3-zone model possessing an inner core of solid FeS and mass approximately 0.116 M (sub G), and an outer H2O ice mantle of mass approximately 0.502 M (sub G) is needed to explain the gravity data. Ganymede's native magnetic field was formed by thermoremanent magnetization of Fe3O4. A new Callisto (C) model is proposed consisting of a core of mass 0.826 M (sub C) containing a uniform mixture of h-rock (60% by mass) and H2O and NH3 ices, and capped by a mantle of pure ice. This model may have the capacity to yield a thin layer of liquid NH3 (raised dot) 2H2O at the core boundary, in line with Galileo's discovery of an induced magnetic field.

  6. Multiphase composites with extremal bulk modulus

    DEFF Research Database (Denmark)

    Gibiansky, L. V.; Sigmund, Ole

    2000-01-01

    This paper is devoted to the analytical and numerical study of isotropic elastic composites made of three or more isotropic phases. The ranges of their effective bulk and shear moduli are restricted by the Hashin-Shtrikman-Walpole (HSW) bounds. For two-phase composites, these bounds are attainable......, that is, there exist composites with extreme bulk and shear moduli. For multiphase composites, they may or may not be attainable depending on phase moduli and volume fractions. Sufficient conditions of attainability of the bounds and various previously known and new types of optimal composites...... are described. Most of our new results are related to the two-dimensional problem. A numerical topology optimization procedure that solves the inverse homogenization problem is adopted and used to look for two-dimensional three-phase composites with a maximal effective bulk modulus. For the combination...

  7. Effects of bulk composition on nuclide production processes in meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Masarik, J.; Reedy, R.C. [Los Alamos National Lab., NM (United States)

    1994-12-01

    The bulk chemical composition of meteorites is a major factor influencing the production of cosmogenic nuclides. Numerical simulations using Monte Carlo particle production and transport codes were used to investigate particle fluxes, {sup 38}Ar elemental production ratios, and {sup 21}Ne/{sup 22}Ne ratios in meteorites with a wide range of compositions. The calculations show that enhanced fluxes of low-energy secondary particles in metal-rich phases explain certain experimentally observed differences in nuclide production in various meteorite classes.

  8. The temperature dependent variation of bulk and surface composition of In(x)Ga(1-x)As on GaAs grown by chemical beam epitaxy studied by RHEED, X-ray diffraction and XPS

    Science.gov (United States)

    Hansen, H. S.; Bensaoula, A.; Tougaard, S.; Zborowski, J.; Ignatiev, A.

    1992-01-01

    The paper investigates the bulk as well as near-surface composition of In(x)Ga(1-x)As epilayers on GaAs grown by chemical beam epitaxy (CBE) as a function of triethylindium flow rate and substrate temperature by reflection high energy electron diffraction (RHEED), X-ray diffraction, and XPS. To clarify whether the bulk stoichiometry of CBE-grown ternaries can be extracted from the growth rate change as determined by the change in the period of RHEED oscillations from binary to ternary compound growth, a systematic study of growth rate change as a function of ternary bulk composition determined by X-ray diffraction was performed at various temperatures. It is shown that for low growth temperatures there is a linear relationship between the two methods of determination, whereas no correlation is found for higher growth temperatures, in contrast to the MBE case where the two methods of determination yield identical results. In the near surface region the epilayer composition is determined in situ by XPS.

  9. Titan at the time of the Cassini spacecraft first flyby: a prediction for its origin, bulk chemical composition and internal physical structure

    CERN Document Server

    Prentice, A J R

    2006-01-01

    I report the results of a new set of calculations for the gravitational contraction of the proto-solar cloud to quantify the idea that Titan may be a captured moon of Saturn (Prentice 1981, 1984). It is proposed that Titan initially condensed as a secondary embryo in the same proto-solar gas ring from which the central solid core and gaseous envelope of Saturn were acquired. At the orbit of Saturn, the bulk chemical constituents of the condensate are rock (mass fraction 0.494), water ice (0.474), and graphite (0.032). The mean density is 1523 kg/m^3. Structural models for a frozen Titan yield a mean density of 2095 kg/m^3 (chemically homogeneous case) and 1904 kg/m^3 (fully differentiated 2-zone case). The agreement to one percent of the latter value with the observed mean density suggests that Titan is indeed a fully differentiated satellite. The value of C/MR^2 for this model is 0.316. It is predicted that Titan has no internal ocean or induced magnetic field but it may possess a small native dipole field o...

  10. Saturn's Icy Moon Rhea: a Prediction for Bulk Chemical Composition and Physical Structure at the Time of the Cassini Spacecraft First Flyby

    CERN Document Server

    Prentice, A J R

    2005-01-01

    I report a model for the formation of Saturn's family of mid-sized icy moons to coincide with the first flypast of Rhea by the Cassini Orbiter spacecraft on 26 November 2005. It is proposed that these moons had condensed from a concentric family of orbiting gas rings that were cast off some 4600 Myr ago by the contracting proto-Saturnian cloud. Numerical and structural models for Rhea are constructed on the basis of a computed bulk chemical mix of hydrated rock (mass fraction 0.385), H2O ice (0.395), and NH3 ice (0.220). The large proportion of NH3 in the ice mass inhibits the formation of the dense crystalline phase II of H2O ice at the satellite's centre. This may explain the absence of compressional features on the surface. The favoured model of Rhea has a chemically uniform interior and is very cold. The satellite is nearly isodense and the predicted value of the axial moment-of-inertia factor is C/MR^2 = 0.399 +/- 0.004. NH3 is unstable at Saturn's distance from the Sun, except near the polar regions of ...

  11. Nondestructive Method for Bulk Chemical Characterization of Barred Olivine Chondrules

    Science.gov (United States)

    Montoya-Perez, M. A.; Cervantes-de la Cruz, K. E.; Ruvalcaba-Sil, J. L.

    2017-02-01

    This work develops a bulk chemical characterization of barred olivine chondrules based on the XRF analysis using a portable equipment at the National Research and Conservation Science Laboratory of Cultural Heritage (LANCIC-IF) in Mexico City.

  12. Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites.

    Science.gov (United States)

    Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna

    2016-05-01

    The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability.

  13. Scenario projections for future market potentials of biobased bulk chemicals

    OpenAIRE

    Dornburg, V.; Hermann, B.G.; Patel, M.K.

    2008-01-01

    Three scenario projections for future market potentials of biobased bulk chemicals produced by means of white biotechnology are developed for Europe (EU-25) until the year 2050, and potential nonrenewable energy savings, greenhouse gas emission reduction, and land use consequences are analyzed. These scenarios assume benign, moderate, and disadvantageous conditions for biobased chemicals. The scenario analysis yields a broad range of values for the possible market development of white biotech...

  14. Scenario projections for future market potentials of biobased bulk chemicals

    NARCIS (Netherlands)

    Dornburg, V.; Hermann, B.G.; Patel, M.K.

    2008-01-01

    Three scenario projections for future market potentials of biobased bulk chemicals produced by means of white biotechnology are developed for Europe (EU-25) until the year 2050, and potential nonrenewable energy savings, greenhouse gas emission reduction, and land use consequences are analyzed. Thes

  15. Essays on Port, Container, and Bulk Chemical Logistics Optimization

    NARCIS (Netherlands)

    E. van Asperen (Eelco)

    2009-01-01

    textabstractThe essays in this thesis are concerned with two main themes in port logistics. The first theme is the coordination of transport arrivals with the distribution processes and the use of storage facilities. We study this for both containerized and bulk chemical transport. The second theme

  16. Depth of cure of bulk-fill flowable composite resins.

    Science.gov (United States)

    Pedalino, Inaam; Hartup, Grant R; Vandewalle, Kraig S

    2015-01-01

    In recent years, manufacturers have introduced flowable composite resins that reportedly can be placed in increments of 4 mm or greater. The purpose of this study was to evaluate the depth of cure of bulk-fill flowable composite resins (SureFil SDR Flow, Grandio Flow, and Venus Bulk Fill) and a conventional flowable composite resin (Revolution Formula 2). Depth of cure was measured in terms of bottom-maximum Knoop hardness number (KHN) ratios and the International Organization for Standardization (ISO) 4049 scrape technique. Shades A2 and A3 of SureFil SDR Flow, Grandio Flow, and Revolution Formula 2 were tested. Venus Bulk Fill was tested in its only available shade (universal). Specimens in thicknesses of 2, 3, 4, 5, and 6 mm were polymerized for 20 or 40 seconds, and a hardness tester was used to determine the hardness ratios for each shade at each thickness. For the scraping technique, after specimens were exposed to the curing light, unpolymerized composite resin was removed with a plastic instrument, the polymerized composite was measured, and the length was divided by 2 per ISO guidelines. According to the KHN ratios and the scrape test, Venus Bulk Fill predictably exceeded the manufacturer's claim of a 4-mm depth of cure at both 20 and 40 seconds of curing time. The overall results for depth of cure showed that Venus Bulk Fill ≥ SureFil SDR Flow ≥ Grandio Flow ≥ Revolution Formula 2.

  17. Preparation of Cu-based Bulk Metallic Glass Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    Yufeng SUN; Yuren WANG; Bingchen WEI; Weihuo LI

    2006-01-01

    Cu47Ti34Zr11Ni8 bulk metallic glass (BMG) matrix composites containing in situ formed TiC particles and δ-TiCu dendrite phase were developed by copper mold cast. The thermal stability and microstructure of the composites are investigated. Room temperature compression tests reveal that the composite samples exhibit higher fracture strength and distinct plastic strain of 0.2%~0.5%, comparing with that of the corresponding Cu47Ti34Zr11 Ni8 monolithic BMG.

  18. Scenario projections for future market potentials of biobased bulk chemicals.

    Science.gov (United States)

    Dornburg, Veronika; Hermann, Barbara G; Patel, Martin K

    2008-04-01

    Three scenario projections for future market potentials of biobased bulk chemicals produced by means of white biotechnology are developed for Europe (EU-25) until the year 2050, and potential nonrenewable energy savings, greenhouse gas emission reduction, and land use consequences are analyzed. These scenarios assume benign, moderate, and disadvantageous conditions for biobased chemicals. The scenario analysis yields a broad range of values for the possible market development of white biotechnology chemicals, that is, resulting in a share of white biotechnology chemicals relative to all organic chemicals of about 7 (or 5 million tonnes), 17.5 (or 26 million tonnes), or 38% (or 113 million tonnes) in 2050. We conclude that under favorable conditions, white biotechnology enables substantial savings of nonrenewable energy use (NREU) and greenhouse gas (GHG) emissions compared to the energy use of the future production of all organic chemicals from fossil resources. Savings of NREU reach up to 17% for starch crops and up to 31% for lignocellulosic feedstock by 2050, and saving percentages for GHG emissions are in a similar range. Parallel to these environmental benefits, economic advantages of up to 75 billion Euro production cost savings arise.

  19. Introduction to bulk metallic glass composite and its recent applications

    OpenAIRE

    2011-01-01

    Bulk metallic glass (BMG) materials are hot topics in recent years, not to mention BMG matrix composites, which further improve the magnetic and mechanical properties of BMG materials. BMG and BMG matrix materials are fast developing and promising materials in modern industry due to their extraordinary properties such as high strength, low density, excellent resistibility to high temperature and corrosion. In this paper, I reviewed processing and application of several recently developed BMG ...

  20. Wear Behavior of Mechanically Alloyed Ti-Based Bulk Metallic Glass Composites Containing Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yung-Sheng Lin

    2016-11-01

    Full Text Available The present paper reports the preparation and wear behavior of mechanically alloyed Ti-based bulk metallic glass composites containing carbon nanotube (CNT particles. The differential scanning calorimeter results show that the thermal stability of the amorphous matrix is affected by the presence of CNT particles. Changes in glass transition temperature (Tg and crystallization temperature (Tx suggest that deviations in the chemical composition of the amorphous matrix occurred because of a partial dissolution of the CNT species into the amorphous phase. Although the hardness of CNT/Ti50Cu28Ni15Sn7 bulk metallic glass composites is increased with the addition of CNT particles, the wear resistance of such composites is not directly proportional to their hardness, and does not follow the standard wear law. A worn surface under a high applied load shows that the 12 vol. % CNT/Ti50Cu28Ni15Sn7 bulk metallic glass composite suffers severe wear compared with monolithic Ti50Cu28Ni15Sn7 bulk metallic glass.

  1. Method of forming a chemical composition

    Science.gov (United States)

    Bingham, Dennis N.; Wilding, Bruce M.; Klingler, Kerry M.; Zollinger, William T.; Wendt, Kraig M.

    2007-10-09

    A method of forming a chemical composition such as a chemical hydride is described and which includes the steps of selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of hydrogen; and exposing the selected composition to an amount of ionizing radiation to encourage the changing of the chemical bonds of the selected composition, and chemically reacting the selected composition with the source of hydrogen to facilitate the formation of a chemical hydride.

  2. Hydroxyapatite-Bioglass-Titanium Biomaterials Used as Dense Bulk in Double-layer Biomimetic Composite

    Institute of Scientific and Technical Information of China (English)

    Jianpeng ZOU; Jianming RUAN; Baiyun HUANG; Jianben LIU; Zhigang ZHAO

    2004-01-01

    Sintering shrinkage, compressive strength, bending strength, chemical composition and their relationships with microstructure of HA-Ti and HA-BG-Ti biomaterials were studied. The results show that sintering shrinkage curve of HA-BG-Ti composite changes just like S shape (23.1%-16.2%-21.8%-17.1%) with increase of Ti content, and sintering shrinkage of HA-BG-Ti composite is always higher than that of HA-Ti composite. The approach also indicates that compressive strength and bending strength of HA-BG-Ti composite are always higher than that of HA-Ti composite. Basically, with its compressive strength and bending strength equaling to 211.5 MPa and 132.1 MPa respectively, HA-10 vol. pct BG-60 vol. pct Ti composite can meet the mechanical properties requirements of the outer dense bulk. Furthermore, microstructure analysis shows that interfacial integration of HA-BG-Ti composite is better than that of HA-Ti composite. From X-ray diffraction (XRD) and SEM-EDAX analysis, brittle new phases including calcium titanate and calcium carbonate are detected in HA-Ti composite. New phases in HA-Ti composite and complex strong binding force accompanied by elemental diffusion of Si, Ti in HA-BG-Ti composite can explain theoretically the great difference of mechanical properties of HA-Ti and HA-BG-Ti composites.

  3. Bulk composition of the transiting hot Neptune around GJ 436

    CERN Document Server

    Figueira, P; Mordasini, C; Alibert, Y; Georgy, C; Benz, W; 10.1051/0004-6361:20078951

    2009-01-01

    The hot Neptune orbiting around GJ 436 is a unique example of an intermediate mass planet. Its close-in orbit suggests that the planet has undergone migration and its study is fundamental to understanding planet formation and evolution. As it transits its parent star, it is the only Neptune-mass extrasolar planet of known mass and radius, being slightly larger and more massive than Neptune (M=22.6 M_Earth, R=4.19R_Earth). In this regime, several bulk compositions are possible: from an Earth-like core with a thick hydrogen envelope to a water-rich planet with a thin hydrogen envelope comprising a Neptune-like structure. We combine planet-structure modeling with an advanced planet-formation model to assess the likelihood of the different possible bulk compositions of GJ 436 b. We find that both an envelope-free water planet ("Ocean planet") as well as a diminute version of a gaseous giant planet are excluded. Consisting of a rocky core with a thick hydrogen/helium envelope, a "dry" composition produces not only...

  4. Bulk thermal conductivity of composites with spherical inclusions

    Science.gov (United States)

    Sangani, A. S.; Yao, C.

    1988-03-01

    The problem of determining the bulk or effective thermal conductivity of a two-phase composite material whose unit cells contain N(N>1) spherical particles of thermal conductivity αk suspended in a medium of thermal conductivity k has been treated by extending an earlier analysis of McPhedran and Milton [Appl. Phys. A 26, 207 (1981)] who considered the case N=1. The technique is applied to computer-generated two-phase composites with N=16 whose radial distribution functions approximately satisfy the Percus-Yevick equation. The results, which are presented for a wide range of α and φ (the volume fraction of the spheres), are shown to be in good agreement with the experimental values of conductivity of fluidized beds reported by Turner [Chem. Eng. Sci. 31, 487 (1976)].

  5. [Sustainable production of bulk chemicals by application of "white biotechnology"].

    Science.gov (United States)

    Patel, M K; Dornburg, V; Hermann, B G; Shen, Li; van Overbeek, Leo

    2008-12-01

    Practically all organic chemicals and plastics are nowadays produced from crude oil and natural gas. However, it is possible to produce a wide range of bulk chemicals from renewable resources by application of biotechnology. This paper focuses on White Biotechnology, which makes use of bacteria (or yeasts) or enzymes for the conversion of the fermentable sugar to the target product. It is shown that White Biotechnology offers substantial savings of non-renewable energy use and greenhouse gas emissions for nearly all of the products studied. Under favorable boundary conditions up to two thirds (67%) of the current non-renewable energy use for the production of the selected chemicals can be saved by 2050 if substantial technological progress is made and if the use of lignocellulosic feedstocks is successfully developed. The analysis for Europe (E.U. 25 countries) shows that land requirements related to White Biotechnology chemicals are not likely to become a critical issue in the next few decades, especially considering the large unused and underutilized resources in Eastern Europe. Substantial macroeconomic savings can be achieved under favourable boundary conditions. In principle, natural bacteria and enzymes can be used for White Biotechnology but, according to many experts in the fields, Genetically Modified Organisms (GMO) will be necessary in order to achieve the high yields, concentrations and productivities that are required to reach economic viability. Safe containment and inactivation of GMOs after release is very important because not all possible implications caused by the interaction of recombinant genes with other populations can be foreseen. If adequate precautionary measures are taken, the risks related to the use of genetically modified organisms in White Biotechnology are manageable. We conclude that the core requirements to be fulfilled in order to make clear steps towards a bio-based chemical industry are substantial technological progress in the

  6. The Chemical Composition of Honey

    Science.gov (United States)

    Ball, David W.

    2007-01-01

    Honey is a supersaturated sugar solution, created by bees, and used by human beings as a sweetener. However, honey is more than just a supersaturated sugar solution; it also contains acids, minerals, vitamins, and amino acids in varying quantities. In this article, we will briefly explore the chemical composition of honey. (Contains 2 figures and…

  7. Chemical recycling of scrap composites

    Science.gov (United States)

    Allred, Ronald E.; Salas, Richard M.

    1994-01-01

    There are no well-developed technologies for recycling composite materials other than grinding to produce fillers. New approaches are needed to reclaim these valuable resources. Chemical or tertiary recycling, conversion of polymers into low molecular weight hydrocarbons for reuse as chemicals or fuels, is emerging as the most practical means for obtaining value from waste plastics and composites. Adherent Technologies is exploring a low-temperature catalytic process for recycling plastics and composites. Laboratory results show that all types of plastics, thermosets as well as thermoplastics, can be converted in high yields to valuable hydrocarbon products. This novel catalytic process runs at 200 C, conversion times are rapid, the process is closed and, thus, nonpolluting, and no highly toxic gas or liquid products have been observed so no negative environmental impact will result from its implementation. Tests on reclamation of composite materials show that epoxy, imide, and engineering thermoplastic matrices can be converted to low molecular weight hydrocarbons leaving behind the reinforcing fibers for reuse as composite reinforcements in secondary, lower-performance applications. Chemical recycling is also a means to dispose of sensitive or classified organic materials without incineration and provides a means to eliminate or reduce mixed hazardous wastes containing organic materials.

  8. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Akihisa Inoue

    2011-04-01

    Full Text Available This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs. In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni and Cu–Zr–Ag–Al–(Nb bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance.

  9. 40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the bulk organic chemicals subcategory. 414.70 Section 414.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals §...

  10. Connections between the bulk composition, geodynamics and habitability of Earth

    Science.gov (United States)

    Jellinek, A. M.; Jackson, M. G.

    2015-08-01

    The bulk composition of the silicate part of Earth has long been linked to chondritic meteorites. Ordinary chondrites -- the most abundant meteorite class -- are thought to represent planetary building materials. However, a landmark discovery showed that the 142Nd/144Nd ratio of the accessible parts of the modern terrestrial mantle on Earth is greater than that of ordinary chondrites. If Earth was derived from these precursors, mass balance requires that a missing reservoir with 142Nd/144Nd lower than ordinary chondrites was isolated from the accessible mantle within 20 to 30 million years of accretion. This reservoir would host the equivalent of the modern continents' budget of radioactive heat-producing elements (uranium, thorium and potassium), yet has not been discovered. We argue that this reservoir could have been lost to space by ablation from early impactors. If so, Earth's radiogenic heat generation is between 18 and 45% lower than estimates based on a chondritic composition. Calculations of Earth's thermal history that incorporate such reduced radiogenic heating are consistent with a transition to the current plate tectonic mode in the past 2.5 billion years or so, a late onset of the dynamo and an evolving rate of volcanic outgassing consistent with Earth's long-term habitable climate. Reduced heat production compared with Venus and Mars could also explain aspects of the differences between the current climatic regimes of these planets and Earth.

  11. Producing Bio-Based Bulk Chemicals Using Industrial Biotechnology Saves Energy and Combats Climate Change

    NARCIS (Netherlands)

    Hermann, B.G.; Blok, K.; Patel, M.K.

    2007-01-01

    The production of bulk chemicals from biomass can make a significant contribution to solving two of the most urgent environmental problems: climate change and depletion of fossil energy. We analyzed current and future technology routes leading to 15 bulk chemicals using industrial biotechnology and

  12. Bulk-fill resin composites: polymerization contraction, depth of cure, and gap formation.

    Science.gov (United States)

    Benetti, A R; Havndrup-Pedersen, C; Honoré, D; Pedersen, M K; Pallesen, U

    2015-01-01

    The bulk-filling of deep, wide dental cavities is faster and easier than traditional incremental restoration. However, the extent of cure at the bottom of the restoration should be carefully examined in combination with the polymerization contraction and gap formation that occur during the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk-fill materials produced a significantly larger depth of cure and polymerization contraction. Although most of the bulk-fill materials exhibited a gap formation similar to that of the conventional resin composite, two of the low-viscosity bulk-fill resin composites, x-tra base and Venus Bulk Fill, produced larger gaps.

  13. Microalgae for the production of bulk chemicals and biofuels

    NARCIS (Netherlands)

    Wijffels, R.H.; Barbosa, M.J.; Eppink, M.H.M.

    2010-01-01

    The feasibility of microalgae production for biodiesel was discussed. Although algae are not yet produced at large scale for bulk applications, there are opportunities to develop this process in a sustainable way. It remains unlikely, however, that the process will be developed for biodiesel as the

  14. Cluster analysis on the bulk elemental compositions of Antarctic stony meteorites

    Science.gov (United States)

    Miyamoto, Hideaki; Niihara, Takafumi; Kuritani, Takeshi; Hong, Peng K.; Dohm, James M.; Sugita, Seiji

    2016-05-01

    Remote sensing observations by recent successful missions to small bodies have revealed the difficulty in classifying the materials which cover their surfaces into a conventional classification of meteorites. Although reflectance spectroscopy is a powerful tool for this purpose, it is influenced by many factors, such as space weathering, lighting conditions, and surface physical conditions (e.g., particle size and style of mixing). Thus, complementary information, such as elemental compositions, which can be obtained by X-ray fluorescence (XRF) and gamma-ray spectrometers (GRS), have been considered very important. However, classifying planetary materials solely based on elemental compositions has not been investigated extensively. In this study, we perform principal component and cluster analyses on 12 major and minor elements of the bulk compositions of 500 meteorites reported in the National Institute of Polar Research (NIPR), Japan database. Our unique approach, which includes using hierarchical cluster analysis, indicates that meteorites can be classified into about 10 groups purely by their bulk elemental compositions. We suggest that Si, Fe, Mg, Ca, and Na are the optimal set of elements, as this set has been used successfully to classify meteorites of the NIPR database with more than 94% accuracy. Principal components analysis indicates that elemental compositions of meteorites form eight clusters in the three-dimensional space of the components. The three major principal components (PC1, PC2, and PC3) are interpreted as (1) degree of differentiations of the source body (i.e., primitive versus differentiated), (2) degree of thermal effects, and (3) degree of chemical fractionation, respectively.

  15. Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

    2009-09-01

    Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

  16. Chemical composition of interstellar dust

    Science.gov (United States)

    Das, Ankan; Chakrabarti, Sandip Kumar; Majumdar, Liton; Sahu, Dipen

    physical parameters of interstellar medium (ISM). To mimic exact interstellar condition, gas grain interactions via accretion from gas phase and desorption (thermal evaporation, photo-evaporation and non-thermal evaporation) from grain surface are considered. We find that chemical composition of interstellar grain mantle is highly dependent on physical parameters associated with a molecular cloud. Interstellar photons are seen to play an important role towards growth and structure of interstellar grain mantle. We consider effects of interstellar photons (photo-dissociation and photo-evaporation) in our simulation under various interstellar circumstances.

  17. Possible controls on the bulk composition of the earth - Implications for the origin of the earth and moon

    Science.gov (United States)

    Smith, J. V.

    1977-01-01

    It is pointed out that speculation regarding the bulk chemical composition of the earth, especially its radial distribution, is important for testing ideas on the origin of the earth-moon system. Definitive solutions are, however, unattainable. The reported investigation is concerned with an attempt to select the more plausible possibilities. The evidence on the chemical distribution in the earth is examined and the resulting models of bulk composition are used to check the plausibility of the Ganapathy-Anders model. It is suggested that the chemistry of the earth and moon can be modeled more plausibly in the context of slow, cool accretion of the earth and either simultaneous accretion or disintegrative capture of the moon than by fission or volatilization models based on a hot earth. Many possible aspects need detailed quantitative study including the relation between U content, other heat sources, and heat flow on earth.

  18. Composite superconducting bulks for efficient heat dissipation during pulse magnetization

    Science.gov (United States)

    Baskys, A.; Patel, A.; Hopkins, S.; Kenfaui, D.; Chaud, X.; Zhang, M.; Glowacki, B. A.

    2014-05-01

    Pulsed field magnetization is the most practical method of magnetizing a (RE)BCO bulk, however large heat generation limits the trapped field to significantly less than possible using field cooling. Modelling has been used to show that effective heat removal from the bulk interior, using embedded metallic structures, can enhance trapped field by increasing thermal stability. The reported results are for experimental pulsed magnetization of a thin walled YBCO sample with 55 vertical holes embedded with high thermal conductivity wires. A specially designed copper coldhead was used to increase the trapped field and flux of the perforated YBCO by about 12% at 35 K using a multi-pulse magnetization. Moreover, by filling the perforations with copper, the central trapped field was enhanced by 15% after a single-pulse at 35 K. 3D FEM computer model of a perforated YBCO bulk was also developed showing localised heating effects around the perforations during pulse magnetisation.

  19. Chemocatalytic Conversion of Ethanol into Butadiene and Other Bulk Chemicals

    NARCIS (Netherlands)

    Angelici, C.; Weckhuysen, B.M.; Bruijnincx, P.C.A.

    2013-01-01

    The development of new and improved processes for the synthesis of bio-based chemicals is one of the scientific challenges of our time. These new discoveries are not only important from an environmental point of view, but also represent an important economic opportunity, provided that the developed

  20. Evaluation of Marginal Integrity of Four Bulk-Fill Dental Composite Materials: In Vitro Study

    Directory of Open Access Journals (Sweden)

    Mirosław Orłowski

    2015-01-01

    Full Text Available Objective. The aim of the study was to compare under in vitro conditions marginal sealing of 4 different bulk-fill materials composite restorations of class II. Methods. Comparative evaluation concerned 4 composites of a bulk-fill type: SonicFill, Tetric EvoCeram Bulk Fill, Filtek Bulk Fill, and SDR. The study used 30 third molars without caries. In each tooth 4 cavities of class II were prepared. The prepared tooth samples were placed in a 1% methylene blue solution for 24 h, and after that in each restoration the depth of dye penetration along the side walls was evaluated. Results. The highest rating (score 0, no dye penetration was achieved by 93.33% of the restorations made of the SDR material, 90% of restorations of SonicFill system, 86.66% of restorations of the composite Filtek Bulk Fill, and 73.33% of restorations of the Tetric EvoCeram Bulk Fill. Conclusion. The performed study showed that bulk-fill flowable or sonic-activated flowable composite restorations have better marginal sealing (lack of discoloration in comparison with bulk-fill paste-like composite.

  1. Single agglutinates: A comparative study of compositions of agglutinitic glass, whole-grain, bulk soil, and FMR

    Science.gov (United States)

    Basu, A.; Robinson, R.; Mckay, D. S.; Blanchard, D. P.; Morris, R. V.; Wentworth, Susan J.

    1994-01-01

    Previous workers on single agglutinates have variously interpreted the composition of agglutinitic glass to represent impact melts of (1) bulk soil, (2) mixed components in finer sizes, and (3) microtargets. Separately, Papike has argued in favor of fusion of the finest fraction of bulk soils. Thirty-four single agglutinates were hand-picked from the mature Apollo 16 soil 61181 (I(sub s)/FeO = 82) and the FMR and chemical composition (INAA for Fe, Sc, Sm, Co, Ni, and Cr) of each agglutinate particle were measured. Thirteen of these single agglutinates were selected for electron beam microanalysis and imaging. Less than 1 micron spots were analyzed (for Na, Mg, Al, Si, P, S, K, Ca, Ti, Cr, Mn, Fe, Ni, and Ba) on pure glassy areas (approximately ten in each particle) selected on the basis of optical and BSE images (avoiding all clasts and inclusions) with an electron microprobe to obtain average glass compositions of each single agglutinate.

  2. Graphene composites containing chemically bonded metal oxides

    Indian Academy of Sciences (India)

    K Pramoda; S Suresh; H S S Ramakrishna Matte; A Govindaraj

    2013-08-01

    Composites of graphene involving chemically bonded nano films of metal oxides have been prepared by reacting graphene containing surface oxygen functionalities with metal halide vapours followed by exposure to water vapour. The composites have been characterized by electron microscopy, atomic force microscopy and other techniques. Magnetite particles chemically bonded to graphene dispersible in various solvents have been prepared and they exhibit fairly high magnetization.

  3. Cytotoxic effects of bulk fill composite resins on human dental pulp stem cells.

    Science.gov (United States)

    Şişman, Reyhan; Aksoy, Ayça; Yalçın, Muhammet; Karaöz, Erdal

    2016-01-01

    Five bulk fill composite resins, including SDR, Tetric EvoCeram Bulk Fill (TEC), X-trafil (XTF), Sonic Fill (SF), Filtek Bulk Fill (FBF), were used in this study. Human dental pulp stem cells were cultured in 12-well culture dishes (3 × 104 cells per cm(2)) and stored in an incubator at 37°C and 5% CO2 for 1 day. On days 1, 7, 14, and 21 of co-culture, viable cells were measured using a WST-1 assay. Lower cell viability was observed with XTF and SDR bulk fill composite resins compared to the control group during the WST-1 assay. Although bulk fill composite resins provide advantages in practical applications, they are limited by their cytotoxic properties. (J Oral Sci 58, 299-305, 2016).

  4. Sustainable Production of Bulk Chemicals by Application of “White Biotechnology”

    NARCIS (Netherlands)

    Patel, M.K.; Dornburg, V.; Hermann, B.G.; Shen, L.; Overbeek, van L.S.

    2008-01-01

    Abstract Practically all organic chemicals and plastics are nowadays produced from crude oil and natural gas. However, it is possible to produce a wide range of bulk chemicals from renewable resources by application of biotechnology. This paper focuses on White Biotechnology, which makes use of bact

  5. Chemical Composition of Ceramic Tile Glazes

    Science.gov (United States)

    Anufrik, S. S.; Kurian, N. N.; Zhukova, I. I.; Znosko, K. F.; Belkov, M. V.

    2016-11-01

    We have carried out laser emission and x-ray fluorescence spectral analysis of glaze before and after its application to ceramic tile produced by Keramin JSC (Belarus). We have studied the internal microstructure of the ceramic samples. It was established that on the surface and within the bulk interior of all the samples, there are micropores of sizes ranging from a few micrometers to tens of micrometers and microcracks as long as several hundred micrometers. The presence of micropores on the surface of the ceramic tile leads to an increase in the water absorption level and a decrease in frost resistance. It was found that a decrease in the surface tension of ceramic tile coatings is promoted by substitution of sodium by potassium, silica by boric anhydride, magnesium and barium by calcium, CaO by sodium oxide, and SiO2 by chromium oxide. We carried out a comparative analysis of the chemical composition of glaze samples using S4 Pioneer and ElvaX x-ray fluorescence spectrometers and also an LIBS laser emission analyzer.

  6. Fabrication and superconductivity of BPSCCO-2223 oxide bulk by a new design composite

    Energy Technology Data Exchange (ETDEWEB)

    Hishinuma, Yoshimitsu [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki, Gifu 509-5292 (Japan); Nishimura, Arata [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki, Gifu 509-5292 (Japan); Mito, Toshiyuki [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki, Gifu 509-5292 (Japan); Hirano, Shinji [Advanced Materials R and D Center, Meisei University, 2-1-1, Hodokubo, Hino, Tokyo 191-8506 (Japan); Yoshizawa, Shuji [Advanced Materials R and D Center, Meisei University, 2-1-1, Hodokubo, Hino, Tokyo 191-8506 (Japan); Matsumoto, Akiyoshi [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Kumakura, Hiroaki [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2003-08-01

    We have studied a newly designed BPSCCO-2223 bulk composed of mono-cored BPSCCO-2223/Ag sheath filaments. The composite structure design of the combination of BPSCCO-2223 and mono-cored filaments was newly developed with the aim of protection when bulk material is used as a current feeder for large-scale applications. The composites were made by alternately stacking BPSCCO-2223 oxide-cored Ag sheath filaments and the oxide powder by the powder-in-tube (PIT) method, and then the prepared samples were sintered at 840 deg. C for 50 h. Then, a cold isosatic pressing (CIP) process was applied and they were re-sintered at 840 deg. C for 50 h. As a result, the maximum transport current (I{sub c}) value of the composite bulk, which is composed of 24 mono-cored sheath filaments of 0.4 mm in diameter, was estimated to be about 240 A at 4.2 K and 0 T. This I{sub c} value was about three times higher than that of a conventional bulk, and the value of the PIT filaments composite bulk was also higher than that of the Ag wires composite bulk. This is why good c-axis oriented and densely structured BPSCCO-2223 plate-like grains were formed on both the outer and inner interface between the oxide and Ag in the PIT filaments. Furthermore, we confirmed that transport current was flowed into the PIT filaments composite bulk after forcing a fracture by the bending test. We guessed that the PIT filaments could act as a bypass for the fracture of the bulk. We thought that a new design of the composite bulk in this study was interesting in terms of safety precautions for large-scale applications.

  7. Thermal, spectral, and surface properties of LED light-polymerized bulk fill resin composites.

    Science.gov (United States)

    Pişkin, Mehmet Burçin; Atalı, Pınar Yılmaz; Figen, Aysel Kantürk

    2015-02-01

    The aim of this study was to evaluate the thermal, spectral, and surface properties of four different bulk fill materials – SureFil SDR (SDR, Dentsplay DETREY), QuixFil (QF, Dentsplay DETREY), X-tra base (XB, Voco) X-tra fil (XF, Voco) – polymerized by light-emitting diode (LED). Resin matrix, filler type, size and amount, and photoinitiator types influence the degree of conversion. LED-cured bulk fill composites achieved sufficient polymerization. Scanning electron microscope (SEM) analysis revealed different patterns of surface roughness, depending on the composite material. Bulk fill materials showed surface characteristics similar to those of nanohybrid composites. Based on the thermal analysis results, glass transition (T(g)) and initial degradation (T(i)) temperatures changed depending on the bulk fill resin composites.

  8. Bulk Composition of Vesta as Constrained by the Dawn Mission and the HED Meteorites

    Science.gov (United States)

    Toplis, M. J.; Mizzon, H.; Forni, O.; Monnereau, H.; Prettyman, T. H.; McSween, H. Y.; McCoy, T. J.; Mittlefehldt, D. W.; DeSactis, M. C.; Raymond, C. T.; Russell, C. T.

    2014-01-01

    Of the objects in the main asteroid belt, Vesta is of particular interest as it is large enough to have experienced internal differentiation (520 km diameter), and it is known to have a basaltic surface dominated by FeO-bearing pyroxenes. Furthermore, visible-IR spectra of Vesta and associated Vestoids are remarkably similar to laboratory spectra of Howardite-Eucrite-Diogenite (HED) meteorites, leading to the paradigm that the HEDs ultimately came from Vesta. Geochemical and petrological studies of the HEDs confirm the differentiated nature of the near-surface region of their parent body, and imply that crust extraction occurred well within the first 10 Ma of solar system history Vesta is therefore a prime target for studies that aim to constrain the earliest stages of planet building, and it is within this context that the NASA Dawn spacecraft orbited Vesta from July 2011 to September 2012. The results of the Dawn mission so far have significantly reinforced the HED-Vesta connection, confirming a significant degree of internal differentiation, a surface mineralogy compatible with that of the HEDs, and near-surface ratios of Fe/O and Fe/Si consistent with HED lithologies. The combination of data from the HED meteorites and the Dawn mission thus presents an unprecedented opportunity to use Vesta as a natural laboratory of early differentiation processes in the early solar system. However, the bulk composition of Vesta remains a significant unknown parameter, but one that plays a key role on the physical and chemical properties of the internal and surface reservoirs (core, mantle, crust). Several attempts have been made to constrain the bulk composition of the eucrite parent body, early endeavours relying on petrological or cosmochemical constraints. More recently, individual chondrite class compositions, or mixtures thereof, have been considered, constrained by considerations such as O-isotopes, trace-element ratios and siderophile element concentrations of the

  9. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Energy Technology Data Exchange (ETDEWEB)

    Lollobrigida, V. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Torino (Italy); Borgatti, F. [CNR, Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), I-40129 Bologna (Italy); Torelli, P.; Panaccione, G. [CNR, Istituto Officina dei Materiali (IOM), Lab. TASC, I-34149 Trieste (Italy); Tortora, L. [Laboratorio di Analisi di Superficie, Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Ingegneria Meccanica, Università Tor Vergata, I-00133 Rome (Italy); Stefani, G.; Offi, F. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy)

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  10. Ductilizing Bulk Metallic Glass Composite by Tailoring Stacking Fault Energy

    Science.gov (United States)

    Wu, Y.; Zhou, D. Q.; Song, W. L.; Wang, H.; Zhang, Z. Y.; Ma, D.; Wang, X. L.; Lu, Z. P.

    2012-12-01

    Martensitic transformation was successfully introduced to bulk metallic glasses as the reinforcement micromechanism. In this Letter, it was found that the twinning property of the reinforcing crystals can be dramatically improved by reducing the stacking fault energy through microalloying, which effectively alters the electron charge density redistribution on the slipping plane. The enhanced twinning propensity promotes the martensitic transformation of the reinforcing austenite and, consequently, improves plastic stability and the macroscopic tensile ductility. In addition, a general rule to identify effective microalloying elements based on their electronegativity and atomic size was proposed.

  11. Microstructure-property relationship in magnetoelectric bulk composites

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh, Arif D.; Fawzi, Abdulsamee [Novel Materials Research Laboratory, Department of Physics, University of Pune, Pune 411 007, M.S. (India); Mathe, V.L., E-mail: vlmathe@physics.unipune.ernet.i [Novel Materials Research Laboratory, Department of Physics, University of Pune, Pune 411 007, M.S. (India)

    2011-03-15

    We present systematic studies that comprise phase connectivity and dielectric, multiferroic (MF) and magnetoelectric (ME) properties of (x) Ni{sub 0.8}Co{sub 0.2}Fe{sub 2}O{sub 4}+(1-x) Pb(Mg{sub 1/3}Nb{sub 2/3}){sub 0.67}Ti{sub 0.33}O{sub 3} [where x=0.15, 0.30 and 0.45] ME composites prepared by conventional solid-state reaction method. Scanning electron microscopic images of the composites predict different types of connectivity schemes viz 3-0, 3-1 and 3-3. The phase transition temperature of PMN-PT is independent of Ni{sub 0.8}Co{sub 0.2}Fe{sub 2}O{sub 4} content. Room temperature P-E and M-H loops indicate the simultaneous existence of ferroelectric/magnetic ordering. In order to study the possibility of monitoring electrical ordering by means of a magnetic field, ME measurements were carried out. The composition-dependent phase connectivity was well co-related to formation of percolation path and inturn magnetoelectric output. - Research highlights: > Synthesis of (x) Ni{sub 0.8}Co{sub 0.2}Fe{sub 2}O{sub 4}+ (1-x) PMN-PT [where x=0.15, 0.30 and 0.45] ME composites. > Microstructure of the composites with x=0.15, 0.30 and 0.45, predicts different types of connectivity scheme viz 3-0, 3-1 and 3-3 respectively. > Dielectric behavior of the ME composites. > Room-temperature P-E and M-H loops indicate the existence of multiferroic ordering. > Co-relation of phase connectivity with magnetoelectric output.

  12. Evaluation of Radiopacity of Bulk-fill Flowable Composites Using Digital Radiography.

    Science.gov (United States)

    Tarcin, B; Gumru, B; Peker, S; Ovecoglu, H S

    2016-01-01

    New flowable composites that may be bulk-filled in layers up to 4 mm are indicated as a base beneath posterior composite restorations. Sufficient radiopacity is one of the several important requirements such materials should meet. The aim of this study was to evaluate the radiopacity of bulk-fill flowable composites and to provide a comparison with conventional flowable composites using digital imaging. Ten standard specimens (5 mm in diameter, 1 mm in thickness) were prepared from each of four different bulk-fill flowable composites and nine different conventional flowable composites. Radiographs of the specimens were taken together with 1-mm-thick tooth slices and an aluminum step wedge using a digital imaging system. For the radiographic exposures, a storage phosphor plate and a dental x-ray unit at 70 kVp and 8 mA were used. The object-to-focus distance was 30 cm, and the exposure time was 0.2 seconds. The gray values of the materials were measured using the histogram function of the software available with the system, and radiopacity was calculated as the equivalent thickness of aluminum. The data were analyzed statistically (pflowable composites showed significantly higher radiopacity values in comparison with those of enamel, dentin, and most of the conventional flowable composites (pflowable composites was as follows: Venus Bulk Fill (Heraeus Kulzer) ≥ X-tra Base (Voco) > SDR (Dentsply DeTrey) ≥ Filtek Bulk Fill (3M ESPE). To conclude, the bulk-fill flowable restorative materials, which were tested in this study using digital radiography, met the minimum standard of radiopacity specified by the International Standards Organization.

  13. Chemical composition of Earth-like planets

    CERN Document Server

    Ronco, M P; Marboeuf, U; Alibert, Y; de Elía, G C; Guilera, O M

    2015-01-01

    Models of planet formation are mainly focused on the accretion and dynamical processes of the planets, neglecting their chemical composition. In this work, we calculate the condensation sequence of the different chemical elements for a low-mass protoplanetary disk around a solar-type star. We incorporate this sequence of chemical elements (refractory and volatile elements) in our semi-analytical model of planet formation which calculates the formation of a planetary system during its gaseous phase. The results of the semi-analytical model (final distributions of embryos and planetesimals) are used as initial conditions to develope N-body simulations that compute the post-oligarchic formation of terrestrial-type planets. The results of our simulations show that the chemical composition of the planets that remain in the habitable zone has similar characteristics to the chemical composition of the Earth. However, exist differences that can be associated to the dynamical environment in which they were formed.

  14. Survey of transportation of liquid bulk chemicals in the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Posti, A.; Hakkinen, J.

    2012-07-01

    This study is made as a part of the Chembaltic (Risks of Maritime Transportation of Chemicals in Baltic Sea) project which gathers information on the chemicals transported in the Baltic Sea. The purpose of this study is to provide an overview of handling volumes of liquid bulk chemicals (including liquefied gases) in the Baltic Sea ports and to find out what the most transported liquid bulk chemicals in the Baltic Sea are. Oil and oil products are also viewed in this study but only in a general level. Oils and oil products may also include chemical-related substances (e.g. certain bio-fuels which belong to MARPOL annex II category) in some cargo statistics. Chemicals in packaged form are excluded from the study. Most of the facts about the transport volumes of chemicals presented in this study are based on secondary written sources of Scandinavian, Russian, Baltic and international origin. Furthermore, statistical sources, academic journals, periodicals, newspapers and in later years also different homepages on the Internet have been used as sources of information. Chemical handling volumes in Finnish ports were examined in more detail by using a nationwide vessel traffic system called PortNet. Many previous studies have shown that the Baltic Sea ports are annually handling more than 11 million tonnes of liquid chemicals transported in bulk. Based on this study, it appears that the number may be even higher. The liquid bulk chemicals account for approximately 4 % of the total amount of liquid bulk cargoes handled in the Baltic Sea ports. Most of the liquid bulk chemicals are handled in Finnish and Swedish ports and their proportion of all liquid chemicals handled in the Baltic Sea is altogether over 50 %. The most handled chemicals in the Baltic Sea ports are methanol, sodium hydroxide solution, ammonia, sulphuric and phosphoric acid, pentanes, aromatic free solvents, xylenes, methyl tert-butyl ether (MTBE) and ethanol and ethanol solutions. All of these chemicals

  15. Mare glasses from Apollo 17 - Constraints on the moon's bulk composition

    Science.gov (United States)

    Delano, J. W.; Lindsley, D. H.

    1983-01-01

    Two previously unreported varieties of mare volcanic glass have been discovered in Apollo 17 samples. Twenty-three chemical types of volcanic glass have now been analyzed from the six Apollo landing sites. These volcanic glasses, which may be samples of primary magmas derived from the differentiated lunar mantle, define two linear arrays that seem to reflect regional, if not global, regularities among the source regions of these melts. Additional systematics among these glasses have been used to estimate the bulk composition of the moon. The results suggest that the refractory lithophile elements are present at abundances of 1.7 x chondrites. The silicate portion of the moon appears to have a major-element composition similar to a volatile (Si, Na, K)-depleted, earth's upper mantle. The theory involving an earth-fission origin of the moon can be tested further through trace element analyses on the volcanic glasses, and through determination of the N/Ar-36 ratio and noble gas isotopes from primordial lunar gas trapped within vesicles associated with mare volcanic glass.

  16. SWOT analysis for safer carriage of bulk liquid chemicals in tankers.

    Science.gov (United States)

    Arslan, Ozcan; Er, Ismail Deha

    2008-06-15

    The application of strengths, weaknesses, opportunities and threats (SWOT) analysis to formulation of strategy concerned with the safe carriage of bulk liquid chemicals in maritime tankers was examined in this study. A qualitative investigation using SWOT analysis has been implemented successfully for ships that are designed to carry liquid chemicals in bulk. The originality of this study lies in the use of SWOT analysis as a management tool to formulate strategic action plans for ship management companies, ship masters and officers for the carriage of dangerous goods in bulk. With this transportation-based SWOT analysis, efforts were made to explore the ways and means of converting possible threats into opportunities, and changing weaknesses into strengths; and strategic plans of action were developed for safer tanker operation.

  17. Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology

    NARCIS (Netherlands)

    Hermann, B.G.; Patel, M.K.

    2007-01-01

    Little information is yet available on the economic viability of the production of bio-based bulk chemicals and intermediates from white biotechnology (WB). This paper details a methodology to systematically evaluate the techno-economic prospects of present and future production routes of bio-based

  18. Chemical composition of Achatina fulica

    Directory of Open Access Journals (Sweden)

    Aboua, F.

    1990-01-01

    Full Text Available Proximate composition and mineral content were determined in snail without and with shell and shell atone from Achatina fulica. This snail has high protein (above 40 %, low fat (less than 3 % and is a relatively good source of macrominerals, including calcium, phosphorus, magnesium, potassium and sodium. Achatina fulica is an excellent source of iron but is poor in copper, zinc and manganese. The snail is very rich in calcium but very poor in phosphorus, potassium and magnesium.

  19. Evaluation of cervical marginal and internal adaptation using newer bulk fill composites: An in vitro study

    Directory of Open Access Journals (Sweden)

    Rolly Shrivastav Agarwal

    2015-01-01

    Full Text Available Objective: To evaluate the cervical marginal and internal adaptation of posterior bulk fill resin composites of different viscosities, before and after thermo-cycling (TMC. Materials and Methods: Eighty box-only class II cavities were prepared in 40 extracted human premolars with the distal proximal box beneath the enamel-cementum junction (CEJ. The teeth in the experimental groups were restored with bulk fill resin composite restorations (Gr. I- Sonic Fill, Gr. II- SDR, Gr. III- Tetric N Ceram Bulk Fill or a conventional composite designed for 2-mm increments (Gr. IV- Tetric N Flow along with Tetric N Ceram. Before and after thermal cycling, the gap-free marginal length was analyzed using SEM of epoxy resin replicas. After thermal cycling, specimens were cut longitudinally in order to investigate internal dentine adaptation by epoxy replicas under SEM (500 × magnification. Results: Statistical analysis was performed using the ANOVA and Tukey Post Hoc tests (P 0.05. In dentine, bulk fill groups performed at par with the incremental placement; for both marginal and internal adaptation (P < 0.05, for all materials except Tetric N Ceram Bulk Fill. Conclusions: Viscosity of the bulk fill restorative material influenced the proportion of gap-free marginal interface and the internal adaptation in dentin.

  20. Composition, Constitution and Phase Transformation Behavior in Thin-Film and Bulk Ti-Ni-Y

    Science.gov (United States)

    König, D.; Frowein, P.; Wieczorek, A.; Frenzel, J.; Hamann, S.; Eggeler, G.; Ludwig, A.

    2017-01-01

    Advanced engineering applications require new and improved shape memory alloys in bulk and thin-film form. While many Ti-Ni-based systems have been studied so far, the Ti-Ni-Y materials system was not studied in detail concerning its bulk and thin-film shape memory properties. For this reason, a Ti-Ni-Y thin-film materials library focussing on compositions close to Ni50Ti50 was fabricated by combinatorial magnetron sputtering. This library was characterized by high-throughput methods and the compositional range where phase transformations occur was identified. Ti-Ni-Y thin films exhibit a very narrow hysteresis width ∆T and allow to precisely adjust ∆T. Based on the promising results of Ti-Ni-Y thin films, which can be directly applied in microsystems, bulk alloys were fabricated in order to explore how thin-film and bulk properties of different Ti-Ni-Y compositions correlate. It turned out that Ti-Ni-Y bulk materials show different phase transformation properties compared to thin films, most importantly higher ∆T. The differences between thin-film and bulk material are discussed.

  1. Composition, Constitution and Phase Transformation Behavior in Thin-Film and Bulk Ti-Ni-Y

    Science.gov (United States)

    König, D.; Frowein, P.; Wieczorek, A.; Frenzel, J.; Hamann, S.; Eggeler, G.; Ludwig, A.

    2017-03-01

    Advanced engineering applications require new and improved shape memory alloys in bulk and thin-film form. While many Ti-Ni-based systems have been studied so far, the Ti-Ni-Y materials system was not studied in detail concerning its bulk and thin-film shape memory properties. For this reason, a Ti-Ni-Y thin-film materials library focussing on compositions close to Ni50Ti50 was fabricated by combinatorial magnetron sputtering. This library was characterized by high-throughput methods and the compositional range where phase transformations occur was identified. Ti-Ni-Y thin films exhibit a very narrow hysteresis width ∆ T and allow to precisely adjust ∆ T. Based on the promising results of Ti-Ni-Y thin films, which can be directly applied in microsystems, bulk alloys were fabricated in order to explore how thin-film and bulk properties of different Ti-Ni-Y compositions correlate. It turned out that Ti-Ni-Y bulk materials show different phase transformation properties compared to thin films, most importantly higher ∆ T. The differences between thin-film and bulk material are discussed.

  2. Internal Structure and Mineralogy of Differentiated Asteroids Assuming Chondritic Bulk Composition: The Case of Vesta

    Science.gov (United States)

    Toplis, M. J.; Mizzon, H.; Forni, O.; Monnereau, M.; Prettyman, T. H.; McSween, H. Y.; McCoy, T. J.; Mittlefehldt, D. W.; DeSanctis, M. C.; Raymond, C. A.; Russell, C. T.

    2012-01-01

    Bulk composition (including oxygen content) is a primary control on the internal structure and mineralogy of differentiated asteroids. For example, oxidation state will affect core size, as well as Mg# and pyroxene content of the silicate mantle. The Howardite-Eucrite-Diogenite class of meteorites (HED) provide an interesting test-case of this idea, in particular in light of results of the Dawn mission which provide information on the size, density and differentiation state of Vesta, the parent body of the HED's. In this work we explore plausible bulk compositions of Vesta and use mass-balance and geochemical modelling to predict possible internal structures and crust/mantle compositions and mineralogies. Models are constrained to be consistent with known HED samples, but the approach has the potential to extend predictions to thermodynamically plausible rock types that are not necessarily present in the HED collection. Nine chondritic bulk compositions are considered (CI, CV, CO, CM, H, L, LL, EH, EL). For each, relative proportions and densities of the core, mantle, and crust are quantified. Considering that the basaltic crust has the composition of the primitive eucrite Juvinas and assuming that this crust is in thermodynamic equilibrium with the residual mantle, it is possible to calculate how much iron is in metallic form (in the core) and how much in oxidized form (in the mantle and crust) for a given bulk composition. Of the nine bulk compositions tested, solutions corresponding to CI and LL groups predicted a negative metal fraction and were not considered further. Solutions for enstatite chondrites imply significant oxidation relative to the starting materials and these solutions too are considered unlikely. For the remaining bulk compositions, the relative proportion of crust to bulk silicate is typically in the range 15 to 20% corresponding to crustal thicknesses of 15 to 20 km for a porosity-free Vesta-sized body. The mantle is predicted to be largely

  3. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  4. Thermally activated reaction–diffusion-controlled chemical bulk reactions of gases and solids

    Directory of Open Access Journals (Sweden)

    S. Möller

    2015-01-01

    Full Text Available The chemical kinetics of the reaction of thin films with reactive gases is investigated. The removal of thin films using thermally activated solid–gas to gas reactions is a method to in-situ control deposition inventory in vacuum and plasma vessels. Significant scatter of experimental deposit removal rates at apparently similar conditions was observed in the past, highlighting the need for understanding the underlying processes. A model based on the presence of reactive gas in the films bulk and chemical kinetics is presented. The model describes the diffusion of reactive gas into the film and its chemical interaction with film constituents in the bulk using a stationary reaction–diffusion equation. This yields the reactive gas concentration and reaction rates. Diffusion and reaction rate limitations are depicted in parameter studies. Comparison with literature data on tokamak co-deposit removal results in good agreement of removal rates as a function of pressure, film thickness and temperature.

  5. Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change.

    Science.gov (United States)

    Hermann, B G; Blok, K; Patel, M K

    2007-11-15

    The production of bulk chemicals from biomass can make a significant contribution to solving two of the most urgent environmental problems: climate change and depletion of fossil energy. We analyzed current and future technology routes leading to 15 bulk chemicals using industrial biotechnology and calculated their CO2 emissions and fossil energy use. Savings of more than 100% in non-renewable energy use and greenhouse gas emissions are already possible with current state of the art biotechnology. Substantial further savings are possible for the future by improved fermentation and downstream processing. Worldwide CO2 savings in the range of 500-1000 million tons per year are possible using future technology. Industrial biotechnology hence offers excellent opportunities for mitigating greenhouse gas emissions and decreasing dependence on fossil energy sources and therefore has the potential to make inroads into the existing chemical industry.

  6. The Effect of Bulk Depth and Irradiation Time on the Surface Hardness and Degree of Cure of Bulk-Fill Composites

    Directory of Open Access Journals (Sweden)

    Farahat F

    2016-09-01

    Full Text Available Statement of Problem: For many years, application of the composite restoration with a thickness less than 2 mm for achieving the minimum polymerization contraction and stress has been accepted as a principle. But through the recent development in dental material a group of resin based composites (RBCs called Bulk Fill is introduced whose producers claim the possibility of achieving a good restoration in bulks with depths of 4 or even 5 mm. Objectives: To evaluate the effect of irradiation times and bulk depths on the degree of cure (DC of a bulk fill composite and compare it with the universal type. Materials and Methods: This study was conducted on two groups of dental RBCs including Tetric N Ceram Bulk Fill and Tetric N Ceram Universal. The composite samples were prepared in Teflon moulds with a diameter of 5 mm and height of 2, 4 and 6 mm. Then, half of the samples in each depth were cured from the upper side of the mould for 20s by LED light curing unit. The irradiation time for other specimens was 40s. After 24 hours of storage in distilled water, the microhardness of the top and bottom of the samples was measured using a Future Tech (Japan- Model FM 700 Vickers hardness testing machine. Data were analyzed statistically using the one and multi way ANOVAand Tukey’s test (p = 0.050. Results: The DC of Tetric N Ceram Bulk Fill in defined irradiation time and bulk depth was significantly more than the universal type (p < 0.001. Also, the DC of both composites studied was significantly (p < 0.001 reduced by increasing the bulk depths. Increasing the curing time from 20 to 40 seconds had a marginally significant effect (p ≤ 0.040 on the DC of both bulk fill and universal studied RBC samples. Conclusions: The DC of the investigated bulk fill composite was better than the universal type in all the irradiation times and bulk depths. The studied universal and bulk fill RBCs had an appropriate DC at the 2 and 4 mm bulk depths respectively and

  7. Use of thermal neutron reflection method for chemical analysis of bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Papp, A., E-mail: papppa@atomki.hu [Institute of Nuclear Research of the Hungarian Academy of Sciences, (ATOMKI), 4001 Debrecen, Pf. 51 (Hungary); Csikai, J. [Institute of Nuclear Research of the Hungarian Academy of Sciences, (ATOMKI), 4001 Debrecen, Pf. 51 (Hungary); Institute of Experimental Physics, University Debrecen (IEP), 4010 Debrecen-10, Pf. 105 (Hungary)

    2014-09-11

    Microscopic, σ{sub β}, and macroscopic, Σ{sub β}, reflection cross-sections of thermal neutrons averaged over bulk samples as a function of thickness (z) are given. The σ{sub β} values are additive even for bulk samples in the z=0.5–8 cm interval and so the σ{sub βmol}(z) function could be given for hydrogenous substances, including some illicit drugs, explosives and hiding materials of ∼1000 cm{sup 3} dimensions. The calculated excess counts agree with the measured R(z) values. For the identification of concealed objects and chemical analysis of bulky samples, different neutron methods need to be used simultaneously. - Highlights: • Check the proposed analytical expression for the description of the flux. • Determination of the reflection cross-sections averaged over bulk samples. • Data rendered to estimate the excess counts for various materials.

  8. Binary stars: Mass transfer and chemical composition

    Science.gov (United States)

    Lambert, D. L.

    1982-01-01

    It is noted that mass exchange (and mass loss) within a binary system should produce observable changes in the surface chemical composition of both the mass losing and mass gaining stars as a stellar interior exposed to nucleosyntheses is uncovered. Three topics relating mass exchange and/or mass loss to nucleosynthesis are sketched: the chemical composition of Algol systems; the accretion disk of a cataclysmic variable fed by mass from a dwarf secondary star; and the hypothesis that classical Ba II giants result from mass transfer from a more evolved companion now present as a white dwarf.

  9. Posterior bulk-filled resin composite restorations. A 5-year randomized controlled clinical study

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2016-01-01

    mm as needed to fill the cavity 2 mm short of the occlusal cavosurface. The occlusal part was completed with the nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2 mm increments. The restorations were evaluated using slightly......Objective: To evaluate in a randomized controlled study the 5-year clinical durability of a flowable resin composite bulk-fill technique in Class I and Class II restorations. Material and methods: 38 pairs Class I and 62 pairs Class II restorations were placed in 44 male and 42 female (mean age 52.......4 years). Each patient received at least two, as similar as possible, extended Class I or Class II restorations. In all cavities, a 1-step self-etch adhesive (Xeno V+) was applied. Randomized, one of the cavities of each pair received the flowable bulk-filled resin composite (SDR), in increments up to 4...

  10. Mincomp - a program to calculate a likely mineralogical bulk composition from XRD and XRF results

    NARCIS (Netherlands)

    Regelink, J.A.

    2014-01-01

    A lot of X-ray diffraction and X-ray fluorescence tests are performed in the department of Geoscience and Engineering to calculate a rocks likely ineralogical bulk composition. The old program used for this task was considered not user friendly enough, therefore an updating process of the old Minco

  11. Today's and tomorrow's bio-based bulk chemicals from white biotechnology: a techno-economic analysis.

    Science.gov (United States)

    Hermann, B G; Patel, M

    2007-03-01

    Little information is yet available on the economic viability of the production of bio-based bulk chemicals and intermediates from white biotechnology (WB). This paper details a methodology to systematically evaluate the techno-economic prospects of present and future production routes of bio-based bulk chemicals produced with WB. Current and future technology routes are evaluated for 15 products assuming prices of fermentable sugar between 70 euro/t and 400 euro/t and crude oil prices of US $25/barrel and US $50/barrel. The results are compared to current technology routes of petrochemical equivalents. For current state-of-the-art WB processes and a crude oil price of US $25/barrel, WB-based ethanol, 1,3-propanediol, polytrimethylene terephthalate and succinic acid are economically viable. Only three WB products are economically not viable for future technology: acetic acid, ethylene and PLA. Future-technology ethylene and PLA become economically viable for a higher crude oil price (US $50/barrel). Production costs plus profits of WB products decrease by 20-50% when changing from current to future technology for a crude oil price of US $25 per barrel and across all sugar prices. Technological progress in WB can thus contribute significantly to improved economic viability of WB products. A large-scale introduction of WB-based production of economically viable bulk chemicals would therefore be desirable if the environmental impacts are smaller than those of current petrochemical production routes.

  12. Chemical composition of selected Saudi medicinal plants

    Directory of Open Access Journals (Sweden)

    Ihsanullah Daur

    2015-05-01

    Full Text Available Medicinal plants are important in traditional medicine and modern pharmaceutical drugs; therefore, the interest in the analysis of their chemical composition is increasing. In this study, selected medicinal plants including Achillea fragrantissima (Forssk Sch., Amaranthus viridis L., Asteriscus graveolens (Forssk. Less., Chenopodium album L., and Conyza bonariensis (L. Cronquist were collected from the rangeland of western regions (Bahra and Hada areas of Saudi Arabia to study their chemical composition. Eight minerals (Mg, Ca, Cr, Mn, Fe, Co, Cu, and Zn, total phenolic contents, antioxidant activity, and free-radical scavenging ability were examined in order to evaluate the medicinal potential of these plants. All the plants were found to be rich sources of minerals and antioxidants, although there were significant differences (p < 0.05 in their chemical composition, which may provide a rationale for generating custom extracts from specific plants depending on the application. The findings of this study will thus facilitate herbalists in their efforts to incorporate these plants into various formulations based on their chemical composition.

  13. [Investigation of chemical composition of propolis extract].

    Science.gov (United States)

    Majiene, Daiva; Trumbeckaite, Sonata; Grūnoviene, Danguole; Ivanauskas, Liudas; Gendrolis, Antanas

    2004-01-01

    Propolis is a natural product, produced by bees and containing exudates from plants, mixed with bee wax. Propolis and its ethanolic extract are usually used for treatment and prevention of different diseases. Propolis has antibacterial, antiviral, antifungal, anti-inflammatory, anesthetic and immunomodulating properties. Till now there is no data about chemical composition of Lithuanian propolis. Thus, the aim of our work was to investigate the chemical composition of Lithuanian propolis and its ethanolic extract by using gas chromatography / mass spectrometry. We found, that the main structural types of compounds were terpenoids, aromatic and aliphatic acid esters. The most of terpenoids were mono- and sesquiterpens: azulene, alpha-bisabolol, citral, valerenol, etc. Thus, our data show, that the composition of propolis is various and depends on the origin of plants, from where propolis was collected.

  14. Deformation behavior of Zr-based bulk metallic glass and composite in the supercooled liquid region

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A Zr-based bulk metallic glass (BMG) with a composition of (Zr75Cu25)78.5Ta4Ni10Al7.5 and a bulk metallic glass matrix composite (BMGC) with a composition of (Zr75Cu25)74.5Ta8Ni10Al7.5 have been prepared by copper-mold casting. The compres-sive deformation behavior of the BMG and BMGC was investigated in the super-cooled region at different temperatures and various strain rates ranging from 8×10-4s-1 to 8×10-2s-1. It was found that both the strain rate and test temperature signifi-cantly affect the deformation behavior of the two alloys. The deformation follows Newtonian flow at low strain rates but non-Newtonian flow at high strain rates. The deformation mechanism for the two kinds of alloys was discussed in terms of the transition state theory.

  15. Composition and size dependence of hydrogen interaction with carbon supported bulk-immiscible Pd-Rh nanoalloys.

    Science.gov (United States)

    Oumellal, Yassine; Provost, Karine; Ghimbeu, Camelia Matei; de Yuso, Alicia Martinez; Zlotea, Claudia

    2016-11-18

    In-depth clarification of hydrogen interaction with noble metal nanoparticles and nanoalloys is essential for further development and design of efficient catalysts and hydrogen storage nanomaterials. This issue becomes even more challenging for nanoalloys of bulk-immiscible metals. The hydrogen interaction with bulk-immiscible Pd-Rh nanoalloys (3-6 nm) supported on mesoporous carbon is studied by both laboratory and large scale facility techniques. X-ray diffraction (XRD) reveals a single phase fcc structure for all nanoparticles confirming the formation of nanoalloys in the whole composition range. In situ extended x-ray absorption fine structure (EXAFS) experiments suggest segregated local structures into Pd-rich surface and Rh-rich core coexisting within the nanoparticles. Hydrogen sorption can be tuned by chemical composition: Pd-rich nanoparticles form a hydride phase, whereas Rh-rich phases do not absorb hydrogen under ambient temperature and pressure conditions. The thermodynamics of hydride formation can be tailored by the composition without affecting hydrogen capacity at full hydrogenation. Furthermore, for hydrogen absorbing nanoalloys, in situ EXAFS reveals a preferential occupation of hydrogen for the interstitial sites around Pd atoms. To our knowledge, this is the first study providing insights into the hydrogen interaction mechanism with Pd-Rh nanoalloys that can guide the design of catalysts for hydrogenation reactions and the development of nanomaterials for hydrogen storage.

  16. Composition and size dependence of hydrogen interaction with carbon supported bulk-immiscible Pd-Rh nanoalloys

    Science.gov (United States)

    Oumellal, Yassine; Provost, Karine; Matei Ghimbeu, Camelia; Martinez de Yuso, Alicia; Zlotea, Claudia

    2016-11-01

    In-depth clarification of hydrogen interaction with noble metal nanoparticles and nanoalloys is essential for further development and design of efficient catalysts and hydrogen storage nanomaterials. This issue becomes even more challenging for nanoalloys of bulk-immiscible metals. The hydrogen interaction with bulk-immiscible Pd-Rh nanoalloys (3-6 nm) supported on mesoporous carbon is studied by both laboratory and large scale facility techniques. X-ray diffraction (XRD) reveals a single phase fcc structure for all nanoparticles confirming the formation of nanoalloys in the whole composition range. In situ extended x-ray absorption fine structure (EXAFS) experiments suggest segregated local structures into Pd-rich surface and Rh-rich core coexisting within the nanoparticles. Hydrogen sorption can be tuned by chemical composition: Pd-rich nanoparticles form a hydride phase, whereas Rh-rich phases do not absorb hydrogen under ambient temperature and pressure conditions. The thermodynamics of hydride formation can be tailored by the composition without affecting hydrogen capacity at full hydrogenation. Furthermore, for hydrogen absorbing nanoalloys, in situ EXAFS reveals a preferential occupation of hydrogen for the interstitial sites around Pd atoms. To our knowledge, this is the first study providing insights into the hydrogen interaction mechanism with Pd-Rh nanoalloys that can guide the design of catalysts for hydrogenation reactions and the development of nanomaterials for hydrogen storage.

  17. Chemical composition of silica-based biocidal modifier

    Directory of Open Access Journals (Sweden)

    Grishina Anna Nikolaevna

    2016-11-01

    Full Text Available Increase of the amount of fungi spores and micotixines causes the increase in the number of different diseases. Because of this, ensuring the biological safety in buildings is becoming more and more important today. The preferred way to guarantee the biological safety of a building is to employ modern building materials that prevent the settlement of the fungi colonies on the inner surfaces of walls. Such building materials can be produced using novel biocidal modifiers that allow controlling the number of microorganisms on the surface and in the bulk of a composite construction. The precipitation product of zinc hydrosilicates and sodium sulfate is one of the mentioned modifiers. Till now, the exact chemical composition of such precipitation product is controversial; it is obvious, though, that the efficacy of the biocidal modifier is mostly determined by the type of the copper compounds. In the present work an integrated approach is used for the investigation of the chemical composition of the biocidal modifier. Such an approach consists in the examination of the modifier’s composition by means of different, yet complementary, research methods: X-ray diffraction, infrared spectroscopy and DTA. It is shown that the chemical composition of the modifier mainly depends on the amount of precipitant. X-ray diffraction reveals that the major part of the modifier is represented by amorphous phase. Along with the increase of the precipitant’s amount the crystalline phase Zn4SO4(OH6•xH2O formation takes place. Such a crystalline phase is not appropriate as a component of the biocidal modifier. Another two methods - DTA and IR spectroscopy - reveal that the amorphous phase consists essentially of zinc hydrosilicates.

  18. Microstructure and mechanical properties of a novel Zr-based bulk metallic glass composite

    Institute of Scientific and Technical Information of China (English)

    SUN Yufeng; WANG Yuren; GUO Jian; WEI Bingchen; LI Weihuo

    2005-01-01

    Zr48.5Cu46.5Al5 bulk metallic glass (BMG) composites with diameters of 3 and 4 mm were prepared through suction casting in an arc melting furnace by modulating the alloy composition around the monothetic BMG composition of the high glass forming ability. Microstructural characterization reveals that the composites contain micron-sized CuZr phase with martensite structure, as well as nano-sized Zr2Cu crystalline particles and Cu10Zr7 plate-like phase embedded in an amorphous matrix. Room temperature compression tests showed that the composites exhibited significant strain hardening and obvious plastic strain of 7.7% for 3 mm and 6.4% for 4 mm diameter samples, respectively.

  19. In Vitro Fatigue Resistance of Teeth Restored With Bulk Fill versus Conventional Composite Resin.

    Science.gov (United States)

    Rauber, Gabrielle Branco; Bernardon, Jussara Karina; Vieira, Luiz Clovis Cardoso; Maia, Hamilton Pires; Horn, Françoá; Roesler, Carlos Rodrigo de Mello

    2016-01-01

    The aim of this study was to compare the fatigue resistance of restored teeth with bulk fill composite resin, conventional composite resin with incremental insertion and unprepared sound teeth. Twenty-eight extracted maxillary premolars were selected and divided into 4 groups based on composite resin and insertion technique: control (C), conventional composite resin with incremental insertion (I) and bulk fill composite resin with three (BF3) or single increment (BF1). The restored specimens were submitted to fatigue resistance test with a 5 Hz frequency. An initial application of 5,000 sinusoidal load cycles with a minimum force of 50 N and a maximum force of 200 N was used. Next, were applied stages of 30,000 load cycles with the maximum force increasing gradually: 400, 600, 800, 1000, 1200 and 1400 N. The test was concluded when 185,000 load cycles were achieved or the specimen failed. The fatigue resistance data were recorded for comparison, using the Kaplan-Meier survival curve and analyzed by log-rank test at 0.05 significance. Fractures were classified based on the position of the failure - above or below the cementoenamel junction (CEJ). Statistical analysis of the Kaplan-Meier survival curve and log-rank test showed a significant difference between groups (p=0.001). The fracture analysis demonstrated that only 28.58% of failures were below the CEJ in group C, while for groups I, BF1 and BF3 they were 42.85%, 85.71% and 85.71%, respectively. Teeth restored with composite bulk fill in both techniques present similar fatigue resistance values compared with those restored with a conventional incremental insertion of composite, while the fatigue strength values of unprepared sound teeth were higher. Furthermore, unprepared sound teeth showed a lower percentage of fractures below the CEJ.

  20. Cuspal Displacement Induced by Bulk Fill Resin Composite Polymerization: Biomechanical Evaluation Using Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Vinagre, Alexandra; Ramos, João; Alves, Sofia; Messias, Ana; Alberto, Nélia; Nogueira, Rogério

    2016-01-01

    Polymerization shrinkage is a major concern to the clinical success of direct composite resin restorations. The aim of this study was to compare the effect of polymerization shrinkage strain of two resin composites on cuspal movement based on the use of fiber Bragg grating (FBG) sensors. Twenty standardized Class II cavities prepared in upper third molars were allocated into two groups (n = 10). Restorations involved the bulk fill placement of conventional microhybrid resin composite (Esthet•X® HD, Dentsply DeTrey) (Group 1) or flowable "low-shrinkage" resin composite (SDR™, Dentsply DeTrey) (Group 2). Two FBG sensors were used per restoration for real-time measurement of cuspal linear deformation and temperature variation. Group comparisons were determined using ANCOVA (α = 0.05) considering temperature as the covariate. A statistically significant correlation between cuspal deflection, time, and material was observed (p < 0.01). Cuspal deflection reached 8.8 μm (0.23%) and 7.8 μm (0.20%) in Groups 1 and 2, respectively. When used with bulk fill technique, flowable resin composite SDR™ induced significantly less cuspal deflection than the conventional resin composite Esthet•X® HD (p = 0.015) and presented a smoother curve slope during the polymerization. FBG sensors appear to be a valid tool for accurate real-time monitoring of cuspal deformation.

  1. Cuspal Displacement Induced by Bulk Fill Resin Composite Polymerization: Biomechanical Evaluation Using Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Alexandra Vinagre

    2016-01-01

    Full Text Available Polymerization shrinkage is a major concern to the clinical success of direct composite resin restorations. The aim of this study was to compare the effect of polymerization shrinkage strain of two resin composites on cuspal movement based on the use of fiber Bragg grating (FBG sensors. Twenty standardized Class II cavities prepared in upper third molars were allocated into two groups (n=10. Restorations involved the bulk fill placement of conventional microhybrid resin composite (Esthet•X® HD, Dentsply DeTrey (Group 1 or flowable “low-shrinkage” resin composite (SDR™, Dentsply DeTrey (Group 2. Two FBG sensors were used per restoration for real-time measurement of cuspal linear deformation and temperature variation. Group comparisons were determined using ANCOVA (α=0.05 considering temperature as the covariate. A statistically significant correlation between cuspal deflection, time, and material was observed (p<0.01. Cuspal deflection reached 8.8 μm (0.23% and 7.8 μm (0.20% in Groups 1 and 2, respectively. When used with bulk fill technique, flowable resin composite SDR™ induced significantly less cuspal deflection than the conventional resin composite Esthet•X® HD (p=0.015 and presented a smoother curve slope during the polymerization. FBG sensors appear to be a valid tool for accurate real-time monitoring of cuspal deformation.

  2. Evaluation of Vickers hardness of bulk-fill composites cured by different light sources

    Science.gov (United States)

    Bakhsh, Turki A.; Yagmoor, Mohammed A.; Alsadi, Fahad M.; Jamleh, Ahmad

    2016-02-01

    [Objective] The current in vitro study was performed to evaluate Vickers hardness (VHN) of two different composite resins that were cured by using two different light curing units. [Materials and Methods] Porcelain tube samplers were used to fabricate composite cylinders from either Tetric Evoceram BulkFill (BF; Ivoclar/Vivadent, USA) or SonicFill composite (SF; Kerr, USA). Each composite type had 12 cylindrical specimens, and each specimen was cured with either Blue-phase N light-cure (Bp; Polywave, Ivoclar/Vivadent, USA) or Elipar S10 (El; Monowave, 3M ESPE, Germany). The VHN data were analyzed and tested by using Mann-Whitney U test at a significance level of 5%. [Results] Statistical analyses demonstrated an interaction between the type of composite and the type of light curing source. Significant differences (Phardness of SF-El and lowest for BF-El. [Conclusions] It can be concluded that the surface hardness of bulk-fill composite is not dependent on the type of light-cure. This research was supported by King Abdulaziz University.

  3. Polymerization shrinkage and depth of cure of bulk-fill resin composites and highly filled flowable resin.

    Science.gov (United States)

    Jang, J-H; Park, S-H; Hwang, I-N

    2015-01-01

    The aim of this study was to evaluate the polymerization behavior and depth of cure (DOC) of recently introduced resin composites for posterior use: highly filled flowable composite and composites for bulk fill. A highly filled flowable (G-aenial Universal Flo [GUF]), two bulk-fill flowables (Surefil SDR Flow [SDR] and Venus Bulk fill [VBF]), and a bulk-fill nonflowable composite (Tetric N-Ceram Bulk fill [TBF]) were compared with two conventional composites (Tetric Flow [TF], Filtek Supreme Ultra [FS]). Linear polymerization shrinkage and polymerization shrinkage stress were each measured with custom-made devices. To evaluate DOC, the composite specimen was prepared using a mold with a hole of 4 mm depth and 4 mm internal diameter. The hole was bulk filled with each of the six composites and light cured for 20 seconds, followed by 24 hours of water storage. The surface hardness was measured on the top and the bottom using a Vickers microhardness (HV) indenter. The linear polymerization shrinkage of the composite specimens after photo-initiation decreased in the following order: TF and GUF > VBF > SDR > FS and TBF (pcomposite groups decreased in the following order: GUF > TF and VBF > SDR > FS and TBF (pflowable (GUF) revealed limitations in polymerization shrinkage and DOC. Bulk-fill flowables (SDR and VBF) were properly cured in 4-mm bulk, but they shrank more than the conventional nonflowable composite. A bulk-fill nonflowable (TBF) showed comparable shrinkage to the conventional nonflowable composite, but it was not sufficiently cured in the 4-mm bulk.

  4. Degree of Conversion and BisGMA, TEGDMA, UDMA Elution from Flowable Bulk Fill Composites.

    Science.gov (United States)

    Lempel, Edina; Czibulya, Zsuzsanna; Kovács, Bálint; Szalma, József; Tóth, Ákos; Kunsági-Máté, Sándor; Varga, Zoltán; Böddi, Katalin

    2016-05-20

    The degree of conversion (DC) and the released bisphenol A diglycidyl ether dimethacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA) and urethane dimethacrylate (UDMA) monomers of bulk-fill composites compared to that of conventional flowable ones were assessed using micro-Raman spectroscopy and high performance liquid chromatography (HPLC). Four millimeter-thick samples were prepared from SureFil SDR Flow (SDR), X-tra Base (XB), Filtek Bulk Fill (FBF) and two and four millimeter samples from Filtek Ultimate Flow (FUF). They were measured with micro-Raman spectroscopy to determine the DC% of the top and the bottom surfaces. The amount of released monomers in 75% ethanol extraction media was measured with HPLC. The differences between the top and bottom DC% were significant for each material. The mean DC values were in the following order for the bottom surfaces: SDR_4mm_20s > FUF_2mm_20s > XB_4mm_20s > FBF_4mm_20s > XB_4mm_10s > FBF_4mm_10s > FUF_4mm_20s. The highest rate in the amount of released BisGMA and TEGDMA was found from the 4 mm-thick conventional flowable FUF. Among bulk-fills, FBF showed a twenty times higher amount of eluted UDMA and twice more BisGMA; meanwhile, SDR released a significantly higher amount of TEGDMA. SDR bulk-fill showed significantly higher DC%; meanwhile XB, FBF did not reach the same level DC, as that of the 2 mm-thick conventional composite at the bottom surface. Conventional flowable composites showed a higher rate of monomer elution compared to the bulk-fills, except FBF, which showed a high amount of UDMA release.

  5. Degree of Conversion and BisGMA, TEGDMA, UDMA Elution from Flowable Bulk Fill Composites

    Science.gov (United States)

    Lempel, Edina; Czibulya, Zsuzsanna; Kovács, Bálint; Szalma, József; Tóth, Ákos; Kunsági-Máté, Sándor; Varga, Zoltán; Böddi, Katalin

    2016-01-01

    The degree of conversion (DC) and the released bisphenol A diglycidyl ether dimethacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA) and urethane dimethacrylate (UDMA) monomers of bulk-fill composites compared to that of conventional flowable ones were assessed using micro-Raman spectroscopy and high performance liquid chromatography (HPLC). Four millimeter-thick samples were prepared from SureFil SDR Flow (SDR), X-tra Base (XB), Filtek Bulk Fill (FBF) and two and four millimeter samples from Filtek Ultimate Flow (FUF). They were measured with micro-Raman spectroscopy to determine the DC% of the top and the bottom surfaces. The amount of released monomers in 75% ethanol extraction media was measured with HPLC. The differences between the top and bottom DC% were significant for each material. The mean DC values were in the following order for the bottom surfaces: SDR_4mm_20s > FUF_2mm_20s > XB_4mm_20s > FBF_4mm_20s > XB_4mm_10s > FBF_4mm_10s > FUF_4mm_20s. The highest rate in the amount of released BisGMA and TEGDMA was found from the 4 mm-thick conventional flowable FUF. Among bulk-fills, FBF showed a twenty times higher amount of eluted UDMA and twice more BisGMA; meanwhile, SDR released a significantly higher amount of TEGDMA. SDR bulk-fill showed significantly higher DC%; meanwhile XB, FBF did not reach the same level DC, as that of the 2 mm-thick conventional composite at the bottom surface. Conventional flowable composites showed a higher rate of monomer elution compared to the bulk-fills, except FBF, which showed a high amount of UDMA release. PMID:27213361

  6. Degree of Conversion and BisGMA, TEGDMA, UDMA Elution from Flowable Bulk Fill Composites

    Directory of Open Access Journals (Sweden)

    Edina Lempel

    2016-05-01

    Full Text Available The degree of conversion (DC and the released bisphenol A diglycidyl ether dimethacrylate (BisGMA, triethylene glycol dimethacrylate (TEGDMA and urethane dimethacrylate (UDMA monomers of bulk-fill composites compared to that of conventional flowable ones were assessed using micro-Raman spectroscopy and high performance liquid chromatography (HPLC. Four millimeter-thick samples were prepared from SureFil SDR Flow (SDR, X-tra Base (XB, Filtek Bulk Fill (FBF and two and four millimeter samples from Filtek Ultimate Flow (FUF. They were measured with micro-Raman spectroscopy to determine the DC% of the top and the bottom surfaces. The amount of released monomers in 75% ethanol extraction media was measured with HPLC. The differences between the top and bottom DC% were significant for each material. The mean DC values were in the following order for the bottom surfaces: SDR_4mm_20s > FUF_2mm_20s > XB_4mm_20s > FBF_4mm_20s > XB_4mm_10s > FBF_4mm_10s > FUF_4mm_20s. The highest rate in the amount of released BisGMA and TEGDMA was found from the 4 mm-thick conventional flowable FUF. Among bulk-fills, FBF showed a twenty times higher amount of eluted UDMA and twice more BisGMA; meanwhile, SDR released a significantly higher amount of TEGDMA. SDR bulk-fill showed significantly higher DC%; meanwhile XB, FBF did not reach the same level DC, as that of the 2 mm-thick conventional composite at the bottom surface. Conventional flowable composites showed a higher rate of monomer elution compared to the bulk-fills, except FBF, which showed a high amount of UDMA release.

  7. Revised Thickness of the Lunar Crust from GRAIL Data: Implications for Lunar Bulk Composition

    Science.gov (United States)

    Taylor, G. Jeffrey; Wieczorek, Mark A.; Neumann, Gregory A.; Nimmo, Francis; Kiefer, Walter S.; Melosh, H. Jay; Phillips, Roger J.; Solomon, Sean C.; Andrews-Hanna, Jeffrey C.; Asmar, Sami W.; Konopliv, Alexander S.; Lemoine, Frank G.; Smith, David E.; Watkins, Michael W.; Williams, James G.; Zuber, Maria T.

    2013-01-01

    High-resolution gravity data from GRAIL have yielded new estimates of the bulk density and thickness of the lunar crust. The bulk density of the highlands crust is 2550 kg m-3. From a comparison with crustal composition measured remotely, this density implies a mean porosity of 12%. With this bulk density and constraints from the Apollo seismic experiment, the average global crustal thickness is found to lie between 34 and 43 km, a value 10 to 20 km less than several previous estimates. Crustal thickness is a central parameter in estimating bulk lunar composition. Estimates of the concentrations of refractory elements in the Moon from heat flow, remote sensing and sample data, and geophysical data fall into two categories: those with refractory element abundances enriched by 50% or more relative to Earth, and those with abundances the same as Earth. Settling this issue has implications for processes operating during lunar formation. The crustal thickness resulting from analysis of GRAIL data is less than several previous estimates. We show here that a refractory-enriched Moon is not required

  8. Impact of oil on groundwater chemical composition

    Science.gov (United States)

    Brakorenko, N. N.

    2015-11-01

    The objective of the paper is to characterize the chemical composition of groundwater samples from the monitoring wells drilled in the petrol station areas within the vicinity of Tomsk. The level of contamination has increased since many macro - and microcomponent concentrations (such as petroleum products, chlorine, sulphates, carbon dioxide and lead, etc.) in groundwater samples of the present study is higher than that in previous period samples.

  9. Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites

    OpenAIRE

    Li, Z K; Fu, H. M.; Sha, P. F.; Zhu, Z. W.; A. M. Wang; Li, H.; Zhang, H. W.; Zhang, H. F.; Hu, Z. Q.

    2015-01-01

    The interaction between active element Zr and W damages the W fibers and the interface and decreases the mechanical properties, especially the tensile strength of the W fibers reinforced Zr-based bulk metallic glass composites (BMGCs). From the viewpoint of atomic interaction, the W-Zr interaction can be restrained by adding minor elements that have stronger interaction with W into the alloy. The calculation about atomic interaction energy indicates that Ta and Nb preferred to segregate on th...

  10. Next-Generation Catalysis for Renewables: Combining Enzymatic with Inorganic Heterogeneous Catalysis for Bulk Chemical Production

    DEFF Research Database (Denmark)

    Vennestrøm, Peter Nicolai Ravnborg; Christensen, C.H.; Pedersen, S.

    2010-01-01

    chemical platform under different conditions than those conventionally employed. Indeed, new process and catalyst concepts need to be established. Both enzymatic catalysis (biocatalysis) and heterogeneous inorganic catalysis are likely to play a major role and, potentially, be combined. One type...... of combination involves one-pot cascade catalysis with active sites from bio- and inorganic catalysts. In this article the emphasis is placed specifically on oxidase systems involving the coproduction of hydrogen peroxide, which can be used to create new in situ collaborative oxidation reactions for bulk...

  11. Deformation-induced martensitic transformation in Cu-Zr-Al(Ti) bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ram Bachchan; Pauly, Simon; Das, Jayanta; Eckert, Juergen [Institut fuer Komplexe Materialien, IFW Dresden (Germany)

    2009-07-01

    Plastic deformation of Cu-Zr-(Al, Ti) bulk metallic glass (BMG) composites induces a martensitic phase transformation from the B2 to the B19* CuZr phase. Addition of Ti to binary Cu-Zr increases the temperature above which the B2 CuZr phase becomes stable. This affects the phase formation upon quenching in Cu-Zr-Ti BMG composites. The deformation-induced martensitic transformation is believed to cause the strong work hardening and to contribute to the large compressive deformability with plastic strains up to 15%.

  12. Modeling deformation behavior of Cu-Zr-Al bulk metallic glass matrix composites

    Science.gov (United States)

    Pauly, S.; Liu, G.; Wang, G.; Das, J.; Kim, K. B.; Kühn, U.; Kim, D. H.; Eckert, J.

    2009-09-01

    In the present work we prepared an in situ Cu47.5Zr47.5Al5 bulk metallic glass matrix composite derived from the shape memory alloy CuZr. We use a strength model, which considers percolation and a three-microstructural-element body approach, to understand the effect of the crystalline phase on the yield stress and the fracture strain under compressive loading, respectively. The intrinsic work-hardenability due to the martensitic transformation of the crystalline phase causes significant work hardening also of the composite material.

  13. The relation of mantle heterogeneity to the bulk composition and origin of the earth

    Science.gov (United States)

    Smith, J. V.

    1980-01-01

    The heterogeneity of the mantle can be viewed in the context of models for accretion of the terrestrial planets from the solar nebula. Oxygen isotope ratios and mineralogy indicate the existence of hot planetesimals of diverse compositions. Assuming that nebular condensates range from a reduced state near the sun to an oxidized state near Jupiter, a new model is proposed for heterogeneous accretion of the earth beginning with hot, reduced condensates and ending with cool, oxidized condensates. The Ganapathy-Anders cosmochemical model for the bulk composition of the earth was tested by summing measured compositions for the three outer zones and likely compositions for the inner zones. Revisions are suggested, including reduction of the content of the early condensate from that suggested by taking the U concentration as 30 ng/g, as suggested by the naive interpretation of the heat flow.

  14. Milk yield and chemical composition of sheep milk in Srednostaroplaninska and Tetevenska breeds

    OpenAIRE

    Gerchev G.; Mihaylova G.

    2012-01-01

    The study was conducted from April to July on pastures located at different altitudes and of different sward composition during the milking period of Srednostaroplaninska and Tetevenska sheep. Morning bulk milk was sampled for analysis monthly between April and end of July. The purpose of the study was to establish the milk yield and to investigate the chemical composition of sheep milk obtained from Srednostaroplaninska and Tetevenska breeds reared on past...

  15. Physico-Chemical, Functional and Rheological Characterization of Biodegradable Pellets and Composite Sheets

    OpenAIRE

    Jan Kulsum; Jan Shumaila; Riar CS; Saxena DC

    2016-01-01

    Deoiled rice bran, paddy husk, cashew nut shell liquid and glycerol were extruded into pellets and further pressed into composites. Processing and plasticizer type had significant effect on physico-chemical, functional, rheological and morphological properties of pellets and composites. Specific mechanical energy of the pellets containing cashew nut shell liquid as plasticizer was higher than those containing glycerol. The maximum hardness and bulk density were obtained for pellets prepared f...

  16. Spectroscopic and Mechanical Properties of a New Generation of Bulk Fill Composites

    Science.gov (United States)

    Monterubbianesi, Riccardo; Orsini, Giovanna; Tosi, Giorgio; Conti, Carla; Librando, Vito; Procaccini, Maurizio; Putignano, Angelo

    2016-01-01

    Objectives: The aims of this study were to in vitro evaluate the degree of conversion and the microhardness properties of five bulk fill resin composites; in addition, the performance of two curing lamps, used for composites polymerization, was also analyzed. Materials and Methods: The following five resin-based bulk fill composites were tested: SureFil SDR®, Fill Up!™, Filtek™, SonicFill™, and SonicFill2™. Samples of 4 mm in thickness were prepared using Teflon molds filled in one increment and light-polymerized using two LED power units. Ten samples for each composite were cured using Elipar S10 and 10 using Demi Ultra. Additional samples of SonicFill2, (3 and 5 mm-thick) were also tested. The degree of conversion (DC) was determined by Raman spectroscopy, while the Vickers microhardness (VMH) was evaluated using a microhardness tester. The experimental evaluation was carried out on top and bottom sides, immediately after curing (t0), and, on bottom, after 24 h (t24). Two-ways analysis of variance was applied to evaluate DC and VMH-values. In all analyses, the level of significance was set at p < 0.05. Results: All bulk fill resin composites recorded satisfactory DCs on top and bottom sides. At t0, the top of SDR and SonicFill2 showed the highest DCs-values (85.56 ± 9.52 and 85.47 ± 1.90, respectively), when cured using Elipar S10; using Demi Ultra, SonicFill2 showed the highest DCs-values (90.53 ± 2.18). At t0, the highest DCs-values of bottom sides were recorded by SDR (84.64 ± 11.68), when cured using Elipar S10, and Filtek (81.52 ± 4.14), using Demi Ultra. On top sides, Demi Ultra lamp showed significant higher DCs compared to the Elipar S10 (p < 0.05). SonicFill2 reached suitable DCs also on bottom of 5 mm-thick samples. At t0, VMH-values ranged between 24.4 and 69.18 for Elipar S10, and between 26.5 and 67.3 for Demi Ultra. Using both lamps, the lowest VMH-values were shown by SDR, while the highest values by SonicFill2. At t24, all DC and VMH

  17. Degradation Potential of Bulk Versus Incrementally Applied and Indirect Composites: Color, Microhardness, and Surface Deterioration.

    Science.gov (United States)

    El Gezawi, M; Kaisarly, D; Al-Saleh, H; ArRejaie, A; Al-Harbi, F; Kunzelmann, K H

    This study investigated the color stability and microhardness of five composites exposed to four beverages with different pH values. Composite discs were produced (n=10); Filtek Z250 (3M ESPE) and Filtek P90 (3M ESPE) were applied in two layers (2 mm, 20 seconds), and Tetric N-Ceram Bulk Fill (TetricBF, Ivoclar Vivadent) and SonicFill (Kerr) were applied in bulk (4 mm) and then light cured (40 seconds, Ortholux-LED, 1600 mW/cm(2)). Indirect composite Sinfony (3M ESPE) was applied in two layers (2 mm) and cured (Visio system, 3M ESPE). The specimens were polished and tested for color stability; ΔE was calculated using spectrophotometer readings. Vickers microhardness (50 g, dwell time=45 seconds) was assessed on the top and bottom surfaces at baseline, 40 days of storage, subsequent repolishing, and 60 days of immersion in distilled water (pH=7.0), Coca-Cola (pH=2.3), orange juice (pH=3.75), or anise (pH=8.5) using scanning electron microscopy (SEM). The materials had similar ΔE values (40 days, p>0.05), but TetricBF had a significantly greater ΔE than P90 or SF (40 days). The ΔE was less for P90 and TetricBF than for Z250, SonicFill, and Sinfony (60 days). Repolishing and further immersion significantly affected the ΔE (pmicrohardnesses. This was insignificant for the Z250/water, P90/orange juice (40 days), and Sinfony groups (40 and 60 days). Immersion produced variable time-dependent deterioration of microhardness in all groups. Multivariate repeated measures analysis of variance with post hoc Bonferroni tests were used to compare the results. ΔE and microhardness changes were significantly inversely correlated at 40 days, but this relationship was insignificant at 60 days (Pearson test). SEM showed degradation (40 days) that worsened (60 days). Bulk-fill composites differ regarding color-stability and top-to-bottom microhardness changes compared with those of other composites. P90 showed better surface degradation resistance. In conclusion, bulk

  18. Comparing marginal microleakage of three Bulk Fill composites in Class II cavities using confocal microscope: An in vitro study

    Directory of Open Access Journals (Sweden)

    Manne Udaya Swapna

    2015-01-01

    Full Text Available Aim: This study aims to evaluate and compare microleakage at the occlusal wall and cervical wall in Class II cavities restored with one SonicFill Bulk Fill composite and two conventional Bulk Fill composites. Materials and Methods: Thirty freshly extracted teeth were divided into three groups of 10 teeth each. Standardized Class II cavities were made on the mesial and distal surfaces of each tooth and restored using SonicFill Bulk Fill composite and two conventional Bulk Fill composites, Tetric Evo Ceram, and X-tra fil. After storage, thermocycling and immersion in 0.6% rhodamine dye solution specimens were sectioned and evaluated for microleakage at the occlusal and cervical walls using confocal microscope. Statistical Analysis Used: Kruskal-Wallis test, Wilcoxon Signed-Rank test and Mann-Whitney U-test. Results: The results demonstrated that in the occlusal wall and cervical wall, SonicFill Bulk Fill composite, showed significantly less marginal microleakage than the other groups. Conclusion: Based on the results of this study, SonicFill Bulk Fill composite showed less microleakage than the other conventional Bulk Fill composites.

  19. The Chemical Composition of the Sun

    Science.gov (United States)

    Asplund, Martin; Grevesse, Nicolas; Sauval, A. Jacques; Scott, Pat

    2009-09-01

    The solar chemical composition is an important ingredient in our understanding of the formation, structure, and evolution of both the Sun and our Solar System. Furthermore, it is an essential reference standard against which the elemental contents of other astronomical objects are compared. In this review, we evaluate the current understanding of the solar photospheric composition. In particular, we present a redetermination of the abundances of nearly all available elements, using a realistic new three-dimensional (3D), time-dependent hydrodynamical model of the solar atmosphere. We have carefully considered the atomic input data and selection of spectral lines, and accounted for departures from local thermodynamic equilibrium (LTE) whenever possible. The end result is a comprehensive and homogeneous compilation of the solar elemental abundances. Particularly noteworthy findings are significantly lower abundances of C, N, O, and Ne compared to the widely used values of a decade ago. The new solar chemical composition is supported by a high degree of internal consistency between available abundance indicators, and by agreement with values obtained in the Solar Neighborhood and from the most pristine meteorites. There is, however, a stark conflict with standard models of the solar interior according to helioseismology, a discrepancy that has yet to find a satisfactory resolution.

  20. Posterior bulk-filled resin composite restorations. A 5-year randomized controlled clinical study

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2016-01-01

    .4 years). Each patient received at least two, as similar as possible, extended Class I or Class II restorations. In all cavities, a 1-step self-etch adhesive (Xeno V+) was applied. Randomized, one of the cavities of each pair received the flowable bulk-filled resin composite (SDR), in increments up to 4mm......Objective: To evaluate in a randomized controlled study the 5-year clinical durability of a flowable resin composite bulk-fill technique in Class I and Class II restorations. Material and methods: 38 pairs Class I and 62 pairs Class II restorations were placed in 44 male and 42 female (mean age 52...... as needed to fill the cavity 2mm short of the occlusal cavosurface. The occlusal part was completed with the ormocer-based nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2mm increments. The restorations were evaluated using slightly...

  1. Large-sized cylinder of Bi-2223/Ni meshes composite bulk for current lead

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, M. [Department of Electrical Engineering, Kogakuin University, 2665-1, Nakano, Hachioji, Tokyo 192-0015 (Japan); Yoshizawa, S. [Department of Environmental Systems, Meisei University, 2-1-1, Hodokubo, Hino, Tokyo 191-8506 (Japan)]. E-mail: yoshizaw@es.meisei-u.ac.jp; Hishinuma, Y. [Fusion Engineering Research Center, National Institute for Fusion Science, 322-6, Oroshi, Toki, Gifu 509-5202 (Japan); Nishimura, A. [Fusion Engineering Research Center, National Institute for Fusion Science, 322-6, Oroshi, Toki, Gifu 509-5202 (Japan); Yamazaki, S. [Department of Electrical Engineering, Kogakuin University, 2665-1, Nakano, Hachioji, Tokyo 192-0015 (Japan); Kojima, S. [Department of Electrical Engineering, Kogakuin University, 2665-1, Nakano, Hachioji, Tokyo 192-0015 (Japan)

    2006-10-01

    In order to improve the critical current density (J {sub c}) and mechanical property of Bi-2223 sintered bulk, Ni wire meshes were added in the bulk. For fabricating large-sized cylindrical Bi-2223/Ni meshes composite, composing meshes are easy to produce compared with adding a lot of wires. The mesh concentration was 18 x 18 meshes/cm{sup 2} using Ni wires of 0.25 mm in diameter. The Ni meshes were plated with Ag by 0.03 mm in thickness. We prepared the cylindrical sintered bulk for a current lead, 32 mm in outer diameter, 2 mm in thickness and 110 mm in length using a cold isostatic pressing (CIP) method. The samples were sintered at 845 deg. C for 50 h. After treatment again with CIP as an intermediate pressing, the samples were re-sintered. Small species were cut from the cylinder for measurement of critical current density (J {sub c}) at 77 K under self-field. There existed higher J {sub c} portions and low J {sub c} portions in the composite cylinder. Scanning electron microscope (SEM) observation showed that highly c-axis oriented and densely structured Bi-2223 plate-like grains could be formed around the interfacial region between the superconducting oxide and the Ag-plated Ni wires. There observed structural dislocation, which lead to low J {sub c} portions in the cylinder.

  2. Push-Out Bond Strength of Restorations with Bulk-Fill, Flow, and Conventional Resin Composites

    Directory of Open Access Journals (Sweden)

    Rodrigo Vieira Caixeta

    2015-01-01

    Full Text Available The aim of this study was to evaluate the bond strengths of composite restorations made with different filler amounts and resin composites that were photoactivated using a light-emitting diode (LED. Thirty bovine incisors were selected, and a conical cavity was prepared in the facial surface of each tooth. All preparations were etched with Scotchbond Etching Gel, the Adper Scotchbond Multipurpose Plus adhesive system was applied followed by photoactivation, and the cavities were filled with a single increment of Filtek Z350 XT, Filtek Z350 XT Flow, or bulk-fill X-tra fil resin composite (n = 10 followed by photoactivation. A push-out test to determine bond strength was conducted using a universal testing machine. Data (MPa were submitted to Student’s t-test at a 5% significance level. After the test, the fractured specimens were examined using an optical microscope under magnification (10x. Although all three composites demonstrated a high prevalence of adhesive failures, the bond strength values of the different resin composites photoactivated by LED showed that the X-tra fil resin composite had a lower bond strength than the Filtek Z350 XT and Filtek Z350 XT Flow resin composites.

  3. Wear behaviour of Zr-based in situ bulk metallic glass matrix composites

    Indian Academy of Sciences (India)

    X F WU; G A ZHANG; F F WU

    2016-06-01

    Zr-based bulk metallic glass (BMG) and its in situ BMG matrix composites with diameter of 3 mm were fabricated by conventional Cu-mould casting method and the dry sliding wear behaviour of the BMG and composites was investigated. Compared to the pure BMG, the composites exhibited a markedly improved wear resistance from 10 to 48% due to the existence of various volume fractions of the ductile $\\beta$-Zr dendritic phase embedded in the glassy matrix. The composites showed lower friction coefficient and wear rate than the pure BMG. Meanwhile, the surface wearing of the composite with a proper amount of $\\beta$-Zr dendrites was less severe compared to that of the pure BMG. The worn surface of the composite was covered with mild grooves and some fine wear debris, which exhibited the characteristic of a mild abrasive wear. The improvement of the wear resistance of the composite with the proper amount of $\\beta$-Zr crystalline phase is attributed to the fact that the $\\beta$-Zr crystalline phase distributed in the amorphous matrix has some effective load bearing, plastic deformation and work hardening ability to decrease strain accumulation and the release of strain energy in the glassy matrix, restrict the expanding of shear bands and cracks, and occur plastic deformation homogeneously.

  4. Crystallization of Fe78Si9B13 Bulk Crystaline/Amorphous (c/a) Composite

    Institute of Scientific and Technical Information of China (English)

    JIN Shifeng; WANG Weimin; NIU Yuchao; ZHANG Jiteng; LI Guihua; BIAN Xiufang

    2008-01-01

    A metallic crystalline/amorphous (c/a) bulk composite was prepared by the slow cooling method after remelting the amorphous Fe78Si9B13 ribbon. By X-ray diffraction (XRD),differential scanning calorimetry (DSC) and scanning electron microscope (SEM), the composite consists of the primary dendrite a-Fe (without Si) as well as the amorphous matrix. After being anneal at 800 K, the uniform spheroid particles are formed in the c/a composite, which does not form in the amorphous ribbon under the various annealing process. Energy dispersive analysis of X-rays (EDAX), SEM and XRD were applied to give more detailed information. The formation and evolution of the particle may stimulate the possible application of the Fe-matrix amorphous alloy.

  5. Chemical Composition of Different Varieties of Linseed

    Directory of Open Access Journals (Sweden)

    M. Laiq Khan*, M. Sharif, M. Sarwar, Sameea1 and M. Ameen

    2010-04-01

    Full Text Available The present study was conducted to investigate chemical composition of six varieties of linseed (Chandni, LS-29, LS-49, LS-70, LS-75 and LS-76. Proximate composition, mineral profile and cyanogenic glycosides (linamarin were determined. Average proximate composition values for linseed i.e. crude protein, ether extract, crude fiber, ash and nitrogen free extract were 24.18, 37.77, 4.78, 3.50 and 25.86%, respectively. Higher values of crude protein, ether extract, crude fiber and nitrogen free extract were observed in varieties LS-49, LS-70, LS-29 and Chandni, respectively. Average mineral contents in linseed i.e. Ca, Mg, K, Na, Cl, P, Cu, Fe, Mn and Zn were 0.39, 0.09, 1.41, 0.05, 0.08, 0.89, 4.67, 50.56, 8.29 and 13.55 ppm, respectively. Among micro minerals, varieties LS-29 and LS-70 were higher in Cu contents; LS-75 was higher in Fe content, while LS-49 was higher in Mn and Zn contents. Among macro minerals, level of Ca was higher in LS-70, levels of Mg, K and Na were higher in Chandni, while P was higher in LS-49. Average amount of linamarin in linseed was 31.05mg/100 gm DM. The variety LS-75 had the highest (35.22 mg/100 gm linamarin content, while variety LS-70 had least (26.22 mg/100 gm amount of linamarin. In conclusion, there is significant difference in chemical composition among linseed varieties. The varieties LS-49 showed higher crude protein content, LS-70 showed greater oil content, while LS-75 had higher content of linamarin.

  6. (RE)BaCuO/Ag Composites: The Role of Silver in Bulk Materials and Joints

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We have investigated the phase equilibria in (RE)BaCuO/Ag systems, the influence of Ag on the processing of (RE)BaCuO/Ag composites and the resulting properties. YBaCuO/Ag composites have been grown by the modified melt crystallization process with YBa2Cu3O7, Y2O3, Pt and Ag2O in the precursor. The improved strength of the YBaCuO/Ag composites compared with the conventional YBaCuO bulk material permitted us to magnetize these materials to achieve trapped fields up to 16 T (at 24 K) in the gap of a mini-magnet. The investigation of the microstructure revealed a remarkable increase of the spacing between micro-cracks especially of those perpendicular to a/b-planes when 12 wt% Ag was added. In the case of SmBaCuO/Ag composites, Ag has a strong influence on processing and causes interactions between RE123 seeds and the sample. We show the growth of single-grain SmBaCuO/Ag composites in air and discuss the influence of post-annealing on increasing Tc and Jc. Furthermore, YBaCuO/Ag composites have been shown to be appropriate materials used as a solder to join large single grains to large arrays or to "repair" grain boundaries in arrays grown by a multiseeding technique.

  7. Cuspal Displacement Induced by Bulk Fill Resin Composite Polymerization: Biomechanical Evaluation Using Fiber Bragg Grating Sensors

    Science.gov (United States)

    Ramos, João; Alves, Sofia; Nogueira, Rogério

    2016-01-01

    Polymerization shrinkage is a major concern to the clinical success of direct composite resin restorations. The aim of this study was to compare the effect of polymerization shrinkage strain of two resin composites on cuspal movement based on the use of fiber Bragg grating (FBG) sensors. Twenty standardized Class II cavities prepared in upper third molars were allocated into two groups (n = 10). Restorations involved the bulk fill placement of conventional microhybrid resin composite (Esthet•X® HD, Dentsply DeTrey) (Group 1) or flowable “low-shrinkage” resin composite (SDR™, Dentsply DeTrey) (Group 2). Two FBG sensors were used per restoration for real-time measurement of cuspal linear deformation and temperature variation. Group comparisons were determined using ANCOVA (α = 0.05) considering temperature as the covariate. A statistically significant correlation between cuspal deflection, time, and material was observed (p flowable resin composite SDR™ induced significantly less cuspal deflection than the conventional resin composite Esthet•X® HD (p = 0.015) and presented a smoother curve slope during the polymerization. FBG sensors appear to be a valid tool for accurate real-time monitoring of cuspal deformation. PMID:27190517

  8. Marginal Integrity of Bulk Versus Incremental Fill Class II Composite Restorations.

    Science.gov (United States)

    Al-Harbi, F; Kaisarly, D; Bader, D; El Gezawi, M

    2016-01-01

    Bulk-fill composites have been introduced to facilitate the placement of deep direct resin composite restorations. This study aimed at analyzing the cervical marginal integrity of bulk-fill vs incremental and open-sandwich class II resin composite restorations after thermomechanical cycling using replica scanning electron microscopy (SEM) and ranking according to the World Dental Federation (FDI) criteria. Box-only class II cavities were prepared in 91 maxillary premolars with the gingival margin placed 1 mm above and below the cemento-enamel junction. Eighty-four premolars were divided into self-etch and total-etch groups, then subdivided into six restorative subgroups (n=7): 1-Tetric Ceram HB (TC) was used incrementally and in the open-sandwich technique with 2-Tetric EvoFlow (EF) and 3-Smart Dentin Replacement (SD). Bulk-fill restoratives were 4-SonicFill (SF), 5-Tetric N-Ceram Bulk Fill (TN), and 6-Tetric EvoCeram Bulk Fill (TE). In subgroups 1-5, Tetric N-Bond self-etch and Tetric N-Bond total-etch adhesives were used, whereas in subgroup 6, AdheSE self-etch and ExciTE F total etch were used. One more group (n=7) was restored with Filtek P90 Low Shrink Posterior Restorative (P9) only in combination with its self-etch P90 System Adhesive. Materials were manipulated and light cured (20 seconds, 1600 mW/cm(2)), and restorations were artificially aged by thermo-occlusal load cycling. Polyvinyl-siloxane impressions were taken and poured with epoxy resin. Resin replicas were examined by SEM (200×) for marginal sealing, and percentages of perfect margins were analyzed. Moreover, samples were examined using loupes (3.5×) and explorers and categorized according to the FDI criteria. Results were statistically analyzed (SEM by Kruskal-Wallis test and FDI by chi-square test) without significant differences in either the replica SEM groups (p=0.848) or the FDI criteria groups (p>0.05). The best SEM results at the enamel margin were in TC+EF/total-etch and SF

  9. Effects of Bulk Composition on The Atmospheric Dynamics on Close-in Exoplanets

    CERN Document Server

    Zhang, Xi

    2016-01-01

    Super Earths and mini Neptunes likely have a wide range of atmospheric compositions, such as H2, H2O, N2, and CO2. Here, we systematically investigate the effects of atmospheric bulk compositions on temperature and wind distributions for tidally locked sub-Jupiter-sized planets, using an idealized three-dimensional general circulation model (GCM). The bulk composition effects are characterized in the framework of two independent variables: molecular weight and molar heat capacity. The effect of molecular weight dominates. As the molecular weight increases, the atmosphere tends to have a larger day-night temperature contrast, a smaller eastward phase shift in the thermal phase curve and a smaller zonal wind speed. The width of the equatorial super-rotating jet also becomes narrower and the "jet core" region, where the zonal-mean jet speed maximizes, moves to a greater pressure level. The zonal-mean zonal wind is more prone to exhibit a latitudinally alternating pattern in a higher-molecular weight atmosphere. ...

  10. Cometary Coma Chemical Composition (C4) Mission

    Science.gov (United States)

    Carle, Glenn C.; Clark, Benton C.; Knocke, Philip C.; OHara, Bonnie J.; Adams, Larry; Niemann, Hasso B.; Alexander, Merle; Veverka, Joseph; Goldstein, Raymond; Huebner, Walter; Morrison, David (Technical Monitor)

    1994-01-01

    Cometary exploration remains of great importance to virtually all of space science. Because comets are presumed to be remnants of the early solar nebula, they are expected to provide fundamental knowledge as to the origin and development of the solar system as well as to be key to understanding of the source of volatiles and even life itself in the inner solar system. Clearly the time for a detailed study of the composition of these apparent messages from the past has come. A comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, is now being studied as a candidate for the new Discovery program. This mission is a highly-focussed and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission. The C4 mission will concentrate on measurements that will produce an understanding of the composition and physical makeup of a cometary nucleus. The core science goals of the C4 mission are 1) to determine the chemical, elemental, and isotopic composition of a cometary nucleus and 2) to characterize the chemical and isotopic nature of its atmosphere. A related goal is to obtain temporal information about the development of the cometary coma as a function of time and orbital position. The four short-period comets -- Tempel 1, Tempel 2, Churyumov-Gerasimenko, and Wirtanen -which all appear to have acceptable dust production rates, were identified as candidate targets. Mission opportunities have been identified beginning as early as 1998. Tempel I with a launch in 1999, however, remains the baseline comet for studies of and planning the C4 mission. The C4 mission incorporates two science instruments and two engineering instruments in the payload to obtain the desired measurements. The science instruments include an advanced version of the Cometary Ice and Dust Experiment (CIDEX), a mini-CIDEX with a sample collection system, an X-ray Fluorescence Spectrometer and a Pyrolysis-Gas Chromatograph, and a simplified version of the Neutral

  11. Deep and vertical silicon bulk micromachining using metal assisted chemical etching

    Science.gov (United States)

    Zahedinejad, Mohammad; Delaram Farimani, Saeed; Khaje, Mahdi; Mehrara, Hamed; Erfanian, Alireza; Zeinali, Firooz

    2013-05-01

    In this paper, a newfound and simple silicon bulk micromachining process based on metal-assisted chemical etching (MaCE) is proposed which opens a whole new field of research in MEMS technology. This method is anisotropic and by controlling the etching parameters, deep vertical etching, relative to substrate surface, can be achieved in micrometer size for oriented Si wafer. By utilizing gold as a catalyst and a photoresist layer as the single mask layer for etching, 60 µm deep gyroscope micromachined structures have been fabricated for 2 µm features. The results indicate that MaCE could be the only wet etching method comparable to conventional dry etching recipes in terms of achievable etch rate, aspect ratio, verticality and side wall roughness. It also does not need a vacuum chamber and the other costly instruments associated with dry etching techniques.

  12. Composite bulk Heat Insulation Made of loose Mineral and Organic Aggregate

    Directory of Open Access Journals (Sweden)

    Namsone Eva

    2015-12-01

    Full Text Available The task of building energy-efficiency is getting more important. Every house owner wishes to save up exploitation costs of heating, cooling, hot water production, ventilation, etc. and find cost-effective investments. One of the ways to reduce greenhouse gas emissions (GHGE is to minimize the heat transfer through the building by insulating it. Loose heat insulation is a good alternative to traditional board insulation, it is simple in use and cost-effective. Main drawback of this insulation is tendency to compact during exploitation. In the frame of this research composite loose heat insulation is elaborated, consisting on porous mineral foamed glass aggregate and local organic fiber materials (hemp and flaxen shives. Composite bulk insulation is an alternative solution which combines heat insulating properties and mechanical stability.

  13. Development of bulk metallic glasses based on the Dy-Al binary eutectic composition

    Institute of Scientific and Technical Information of China (English)

    LUO Lin; TIAN Rui; XIAO Xueshan

    2008-01-01

    A series of dysprosium-based ternary, quadruple, and quintuple bulk metallic glasses (BMGs) based on Dy-Al binary eutectic compo-sition were obtained with the partial substitution of Co, Gd, and Ni elements, for dysprosium. The results showed that the Dy31Gd25Co20Al24 alloy, which had the best glass forming ability (GFA), could be cast into an amorphous rod with a diameter of 5 mm. The GFA of alloys was evaluated on the basis of the supercooled liquid region width, γ parameter, the formation enthalpy, and the equivalent electronegativity difference of amor-phous alloys. It was found that the eutectic composition was closely correlated with the GFA of the Dy-based BMGs.

  14. Electrical impedance properties of carbon nanotube composite electrodes for chemical and biosensor.

    Science.gov (United States)

    So, Dae-Sup; Kang, Inpil; Huh, Hoon; Lee, Haiwon

    2010-05-01

    Electrical impedance properties of different type of carbon nanotubes based bulk electrodes have been investigated to develop chemical and biosensors. The bulk composite electrodes were fabricated with single-wall and multi-wall carbon nanotubes involving ionic conducting host polymer, Nafion, by using traditional solution-casting techniques. Under the various amounts of buffer solution, resistance and capacitance of the electrodes were measured with LCR meter and their characteristics due to ionic conducting host polymer were investigated by means of electrokinetic analysis. The capacitance values showed drastic change while the resistances only changed within few percent ranges. Electrical impedance measurement provided rapid and simple sensing mechanism to develop chemical sensor and biosensors with bulk nano electrodes.

  15. Bulk Composition of GJ 1214b and other sub-Neptune exoplanets

    CERN Document Server

    Valencia, Diana; Parmentier, Vivien; Freedman, Richard S

    2013-01-01

    GJ1214b stands out among the detected low-mass exoplanets, because it is, so far, the only one amenable to transmission spectroscopy. Up to date there is no consensus about the composition of its envelope although most studies suggest a high molecular weight atmosphere. In particular, it is unclear if hydrogen and helium are present or if the atmosphere is water dominated. Here, we present results on the composition of the envelope obtained by using an internal structure and evolutionary model to fit the mass and radius data. By examining all possible mixtures of water and H/He, with the corresponding opacities, we find that the bulk amount of H/He of GJ1214b is at most 7% by mass. In general, we find the radius of warm sub-Neptunes to be most sensitive to the amount of H/He. We note that all (Kepler-11b,c,d,f, Kepler-18b, Kepler-20b, 55Cnc-e, Kepler-36c and Kepler-68b) but one (Kepler-11e) of the discovered low-mass planets so far have less than 10% H/He. In fact, Kepler-11e has 10-25% bulk H/He. Conversely,...

  16. A bulk metal/ceramic composite material with a cellular structure

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhankui; YAO Kefu; LI Jingfeng

    2006-01-01

    A bulk metal/ceramic composite material with a honeycomb-like micro-cell structure has been prepared by sintering the spherical Al90Mn9Ce1 alloy powders clad by Al2O3 nano-powder with the spark plasma sintering (SPS) technique. The as-prepared material consists of Al90Mn9Ce1 alloy cell and closed Al2O3 ceramic cell wall. The diameter of the cells is about 20―40 μm, while a thickness of the cell wall is about 1―2 μm. The ultimate compressive strength of the as-sintered materials is about 514 MPa, while its fracture strain is up to about 0.65 %. This composite material might possess good anti-corrosion, thermal endurance and other potential properties due to its unique microstructure. The result shows that the Al90Mn9Ce1/Al2O3 composite powders can be sintered by spark plasma sintering technique despite the large difference in their sintering temperature. This work offers a way of designing and preparing metal/ceramic composite material with functional property.

  17. Chemical and Physical Properties of Bulk Aerosols within Four Sectors Observed during TRACE-P

    Science.gov (United States)

    Jordan, C. E.; Anderson, B. E.; Talbot, R. W.; Dibb, J. E.; Fuelberg, E.; Hudgins, C. H.; Kiley, C. M.; Russo, R.; Scheuer, E.; Seid, G.

    2003-01-01

    Chemical and physical aerosol data collected on the DC-8 during TRACE-P were grouped into four sectors based on back trajectories. The four sectors represent long-range transport from the west (WSW), regional circulation over the western Pacific and Southeast Asia (SE Asia), polluted transport from Northern Asia with substantial sea salt at low altitudes (NNW) and a substantial amount of dust (Channel). WSW has generally low mixing ratios at both middle and high altitudes, with the bulk of the aerosol mass due to non-sea-salt water-soluble inorganic species. Low altitude SE Asia also has low mean mixing ratios in general, with the majority of the aerosol mass comprised of non-sea-salts, however, soot is also relatively important m this region. "w had the highest mean sea salt mixing ratios, with the aerosol mass at low altitudes (a km) evenly divided between sea salts, mm-sea-salts, and dust. The highest mean mixing ratios of water-soluble ions and soot were observed at the lowest altitudes (a km) in the Channel sector. The bulk of the aerosol mass exported from Asia emanates h m Channel at both low and midaltitudes, due to the prevalence of dust compared to other sectors. Number densities show enhanced fine particles for Channel and NNW, while their volume distributions are enhanced due to sea salt and dust Low-altitude Channel exhibits the highest condensation nuclei ((34) number densities along with enhanced scattering coefficients, compared to the other sectors. At midaltitudes (2-7 km), low mean CN number densities coupled with a high proportion of nonvolatile particles (265%) observed in polluted sectors (Channel and NNW) are attributed to wet scavenging which removes hygroscopic CN particles. Low single scatter albedo m SE Asia reflects enhanced soot

  18. Chemical short-range order domain in bulk amorphous alloy and the prediction of glass forming ability

    Institute of Scientific and Technical Information of China (English)

    HUI; Xidong(惠希东); YAO; Kefu(姚可夫); KOU; Hongchao(寇宏超); CHEN; Guoliang(陈国良)

    2003-01-01

    Short-range order domains of face central cubic Zr2Ni (F-Zr2Ni) and tetragonal Zr2Ni (T-Zr2Ni) type structure with a size about 1-3 nanometers were observed in bulk amorphous Zr52.5Cu17.9Ni14.6Al10Ti5 alloy by using HREM and nano-beam electron diffraction technique. A new thermodynamic model was formulated based on the concept of chemical short-range order (SCRO). The molar fractions of CSRO and thermodynamic properties in Ni-Zr, Cu-Zr, Al-Zr, Al-Ni, Zr-Ni-Al and Zr-Ni-Cu were calculated. According to the principle of maximum the optimum glass forming ability (GFA) compositions were predicted in binary and ternary alloys. These results were proved to be valid by the experimental data of crystallizing activation energy, ΔTx and XRD patterns. The TTT curves of Zr-Ni-Cu alloys calculated based on CSRO model shows that the lowest critical cooling rate GFA is in the order of 100 K/s, which is close to the practical cooling rate for the preparation of Zr-based BMG alloys.

  19. Piezoelectric and dielectric characterization of corona and contact poled PZT-epoxy-MWCNT bulk composites

    Science.gov (United States)

    Banerjee, S.; Cook-Chennault, K. A.; Du, W.; Sundar, U.; Halim, H.; Tang, A.

    2016-11-01

    Three-phase lead zirconate titanate (PZT, PbZr0.52Ti0.48O3)-epoxy-multi-walled carbon nanotube (MWCNT) bulk composites were prepared, where the volume fraction of PZT was held constant at 30%, while the volume fraction of the MWCNTs was varied from 1.0%–10%. The samples were poled using either a parallel plate contact or contactless (corona) poling technique. The piezoelectric strain coefficient (d 33), dielectric constant (ε), and dielectric loss tangent (tan δ) of the samples were measured at 110 Hz, and compared as a function of poling technique and volume fraction of MWCNTs. The highest values for dielectric constant and piezoelectric strain coefficients were 465.82 and 18.87 pC/N for MWCNT volume fractions of 10% and 6%, respectively. These values were obtained for samples that were poled using the corona contactless method. The impedance and dielectric spectra of the composites were recorded over a frequency range of 100 Hz–20 MHz. The impedance values observed for parallel-plate contact poled samples are higher than that of corona poled composites. The fractured surface morphology and distribution of the PZT particles and MWCNTs were observed with the aid of electron dispersion spectroscopy and a scanning electron microscope. The surface morphology of the MWCNTs was observed with the aid of a field emission transmission electron microscope.

  20. Deformation-Induced Martensitic Transformation in Cu-Zr-Zn Bulk Metallic Glass Composites

    Directory of Open Access Journals (Sweden)

    Dianyu Wu

    2015-11-01

    Full Text Available The microstructures and mechanical properties of (Cu0.5Zr0.5100−xZnx (x = 0, 1.5, 2.5, 4.5, 7, 10, and 14 at. % bulk metallic glass (BMG composites were studied. CuZr martensitic crystals together with minor B2 CuZr and amorphous phases dominate the microstructures of the as-quenched samples with low Zn additions (x = 0, 1.5, and 2.5 at. %, while B2 CuZr and amorphous phases being accompanied with minor martensitic crystals form at a higher Zn content (x = 4.5, 7, 10, and 14 at. %. The fabricated Cu-Zr-Zn BMG composites exhibit macroscopically appreciable compressive plastic strain and obvious work-hardening due to the formation of multiple shear bands and the deformation-induced martensitic transformation (MT within B2 crystals. The present BMG composites could be a good candidate as high-performance structural materials.

  1. Local melting to design strong and plastically deformable bulk metallic glass composites

    Science.gov (United States)

    Qin, Yue-Sheng; Han, Xiao-Liang; Song, Kai-Kai; Tian, Yu-Hao; Peng, Chuan-Xiao; Wang, Li; Sun, Bao-An; Wang, Gang; Kaban, Ivan; Eckert, Jürgen

    2017-02-01

    Recently, CuZr-based bulk metallic glass (BMG) composites reinforced by the TRIP (transformation-induced plasticity) effect have been explored in attempt to accomplish an optimal of trade-off between strength and ductility. However, the design of such BMG composites with advanced mechanical properties still remains a big challenge for materials engineering. In this work, we proposed a technique of instantaneously and locally arc-melting BMG plate to artificially induce the precipitation of B2 crystals in the glassy matrix and then to tune mechanical properties. Through adjusting local melting process parameters (i.e. input powers, local melting positions, and distances between the electrode and amorphous plate), the size, volume fraction, and distribution of B2 crystals were well tailored and the corresponding formation mechanism was clearly clarified. The resultant BMG composites exhibit large compressive plasticity and high strength together with obvious work-hardening ability. This compelling approach could be of great significance for the steady development of metastable CuZr-based alloys with excellent mechanical properties.

  2. Chemical composition of crystalline rock fragments from Luna 16 and Luna 20 fines

    Science.gov (United States)

    Cimbalnikova, A.; Palivcova, M.; Frana, J.; Mastalka, A.

    1977-01-01

    The chemical composition (bulk, rare earth, and trace elements) of the Luna 16 mare regolith and luna 20 highland regolith is discussed. The rock samples considered are 14 basaltic rock fragments (Luna 16) and 13 rock fragments of the ANT suite (Luna 20). On the basis of bulk composition, two types of basaltic rocks have been differentiated and defined in the Luna 16 regolith: mare basalts (fundamental crystalline rocks of Mare Fecunditatis) and high-alumina basalts. The bulk analyses of rock fragments of the ANT suite also enabled distinction of two rock types: anorthositic norites and troctolites and/or spinal-troctolites (the most abundant crystalline rocks of the highland region, the landing site of luna 20), and anorthosites. The chemical compositions of Luna 16 and Luna 20 regolith samples are compared. Differences in the chemistry of the Luna 16 mare regolith and that of mare basalts are discussed. The chemical affinity between the Luna 20 highland regolith and (a) anorthositic norites and (b) troctolites and/or spinel-troctolites has been ascertained.

  3. Chemical Composition and Antibacterial Effects of

    Directory of Open Access Journals (Sweden)

    SS Saei Dehkordi

    2009-10-01

    Full Text Available Introduction & Objective: Rosmarinus officinalis L. as a member of the Lamiaceae family and lysozyme as a natural antibacterial agent is important in food microbiology, because of its characteristics. The aim of the present study was to determine the chemical composition and anti-listerial activity of Rosmarinus officinalis essential oil (REO alone and in combination with lysozyme for enhancement of anti-listerial activity of both substances. Materials & Methods: Rosmarinus officinalis L. was purchased from a local grocery store at Shahrekord and was identified by the Institute of Medicinal Plants, ACECR. The air-dried aerial parts were subjected to hydrodistillation using a Clevenger apparatus to obtain essential oil and yielded oil was analyzed by GC/MS. Antibacterial activity (on basis of Minimum Inhibitory Concentration (MIC of REO was studied separately and in combination with unheated lysozyme (L and heat-treated lysozyme (HTL on Listeria monocytogenes at different pH (5, 6 and 7 by a micro-broth dilution assay. The collected data were analyzed by SPSS software. Results: In the current study, 98.05% of constituents of the essential oil were identified. The major components were α-pinene (14.06%, 1,8-cineole (13.62%, verbenone (11.2%, camphor (10.51%, borneol (7.3%, 3-octanone (7.02%, camphene (5.46% and linalool (5.07%. The inhibitory action of REO was stronger at lower pH especially 5 (MIC=225 μg/mL. Inhibition by L at pH 5 was 640 μg/mL but no inhibition was seen at pH 7. HTL resulted in more effective inhibition than L, especially at pH 5 and heat-treatment 80˚C (MIC: 160 μg/mL. Conclusion: Combination of L + REO and particularly HTL + REO was led to enhancement of bacterial inhibition. It was concluded that REO by the identified chemical composition was effective alone or in combination with L or HTL on Listeria monocytogenes as a food-borne pathogen.

  4. On-line chemical composition analyzer development

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Garrison, A.A.; Muly, E.C.; Moore, C.F.

    1992-02-01

    The energy consumed in distillation processes in the United States represents nearly three percent of the total national energy consumption. If effective control of distillation columns can be accomplished, it has been estimated that it would result in a reduction in the national energy consumption of 0.3%. Real-time control based on mixture composition could achieve these savings. However, the major distillation processes represent diverse applications and at present there does not exist a proven on-line chemical composition sensor technology which can be used to control these diverse processes in real-time. This report presents a summary of the findings of the second phase of a three phase effort undertaken to develop an on-line real-time measurement and control system utilizing Raman spectroscopy. A prototype instrument system has been constructed utilizing a Perkin Elmer 1700 Spectrometer, a diode pumped YAG laser, two three axis positioning systems, a process sample cell land a personal computer. This system has been successfully tested using industrially supplied process samples to establish its performance. Also, continued application development was undertaken during this Phase of the program using both the spontaneous Raman and Surface-enhanced Raman modes of operation. The study was performed for the US Department of Energy, Office of Industrial Technologies, whose mission is to conduct cost-shared R D for new high-risk, high-payoff industrial energy conservation technologies. Although this document contains references to individual manufacturers and their products, the opinions expressed on the products reported do not necessarily reflect the position of the Department of Energy.

  5. Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites

    Science.gov (United States)

    Li, Z. K.; Fu, H. M.; Sha, P. F.; Zhu, Z. W.; Wang, A. M.; Li, H.; Zhang, H. W.; Zhang, H. F.; Hu, Z. Q.

    2015-03-01

    The interaction between active element Zr and W damages the W fibers and the interface and decreases the mechanical properties, especially the tensile strength of the W fibers reinforced Zr-based bulk metallic glass composites (BMGCs). From the viewpoint of atomic interaction, the W-Zr interaction can be restrained by adding minor elements that have stronger interaction with W into the alloy. The calculation about atomic interaction energy indicates that Ta and Nb preferred to segregate on the W substrate surface. Sessile drop experiment proves the prediction and corresponding in-situ coating appears at the interface. Besides, the atomic interaction mechanism was proven to be effective in many other systems by the sessile drop technique. Considering the interfacial morphology, Nb was added into the alloy to fabricate W/Zr-based BMGCs. As expected, the Nb addition effectively suppressed the W-Zr reaction and damage to W fibers. Both the compressive and tensile properties are improved obviously.

  6. Chemical compositions of four barium stars

    CERN Document Server

    Liang, Y C; Chen, Y Q; Qiu, H M; Zhang, B

    2003-01-01

    Chemical compositions of four barium stars HD 26886, HD 27271, HD 50082 and HD 98839 are studied based on high resolution, high signal-to-noise Echelle spectra. Results show that all of them are disk stars. Their \\alpha and iron peak elements are similar to the solar abundances. The neutron-capture process elements are overabundant relative to the Solar. The heavy-element abundances of the strong Ba star HD 50082 are higher than those of other three mild Ba stars. Its mass is 1.32Msun (+0.28,-0.22Msun), and is consistent with the average mass of strong Ba stars (1.5Msun). For mild Ba star HD 27271 and HD 26886, the derived masses are 1.90Msun (+0.25,-0.20Msun) and 2.78Msun (+0.75,-0.78M_sun), respectively, which are consistent with the average mass of mild Ba stars. We also calculate the theoretical abundances of Ba stars by combining the AGB stars nucleosynthesis and wind accretion formation scenario of Ba binary systems. The comparisons between the observed abundance patterns of the sample stars with the th...

  7. Direct observation of bulk and surface chemical morphologies of Ginkgo biloba leaves by Fourier transform mid- and near-infrared microspectroscopic imaging.

    Science.gov (United States)

    Chen, Jianbo; Sun, Suqin; Zhou, Qun

    2013-11-01

    Fourier transform infrared microspectroscopy is a powerful tool to obtain knowledge about the spatial and/or temporal distributions of the chemical compositions of plants for better understanding of their biological properties. However, the chemical morphologies of plant leaves in the plane of the blade are barely studied, because sections in this plane for mid-infrared transmission measurements are difficult to obtain. Besides, native compositions may be changed by chemical reagents used when plant samples are microtomed. To improve methods for direct infrared microspectroscopic imaging of plant leaves in the plane of the blade, the bulk and surface chemical morphologies of nonmicrotomed Ginkgo biloba leaves were characterized by near-infrared transmission and mid-infrared attenuated total reflection microspectroscopic imaging. A new self-modeling curve resolution procedure was proposed to extract the spectral and concentration information of pure compounds. Primary and secondary metabolites of secretory cavities, veins, and mesophylls of Ginkgo biloba leaf blades were analyzed, and the distributions of cuticle, protein, calcium oxalate, cellulose, and ginkgolic acids on the adaxial surface were determined. By the integration of multiple infrared microspectroscopic imaging and chemometrics methods, it is possible to analyze nonmicrotomed leaves and other plant samples directly to understand their native chemical morphologies in detail.

  8. Measurement of cosmic ray chemical composition at Mt. Chacaltaya

    Energy Technology Data Exchange (ETDEWEB)

    Ogio, S.; Kakimoto, F.; Harada, D.; Tokunou, H.; Burgoa, O.; Tsunesada, Y. [Institute of Technology, Dept. of Physics, Tokuo (Japan); Shirasaki, Y. [National Space Development Agency of Japan, Tsukuba (Japan); Gotoh, E.; Nakatani, H.; Shimoda, S.; Nishi, K.; Tajima, N.; Yamada, Y. [The Institute of Physical and Chemical Research, Wako, Saitama (Japan); Kaneko, T. [Okayama University, Dept. of Physics, Oakayama (Japan); Matsubara, Y. [Nagoya University, Solar-Terrestrial Environment Laboratory, Nagoya, Aichi (Japan); Miranda, P.; Velarde, A. [Universidad Mayor de San Andres, Institute de Investigaciones Fisicas, La Paz (Bolivia); Mizumoto, T. [National Astronomical Observatory, Mitaka, Tokyo (Japan); Yoshii, H.; Morizawa, A. [Ehime University, Dept. of Physics, Matsuyama, Ehime (Japan); Murakami, K. [Nagoya University of Foreign Studies, Nissin, Aichi (Japan); Toyoda, Y. [Fukui University of Technology, Faculty of General Education, Fukui (Japan)

    2001-10-01

    BASJE group has measured the chemical composition of primary cosmic rays with energies around the knee with several methods. These measurements show that the averaged mass number of cosmic ray particles increases with energy up to the knee. In order to measure the chemical composition in much wider energy range, it was started a new experiment at Mt. Chacaltaya in 2000.

  9. The Evolution of Microstructures and the Properties of Bulk Metallic Glass with Consubstantial Composition Laser Welding

    Directory of Open Access Journals (Sweden)

    Pingjun Tao

    2016-09-01

    Full Text Available A Zr55Cu30Ni5Al10 plate-like bulk metallic glass (BMG was prepared using copper mold suction casting. Additionally, alloy powders with the same nominal composition were synthesized. The alloy powders were welded or melted to the cleaned surface of the BMG with a laser beam acceleration voltage of 60 kV, a beam current range from 60 to 100 mA, a welding speed of 60 mm/s, as well as an impulse width of 3.0 ms. The effect of consubstantial composition welding on the microstructures and properties was investigated. The molten and subsequently solidified metallic mixtures remain an amorphous structure, but the enthalpy of the welded or melted position varies due to the combination of the micro-structural relaxation and nano-crystals precipitated during the energy inputs. The surface layers of the BMG can be significantly intensified after welding processes; however, the heat-affected zones (HAZs exhibit a slight degradation in mechanical properties with respect to the BMG matrix. This study has important reference value for specialists working on the promotion of applications of BMGs.

  10. Thermal conductivity of bulk boron nitride nanotube sheets and their epoxy-impregnated composites

    Energy Technology Data Exchange (ETDEWEB)

    Jakubinek, Michael B.; Kim, Keun Su; Simard, Benoit [Security and Disruptive Technologies, Division of Emerging Technologies, National Research Council Canada, Ottawa, ON (Canada); Niven, John F. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS (Canada); Johnson, Michel B. [Institute for Research in Materials, Dalhousie University, Halifax, NS (Canada); Ashrafi, Behnam [Aerospace, Division of Engineering, National Research Council Canada, Montreal, QC (Canada); White, Mary Anne [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS (Canada); Institute for Research in Materials, Dalhousie University, Halifax, NS (Canada); Department of Chemistry, Dalhousie University, Halifax, NS (Canada)

    2016-08-15

    The thermal conductivity of bulk, self-supporting boron nitride nanotube (BNNT) sheets composed of nominally 100% BNNTs oriented randomly in-plane was measured by a steady-state, parallel thermal conductance method. The sheets were either collected directly during synthesis or produced by dispersion and filtration. Differences between the effective thermal conductivities of filtration-produced BNNT buckypaper (∝1.5 W m{sup -1} K{sup -1}) and lower-density as-synthesized sheets (∝0.75 W m{sup -1} K{sup -1}), which are both porous materials, were primarily due to their density. The measured results indicate similar thermal conductivity, in the range of 7-12 W m{sup -1} K{sup -1}, for the BNNT network in these sheets. High BNNT-content composites (∝30 wt.% BNNTs) produced by epoxy impregnation of the porous BNNT network gave 2-3 W m{sup -1} K{sup -1}, more than 10 x the baseline epoxy. The combination of manufacturability, thermal conductivity, and electrical insulation offers exciting potential for electrically insulating, thermally conductive coatings and packaging. Thermal conductivity of free-standing BNNT buckypaper, buckypaper composites, and related materials at room temperature. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. THE STUDY OF CHEMICAL COMPOSITION FOR ANIMAL FATS DURING STORAGE

    OpenAIRE

    Flavia Pop; Cornel Laslo

    2009-01-01

    In this article the chemical composition for 3 types of animal fats (pork fat, beef tallow and buffalo tallow), following the variation of saturated and unsaturated fatty acids proportion during freezing storage was studied. Determination of chemical composition of animal fats is important in establishing organoleptic and physico-chemical parameters, the variation of them in time, nature and proportion of fatty acids conferring specific characteristics to them. For pork fat was determined the...

  12. Compositional, physical and chemical modification of polylactide

    Directory of Open Access Journals (Sweden)

    M. Żenkiewicz

    2010-11-01

    Full Text Available Purpose: The purpose of this article was to review some of the modification methods applied to improve mechanical, barrier and/or surface properties of polylactide (PLA.Design/methodology/approach: The presented modification methods were classified into three groups due to the dominant role of compositional, physical or chemical factor effecting the most PLA properties.Findings: It was found that incorporation of small amounts of montmorillonite up to 5% leads to formation of a nanocomposite with enhanced tensile strength and improved barrier properties. Corona treatment of pure PLA and PLA contained MMT nanofiller causes a significant decrease in the water contact angle and does not essentially affect the diiodomethane contact angle. This treatment leads to an increase in surface free energy that is much more significant for pure PLA than for PLA containing MMT nanofiller. It was also found that with increasing number up to 1000 of laser pulses of energies 5 mJ/cm2 an increase in surface free energy was observed, while the next laser pulses caused decrease of this energy. The determination and comparison of the influence of 3 wt.% of trimethylopropane trimethacylate (TMPTA and 3 wt.% of trially isocyanurate (TAIC crosslinking agents on the thermomechanical properties of electron beam irradiated PLA was reported.Research limitations/implications: A number of various modification methods are widely reported in literature. In this article a review of only such modification methods is presented, which are in line with the newest trends in polymer industry and science.Practical implications: There are a number of PLA properties, which need to be improved to satisfy specific application conditions. For that reasons researches are leading to find suitable modification methods to improve selected properties of PLA.Originality/value: This article presents some of modification methods, which are in line with the newest trends in polymer industry and

  13. Microstructure, flow behavior, and bulk texture evolution of cold drawn copper–silver composites

    Energy Technology Data Exchange (ETDEWEB)

    Dodla, S., E-mail: srihari.dodla@st.ovgu.de [Institut für Mechanik, Otto-von-Guericke-Universität Magdeburg, D-39106 Magdeburg (Germany); Thiem, P.; Krüger, M. [Institut für Werkstoff- und Fügetechnik, Otto-von-Guericke-Universität Magdeburg, D-39106 Magdeburg (Germany); Dietrich, D. [Institut für Werkstoffwissenschaft und Werkstofftechnik, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Bertram, A. [Institut für Mechanik, Otto-von-Guericke-Universität Magdeburg, D-39106 Magdeburg (Germany)

    2015-10-25

    In the last 20 years, several groups used nanostructured composites to produce high strength conductor materials for magnetic applications. The mechanical strength of Cu–Ag composites is strongly influenced by metal forming operations. Within the scope of the paper, the microstructure, the mechanical behavior, and the texture evolution are investigated for two cold drawn Cu-63wt%Ag composite rods. The aim of these investigations is to understand the influence of the microstructure and texture evolution on the mechanical behavior. The investigation is carried out using optical microscopy, scanning electron microscopy (SEM) along with electron backscattered diffraction (EBSD), X-ray diffraction measurements (XRD), and compression testing. The microscopic images show that the drawn samples mainly have a lamellar structure of Cu and Ag phases. However, elliptical shaped regions of primarily solidified copper solid solution are also observed. With increase of plastic deformation, the average lamella thickness of both phases has been decreased. EBSD measurements show that abundant banded regions are observed in the Ag phase while very few banded regions are present in the Cu phase. The bulk XRD measurements reveal that both phases of the drawn samples initially have the same type of texture, and both phases develop the same brass-type [110]〈112〉 texture. The texture intensity increases for both phases as the drawing strain increases. Compression tests are performed at constant strain rate of 10{sup −4} s{sup −1} at room temperature. The stress–strain curves under compression are presented for two different drawn samples. The texture measurements after compression reveal that the texture becomes more pronounced. - Highlights: • Two cold drawn Cu–Ag rods are investigated. • Both phases of the drawn samples initially have the same type of texture. • Several banded regions are observed in the Ag phase. • Texture becomes more pronounced after compression.

  14. The effect of curing intensity on mechanical properties of different bulk-fill composite resins

    Science.gov (United States)

    Alkhudhairy, Fahad I

    2017-01-01

    Objective The purpose of this study was to investigate the effects of two curing light intensities on the mechanical properties (Vickers microhardness, compressive strength, and diametral tensile strength) of bulk-fill resin-based composites (RBCs). Materials and methods Four commercially available bulk-fill RBCs (Tetric® N-Ceram, SonicFill™, Smart Dentin Replacement (SDR™) Posterior Flowable Material, and Filtek™ Posterior Restorative) were used in this study. A total of 72 cylindrical specimens of each RBC (n=288) were prepared and subjected to Vickers microhardness, compressive strength, and diametral tensile strength tests at high (1200 mW/cm2) and low (650 mW/cm2) curing light intensities (each n=12). Results were evaluated using independent and paired sample t-tests, one-way analysis of variance, and Tukey’s post hoc test. All tests were performed at a significance level of Pmicrohardness was observed for SonicFill (58.3 Vickers hardness number [VHN]) cured using high-intensity light. Although having the least mean microhardness values, a significant difference was observed between SDR cured using high-intensity light and that cured using low-intensity light (Pmicrohardness of two materials tested compared with lower curing light intensity (650 mW/cm2). SonicFill showed the greatest microhardness and compressive strength significantly for both curing light intensities and greater diametral tensile strength with high-intensity light, although not significant. SDR cured with high-intensity light showed the greatest diametral tensile strength among the four materials. PMID:28260947

  15. Propolis chemical composition and honeybee resistance against Varroa destructor.

    Science.gov (United States)

    Popova, M; Reyes, M; Le Conte, Y; Bankova, V

    2014-01-01

    Propolis is known as honeybee chemical defence against infections and parasites. Its chemical composition is variable and depends on the specificity of the local flora. However, there are no data concerning the relationship between propolis chemical composition and honeybee colony health. We tried to answer this question, studying the chemical composition of propolis of bee colonies from an apiary near Avignon, which are tolerant to Varroa destructor, comparing it with colonies from the same apiary which are non-tolerant to the mites. The results indicated that non-tolerant colonies collected more resin than the tolerant ones. The percentage of four biologically active compounds - caffeic acid and pentenyl caffeates - was higher in propolis from tolerant colonies. The results of this study pave the way to understanding the effect of propolis in individual and social immunity of the honeybees. Further studies are needed to clarify the relationship between propolis chemical composition and honeybee colony health.

  16. Non-Magnetic, Tough, Corrosion- and Wear-Resistant Knives From Bulk Metallic Glasses and Composites

    Science.gov (United States)

    Hoffman, Douglas C.; Potter, Benjamin

    2013-01-01

    Quality knives are typically fabricated from high-strength steel alloys. Depending on the application, there are different requirements for mechanical and physical properties that cause problems for steel alloys. For example, diver's knives are generally used in salt water, which causes rust in steel knives. Titanium diver's knives are a popular alternative due to their salt water corrosion resistance, but are too soft to maintain a sharp cutting edge. Steel knives are also magnetic, which is undesirable for military applications where the knives are used as a tactical tool for diffusing magnetic mines. Steel is also significantly denser than titanium (8 g/cu cm vs. 4.5 g/cu cm), which results in heavier knives for the same size. Steel is hard and wear-resistant, compared with titanium, and can keep a sharp edge during service. A major drawback of both steel and titanium knives is that they must be ground or machined into the final knife shape from a billet. Since most knives have a mirrored surface and a complex shape, manufacturing them is complex. It would be more desirable if the knife could be cast into a net or near-net shape in a single step. The solution to the deficiencies of titanium, steel, and ceramic knives is to fabricate them using bulk metallic glasses (or composites). These alloys can be cast into net or near-net shaped knives with a combination of properties that exceed both titanium and steel. A commercially viable BMG (bulk metallic glass) or composite knife is one that exhibits one or all of the following properties: It is based on titanium, has a self-sharpening edge, can retain an edge during service, is hard, is non-magnetic, is corrosion-resistant against a variety of corrosive environments, is tough (to allow for prying), can be cast into a net-shape with a mirror finish and a complex shape, has excellent wear resistance, and is low-density. These properties can be achieved in BMG and composites through alloy chemistry and processing. For

  17. Effect of Initial Bulk Material Composition on Thermoelectric Properties of Bi2Te3 Thin Films

    Science.gov (United States)

    Budnik, A. V.; Rogacheva, E. I.; Pinegin, V. I.; Sipatov, A. Yu.; Fedorov, A. G.

    2013-07-01

    V2VI3 compounds and solid solutions based on them are known to be the best low-temperature thermoelectric (TE) materials. The predicted possibility of enhancement of the TE figure of merit in two-dimensional (2D) structures has stimulated studies of the properties of these materials in the thin-film state. The goal of the present work is to study the dependences of the Seebeck coefficient S, electrical conductivity σ, Hall coefficient R H, charge carrier mobility μ H, and TE power factor P = S 2 σ of Bi2Te3 thin films on the composition of the initial bulk material used for preparing them. Thin films with thickness d = 200 nm to 250 nm were grown by thermal evaporation in vacuum of stoichiometric Bi2Te3 crystals (60.0 at.% Te) and of crystals with 62.8 at.% Te onto glass substrates at temperatures T S of 320 K to 500 K. It was established that the conductivity type of the initial material is reproduced in films fairly well. For both materials, an increase in T S leads to an increase in the thin-film structural perfection, better correspondence between the film composition and that of the initial material, and increase in S, R H, μ H, σ, and P. The room-temperature maximum values of P for the films grown from crystals with 60.0 at.% and 62.8 at.% Te are P = 7.5 × 10-4 W/K2 m and 35 × 10-4 W/K2 m, respectively. Thus, by using Bi2Te3 crystals with different stoichiometry as initial materials, one can control the conductivity type and TE parameters of the films, applying a simple and low-cost method of thermal evaporation from a single source.

  18. Physico-Chemical, Functional and Rheological Characterization of Biodegradable Pellets and Composite Sheets

    Directory of Open Access Journals (Sweden)

    Jan Kulsum

    2016-01-01

    Full Text Available Deoiled rice bran, paddy husk, cashew nut shell liquid and glycerol were extruded into pellets and further pressed into composites. Processing and plasticizer type had significant effect on physico-chemical, functional, rheological and morphological properties of pellets and composites. Specific mechanical energy of the pellets containing cashew nut shell liquid as plasticizer was higher than those containing glycerol. The maximum hardness and bulk density were obtained for pellets prepared from cashew nut shell liquid. Water binding capacity and water solubility index of both pellets and composites were highest for samples containing glycerol as plasticizer. A significant change in functional properties during processing was observed among raw materials, pellets and the final product (composite sheets.

  19. Chemical composition of upper crust in eastern China

    Institute of Scientific and Technical Information of China (English)

    鄢明才; 迟清华; 顾铁新; 王春书

    1997-01-01

    In an area of 3. 3 ×106 km" within eastern China, 28 253 rock samples were collected systematically and combined into 2 718 composite samples which were analyzed by 15 reliable methods using national preliminary certified reference materials (CRMs) for data quality monitoring. The average chemical compositions of the exposed crust, the sedimentary cover and the exposed basement as well as the upper crust for 76 chemical elements in eastern China are given.

  20. Centre seeded infiltration and growth process for fabrication of large grain bulk YBCO/Ag superconducting composites

    Science.gov (United States)

    Parthasarathy, R.; Seshubai, V.

    2012-06-01

    We report the fabrication of a large grain bulk YBCO/Ag superconductor using a novel technique which we call Centre Seeded Infiltration and Growth Process (CSIGP). Using this technique, it has been made possible to get bulk YBCO/Ag composite sample with uniform grain growth textured along the c-axis. The resulting large grain sample has been found to have high critical current densities up to large magnetic fields. We correlate the improved superconducting and magnetic properties to the modified grain growth conditions employed in this fabrication technique.

  1. Stable isotope composition of bulk and secondary carbonates from the Quaternary loess-paleosol sequence in Sutto, Hungary

    DEFF Research Database (Denmark)

    Koeniger, Paul; Barta, Gabriella; Thiel, Christine

    2014-01-01

    , and microscale secondary (authigenic) carbonates (calcified root cells, carbonate coatings, hypocoatings, and earthworm biospheroids) and concretions at 10 cm resolution were analysed to interpret stable isotope variations. Isotope values of bulk samples were in the range of 2.6 parts per thousand to -13.9 parts......, secondary carbonates showed more depleted values than bulk samples. Calcified root cells have the most depleted isotope composition with mean values of -16.0 parts per thousand and -11.8 parts per thousand for delta C-13 and 8180, respectively. Results indicate that loess and paleosol secondary carbonates...

  2. Anhydrous ringwoodites in the mantle transition zone: Their bulk modulus, solid solution behavior, compositional variation, and sound velocity feature

    Directory of Open Access Journals (Sweden)

    Xi Liu

    2016-06-01

    Full Text Available The isothermal bulk moduli of anhydrous Mg2SiO4-ringwoodite (Rw and Fe2SiO4-Rw, and other 4–2 oxide spinels at ambient P-T condition have been evaluated, and empirically fitted to a model as KT0 = 270.8(300 + 0.343(59*V0 + 23.04(269*EN-total, where KT0 is the isothermal bulk modulus in GPa, V0 the unit-cell volume in Å3 and EN-total the electronegativity total of all cations in the chemical formula. This model well reproduces all data used in its calibration, and may be used to predict the KT0 of other 4–2 oxide spinels. Combined with the generally linear volume–composition relationship of the Rw solid solutions along the join Mg2SiO4–Fe2SiO4, this model leads to a much smaller composition effect on the KT0: KT0 = 185.0(1 + 7.0(1*XFe, where XFe is the atomic ratio Fe/(Fe + Mg. Furthermore, a bulk composition-independent compositional variation with P has been disclosed for the Rw at the P-T conditions of the lower part of the mantle transition zone (MTZ: XFe = 0.222(41 – 0.0053(19*P, with P in GPa. The nearly ideal mixing behavior, much smaller composition effect on the bulk modulus, and significant compositional variation of the Rw in the lower part of the MTZ substantially increase the gradients of the Vs-P and Vp-P profiles to generally match those constrained by the seismic reference models PREM and AK135. If there is any global low-T anomaly at the depth of 660 km, its required magnitude is most likely not larger than 200 K.

  3. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth

    Science.gov (United States)

    Chen, Heng; Savage, Paul S.; Teng, Fang-Zehn; Helz, Rosalind T.; Moynier, Frédéric

    2013-01-01

    he zinc stable isotope system has been successfully applied to many and varied fields in geochemistry, but to date it is still not completely clear how this isotope system is affected by igneous processes. In order to evaluate the potential application of Zn isotopes as a proxy for planetary differentiation and volatile history, it is important to constrain the magnitude of Zn isotopic fractionation induced by magmatic differentiation. In this study we present high-precision Zn isotope analyses of two sets of chemically diverse, cogenetic samples from Kilauea Iki lava lake, Hawaii, and Hekla volcano, Iceland, which both show clear evidence of having undergone variable and significant degrees of magmatic differentiation. The Kilauea Iki samples display small but resolvable variations in Zn isotope composition (0.26‰66Zn66Zn defined as the per mille deviation of a sample's 66Zn/64Zn compositional ratio from the JMC-Lyon standard), with the most differentiated lithologies exhibiting more positive δ66Zn values. This fractionation is likely a result of the crystallization of olivine and/or Fe–Ti oxides, which can both host Zn in their crystal structures. Samples from Hekla have a similar range of isotopic variation (0.22‰66Zn66Zn=0.28±0.05‰ (2s.d.).

  4. Honey: Chemical composition, stability and authenticity.

    Science.gov (United States)

    da Silva, Priscila Missio; Gauche, Cony; Gonzaga, Luciano Valdemiro; Costa, Ana Carolina Oliveira; Fett, Roseane

    2016-04-01

    The aim of this review is to describe the chemical characteristics of compounds present in honey, their stability when heated or stored for long periods of time and the parameters of identity and quality. Therefore, the chemical characteristics of these compounds were examined, such as sugars, proteins, amino acids, enzymes, organic acids, vitamins, minerals, phenolic and volatile compounds present in honey. The stability of these compounds in relation to the chemical reactions that occur by heating or prolonged storage were also discussed, with increased understanding of the behavior regarding the common processing of honey that may compromise its quality. In addition, the identity and quality standards were described, such as sugars, moisture, acidity, ash and electrical conductivity, color, 5-HMF and diastase activity, along with the minimum and maximum limits established by the Codex Alimentarius.

  5. Color Stability of the Bulk-Fill Composite Resins with Different Thickness in Response to Coffee/Water Immersion

    Directory of Open Access Journals (Sweden)

    Sayna Shamszadeh

    2016-01-01

    Full Text Available We aimed to evaluate the color stability of bulk-fill and conventional composite resin with respect to thickness and storage media. Twenty specimens of a conventional composite resin (6 mm diameter and 2 mm thick and 40 specimens of the bulk-fill Tetric EvoCeram composite resin at two different thicknesses (6 mm diameter and 2 mm thick or 4 mm thick, n=20 were prepared. The specimens were stored in distilled water during the study period (28 d. Half of the specimens were remained in distilled water and the other half were immersed in coffee solution 20 min/d and kept in distilled water between the cycles. Color changes (ΔE were measured using the CIE L⁎a⁎b⁎ color space and a digital imaging system at 1, 7, 14, and 28 days of storage. Data were analyzed using Two-way ANOVA and Tukey’s HSD post hoc test (P conventional; P<0.001. Coffee exhibited significantly more staining susceptibility than that of distilled water (P<0.001. There was greater color changes with increasing the increment thickness, which was significant at 14 (P<0.001 and 28 d (P<0.01. Color change of bulk-fill composite resin was greater than that of the conventional one after coffee staining and is also a function of increment thicknesses.

  6. First attempt to obtain the bulk composition of ancient silver–copper coins by using XRF and GRT

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Suárez, A.I., E-mail: amoreno6@us.es [Centro Nacional de Aceleradores (Universidad de Sevilla-CSIC-Junta de Andalucía), Sevilla (Spain); Departamento de Física Aplicada I, Universidad de Sevilla, Seville (Spain); Ager, F.J. [Centro Nacional de Aceleradores (Universidad de Sevilla-CSIC-Junta de Andalucía), Sevilla (Spain); Departamento de Física Aplicada I, Universidad de Sevilla, Seville (Spain); Scrivano, S.; Ortega-Feliu, I. [Centro Nacional de Aceleradores (Universidad de Sevilla-CSIC-Junta de Andalucía), Sevilla (Spain); Gómez-Tubío, B. [Centro Nacional de Aceleradores (Universidad de Sevilla-CSIC-Junta de Andalucía), Sevilla (Spain); Departamento de Física Aplicada III, Universidad de Sevilla, Seville (Spain); Respaldiza, M.A. [Centro Nacional de Aceleradores (Universidad de Sevilla-CSIC-Junta de Andalucía), Sevilla (Spain); Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Seville (Spain)

    2015-09-01

    Archeological silver–copper pieces often show surface enrichments in silver, either intentional or fortuitous. When this happens, non-destructive techniques like PIXE (Proton Induced X-ray Emission) and XRF (X-Ray Fluorescence) are not sufficient to access the whole bulk pieces because their penetration depths are typically of a few tens microns. If the archeological pieces cannot be cut or polished, it is necessary to apply other non-destructive techniques to access the bulk pieces. That way, archeological bronze pieces have been successfully studied combining XRF (or PIXE) with GRT (Gamma-Ray Transmission). In this work, the bulk composition of five silver Roman coins have been indirectly measured by combining XRF and GRT. These results were compared with previous works made by our group using the same coins by direct means of PIXE and XRF, so the accuracy of this indirect method could be tested.

  7. The chemical composition of the Galileian satellites

    CERN Document Server

    Celebonovic, V

    1998-01-01

    Using the semiclassical theory of dense matter proposed by P.Savic and R.Kasanin,the mean molecular masses of the Galilean satellites of Jupiter are determined.The calculated values are fitted by plausible combinations of chemical elements,and the results are in good agreement with the observations by "Galileo".Possible cosmogonical explanations are briefly discussed.

  8. Reinforced polypropylene composites: effects of chemical compositions and particle size.

    Science.gov (United States)

    Ashori, Alireza; Nourbakhsh, Amir

    2010-04-01

    In this work, the effects of wood species, particle sizes and hot-water treatment on some physical and mechanical properties of wood-plastic composites were studied. Composites of thermoplastic reinforced with oak (Quercus castaneifolia) and pine (Pinus eldarica) wood were prepared. Polypropylene (PP) and maleic anhydride grafted polypropylene (MAPP) were used as the polymer matrix and coupling agent, respectively. The results showed that pine fiber had significant effect on the mechanical properties considered in this study. This effect is explained by the higher fiber length and aspect ratio of pine compared to the oak fiber. The hot-water treated (extractive-free) samples, in both wood species, improved the tensile, flexural and impact properties, but increased the water absorption for 24h. This work clearly showed that lignocellulosic materials in both forms of fiber and flour could be effectively used as reinforcing elements in PP matrix. Furthermore, extractives have marked effects on the mechanical and physical properties.

  9. Chemical Analysis of Emu Feather Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    V.Chandra sekhar

    2015-07-01

    Full Text Available A composite is usually made up of at least two materials out of which one is binding material called as matrix and other is a reinforcement material known as fiber. For the past ten years research is going on to explore possible composites with natural fiber like plant fibers and animal fibers. The important characteristics of composites are their strength, hardness light in weight. It is also necessary to study about the resistance of the composites for deferent chemicals. In the present work, composites prepared with epoxy (Araldite LY-556 as resin and „emu‟ bird feathers as fiber have been tested for chemical resistance. The composites were prepared by varying fiber loading (P of „emu‟ feathers ranging from 1 to 5 and length (L of feather fibers from 1 to 5 cm. The composites thus prepared were subjected to various chemicals (Acids, Alkalis, solvents etc.. Observations were plotted and studied. The results reveal that there will be weight gain for the composite samples after three days, when treated with Hydrochloric acid, Sodium carbonate, Acetic acid, Sodium hydroxide, Nitric acid and Ammonium hydroxide. Weight loss was observed for all the samples including pure epoxy when treated with Benzene, Carbon tetra chloride and Toluene.

  10. Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K., E-mail: greatsunkai@sina.com [Key Laboratory for Advanced Materials Processing Technology, Ministry of Education (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Shi, Q.Y.; Sun, Y.J.; Chen, G.Q. [Key Laboratory for Advanced Materials Processing Technology, Ministry of Education (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Ultimate tensile strength of the bulk composite improved significantly. Black-Right-Pointing-Pointer Nanoparticles dispersed uniformly in the composites after friction stir process. Black-Right-Pointing-Pointer Strengthening mechanism of the composites has been studied. - Abstract: Friction stir processing has been applied to fabricate SiC-Mg bulk composites in this study. AZ63 magnesium alloy, a kind of commercial engineering materials, was selected as base metal. SiC nanoparticles with average size of 40 nm were selected as reinforced particles. After being ultrasonic dispersed in ethanol and friction stir processed with base metal, the SiC particles were uniformly dispersed. Friction stir processing without filling any particles was also applied to base metal as a comparison group. Microstructure evolution was observed by optical microscope and scanning electron microscope. Fine and uniform nugget zone were found both in comparison group and composite. The phases of the material were determined by X-ray diffraction. Transmission electron microscopy observation was conducted to study the condition of SiC nanoparticles. SiC particles were found both inside the grain and at the grain boundary. No micro-sized particle agglomeration was observed in the composite. Vicker hardness and tensile test were carried out to study the mechanical properties of the composite. The average Vicker hardness of the base metal, comparison group and composite were 80 Hv, 85 Hv and 109 Hv respectively. The ultimate tensile strength of the composite reached 312 MPa. Compared with 160 MPa of the as-casted Mg alloy, 263 MPa of the comparison group, the effect of nanoparticles on strength increase was significant.

  11. The bulk isotopic composition of hydrocarbons in subaerial volcanic-hydrothermal emissions from different tectonic settings

    Science.gov (United States)

    Fiebig, J.; Tassi, F.; Vaselli, O.; Viveiros, M. F.; Silva, C.; Lopez, T. M.; D'Alessandro, W.; Stefansson, A.

    2015-12-01

    Assuming that methane and its higher chain homologues derive from a common source, carbon isotope patterns have been applied as a criterion to identify occurrences of abiogenic hydrocarbons. Based on these, it has been postulated that abiogenic hydrocarbon production occurs within several (ultra)mafic environments. More evolved volcanic-hydrothermal systems may also provide all the prerequisites necessary for abiogenic hydrocarbon production, such as availability of inorganic CO2, hydrogen and heat. We have investigated the chemical and isotopic composition of n-alkanes contained within subaerial hydrothermal discharges emitted from a range of hot spot, subduction and rift-related volcanoes to determine the origin of hydrocarbons in these systems. Amongst these are Nisyros (Greece), Vesuvio, Campi Flegrei, Ischia, Pantelleria and Vulcano (all Italy), Mt. Mageik and Trident (USA), Copahue (Argentina), Teide (Spain), Furnas and Fogo (Portugal). The carbon isotopic composition of methane emitted from these sites varies from -65 to -8‰ , whereas δ13C of ethane and propane exhibit a much narrower variation from -17‰ to -31‰. Methane that occurs most enriched in 13C is also characterized by relatively positive δD values ranging up to -80‰. Carbon isotope reversals between methane and ethane are only observed for locations exhibiting δ13C-CH4 values > -20‰, such as Teide, Pantelleria, Trident and Furnas. At Furnas, δ13C-CH4 varies by 50‰ within a relatively short distance of <50m between two vents, whereas δ13C-C2H6 varies by less than 2‰ only. For some of the investigated locations apparent carbon isotopic temperatures between methane and CO2 are in agreement with those derived from gas concentration geothermometers. At these locations methane, however seems to be in disequilibrium with ethane and propane. These findings imply that methane on the one hand and the C2+ hydrocarbons on the other hand often might derive from distinct sources.

  12. Chemical composition of Hanford Tank SY-102

    Energy Technology Data Exchange (ETDEWEB)

    Birnbaum, E.; Agnew, S.; Jarvinen, G.; Yarbro, S.

    1993-12-01

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the radioactive waste, both current and future, stored in double-shell and single-shell tanks at the Hanford sites. One major program element in TWRS is pretreatment which was established to process the waste prior to disposal using the Hanford Waste Vitrification Plant. In support of this program, Los Alamos National Laboratory has developed a conceptual process flow sheet which will remediate the entire contents of a selected double-shelled underground waste tank, including supernatant and sludge, into forms that allow storage and final disposal in a safe, cost-effective and environmentally sound manner. The specific tank selected for remediation is 241-SY-102 located in the 200 West Area. As part of the flow sheet development effort, the composition of the tank was defined and documented. This database was built by examining the history of liquid waste transfers to the tank and by performing careful analysis of all of the analytical data that have been gathered during the tank`s lifetime. In order to more completely understand the variances in analytical results, material and charge balances were done to help define the chemistry of the various components in the tank. This methodology of defining the tank composition and the final results are documented in this report.

  13. Dry Sliding Wear Behavior of Spark Plasma Sintered Fe-Based Bulk Metallic Glass/Graphite Composites

    Directory of Open Access Journals (Sweden)

    Xiulin Ji

    2016-09-01

    Full Text Available Bulk metallic glass (BMG and BMG-graphite composites were fabricated using spark plasma sintering at the sintering temperature of 575 °C and holding time of 15 min. The sintered composites exhibited partial crystallization and the presence of distributed porosity and graphite particles. The effect of graphite reinforcement on the tribological properties of the BMG/graphite composites was investigated using dry ball-on-disc sliding wear tests. The reinforcement of graphite resulted in a reduction in both the wear rate and the coefficient of friction as compared to monolithic BMG samples. The wear surfaces of BMG/graphite composites showed regions of localized wear loss due to microcracking and fracture, as was also the case with the regions covered with graphite-rich protective film due to smearing of pulled off graphite particles.

  14. Hydrothermal Habitats: Measurements of Bulk Microbial Elemental Composition, and Models of Hydrothermal Influences on the Evolution of Dwarf Planets

    Science.gov (United States)

    Neveu, Marc Francois Laurent

    Finding habitable worlds is a key driver of solar system exploration. Many solar system missions seek environments providing liquid water, energy, and nutrients, the three ingredients necessary to sustain life. Such environments include hydrothermal systems, spatially-confined systems where hot aqueous fluid circulates through rock by convection. I sought to characterize hydrothermal microbial communities, collected in hot spring sediments and mats at Yellowstone National Park, USA, by measuring their bulk elemental composition. To do so, one must minimize the contribution of non-biological material to the samples analyzed. I demonstrate that this can be achieved using a separation method that takes advantage of the density contrast between cells and sediment and preserves cellular elemental contents. Using this method, I show that in spite of the tremendous physical, chemical, and taxonomic diversity of Yellowstone hot springs, the composition of microorganisms there is surprisingly ordinary. This suggests the existence of a stoichiometric envelope common to all life as we know it. Thus, future planetary investigations could use elemental fingerprints to assess the astrobiological potential of hydrothermal settings beyond Earth. Indeed, hydrothermal activity may be widespread in the solar system. Most solar system worlds larger than 200 km in radius are dwarf planets, likely composed of an icy, cometary mantle surrounding a rocky, chondritic core. I enhance a dwarf planet evolution code, including the effects of core fracturing and hydrothermal circulation, to demonstrate that dwarf planets likely have undergone extensive water-rock interaction. This supports observations of aqueous products on their surfaces. I simulate the alteration of chondritic rock by pure water or cometary fluid to show that aqueous alteration feeds back on geophysical evolution: it modifies the fluid antifreeze content, affecting its persistence over geological timescales; and the

  15. Abundance and Bulk Composition of DOM in the Lower Mississippi and Pearl Rivers (USA)

    Science.gov (United States)

    Duan, S.; Bianchi, T. S.; Shiller, A. M.; Dria, K.; Hatcher, P. G.

    2005-05-01

    Here we report on temporal changes in the composition of dissolved organic carbon (DOC) and nitrogen (DON) collected in the tidal freshwater region of the lower Mississippi and Pearl Rivers (MR and PR) (USA). Bulk stable carbon isotopes and 13C nuclear magnetic resonance (NMR) spectrometry were used to examine the composition of high molecular weight ( 1 kDa) dissolved organic matter (HMW DOM). Monthly water samples were collected at one station in each river from August 2001 to July 2003. Surveys of spatial variability (225 km downstream in the MR and from Jackson to Stennis Space Center in the PR) in total DOC and DON were also conducted in both rivers in June 2003. Higher total DOC (336 to 1156 uM), DON (9.3 to 59.5 uM), % HMW DOM (25 to 47 %), ultraviolet (UV) absorption (0.13 to 0.70 /m), and more depleted delta-15N (0.76 to 2.16 per mil) delta-13C (-25.1 to -28.0 permil) were observed in the PR than in the lower MR (223 to 380 uM, 6.1 to 13.4 uM, 16 to 38 %, 0.08 to 0.17 /m, 0.76 to 2.16 permil, -25.7 to -27.1 permil, respectively). 13C-NMR spectra revealed that alkyl and carbohydrate carbons were dominant in HMW DOC in both rivers. However, a significantly lower percentage of aromatic C (13.2 to 16.6 %) and higher carboxyl C (17.1 to 25.8 %) were observed in the lower MR than in the PR (16.9 to 21.3 % and 12.3 to 20.9 %). Total DOC, DON, HMW DOM, and percent aromaticity of HMW DOM were higher in the PR during local flooding events, and lower during low discharge, indicating a coupling between local carbon inputs (soil and wetlands) and regional precipitation events in the PR. Conversely, seasonal variability of total DOC, DON, and HMW DOM in the lower MR was controlled by spatial variability of an integrative signal from watershed inputs and in-situ production from upriver sources, resulting in a more phytoplankton-derived 13C-NMR signature of HMW DOM. Spatially, very little change occurred in total DOC (259 to 282 uM) and DON (8.85 to 13.3 uM) in the

  16. Nearest-neighbor coordination and chemical ordering in multi-component bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dong [ORNL; Stoica, Alexandru Dan [ORNL; Yang, Ling [ORNL; Wang, Xun-Li [ORNL; Lu, Zhao Ping [ORNL; Neuefeind, Joerg C [ORNL; Kramer, Matthew J [ORNL; Richardson, James W [Argonne National Laboratory (ANL); Proffen, Thomas E [ORNL

    2007-01-01

    We report complimentary use of high energy x-ray and neutron diffraction to probe the local atomic structure in a Zr-based multi-component bulk metallic glass. By analyzing the partial coordination numbers, we demonstrate the presence of multiple types of solute-centered clusters (or the lack of solute-solute bonding) and efficient packing of the amorphous structure at the atomic scale. Our findings provide a basis for understanding how the local structures change during phase transformation and mechanical deformation.

  17. Comparative study of bulk metallic glass composites with high-volume-fractioned dendritic and spherical b. c. c. phase precipitates

    Directory of Open Access Journals (Sweden)

    Guo-yuan Sun

    2015-05-01

    Full Text Available A dendritic β-phase reinforced bulk metallic glass (BMG composite named as D2 was prepared by rapid quenching of a homogenous Zr60Ti14.67Nb5.33Cu5.56Ni4.44Be10 melt, and characterized by means of X-ray diffraction (XRD, scanning electron microscopy (SEM observation and room-temperature compression test. The microstructure and mechanical properties were compared with those of the spherical β-phase reinforced composite named as composite S2. It was found that the composite D2 contains β-phase dendrites up to 56% in volume-fraction, and exhibits a ductile compressive behavior with plastic strain of 12.7%. As the high-volume-fractioned β-phase dendrites transferred to coarse spherical particles of about 20 μm in diameter in the composite S2, a much improved plastic strain up to 20.4% can be achieved. Micrographs of the fractured samples reveal different interaction modes of the propagating shear bands with the dendritic and spherical β phase inclusions, resulting in different shear strains in the composite samples. The matrix of composite S2 undergoes a significantly larger shear strain than that of the composite D2 before ultimate failure, which is thought to be mainly responsible for the greatly increased global plastic strain of the S2 relative to D2.

  18. Influence of increment thickness on light transmission, degree of conversion and micro hardness of bulk fill composites.

    Science.gov (United States)

    Garoushi, Sufyan; Vallittu, Pekka; Shinya, Akikazu; Lassila, Lippo

    2016-09-01

    This study evaluated characteristics of light transmission, degree of monomer conversion and surface microhardness of bulk fill, conventional and fiber-reinforced resin based composites (RBCs) through different incremental thicknesses of resin composite. Working hypotheses was that there are differences in transmission of blue light through RBCs of different kinds and that the thickness of the increments influence the degree of monomer conversion of RBCs. Six bulk fill, three conventional nanohybrid, one short fiber reinforced and one flowable RBCs were evaluated. For each material, four different incremental thicknesses (1, 2, 3 and 4 mm) were considered (n = 5). The specimens were prepared in cylindrical Teflon molds that are open at the top and the bottom sides and cured for 40 s by applying the curing unit. After curing process, the specimens were ground with a silicon carbide paper with a grit size of 1200 and 4000, and then stored dry at 37 °C for 24 h. Light transmission, degree of monomer conversion, surface microhardness were measured and data were analyzed using ANOVA (p = 0.05). There were differences in light transmission of resin composites of various types and brands. Low-viscous bulk fill and short fiber-reinforced RBCs presented higher light transmission compared to resin composites of higher viscosity. Reduced light transmission and lower surface microhardness and DC % at bottom side of the specimen suggests that more attention needs to be paid to ensure proper curing of the resin composite in deep cavities.

  19. Chemical composition of glass and crystalline phases in coarse coal gasification ash

    Energy Technology Data Exchange (ETDEWEB)

    R.H. Matjie; Zhongsheng Li; Colin R. Ward; David French [Sasol Technology (Pty) Ltd., Sasolburg (South Africa)

    2008-05-15

    A procedure has been developed for determining the chemical composition and relative abundance of the amorphous or glassy material, as well as crystalline phases, present in coarse coal gasification ash, in order to assist in predicting the behaviour of the material in cement/brick/concrete applications. The procedure is based on a combination of quantitative X-ray diffraction (XRD), chemical analysis and electron microprobe studies. XRD analysis indicates that the clinker samples contain a number of crystalline high temperature phases, including anorthite, mullite, cristobalite, quartz and diopside. Quantitative evaluation using Rietveld-based techniques has been used to determine the percentages of both the individual crystalline phases and the glass component. These data were then combined with the chemistry of the crystalline phases and the overall chemical composition of the ash to estimate the chemical composition of the glass phase, which is typically the most abundant component present in the different materials. Although there is some degree of scatter, comparison between the inferred glass composition from XRD and bulk chemistry and actual data on the glass composition using electron microprobe techniques suggest that the two approaches are broadly consistent. The microprobe further indicates that a range of compositions are present in the glassy and crystalline components of the ashes, including Si-Al-rich glass, metakaolin and Fe-Ca-Mg-Ti phases, as well as quartz, anorthite and an aluminophosphate material. Electron microprobe and XRD studies also show that pyrrhotite (FeS), representing a high temperature transformation product of pyrite, is present in some clinker and partially burnt carbonaceous shale samples. 27 refs., 5 figs., 7 tabs.

  20. Joining and Assembly of Bulk Metallic Glass Composites Through Capacitive Discharge

    Science.gov (United States)

    Hofmann, Douglas C.; Roberts, Scott; Kozachkov, Henry; Demetriou, Marios D.; Schramm, Joseph P.; Johnson, William L.

    2012-01-01

    Bulk metallic glasses (BMGs), a class of amorphous metals defined as having a thickness greater than 1 mm, are being broadly investigated by NASA for use in spacecraft hardware. Their unique properties, attained from their non-crystalline structure, motivate several game-changing aerospace applications. BMGs have low melting temperatures so they can be cheaply and repeatedly cast into complex net shapes, such as mirrors or electronic casings. They are extremely strong and wear-resistant, which motivates their use in gears and bearings. Amorphous metal coatings are hard, corrosion-resistant, and have high reflectivity. BMG composites, reinforced with soft second phases, can be fabricated into energy-absorbing cellular panels for orbital debris shielding. One limitation of BMG materials is their inability to be welded, bonded, brazed, or fastened in a convenient method to form larger structures. Cellular structures (which can be classified as trusses, foams, honeycombs, egg boxes, etc.) are useful for many NASA, commercial, and military aerospace applications, including low-density paneling and shields. Although conventional cellular structures exhibit high specific strength, their porous structures make them challenging to fabricate. In particular, metal cellular structures are extremely difficult to fabricate due to their high processing temperatures. Aluminum honeycomb sandwich panels, for example, are used widely as spacecraft shields due to their low density and ease of fabrication, but suffer from low strength. A desirable metal cellular structure is one with high strength, combined with low density and simple fabrication. The thermoplastic joining process described here allows for the fabrication of monolithic BMG truss-like structures that are 90% porous and have no heat-affected zone, weld, bond, or braze. This is accomplished by welding the nodes of stacked BMG composite panels using a localized capacitor discharge, forming a single monolithic structure

  1. Sensory properties and chemical composition of Sharri cheese from Kosovo

    Directory of Open Access Journals (Sweden)

    Agim Rysha

    2014-11-01

    Full Text Available Food sensory properties, analyses and chemical composition are very important because they provide information about product quality and end-user acceptance or preferences. An assessment of sensory characteristics and chemical composition of mountain sheep and cow’s-milk cheese from shepherd’s huts and industrial manufacturers in Kosovo was carried out. Consumer-oriented tests using a 9 point hedonic scale were conducted in order to determine Sharri cheese acceptability. Chemical parameters (fat content, fat content of dry matter, acidity, protein, dry matter, mineral and water content and sodium chloride content of 45-day brine cheese samples were also analyzed. Chemical and sensory assessment demonstrated large property differences. A recommendation stems from the results showing that the standardization of both artisanal and industrial production of Sharri cheese is required.

  2. Chemical composition analysis and authentication of whisky.

    Science.gov (United States)

    Wiśniewska, Paulina; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek

    2015-08-30

    Whisky (whiskey) is one of the most popular spirit-based drinks made from malted or saccharified grains, which should mature for at least 3 years in wooden barrels. High popularity of products usually causes a potential risk of adulteration. Thus authenticity assessment is one of the key elements of food product marketing. Authentication of whisky is based on comparing the composition of this alcohol with other spirit drinks. The present review summarizes all information about the comparison of whisky and other alcoholic beverages, the identification of type of whisky or the assessment of its quality and finally the authentication of whisky. The article also presents the various techniques used for analyzing whisky, such as gas and liquid chromatography with different types of detectors (FID, AED, UV-Vis), electronic nose, atomic absorption spectroscopy and mass spectrometry. In some cases the application of chemometric methods is also described, namely PCA, DFA, LDA, ANOVA, SIMCA, PNN, k-NN and CA, as well as preparation techniques such SPME or SPE.

  3. Fuel options from microalgae with representative chemical compositions

    Energy Technology Data Exchange (ETDEWEB)

    Feinberg, D. A.

    1984-07-01

    Representative species of microalgae are examined with respect to their reported chemical compositions. Each species is analyzed under a variety of culture conditions, with the objective being to characterize an optimum mixture of fuel products (e.g., methane, ethanol, methylester) which should be produced by the particular species. Historically the emphasis has been on the entire algal cell mass. Using the reported chemical composition for the representative species under specific sets of growth conditions, some conclusions can be drawn about the preferred fuel product conversion routes that could be employed. 10 references, 7 figures, 12 tables.

  4. Enhancement in the magnetostriction of sintered cobalt ferrite by making self-composites from nanocrystalline and bulk powders.

    Science.gov (United States)

    Mohaideen, Kamal Khaja; Joy, Pattayil Alias

    2012-12-01

    Sintered polycrystalline cobalt ferrite is a potential magnetostrictive smart material for applications as sensors and actuators. A novel concept of enhancing the magnetostrictive strain of sintered cobalt ferrite by making self-composites from nanosized and bulk powders with different particle sizes of the same material as components is reported. The self-composites give higher magnetostriction coefficient and strain derivative when compared to the sintered products obtained from the individual powders. The individual components give a maximum magnetostriction up to ~310 ppm, whereas up to ~370 ppm is obtained for a two-component system consisting of powders of two different sizes. On the other hand, a three-component self-composite made from starting powders of 3 nm, 40 nm and >1 μm give very high magnetostriction of ~400 ppm at 800 kA/m, suitable for making devices.

  5. Initiated-chemical vapor deposition of organosilicon layers: Monomer adsorption, bulk growth, and process window definition

    NARCIS (Netherlands)

    Aresta, G.; Palmans, J.; M. C. M. van de Sanden,; Creatore, M.

    2012-01-01

    Organosilicon layers have been deposited from 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane (V3D3) by means of the initiated-chemical vapor deposition (i-CVD) technique in a deposition setup, ad hoc designed for the engineering of multilayer moisture permeation barriers. The application of Fourier

  6. The MajuagaaA Kimberlite Dike, Maniitsoq Regio, West Greenland: Constraints on an Mg-rich Silicocarbonatitic Melt Composition from Groundmass Mineralogy and Bulk Compositions

    DEFF Research Database (Denmark)

    Nielsen, Troels F. D.; Sand, Karina Krarup

    2008-01-01

    as kimberlite, despite being carbonate-rich and the apparent absence of monticellite characteristic of many occurrences of bona fide hypabyssal kimberlite. Olivine megacrysts, macrocrysts and microcrysts are all xenocrystic, whereas microphenocrysts are xenocrystic microcrysts overgrown by equilibrium olivine....... Most olivine (max. 37 wt.%) is found to be xenocrystic on the basis of Ni mass balance. The average bulk composition of the melt involved in the dike compares well with Group-1 kimberlite. Corrected for xenocrystic olivine and ilmenite, the melt has the composition of a silicocarbonatite and compares...

  7. Comparing carbon isotope composition of bulk wood and holocellulose from Quercus cerris, Fraxinus ornus and Pinus radiata tree rings

    Directory of Open Access Journals (Sweden)

    D’Alessandro CM

    2004-01-01

    Full Text Available Tree-ring δ13C is widely employed in ecophysiological studies, because it represents an integrated proxy of the ratio between photosynthesis (A and stomatal conductance (g, which expresses the intrinsic water use efficiency (iWUE, strongly affected by the environmental conditions experienced by the plant during its life span. Tree-ring δ13C also reflects long term variations of atmospheric CO2 concentration and of its carbon isotope composition, partly due to increasing anthropogenic emissions. Carbon isotope abundances in tree rings can be assessed on bulk wood as well as on wood? biochemical components, wich show different δ13C values because of secondary discrimination during biosynthesis.We present the results of a comparison between δ13C values of bulk wood and holocellulose samples obtained from the last three (1999, 2000 and 2001 annual growth rings of two hardwood (Quercus cerris L. and Fraxinus ornus L. and one conifer (Pinus radiata D. Don, species. We found that δ13C values differed significantly among tree species, both in the case of holocellulose and bulk wood, but only in the case of P. radiata bulk wood samples tend to provide more negative δ13C values than holocellulose, as reported in the literature. We suggest that, at least for the two hardwood species studied, bulk wood is a suitable material to work with for δ13C assessment, whilst in P. radiata holocellulose could provide a more stable and reliable index, when studying plant ecophysiological responses to changing environmental conditions.

  8. An investigation into the chemical composition of alternative invertebrate prey

    NARCIS (Netherlands)

    Oonincx, D.G.A.B.; Dierenfeld, E.S.

    2012-01-01

    The aim of this study was to determine the chemical composition of eight invertebrate species and evaluate their suitability as alternative prey. The species selected were rusty red cockroaches (Blatta lateralis), six-spotted cockroaches (Eublaberus distanti), Madagascar hissing cockroaches (Grompha

  9. Probabilistic thermo-chemical analysis of a pultruded composite rod

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation...

  10. Probabilistic thermo-chemical analysis of a pultruded composite rod

    NARCIS (Netherlands)

    Baran, Ismet; Tutum, Cem C.; Hattel, Jesper H.

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation c

  11. Qualification Standards for Personnel Responsible for Hazardous or Noxious Chemicals in Bulk. Volume I.

    Science.gov (United States)

    1976-05-01

    a systems approach for handling vinyl chloride monomer ; however, their manuals were not made available for proprietary reasons. Chemical distribution... Price UNCLASSIFIED UNCLASSIFIED 82 P.rm DOT F 17N.1 (8 72) R.p,oductlon of completed page author Ized V...Allyl Chloride 3 3 2 3 2 1 2 2 0 1 Fl.ew.able Liquid . Grade B, Class B Poison Minoetbyl Ethano— 1 1 3 1 1 3 3 0 0 Combustible Liquid. l i ne

  12. On the realization of the bulk modulus bounds for two-phase viscoelastic composites

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Andreassen, Erik; Jensen, Jakob Søndergaard;

    2014-01-01

    Materials with good vibration damping properties and high stiffness are of great industrial interest. In this paper the bounds for viscoelastic composites are investigated and material microstructures that realize the upper bound are obtained by topology optimization. These viscoelastic composite...... damping. In order to ensure manufacturability of such composites the connectivity of the matrix is ensured by imposing a conductivity constraint and the influence on the bounds is discussed. © 2013 Elsevier Ltd. All rights reserved....

  13. Novel titanium particles reinforced Zr-based bulk metallic glass composites prepared by infiltration casting

    Institute of Scientific and Technical Information of China (English)

    Cuimei Zhang; Xidong Hui; Meiling Wang; Guoliang Chen

    2008-01-01

    A novel Ti/Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 composite was successfully prepared by infiltrating the melt into sintered Ti preform. It shows that the introduction of Ti particles into the composite results in an increase in elastic strain to 3% and an enhancement of the strength up to 2.1 GPa. High specific strength has been obtained because of the decrease in density of the composite. It is suggested that an improvement in the mechanical properties of the composite may be attributed to the generation of multiple shear bands and some deformation in the Ti particles.

  14. Universal formation of compositionally graded bulk heterojunction for efficiency enhancement in organic photovoltaics.

    Science.gov (United States)

    Xiao, Zhengguo; Yuan, Yongbo; Yang, Bin; VanDerslice, Jeremy; Chen, Jihua; Dyck, Ondrej; Duscher, Gerd; Huang, Jinsong

    2014-05-21

    A universal method is reported to form graded bulk heterojunction (BHJ) organic photovoltaic devices (OPVs) by a simple solvent-fluxing process. Donors are enriched at the anode and acceptors are enriched at cathode side, matching the gradient electron and hole current across the film. Efficiency enhancements by 15-50% are achieved for all BHJ systems tested compared with the optimized regular BHJ OPVs.

  15. Interpreting chemical compositions of small scale basaltic systems: A review

    Science.gov (United States)

    McGee, Lucy E.; Smith, Ian E. M.

    2016-10-01

    Small scale basaltic magmatic systems occur in all of the major tectonic environments of planet Earth and are characteristically expressed at the Earth's surface as fields of small monogenetic cones. The chemical compositions of the materials that make up these cones reflect processes of magma generation and differentiation that occur in their plumbing system. The volumes of magmas involved are very small and significantly their compositional ranges reveal remarkably complex processes which are overwhelmed or homogenized in larger scale systems. Commonly, compositions are basaltic, alkalic and enriched in light rare earth elements and large ion lithophile elements, although the spectrum extends from highly enriched nephelinites to subalkalic and tholeiitic basalts. Isotopic analyses of rocks from volcanic fields almost always display compositions which can only be explained by the interaction of two or more mantle sources. Ultimately their basaltic magmas originate by small scale melting of mantle sources. Compositional variety is testament to melting processes at different depths, a range of melting proportions, a heterogeneous source and fractionation, magma mixing and assimilation within the plumbing system that brings magmas to the surface. The fact that such a variety of compositions is preserved in a single field shows that isolation of individual melting events and their ascent is an important and possibly defining feature of monogenetic volcanism, as well as the window their chemical behavior provides into the complex process of melt generation and extraction in the Earth's upper mantle.

  16. Mineral chemistry, bulk composition and source of the ferromanganese nodules nuclei from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Miura, H.

    Nuclei of ferromanganses nodules from the Central Indian Ocean Basin show the presence of abundant plagioclase feldspars (1-3 mm diameter). They are indentified as calcic plagioclase (peak at 3.20 A). Plagioclase chemical composition (CaO 6...

  17. Surface chemical composition analysis of heat-treated bamboo

    Science.gov (United States)

    Meng, Fan-dan; Yu, Yang-lun; Zhang, Ya-mei; Yu, Wen-ji; Gao, Jian-min

    2016-05-01

    In this study, the effect of heat treatment on the chemical composition of bamboo slivers was studied. The chemical properties of the samples were examined by chemical analysis. Results showed a decrease in the contents of holocellulose and α-cellulose, as well as an increase in the contents of lignin and extractives. Changes in the chemical structure of bamboo components were analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy results indicated that hemicellulose contents decrease, whereas lignin contents increase after heat treatment. Ester formation linked to lignin decreased the hygroscopicity of the bamboo samples and consequently improved their dimensional stability and durability. XPS spectroscopy results showed that hemicelluloses and celluloses are relatively more sensitive to the heating process than lignin. As a consequence, hemicellulose and cellulose contents decreased, whereas lignin contents increased during heat treatment. The results obtained in this study provide useful information for the future utilization of heat-treated bamboo.

  18. Composition and placement process for oil field chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Cantu, L.A.; Yost, M.E.

    1991-01-22

    This patent describes a process for the continuous release of an oil field chemical within a subterranean hydrocarbon bearing formation or wellbore penetrating such formation. It comprises placing the oil field chemical in a polymeric microcapsule; dispersing such polymeric microcapsules; introducing the wellbore fluid containing the microcapsules into a well bore or subterranean formation through a wellbore; then allowing water and temperature at formation conditions to degrade; continuously releasing the chemical from the degraded microcapsules. This patent describes a composition comprising an oil field chemical incorporated in a polymeric microcapsule comprising the condensation product of hydroxyacetic acid monomer or hydroxyacetic acid co-condensed with up to 15 percent by weight of other hydroxy-, carboxylic acid-, or hydroxycarboxylic acid- containing moieties. The product has a number average molecular weight of from about 200 to about 4000.

  19. Date fruit: chemical composition, nutritional and medicinal values, products.

    Science.gov (United States)

    Tang, Zhen-Xing; Shi, Lu-E; Aleid, Salah M

    2013-08-15

    Date fruit has served as a staple food in the Arab world for centuries. Worldwide production of date fruit has increased almost threefold over the last 40 years, reaching 7.68 million tons in 2010. Date fruit can provide many essential nutrients and potential health benefits to the consumer. Date fruit goes through four ripening stages named kimri, khalal, rutab and tamer. The main chemical components of date fruit include carbohydrates, dietary fibre, enzymes, protein, fat, minerals, vitamins, phenolic acids and carotenoids. The chemical composition of date fruit varies according to ripening stage, cultivar, growing environment, postharvest conditions, etc. The nutritional and medicinal activities of date fruit are related to its chemical composition. Many studies have shown that date fruit has antioxidant, antimutagenic, anti-inflammatory, gastroprotective, hepatoprotective, nephroprotective, anticancer and immunostimulant activities. Various date fruit-based products such as date syrup, date paste, date juice and their derived products are available. Date by-products can be used as raw materials for the production of value-added products such as organic acids, exopolysaccharides, antibiotics, date-flavoured probiotic-fermented dairy produce, bakery yeasts, etc. In this paper the chemical composition and nutritional and medicinal values of date fruit as well as date fruit-based products are reviewed.

  20. X-ray photoelectron spectroscopy for wheat powders: measurement of surface chemical composition.

    Science.gov (United States)

    Saad, Moustafa; Gaiani, Claire; Mullet, Martine; Scher, Joel; Cuq, Bernard

    2011-03-09

    The functional properties of wheat powders depend largely on the surface characteristics of their particles. X-ray photoelectron spectroscopy (XPS) has been considered to investigate the surface composition of wheat powders. The objective of the present study is to evaluate the ability of XPS to discriminate wheat components and to calculate the surface composition of wheat powders. First, XPS surveys for the main wheat isolated components (starch, proteins, arabinoxylans, and lipids) were determined. XPS results demonstrate that it is able to distinguish wheat proteins, polysaccharides, and lipids, but it is not able to distinguish starch and arabinoxylan because of their similarity in chemical structure. The XPS analyses of simple reconstituted wheat flours based on two components (starch and protein) or three components (by adding arabinoxylan) demonstrated the ability of XPS to measure the surface composition of the wheat flours. The surface composition of native wheat flour demonstrated an overrepresentation of protein (54%) and lipids (44%) and an underrepresentation of starch (2%) compared to the bulk composition. Results are discussed with regard to difficulties in discriminating arabinoxylans and starch components.

  1. Features of a chemical composition of dry leaves of Steviavebaudiana

    Directory of Open Access Journals (Sweden)

    Irina Borisovna Krasina

    2016-05-01

    Full Text Available This work is dedicated to the study of a chemical composition of dry leaves of Stevia. Dry leaves of Stevia contain diterpene glycosides that contribute to their sweet taste, which makes possible the use of Stevia as a sugar substitute in a production of flour confectionery products. The evaluation of amino acid composition of dried leaves of Stevia showed that their composition includes 7 essential amino acids, among them the limiting amino acid is valine.During experimental researches it was established that they are containing in a sufficient quantity water-soluble and fat-soluble vitamins in their composition. We have studied the effect of processing conditions on the degree of milling of dry leaves of Stevia. It was revealed that the pressure of 5 MPa in the contact zone of the working elements do not guarantee a product with a desired degree of milling. Milling of dried leaves of Stevia at a pressure equal to 10 MPa, allows achieving a high degree of size reduction with a simultaneous formation of the main physical and chemical characteristics of amilledproduct. It was established that granulometric composition of dry leaves of Stevia, obtained by milling in a rotor-roller disintegrator, presents the highest content of particles with a size from 5 to 30 μm, ensuring high consumer properties of the obtained biologically active additives (BAA.

  2. Effect of shock pressure on the structure and superconducting properties of Y-Ba-Cu-O in explosively fabricated bulk metal-matrix composites

    Science.gov (United States)

    Murr, L. E.; Niou, C. S.; Pradhan-Advani, M.

    1991-01-01

    While it is now well established that copper-oxide-based power, or virtually any other ceramic superconductor powder, can be consolidated and encapsulated within a metal matrix by explosive consolidation, the erratic superconductivity following fabrication has posed a major problem for bulk applications. The nature of this behavior was found to arise from microstructural damage created in the shock wave front, and the residual degradation in superconductivity was demonstrated to be directly related to the peak shock pressure. The explosively fabricated or shock loaded YBa2Cu3Ox examples exhibit drastically altered rho (or R) - T curves. The deterioration in superconductivity is even more noticeable in the measurement of ac magnetic susceptibility and flux exclusion or shielding fraction which is also reduced in proportion to increasing peak shock pressure. The high frequency surface resistance (in the GHz range) is also correspondingly compromised in explosively fabricated, bulk metal-matrix composites based on YBa2Cu3O7. Transmission electron microscopy (including lattice imaging techniques) is being applied in an effort to elucidate the fundamental (microstructural) nature of the shock-induced degradation of superconductivity and normal state conductivity. One focus of TEM observations has assumed that oxygen displaced from b-chains rather than oxygen-vacancy disorder in the basal plane of oxygen deficient YBa2Cu3Ox may be a prime mechanism. Shock-wave displaced oxygen may also be locked into new positions or interstitial clusters or chemically bound to displaced metal (possibly copper) atoms to form precipitates, or such displacements may cause the equivalent of local lattice cell changes as a result of stoichiometric changes. While the shock-induced suppression of T(sub c) is not desirable in the explosive fabrication of bulk metal-matrix superconductors, it may be turned into an advantage if the atomic-scale distortion can be understood and controlled as local

  3. Organic bulk heterojunction photovoltaic devices based on polythiophene-graphene composites.

    Science.gov (United States)

    Stylianakis, Minas M; Stratakis, Emmanuel; Koudoumas, Emmanuel; Kymakis, Emmanuel; Anastasiadis, Spiros H

    2012-09-26

    A solution-processed graphene content was synthesized by treatment of graphite oxide (GO) with phenyl isothiocyanate (PITC) by taking advantage of the functional carboxyl groups of graphene oxide. The GO was prepared by the oxidation of natural graphite powder and was expanded by ultrasonication in order to exfoliate single or/and few-layered graphene oxide sheets. The functionalized graphene oxide, GO-PITC, can be dispersed within poly-(3-hexylthiophene) (P3HT) and can be utilized as the electron acceptor in bulk heterojunction polymer photovoltaic cells. When P3HT is doped with GO-PITC, a great quenching of the photoluminescence of the P3HT occurred, indicating a strong electron transfer from the P3HT to the GO-PITC. The utilization of GO-PITC as the electron acceptor material in poly-(3-hexylthiophene) (P3HT) bulk heterojunction photovoltaic devices was demonstrated, yielding in a power conversion efficiency enhancement of 2 orders of magnitude compared with that of pristine P3HT.

  4. Surface chemical composition analysis of heat-treated bamboo

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fan-dan, E-mail: fandan_meng@163.com [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083 (China); Yu, Yang-lun, E-mail: yuyanglun@caf.ac.cn [Research Institute of Wood Industry, Chinese Academy of Forestry, No 1 Dongxiaofu, Haidian District, Beijing 100091 (China); Zhang, Ya-mei, E-mail: zhangyamei@caf.ac.cn [Research Institute of Wood Industry, Chinese Academy of Forestry, No 1 Dongxiaofu, Haidian District, Beijing 100091 (China); Yu, Wen-ji, E-mail: yuwenji@caf.ac.cn [Research Institute of Wood Industry, Chinese Academy of Forestry, No 1 Dongxiaofu, Haidian District, Beijing 100091 (China); Gao, Jian-min, E-mail: gaojm@bjfu.edu.cn [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083 (China)

    2016-05-15

    Highlights: • Investigate the detailed chemical components contents change of bamboo due to heating. • Chemical analysis of bamboo main components during heating. • Identify the connection between the oxygen to carbon atomic ratio changes and chemical degradation. - Abstract: In this study, the effect of heat treatment on the chemical composition of bamboo slivers was studied. The chemical properties of the samples were examined by chemical analysis. Results showed a decrease in the contents of holocellulose and α-cellulose, as well as an increase in the contents of lignin and extractives. Changes in the chemical structure of bamboo components were analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy results indicated that hemicellulose contents decrease, whereas lignin contents increase after heat treatment. Ester formation linked to lignin decreased the hygroscopicity of the bamboo samples and consequently improved their dimensional stability and durability. XPS spectroscopy results showed that hemicelluloses and celluloses are relatively more sensitive to the heating process than lignin. As a consequence, hemicellulose and cellulose contents decreased, whereas lignin contents increased during heat treatment. The results obtained in this study provide useful information for the future utilization of heat-treated bamboo.

  5. Meteorite zircon constraints on the bulk Lu-Hf isotope composition and early differentiation of the Earth.

    Science.gov (United States)

    Iizuka, Tsuyoshi; Yamaguchi, Takao; Hibiya, Yuki; Amelin, Yuri

    2015-04-28

    Knowledge of planetary differentiation is crucial for understanding the chemical and thermal evolution of terrestrial planets. The (176)Lu-(176)Hf radioactive decay system has been widely used to constrain the timescales and mechanisms of silicate differentiation on Earth, but the data interpretation requires accurate estimation of Hf isotope evolution of the bulk Earth. Because both Lu and Hf are refractory lithophile elements, the isotope evolution can be potentially extrapolated from the present-day (176)Hf/(177)Hf and (176)Lu/(177)Hf in undifferentiated chondrite meteorites. However, these ratios in chondrites are highly variable due to the metamorphic redistribution of Lu and Hf, making it difficult to ascertain the correct reference values for the bulk Earth. In addition, it has been proposed that chondrites contain excess (176)Hf due to the accelerated decay of (176)Lu resulting from photoexcitation to a short-lived isomer. If so, the paradigm of a chondritic Earth would be invalid for the Lu-Hf system. Herein we report the first, to our knowledge, high-precision Lu-Hf isotope analysis of meteorite crystalline zircon, a mineral that is resistant to metamorphism and has low Lu/Hf. We use the meteorite zircon data to define the Solar System initial (176)Hf/(177)Hf (0.279781 ± 0.000018) and further to identify pristine chondrites that contain no excess (176)Hf and accurately represent the Lu-Hf system of the bulk Earth ((176)Hf/(177)Hf = 0.282793 ± 0.000011; (176)Lu/(177)Hf = 0.0338 ± 0.0001). Our results provide firm evidence that the most primitive Hf in terrestrial zircon reflects the development of a chemically enriched silicate reservoir on Earth as far back as 4.5 billion years ago.

  6. Multiphase chemical kinetics of OH radical uptake by molecular organic markers of biomass burning aerosols: humidity and temperature dependence, surface reaction, and bulk diffusion.

    Science.gov (United States)

    Arangio, Andrea M; Slade, Jonathan H; Berkemeier, Thomas; Pöschl, Ulrich; Knopf, Daniel A; Shiraiwa, Manabu

    2015-05-14

    Multiphase reactions of OH radicals are among the most important pathways of chemical aging of organic aerosols in the atmosphere. Reactive uptake of OH by organic compounds has been observed in a number of studies, but the kinetics of mass transport and chemical reaction are still not fully understood. Here we apply the kinetic multilayer model of gas-particle interactions (KM-GAP) to experimental data from OH exposure studies of levoglucosan and abietic acid, which serve as surrogates and molecular markers of biomass burning aerosol (BBA). The model accounts for gas-phase diffusion within a cylindrical coated-wall flow tube, reversible adsorption of OH, surface-bulk exchange, bulk diffusion, and chemical reactions at the surface and in the bulk of the condensed phase. The nonlinear dependence of OH uptake coefficients on reactant concentrations and time can be reproduced by KM-GAP. We find that the bulk diffusion coefficient of the organic molecules is approximately 10(-16) cm(2) s(-1), reflecting an amorphous semisolid state of the organic substrates. The OH uptake is governed by reaction at or near the surface and can be kinetically limited by surface-bulk exchange or bulk diffusion of the organic reactants. Estimates of the chemical half-life of levoglucosan in 200 nm particles in a biomass burning plume increase from 1 day at high relative humidity to 1 week under dry conditions. In BBA particles transported to the free troposphere, the chemical half-life of levoglucosan can exceed 1 month due to slow bulk diffusion in a glassy matrix at low temperature.

  7. Chemical composition of material fractions in Danish household waste

    DEFF Research Database (Denmark)

    Riber, Christian; Petersen, Claus; Christensen, Thomas Højlund

    2009-01-01

    method, because of the larger quantities included and the more homogenous material to sample from. Differences between the direct and the direct methods led to corrections in the of heavy metal concentration of a few fractions. The majority of the energy content of the waste originates from organic waste......The chemical composition of Danish household waste was determined by two approaches: a direct method where the chemical composition (61 substances) of 48 material fractions was determined after hand sorting of about 20 tonnes of waste collected from 2200 households; and an indirect method where...... batches of 80-1200 tonnes of unsorted household waste was incinerated and the content of the waste determined from the content of the outputs from the incinerator. The indirect method is believed to better represent the small but highly contaminated material fractions (e,g., batteries) than the direct...

  8. The effect of bulk-resin CNT-enrichment on damage and plasticity in shear-loaded laminated composites

    KAUST Repository

    Ventura, Isaac Aguilar

    2013-07-01

    One way to improve multi functionality of epoxy-based laminated composites is to dope the resin with carbon nanotubes. Many investigators have focused on the elastic and fracture behavior of such nano-modified polymers under tensile loading. Yet, in real structural applications, laminated composites can exhibit plasticity and progressive damage initiated mainly by shear loading. We investigated the damage and plasticity induced by the addition of carbon nanotubes to the matrix of a glass fiber/epoxy composite system. We characterized both the modified epoxy resin and the associated modified laminates using classical mesoscale analysis. We used dynamic mechanical analysis, scanning electron microscopy, atomic force microscopy and classical mechanical testing to characterize samples with different concentrations of nanofillers. Since the samples were prepared using the solvent evaporation technique, we also studied the influence of this process. We found that in addition to the global increase in elastic regime properties, the addition of carbon nanotubes also accelerates the damage process in both the bulk resin and its associated glass-fiber composite. © 2013 Elsevier Ltd.

  9. In situ synthesis of TiC reinforced Cu47Ti34Zr11Ni8 bulk metallic glass composites

    Institute of Scientific and Technical Information of China (English)

    SUN Yufeng; ZHANG Guosheng; WEI Bingchen; LI Weihuo; WANG Yuren

    2004-01-01

    In situ synthesized TiC particles and β-Ti dendrites reinforced Cu47Ti34Zr11 Ni8 bulk metallic glass (BMG)composite ingots were prepared by the suction casting method. The ingots with diameters from 1 up to 4 mm were successfully obtained. It was shown that introducing TiC micro-sized particles into the amorphous matrix did not disturb the glass forming ability (GFA) of the matrix, while the yield strength and ductility could be well improved. The phase constitution, microstructure and elements distribution in the composites were studied by OM, XRD, SEM and EDS.It was shown that the in situ synthesized TiC particles acting as heterogeneous nucleation sites promoted the precipitation of β-Ti dendrites, resulting in the formation of the TiC particles and β-Ti dendrites co-reinforced BMG composites. The compressive tests were employed to probe the yield strength and ductility of BMG composites.

  10. Investigation of the microcrack evolution in a Ti-based bulk metallic glass matrix composite

    Institute of Scientific and Technical Information of China (English)

    Yongsheng Wang; Zhenxi Guo; Rui Ma; Guojian Hao; Yong Zhang; Junpin Lin; Manling Sui

    2014-01-01

    The initiation and evolution behavior of the shear-bands and microcracks in a Ti-based metallic-glass-matrix composite (MGMC) were investigated by using an in-situ tensile test under transmission electron microscopy (TEM). It was found that the plastic deformation of the Ti-based MGMC related with the generation of the plastic deformation zone in crystalline and shear deformation zone in glass phase near the crack tip. The dendrites can suppress the propagation of the shear band effectively. Before the rapid propagation of cracks, the extending of plastic deformation zone and shear deformation zone ahead of crack tip is the main pattern in the composite.

  11. Bulk heterojunction organic photovoltaic based on polythiophene-polyelectrolyte carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Reyes, M. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico); Lopez-Sandoval, R. [Advanced Materials Department, IPICYT, Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi 78216 (Mexico); Liu, J.; Carroll, D.L. [Center for Nanotechnology and Molecular Materials, Wake Forest University, Winston-Salem, NC (United States)

    2007-09-22

    It is shown that carbon nanotubes can be used to enhance carrier mobility for efficient removal of the charges in thin film polymer-conjugated/fullerene photovoltaic devices. The fabricated photovoltaic devices consist of poly(3-octylthiophene) (P3OT) polymer blended with undoped multiwalled carbon nanotubes (MWNTs) and carbon nanotubes doped with nitrogen (CNx-MWNTs). Nanophase formation and dispersion problems associated with the use of carbon nanotubes in polymer devices were addressed through the generation of functional groups and electrostatic attaching of the polyelectrolyte poly(dimethyldiallylamine) chloride (PDDA) in both MWNTs and CNx-MWNT systems. The resultant nanophase was highly dispersed allowing for excellent bulk heterojunction formation. Our results indicate that CNx-MWNTs enhance the efficiency of P3OT solar cells in comparison with MWNTs. (author)

  12. Fast-freezing with liquid nitrogen preserves bulk dissolved organic matter concentrations, but not its composition

    Science.gov (United States)

    Thieme, Lisa; Graeber, Daniel; Kaupenjohann, Martin; Siemens, Jan

    2016-08-01

    Freezing can affect concentrations and spectroscopic properties of dissolved organic matter (DOM) in water samples. Nevertheless, water samples are regularly frozen for sample preservation. In this study we tested the effect of different freezing methods (standard freezing at -18 °C and fast-freezing with liquid nitrogen) on DOM concentrations measured as organic carbon (DOC) concentrations and on spectroscopic properties of DOM from different terrestrial ecosystems (forest and grassland). Fresh and differently frozen throughfall, stemflow, litter leachate and soil solution samples were analyzed for DOC concentrations, UV-vis absorption and fluorescence excitation-emission matrices combined with parallel factor analysis (PARAFAC). Fast-freezing with liquid nitrogen prevented a significant decrease of DOC concentrations observed after freezing at -18 °C. Nonetheless, the share of PARAFAC components 1 (EXmax nitrogen for preservation of bulk DOC concentrations of samples from terrestrial sources, whereas immediate measuring is preferable to preserve spectroscopic properties of DOM.

  13. Fast-freezing with liquid nitrogen preserves bulk dissolved organic matter concentrations, but not its composition

    DEFF Research Database (Denmark)

    Thieme, Lisa; Graeber, Daniel; Kaupenjohann, Martin;

    2016-01-01

    concentrations, UV-vis absorption and fluorescence excitation–emission matrices combined with parallel factor analysis (PARAFAC). Fast-freezing with liquid nitrogen prevented a significant decrease of DOC concentrations observed after freezing at −18 °C. Nonetheless, the share of PARAFAC components 1 (EXmax......-freezing with liquid nitrogen) on DOM concentrations measured as organic carbon (DOC) concentrations and on spectroscopic properties of DOM from different terrestrial ecosystems (forest and grassland). Fresh and differently frozen throughfall, stemflow, litter leachate and soil solution samples were analyzed for DOC...... component 4 (EXmax: 280 nm, EXmax: 328 nm) to total fluorescence was not affected by freezing. We recommend fast-freezing with liquid nitrogen for preservation of bulk DOC concentrations of samples from terrestrial sources, whereas immediate measuring is preferable to preserve spectroscopic properties...

  14. Chemical Composition of Essential Oil from Marrubium Vulgare L. Leaves

    OpenAIRE

    Bayir, Burcu; Gündüz, Hatice; Usta, Tuba; Şahin, Esma; Özdemir, Zeynep; Kayır, Ömer; Sen, Özkan; Akşit, Hüseyin; Elmastaş, Mahfuz; Erenler, Ramazan

    2014-01-01

    – The essential oils are significant for pharmaceutical, food and cosmetic industries. Marrubium vulgare L. has been used as a traditional medicine to treat the various illnesses. The chemical composition of the essential oil from leaves of Marrubium vulgare L.was obtained by steam distillation using the Clevenger apparatus. The oil was analyzed by gas chromatography and mass spectrometry (GC-MS). The main constituent of the oil was α-pinene (28.85%)

  15. Chemical composition and biological activity of the plum seed extract

    OpenAIRE

    Savić, Ivan M.; Nikolić, Vesna D.; Savić-Gajić, Ivana M.; Kundaković, Tatjana D.; Stanojković, Tatjana P.; Najman, Stevo J.; id_orcid 0000-0002-2411-9802

    2016-01-01

    The aim of this paper was to estimate the biological activity of the plum seed extract and to define the chemical composition by using the ESI-MS method. During the investigation of the antioxidant activity, the extract showed a better ability to inhibit DPPH radicals compared with amygdalin standard. The results of the antimicrobial study indicate that the extract has a greater effect on Gram-negative bacteria compared with amygdalin. Gram-positive bacteria and fungi remained resistant in bo...

  16. The chemical composition at a galactocentric distance of 13 KPC

    Science.gov (United States)

    Rolleston, W. R. J.; Dufton, P. L.; Fitzsimmons, A.

    1994-04-01

    High-resolution observations of two very sharp-lined, main-sequence B-type stars, associated with the H II region S 285, have been obtained using the ISIS spectrograph on the William Herschel Telescope. The spectroscopic data have been analysed using local thermodynamic equilibrium (LTE) model-atmosphere techniques to derive the stellar atmospheric parameters, chemical compositions and a mean distance of 4.3 kpc. As the lifetimes for these stars were calculated to be less than 6 Myrs, their photospheric abundances should reflect that of their natal interstellar material. Individual element abundances deduced for both stars were generally in excellent agreement (differing on average by less than 0.1 dex), although there is some evidence to suggest that the stars formed from material which had different nitrogen abundances. Both stars appear to have chemical compositions similar to that found in the solar neighborhood, which is consistent with a zero abundance gradient over these galactocentric distances. The chemical compositions of the stars associated with S 285 have also been compared with three other clusters at similar galactocentric distances (Bochum 1, NGC 1893 and Dolidze 25). From a differential analysis, Dolidze 25 appears to have a mean metal deficiency of approximately 0.7 dex, with oxygen being less underabundant, while the other two clusters have similar abundances to S 285. We conclude that these results are inconsistent with the concept of a linear galactic abundance gradient, that the chemical composition is not unique and that there are significant abundance variations over distance scales of 1 kpc at these large galactocentric distances.

  17. Interfacial studies of chemical-vapor-infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, J.J. (United Technologies Research Center, East Hartford, CT (USA))

    1990-06-15

    The objective of this program was to investigate the fiber-matrix interfacial chemistry in chemical-vapor-infiltrated SiC matrix composites utilizing NICALON SiC and Nextel 400 mullite fibers and how this interface influences composite properties such as strength, toughness and environmental stability. The SiC matrix was deposited using three different reactants: methyldichlorosilane, methyltrichlorosilane and dimethyldichlorosilane. It was found that by varying the reactant gas flow rates, the ratio of carrier gas to reactant gas, the type of carrier gas (hydrogen or argon), the flushing gas used in the reactor prior to deposition (hydrogen or argon) or the type of silane reactant gas used, the composition of the deposited SiC could be varied from very silicon rich (75 at.%) to carbon rich (60%) to almost pure carbon. Stoichiometric SiC was found to bond very strongly to both NICALON and Nextel fibers, resulting in a weak and brittle composite. A thin carbon interfacial layer deposited either deliberately by the decomposition of methane or inadvertently by the introduction of argon into the reactor prior to silane flow resulted in a weakly bonded fiber-matrix interface and strong and tough composites. However, composites with this type of interface were not oxidatively stable. Preliminary results point ot the use of a carbon-rich SiC (mixture of carbon plus SiC) interfacial zone to achieve a relatively weak, crack-deflecting fiber-matrix bond but also exhibiting oxidative stability. (orig.).

  18. Chemical composition of the clays as indicator raw material sources

    Directory of Open Access Journals (Sweden)

    Khramchenkova Rezida Kh

    2014-06-01

    Full Text Available The paper presents the results of study on the chemical composition of unglazed pottery from the excavations of the Bulgar fortified settlement site and the clay, selected from the modern deposits of ceramic raw materials located near the medieval settlement sites. Significant differences in macro- and microelement composition of different groups of ceramics have been revealed. The difference in the macroelemental composition is largely determined by the ceramic fabric recipe. Thus, the high calcium content corresponds to the addition of river shells, the high content of silicon results from sand addition. A more interesting picture has been revealed in the course of studies of the so-called “trace elements” (microelements. Nine groups of ceramics with different elemental set have been distinguished. The first two groups consist of imported ceramics; other groups have demonstrated a rather pronounced elemental composition. The most notable variations are observed in chromium, vanadium and nickel content. Similar microelement composition variety has been observed in clays from deposits of different localization, while the concentration of the mentioned elements in a variety of clays also differs considerably. Therefore, marker elements typical of different clays have been identified. A comparative analysis of the data obtained for clay raw materials and ceramics has been conducted. The results demonstrate the potential of studying the elemental composition in order to determine the localization of the raw material sources for ceramic production.

  19. Chemical composition and surface charge properties of montmorillonite

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-wen; HU Min; HU Yue-hua

    2008-01-01

    The effects of the cell parameter and chemical composition on the surface charge properties of five kinds of different colour montmorillonites were studied. The results indicate that the surface isoelectric point(IEP) of the montmorillonite shows positive correlation with the mass fractions of Fe2O3 and K20, but it has little relation to the mass fractions of other chemical compositions. At around pH=6.8, the surface zeta potential of the montmorillonite shows the negative relationship with the mass fractions of Fe2O3 and MgO, but it does not linearly correlate to the mass fractions of other chemical compositions. Cell parameter(b0) of the montmofillonite expresses negative linear relationship with mass fractions of K2O and Na2O, so does c0sinβ with mass fractions of SiO2 and Fe2O3. And there is no specific relationship between bo and IEP of different montmori Uonites, but there is positive correlation between c0sinβ and IEP of different montmorillonite samples.

  20. On the chemical composition of Titan's dry lakebed evaporites

    CERN Document Server

    Cordier, Daniel; Ferreira, Abel

    2013-01-01

    Titan, the main satellite of Saturn, has an active cycle of methane in its troposphere. Among other evidence for a mechanism of evaporation at work on the ground, dry lakebeds have been discovered. Recent Cassini infrared observations of these empty lakes have revealed a surface composition poor in water ice compared to that of the surrounding terrains --- suggesting the existence of organic evaporites deposits. The chemical composition of these possible evaporites is unknown. In this paper, we study evaporite composition using a model that treats both organic solids dissolution and solvent evaporation. Our results suggest the possibility of large abundances of butane and acetylene in the lake evaporites. However, due to uncertainties of the employed theory, these determinations have to be confirmed by laboratory experiments.

  1. Preliminary study of chemical compositional data from Amazon ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Toyota, Rosimeiri G.; Munita, Casimiro S.; Luz, Fabio A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: rosimeiritoy@yahoo.com.br; Neves, Eduardo G. [Museu de Arqueologia e Etnolgia, Sao Paulo, SP (Brazil)]. E-mail: egneves@usp.br; Oliveira, Paulo M.S. [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Inst. de Matematica e Estatistica]. E-mail: poliver@usp.br

    2005-07-01

    Eighty seven ceramic samples from Acutuba, Lago Grande and Osvaldo archaeological sites located in the confluence of the rivers Negro and Solimoes were submitted to chemical analysis using instrumental neutron activation analysis to determine As, Ba, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Rb, Na, Nd, Sb, Sc, Sm, Ta, Tb, Th, Yb, Zn, and U. The database were studied using the Mahalanobis distance, and discriminant analysis. The results showed that the ceramics of each site differ from each other in chemical composition and that they form three different groups. Chemical classification of the ceramics suggests that vessels were made locally, as only ceramics from the same area show homogeneity of data. (author)

  2. Peculiarities of chemical composition of sainfoin seeds powder

    Directory of Open Access Journals (Sweden)

    Natalia Aleksandrovna Tarasenko

    2015-09-01

    Full Text Available This paper is devoted to studying chemical composition of the powder of the seeds of non-traditional legume, sainfoin. The experimental studies showed that crushed seeds of sainfoin make a flowing fine powder of light brown color with a pleasant unpronounced specific smell with floral notes. The taste is grassy with the after-taste typical for legumes. The chemical composition of sainfoin seeds is dominated by proteins and fiber, and fat content does not exceed 8%. The total content of amino-acids is 26.94/100 g of the product, with the share of indispensable ones being 37.85%. The limiting amino acid is tryptophan (48.0 %. By the composition of essential amino acids, proteins of sainfoin seeds are slightly inferior to the proteins of soybean seeds, but are better than the proteins of peanut seeds. The composition of fatty acid of the lipid complex of sainfoin seeds is dominated by (over 40% of the total linolenic ω-3 acid with sufficiently low (less than 20% of the total content of linoleic ω-6 acid. The lipid composition of sainfoin seeds, along with triacylglycerols, contains about 40% of related lipids, which are dominated by sterols, aliphatic alcohols, phospholipids and tocopherols. All this makes the lipid complex of sainfoin seed a promising means of adjusting fatty acids composition in food products of functional and specialized purpose, dietary supplements, and a valuable raw material for creating pharmaceutical substances and preparations. Adding sainfoin seeds powder into the nutritive medium has no inhibitory effect on development of the tested organism. At the same time, 58% of the organism's physiological need for protein is satifsied, as compared to caseine.

  3. Bioactive carbon-PEEK composites prepared by chemical surface treatment.

    Science.gov (United States)

    Miyazaki, Toshiki; Matsunami, Chisato; Shirosaki, Yuki

    2017-01-01

    Polyetheretherketone (PEEK) has attracted much attention as an artificial intervertebral spacer for spinal reconstruction. Furthermore, PEEK plastic reinforced with carbon fiber has twice the bending strength of pure PEEK. However, the PEEK-based materials do not show ability for direct bone bonding, i.e., bioactivity. Although several trials have been conducted for enabling PEEK with bioactivity, few studies have reported on bioactive surface modification of carbon-PEEK composites. In the present study, we attempted the preparation of bioactive carbon-PEEK composites by chemical treatments with H2SO4 and CaCl2. Bioactivity was evaluated by in vitro apatite formation in simulated body fluid (SBF). The apatite formation on the carbon-PEEK composite was compared with that of pure PEEK. Both pure PEEK and carbon-PEEK composite formed the apatite in SBF when they were treated with H2SO4 and CaCl2; the latter showed higher apatite-forming ability than the former. It is conjectured that many functional groups able to induce the apatite nucleation, such as sulfo and carboxyl groups, are incorporated into the dispersed carbon phase in the carbon-PEEK composites.

  4. Enhanced Mechanical Properties of MgZnCa Bulk Metallic Glass Composites with Ti-Particle Dispersion

    Directory of Open Access Journals (Sweden)

    Pei Chun Wong

    2016-05-01

    Full Text Available Rod samples of Mg60Zn35Ca5 bulk metallic glass composites (BMGCs dispersed with Ti particles have been successfully fabricated via injection casting. The glass forming ability (GFA and the mechanical properties of these Mg-based BMGCs have been systematically investigated as a function of the volume fraction (Vf of Ti particles. The results showed that the compressive ductility increased with Vf. The mechanical performance of these BMGCs, with up to 5.4% compressive failure strain and 1187 MPa fracture strength at room temperature, can be obtained for the Mg-based BMGCs with 50 vol % Ti particles, suggesting that these dispersed Ti particles can absorb the energy of the crack propagations and can induce branches of the primary shear band into multiple secondary shear bands. It follows that further propagation of the shear band is blocked, enhancing the overall plasticity.

  5. Correlation between the microstructures and the deformation mechanisms of CuZr-based bulk metallic glass composites

    Directory of Open Access Journals (Sweden)

    K. K. Song

    2013-01-01

    Full Text Available The variation of the transformation-mediated deformation behavior with microstructural changes in CuZr-based bulk metallic glass composites is investigated. With increasing crystalline volume fraction, the deformation mechanism gradually changes from a shear-banding dominated process as evidenced by a chaotic serrated flow behavior, to being governed by a martensitic transformation with a pronounced elastic-plastic stage, resulting in different plastic deformations evolving into a self-organized critical state characterized by the power-law distribution of shear avalanches. This is reflected in the stress-strain curves by a single-to-“double”-to-“triple”-double yielding transition and by different mechanical properties with different serrated flow characteristics, which are interpreted based on the microstructural evolutions and a fundamental energy theorem. Our results can assist in understanding deformation behaviors for high-performance metastable alloys.

  6. Correlation between the microstructures and the deformation mechanisms of CuZr-based bulk metallic glass composites

    Science.gov (United States)

    Song, K. K.; Pauly, S.; Sun, B. A.; Tan, J.; Stoica, M.; Kühn, U.; Eckert, J.

    2013-01-01

    The variation of the transformation-mediated deformation behavior with microstructural changes in CuZr-based bulk metallic glass composites is investigated. With increasing crystalline volume fraction, the deformation mechanism gradually changes from a shear-banding dominated process as evidenced by a chaotic serrated flow behavior, to being governed by a martensitic transformation with a pronounced elastic-plastic stage, resulting in different plastic deformations evolving into a self-organized critical state characterized by the power-law distribution of shear avalanches. This is reflected in the stress-strain curves by a single-to-"double"-to-"triple"-double yielding transition and by different mechanical properties with different serrated flow characteristics, which are interpreted based on the microstructural evolutions and a fundamental energy theorem. Our results can assist in understanding deformation behaviors for high-performance metastable alloys.

  7. Enhanced plasticity of Zr-based bulk metallic glass composite by in situ formed β-Zr dendritics

    Institute of Scientific and Technical Information of China (English)

    SUN Guoyuan; CHEN Guang; CHEN Guoliang

    2007-01-01

    A Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 bulk metallic glasscomposite with enhanced plasticity by in situ formed bcc β-Zr solid solution was prepared by water quenching.The ductile βphase with a volume fraction of about 30% possesses a developed dendritic morphology.The composite exhibits a pure plastic strain of 10.2% combined with a large elastic strain limit of 2% and a high ultimate strength of 1778 Mpa upon room-temperature compression.Microscopic observa- tion shows numbers of wave-like shear bands distributed on the surface of the compressive samples.

  8. Bulk carbon, oxygen, and hydrogen stable isotope composition of recent resins from amber-producing Hymenaea.

    Science.gov (United States)

    Nissenbaum, Arie; Yakir, Dan; Langenheim, Jean H

    2005-01-01

    Resins of Hymenaea, an angiosperm tree genus known to be a copious resin producer and a major source of amber since the Oligo-Miocene, were collected from a wide range of tropical environments from Latin America and Africa, and analyzed for their carbon, hydrogen, and oxygen stable isotope composition. The average value for delta13C in the resins was found to be -27.0+/-1.3 per thousand, which is very similar to the values reported for resins in other studies. Delta18O values for the Hymenaea resins averaged +11.2+/-1.6 per thousand, or about 20 per thousand more depleted than normal plant cellulose. DeltaD values of the resins ranged from -196 to -319 per thousand, with an average of -243+/-30 per thousand. Rough estimates suggest a fractionation of -200 to -210 per thousand between the resins and the environmental water. This value is similar to the -200 per thousand value observed for the fractionation between other plant lipids and environmental water. The present study suggests that the stable isotope composition of fossil resins (amber) has the potential to provide information on ancient environmental waters.

  9. A bootstrap estimation scheme for chemical compositional data with nondetects

    Science.gov (United States)

    Palarea-Albaladejo, J; Martín-Fernández, J.A; Olea, Ricardo A.

    2014-01-01

    The bootstrap method is commonly used to estimate the distribution of estimators and their associated uncertainty when explicit analytic expressions are not available or are difficult to obtain. It has been widely applied in environmental and geochemical studies, where the data generated often represent parts of whole, typically chemical concentrations. This kind of constrained data is generically called compositional data, and they require specialised statistical methods to properly account for their particular covariance structure. On the other hand, it is not unusual in practice that those data contain labels denoting nondetects, that is, concentrations falling below detection limits. Nondetects impede the implementation of the bootstrap and represent an additional source of uncertainty that must be taken into account. In this work, a bootstrap scheme is devised that handles nondetects by adding an imputation step within the resampling process and conveniently propagates their associated uncertainly. In doing so, it considers the constrained relationships between chemical concentrations originated from their compositional nature. Bootstrap estimates using a range of imputation methods, including new stochastic proposals, are compared across scenarios of increasing difficulty. They are formulated to meet compositional principles following the log-ratio approach, and an adjustment is introduced in the multivariate case to deal with nonclosed samples. Results suggest that nondetect bootstrap based on model-based imputation is generally preferable. A robust approach based on isometric log-ratio transformations appears to be particularly suited in this context. Computer routines in the R statistical programming language are provided. 

  10. Chemical composition of the sediment from Lake 20 (Antarctica

    Directory of Open Access Journals (Sweden)

    Daria ROSSI

    2000-02-01

    Full Text Available Lake 20 (19,000 m2 is located on the coast of the Ross Sea, in the North-Central part of Victoria Land, and its surface is ice-free between the end of December and early February. Within the framework of the Italian National Research Programme in Antarctica, a study was made of the chemical composition of sediments from the lake, with the intention of using this information to contribute to a better understanding of the processes involved in the long range transport of pollutants and their role in global changes. A sediment core from Lake 20 (Antarctica, 18 cm long, was collected in 1994, sliced into 2 cm sections and analysed using X Ray fluorescence spectrometry for 17 elements (Si, Al, Ca, K, Fe, Mg, Ti, S, P, Pb, Zn, Cu, Ni, Mn, Cr, Na, Cl, by CHN Elemental Analyser for C and N, by Flameless Atomic Absorption Spectrometry for As, and by Cold Vapour Atomic Absorption Spectrometry for Hg. The chemical composition of the sediments is consistent with the known geochemical characteristics of the drainage basin. While the chemical analyses reveal that sedimentation in Lake 20 has changed through time, the variations along the core are most probably related to the climatic evolution of the area, to the consequent changes in weathering processes, and possibly to an increase in the primary productivity of the lake, rather than to anthropogenic influences on the biogeochemical cycles of the elements.

  11. Chemical Compositions of Kinematically Selected Outer Halo Stars

    CERN Document Server

    Zhang, Lan; Aoki, Wako; Zhao, Gang; Chiba, Masashi

    2009-01-01

    Chemical abundances of 26 metal-poor dwarfs and giants are determined from high-resolution and high signal-to-noise ratio spectra obtained with Subaru/HDS. The sample is selected so that most of the objects have outer-halo kinematics. Self-consistent atmospheric parameters were determined by an iterative procedure based on spectroscopic analysis. Abundances of 13 elements, including $\\alpha$-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc), iron-peak elements (Cr, Mn, Fe, Ni, Zn) and neutron-capture elements (Y, Ba), are determined by two independent data reduction and LTE analysis procedures, confirming the consistency of the stellar parameters and abundances results. We find a decreasing trend of [$\\alpha$/Fe] with increasing [Fe/H] for the range of $-3.5 <$ [Fe/H]$ < -1$, as found by Stephens and Boesgaard (2002). [Zn/Fe] values of most objects in our sample are slightly lower than the bulk of halo stars previously studied. These results are discussed as possible chemical properties of the ou...

  12. Improved properties of chemically modified graphene/poly(methyl methacrylate nanocomposites via a facile in-situ bulk polymerization

    Directory of Open Access Journals (Sweden)

    X. Y. Yuan

    2012-10-01

    Full Text Available The nanosheet of graphene was chemically modified by long alkyl chain for enhanced compatibility with polymer matrix and graphene/poly(methyl methacrylate (PMMA nanocomposites with homogeneous dispersion of the nanosheets and enhanced nanofiller-matrix interfacial interaction were fabricated via a facile in-situ bulk polymerization. The nanocomposites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy and thermogravimetry. The results showed that the graphene nanosheets were fully exfoliated in PMMA matrix and the thermal and mechanical properties of the nanocomposites were significantly improved at low graphene loadings. Large shifts of 15°C in the glass transition temperature and 27°C improvement of onset thermal degradation temperature were achieved with graphene loading as low as 0.07 wt%. A 67% increase in tensile strength was also observed by the addition of only 0.5 wt% graphene. The method used in this study provided a novel route to other graphene-based polymers.

  13. Thermomechanical behavior of bulk Ni/MWNT composites produced via powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Sebastian; Soldera, Flavio; Muecklich, Frank [Department of Materials Science, Saarland University, Building D3.3, D-66123, Saarbruecken (Germany); Gonzalez Oliver, Carlos [C.O.N.I.C.E.T., Av. Rivadavia 1917, Buenos Aires (Argentina); Acevedo, Diego [Departamento de Quimica, Universidad Nacional de Rio Cuarto, RN36 Km601, X5804ZAB, Rio Cuarto (Argentina)

    2012-07-15

    The thermal expansion behavior of Ni matrix composites reinforced with multiwalled carbon nanotubes (MWNT) fabricated by pressureless sintering and hot uniaxial pressing was studied in the range between 50 and 1050 C and compared to that of pure Ni. The results show an active interaction between the MWNT and the Ni matrix by reducing the coefficient of thermal expansion (CTE) of pure Ni up to 76% between 50 and 400 C. This reduction is due to the strong interfacial interaction between the matrix and the reinforcement and the low intrinsic CTE of the nanotubes. This outstanding behavior may be very useful in applications were low CTE is required as for example structural materials. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Medium and long-term opportunities and risk of the biotechnological production of bulk chemicals from renewable resources - The potential of white biotechnology

    NARCIS (Netherlands)

    Patel, M.; Crank, M.; Dornberg, V.; Hermann, B.; Roes, L.; Hüsing, B.; Overbeek, van L.S.; Terragni, F.; Recchia, E.

    2006-01-01

    This report studies processes which convert biomass-derived feedstocks (e.g. fermentable sugar) into organic bulk chemicals (e.g. lactic acid, acetic acid, butanol and ethanol) by means of white biotechnology (e.g. fermentation or enzymatic conversion), either with or without genetically modified or

  15. Mesostructured Cu–Mn–Ce–O composites with homogeneous bulk composition for chlorobenzene removal: Catalytic performance and microactivation course

    Energy Technology Data Exchange (ETDEWEB)

    He, Chi, E-mail: chi_he@mail.xjtu.edu.cn [Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Yu, Yanke [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Shi, Jianwen [Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Shen, Qun [Research Center for Greenhouse Gases and Environmental Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 (China); Chen, Jinsheng [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Liu, Hongxia, E-mail: hxliu72@mail.xjtu.edu.cn [Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-05-01

    Cu–Mn–Ce–O composites with enhanced surface area and developed mesoporosity were synthesized using a homogeneous coprecipitation (hcp) method, and were tested in the catalytic destruction of chlorobenzene (CB). X-ray diffraction (XRD), N{sub 2} adsorption/desorption, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (H{sub 2}-TPR), temperature programmed desorption of CB/O{sub 2} (CB/O{sub 2}-TPD), and diffuse reflectance ultraviolet visible spectroscopy (DRUV-Vis) were used to characterize the structure and textural properties of catalysts. Mn and Cu enter CeO{sub 2} matrix with a fluorite-like structure, and produce large amounts of oxygen vacancies. Addition of manganese promotes the formation of reduced copper phase, and the presence of large numbers of high valence Mn{sup 4+} ions strongly enhances the redox couple of Cu{sup +}–Cu{sup 2+} in the composites. Both the synthesis protocol and metal doping amount significantly affect the catalyst reducibility, surface state and oxygen density. Cu{sub 0.15}Mn{sub 0.15}Ce{sub 0.85}O{sub x} synthesized via the hcp method exhibits the highest catalytic activity with 90% of chlorobenzene destructed at 255 °C (CO{sub 2} selectivity > 99.5%). Enriched surface oxygen, excellent active oxygen mobility and CB adsorption ability guarantee the superior activity and stability of Cu–Mn–Ce–O composite catalysts. Nucleophilic and electrophilic substitutions happen in sequence during chlorobenzene destruction, and the adsorbed Cl can be finally removed in the form of Cl{sub 2} via the Deacon reaction. Furthermore, the incorporation of CuO and MnO{sub x} phases can inhibit the formation of organic byproducts, such as phenolates, maleates, and o-benzoquinone-type species, especially at elevated reaction temperatures. - Highlights: • Cu–Mn–Ce–O mesoporous oxides possess enhanced surface oxygen

  16. Dynamics of the chemical composition of rainwater throughout Hurricane Irene

    Directory of Open Access Journals (Sweden)

    K. M. Mullaugh

    2013-03-01

    Full Text Available Sequential sampling of rainwater from Hurricane Irene was carried out in Wilmington, NC, USA on 26 and 27 August 2011. Eleven samples were analyzed for pH, major ions (Cl−, NO3−, SO42−, Na+, K+, Mg2+, Ca2+, NH4+, dissolved organic carbon (DOC and hydrogen peroxide (H2O2. Hurricane Irene contributed 16% of the total rainwater and 18% of the total chloride wet deposition received in Wilmington NC during all of 2011. This work highlights the main physical factors influencing the chemical composition of tropical storm rainwater: wind speed, wind direction, back trajectory and vertical mixing, time of day and total rain volume. Samples collected early in the storm, when winds blew out of the east, contained dissolved components indicative of marine sources (salts from sea spray and low DOC. The sea-salt components in the samples had two maxima in concentration during the storm the first of which occurred before the volume of rain had sufficiently washed out sea salt from the atmosphere and the second when back trajectories showed large volumes of marine surface air were lifted. As the storm progressed and winds shifted to a westerly direction, the chemical composition of the rainwater became characteristic of terrestrial storms (high DOC and NH4+ and low sea salt. This work demonstrates that tropical storms are not only responsible for significant wet deposition of marine components to land, but terrestrial components can also become entrained in rainwater, which can then be delivered to coastal waters via wet deposition. This study also underscores why analysis of one composite sample can lead to an incomplete interpretation of the factors that influence the chemically divergent analytes in rainwater during extreme weather events.

  17. Assessment of kidney stone and prevalence of its chemical compositions.

    Science.gov (United States)

    Pandeya, A; Prajapati, R; Panta, P; Regmi, A

    2010-09-01

    Kidney stone analysis is the test done on the stone which cause problems when they block the flow of urine through or out of the kidneys. The stones cause severe pain and are also associated with morbidity and renal damage. There is also no clear understanding on the relative metabolic composition of renal calculi. Hence, the study is aimed to find out the chemical composition of it which can guide treatment and give information that may prevent more stones from forming. The study was carried out on the stones that had been sent to the department of Biochemistry (n = 99; M = 61; F = 38; Mean age: 33.6 +/- 14.4 years) Approximately 98.9% of stones were composed of oxalate, 95.9% of Calcium, 85.8% of phosphate, 62.6% of Urate, 46.4% of Ammonium and very few percentages of Carbonate.

  18. Chemical composition of lipophilic extractives from grey alder (Alnus incana

    Directory of Open Access Journals (Sweden)

    Oskars Bikovens

    2013-02-01

    Full Text Available The chemical composition of the lipophilic extractives in the hexane extracts from grey alder bark, knotwood, and cones has been investigated by gas chromatography and gas chromatography-mass spectrometry. The efficiency of two extraction methods was compared. The highest amount of lipophilic extractives (about 9% of o.d. material was observed in grey alder cone, while the lowest (about 3% was found in knotwood. The three different morphological parts of alder showed significant differences not only in the content but also in composition of extractives, namely fatty acids, triglycerides, and triterpenes. The main identified compounds were triterpenoids (lupen-3-one, lupeol, betulone, betulinol, and betulinic acid in bark, and triglycerides in cones. The major group in knotwood was free fatty acids (mainly linoleic acid, 18:2.

  19. Chemical composition and health effects of Tartary buckwheat.

    Science.gov (United States)

    Zhu, Fan

    2016-07-15

    Tartary buckwheat (Fagopyrum tataricum) contains a range of nutrients including bioactive carbohydrates and proteins, polyphenols, phytosterols, vitamins, carotenoids, and minerals. The unique composition of Tartary buckwheat contributes to their various health benefits such as anti-oxidative, anti-cancer, anti-hypertension, anti-diabetic, cholesterol-lowering, and cognition-improving. Compared with the more widely cultivated and utilised common buckwheat (F. esculentum), Tartary buckwheat tends to contain higher amounts of certain bioactive components such as rutin, therefore, showing higher efficiency in preventing/treating various disorders. This review summarises the current knowledge of the chemical composition of Tartary buckwheat, and their bio-functions as studied by both in vitro and in vivo models. Tartary buckwheat can be further developed as a sustainable crop for functional food production to improve human health.

  20. Space Weathering Effects in Lunar Soils: The Roles of Surface Exposure Time and Bulk Chemical Composition

    Science.gov (United States)

    Zhang, Shouliang; Keller, Lindsay P.

    2011-01-01

    Space weathering effects on lunar soil grains result from both radiation-damaged and deposited layers on grain surfaces. Typically, solar wind irradiation forms an amorphous layer on regolith silicate grains, and induces the formation of surficial metallic Fe in Fe-bearing minerals [1,2]. Impacts into the lunar regolith generate high temperature melts and vapor. The vapor component is largely deposited on the surfaces of lunar soil grains [3] as is a fraction of the melt [4, this work]. Both the vapor-deposits and the deposited melt typically contain nanophase Fe metal particles (npFe0) as abundant inclusions. The development of these rims and the abundance of the npFe0 in lunar regolith, and thus the optical properties, vary with the soil mineralogy and the length of time the soil grains have been exposed to space weathering effects [5]. In this study, we used the density of solar flare particle tracks in soil grains to estimate exposure times for individual grains and then perform nanometer-scale characterization of the rims using transmission electron microscopy (TEM). The work involved study of lunar soil samples with different mineralogy (mare vs. highland) and different exposure times (mature vs. immature).

  1. Analysis of chemical composition of high viscous oils

    Directory of Open Access Journals (Sweden)

    Irina Germanovna Yashchenko

    2014-07-01

    Full Text Available The spatial distribution of viscous oils which are considered as an important reserve for oil-production in future were studied on base of information from global database on oil physical and chemical properties. Changes in chemical composition of viscous oils in different basins and continents were analyzed as well. It is shown, on average, viscous oils are sulfur-bearing, low paraffin, highly resinous oils with an average content of asphaltenes and low content of the fraction boiling at 200 C. Study results of viscous oils peculiarities of Canada, Russia and Venezuela are given. The analysis results can be used to determine the optimal layouts and conditions of oil transportation, to improve the search methods of geochemical exploration, and to solve other problems in the oil chemistry.

  2. Nepheline structural and chemical dependence on melt composition

    Energy Technology Data Exchange (ETDEWEB)

    Marcial, José; Crum, Jarrod; Neill, Owen; McCloy, John

    2016-02-01

    Nepheline crystallizes upon slow-cooling in some melts concentrated in Na2O and Al2O3, which can result in a residual glass phase of low chemical durability. Nepheline can incorporate many components often found in high-level waste radioactive borosilicate glass, including glass network ions (e.g., Si, Al, Fe), alkali metals (e.g., Cs, K, Na, and possibly Li), alkaline-earth metals (e.g., Ba, Sr, Ca, Mg), and transition metals (e.g., Mn, and possibly Cr, Zn, Ni). When crystallized from melts of different compositions, nepheline chemistry varies as a function of starting glass composition. Five simulated high level nuclear waste borosilicate glasses shown to crystallize large fractions of nepheline on slow cooling, were selected for study. These melts constituted a range of Al2O3, B2O3, CaO, Na2O, K2O, Fe2O3, and SiO2 compositions. Compositional analyses of nepheline crystals in glass by electron probe micro-analysis (EPMA) indicate that boron is unlikely to be present in any significant concentration, if at all, in nepheline. Also, several models are presented for calculating the fraction of vacancies in the nepheline structure.

  3. Chemical composition and fatty acid contents in farmed freshwater prawns

    Directory of Open Access Journals (Sweden)

    Carolina de Gasperi Portella

    2013-08-01

    Full Text Available The objective of this work was to evaluate the chemical composition and fatty acid contents of Amazonian and giant river prawns. After four-month farming, with the same diet for both species, palmitic and stearic acids were the main saturated fatty acids. Oleic acid was the main monounsatured fatty acid, and the eicosapentaenoic and docosahexaenoic acids were the most abundant polyunsaturated acids. Amazonian prawn has higher levels of protein and polyunsaturated fatty acids than those of the giant river prawn, which shows its potential for aquaculture.

  4. Chemical composition and quality of sweet sorghum and maize silages

    OpenAIRE

    Zbigniew PODKÓWKA; Lucyna PODKÓWKA

    2011-01-01

    Sweet sorghum (Sorghum saccharatum) silage, maize (Zea mays) silage, and sorghum and maize (1:1) silage were investigated. The silages were analysed for chemical composition, quality and aerobic stability. Dry matter was the lowest (20.88%) in sorghum silage and the highest (37.45%) in maize silage. In sorghum silage, the concentration of crude ash and crude fibre was higher, and that of crude protein, crude fat and N-free extractives lower compared to maize silage. Neutral detergent fibre an...

  5. Stevia rebaudiana Bertoni - chemical composition and functional properties.

    Science.gov (United States)

    Marcinek, Katarzyna; Krejpcio, Zbigniew

    2015-01-01

    Sweetleaf (Stevia rebaudiana Bertoni), currently investigated by many researchers, has been known and used for more than a thousand years indigenous tribes of South America, who called it "kaa-hee" ("sweet herb"). Thanks to its chemical composition and processability sweetleaf may be an alternative for synthetic sweeteners. Nutritional and health-promoting aspects of Stevia rebaudiana are presently being studied in many research centres. The aim of this study is to present nutritional and health-promoting value of the still-little known sweetleaf.

  6. Stevia rebaudiana Bertoni – chemical composition and functional properties

    Directory of Open Access Journals (Sweden)

    Katarzyna Marcinek

    2015-06-01

    Full Text Available Sweetleaf (Stevia rebaudiana Bertoni, currently investigated by many researchers, has been known and used for more than a thousand years indigenous tribes of South America, who called it “kaa-hee” (“sweet herb”. Thanks to its chemical composition and processability sweetleaf may be an alternative for synthetic sweeteners. Nutritional and health-promoting aspects of Stevia rebaudiana are presently being studied in many research centres. The aim of this study is to present nutritional and health-promoting value of the still-little known sweetleaf.

  7. Public Health Risk Conditioned by Chemical Composition of Ground Water

    Science.gov (United States)

    Yankovich, E.; Osipova, N.; Yankovich, K.; Matveenko, I.

    2016-03-01

    The article studies the public health potential risk originated from water consumption and estimated on the basis of the groundwater chemical composition. We have processed the results of chemical groundwater analysis in different aquifers of Tomsk district (Tomsk Oblast, Russia). More than 8400 samples of chemical groundwater analyses were taken during long-term observation period. Human health risk assessment of exposure to contaminants in drinking water was performed in accordance with the risk assessment guidance for public health concerning chemical pollution of the environment (Russian reference number: 2.1.10.1920-04-M, 2004). Identified potential risks were estimated for consuming water of each aquifer. The comparative analysis of water quality of different aquifers was performed on the basis of the risk coefficient of the total non-carcinogenic effects. The non-carcinogenic risk for the health of the Tomsk district population due to groundwater consumption without prior sanitary treatment was admitted acceptable. A rather similar picture is observed for all aquifers, although deeper aquifers show lower hazard coefficients.

  8. The effect of different insertion techniques on the depth of cure and vickers surface micro-hardness of two bulk-fill resin composite materials

    Science.gov (United States)

    El-Hoshy, Ahmed-Zohair; Abou-Elenein, Karim

    2017-01-01

    Background The aim of this study was to evaluate the Vickers surface micro-hardness and the depth of cure of two bulk-fill resin composites and one incremental-fill resin composite. Material and Methods Two Bulk-fill dental resin composites (X-tra Fil, Voco; Sonic-FillTM 2, Kerr Corporation) and an incremental-fill dental resin composite (Filtek™ Z250 XT, 3M ESPE) were used. Sixty cylindrical specimens of 4 mm thickness were prepared using split Teflon moulds. Specimens were divided into six groups (n=10) according to the type of the material used and according to the insertion technique applied (bulk or incremental). Prepared specimens were stored dry in complete darkness at 37°C for 24 hours. All specimens were tested for their Vickers surface micro-hardness, on their top and bottom surfaces. The depth of cure of the tested specimens was assessed by calculating the hardness ratio for each specimen. The Vickers surface micro-hardness and depth of cure data were analyzed for normality using Kolmogorov-Smirnov and Shapiro-Wilk tests. Independent sample-t test was used to compare between two groups while One-way ANOVA was used to compare between more than two groups. Results Significant difference in the Vickers surface micro-hardness and depth of cure values was demonstrated among the tested materials (Pcure values (bottom/top hardness ratio) respectively while Z250 XT recorded 0.776±0.141. Conclusions X-tra Fil showed highest Vickers surface micro-hardness values on both top and bottom surfaces, whether inserted in increments or bulk. Both bulk-fill resin composites showed higher depth of cure for both insertion techniques. Key words:Depth of cure, Vickers surface micro-hardness, bulk-fill resin composite, insertion techniques. PMID:28210447

  9. The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage.

    Science.gov (United States)

    Zhang, Qiang; Huang, Jia-Qi; Qian, Wei-Zhong; Zhang, Ying-Ying; Wei, Fei

    2013-04-22

    The innovation on the low dimensional nanomaterials brings the rapid growth of nano community. Developing the controllable production and commercial applications of nanomaterials for sustainable society is highly concerned. Herein, carbon nanotubes (CNTs) with sp(2) carbon bonding, excellent mechanical, electrical, thermal, as well as transport properties are selected as model nanomaterials to demonstrate the road of nanomaterials towards industry. The engineering principles of the mass production and recent progress in the area of CNT purification and dispersion are described, as well as its bulk application for nanocomposites and energy storage. The environmental, health, and safety considerations of CNTs, and recent progress in CNT commercialization are also included. With the effort from the CNT industry during the past 10 years, the price of multi-walled CNTs have decreased from 45 000 to 100 $ kg(-1) and the productivity increased to several hundred tons per year for commercial applications in Li ion battery and nanocomposites. When the prices of CNTs decrease to 10 $ kg(-1) , their applications as composites and conductive fillers at a million ton scale can be anticipated, replacing conventional carbon black fillers. Compared with traditional bulk chemicals, the controllable synthesis and applications of CNTs on a million ton scale are still far from being achieved due to the challenges in production, purification, dispersion, and commercial application. The basic knowledge of growth mechanisms, efficient and controllable routes for CNT production, the environmental and safety issues, and the commercialization models are still inadequate. The gap between the basic scientific research and industrial development should be bridged by multidisciplinary research for the rapid growth of CNT nano-industry.

  10. The atomic structure and chemical composition of HfOx (x < 2) films prepared by ion-beam sputtering deposition

    Science.gov (United States)

    Aliev, V. S.; Gerasimova, A. K.; Kruchinin, V. N.; Gritsenko, V. A.; Prosvirin, I. P.; Badmaeva, I. A.

    2016-08-01

    Non-stoichiometric HfOx films of different chemical composition (x partial pressure in a chamber. An effect of chemical composition on the atomic structure of the films was studied by reflection high-energy electron diffraction, x-ray photoelectron spectroscopy and field emission scanning electron microscopy methods. The films were found to be amorphous, consisting only of three components: Hf-metal clusters, Hf4O7 suboxide and stoichiometric HfO2. The relative concentration of these components varies with changing x. The surface of the films contains the increased oxygen content compared to the bulk. It was found that the Hf4O7 suboxide concentration is maximal at x = 1.8. The concept of hafnium oxide film growth by the IBSD method is proposed to explain the lack of suboxides variety in the films and the instability of HfO2, when annealed at high temperature.

  11. "Chemical" composition of the Quark-Gluon Plasma in relativistic heavy-ion collisions

    CERN Document Server

    Scardina, F; Plumari, S; Greco, V

    2012-01-01

    We study the evolution of the quark-gluon composition of the plasma created in ultra-Relativistic Heavy Ion Collisions (uRHIC's) employing a partonic transport theory that includes both elastic and inelastic collisions plus a mean fields dynamics associated to the widely used quasi-particle model. The latter, able to describe lattice QCD thermodynamics, implies a "chemical" equilibrium ratio between quarks and gluons strongly increasing as $T\\rightarrow T_c$, the phase transition temperature. Accordingly we see in realistic simulations of uRHIC's a rapid evolution from a gluon dominated initial state to a quark dominated plasma close to $T_c$. The quark to gluon ratio can be modified by about a factor of $\\sim 20$ in the bulk of the system and appears to be large also in the high $p_T$ region. We discuss how this aspect, often overflown, can be essential for a quantitative study of several key issues in the QGP physics: shear viscosity, jet quenching, quarkonia suppression. Furthemore a bulk plasma made by mo...

  12. Chemical composition and larvicidal activity of Rollinia leptopetala (Annonaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Feitosa, Edinilza M.A.; Arriaga, Angela M.C.; Lemos, Telma L.G.; Oliveira, M. Conceicao F. de; Vasnconcelos, Jackson Nunes e; Lima, Jefferson Q.; Malcher, Grazielle T. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: angelamcarriaga@yahoo.com.br; Santiago, Gilvandete M.P. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Farmacia; Nascimento, Ronaldo F. do [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Analitica e Fisico-Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Setor de Quimica de Produtos Naturais. Lab. de Ciencias Quimicas

    2009-07-01

    The aim of present study was to describe the chemical composition of the essential oils from the leaf and stem of Rollinia leptopetala R. E. Fries (Annonaceae) and to evaluate the larvicidal activities of these essential oils, of the methanol extract from roots of this plant and of the oxoaporphine alkaloid, liriodenine (1) against the third-instar of Aedes aegypti larvae. The methanol extract from the roots showed larvicidal activity with LC{sub 50} 64.6 {+-} 1.5 ppm. Higher activity was observed for the isolated alkaloid liriodenine (1), LC{sub 50} 3.6 {+-} 0.4 ppm. The essential oils from the leaves and stems, also exhibited larvicidal activity with LC{sub 50} 104.7 {+-} 0.2 and 34.7 {+-} 0.3 ppm, respectively. These results suggest R. leptopetala as a source of natural larvicidal compounds. This is the first report about the chemical composition and larvicidal activity of the leaf and stem essential oils of R. leptopetala. (author)

  13. Chemical Composition of the Essential Oil from Chaerophyllum temulum (Apiaceae).

    Science.gov (United States)

    Stamenković, Jelena G; Stojanović, Gordana S; Radojković, Ivana R; Petrović, Goran M; Zlatković, Bojan K

    2015-08-01

    The present study reports the chemical composition on the essential oil obtained from fresh roots, stems, inflorescences and fruits of Chaerophyllum temulum. In all samples, except the roots, the most dominant components were sesquiterpene hydrocarbons. (Z)-Falcarinol was the principal constituent of the root essential oils (61.7% at the flowering stage and 62.3% at the fruiting stage). The blossom oil was dominated by (Z,E)-α-famesene (23.4%), (E)-β-farnesene (9.0%) and germacrene D-4-ol (9%), whereas the oil from the fruit had germacrene D-4-ol (27.6%) as its main compound, accompanied by (Z,E)-α-famesene (13.4%). Germacrene D was the most abundant component of the stem essential oil (38.4% at the flowering stage and 32.5% at the fruiting stage). The obtained results show that the qualitative composition of the oil depends on the part of the plant which is analyzed, while the quantitative composition of the main components depends on the growing stage of the plant.

  14. Chemical composition of the circumstellar disk around AB Aurigae

    CERN Document Server

    Pacheco-Vázquez, S; Agúndez, M; Pinte, C; Alonso-Albi, T; Neri, R; Cernicharo, J; Goicoechea, J R; Berné, O; Wiesenfeld, L; Bachiller, R; Lefloch, B

    2015-01-01

    Aims. Our goal is to determine the molecular composition of the circumstellar disk around AB Aurigae (hereafter, AB Aur). AB Aur is a prototypical Herbig Ae star and the understanding of its disk chemistry is of paramount importance to understand the chemical evolution of the gas in warm disks. Methods. We used the IRAM 30-m telescope to perform a sensitive search for molecular lines in AB Aur as part of the IRAM Large program ASAI (A Chemical Survey of Sun-like Star-forming Regions). These data were complemented with interferometric observations of the HCO+ 1-0 and C17O 1-0 lines using the IRAM Plateau de Bure Interferometer (PdBI). Single-dish and interferometric data were used to constrain chemical models. Results. Throughout the survey, several lines of CO and its isotopologues, HCO+, H2CO, HCN, CN and CS, were detected. In addition, we detected the SO 54-33 and 56-45 lines, confirming the previous tentative detection. Comparing to other T Tauri's and Herbig Ae disks, AB Aur presents low HCN 3-2/HCO+ 3-2 ...

  15. Structural, chemical, and thermoelectric properties of Bi{sub 2}Te{sub 3} Peltier materials. Bulk, thin films, and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Peranio, Nicola

    2008-07-01

    In this work, the nature of the natural nanostructure (nns) was analysed and the correlations to the transport coefficients, particularly the lattice thermal conductivity, is discussed. Experimental methods are presented for the first time, yielding an accurate quantitative analysis of the chemical composition and of stress fields in Bi{sub 2}Te{sub 3} and in compounds with similar structural and chemical microstructures. This work can be subdivided as follows: (I) N-type Bi{sub 2}(Te{sub 0.91}Se{sub 0.09}){sub 3} and p-type (Bi{sub 0.26}Sb{sub 0.74}){sub 1.98}(Te{sub 0.99}Se{sub 0.01}){sub 3.02} bulk materials synthesised by the Bridgman technique. (II) Bi{sub 2}Te{sub 3} thin films and Bi{sub 2}Te{sub 3}/Bi{sub 2}(Te{sub 0.88}Se{sub 0.12}){sub 3} superlattices epitaxially grown by molecular beam epitaxy (MBE) on BaF{sub 2} substrates with periods of {delta}-12 nm at the Fraunhofer-Institut fuer Physikalische Messtechnik (IPM). (III) Experimental methods, i.e., TEM specimen preparation, high-accuracy quantitative chemical analysis by EDX in the TEM, and image simulations of dislocations and the nns according to the two-beam dynamical diffraction theory. The nns was analysed in detail by stereomicroscopy and by image simulation and was found to be a pure sinusoidal displacement field with (i) a displacement vector parallel to <5,-5,1> and an amplitude of about 10 pm and (ii) a wave vector parallel to {l_brace}1,0,10{r_brace} and a wavelength of 10 nm. The results obtained here showed a significant amount of stress in the samples, induced by the nns which was still not noticed and identified. Both kinds of nanostructures, artificial (ans) and natural (nns) nanostructures, yielded in thermoelectric materials a low lattice thermal conductivity which was beneficial for the thermoelectric figure of merit ZT. (orig.)

  16. Effect of chemical composition of sheep’s milk on the chemical composition of Livno and Travnik cheese

    Directory of Open Access Journals (Sweden)

    Amina Hrković

    2011-06-01

    Full Text Available Bosnia and Herzegovina has a centuries-old tradition in the family dairy products, among which 2-3 types of cheeses dominate. Well known dairy products in BiH are indigenous Livno and Travnik cheese, a group of cheeses produced from thermally untreated raw sheep milk. The aim of this study was assessing the effects of certain parameters on the chemical composition of the milk composition of indigenous cheeses - Livno and Travnik. Two manufacturers within two different locations (Livno and Travnik during summer grazing of sheep, were selected for this research. The study included 117sheep (Livno 57 sheep, Travnik 60 sheep. The cheese milk was used for determination of fat, protein and lactose content. Six samples were taken from obtained cheeses: 3 samples of Livno and 3samples of Travnik cheese, which means one for each sampling period. In cheese dry matter content, water, fat, fat in dry matter and acidity (pH were determined, and then correlation between the constituents of milk and cheese ingredients content was set. The most common causes of such phenomenon is non-standard production, storage and ripening. On Travnik area, the content of fat and milk protein varied according to sampling period, which can be attributed to the already mentioned diet and stage of lactation. At the same time the protein content decreased mainly by the end of lactating period. Lactose content has proven to be the most stable parameter of milk. In both investigated cheese samples slightly higher water content was found compared to normal values for these two local cheese, while the proportion of fat and dry matter varied within the sampling period. Variation of certain parameters of the chemical composition of investigated samples of Livno and Travnik cheese, as well as their correlation with parameters of milk is primarily a consequence of changing the chemical composition of milk as the basic raw materials and/or significant variations in technology that could

  17. An estimate of the Bulk Silicate Earth potassium isotopic composition based on MC-ICPMS measurements of basalts

    Science.gov (United States)

    Wang (王昆), Kun; Jacobsen, Stein B.

    2016-04-01

    We report a method for high-precision potassium isotope measurements that improves by an order of magnitude the precision compared to previous methods. The purification of K is achieved through ion exchange chromatography on AG50W-X8 cation exchange resins. The 41K/39K ratios are analyzed with a GV Instruments IsoProbe P Multiple-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS) equipped with a hexapole collision gas cell. With this technique, the argon-hydride interferences as well as the large 40Ar+ peak from the Ar-plasma are eliminated. The 41K/39K ratios can thus be obtained with a precision of 0.05 per mil. The precision and accuracy of this method is validated with gravimetrically determined 41K or 39K enriched standards. New precise K isotopic compositions of three terrestrial basalts (BCR-2, BHVO-1 and a MORB) are also reported. These basalts have indistinguishable K isotopic compositions and are used to define a reference value of -0.479 ± 0.027 per mil for the 41K/39K ratio of the Bulk Silicate Earth (BSE) relative to a Merck Suprapur potassium nitrate standard. Seawater and sylvites from evaporite deposits have similar 41K/39K ratios, but higher by up to 0.227 per mil compared to the Merck Suprapur standard. Other commercially available K-salts/solutions also have 41K/39K ratios similar to the Merck standard, while a SPEX K-chloride was higher by 0.384 per mil. This shows that K isotope variations will be useful as a tracer in low-temperature geochemistry processes.

  18. Laboratory evaluation of several nanofilled dental resin composites: mechanical and chemical properties

    OpenAIRE

    Scotti, Nicola

    2015-01-01

    The present thesis focused on nanofilled dental resins. The first year activity focused on depth of cure analysis of nanofilled composites. The second year activity focused on hardness, depth of cure and shrinkage stress analysis of bulk fill resin composites. The third year focused on degree of conversion and hardness of nanofilled resin cements. 2013/2014

  19. Direct writing of semiconducting polythiophene and fullerene derivatives composite from bulk heterojunction solar cell by inkjet printing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Kwan, E-mail: jklee@hoseo.edu [Department of Green Energy Engineering and Research Center for Convergence Technology, Hoseo University, Chungnam, 336-795 (Korea, Republic of); Lee, Ue Jin; Kim, Myung-Ki; Lee, Sang Ho; Kang, Kyung-Tae [Fusion Technology R and D Division, Korea Institute of Industrial Technology, Gyeonggi, 426-173 (Korea, Republic of)

    2011-06-01

    The direct writing approach of poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) composite from bulk-heterojunction (BHJ) solar cell was efficiently addressed by inkjet printing technology using conventional chlorobenzene ink solution. The structure of inkjet-printed P3TH:PCBM BHJ film was fabricated by the repetitive direct writing of new line overlapped partially on former line. The best structure of P3HT:PCBM film for BHJ solar cell was observed from inkjet printing condition of around 50% of droplet overlaps with 2 wt.% BHJ ink at 25 deg. C of substrate temperature. The maximum power conversion efficiency reached 2.83% with an open circuit voltage of 0.62 V, a short circuit current density of 8.60 mA/cm{sup 2}, and a fill factor of 0.53 under air mass 1.5 G irradiation (100 mW/cm{sup 2}).

  20. The Influence of Irradiation Time and Layer Thickness on Elution of Triethylene Glycol Dimethacrylate from SDR® Bulk-Fill Composite

    Directory of Open Access Journals (Sweden)

    Ryta Łagocka

    2016-01-01

    Full Text Available Objective. This study aimed to evaluate triethylene glycol dimethacrylate (TEGDMA elution from SDR bulk-fill composite. Methods. Three groups of samples were prepared, including samples polymerized in a 4 mm layer for 20 s, in a 4 mm layer for 40 s, and in a 2 mm layer for 20 s. Elution of TEGDMA into 100% ethanol, a 75% ethanol/water solution, and distilled water was studied. The TEGDMA concentration was measured using HPLC. Results. The TEGDMA concentration decreased in the following order: 100% ethanol > 75% ethanol > distilled water. Doubling the energy delivered to the 4 mm thick sample caused decrease (p<0.05 in TEGDMA elution to distilled water. In ethanol solutions, the energy increase had no influence on TEGDMA elution. Decreasing the sample thickness resulted in decrease (p<0.05 in TEGDMA elution for all the solutions. Conclusions. The concentration of eluted TEGDMA and the elution time were both strongly affected by the hydrophobicity of the solvent. Doubling the energy delivered to the 4 mm thick sample did not decrease the elution of TEGDMA but did decrease the amount of the monomer available to less aggressive solvents. Elution of TEGDMA was also correlated with the exposed sample surface area. Clinical Relevance. Decreasing the SDR layer thickness decreases TEGDMA elution.

  1. Antimicrobial activity of Iranian propolis and its chemical composition

    Directory of Open Access Journals (Sweden)

    Yaghoubi M.J.

    2007-04-01

    Full Text Available The objective of this study was to investigate the antimicrobial activity of ethanol extract of Iranian propolis on some microorganisms using disc diffusion method. The chemical composition of the propolis was also investigated using thin layer chromatography and spectrophotometric methods. Ethanol extract of propolis showed activity only against Gram-positives and fungi, whereas no activity was observed against Gram-negatives. Thin layer chromatography screening revealed the presence of pinocembrine, caffeic acid, kaempferol, phenethyl caffeate, chrysin, and galangin in Iranian propolis. The total flavonoid and phenolic contents were 7.3% and 36%, respectively, which suggests that the strong antimicrobial activity of Iranian propolis may be due to high levels of phenolic and flavonoid compounds.

  2. Chemical vapor infiltration of TiB{sub 2} composites

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    This program is designed to develop a Hall-Heroult aluminum smelting cathode with substantially improved properties. The carbon cathodes in current use require significant anode-to-cathode spacing in order to prevent shorting, causing significant electrical inefficiencies. This is due to the non-wettability of carbon by aluminum which causes instability in the cathodic aluminum pad. It is suggested that a fiber reinforced-TiB{sub 2} matrix composite would have the requisite wettability, strength, strain-to-failure, cost, and lifetime to solve this problem. The approach selected to fabricate such a cathode material is chemical vapor infiltration (CVI). This program is designed to evaluate potential fiber reinforcements, fabricate test specimens, and test the materials in a static bath and lab-scale Hall cell.

  3. Thymus vulgaris essential oil: chemical composition and antimicrobial activity.

    Science.gov (United States)

    Borugă, O; Jianu, C; Mişcă, C; Goleţ, I; Gruia, A T; Horhat, F G

    2014-01-01

    The study was designed to determine the chemical composition and antimicrobial properties of the essential oil of Thymus vulgaris cultivated in Romania. The essential oil was isolated in a yield of 1.25% by steam distillation from the aerial part of the plant and subsequently analyzed by GC-MS. The major components were p-cymene (8.41%), γ-terpinene (30.90%) and thymol (47.59%). Its antimicrobial activity was evaluated on 7 common food-related bacteria and fungus by using the disk diffusion method. The results demonstrate that the Thymus vulgaris essential oil tested possesses strong antimicrobial properties, and may in the future represent a new source of natural antiseptics with applications in the pharmaceutical and food industry.

  4. Chemical composition of Chenopodium botrys L. (Chenopodiaceae essential oil

    Directory of Open Access Journals (Sweden)

    Ljubica Adji Andov

    2014-08-01

    Full Text Available Chemical composition of essential oil isolated from aerial parts of Chenopodium botrys L. (Chenopodiaceae collected from five different locations in the Republic of Macedonia was analysed by GC/FID/MS. Seventy five compounds were identified representing 90.02- 91.24% of the oil. The analysis has shown that the oils were rich in sesquiterpenе components (83.18-87.54% comprising elemol acetat (9.88%-21.98%, seline-11-en-4α-ol (9.81%-13.5%, selina-3,11-dien-6α-ol (6.42%-9.71% and elemol (5.57%-9.49% as major oxygen containing sesquiterpenes, followed by lower content of α-eudesmol acetat (3.24%-4.11%, α-chenopodiol (2.42%-5.43%, botrydiol (1.87-5.73% and α-chenopodiol-6-acetat (1.9%-4.73%.

  5. Aligned Carbon Nanotube Reinforced Silicon Carbide Composites by Chemical Vapor Infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhan Jun [University of Georgia, Athens, GA; Yang, Ying Chao [University of South Carolina, Columbia; Li, Kai Yuan [University of Georgia, Athens, GA; Tao, Xin Yong [University of South Carolina, Columbia; Eres, Gyula [ORNL; Howe, Jane Y [ORNL; Zhang, Li Tong [Northwestern Polytechnical University, Xi' an, China; Li, Xiao Dong [University of South Carolina, Columbia; Pan, Zhengwei [ORNL

    2011-01-01

    Owing to their exceptional stiffness and strength1 4, carbon nanotubes (CNTs) have long been considered to be an ideal reinforcement for light-weight, high-strength, and high-temperature-resistant ceramic matrix composites (CMCs)5 10. However, the research and development in CNT-reinforced CMCs have been greatly hindered due to the challenges related to manufacturing including poor dispersion, damages during dispersion, surface modification, densification and sintering, weak tube/matrix interfaces, and agglomeration of tubes at the matrix grain boundaries5,11. Here we report the fabrication of high-quality aligned CNT/SiC composites by chemical vapor infiltration (CVI), a technique that is being widely used to fabricate commercial continuous-filament CMCs12 15. Using the CVI technique most of the challenges previously encountered in the fabrication of CNT composites were readily overcome. Nanotube pullouts, an important toughening mechanism for CMCs, were consistently observed on all fractured CNT/SiC samples. Indeed, three-point bending tests conducted on individual CNT/SiC nanowires (diameters: 50 200 nm) using an atomic force microscope show that the CNT-reinforced SiC nanowires are about an order of magnitude tougher than the bulk SiC. The tube/matrix interface is so intimate and the SiC matrix is so dense that a ~50-nm-thick SiC coating can effectively protect the inside nanotubes from being oxidized at 1600 C in air. The CVI method may be extended to produce nanotube composites from a variety of matrix

  6. Chemical Composition of Iran's Pistacia atlantica Cold-Pressed Oil

    Directory of Open Access Journals (Sweden)

    M. Saber-Tehrani

    2013-01-01

    Full Text Available The lipid fraction of Pistacia atlantica seeds was extracted for the first time by means of cold-press technique and analyzed for its chemical composition. The fatty acids, sterols, triacylglycerols (TAG, tocopherols, polyphenols, and pigments were identified and their concentrations were determined by means of reversed-phase high-performance liquid chromatography (RP-HPLC and gas chromatography (GC. Because of its high content of unsaturated fatty acids, it might prove to be of value in diets and it may be used as edible cooking or salad oils or for margarine manufacture. Pistacia atlantica seed oil has the unique sterols and tocopherols content providing source of natural antioxidants. The main triacylglycerols were SLL + PLO, SOL + POO, OOLn + PLL, OOO, and SOO. This paper examined the phenolic fraction of Pistacia atlantica seed oil. Moreover, caffeic acid followed by cinnamic acid, pinoresinol, vanillin, p-Coumaric acid, ferulic acid, and o-Coumaric acid was also determined. This paper presents the first investigation of chlorophyll's and carotene's composition in Pistacia atlantica seed oil. Furthermore, pheophytin a was the major component, followed by luteoxanthin, neoxanthin, violaxanthin, lutein, lutein isomers, chlorophyll a, chlorophyll a′, and pheophytin a′ were also determined.

  7. Yield and chemical composition of fractions from fermented shrimp biowaste.

    Science.gov (United States)

    Narayan, Bhaskar; Velappan, Suresh Puthanveetil; Zituji, Sakhare Patiram; Manjabhatta, Sachindra Nakkerike; Gowda, Lalitha Ramakrishna

    2010-01-01

    Chemical composition of chitinous residue and fermentation liquor fractions, obtained from fermented shrimp biowaste, was evaluated in order to explore their potential for further utilization. Lyophilization of the liquor fraction obtained after fermentation resulted in a powder rich in both protein (30%) and carotenoids (217.18 +/- 2.89 microg/g). The yield of chitinous residue was 44% (w/w) whereas the yield of lyophilized powder was >25% (w/v). About 69% of total carotenoids were recovered by fermentation. Fermentation resulted in the removal of both protein as well as ash content from the shrimp biowaste, as indicated by approximately 92% deproteination and >76% demineralization, respectively. Post fermentation, the residue had a chitin content of >90%. The lyophilized liquor fraction had all the essential amino acids (except threonine) in quantities comparable to Food & Agriculture Organization/World Health Organization reference protein. The composition of fermentation liquor is indicative of its potential for application as an amino acid supplement in aquaculture feed formulations.

  8. Chemical Composition and Antioxidant Capacity of Three Plum Cultivars

    Directory of Open Access Journals (Sweden)

    Sandra Voća

    2009-12-01

    Full Text Available The aim of this study was to determine the chemical composition and antioxidants capacity of three plum cultivars, namely ‘Top’, ‘Elena’ and ‘Bistrica’. Fruits were harvested and following parameters were determined: dry matter, total acids (TA, total soluble solids (TSS, pH, vitamin C, total phenols, nonflavonoids and antioxidant capacity. Differences between cultivars for most of the chemical parameters were observed. The cultivar ‘Bistrica’ showed higher values of dry matter, TSS, vitamin C and pH value, while ‘Top’ had higher total acids value and lowest TSS, dry matter, vitamin C and pH. Total phenolics content varied from 157.70 mg in ‘Elena’ to 344.10 mg in ‘Bistrica’, expressed as gallic acid equivalents (GAE, on fresh weight basis. ‘Top’ contains the highest amount of non-flavonoids among cultivars studied. Therefore, ‘Bistrica’ and ‘Top’ show the highest antioxidant capacity, as well. There were significant differences between total phenolics and non-flavonoids content between ‘Elena’ and other two cultivars, while antioxidant capacity showed no significant difference (p ≤ 0.05. Total antioxidant capacity of fruits ranged from 3.10 mmol/kg in ‘Elena’ to 3.17 mmol/kg in ‘Top’ and ‘Bistrica’.

  9. Chemical Composition Measurements of LAWA44 Glass Samples

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-15

    The U.S. Department of Energy (DOE) Office of River Protection (ORP) has requested that the Savannah River National Laboratory (SRNL) provide expert evaluation and experimental work in support of the River Protection Project vitrification technology development. DOE is building the Hanford Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is temporarily stored in 177 underground tanks. The low-activity waste (LAW) fraction will be partitioned from the high-level waste (HLW). Both the LAW and HLW will then be vitrified into borosilicate glass using Joule-heated ceramic melters. Efforts are being made to increase the loading of Hanford tank wastes in the glass while conforming to processing requirements and product quality regulations. DOE-ORP has requested that SRNL support the advancement of glass formulations and process control strategies in key technical areas, as defined in the Task Technical and Quality Assurance Plan (TTQAP). One of these areas is enhancing waste glass composition/property models and broadening the compositional regions over which those models are applicable. In this report, SRNL provides chemical analysis results for several samples of a simulated LAW glass, designated LAWA44, provided by Pacific Northwest National Laboratory (PNNL) as part of an ongoing development task. The objective of the PNNL task is to determine the durability of this glass using EPA Method 1313, which will include test participants at Vanderbilt University and the University of Sheffield. A report on the compositions of similar glasses (referred to as the EPA-series glasses) was issued in March 2016.

  10. Growth and chemical analysis of bulk Nd 2- xCe xCuO y single crystals

    Science.gov (United States)

    Zhigunov, D. I.; Shiryaev, S. V.; Kurnevich, L. A.; Kalanda, N. A.; Kurochkin, L. A.; Barilo, S. N.; Vashuk, V. V.; Smakhtin, L. A.

    1999-03-01

    Single crystals of Nd 2- xCe xCuO y (0< x<0.17) from a family of the electron-type superconductors have been grown using platinum crucibles by the top seeded solution growth technique. The structural quality of the crystals was examined by X-ray diffraction. The FWHM of the Bragg reflections for the best samples varies from 8 to 20 angular seconds. Full neutron activation analysis was carried out to determine the chemical composition of the as-grown crystals. Small cation stoichiometry deviations from ideal (NdCe)/Cu ratio are found as well as Pt substitution on the copper sublattice at a level up to 2 at% exists depending on growth conditions. The results of thermogravimetric measurements and further annealing of samples show that the problem of an oxygen reduction of large Nd 2- xCe xCuO y crystals is closely connected with inhomogeneity of anion distribution in the lattice possibly caused by non-optimal parameters for the reduction process and the level of impurities contamination. A three step reduction process which produces superconductivity with Tc˜19 K in single crystals thicker than 1 mm has been developed.

  11. A New Mathematical Formulation of the Governing Equations for the Chemical Compositional Simulation

    CERN Document Server

    Bekbauov, Bakhbergen E; Berdyshev, Abdumauvlen

    2015-01-01

    It is the purpose of this work to develop new approach for chemical compositional reservoir simulation, which may be regarded as a sequential method. The development process can be roughly divided into the following two stages: (1) development of a new mathematical formulation for the sequential chemical compositional reservoir simulation, (2) implementation of a sequential solution approach for chemical compositional reservoir simulation based on the formulation described in this paper. This paper addresses the first stage of the development process by presenting a new mathematical formulation of the chemical compositional reservoir flow equations for the sequential simulation. The newly developed mathematical formulation is extended from the model formulation used in existing chemical compositional simulators. During the model development process, it was discovered that the currently used chemical compositional model estimates the adsorption effect on the transport of a component reasonably well but it viol...

  12. Medium and long-term opportunities and risk of the biotechnological production of bulk chemicals from renewable resources - The potential of white biotechnology

    OpenAIRE

    Patel, M.; Crank, M.; Dornberg, V.; Hermann, B.; Roes, L.; Hüsing, B; Overbeek, van, F.; Terragni, F.; Recchia, E.

    2006-01-01

    This report studies processes which convert biomass-derived feedstocks (e.g. fermentable sugar) into organic bulk chemicals (e.g. lactic acid, acetic acid, butanol and ethanol) by means of white biotechnology (e.g. fermentation or enzymatic conversion), either with or without genetically modified organisms. Apart from white biotechnology, also conventional chemistry is involved in all processes. All white biotechnology products are compared to functionally equivalent petrochemical products. T...

  13. Chemical Characterisation of Bulk and Melt-spun Ribbons of NiMnIn Alloy using Inductively Coupled Plasma Optical Emission Spectrometry

    Directory of Open Access Journals (Sweden)

    S.S. Kalyan Kamal

    2011-05-01

    Full Text Available Method development for the analysis of NiMnIn, a new magnetocaloric effect (MCE material using inductively-coupled plasma optical emission spectrometry (ICPOES is discussed. Spectral interference of Ni and Mn on the analysis of In were studied. The process of method validation was carried out using various analytical techniques like conventional wet chemical techniques and instrumental techniques such as atomic absorption spectrometry. All the techniques show a close agreement in values, thus this method could be applied for regular analysis of NiMnIn alloys. A comparative chemical analysis of bulk and melt-spun ribbons of this alloy is also discussed.

  14. Chemical composition of olive oils of the cultivar Colombaia

    Directory of Open Access Journals (Sweden)

    Zunin, P.

    2005-12-01

    Full Text Available The chemical composition of monovarietal olive oils from the cultivar Colombaia was studied. Free acidity, peroxide value and UV absorbance attested to the good quality of the analyzed oils. Their fatty acid composition appeared to be quite different from the typical fatty acid profile of olive oils from Liguria but met the limits reported in the EC Regulations for olive oils. On the contrary, the amounts of Δ7-stigmastenol were often higher than the 0.5 % limit set by EC Regulations and total ß-sitosterol was below the minimum 93 % limit. The composition of polar compounds and of the volatile fraction was representative of the peculiar organoleptic character of these oils. Thus, the anomalous sterol composition of the monovarietal oils from the cultivar Colombaia calls for blending with other oils. Moreover, the use of these oils for the production of PDO oils “Riviera Ligure” must also be carefully controlled because it changes their nutritional and sensorial featuresEn este trabajo se ha estudiado la composición química de aceites de oliva mono-varietales de la variedad Colombaia. La acidez libre, el índice de peróxidos y la absorción UV confirmaron la buena calidad de los aceites analizados. Su composición en ácidos grasos resultó bastante diferente del perfil típico de ácidos grasos de los aceites de oliva virgen de la región de Liguria, pero se mantuvo dentro de los límites establecidos por los Reglamentos EC para aceites de oliva. Por otro lado, las cantidades de Δ7-estigmastenol resultaron normalmente superiores al 0.5 % del límite fijado por los Reglamentos EC y el ß-sitosterol total fue inferior al 93 % del límite mínimo. La composición en compuestos polares y de la fracción volátil confirmó las características organolépticas peculiares de estos aceites. Por tanto, la composición esterólica anómala de los aceites mono-varietales de la variedad Colombaia hace necesaria una mezcla con otros

  15. Chemical composition of the circumstellar disk around AB Aurigae

    Science.gov (United States)

    Pacheco-Vázquez, S.; Fuente, A.; Agúndez, M.; Pinte, C.; Alonso-Albi, T.; Neri, R.; Cernicharo, J.; Goicoechea, J. R.; Berné, O.; Wiesenfeld, L.; Bachiller, R.; Lefloch, B.

    2015-06-01

    Aims: Our goal is to determine the molecular composition of the circumstellar disk around AB Aurigae (hereafter, AB Aur). AB Aur is a prototypical Herbig Ae star and the understanding of its disk chemistry is paramount for understanding the chemical evolution of the gas in warm disks. Methods: We used the IRAM 30-m telescope to perform a sensitive search for molecular lines in AB Aur as part of the IRAM Large program ASAI (a chemical survey of Sun-like star-forming regions). These data were complemented with interferometric observations of the HCO+ 1→0 and C17O 1→0 lines using the IRAM Plateau de Bure Interferometer (PdBI). Single-dish and interferometric data were used to constrain chemical models. Results: Throughout the survey, several lines of CO and its isotopologues, HCO+, H2CO, HCN, CN, and CS, were detected. In addition, we detected the SO 54→33 and 56→45 lines, confirming the previously tentative detection. Compared to other T Tauri and Herbig Ae disks, AB Aur presents low HCN 3→2/HCO+ 3→2 and CN 2→1/HCN 3→2 line intensity ratios, similar to other transition disks. AB Aur is the only protoplanetary disk detected in SO thus far, and its detection is consistent with interpretation of this disk being younger than those associated with T Tauri stars. Conclusions: We modeled the line profiles using a chemical model and a radiative transfer 3D code. Our model assumes a flared disk in hydrostatic equilibrium. The best agreement with observations was obtained for a disk with a mass of 0.01 M⊙, Rin = 110 AU, Rout = 550 AU, a surface density radial index of 1.5, and an inclination of 27°. The intensities and line profiles were reproduced within a factor of ˜2 for most lines. This agreement is reasonable considering the simplicity of our model that neglects any structure within the disk. However, the HCN 3→2 and CN 2→1 line intensities were predicted to be more intense by a factor of >10. We discuss several scenarios to explain this

  16. The Relationship of Culture Media Composition and Chemical Composition on Spirulina sp for Metal Ion Adsorbent

    Directory of Open Access Journals (Sweden)

    Hilda Zulkifli

    2016-12-01

    Full Text Available The analysis relationship of Spirulina sp medium with chemical composition has been conducted. Chemical analysis was performed using X-Ray Fluorescence analysis. Furthermore, potention of Spirulina sp as adsorbent of metal ions was analyzed using FTIR spectroscopy. The results showed that metals such as Zn, Fe, Mn, Ca, Cu, and Mo were mainly metals in Spirulina sp. These metals were not correlated with cultivated medium of Spirulina sp. Analysis of potention Spirulina sp as metal ions adsorbent showed that Spirulina sp has functional groups –C=O and –OH as ligand. Intercation of metal ions Cu(II and Cr(III with Spirulina sp indicated that metal ions bond to –C=O functional group.

  17. Cuspal deflection and microleakage in premolar teeth restored with bulk-fill flowable resin-based composite base materials

    DEFF Research Database (Denmark)

    Moorthy, A; Hogg, C H; Dowling, A H;

    2012-01-01

    To assess the cuspal deflection and cervical microleakage of standardised Class II cavities incrementally filled with a dimethacrylate RBC or bulk-fill flowable RBC bases.......To assess the cuspal deflection and cervical microleakage of standardised Class II cavities incrementally filled with a dimethacrylate RBC or bulk-fill flowable RBC bases....

  18. Variability in the bulk composition and abundance of dissolved organic matter in the lower Mississippi and Pearl rivers

    Science.gov (United States)

    Duan, Shuiwang; Bianchi, Thomas S.; Shiller, Alan M.; Dria, Karl; Hatcher, Patrick G.; Carman, Kevin R.

    2007-06-01

    In this study, we examined the temporal and spatial variability of dissolved organic matter (DOM) abundance and composition in the lower Mississippi and Pearl rivers and effects of human and natural influences. In particular, we looked at bulk C/N ratio, stable isotopes (δ15N and δ13C) and 13C nuclear magnetic resonance (NMR) spectrometry of high molecular weight (HMW; 0.2 μm to 1 kDa) DOM. Monthly water samples were collected at one station in each river from August 2001 to 2003. Surveys of spatial variability of total dissolved organic carbon (DOC) and nitrogen (DON) were also conducted in June 2003, from 390 km downstream in the Mississippi River and from Jackson to Stennis Space Center in the Pearl River. Higher DOC (336-1170 μM), C/N ratio,% aromaticity, and more depleted δ15N (0.76-2.1‰) were observed in the Pearl than in the lower Mississippi River (223-380 μM, 4.7-11.5‰, respectively). DOC, C/N ratio, δ13C, δ15N, and % aromaticity of Pearl River HMW DOM were correlated with water discharge, which indicated a coupling between local soil inputs and regional precipitation events. Conversely, seasonal variability in the lower Mississippi River was more controlled by spatial variability of a larger integrative signal from the watershed as well as in situ DOM processing. Spatially, very little change occurred in total DOC in the downstream survey of the lower Mississippi River, compared to a decrease of 24% in the Pearl River. Differences in DOM between these two rivers were reflective of the Mississippi River having more extensive river processing of terrestrial DOM, more phytoplankton inputs, and greater anthropogenic perturbation than the Pearl River.

  19. Bulk compositions of metallic Fe-Ni of chondrites: Constraints on fractionation of siderophile and chalcophile elements

    Institute of Scientific and Technical Information of China (English)

    XU Lin; LIN Yangting; WANG Shijie; OUYANG Ziyuan

    2009-01-01

    Bulk compositions of metallic Fe-Ni from two equilibrated ordinary chondrites, Jilin (H5) and Anlong (H5), and two unequilibrated ones, GRV 9919 (L3) and GRV 021603 (H3), were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The CI-, Co-normalized abundances of siderophile and chalcophile elements of metallic Fe-Ni from the unequilibrated ordinary chondrites correlate with 50% condensation temperatures (i.e., volatility) of the elements. The refractory siderophile elements (i.e., platinum group elements, Re), Au, Ni and Co show a flat pattern (1.01(CI Co-normalized), while moderate elements (As, Cu, Ag, Ga, Ge, Zn) decrease with volatility from 0.63(CI (Co-normalized, As) to 0.05(CI (Co-normalized, Zn). Cr and Mn show deficit relative to the trend, probably due to their main partition in silicates and sulfides (nonmagnetic). Metallic Fe-Ni from the equilibrated ordinary chondrites shows similar patterns, except for strong deficit of Cr, Mn, Ag and Zn. It is indicated that these elements were almost all partitioned into silicates and/or sulfides during thermal metamorphism. The similar deficit of Cr, Mn, Ag and Zn was also found in iron meteorites.Our analyses demonstrate similar behaviors of W and Mo as refractory siderophile elements during condensation of the solar nebula, except for slight depletion of Mo in the L3 and H5 chondrites. The Mo-depletion of metallic Fe-Ni from GRV 9919 (L3) relative to GRV 021603 (H3) could be due to a more oxidizing condition of the former than the latter in the solar nebula. In contrast, the Mo-depletion of the metallic Fe-Ni from the H5 chondrites may reflect partition of Mo from metal to silicates and/or sulfides during thermal metamorphism in the asteroidal body.

  20. Ag surface diffusion and out-of-bulk segregation in CrN-Ag nano-composite coatings.

    Science.gov (United States)

    Incerti, L; Rota, A; Ballestrazzi, A; Gualtieri, E; Valeri, S

    2011-10-01

    CrN-Ag nanocomposite coatings are deposited on Si(100) wafers and 20MnCr5 steel disks in a mixed Ar+N2 atmosphere by reactive magnetron sputtering. Structure, composition and morphology were investigated by Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), X-ray Photoemission Spectroscopy (XPS), X-ray Diffraction (XRD) and Focused Ion Beam (FIB) cross sectional analysis. The as deposited film matrix is mainly composed by CrN phase (78%), but a relevant part (28%) is composed by Cr2N. Ag agglomerates in the CrN matrix forming elongated grains 200-400 nm wide and 50-100 nm high, which extends on the top of CrN columns. At the surface Ag aggregates into two different structures: large tetrahedral crystalline clusters, with typical dimension ranging from 200 to 500 nm, and smaller Ag nanoparticles with diameter of 15-25 nm. The annealing in N2 atmosphere up to 500 degrees C does not affect size and distribution of the Ag grains in the sub-surface region, while it induces a size increase of the bigger Ag clusters on the surface, mainly related to Ag surface diffusion and clusters coalescence. Annealing at higher temperature leads to an evident Ag out-of-bulk segregation, generating Ag depleted voids in the near-surface region, and further increasing of the Ag clusters size at the surface. Tribological tests on as deposited CrN-Ag film reveal a coefficient of friction against a steel ball reduced with respect to CrN film, probably related to the presence of Ag which acts as solid lubricant, but the coating is removed after a very short sliding distance. The poor mechanical properties of the realized Ag-based coatings are confirmed by lower hardness and Young modulus values with respect to pure CrN.

  1. Seasonality of new particle formation in Vienna, Austria - Influence of air mass origin and aerosol chemical composition

    Science.gov (United States)

    Wonaschütz, Anna; Demattio, Anselm; Wagner, Robert; Burkart, Julia; Zíková, Naděžda; Vodička, Petr; Ludwig, Wolfgang; Steiner, Gerhard; Schwarz, Jaroslav; Hitzenberger, Regina

    2015-10-01

    The impact of air mass origin and season on aerosol chemical composition and new particle formation and growth events (NPF events) in Vienna, Austria, is investigated using impactor samples from short-term campaigns and two long-term number size distribution datasets. The results suggest that air mass origin is most important for bulk PM concentrations, chemical composition of the coarse fraction (>1.5 μm) and the mass size distribution, and less important for chemical composition of the fine fraction (<1.5 μm). Continental air masses (crustal elements) were distinguished from air masses of marine origin (traces of sea salt). NPF events were most frequent in summer (22% of measurement days), and least frequent in winter (3% of measurement days). They were associated with above-average solar radiation and ozone concentrations, but were largely independent of PM2.5. Air mass origin was a secondary influence on NPF, largely through its association with meteorological conditions. Neither a strong dependence on the PM2.5 loading of the air masses, nor indications of a source area for NPF precursors outside the city were found.

  2. Chemical composition and antioxidant activities of Broussonetia papyrifera fruits.

    Directory of Open Access Journals (Sweden)

    Jie Sun

    Full Text Available Fruits of Broussonetia papyrifera from South China were analyzed for their total chemical composition, and antioxidant activities in ethanol and aqueous extracts. In the fruit of this plant, the crude protein, crude fat and carbohydrates was 7.08%, 3.72% and 64.73% of dry weight, respectively. The crude protein, crude fat and carbohydrates were 15.71%, 20.51% and 36.09% of dry weight, respectively. Fatty acid and amino acid composition of the fruit were analyzed. Unsaturated fatty acid concentration was 70.6% of the total fatty acids. The percentage of the essential amino acids (EAAs was 40.60% of the total amino acids. Furthermore, B. papyrifera fruit are rich in many mineral elements and vitamins. Total phenolic content was assessed using the Folin-Ciocalteau assay, whereas antioxidant activities were assessed by measuring the ability of the two extracts to scavenge DPPH radicals, inhibit peroxidation, and chelate ferric ions. Their reducing power was also assessed. Results indicated that the aqueous extract of B. papyrifera was a more potent reducing agent and radical-scavenger than the ethanol extract. GC-MS analysis of the ethanol extract showed the presence of some acid-containing compounds. The changes in total phenolic content and antioxidant capacity in B. papyrifera from four different regions grown under normal conditions were assessed. The antioxidant activity of different extracts was positively associated with their total phenolic content. These results suggest that the fruit of B. papyrifera could be used in dietary supplement preparations, or as a food additive, for nutritional gain, or to prevent oxidation in food products.

  3. Chemical Composition of Urban Street Sediments and Its Sources

    Institute of Scientific and Technical Information of China (English)

    Cen Kuang; Hou Min; Thomas Neumann; Stefan Norra; Doris Stüben

    2004-01-01

    The distribution and the concentrations of various chemical elements in street sediments were investigated along a rural-urban boundary in Beijing, China. The statistical factor analysis of the data concerned identifies two anthropogenic sources responsible for the contamination of Beijing air. The first source is a steel factory in the western part of Beijing. From this source, Mn, Fe and Ti were emitted into the atmosphere through chimneys and by wind from coal heaps used as the primary energy source for the factory. The second source is a combination of traffic, domestic heating and some small factories in the center of Beijing urban area discharging Cu, Pb, Zn and Sn. Grain-size analyses show that most of the metals in the road dust have higher concentrations in the small grain-size fraction <0.125 mm, which is the severest case because these small particles with larger specific surface area and high heavy metal contents fly up easily and float in the air for a long time. Besides the anthropogenic contamination, such elements as Y, Zr, Nb, Ce and Rb are derived mainly both from natural soils and from the deserts. This is supported by mineral-phase analysis, which shows a clear imprint of materials in road dusts coming from the west China deserts. Our results clearly show that the chemical compositions of the urban road dusts can be used to identify distinctive sources responsible for the contamination mentioned above. The study shows that the chemistry of road dusts is an important monitor to assess the contamination in the urban environment.

  4. Comparison of Push-Out Bond Strength of Two Bulk-Fill and One Conventional Composite to Intracanal Dentin in Severely Damaged Primary Anterior Teeth

    Directory of Open Access Journals (Sweden)

    Shahram Mosharrafian

    2016-10-01

    Full Text Available Objectives: This study sought to compare the push-out bond strength of two bulk-fill and one conventional composite to intracanal dentin in primary anterior teeth.Materials and Methods: This in vitro, experimental study was conducted on 39 primary anterior teeth, which were randomly divided into three groups. After cleaning and shaping, the root canals were filled with Metapex in such a way that after the application of 1mm light-cure liner on top of it, the coronal 3mm of the canal remained empty for composite post space. Z250 conventional composite was used in group 1 and SonicFill and Filtek bulk-fill composites along with Single Bond 2 were used in groups 2 and 3, respectively. The samples were subjected to thermocycling. One-millimeter thick sections were made of the mid-root and subjected to push-out bond strength test. Mode of failure was determined under a stereomicroscope at ×25 magnification. The data were analyzed using one-way ANOVA.Results: The mean (±standard deviation push-out bond strength was 11.40±4.23MPa, 10.94±6.69MPa and 8.79±4.12MPa in the conventional, SonicFill and Filtek groups, respectively. The difference in this regard among the three groups was not statistically significant (P=0.397.Conclusions: Based on the results, bulk-fill composites, similar to conventional types, can be successfully used for the fabrication of composite intracanal posts in primary teeth to decrease the treatment time in children.Keywords: Composite Resins; Dentin; Tooth, Deciduous

  5. Predicting corn digestible and metabolizable energy content from its chemical composition in growing pigs

    Institute of Scientific and Technical Information of China (English)

    Quanfeng Li; Jianjun Zang; Dewen Liu; Xiangshu Piao; Changhua Lai; Defa Li

    2014-01-01

    Background:The nutrient composition of corn is variable. To prevent unforeseen reductions in growth performance, grading and analytical methods are used to minimize nutrient variability between calculated and analyzed values. This experiment was carried out to define the sources of variation in the energy content of corn and to develop a practical method to accurately estimate the digestible energy (DE) and metabolisable energy (ME) content of individual corn samples for growing pigs. Twenty samples were taken from each of five provinces in China (Jilin, Hebei, Shandong, Liaoning, and Henan) to obtain a range of quality. Results:The DE and ME contents of the 100 corn samples were measured in 35.3 ± 1.92 kg growing pigs (six pigs per corn sample). Sixty corn samples were used to build the prediction model;the remaining forty samples were used to test the suitability of these models. The chemical composition of each corn sample was determined, and the results were used to establish prediction equations for DE or ME content from chemical characteristics. The mean DE and ME content of the 100 samples were 4,053 and 3,923 kcal/kg (dry matter basis), respectively. The physical characteristics were determined, as well, and the results indicated that the bulk weight and 1,000-kernel weight were not associated with energy content. The DE and ME values could be accurately predicted from chemical characteristics. The best fit equations were as follows:DE, kcal/kg of DM=1062.68+(49.72 × EE)+(0.54 × GE)+(9.11 × starch), with R2=0.62, residual standard deviation (RSD)=48 kcal/kg, and P<0.01;ME, kcal/kg of dry matter basis (DM)=671.54+(0.89 × DE)-(5.57 × NDF)-(191.39 × ash), with R2=0.87, RSD=18 kcal/kg, and P<0.01. Conclusion:This experiment confirms the large variation in the energy content of corn, describes the factors that influence this variation, and presents equations based on chemical measurements that may be used to predict the DE and ME content of individual

  6. Soursop (Annona muricata) vinegar production and its chemical compositions

    Science.gov (United States)

    Ho, Chin Wai; Lazim, Azwan Mat; Fazry, Shazrul; Zaki, Umi Kalsum Hj Hussain; Lim, Seng Joe

    2016-11-01

    Vinegar is a liquid product that undergoes double fermentations, which are alcoholic and acetous fermentation. Sugar source was converted to ethanol in alcoholic fermentation, meanwhile ethanol was oxidised to acetic acid during acetous fermentation. Soursop (Annona muricata) was the starting material in this study, as it is easily available in Malaysia. Its highly aromatic, juicy and distinctive flavours enables the production of high quality vinegar. The objective of this research is to produce good quality soursop vinegar as an innovative method to preserve and utilise the soursop fruit in Malaysia and to determine its chemical compositions. It was found that the sugar content reduces over time, and it is inversely proportional to the ethanol concentration, due to the production of ethanol from sugar. Acetic acid was also found to increase with increasing fermentation time. pH showed no significant difference (p>0.05) in the reduction of sugar and the production of ethanol. However, significantly higher (p 0.05) in Vitamin C contents in all soursop vinegar samples produced using different treatments.

  7. Tea tree oil: contact allergy and chemical composition.

    Science.gov (United States)

    de Groot, Anton C; Schmidt, Erich

    2016-09-01

    In this article, contact allergy to, and the chemical composition of, tea tree oil (TTO) are reviewed. This essential oil is a popular remedy for many skin diseases, and may be used as neat oil or be present in cosmetics, topical pharmaceuticals and household products. Of all essential oils, TTO has caused most (published) allergic reactions since the first cases were reported in 1991. In routine testing, prevalences of positive patch test reactions have ranged from 0.1% to 3.5%. Nearly 100 allergic patients have been described in case reports and case series. The major constituents of commercial TTO are terpinen-4-ol, γ-terpinene, 1,8-cineole, α-terpinene, α-terpineol, p-cymene, and α-pinene. Fresh TTO is a weak to moderate sensitizer, but oxidation increases its allergenic potency. The major sensitizers appear to be ascaridole, terpinolene, α-terpinene, 1,2,4-trihydroxymenthane, α-phellandrene, and limonene. The clinical picture of allergic contact dermatitis caused by TTO depends on the products used. Most reactions are caused by the application of pure oil; cosmetics are the culprits in a minority of cases. Patch testing may be performed with 5% oxidized TTO. Co-reactivity to turpentine oil is frequent, and there is an overrepresentation of reactions to fragrance mix I, Myroxylon pereirae, colophonium, and other essential oils.

  8. Anisotropy vs chemical composition at ultra-high energies

    CERN Document Server

    Lemoine, Martin

    2009-01-01

    This paper proposes and discusses a test of the chemical composition of ultra-high energy cosmic rays that relies on the anisotropy patterns measured as a function of energy. In particular, we show that if one records an anisotropy signal produced by heavy nuclei of charge Z above an energy E_{thr}, one should record an even stronger (possibly much stronger) anisotropy at energies >E_{thr}/Z due to the proton component that is expected to be associated with the sources of the heavy nuclei. This conclusion remains robust with respect to the parameters characterizing the sources and it does not depend at all on the modelling of astrophysical magnetic fields. As a concrete example, we apply this test to the most recent data of the Pierre Auger Observatory. Assuming that the anisotropy reported above 55EeV is not a statistical accident, and that no significant anisotropy has been observed at energies 10^{45}Z^{-2}erg/s. Using this bound in conjunction with the above conclusions, we argue that the current PAO data...

  9. Study of Aerosol Chemical Composition Based on Aerosol Optical Properties

    Science.gov (United States)

    Berry, Austin; Aryal, Rudra

    2015-03-01

    We investigated the variation of aerosol absorption optical properties obtained from the CIMEL Sun-Photometer measurements over three years (2012-2014) at three AERONET sites GSFC; MD Science_Center and Tudor Hill, Bermuda. These sites were chosen based on the availability of data and locations that can receive different types of aerosols from land and ocean. These absorption properties, mainly the aerosol absorption angstrom exponent, were analyzed to examine the corresponding aerosol chemical composition. We observed that the retrieved absorption angstrom exponents over the two sites, GSFC and MD Science Center, are near 1 (the theoretical value for black carbon) and with low single scattering albedo values during summer seasons indicating presence of black carbon. Strong variability of aerosol absorption properties were observed over Tudor Hill and will be analyzed based on the air mass embedded from ocean side and land side. We will also present the seasonal variability of these properties based on long-range air mass sources at these three sites. Brent Holben, NASA GSFC, AERONET, Jon Rodriguez.

  10. Pereskia aculeata Muller (Cactaceae Leaves: Chemical Composition and Biological Activities

    Directory of Open Access Journals (Sweden)

    Lucèia Fàtima Souza

    2016-09-01

    Full Text Available The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE/g. The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  11. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities.

    Science.gov (United States)

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-09-03

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  12. Reducing chemical vapour infiltration time for ceramic matrix composites.

    Science.gov (United States)

    Timms, L. A.; Westby, W.; Prentice, C.; Jaglin, D.; Shatwell, R. A.; Binner, J. G. P.

    2001-02-01

    Conventional routes to producing ceramic matrix composites (CMCs) require the use of high temperatures to sinter the individual ceramic particles of the matrix together. Sintering temperatures are typically much higher than the upper temperature limits of the fibres. This paper details preliminary work carried out on producing a CMC via chemical vapour infiltration (CVI), a process that involves lower processing temperatures, thus avoiding fibre degradation. The CVI process has been modified and supplemented in an attempt to reduce the CVI process time and to lower the cost of this typically expensive process. To this end microwave-enhanced CVI (MECVI) has been chosen, along with two alternative pre-infiltration steps: electrophoretic infiltration and vacuum bagging. The system under investigation is based on silicon carbide fibres within a silicon carbide matrix (SiCf/SiC). The results demonstrate that both approaches result in an enhanced initial density and a consequent significant reduction in the time required for the MECVI processing step. Dual energy X-ray absorptiometry was used as a non-destructive, density evaluation technique. Initial results indicate that the presence of the SiC powder in the pre-form changes the deposition profile during the MECVI process.

  13. Porosity prediction of calcium phosphate cements based on chemical composition.

    Science.gov (United States)

    Öhman, Caroline; Unosson, Johanna; Carlsson, Elin; Ginebra, Maria Pau; Persson, Cecilia; Engqvist, Håkan

    2015-07-01

    The porosity of calcium phosphate cements has an impact on several important parameters, such as strength, resorbability and bioactivity. A model to predict the porosity for biomedical cements would hence be a useful tool. At the moment such a model only exists for Portland cements. The aim of this study was to develop and validate a first porosity prediction model for calcium phosphate cements. On the basis of chemical reaction, molar weight and density of components, a volume-based model was developed and validated using calcium phosphate cement as model material. 60 mol% β-tricalcium phosphate and 40 mol% monocalcium phosphate monohydrate were mixed with deionized water, at different liquid-to-powder ratios. Samples were set for 24 h at 37°C and 100% relative humidity. Thereafter, samples were dried either under vacuum at room temperature for 24 h or in air at 37 °C for 7 days. Porosity and phase composition were determined. It was found that the two drying protocols led to the formation of brushite and monetite, respectively. The model was found to predict well the experimental values and also data reported in the literature for apatite cements, as deduced from the small absolute average residual errors (brushite, monetite and apatite cements. The model gives a good estimate of the final porosity and has the potential to be used as a porosity prediction tool in the biomedical cement field.

  14. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    Directory of Open Access Journals (Sweden)

    Kanniah Rajasekaran

    2013-04-01

    Full Text Available The antimicrobial properties of essential oils have been documented, and their use as “biocides” is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum, C. fragariae, and C. gloeosporioides, and three insects, the azalea lace bug (Stephanitis pyrioides, the yellow fever mosquito (Aedes aegypti, and the red imported fire ant (Solenopsis invicta. Hedychium oils were rich in monoterpenes and sesquiterpenes, especially 1,8-cineole (0.1%–42%, linalool (<0.1%–56%, a-pinene (3%–17%, b-pinene (4%–31%, and (E-nerolidol (0.1%–20%. Hedychium oils had no antifungal effect on C. gloeosporioides, C. fragariae, and C. acutatum, but most Hedychium oils effectively killed azalea lace bugs. The oils also show promise as an adult mosquito repellent, but they would make rather poor larvicides or adulticides for mosquito control. Hedychium oils acted either as a fire ant repellent or attractant, depending on plant genotype and oil concentration.

  15. Chemical compositions of two different Thymus species essential oils

    Directory of Open Access Journals (Sweden)

    Samira Jaberi

    2015-06-01

    Full Text Available Thymus is one of the most important members of Lamiaceae family. Aerial parts of the plant have been widely used in medicine. It has been reported that most of these effects are related to phenolic compounds especially thymol and carvacrol in Thymus essential oil. In this study, aerial parts of Thymus daenensis and Thymus lancifolius were collected from Kohgiluyeh and Boyer-Ahmad, Iran. Essential oils of aerial parts of these plants were gained by the hydrodistillation method and the chemical compositions were analyzed by gas chromatography/ Mass spectrometry (GC/MS. The major components of the essential oil of T. daenensis were thymol (39.91%, carvacrol (29.93%, linalool (5.55%, caryophyllene (3.5% and geraniol (3.09%, whereas the major components of the essential oil of T. lancifolius were: carvacrol (25.55%, thymol (20.79%, linalool (16.8%, α-terpineol (6.34%, borneol (4.00%, caryophyllene (3.98%, p-cymene (3.38% and cis-linalool oxide (3.21%. Linalool was reported as another major component in T. lancifolius

  16. Chemical composition and quality of sweet sorghum and maize silages

    Directory of Open Access Journals (Sweden)

    Zbigniew PODKÓWKA

    2011-10-01

    Full Text Available Sweet sorghum (Sorghum saccharatum silage, maize (Zea mays silage, and sorghum and maize (1:1 silage were investigated. The silages were analysed for chemical composition, quality and aerobic stability. Dry matter was the lowest (20.88% in sorghum silage and the highest (37.45% in maize silage. In sorghum silage, the concentration of crude ash and crude fibre was higher, and that of crude protein, crude fat and N-free extractives lower compared to maize silage. Neutral detergent fibre and acid detergent fibre were the highest in sorghum silage and the lowest in maize silage. The silages were dominated by lactic acid, with trace amounts of butyric acid. Maize silage was higher lactic acid and higher total acids than others. All silages were of very good quality according to Flieg-Zimmer scale. Silage pH ranged from 4.20 to 4.31. Sorghum silage was characterized by higher aerobic stability (81h compared to the other silages from maize (74h and sorghum and maize 1:1 (69h.

  17. Chemical composition of biomass from tall perennial tropical grasses

    Energy Technology Data Exchange (ETDEWEB)

    Prine, G.M. [Univ. of Florida, Gainesville, FL (United States); Stricker, J.A. [Polk County Extension Office, Bartow, FL (United States); Anderson, D.L. [Everglades Research and Education Center, Belle Glade, FL (United States)] [and others

    1995-11-01

    The tall perennial tropical grasses, elephantgrass (Pennisetum purpureum Schum.), sugarcane and energycane (Saccharum sp.) and erianthus (Erianthus arundenaceum (Retz) Jesw.) have given very high oven dry biomass yields in Florida and the warm Lower South USA. No good complete analyses of the chemical composition of these grasses for planning potential energy use was available. We sampled treatments of several tall grass demonstrations and experiments containing high-biomass yielding genotypes of the above tall grass crops at several locations in Florida over the two growing seasons, 1992 and 1993. These samples were analyzed for crude protein, NDF, ADF, cellulose, hemicellulose, lignin, and IVDMD or IVOMD. The analysis for the above constituents are reported, along with biomass yields where available, for the tall grass accessions in the various demonstrations and experiments. Particular attention is given to values obtained from the high-yielding tall grasses grown on phosphatic clays in Polk County, FL, the area targeted by a NREL grant to help commercialize bioenergy use from these crops.

  18. Chemical composition and antigenotoxic properties of Lippia alba essential oils

    Directory of Open Access Journals (Sweden)

    Molkary Andrea López

    2011-01-01

    Full Text Available The present work evaluated the chemical composition and the DNA protective effect of the essential oils (EOs from Lippia alba against bleomycin-induced genotoxicity. EO constituents were determined by Gas Chromatography/Mass Spectrometric (GC-MS analysis. The major compounds encountered being citral (33% geranial and 25% neral, geraniol (7% and trans-β-caryophyllene (7% for L. alba specimen COL512077, and carvone (38%, limonene (33% and bicyclosesquiphellandrene (8% for the other, COL512078. The genotoxicity and antigenotoxicity of EO and the compounds citral, carvone and limonene, were assayed using the SOS Chromotest in Escherichia coli. The EOs were not genotoxic in the SOS chromotest, but one of the major compound (limonene showed genotoxicity at doses between 97 and 1549 mM. Both EOs protected bacterial cells against bleomycin-induced genotoxicity. Antigenotoxicity in the two L. alba chemotypes was related to the major compounds, citral and carvone, respectively. The results were discussed in relation to the chemopreventive potential of L. alba EOs and its major compounds.

  19. Brazilian kefir: structure, microbial communities and chemical composition

    Directory of Open Access Journals (Sweden)

    Karina Teixeira Magalhães

    2011-06-01

    Full Text Available Microbial ecology and chemical composition of Brazilian kefir beverage was performed. The microorganisms associated with Brazilian kefir were investigated using a combination of phenotypic and genotypic methods. A total of 359 microbial isolates were identified. Lactic acid bacteria (60.5% were the major isolated group identified, followed by yeasts (30.6% and acetic acid bacteria (8.9%. Lactobacillus paracasei (89 isolates, Lactobacillus parabuchneri (41 isolates, Lactobacillus casei (32 isolates, Lactobacillus kefiri (31 isolates, Lactococcus lactis (24 isolates, Acetobacter lovaniensis (32 isolates, Kluyveromyces lactis (31 isolates, Kazachstania aerobia (23 isolates, Saccharomyces cerevisiae (41 isolates and Lachancea meyersii (15 isolates were the microbial species isolated. Scanning electron microscopy showed that the microbiota was dominated by bacilli (short and curved long cells growing in close association with lemon-shaped yeasts cells. During the 24 h of fermentation, the protein content increased, while lactose and fat content decreased. The concentration of lactic acid ranged from 1.4 to 17.4 mg/ml, and that of acetic acid increased from 2.1 to 2.73 mg/ml. The production of ethanol was limited, reaching a final mean value of 0.5 mg/ml.

  20. Chemical composition and antibacterial activity of Gongronema latifolium

    Institute of Scientific and Technical Information of China (English)

    ELEYINMI Afolabi F.

    2007-01-01

    Chemical composition of Gongronema latifolium leaves was determined using standard methods. Aqueous and methanol G. latifolium extracts were tested against thirteen pathogenic bacterial isolates. Crude protein, lipid extract, ash, crude fibre and nitrogen free extractives obtained are: 27.2%, 6.07%, 11.6%, 10.8% and 44.3% dry matter respectively. Potassium,sodium, calcium, phosphorus and cobalt contents are 332, 110, 115, 125 and 116 mg/kg respectively. Dominant essential amino acids are leucine, valine and phenylalanine. Aspartic acid, glutamic acid and glycine are 13.8%, 11.9% and 10.3% respectively of total amino acid. Saturated and unsaturated fatty acids are 50.2% and 39.4% of the oil respectively. Palmitic acid makes up 36% of the total fatty acid. Extracts show no activity against E. faecalis, Y. enterolytica, E. aerogenes, B. cereus and E. agglomerans.Methanol extracts were active against S. enteritidis, S. cholerasius ser typhimurium and P. aeruginosa (minimum inhibitory concentration (MIC) 1 mg; zone of growth inhibition 7, 6.5 and 7 mm respectively). Aqueous extracts show activity against E. coli (MIC 5 mg) and P. aeruginosa (MIC 1 mg) while methanol extracts are active against P. aeruginosa and L. monocytogenes. G.latifolium has potential food and antibacterial uses.

  1. Microbial population, chemical composition and silage fermentation of cassava residues.

    Science.gov (United States)

    Napasirth, Viengsakoun; Napasirth, Pattaya; Sulinthone, Tue; Phommachanh, Kham; Cai, Yimin

    2015-09-01

    In order to effectively use the cassava (Manihot esculenta Crantz) residues, including cassava leaves, peel and pulp for livestock diets, the chemical and microbiological composition, silage preparation and the effects of lactic acid bacteria (LAB) inoculants on silage fermentation of cassava residues were studied. These residues contained 10(4) to 10(5) LAB and yeasts, 10(3) to 10(4) coliform bacteria and 10(4) aerobic bacteria in colony forming units (cfu) on a fresh matter (FM) basis. The molds were consistently at or below the detectable level (10(2) cfu of FM) in three kinds of cassava residues. Dry matter (DM), crude protein (CP) and neutral detergent fiber (NDF) content of cassava residues were 17.50-30.95%, 1.30-16.41% and 25.40-52.90% on a DM basis, respectively. The silage treatments were designed as control silage without additive (CO) or with LAB inoculants Chikuso-1 (CH, Lactobacillus plantarum) and Snow Lacto (SN, Lactobacillus rhamnosus) at a rate of 5 mg/kg of FM basis. All silages were well preserved with a low pH (below 4.0) value and when cassava residues silage treated with inoculants CH and SN improved fermentation quality with a lower pH, butyric acid and higher lactic acid than control silage.

  2. Chemical compositions of precipitation and scavenging of particles in Beijing

    Institute of Scientific and Technical Information of China (English)

    HU Min; ZHANG Jing; WU Zhijun

    2005-01-01

    Totally 23 precipitation samples were collected in Beijing from May to November in 2003. In order to investigate the chemical composition of precipitation samples, pH, conductivity, concentrations of water-soluble ions and organic acids were analyzed. The average pH of precipitations is 6.18, belonging to the neutral range; the average conductivity is 52.23 (S/cm, which indicates that precipitations in Beijing are obviously polluted; are the most abundant anions with the average concentrations of 521 and 174 μeq·L-1, respectively; the average equivalent ratio is 3.1, which decreases by about 15% compared with the result of 1994; and Ca2+ are the most abundant cations with the average concentrations of 376 and 397 μeq·L-1, respectively; formic acid, acetic acid and oxalic acid are the main organic acids with the average concentrations of 4.62, 4.60 and 1.17 μeq·L-1, respectively, accounting for 2% of the overall anions. Obvious differences between concentrations before and after precipitation are also observed by SJAC (Steam Jet Aerosol Collector), which shows the removal of particles from the atmosphere by precipitation.

  3. Chemical composition and antigenotoxic properties of Lippia alba essential oils.

    Science.gov (United States)

    López, Molkary Andrea; Stashenko, Elena E; Fuentes, Jorge Luis

    2011-07-01

    The present work evaluated the chemical composition and the DNA protective effect of the essential oils (EOs) from Lippia alba against bleomycin-induced genotoxicity. EO constituents were determined by Gas Chromatography/Mass Spectrometric (GC-MS) analysis. The major compounds encountered being citral (33% geranial and 25% neral), geraniol (7%) and trans-β-caryophyllene (7%) for L. alba specimen COL512077, and carvone (38%), limonene (33%) and bicyclosesquiphellandrene (8%) for the other, COL512078. The genotoxicity and antigenotoxicity of EO and the compounds citral, carvone and limonene, were assayed using the SOS Chromotest in Escherichia coli. The EOs were not genotoxic in the SOS chromotest, but one of the major compound (limonene) showed genotoxicity at doses between 97 and 1549 mM. Both EOs protected bacterial cells against bleomycin-induced genotoxicity. Antigenotoxicity in the two L. alba chemotypes was related to the major compounds, citral and carvone, respectively. The results were discussed in relation to the chemopreventive potential of L. alba EOs and its major compounds.

  4. Seminar for hydrocarbon detection with composite geophysical/geo-chemical techniques

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    “Seminar for hydrocarbon detection with composite geophy sical/geo-chemical techniques”,jointly organized by China petroleum Exploration & Production Company and Exploration Geophysical Committee of CGS and supported by the Composite Geophysical/geo-chemical Departement of Oriental Geophysical Company and China Exploration&Development Research Instiute,

  5. Chemical composition analysis of simulated waste glass T10-G-16A

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-01

    In this report, SRNL provides chemical composition analyses of a simulated LAW glass designated T10-G-16A.The measured chemical composition data are reported and compared with the targeted values for each component. No issues were identified in reviewing the analytical data.

  6. A Quantum Chemical Study on Polythiophenes Derivatives as Donor Materials in Bulk-heterojunction Polymer Solar Cell

    Directory of Open Access Journals (Sweden)

    Bushra Mohamed Omer

    2012-09-01

    Full Text Available For the optimum design of the donor and acceptor materials in polymer solar cells, it is very important to do a theoretical calculation for the energy levels and energy gaps. In this work we used the semiempirical method Austin Model1 (AM1 to investigate the Higher Occupied Molecular Orbital (HOMO and Lower Unoccupied Molecular Orbital (LUMO of polythiophenes derivatives/fullerenes combination (bulk heterojunction polymer solar cells. The overestimation on the HOMO and LUMO values was corrected by using experimental data from literature as criteria of correctness. Using our correction method, a reasonable linear relationship between the computed energy band gaps of polythiophenes derivatives and the experimental band gaps were found. The corrected HOMO and LUMO energies of polythiophenes derivatives match well with the experimental one. This method can serve as a road map inorder to design and synthesis appropriate combination of polythiophenes derivatives/fullerenes for bulk heterojunction solar cells.

  7. Direct Observation on the Evolution of Shear Banding and Buckling in Tungsten Fiber Reinforced Zr-Based Bulk Metallic Glass Composite

    Science.gov (United States)

    Chen, J. H.; Chen, Y.; Jiang, M. Q.; Chen, X. W.; Fu, H. M.; Zhang, H. F.; Dai, L. H.

    2014-11-01

    The evolution of micro-damage and deformation of each phase in the composite plays a pivotal role in the clarification of deformation mechanism of composite. However, limited model and mechanical experiments were conducted to reveal the evolution of the deformation of the two phases in the tungsten fiber reinforced Zr-based bulk metallic glass composite. In this study, quasi-static compressive tests were performed on this composite. For the first time, the evolution of micro-damage and deformation of the two phases in this composite, i.e., shear banding of the metallic glass matrix and buckling deformation of the tungsten fiber, were investigated systematically by controlling the loading process at different degrees of deformation. It is found that under uniaxial compression, buckling of the tungsten fiber occurs first, while the metallic glass matrix deforms homogeneously. Upon further loading, shear bands initiate from the fiber/matrix interface and propagate in the metallic glass matrix. Finally, the composite fractures in a mixed mode, with splitting in the tungsten fiber, along with shear fracture in the metallic glass matrix. Through the analysis on the stress state in the composite and resistance to shear banding of the two phases during compressive deformation, the possible deformation mechanism of the composite is unveiled. The deformation map of the composite, which covers from elastic deformation to final fracture, is obtained as well.

  8. High accuracy NMR chemical shift corrected for bulk magnetization as a tool for structural elucidation of dilutable microemulsions. Part 1 - Proof of concept.

    Science.gov (United States)

    Hoffman, Roy E; Darmon, Eliezer; Aserin, Abraham; Garti, Nissim

    2016-02-01

    In microemulsions, changes in droplet size and shape and possible transformations occur under various conditions. They are difficult to characterize by most analytical tools because of their nano-sized structure and dynamic nature. Several methods are usually combined to obtain reliable information, guiding the scientist in understanding their physical behavior. We felt that there is a need for a technique that complements those in use today in order to provide more information on the microemulsion behavior, mainly as a function of dilution with water. The improvement of NMR chemical shift measurements independent of bulk magnetization effects makes it possible to study the very weak intermolecular chemical shift effects. In the present study, we used NMR high resolution magic angle spinning to measure the chemical shift very accurately, free of bulk magnetization effects. The chemical shift of microemulsion components is measured as a function of the water content in order to validate the method in an interesting and promising, U-type dilutable microemulsion, which had been previously studied by a variety of techniques. Phase transition points of the microemulsion (O/W, bicontinuous, W/O) and changes in droplet shape were successfully detected using high-accuracy chemical shift measurements. We analyzed the results and found them to be compatible with the previous studies, paving the way for high-accuracy chemical shifts to be used for the study of other microemulsion systems. We detected two transition points along the water dilution line of the concentrate (reverse micelles) corresponding to the transition from swollen W/O nano-droplets to bicontinuous to the O/W droplets along with the changes in the droplets' sizes and shapes. The method seems to be in excellent agreement with other previously studied techniques and shows the advantage of this easy and valid technique.

  9. On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings

    Directory of Open Access Journals (Sweden)

    David E. Kelsey

    2015-05-01

    Full Text Available Ultrahigh temperature (UHT metamorphism is the most thermally extreme form of regional crustal metamorphism, with temperatures exceeding 900 °C. UHT crustal metamorphism is recognised in more than 50 localities globally in the metamorphic rock record and is accepted as ‘normal’ in the spectrum of regional crustal processes. UHT metamorphism is typically identified on the basis of diagnostic mineral assemblages such as sapphirine + quartz, orthopyroxene + sillimanite ± quartz and osumilite in Mg–Al-rich rock compositions, now usually coupled with pseudosection-based thermobarometry using internally-consistent thermodynamic data sets and/or Al-in-Orthopyroxene and ternary feldspar thermobarometry. Significant progress in the understanding of regional UHT metamorphism in recent years includes: (1 development of a ferric iron activity–composition thermodynamic model for sapphirine, allowing phase diagram calculations for oxidised rock compositions; (2 quantification of UHT conditions via trace element thermometry, with Zr-in-rutile more commonly recording higher temperatures than Ti-in-zircon. Rutile is likely to be stable at peak UHT conditions whereas zircon may only grow as UHT rocks are cooling. In addition, the extent to which Zr diffuses out of rutile is controlled by chemical communication with zircon; (3 more fully recognising and utilising temperature-dependent thermal properties of the crust, and the possible range of heat sources causing metamorphism in geodynamic modelling studies; (4 recognising that crust partially melted either in a previous event or earlier in a long-duration event has greater capacity than fertile, unmelted crust to achieve UHT conditions due to the heat energy consumed by partial melting reactions; (5 more strongly linking U–Pb geochronological data from zircon and monazite to P–T points or path segments through using Y + REE partitioning between accessory and major phases, as well as phase

  10. Chemical composition and antioxidant potential of Ruta montana L. essential oil from Algeria.

    Science.gov (United States)

    Kambouche, N; Merah, B; Bellahouel, S; Bouayed, J; Dicko, A; Derdour, A; Younos, C; Soulimani, R

    2008-09-01

    The essential oil of aerial parts of Ruta montana L. growing in the Oran region in the west of Algeria was obtained by hydrodistillation with a 1.63% yield on a dry weight basis. Gas chromatography (GC) and GC/mass spectrometry (MS) analyses were carried out to identify the chemical composition of R. montana essential oil. Moreover, spectrophotometric analyses were employed to highlight the scavenger capacity of this oil using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test. Twenty compounds were identified by GC and CG/MS analyses, and the bulk of the compounds of the oil were undecan-2-one (32.8%), nonan-2-one (29.5%), nonanol-2-acetate (18.2%), and psoralen (3.5%). The results obtained using the DPPH test show that R. montana essential oil possesses antiradical activity in a concentration-dependent manner. Thus, a linear correlation (correlation coefficient R(2) = 0.971, P < .001) was found between the reduction of DPPH stable free radical and the concentration of R. montana essential oil.

  11. An ion-exchange route for the synthesis of hierarchical In2S3/ZnIn2S4 bulk composite and its photocatalytic activity under visible-light irradiation.

    Science.gov (United States)

    Mei, Zongwei; Ouyang, Shuxin; Tang, Dai-Ming; Kako, Tetsuya; Golberg, Dmitri; Ye, Jinhua

    2013-02-28

    In(2)S(3)/ZnIn(2)S(4) bulk composite was successfully synthesized through an ion-exchange route using NaInS(2) as a precursor. Compared with the constituent pure component (In(2)S(3) or ZnIn(2)S(4)), the photocatalytic H(2) evolution of the composite was greatly enhanced because of the efficient separation and migration of photoexcited carriers (electrons and holes) at the interface of the bulk composite.

  12. Chemical composition and leishmanicidal activity of Pulicaria gnaphalodes essential oil

    Directory of Open Access Journals (Sweden)

    G. Asghari

    2014-10-01

    Full Text Available Background and objectives: Several natural compounds have been identified for the treatment ofleishmaniasis. Due to a few safe drugs and the side effects caused by available chemotherapy, some new drugs for treatment of leishmaniasis are requested.  The genus Pulicaria (Asteraceae is represented in the flora of Iran by five species. Phytochemical studies on Pulicaria species have revealed some flavonoids and terpenoids with leishmanicidal activity. In the present investigation chemical composition and leishmanicidal activity of Pulicaria gnaphalodes essential oil have been studied. Methods: The essential oil of the aerial parts of the plant was obtained by Clevenger apparatus and was analyzed by GC/MS. Antileishmanil activity was assessed against promastigoes of Leishmania major. Results:The major components from P. gnaphalodes essential oil have been reported to be geraniol, 1,8-cineole, chrysanthenone, α-pinene, chrystanthenone, α-terpineol and filifolone. The alcohol monoterpenes with contribution of 25.04% constituted the major portion of the essential oil, while hydrocarbon monoterpenes and hydrocarbon sesquiterpenes with contribution of 7.08% and 2.38%, respectively occupied the next rates.In the present experiment the essential oil of P. gnaphalodes progressively inhibited Leishmania major growth in concentrations ranging from 0.125 to 50 µL/mL (parasite culture in 24 h. The essential oil at 50 µL/mL eliminated the promastigotes at the beginning of treatment. It showed antileishmanial activity in concentration of 1.06 µL/mL and destroyed all parasits in 24 h.  Conclusion: Pulicaria gnaphalodes antileishmanial activity, could suggest the species and constituents as possible lead structures for antileishmanial drug discovery.

  13. Chemical composition and antioxidant activity of berry fruits

    Directory of Open Access Journals (Sweden)

    Stajčić Slađana M.

    2012-01-01

    Full Text Available The main chemical composition, contents of total phenolic (TPh, total flavonoid (TF, and total monomeric anthocyianin (TMA, as well as the antioxidant activity of two raspberry cultivars (Meeker and Willamette, two blackberry cultivars (Čačanska bestrna and Thornfree and wild bilberry were studied. The raspberry cultivars had the highest total solids among fruits investigated. Bilberry fruits had the highest sugar-to-acid ratio. Blackberry fruits were richer in crude fibers (cellulose in comparison to raspberry and bilberry fruits. The content of pectic substances was highest in the bilberry. Also, bilberry had a highest content of TPh (808.12 mg GAE/100 g FW, TF (716.31 mg RE/100 g FW and TMA (447.83 mg CGE/100 g FW. The antioxidant activity was evaluated spectrophotometrically, using 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity assay. The DPPH free radical scavenging activity, expressed as the EC50 value (in mg of fresh weight of berry fruit per ml of the reaction mixture, of bilberry (0.3157 ± 0.0145 mg/ml was the highest. These results also showed that the antioxidant value of 100 g FW bilberry, raspberry - Willamette, raspberry - Meeker, blackberry - Čačanska bestrna and blackberry - Thornfree is equivalent to 576.50 mg, 282.74 mg, 191.58 mg, 222.28 mg and 272.01 mg of vitamin C, respectively. There was a significant positive correlation between the antioxidant activities and content of total phenolics (RTPh 2=0.9627, flavonoids (RTF 2=0.9598 and anthocyanins (RTMA 2=0.9496 in berry fruits. [Projekat Ministarstva nauke Republike Srbije, br. TR 31044

  14. Brazilian Propolis: Correlation between Chemical Composition and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Kelly Salomão

    2008-01-01

    Full Text Available The chemical composition of ethanol extracts from samples of Brazilian propolis (EEPs determined by HPLC and their activity against Trypanosoma cruzi, Staphylococcus aureus, Streptococcus pneumoniae, Klebisiella pneumoniae, Candida albicans, Sporothrix schenckii and Paracoccidioides brasiliensis were determined. Based on the predominant botanical origin in the region of samples' collection, the 10 extracts were separated into three groups: A (B. dracunculifolia + Auraucaria spp, B (B. dracunculifolia and C (Araucaria spp. Analysis by the multiple regression of all the extracts together showed a positive correlation, higher concentrations leading to higher biological effect, of S. aureus with p-coumaric acid (PCUM and 3-(4-hydroxy-3-(oxo-butenyl-phenylacrylic acid (DHCA1 and of trypomastigotes of T. cruzi with 3,5-diprenyl-4-hydroxycinnamic acid derivative 4 (DHCA4 and 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran (DCBEN. When the same approach was employed for each group, due to the small number of observations, the statistical test gave unreliable results. However, an overall analysis revealed for group A an association of S. aureus with caffeic acid (CAF and dicaffeoylquinic acid 3 (CAFQ3, of S. pneumoniae with CAFQ3 and monocaffeoylquinic acid 2 (CAFQ2 and of T. cruzi also with CAFQ3. For group B, a higher activity against S. pneumoniae was associated DCBEN and for T. cruzi with CAF. For group C no association was observed between the anitmicrobial effect and any component of the extracts. The present study reinforces the relevance of PCUM and derivatives, especially prenylated ones and also of caffeolyquinic acids, on the biological activity of Brazilian propolis.

  15. Chemical composition of buckwheat plant parts and selected buckwheat products

    Directory of Open Access Journals (Sweden)

    Petra Vojtíšková

    2014-11-01

    Full Text Available Chemical composition plant parts (roots, stalks, leaves, blossoms of common buckwheat (Fagopyrum esculentum Moench and selected products made from its seeds (peels, whole seed, wholemeal flour, broken seeds, crunchy products Natural and Cocoa, flour, and pasta was determined. Samples were dried and ground to a fine powder. All analyses were performed according to the Commission Regulation no. 152/2009, while rutin concentration was determined by the modified HPLC method. The lowest content of moisture was found in roots (4.3% and in peels (almost 8% and the highest moisture (nearly 11% was discovered in seeds. The lowest amount of crude protein (3.5% was found in peels, the highest crude protein amount (>13% in both flours and leaves (23%. The starch content (>50% in dry matter differs from one sample to another. Only in peels the content of starch was about 3.5%. From all examined samples, the lowest content of fat was found in crunchy products Cocoa, 1.7%. The lowest amount of histidine was determined in all studied samples, except peels, the highest content of glutamic acid was determined in almost all samples, except peels. Whole-meal flour is very rich source of Ca and Fe. The content of these elements was 1172 mg.kg-1 and 45.9 mg.kg-1, respectively. On the other hand, the highest content of Pb (>1 mg.kg-1 was found in broken seeds. The greatest concentration of rutin was determined in blossoms and leaves (83.6 and 69.9 mg.g-1, respectively. On the other hand, the lowest concentrations of rutin were found in buckwheat products (generally less then 1 mg.g-1, i.e. in wholemeal flour, 702 μg.kg-1, the lowest almost 10 μg.kg-1 in pasta.

  16. RESEARCH REGARDING THE CHEMICAL COMPOSITION AT VINEGAR TYPES

    OpenAIRE

    Liviu Giurgiulescu; Olimpia Mihaela Hoban

    2009-01-01

    In this article are presented some physico-chemical applied vinegar, to see some chemical properties of vinegar suchas total acidity, volatile and fixed, by colorimetric determination of iron content in the vinegar, the extract andresidue determination dry.

  17. Chemical composition of the volatile oil from flowers and leaves of new Passiflora hybrids

    Directory of Open Access Journals (Sweden)

    Jacopo Calevo

    2016-10-01

    Full Text Available Summary. Passiflora is a genus of the Passifloraceae family with more than five hundred species, which are known for their edible fruits, their therapeutic properties and ornamental purposes, and they are very attractive both for the horticultural sector as well as for the herbal and pharmaceutical industry. A detailed chemical composition of Passiflora essential oil has been reported only for few main species (e.g. P. edulis Sims and P. incarnata L.. In this article we evaluated for the first time the essential oil composition of three Passiflora ornamental hybrids, exploring fresh flowers and leaves by GC/FID and GC/MS. Several compounds were identified, with a peculiar distribution in the hybrids: benzyl alcohol (7.6%, geraniol (13.7%, phytol (14,3%, eugenol (3.9%, 2-phenylethanol (4.7%, cis-3-hexenal (2.8% and palmitic acid (2% were the main compounds of the essential oil of fresh leaves of the hybrid P. ‘FSO-040711’; the highest percentages of benzyl alcohol (12.2% and 2-phenylethanol (13.6% were found in fresh flowers of P. ‘FSO-130913’ and  the highest amount of phytol (38.5% was present in the fresh leaves of P. ‘FSO-080415’. Eugenol (5.3% seems to be related to the typical honey/vanilla fragrance of the flowers of P. ‘FSO-040711’. Industrial relevance. The main bulk of constituents of the volatile fractions of Passiflora hybrids were found to be hydrocarbons and alcohols, while terpens and aldehydes occurred in lower amount. We are currently focus on investigating the biological activity of the Passiflora oil extracts for perfumery and cosmetic industry. Keywords. Maracuja; interspecific hybrids; essential oil; gas chromatography

  18. Life Cycle Risks for Human Health: A Comparison of Petroleum Versus Bio-Based Production of Five Bulk Organic Chemicals

    NARCIS (Netherlands)

    Roes, A.L.; Patel, M.K.

    2007-01-01

    This article describes the development and application of a generic approach to the comparative assessment of risks related to the production of organic chemicals by petrochemical processes versus white biotechnology. White biotechnology, also referred to as industrial biotechnology, typically uses

  19. On ultrahigh temperature crustal metamorphism:Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings

    Institute of Scientific and Technical Information of China (English)

    David E. Kelsey; Martin Hand

    2015-01-01

    Ultrahigh temperature (UHT) metamorphism is the most thermally extreme form of regional crustal metamorphism, with temperatures exceeding 900 ?C. UHT crustal metamorphism is recognised in more than 50 localities globally in the metamorphic rock record and is accepted as‘normal’ in the spectrum of regional crustal processes. UHT metamorphism is typically identified on the basis of diagnostic mineral assemblages such as sapphirine þ quartz, orthopyroxene þ sillimanite ? quartz and osumilite in MgeAl-rich rock compositions, now usually coupled with pseudosection-based thermobarometry using internally-consistent thermodynamic data sets and/or Al-in-Orthopyroxene and ternary feldspar ther-mobarometry. Significant progress in the understanding of regional UHT metamorphism in recent years includes: (1) development of a ferric iron activityecomposition thermodynamic model for sapphirine, allowing phase diagram calculations for oxidised rock compositions;(2) quantification of UHT conditions via trace element thermometry, with Zr-in-rutile more commonly recording higher temperatures than Ti-in-zircon. Rutile is likely to be stable at peak UHT conditions whereas zircon may only grow as UHT rocks are cooling. In addition, the extent to which Zr diffuses out of rutile is controlled by chemical communication with zircon; (3) more fully recognising and utilising temperature-dependent thermal properties of the crust, and the possible range of heat sources causing metamorphism in geodynamic modelling studies; (4) recognising that crust partially melted either in a previous event or earlier in a long-duration event has greater capacity than fertile, unmelted crust to achieve UHT conditions due to the heat energy consumed by partial melting reactions;(5) more strongly linking UePb geochronological data from zircon and monazite to PeT points or path segments through using Y þ REE partitioning between accessory and major phases, as well as phase diagrams incorporating Zr and REE

  20. Vegetation change impacts on soil organic carbon chemical composition in subtropical forests

    Science.gov (United States)

    Guo, Xiaoping; Meng, Miaojing; Zhang, Jinchi; Chen, Han Y. H.

    2016-07-01

    Changes in the chemical composition of soil organic carbon (SOC) might strongly affect the global carbon cycle as it controls the SOC decomposition rate. Vegetation change associated with long-term land use changes is known to strongly impact the chemical composition of SOC; however, data on the impacts of vegetation change following disturbance events of short durations and succession that occur frequently in forest ecosystems via diverse management objectives on SOC chemical composition are negligible. Here we examined the impacts of vegetation changes on the chemical composition of SOC by sampling soils of native broad-leaved forests, planted mixed broad-leaved and coniferous forests, and tea gardens in eastern China. We used nuclear magnetic resonance spectroscopy to quantify SOC chemical composition. We found that among all components of SOC chemical composition, alkyl carbon (C) and aryl C were more liable to change with vegetation than other SOC components. Soil pH was negatively correlated to the relative abundances of alkyl C and N-alkyl C, and Shannon’s index of overstory plant species was positively correlated to the relative abundances of phenolic C and aromaticity. Our results suggest that vegetation changes following short disturbance events and succession may strongly alter SOC chemical composition in forest ecosystems.

  1. Chemical Characterisation of Bulk and Melt-spun Ribbons of NiMnIn alloy using Inductively Coupled Plasma Optical Emission Spectrometry

    Directory of Open Access Journals (Sweden)

    S.S. Kalyan Kamal

    2011-04-01

    Full Text Available Method development for the analysis of NiMnIn, a new magnetocaloric effect (MCE material using inductively coupled plasma optical emission spectrometry (ICPOES is discussed. Spectral interference of Ni and Mn on the analysis of In were studied. The process of method validation was carried out using various analytical techniques like conventional wet chemical techniques and instrumental techniques such as atomic absorption spectrometry. All the techniques show a close agreement in values, thus this method could be applied for regular analysis of NiMnIn alloys. A comparative chemical analysis of bulk and melt-spun ribbons of this alloy is also discussed.Defence Science Journal, 2011, 61(3, pp.270-274, DOI:http://dx.doi.org/10.14429/dsj.61.397

  2. Haptoglobin and serum amyloid A in relation to the somatic cell count in quarter, cow composite and bulk tank milk samples.

    Science.gov (United States)

    Akerstedt, Maria; Persson Waller, Karin; Sternesjö, Ase

    2007-05-01

    Milk somatic cell count (SCC) is the gold standard in diagnosis of subclinical mastitis, and is also an important parameter in quality programmes of dairy cooperatives. As routine SCC analysis is usually restricted to central laboratories, much effort has been invested in the search for alternative biomarkers of mastitis and milk quality, including the presence in the milk of the acute phase proteins (APP), haptoglobin (Hp) and serum amyloid A (SAA). The aim of this study was to investigate relationships between Hp, SAA and SCC in quarter, cow composite, and bulk tank milk samples. Cows (n=165), without any clinical signs of disease or abnormalities in the milk or udder, from three different dairy farms, were used. Cow composite milk samples from all cows delivering milk at the sampling occasion were taken once in each herd. In one of the farms, representative quarter milk samples (n=103) from 26 cows were also collected. In addition, bulk tank milk samples from 96 dairy farms were included in the study. Samples were analysed for Hp, SAA and SCC, and relationships between the parameters were evaluated at quarter, cow and tank milk levels using Chi-square analysis. Milk samples were categorized according to their SCC, and the presence, or no presence, of SAA and Hp, based on the detection limits of the screening methods (0.3 mg/l and 1.0 mg/l for SAA and Hp, respectively). Hp and SAA were found in milk at quarter, cow composite and bulk tank levels. A large proportion (53%) of the animals had detectable milk concentrations of APP, and SAA was detected more frequently, and at higher concentrations than Hp, regardless of sample type. SAA was detected in as many as 82% of the bulk tank milk samples. Significant relationships were found between Hp, SAA and SCC at quarter and cow composite milk levels, but only between SAA and SCC at bulk tank milk level. Detectable levels of APP were more common at high SCC.

  3. Mineral and inorganic chemical composition of the Pernik coal, Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Yossifova, Mariana G. [Geological Institute, Acad. G. Bonchev Str., Bl.24, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2007-11-22

    The mineral and inorganic chemical composition of five types of samples from the Pernik subbituminous coals and their products generated from the Pernik preparation plant were studied. They include feed coal, low-grade coal, high-grade coal, coal slime, and host rock. The mineral matter of the coals contains 44 species that belong mainly to silicates, carbonates, sulphates, sulphides, and oxides/hydroxides, and to a lesser extent, chlorides, biogenic minerals, and organic minerals. The detrital minerals are quartz, kaolinite, micas, feldspars, magnetite, cristobalite, spessartine, and amphibole. The authigenic minerals include various sulphides, silicates, oxihydroxides, sulphates, and carbonates. Several stages and substages of formation were identified during the syngenetic and epigenetic mineral precipitations of these coals. The authigenic minerals show the greatest diversity of mineral species as the epigenetic mineralization (mostly sulphides, carbonates, and sulphates) dominates qualitatively and quantitatively. The epigenetic mineralization was a result of complex processes occurring mostly during the late development of the Pernik basin. These processes indicate intensive tectonic, hydrothermal and volcanic activities accompanied by a change from fresh to marine sedimentation environment. Thermally altered organic matter due to some of the above processes was also identified in the basin. Most of the trace elements in the Pernik coals (Mo, Be, S, Zr, Y, Cl, Ba, Sc, Ga, Ag, V, P, Br, Ni, Co, Pb, Ca, and Ti) show an affinity to OM and phases intimately associated with OM. Some of the trace elements (Sr, Ti, Mn, Ba, Pb, Cu, Zn, Co, Cr, Ni, As, Ag, Yb, Sn, Ga, Ge, etc.) are impurities in authigenic and accessory minerals, while other trace elements (La, Ba, Cu, Ce, Sb, Bi, Zn, Pb, Cd, Nd, etc.) occur as discrete phases. Elements such as Sc, Be, Y, Ba, V, Zr, S, Mo, Ti, and Ga exceed Clarke concentrations in all of the coal types studied. It was also found that

  4. Bulking on the activated slugde process applied to the cheese whey effluent treatment: characterization and use of chemical flocullants to improve settling

    Directory of Open Access Journals (Sweden)

    Nelson Duran

    2007-11-01

    Full Text Available In this work was studied the activated sludge process applied to an effluent treatment from a cheese manufacture (cheese whey, which is characterized by the high organic content containing easily biodegradable compounds as lactose. In the diluted whey treatment, it was found that the activated sludge is an adequate system at a diluted condition (100x, 50x, 25x e 10x and treatment (HRT varying between 6-36 h and suspended solid (SS between 2800-19417mgL-1. However, the system is susceptible to bulking occurrence. Chemical flocculants were evaluated in order to monitoring the biological flocs sedimentation present in a continuous activated sludge system under bulking conditions. The treatment was carried out in a continuous reactor at laboratory scale and the coagulants (Al2 (SO43 and FeSO4 .7H2O were added to sludge at 50-200 mg L-1 concentration range. The results showed that Al3+ presented higher settling capacity compared with Fe2+ effect, and the good settling characteristics were observed in terms of SVI (sludge volume index. However, more detailed studies in this direction should be done to evaluate if the characteristic organisms in the activated sludge are not irreversible suppressed with the use of chemical flocculants.

  5. Facile preparation of graphene-copper nanoparticle composite by in situ chemical reduction for electrochemical sensing of carbohydrates.

    Science.gov (United States)

    Chen, Qiwen; Zhang, Luyan; Chen, Gang

    2012-01-03

    A novel graphene-copper nanoparticle composite was prepared by the in situ chemical reduction of a mixture containing graphene oxide and copper(II) ions using potassium borohydride as a reductant. It was mixed with paraffin oil and packed into one end of a fused capillary to fabricate microdisc electrodes for sensing carbohydrates. The morphology and structure of the graphene-copper nanoparticle composite were investigated by scanning electron microscopy, X-ray diffraction, and Fourier transform-infrared spectroscopy. The results indicated that copper nanoparticles with an average diameter of 20.8 nm were successfully deposited on graphene nanosheets to form a well interconnected hybrid network. The analytical performance of these unique graphene-copper nanoparticle composite paste electrodes was demonstrated by sensing five carbohydrates in combination with cyclic voltammetry and capillary electrophoresis (CE). The advantages of the composite detectors include higher sensitivity, satisfactory stability, surface renewability, bulk modification, and low expense of fabrication. They should find applications in microchip CE, flowing-injection analysis, and other microfluidic analysis systems.

  6. Counter magnetization of SmCo5 permanent magnet by YBCO/Ag composite bulk superconductor — A competing interaction picture

    Science.gov (United States)

    Parthasarathy, R.; Lakshmi, M. M.; Seshubai, V.

    2012-06-01

    We report here for the first time the counter magnetization of an SmCo5 permanent magnet in the presence of a YBCO/Ag composite bulk superconductor. This remarkable phenomenon has been observed during our experiments to measure the levitation force of the superconductor. The inclination to study the effects of the superconductor on the permanent magnet led us to observe this surprising and curious phenomenon for the first time. A complete M-H hysteresis loop of the SmCo5 permanent magnet has been recorded using the bulk superconductor itself as a magnet. We present some of the initial results which are interesting and we discuss the possible kind of interaction that could lead to our observations.

  7. Areca Fiber Reinforced Epoxy Composites: Effect of Chemical Treatments on Impact Strength

    Directory of Open Access Journals (Sweden)

    S. Dhanalakshmi

    2015-06-01

    Full Text Available In this research work, impact strength of untreated, alkali treated, potassium permanganate treated, benzoyl chloride treated and acrylic acid treated areca fiber reinforced epoxy composites were studied under 40%, 50%, 60% and 70% fiber loadings. Impact strength increased with increase in fiber loading up to 60% and then showed a decline for all untreated and chemically treated areca fiber reinforced epoxy composites. The acrylic acid treated areca fiber reinforced epoxy composites with 60% fiber loading showed highest impact strength of 28.28 J/mm2 amongst all untreated and chemically treated areca/epoxy composites with same 60% fiber loading.

  8. Chemical composition of nanomodified composite binder with nano- and microsized barium silicate

    Directory of Open Access Journals (Sweden)

    KOROLEV Evgenij Valerjevich

    2014-08-01

    Full Text Available There are several possibilities to improve cement-based binders. In particular, many properties of cement stone can be enhanced by means of micro- and nanoscale modification. In a number of previous works we had shown that application of barium hydrosilicates leads to such improvement. The present article is devoted to the investigation of the chemical composition of the cement stone which is modified by means of addition of barium hydrosilicates. The modification was performed on different scales: micro- and nanoscale; the results of simultaneous multi-scale modification are also presented. The examination was carried out with help of different modern research techniques – FT IR spectroscopy, differential thermal analysis and X-ray phase analysis. Identification of the new phases and comparative quantitative assessment of their content are performed. It is found that the use of nano- and micro-sized barium hydrosilicates as additives leads to reduction of portlandite by 27...28%; by means of multi-scale modification it is possible to reduce the content of portlandite much more (by 83.3%. Due to addition of nano- and micro-sized barium-based modifiers both the amount of calcium hydrosilicates in reaction products is enlarged, and structure of the mentioned hydrosilicates is changed (the formation of a fine-grained structure of hydration products takes place. Micro-sized barium hydrosilicates are chemically active additives and promote the formation of an additional quantity of calcium hydrosilicates of type CSH (I. The use of nanoscale barium hydrosilicates promotes the formation of CSH (I and CSH (II calcium hydrosilicates, and also both riversidite and xonotlite. As a result of simultaneous application of nano- and micro-sized barium hydrosilicates the content of CSH (II increases. This can be confirmed by means of differential thermal and X-ray analysis. The amount of CSH (I, riversidite and various tobermorites is also increases. It is

  9. Level and Chemical Composition of Cryoglobulins in Schizophrenia

    Science.gov (United States)

    Khoyetsyan, Aren; Boyajyan, Anna; Melkumova, Maya

    The blood samples of 40 schizophrenic patients were tested for the presence of cryoglobulins (Cgs) and composition of Cgs was examined. The elevated levels of type III Cgs, containing complement components, were detected in all study subjects.

  10. Chemical Composition of lower Mount Sharp at Gale Crater, Mars, as measured by the APXS

    Science.gov (United States)

    Gellert, R.; Boyd, N.; Campbell, J. L.; VanBommel, S.; Perrett, G. M.; Desouza, E.; Thompson, L. M.; Yen, A. S.; Berger, J. A.

    2015-12-01

    From sol 810 through to 950 the MSL Curiosity Rover carried out detailed investigations at Pahrump, which likely represents the lowest strata of Mount Sharp. The bulk chemistry is very different compared to previously encountered formations like Sheepbed at Yellowknifebay, which resembled an average Mars composition. The bedrock is significantly depleted in Mg and Ca, elevated in Al and Si and enriched in Zn (~2000 ppm), Se (~50 ppm) and Pb(~100 ppm). The composition varies only slightly over the ~10 meter elevation explored at Pahrump and is chemically homogenous on a 10 cm scale. However, some clear trends uphill are present. Zn and Se decrease with elevation, the Fe/Mn ratio, a possible indicator for the Fe3+ content, increases from 50 to 100. Elevated 2.5% P2O5 were encountered at higher elevations. SO3 ranges from 5 to 8% in the drill samples, higher abundances were found in Ca-sulfate veins and diagenetic features that contain ~15% (Mg,Ni)-sulfates. The Pahrump bedrock may be traced ~500m to the north and south. Bonanza King (sol 755, Hidden Valley) and Spokane (sol 989) share the same major chemistry, including similar trends in minor and trace elements. Most recently the rover approached a contact between Pahrump-like bedrock and an overlying, more resistant unit identified from orbit at Marias Pass. High SiO2, ranging from 63 to 72%, was found close to the contact, above which the sandstone composition changes abruptly to that of average Mars. Increased Si is correlated with elevated P and Ti, lower Al and Fe, and a dramatic decrease in Zn, Ni and Cr to very low values of a few 100 ppm and less. The elevated silica and associated elemental trends observed at Marias Pass share characteristics with the high silica bedrock examined at HomePlate in Gusev Crater, where acidic leaching or silica mobilization has been proposed. The stratigraphy together with data from 4 drill samples for SAM and Chemin might shed light on the formation history of this extensive

  11. Effects of chemical composition on the corrosion of dental alloys

    OpenAIRE

    GALO, Rodrigo; RIBEIRO, Ricardo Faria; RODRIGUES, Renata Cristina Silveira; Rocha, Luís Augusto; Mattos,Maria da Glória Chiarello de

    2012-01-01

    The aim of this study was to determine the effect of the oral environment on the corrosion of dental alloys with different compositions, using electrochemical methods. The corrosion rates were obtained from the current-potential curves and electrochemical impedance spectroscopy (EIS). The effect of artificial saliva on the corrosion of dental alloys was dependent on alloy composition. Dissolution of the ions occurred in all tested dental alloys and the results were strongly dependent on the g...

  12. Variation in size, morphology and chemical composition of polymetallic nodules from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.; Karisiddaiah, S.M.; Parthiban, G.

    Chemical composition of 613 polymetallic nodules from 150 stations in the Central Indian Ocean Basin (CIOB) are determined and variations in Mn, Fe, Cu, Ni, Co, Zn and moisture content are studied with respect to their size and surface texture...

  13. Chemical composition and antibacterial activity of essential oils against human pathogenic bacteria

    NARCIS (Netherlands)

    Sokovic, M.; Marin, P.D.; Brkic, D.; Griensven, van L.J.L.D.

    2008-01-01

    The chemical composition and antibacterial activity of essential oils from 10 aromatic plants Matricaria chamommilla, Mentha piperita, M. spicata, Lavandula angustifolia, Ocimum basilicum, Thymus vulgaris, Origanum vulgare, Salvia officinalis, Citrus limon and C. aurantium have been determined. Anti

  14. Life cycle risks for human health: a comparison of petroleum versus bio-based production of five bulk organic chemicals.

    Science.gov (United States)

    Roes, Alexander L; Patel, Martin K

    2007-10-01

    This article describes the development and application of a generic approach to the comparative assessment of risks related to the production of organic chemicals by petrochemical processes versus white biotechnology. White biotechnology, also referred to as industrial biotechnology, typically uses bio-based feedstocks instead of the fossil raw materials used in the petrochemical sector. The purpose of this study was to investigate whether the production of chemicals by means of white biotechnology has lower conventional risks than their production by petrochemical processes. Conventional risks are the risks of well-established processes, and not those related to genetically modified microorganisms and plants. Our approach combines classical risk assessment methods (largely based on toxicology), as developed by the life cycle assessment (LCA) community, with statistics on technological disasters, accidents, and work-related illnesses. Moreover, it covers the total process chain for both petrochemical and bio-based products from cradle to grave. The approach was applied to five products: the plastics polytrimethylene terephthalate (PTT), polyhydroxyalkanoates (PHA), polyethylene terephthalate (PET), polyethylene (PE), and ethanol. Our results show that the conventional risks related to the white biotechnology products studied are lower than those of the petrochemical products. However, considering the uncertainties with respect to the ranges of input data, the (incomplete) coverage of emissions by the environmental priority strategies (EPS) 2000 method, and the uncertainties of the assumptions made in this study (i.e., large to very large), the differences in results between bio-based and petrochemical products fall into the uncertainty range. Because of this, future research is necessary to decrease the uncertainties before we can conclude that the conventional risks of biotechnologically produced chemicals are lower than those of fossil-fuel-derived chemicals.

  15. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2016-02-01

    A recyclable organic bulking agent (BA) that can be screened and was developed to optimize green waste (GW) composting. This study investigated the use of wood chips (WC) (at 0%, 15%, and 25%) and/or composted green waste (CGW) (at 0%, 25%, and 35%) as the BAs in the two-stage composting of GW. The combined addition of WC and CGW improved the conditions of composting process and the quality of compost product in terms of composting temperature, porosity, water retention, particle-size distribution, pH, electrical conductivity (EC), cation exchange capacity (CEC), nitrogen losses, humification indices, microbial numbers, enzyme activities, macro- and micro-nutrient contents, and toxicity to germinating seeds. The compost matured in only 22days with the optimized two-stage composting method rather than in the 90-270days typically required for traditional composting. The optimal two-stage composting process and the best quality of compost product were obtained with the combined addition of 15% WC and 35% CGW.

  16. Chemically and Thermally Stable High Energy Density Silicone Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal energy storage systems with 300 ? 1000 kJ/kg energy density through either phase changes or chemical heat absorption are sought by NASA. This proposed effort...

  17. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition

    Science.gov (United States)

    Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong

    2016-06-01

    A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition.

  18. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.

    OpenAIRE

    Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, El Asma; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2014-01-01

    The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography–mass spectrometry (GC–MS). The antibacterial...

  19. Alternative technology of nanoparticles consolidation in the bulk material

    Directory of Open Access Journals (Sweden)

    VOLKOV Georgiy Michailovich

    2016-02-01

    Full Text Available Theoretical bases and technological principles of single-stages nanoparticles conso-lidation into bulk material were offered. The theory was implemented on the model system of carbon-carbon in the process of high-temperature pyrolysis of hydrocar-bons. The bulk carbon nanomaterial with unique technical properties was produced. That made it possible to create engineering products which technical characteristics are higher than the existing level in the world. The proposed theory can be adapted to other gas-phase, liquid phase and secondary crystallization processes to create bulk nanomaterials of another chemical composition with no less unique properties.

  20. Mechanical and Chemical Properties of Bamboo/Glass Fibers Reinforced Polyester Composites

    Directory of Open Access Journals (Sweden)

    K.Sudha Madhuri,

    2016-01-01

    Full Text Available The chemical resistance of Bamboo/Glass reinforced Polyester hybrid composites to acetic acid, Nitric acid, Hydrochloric acid, Sodium hydroxide, Sodium carbonate, Benzene, Toluene, Carbon tetrachloride and Water was studied. The tensile and impact properties of these composites were also studied. The effect of alkali treatment of bamboo fibers on these properties was studied. It was observed that the tensile and impact properties of the hybrid composites increase with glass fiber content. The author investigated the interfacial bonding between Glsss/Bamboo fiber composites by SEM. These properties found to be higher when alkali treated bamboo fibers were used in hybrid composites. The hybrid fiber composites showed better resistance to the chemicals mentioned above. The elimination of amorphous hemi-cellulose with alkali treatment leading to higher crystallinity of the bamboo fibers with alkali treatment may be responsible for these observations.

  1. Milk production and chemical composition of milk of Ukrainian mountain Carpathian sheep in pasture period

    OpenAIRE

    CHOKAN T.

    2011-01-01

    The comparative analysis of the milk chemical composition depending on milk productivity of Ukrainian Mountain Carpathian sheep during the pasture period were studied. It was found changes of milk composition (increasing of protein content, fat, dry matter and nutritive value) with a decrease of milk yield in the end period of lactation.

  2. Solvent Composition Directing Click-Functionalization at the Surface or in the Bulk of Azide-Modified PEDOT

    DEFF Research Database (Denmark)

    Lind, Johan Ulrik; Hansen, Thomas Steen; Daugaard, Anders Egede

    2011-01-01

    Thin films of the conducting polymer poly(3,4-(1-azidomethylethylene)dioxythiophene) tosylate (PEDOT−N3) can be functionalized by reaction with alkynated reagents in aqueous solutions. Reaction in pure water resulted in surface specific modification of PEDOT−N3 films, whereas both surface and bulk...... studies showed increasing film thickness with increasing DMSO content, with the measured thickness in pure DMSO being >250% of the thickness in pure water. A similar, but less pronounced, behavior was observed for unmodified poly(3,4-ethylenedioxythiophene) tosylate (PEDOT). High-density grafting...

  3. Chemical erosion of different carbon composites under ITER-relevant plasma conditions

    NARCIS (Netherlands)

    Westerhout, J.; Borodin, D.; Al, R.S.; Brezinsek, S.; Hoen, Mhjt; Kirschner, A.; Lisgo, S.; van der Meiden, H. J.; Philipps, V.; van de Pol, M.J.; Shumack, A. E.; De Temmerman, G.; Vijvers, W. A. J.; Wright, G. M.; Cardozo, N. J. L.; Rapp, J.; van Rooij, G. J.

    2009-01-01

    We have studied the chemical erosion of different carbon composites in Pilot-PSI at ITER-relevant hydrogen plasma fluxes (similar to 10(24) m(-2) s(-1)) and low electron temperatures (T-e similar to 1 eV). Optical emission spectroscopy on the CH A-X band was used to characterize the chemical sputter

  4. Recent Advances in the Chemical Composition of Propolis

    Directory of Open Access Journals (Sweden)

    Shuai Huang

    2014-11-01

    Full Text Available Propolis is a honeybee product with broad clinical applications. Current literature describes that propolis is collected from plant resins. From a systematic database search, 241 compounds were identified in propolis for the first time between 2000 and 2012; and they belong to such diverse chemical classes as flavonoids, phenylpropanoids, terpenenes, stilbenes, lignans, coumarins, and their prenylated derivatives, showing a pattern consistent with around 300 previously reported compounds. The chemical characteristics of propolis are linked to the diversity of geographical location, plant sources and bee species.

  5. Pasta added with chickpea flour: chemical composition, In vitro starchdigestibility and predicted glycemic index

    OpenAIRE

    2008-01-01

    Pasta was prepared with of durum wheat flour mixed with chickpea flour at two different levels and its chemical composition, in vitro starch digestibility and predicted glycemic index were assessed. Protein, ash, lipid, and dietary fiber content increased while total starch decreased with the chickpea flour level in the composite pasta, all in accordance to the composition of the legume flour. Potentially available starch decreased and resistant starch (RS) increased by adding chickpea flour ...

  6. Responses of soil enzyme activity and microbial community compositions to nitrogen addition in bulk and microaggregate soil in the temperate steppe of Inner Mongolia

    Science.gov (United States)

    Shi, Yao; Sheng, Lianxi; Wang, Zhongqiang; Zhang, Xinyu; He, Nianpeng; Yu, Qiang

    2016-10-01

    In order to explore the responses of soil enzyme activities and microbial community compositions to long-term nitrogen (N) addition in both bulk soil and microaggregate of chestnut soil, we conducted a 7-year urea addition experiment with N treatments at 6 levels (0, 56, 112, 224, 392 and 560 kg N ha-1 yr-1) in a temperate steppe of Inner Mongolia in China. Soil properties and the activities of four enzymes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were measured in both bulk soil and microaggregate, and phospholipid fatty acids (PLFAs) were measured in bulk soil. The results indicated that: 1) in bulk soil, N addition significantly decreased β-1,4-glucosidase (BG) and leucine aminopeptidase (LAP) activities at the treatment amounts of 224, 392 and 560 kg N ha-1 yr-1, and obviously suppressed β-1,4-N-acetylglucosaminidase (NAG) activity at the treatment amount of 560 kg N ha-1 yr-1. N addition enhanced total PLFAs (totPLFAs) and bacterial PLFAs (bacPLFAs) at the treatment amounts of 392 and 560 kg N ha-1 yr-1, respectively, but fungal PLFAs showed no response to N addition. The activities of BG, NAG and LAP were positively correlated with soil pH, but negatively correlated with the concentration of NH 4 + -N; 2) in microaggregate (53-250 μm), the activities of BG, NAG and AP showed no response to increased addition of N, but the significantly decreased LAP activity was observed at the treatment amount of 392 kg N ha-1 yr-1. These results suggested that enzyme activities were more sensitive to N addition than PLFA biomarkers in soil, and LAP activity in microaggregate may be a good indicator for evaluating N cycle response to long-term N addition.

  7. On the formation and chemical composition of super Earths

    Science.gov (United States)

    Alessi, Matthew; Pudritz, Ralph E.; Cridland, Alex J.

    2017-01-01

    Super Earths are the largest population of exoplanets and are seen to exhibit a rich diversity of compositions as inferred through their mean densities. Here we present a model that combines equilibrium chemistry in evolving discs with core accretion that tracks materials accreted on to planets during their formation. In doing so, we aim to explain why super Earths form so frequently and how they acquire such a diverse range of compositions. A key feature of our model is disc inhomogeneities, or planet traps, that act as barriers to rapid type-I migration. The traps we include are the dead zone, which can be caused by either cosmic ray or X-ray ionization, the ice line, and the heat transition. We find that in discs with sufficiently long lifetimes (≳4 Myr), all traps produce Jovian planets. In these discs, planet formation in the heat transition and X-ray dead zone produces hot Jupiters, while the ice line and cosmic ray dead zones produce Jupiters at roughly 1 au. Super Earth formation takes place within short-lived discs (≲2 Myr), whereby the discs are photoevaporated while planets are in a slow phase of gas accretion. We find that super Earth compositions range from dry and rocky (30 per cent ice by mass). The traps play a crucial role in our results, as they dictate where in the disc particular planets can accrete from, and what compositions they are able to acquire.

  8. On the Formation and Chemical Composition of Super Earths

    Science.gov (United States)

    Alessi, Matthew; Pudritz, Ralph E.; Cridland, Alex J.

    2016-09-01

    Super Earths are the largest population of exoplanets and are seen to exhibit a rich diversity of compositions as inferred through their mean densities. Here we present a model that combines equilibrium chemistry in evolving disks with core accretion that tracks materials accreted onto planets during their formation. In doing so, we aim to explain why super Earths form so frequently and how they acquire such a diverse range of compositions. A key feature of our model is disk inhomogeneities, or planet traps, that act as barriers to rapid type-I migration. The traps we include are the dead zone, which can be caused by either cosmic ray or X-ray ionization, the ice line, and the heat transition. We find that in disks with sufficiently long lifetimes (≳ 4 Myr), all traps produce Jovian planets. In these disks, planet formation in the heat transition and X-ray dead zone produces hot Jupiters while the ice line and cosmic ray dead zones produce Jupiters at roughly 1 AU. Super Earth formation takes place within short-lived disks (≲ 2 Myr), whereby the disks are photoevaporated while planets are in a slow phase of gas accretion. We find that super Earth compositions range from dry and rocky ( 30 % ice by mass). The traps play a crucial role in our results, as they dictate where in the disk particular planets can accrete from, and what compositions they are able to acquire.

  9. Chemical composition and in vitro dry matter digestibility of lichens

    Directory of Open Access Journals (Sweden)

    Torstein H. Garmo

    1986-06-01

    Full Text Available The chemical composition and in vitro dry matter digestibility of 45 samples of different species of lichen are reported. Mean content (g/100 g dry matter of the main nutrients was: crude protein 4.2, crude fat 3.2, crude fibre 16.6, ash 1.9, Ca 0.15, P 0.09, Mg 0.05, K 0.13, Na 0.035, S 0.07. The content of microminerals (mg/kg dry matter was: Cu 2.5, Mo 0.11, Zn 27.2, Se 0.12, Fe 898, Mn 154. The mean in vitro dry matter digestibility was 35%. However, the in vitro method do underestimate the dry matter digestibility of lichens. Stereocaulon spp. showed higher levels of crude protein, P, S, Cu and Mo than Cetraria spp. and Cladonia spp. Cetraria nivalis showed higher digestibility and contained more NFE, ash, Ca, Mg, but less crude fibre than Cladonia stellaris. Lichens contained less amounts of most nutrients compared with grasses (Fig. 1, exept for crude fat, NFE, Se and Fe.Kjemisk innhald og in vitro fordøyelsesgrad av lav.Abstract in Norwegian / Samandrag: Kjemisk innhald og in vitro fordøyelsesgrad av tørrstoffet er bestemt i 45 prøver av beitelav frå to stader i Sør-Noreg. Middel innhald (g/100g tørrstoff av følgjande næringsstoff var: protein 4.2, feitt 3.2, trevlar 16.6, oske 1.9, kalsium 0.15, fosfor 0.09, magnesium 0.05, kalium 0.13, natrium 0.035, svovel 0.07. Innhaldet (mg/kg tørrstoff av mikronæringsstoffa var: kopar 2.5, molybden 0.11, sink 27.2, selen 0.12, jern 898 og mangan 154. Den midlare fordøyelsesgraden av tørrstoffet i lav-prøvene var 35%, men in vitro fordøyelsesanalyser undervurderer fordøyelsesgraden av lav. Det var ein stor variasjon mellom dei ulike lavartane for dei fleste næringsstoffa og fordøyelsesgraden. Stereocaulon spp. inneheldt meir protein, fosfor, svovel, kopar og molybden enn Cetraria spp. og Cladonia spp. Gulskinn hadde høgare fordøyelsesgrad, og innehaldet av NFE, oske, kalsium og magnesium var høgre enn i kvitkrull, medan trevleinnhaldet var størst i kvitkrull. Lav inneheldt

  10. Floral Scent in Wisteria: Chemical Composition, Emission Pattern and Regulation

    Science.gov (United States)

    Volatile chemicals emitted from the flowers of Chinese wisteria (Wisteria sinenesis) and Japanese wisteria (W. floribunda) were collected using a dynamic headspace technique and identified by a gas chromatography-mass spectrometry. About 30 and 22 compounds were detected from Chinese wisteria and Ja...

  11. Influence of Breed, Parity and Food Intake on Chemical Composition of First Colostrum in Cow

    Directory of Open Access Journals (Sweden)

    Simona Zarcula

    2010-05-01

    Full Text Available The aim of this research was to establish the influence of breed, parity and food intake on chemical composition of first colostrum. We observed that fat, proteins, lactose and dry matter were higher in cows from second and third lactation compared to those in fourth lactation. Cow's breed also influenced the colostrum composition, superior quality being obtained in case of Romanian White and Black comparing Holstein Friesian cows. The unbalanced energo-proteic ratio had a negative impact on chemical composition of first colostrum.

  12. Relationship between chemical composition and in situ rumen degradation characteristics of maize silages in dairy cows.

    Science.gov (United States)

    Ali, M; van Duinkerken, G; Cone, J W; Klop, A; Blok, M C; Spek, J W; Bruinenberg, M H; Hendriks, W H

    2014-11-01

    Several in situ studies have been conducted on maize silages to determine the effect of individual factors such as maturity stage, chop length and ensiling of maize crop on the rumen degradation but the information on the relationship between chemical composition and in situ rumen degradation characteristics remains scarce. The objectives of this study were to determine and describe relationships between the chemical composition and the rumen degradation characteristics of dry matter (DM), organic matter (OM), CP, starch and aNDFom (NDF assayed with a heat stable amylase and expressed exclusive of residual ash) of maize silages. In all, 75 maize silage samples were selected, with a broad range in chemical composition and quality parameters. The samples were incubated in the rumen for 2, 4, 8, 16, 32, 72 and 336 h, using the nylon bag technique. Large range was found in the rumen degradable fractions of DM, OM, CP, starch and aNDFom because of the broad range in chemical composition and quality parameters. The new database with in situ rumen degradation characteristics of DM, OM, CP, starch and aNDFom of the maize silages was obtained under uniform experimental conditions; same cows, same incubation protocol and same chemical analysis procedures. Regression equations were developed with significant predictors (P<0.05) describing moderate and weak relationships between the chemical composition and the washout fraction, rumen undegradable fraction, potentially rumen degradable fraction, fractional degradation rate and effective rumen degradable fraction of DM, OM, CP, starch and aNDFom.

  13. Rapid Characterization of Woody Biomass Digestibility and Chemical Composition Using Near-infrared Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Shen Hou; Laigeng Li

    2011-01-01

    Rapid determination of the properties of lignocellulosic material is highly desirable for biomass production and utilization. In the present study, measurements of woody biomass digestibility and chemical composition using near-infrared reflectance (NIR) spectroscopy were calibrated. Poplar and eucalyptus materials were recorded in NIR spectrum as well as determined for their chemical compositions of Klason lignin, α-celluiose, holocellulose, lignin syringyl/guaiacyl (S/G) ratio and enzymatic digestibility. Fitting of the NIR information with chemical properties and digestibility by partial least-squares (PLS) regression generated a group of trained NIR models that were able to be used for rapid biomass measurement. Applying the models for woody biomass measurements led to a reliable evaluation of the chemical composition and digestibility, suggesting the feasibility of using NIR spectroscopy in the rapid characterization of biomass properties.

  14. Direct Monte Carlo simulation of the chemical equilibrium composition of detonation products

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M.S.

    1993-06-01

    A new Monte Carlo simulation method has been developed by the author which gives the equilibrium chemical composition of a molecular fluid directly. The usual NPT ensemble (isothermal-isobaric) is implemented with N being the number of atoms instead of molecules. Changes in chemical composition are treated as correlated spatial moves of atoms. Given the interaction potentials between molecular products, ``exact`` EOS points including the equilibrium chemical composition can be determined from the simulations. This method is applied to detonation products at conditions in the region near the Chapman- Jouget state. For the example of NO, it is shown that the CJ detonation velocity can be determined to a few meters per second. A rather small change in cross potentials is shown to shift the chemical equilibrium and the CJ conditions significantly.

  15. Mechanical behavior of chemically treated Jute/Polymer composites

    Directory of Open Access Journals (Sweden)

    Murali B

    2014-03-01

    Full Text Available Fiber which serves as a reinforcement in reinforced plastics may be synthetic or natural past studies show that only artificial fibers such as glass, carbon etc., have been used in fiber reinforced plastics. Although glass and other synthetic fiber reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of jute , a natural fiber abundantly available in India. Natural fibers are not only strong and lightweight but also relatively very cheap. In the present work, jute composites are developed and their mechanical properties are evaluated. Mechanical properties of jute/polymer and compared with glass fiber/epoxy. These results indicate that jute can be used as a potential reinforcing material for making low load bearing thermoplastic composites.

  16. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Matlin, W.M.; Stinton, D.P.; Liaw, P.K.

    1996-06-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  17. Chemical Composition of Ground Pearl (Eurhizococcus colombianus Cysts

    Directory of Open Access Journals (Sweden)

    Fernando Echeverri

    2008-01-01

    Full Text Available Ground pearl (Eurhizococcus colombianus is a crop pest in Colombia, withspecial impact on fig, grass, rubus and tomato plants. The insect is resistant to externalinsecticide application because it produces a thick waxy shell that isolates it from theenvironment. The composition of this shell was determined by NMR and MS as atriglyceride, whose fatty acid is transformed into other products with the metamorphosis ofthe insect. Additionally, several enzymatic inhibitors were assayed to control the insectwith negative results.

  18. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Matlin, W.M.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-08-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  19. Vertical gradient solution growth of N-type Si0.73Ge0.27 bulk crystals with homogeneous composition and its thermoelectric properties

    Science.gov (United States)

    Omprakash, M.; Arivanandhan, M.; Sabarinathan, M.; Koyama, T.; Momose, Y.; Ikeda, H.; Tatsuoka, H.; Aswal, D. K.; Bhattacharya, S.; Inatomi, Y.; Hayakawa, Y.

    2016-05-01

    Compositionally homogeneous Sb-doped (5×1018 and 1×1019 cm-3) Si0.73Ge0.27 bulk crystals were grown by a vertical gradient solution growth method. The sandwich sample Si (seed)/Sb-doped Ge/ Si(feed) was set up inside a furnace under a mild temperature gradient 0.57 °C/mm for homogeneous growth. The Si composition was analyzed by electron probe micro- analysis (EPMA). It revealed that the Si composition was homogeneous and the lengths of the Sb-doped (5×1018 and 1×1019 cm-3) Si0.73Ge0.27 bulk crystals were 18.3 and 15.1 mm, respectively. Grain distribution was investigated by electron backscattered diffraction spectrum (EBSD). The Seebeck coefficients (-440 and -426 μV/K) of Sb-doped (5×1018 and 1×1019 cm-3) Si0.73Ge0.27 were higher than the reported value (-211 μV/K) of P-doped (5×1019 cm-3) Si0.8Ge0.2 at room temperature. Thermal conductivity of Ga and Sb-doped SiGe was decreased with temperature due to scattering of phonon at the temperature range between 313 and 913 K. The maximum ZT values of Ga and Sb-doped SiGe were 0.34 and 0.44 at 820 K, respectively. The ZT values of Ga and Sb-doped SiGe were higher (0.07 and 0.13) than the reported value of Ga-doped Si0.81Ge0.19 (0.05) and P-doped (5×1019 cm-3) Si0.8Ge0.2 bulk crystals at room temperature. The improvement in ZT value was caused by a decrease of thermal conductivity which related to a composition of the alloy and doping concentration in the crystal.

  20. Regulating continent growth and composition by chemical weathering.

    Science.gov (United States)

    Lee, Cin-Ty Aeolus; Morton, Douglas M; Little, Mark G; Kistler, Ronald; Horodyskyj, Ulyana N; Leeman, William P; Agranier, Arnaud

    2008-04-01

    Continents ride high above the ocean floor because they are underlain by thick, low-density, Si-rich, and Mg-poor crust. However, the parental magmas of continents were basaltic, which means they must have lost Mg relative to Si during their maturation into continents. Igneous differentiation followed by lower crustal delamination and chemical weathering followed by subduction recycling are possible solutions, but the relative magnitudes of each process have never been quantitatively constrained because of the lack of appropriate data. Here, we show that the relative contributions of these processes can be obtained by simultaneous examination of Mg and Li (an analog for Mg) on the regional and global scales in arcs, delaminated lower crust, and river waters. At least 20% of Mg is lost from continents by weathering, which translates into >20% of continental mass lost by weathering (40% by delamination). Chemical weathering leaves behind a more Si-rich and Mg-poor crust, which is less dense and hence decreases the probability of crustal recycling by subduction. Net continental growth is thus modulated by chemical weathering and likely influenced by secular changes in weathering mechanisms.

  1. Chemical composition of dissolved organic nitrogen in the ocean

    Science.gov (United States)

    McCarthy, Matthew; Pratum, Tom; Hedges, John; Benner, Ronald

    1997-11-01

    Fixed nitrogen is one of the main limiting nutrients for primary production in the ocean, where it is biologically available in the form of dissolved inorganic and organic matter. Inorganic nitrogen concentrations are consequently very low in surface waters of temperate ocean gyres, yet fixed nitrogen persists in the form of dissolved organic matter. The small, rapidly cycling organic compounds fundamental to microbial and planktonic growth (such as free amino acids, amines and urea) account for only a minor fraction of total dissolved organic nitrogen (DON). In contrast, the vast majority of DON, especially in the deep ocean, resides in the form of nitrogenous substances that are resistant to biological degradation. These substances, which represent an enormous reservoir of fixed nitrogen, are not readily identified by conventional biochemical techniques, but have been assumed to consist largely of structurally complex macromolecules resulting from the degradation and spontaneous abiotic condensation of biochemical precursors. Here we present 15N NMR measurements that contradict this view. Our results show that most higher-molecular-weight DON in the ocean exists in amide form, rather than as a collection of nitrogen heterocycles that might be indicative of spontaneous condensation products. Because these amides are unlikely to form abiotically, the bulk of the ocean's DON reservoir appears to derive directly from degradation-resistant biomolecules.

  2. Chemical composition of primary cosmic rays with IceCube

    Science.gov (United States)

    Xu, Chen

    Ground detector arrays have been used to measure high energy cosmic rays for decades to overcome their very low rate. IceCube is a special case with its 3D deployment and unique location---the South Pole. Although all 86 strings and 81 stations of IceCube were completed in 2011, IceCube began to take data in 2006, after the completion of the first 9 strings. In this thesis, experimental data taken in 2009 with 59 strings are used for composition analysis albeit some techniques are illustrated with the 40-string data. Simulation is essential in the composition work. Simulated data must be compared against the experimental data to find the right mix of cosmic ray components. However, because of limited computing resources and complexities of cosmic rays, the simulation in IceCube is well behind the experiment. The lower and upper bounds of primary energy in simulation for events that go through IceTop and the deep arrays of IceCube are 1014 eV and 1017 eV. However, since IceCube has a threshold energy about several hundred TeV, and an upper limit of 10 18 eV, the full energy range cannot be explored in this thesis. The approach taken to the composition problem in this thesis is a 2D Bayesian unfolding. It takes account of the measured IceTop and InIce energy spectrum and outputs the expected primary energy spectrum of different mass components. Studies of the uncertainties in the results are not complete because of limited simulation and understanding of the new detector and South Pole environment.

  3. Characterization of chemical composition of bee pollen in China.

    Science.gov (United States)

    Yang, Kai; Wu, Dan; Ye, Xingqian; Liu, Donghong; Chen, Jianchu; Sun, Peilong

    2013-01-23

    Bee pollen has been praised for its good nutrition and therapeutic values. China is the largest producer in the world. Twelve common varieties of monofloral bee pollen collected from China's main producing regions were selected for nutritional composition analysis, including proximate contents, dietary fibers, amino acid distribution, fatty acid composition, and mineral elements. The proximate compositions mostly met the specifications regulating pollen load quality of China. Proline and glutamic acids were found to be the predominant amino acids in the form of both total amino and free amino acids. Lysine was the relative limiting amino acid. The percentage of total essential amino acids (TEAA) to total amino acids (TAA) reached the nutrition recommendation of the Food and Agricultural Organization (FAO). The major fatty acids, presented as mean values, were C18:3 (25.1%), C16:0 (19.6%), C18:1 (17.3%), C18:2 (8.78%), C22:0 (4.07%), and C18:0 (2.96%) acids. The proportions of C18:3 were generally higher than those of C18:2, and the ratio of total unsaturated fatty acids (TUS) to total saturated fatty acids (TS) was >1.0, except for Nelumbo nucifera Gaertn. pollen for the characteristic absence of C18:3 acids. High levels of beneficial elements such as K, Ca, Mg, Zn, Fe, Mn. and Cu were observed in pollen samples. The contents of detrimental trace elements of Cd, Pb, and Hg were primarily lower or not detected. However, more attention should be paid to a large amount of Al, with a concentration of >100 mg/kg DW in most samples. There were some significant differences between samples. On the whole, the Chinese bee pollen was evaluated as a good complement to diet.

  4. Testing chemical composition of highest energy comic rays

    CERN Document Server

    Nosek, D; Noskova, J; Ebr, J

    2013-01-01

    We study basic characteristics of distributions of the depths of shower maximum in air showers caused by cosmic rays with the highest energies. The consistency between their average values and widths, and their energy dependences are discussed within a simple phenomenological model of shower development independently of assumptions about detailed features of high--energy interactions. It is shown that reliable information on primary species can be derived within a partition method. We present examples demonstrating implications for the changes in mass composition of primary cosmic rays.

  5. Software for analysis of chemical mixtures--composition, occurrence, distribution, and possible toxicity

    Science.gov (United States)

    Scott, Jonathon C.; Skach, Kenneth A.; Toccalino, Patricia L.

    2013-01-01

    The composition, occurrence, distribution, and possible toxicity of chemical mixtures in the environment are research concerns of the U.S. Geological Survey and others. The presence of specific chemical mixtures may serve as indicators of natural phenomena or human-caused events. Chemical mixtures may also have ecological, industrial, geochemical, or toxicological effects. Chemical-mixture occurrences vary by analyte composition and concentration. Four related computer programs have been developed by the National Water-Quality Assessment Program of the U.S. Geological Survey for research of chemical-mixture compositions, occurrences, distributions, and possible toxicities. The compositions and occurrences are identified for the user-supplied data, and therefore the resultant counts are constrained by the user’s choices for the selection of chemicals, reporting limits for the analytical methods, spatial coverage, and time span for the data supplied. The distribution of chemical mixtures may be spatial, temporal, and (or) related to some other variable, such as chemical usage. Possible toxicities optionally are estimated from user-supplied benchmark data. The software for the analysis of chemical mixtures described in this report is designed to work with chemical-analysis data files retrieved from the U.S. Geological Survey National Water Information System but can also be used with appropriately formatted data from other sources. Installation and usage of the mixture software are documented. This mixture software was designed to function with minimal changes on a variety of computer-operating systems. To obtain the software described herein and other U.S. Geological Survey software, visit http://water.usgs.gov/software/.

  6. Biotechnology for bulk production of organic chemicals. Use of biomass as an option for the future?; Biotechnologie voor bulkproductie van organische chemicalien. Inzet biomassa optie voor de toekomst?

    Energy Technology Data Exchange (ETDEWEB)

    Patel, M.K.; Crank, M.; Dornburg, V.; Hermann, B.G. [Sectie Natuurwetenschap en Samenleving, Copernicus Instituut, Universiteit Utrecht, Utrecht (Netherlands); Van Overbeek, L. [Plant Research International, Wageningen (Netherlands)

    2007-07-01

    This article summarizes the BREW study (Biotechnological production of bulk chemicals from RenEWable resources), which was carried out for the European Commission by a consortium, coordinated by the Copernicus Institute of the Utrecht University in the Netherlands. The study investigates the medium and long-term opportunities and risks of the biotechnological production of organic chemicals. The objective is to gain better understanding of the techno-economic and the societal viability of White Biotechnology in the coming decades. The key research questions are which products could be made with White Biotechnology, whether these products can contribute to savings of energy use and greenhouse gas (GHG) emissions, under which conditions the products become economically viable, which risks may originate from the use of genetically modified organisms (GMO) in fermentation and what the public perception is. [Dutch] Tegenwoordig worden bijna alle organische chemische stoffen en plastics geproduceerd uit ruwe olie en aardgas. Moet dit zo blijven of zijn er andere, meer duurzame manieren om chemische stoffen te produceren? Het gebruik van biomassa als grondstof en het inzetten van biotechnologie zijn twee mogelijkheden. Maar wanneer we deze methoden gebruiken, Iopen we dan tegen nieuwe, onvoorziene risico's aan? Dit artikel geeft een samenvatting van de uitkomst van een gedetailleerde studie, gefinancierd door de Europese Unie, over deze en andere belangrijke vragen.

  7. Simulation of aerosol chemical compositions in the Western Mediterranean Sea

    Science.gov (United States)

    Chrit, Mounir; Kata Sartelet, Karine; Sciare, Jean; Marchand, Nicolas; Pey, Jorge; Sellegri, Karine

    2016-04-01

    This work aims at evaluating the chemical transport model (CTM) Polair3d of the air-quality modelling platform Polyphemus during the ChArMex summer campaigns of 2013, using ground-based measurements performed at ERSA (Cape Corsica, France), and at determining the processes controlling organic aerosol concentrations at ERSA. Simulations are compared to measurements for concentrations of both organic and inorganic species, as well as the ratio of biogenic versus anthropogenic particles, and organic aerosol properties (oxidation state). For inorganics, the concentrations of sulphate, sodium, chloride, ammonium and nitrate are compared to measurements. Non-sea-salt sulphate and ammonium concentrations are well reproduced by the model. However, because of the geographic location of the measurement station at Cape Corsica which undergoes strong wind velocities and sea effects, sea-salt sulphate, sodium, chloride and nitrate concentrations are strongly influenced by the parameterizations used for sea-salt emissions. Different parameterizations are compared and a parameterization is chosen after comparison to sodium measurements. For organics, the concentrations are well modelled when compared to experimental values. Anthropogenic particles are influenced by emission of semi-volatile organic compounds (SVOC). Measurements allow us to refine the estimation of those emissions, which are currently missing in emission inventories. Although concentrations of biogenic particles are well simulated, the organic chemical compounds are not enough oxidised in the model. The observed oxidation state of organics shows that the oligomerisation of pinonaldehyde was over-estimated in Polyphemus. To improve the oxidation property of organics, the formation of extremely low volatile organic compounds from autoxidation of monoterpenes is added to Polyphemus, using recently published data from chamber experiments. These chemical compounds are highly oxygenated and are formed rapidly, as first

  8. Compaction of an Oxisol and chemical composition of palisadegrass

    Directory of Open Access Journals (Sweden)

    Eurico Lucas de Sousa Neto

    2013-08-01

    Full Text Available Compaction is an important problem in soils under pastoral land use, and can make livestock systems unsustainable. The objective of this research was to study the impact of soil compaction on yield and quality of palisade (UROCHLOA BRIZANTHA cv. Marandu. The experiment was conducted on an Oxisol in the State of Mato Grosso, Brazil. Treatments consisted of four levels of soil compaction: no compaction (NC, slight compaction (SC, medium compaction (MC and high compaction (HC. The following soil properties were evaluated (layers 0-0.05 and 0.05-0.10 m: aggregate size distribution, bulk density (BD, macroporosity, microporosity, total porosity (TP, relative compaction (RC, and the characteristics of crude protein (CP, neutral detergent fiber (NDF, acid detergent fiber (ADF and dry matter yield (DMY of the forage. Highly compacted soil had high BD and RC, and low TP (0-0.05 m. Both DMY and CP were affected by HC, and both were strongly related to BD. Higher DMY (6.96 Mg ha-1 and CP (7.8 % were observed in the MC treatment (BD 1.57 Mg m-3 and RC 0.91 Mg m-3, in 0-0.05 m. A high BD of 1.57 Mg m-3 (0-0.05 m did not inhibit plant growth. The N concentration in the palisade biomass differed significantly among compaction treatments, and was 8.72, 11.20, 12.48 and 10.98 g kg-1 in NC, SC, MC and HC treatments, respectively. Increase in DMY and CP at the MC level may be attributed to more absorption of N in this coarse-textured soil.

  9. [Analysis of main chemical composition in hydrogenated rosin from Zhuzhou].

    Science.gov (United States)

    Duan, W G; Chen, X P; Wang, L L; Deng, S; Zhou, Y H; An, X N

    2001-01-01

    The acid fraction, the main part of the hydrogenated rosin produced by Zhuzhou Forest Chemicals Plant of China, was separated from neutral fraction by modified DEAE-Sephadex ion exchange chromatography and analyzed with GC-MS-DS technique by using DB-5 capillary column. Six dihydroabietic-type resin acids, four dihydropimaric/isopimaric-type resin acids and four tetrahydroabietic-type resin acids were identified. The hydrogenated rosin is composed mainly of 8-abietenoic acid, 18-abietanoic acid, 13-abietenoic acid, 8 alpha, 13 beta-abietanoic acid, 13 beta-8-abietenoic acid and 8-isopimarenoic acid etc.

  10. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Matlin, W.M. [Univ. of Tennessee, Knoxville, TN (United States); Stinton, D.P.; Besmann, T.M. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    A two-step forced chemical vapor infiltration process was developed that reduced infiltration times for 4.45 cm dia. by 1.27 cm thick Nicalon{sup +} fiber preforms by two thirds while maintaining final densities near 90 %. In the first stage of the process, micro-voids within fiber bundles in the cloth were uniformly infiltrated throughout the preform. In the second stage, the deposition rate was increased to more rapidly fill the macro-voids between bundles within the cloth and between layers of cloth. By varying the thermal gradient across the preform uniform infiltration rates were maintained and high final densities achieved.

  11. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; McLaughlin, J.C. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Probst, K.J.; Anderson, T.J. [Univ. of Florida, Gainesville, FL (United States). Dept. of Chemical Engineering; Starr, T.L. [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Materials Science and Engineering

    1997-12-01

    Silicon carbide-based heat exchanger tubes are of interest to energy production and conversion systems due to their excellent high temperature properties. Fiber-reinforced SiC is of particular importance for these applications since it is substantially tougher than monolithic SiC, and therefore more damage and thermal shock tolerant. This paper reviews a program to develop a scaled-up system for the chemical vapor infiltration of tubular shapes of fiber-reinforced SiC. The efforts include producing a unique furnace design, extensive process and system modeling, and experimental efforts to demonstrate tube fabrication.

  12. Composite reweighting with Imaginary Chemical Potentials in SU(3)

    CERN Document Server

    Crompton, P R

    2002-01-01

    We review the overlap pathology of the Glasgow reweighting method for finite density QCD, and discuss the sampling bias that effects the determination of the ensemble-averaged fugacity polynomial expansion coefficients that form the Grand Canonical Partition function. The expectation of the difference in free energies between canonical partition functions generated with different measures is presented as an indicator of a systematic quark number dependent biasing in the reweighting approach. The advantages of building up an unbiased polynomial expansion for the Grand Canonical Partition function through a series of parallel ensembles generated by reweighting with imaginary chemical potentials are then contrasted with addressing the overlap pathology through a secondary reweighting.

  13. Chemical-garden formation, morphology, and composition. I. Effect of the nature of the cations.

    Science.gov (United States)

    Cartwright, Julyan H E; Escribano, Bruno; Sainz-Daz, C Ignacio

    2011-04-05

    We have grown chemical gardens in different sodium silicate solutions from several metal-ion salts--calcium chloride, manganese chloride, cobalt chloride, and nickel sulfate--with cations from period 4 of the periodic table. We have studied their formation process using photography, examined the morphologies produced using scanning electron microscopy (SEM), and analyzed chemical compositions using X-ray powder diffraction (XRD) and energy dispersive X-ray analysis (EDX) to understand better the physical and chemical processes involved in the chemical-garden reaction. We have identified different growth regimes in these salts that are dependent on the concentration of silicate solution and the nature of the cations involved.

  14. Chemical composition distribution analysis of photoresist copolymers and influence on ArF lithographic performance

    Science.gov (United States)

    Momose, Hikaru; Yasuda, Atsushi; Ueda, Akifumi; Iseki, Takayuki; Ute, Koichi; Nishimura, Takashi; Nakagawa, Ryo; Kitayama, Tatsuki

    2007-03-01

    For getting information about the distribution of chemical composition, several model polymers were prepared under different polymerization conditions and were measured by critical adsorption point-liquid chromatography (CAP-LC). In the copolymer system of 8- and 9- (4-oxatricyclo[5.2.1.0 2,6]decane-3-one) acrylate (OTDA) and 2-ethyl-2-adamantyl methacrylate (EAdMA), the peak shapes of the CAP-LC chromatogram varied according to the polymerization condition although they indicated same molecular weight and averaged chemical composition. The difference of the CAP-LC elution curves was related to the chemical composition distribution of copolymers for CAP-LC measurement combined with proton nuclear magnetic resonance (1H-NMR). The terpolymers consisted of α-hydroxy-γ-butyrolactone methacrylate (GBLMA), 2-methyl-2-adamantyl methacrylate (MAdMA) and 1-hydroxy-3-adamantyl methacrylate (HAdMA) were prepared under various polymerization conditions. In the terpolymer system that had same molecular weight and average chemical composition, the solubility parameter (δ) and the dissolution rate were measured. The δ value and the dissolution rate curve were different among these terpolymers. It was suggested that the δ value and the chemical composition distribution of these terpolymers have a significant influence on the lithographic performance.

  15. On the Formation and Chemical Composition of Super Earths

    CERN Document Server

    Alessi, Matthew; Cridland, Alex J

    2016-01-01

    Super Earths are the largest population of exoplanets and are seen to exhibit a rich diversity of compositions as inferred through their mean densities. Here we present a model that combines equilibrium chemistry in evolving disks with core accretion that tracks materials accreted onto planets during their formation. In doing so, we aim to explain why super Earths form so frequently and how they acquire such a diverse range of compositions. A key feature of our model is disk inhomogeneities, or planet traps, that act as barriers to rapid type-I migration. The traps we include are the dead zone, which can be caused by either cosmic ray or X-ray ionization, the ice line, and the heat transition. We find that in disks with sufficiently long lifetimes ($\\gtrsim$ 4 Myr), all traps produce Jovian planets. In these disks, planet formation in the heat transition and X-ray dead zone produces hot Jupiters while the ice line and cosmic ray dead zones produce Jupiters at roughly 1 AU. Super Earth formation takes place wi...

  16. Nanoscale chemical interaction enhances the physical properties of bioglass composites.

    Science.gov (United States)

    Ravarian, Roya; Zhong, Xia; Barbeck, Mike; Ghanaati, Shahram; Kirkpatrick, Charles James; Murphy, Ciara M; Schindeler, Aaron; Chrzanowski, Wojciech; Dehghani, Fariba

    2013-10-22

    Bioglasses are favorable biomaterials for bone tissue engineering; however, their applications are limited due to their brittleness. In addition, the early failure in the interface is a common problem of composites of bioglass and a polymer with high mechanical strength. This effect is due to the phase separation, nonhomogeneous mixture, nonuniform mechanical strength, and different degradation properties of two compounds. To address these issues, in this study a nanoscale interaction between poly(methyl methacrylate) (PMMA) and bioactive glass was formed via silane coupling agent (3-trimethoxysilyl)propyl methacrylate (MPMA). A monolith was produced at optimum composition from this hybrid by the sol-gel method at 50 °C with a rapid gelation time (hybrid. The in vivo studies in mice demonstrated that the integrity of the hybrids was maintained in subcutaneous implantation. They induced mainly a mononuclear phagocytic tissue reaction with a low level of inflammation, while bioglass provoked a tissue reaction with TRAP-positive multinucleated giant cells. These results demonstrated that the presence of a nanoscale interaction between bioglass and PMMA affects the properties of bioglass and broadens its potential applications for bone replacement.

  17. Chemical Composition and Antioxidant Capacity of Brazilian Passiflora Seed Oils.

    Science.gov (United States)

    de Santana, Fernanda Carvalho; Shinagawa, Fernanda Branco; Araujo, Elias da Silva; Costa, Ana Maria; Mancini-Filho, Jorge

    2015-12-01

    The seed oils of different varieties of 4 Passiflora species cultivated in Brazil were analyzed and compared regarding their physicochemical parameters, fatty acid composition and the presence of minor components, such as phytosterols, tocopherols, total carotenoids, and phenolic compounds. The antioxidant capacities of the oil extracts were determined using the 2,2'azinobis [3-ethylbenzothiazoline-6-sulfonic acid] and oxygen radical absorbance capacity methods. The results revealed that all studied Passiflora seed oils possessed similar physicochemical characteristics, except for color, and predominantly contained polyunsaturated fatty acids with a high percentage of linolenic acid (68.75% to 71.54%). Other than the total phytosterol content, the extracted oil from Passiflora setacea BRS Pérola do Cerrado seeds had higher quantities (% times higher than the average of all samples), of carotenoids (44%), phenolic compounds (282%) and vitamin E (215%, 56%, 398%, and 100% for the α-tocopherol, β-tocopherol, γ-tocopherol, and δ-tocopherol isomers, respectively). The methanolic extracts from Passiflora setacea BRS Pérola do Cerrado seed oil also showed higher antioxidant activity, which was positively correlated with the total phenolic, δ-tocopherol, and vitamin E contents. For the first time, these results indicate that Passiflora species have strong potential regarding the use of their seeds for oil extraction. Due to their interesting composition, the seed oils may be used as a raw material in manufacturing industries in addition to other widely used vegetable oils.

  18. An estimate of the chemical composition of Titan's lakes

    CERN Document Server

    Cordier, D; Lunine, J -I; Lavvas, P; Vuitton, V

    2009-01-01

    Hundreds of radar-dark patches interpreted as lakes have been discovered in the north and south polar regions of Titan. We have estimated the composition of these lakes by using the direct abundance measurements from the Gas Chromatograph Mass Spectrometer (GCMS) aboard the Huygens probe and recent photochemical models based on the vertical temperature profile derived by the Huygens Atmospheric Structure Instrument (HASI). Thermodynamic equilibrium is assumed between the atmosphere and the lakes, which are also considered as nonideal solutions. We find that the main constituents of the lakes are ethane (C2H6) (~76-79%), propane (C3H8) (~7-8%), methane (CH4) (~5-10%), hydrogen cyanide (HCN) (~2-3%), butene (C4H8) (~1%), butane (C4H10) (~1%) and acetylene (C2H2) (~1%). The calculated composition of lakes is then substantially different from what has been expected from models elaborated prior to the exploration of Titan by the Cassini-Huygens spacecraft.

  19. Analysis of changes in the chemical composition of the blast furnace coke at high temperatures

    Directory of Open Access Journals (Sweden)

    A. Konstanciak

    2012-12-01

    Full Text Available Purpose: The main purpose of this paper was to analyze the behavior of coke in the blast furnace. The analysis of changes in chemical composition of coke due to impact of inert gas and air at different temperatures was made. The impact of the application of the thermoabrasion coefficient on the porosity of coke was also analyzed.Design/methodology/approach: By applying the Computer Thermochemical Database of the TERMO system (REAKTOR1 and REAKTOR3 three groups of substances can be distinguished. The chemical composition of blast furnace coke and the results of calculations of changes of chemical composition of coke heat treated under certain conditions were compared. The structural studies of these materials were presented.Findings: The results of the analysis of ash produced from one of Polish cokes was taken for consideration. This is not the average composition of Polish coke ashes, nevertheless it is representative of most commonly occurring chemical compositions.Practical implications: Thanks to the thermochemical calculations it is possible to predict ash composition after the treatment in a blast furnace. Those information was crucial and had an actual impact on determining the coke quality.Originality/value: Presentation of the analytical methods which, according to author, can be very useful to evaluate and identify the heat treatment for blast furnaces cokes. The research pursued represents part of a larger project carried out within the framework of Department Extraction and Recycling of Metals, Czestochowa University of Technology.

  20. Chemical composition of fresh snowfalls at Palmer Station, Antarctica

    Science.gov (United States)

    DeFelice, T. P.

    A first time investigation was performed to establish a chemical baseline for snowfall at Palmer Station Antarctica (64°46'S, 64°05'W) since there was no such record. A chemical baseline for snow could be use to validate climate change studies based on ice core analyses. The snow samples contained (from high to low mass concentration) total organic carbon, chloride, inorganic carbon, sodium, sulfate, magnesium, calcium, potassium, fluoride, ammonium, and nitrate, excluding hydrogen and hydroxide. The pH of these samples ranged between 4.0-6.2. The relatively low nitrate and relatively high sulfate concentrations found in our samples are consistent with the results of other studies for this region of Antarctica. The ions and pH do not appear to favor a particular wind direction during this period. The total deposition of sulfate and flouride via snowfall between 10 January and 10 February is conservatively estimated to be 4.78 and 1.3 kg km -2, respectively.

  1. Chemical composition of water from roofs in Gdansk, Poland

    Energy Technology Data Exchange (ETDEWEB)

    Tsakovski, Stefan, E-mail: stsakovski@chem.uni-sofia.b [Chair of Physical Chemistry, Faculty of Chemistry, University of Sofia, J Bourchier Blvd. 1, 1164 Sofia (Bulgaria); Tobiszewski, Marek [Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology (GUT), 11/12 G. Narutowicza St., 80-952 Gdansk (Poland); Simeonov, Vasil, E-mail: vsimeonov@chem.uni-sofia.b [Chair of Analytical Chemistry, Faculty of Chemistry, University of Sofia, 1164 Sofia (Bulgaria); Polkowska, Zaneta [Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology (GUT), 11/12 G. Narutowicza St., 80-952 Gdansk (Poland); Namiesnik, Jacek, E-mail: chemanal@pg.gda.p [Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology (GUT), 11/12 G. Narutowicza St., 80-952 Gdansk (Poland)

    2010-01-15

    This study deals with the assessment of roof runoff waters from the region of Gdansk collected during the winter season (2007/2008). The chemical analysis includes 16 chemical variables: major ions, PAHs and PCBs measured at 3 sampling sites for 6-14 rain events. Although the data set is of limited volume the statistical data treatment using self-organizing maps (SOM) reveals the main factors controlling roof runoff water quality even for a data set with small dimension. This effort for explanation of the identified factors by the possible emission sources of the urban environment and air-particulate formation seems to be very reliable. Additionally to the roof runoff water quality factors the rain events patterns are found: 'background' group of events and groups formally named 'PAHs', 'PCBs' and 'air-borne particles' - dominated events. The SOM classification results give an opportunity to uncover the role of roof 'impact' on the runoff waters. Rain runoff water quality is described by four latent factors and the 'roof' impact is uncovered. - Identification of the urban roof runoff water quality factors and 'roof' impact by self-organizing map classification.

  2. Chemical composition of meat in two cyprinid species

    Directory of Open Access Journals (Sweden)

    Valerica Macovei

    2009-06-01

    Full Text Available The biochemical analyses of the meat were determined in two species of carps, respectively Cyprinus carpio and Ctenopharyngodon idella. We worked on four groups of 10 fishes each (two groups for C. carpio and two groups for Ct. idella. One group from both species was fed with special fodder, and the other two groups were fed with clover (Trifolium pratense and reeds (Phragmites communis for C. carpio and Ct. idella respectively. The determination was made in the laboratory of chemical analyses of the Faculty of Animal Sciences, University of Agricultural Sciences and Veterinary Medicine Iaşi and we determined the content of the meat in proteins, fat, dry substance and minerals. The characteristic chemicals of the meat were determined on the extracted sample from the lateral musculature of the body. Biochemical analysis of meat from the four carp lots shows that protein content of meat is higher in groups which received combined feed compared to group which individuals were fed with natural food. Therefore, in case of feeding fish with combined fodder the protein content of meat increases, which proves a good recovery of protein in feed. Fat content and minerals in cyprinid meat are both higher in individuals fed with combined feed compared to those fed with natural components. When fat content in meat is higher, the dry matter content in meat is higher.

  3. Near-oscillatory relaxation behavior of levitation force in infiltration and growth processed bulk YBCO/Ag superconducting composites

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, R.; Lakshmi, M.M. [School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Seshubai, V., E-mail: drseshubai@yahoo.co.in [School of Physics, University of Hyderabad, Hyderabad 500 046 (India)

    2011-07-15

    Magnetic relaxation of superconductor using levitation force measurements. Observed oscillatory behavior of relaxation rate. Bistable equilibrium theory and model proposed for the current structure in the superconductor. Experimental verification of magnetization of permanent magnet by the superconductor. Time relaxation behavior of levitation force has been studied in IGP bulk YBCO/Ag superconductor using levitation force measurements as these measurements throw light on the magnetic relaxation in superconductors and the underlying vortex dynamics, pinning mechanisms and the nature of pinning forces. The measurements have revealed a hitherto unknown near-oscillatory relaxation of the levitation force with varying magnetic field. This kind of behavior is found to be more pronounced at smaller gap distances between the permanent magnet and the superconductor. A switch-type polarity bistable equilibrium model for the supercurrent structure has been proposed based on the understanding that even the permanent magnet gets magnetized in the presence of the superconductor, which has also been verified and reported here. This model satisfactorily explains the observed oscillatory behavior of relaxation rates.

  4. Microbial communities in bulk fluids and biofilms of an oil facility have similar composition but different structure.

    Science.gov (United States)

    Stevenson, Bradley S; Drilling, Heather S; Lawson, Paul A; Duncan, Kathleen E; Parisi, Victoria A; Suflita, Joseph M

    2011-04-01

    The oil-water-gas environments of oil production facilities harbour abundant and diverse microbial communities that can participate in deleterious processes such as biocorrosion. Several molecular methods, including pyrosequencing of 16S rRNA libraries, were used to characterize the microbial communities from an oil production facility on the Alaskan North Slope. The communities in produced water and a sample from a 'pig envelope' were compared in order to identify specific populations or communities associated with biocorrosion. The 'pigs' are used for physical mitigation of pipeline corrosion and fouling and the samples are enriched in surface-associated solids (i.e. paraffins, minerals and biofilm) and coincidentally, microorganisms (over 10(5) -fold). Throughout the oil production facility, bacteria were more abundant (10- to 150-fold) than archaea, with thermophilic members of the phyla Firmicutes (Thermoanaerobacter and Thermacetogenium) and Synergistes (Thermovirga) dominating the community. However, the structure (relative abundances of taxa) of the microbial community in the pig envelope was distinct due to the increased relative abundances of the genera Thermacetogenium and Thermovirga. The data presented here suggest that bulk fluid is representative of the biofilm communities associated with biocorrosion but that certain populations are more abundant in biofilms, which should be the focus of monitoring and mitigation strategies.

  5. A New Reference Chemical Composition for TMC-1

    CERN Document Server

    Gratier, P; Ohishi, M; Roueff, E; Loison, J -C; Hickson, K M; Wakelam, V

    2016-01-01

    Recent detections of complex organic molecules in dark clouds have rekindled interest in the astrochemical modeling of these environments. Because of its relative closeness and rich molecular complexity, TMC-1 has been extensively observed to study the chemical processes taking place in dark clouds. We use local thermodynamical equilibrium radiative transfer modeling coupled with a Bayesian statistical method which takes into account outliers to analyze the data from the Nobeyama spectral survey of TMC-1 between 8 and 50 GHz. We compute the abundance relative to molecular hydrogen of 57 molecules, including 19 isotopologues in TMC-1 along with their associated uncertainty. The new results are in general agreement with previous abundance determination from Ohishi & Kaifu and the values reported in the review from Agundez & Wakelam. However, in some cases, large opacity and low signal to noise effects allow only upper or lower limits to be derived, respectively.

  6. Chemical composition of umbu (Spondias tuberosa Arr. Cam seeds

    Directory of Open Access Journals (Sweden)

    Soraia Vilela Borges

    2007-02-01

    Full Text Available The umbu tree (Spondias tuberosa Arr. Cam is an important fruit tree the economy of the semi-arid northeastern region of Brazil. With the objective of finding use for the seeds, physical and chemical characterizations of the seeds from 2 cultivars in 2 maturation stages were carried out and their fatty acid and mineral profiles determined. The results showed no differences between the seeds analyzed. The yield was about 10% and the dimensions as follows: length from 1.48 to 2.11 cm and width from 0.76 to 1.16 cm. The average lipid content was 55% of which 69% was unsaturated and the average protein content was 24%. The seeds were a good source of the following minerals: P, K, Mg, Fe and Cu. The overall results indicated that the oil or the seeds could be used for food stuffs if no toxic agents were found.

  7. A New Reference Chemical Composition for TMC-1

    Science.gov (United States)

    Gratier, P.; Majumdar, L.; Ohishi, M.; Roueff, E.; Loison, J. C.; Hickson, K. M.; Wakelam, V.

    2016-08-01

    Recent detections of complex organic molecules in dark clouds have rekindled interest in the astrochemical modeling of these environments. Because of its relative closeness and rich molecular complexity, TMC-1 has been extensively observed to study the chemical processes taking place in dark clouds. We use local thermodynamical equilibrium radiative transfer modeling coupled with a Bayesian statistical method which takes into account outliers to analyze the data from the Nobeyama spectral survey of TMC-1 between 8 and 50 GHz. We compute the abundance relative to molecular hydrogen of 57 molecules, including 19 isotopologues in TMC-1 along with their associated uncertainty. The new results are in general agreement with previous abundance determination from Ohishi & Kaifu and the values reported in the review from Agúndez & Wakelam. However, in some cases, large opacity and low signal to noise effects allow only upper or lower limits to be derived, respectively.

  8. CHEMICAL COMPOSITION AND ANTI-INFLAMMATORY ACTIVITY OF Roldana platanifolia

    Directory of Open Access Journals (Sweden)

    Amira Arciniegas

    2015-11-01

    Full Text Available The chemical study of Roldana platanifolia led to the isolation of β-caryophyllene, five eremophilanolides, chlorogenic acid, and a mixture of β-sitosterol-stigmasterol, β-sitosteryl glucopyranoside, and sucrose. The anti-inflammatory activities of the extracts and isolated products were tested using the 12-O-tetradecanoylphorbol-13-acetate (TPA model of induced acute inflammation. The acetone and methanol extracts showed dose dependent activities (ID50 0.21 and 0.32 mg/ear, respectively, while none of the isolated compounds exhibited relevant edema inhibition. The active extracts were also evaluated with the myeloperoxidase assay technique (MPO to determine their ability to prevent neutrophil infiltration. Results showed that the anti-inflammatory activity was related to the compound’s ability to inhibit pro-inflammatory mediators such as neutrophils.

  9. Strong Composition Effects in All-Polymer Phototransistors with Bulk Heterojunction Layers of p-type and n-type Conjugated Polymers.

    Science.gov (United States)

    Han, Hyemi; Lee, Chulyeon; Kim, Hwajeong; Seo, Jooyeok; Song, Myeonghun; Nam, Sungho; Kim, Youngkyoo

    2017-01-11

    We report the composition effect of polymeric sensing channel layers on the performance of all-polymer phototransistors featuring bulk heterojunction (BHJ) structure of electron-donating (p-type) and electron-accepting (n-type) polymers. As an n-type component, poly(3-hexylthiopehe-co-benzothiadiazole) end-capped with 4-hexylthiophene (THBT-4ht) was synthesized via two-step reactions. A well-studied conjugated polymer, poly(3-hexylthiophene) (P3HT), was employed as a p-type polymer. The composition of BHJ (P3HT:THBT-4ht) films was studied in detail by varying the THBT-4ht contents (0, 1, 3, 5, 10, 20, 30, 40, and 100 wt %). The best charge separation in the P3HT:THBT-4ht films was measured at 30 wt % by the photoluminescence (PL) study, while the charge transport characteristics of devices were improved at the low THBT-4ht contents (polymer phototransistors was higher than that of the phototransistors with the pristine P3HT layers and strongly dependent on the BHJ composition. The highest (corrected) responsivity (RC) was achieved at 20 wt %, which can be attributable to the balance between the best charge separation and transport states, as investigated for crystal nanostructures and surface morphology by employing synchrotron-radiation grazing-incidence wide-angle X-ray scattering, high-resolution/scanning transmission electron microscopy, and atomic force microscopy.

  10. Indirect Determination of Chemical Composition and Fuel Characteristics of Solid Waste

    DEFF Research Database (Denmark)

    Riber, Christian; Christensen, Thomas Højlund

    Determination of chemical composition of solid waste can be performed directly or indirectly by analysis of combustion products. The indirect methodology instrumented by a full scale incinerator is the only method that can conclude on elements in trace concentrations. These elements are of great...... interest in evaluating waste management options by for example LCA modeling. A methodology description of indirect determination of chemical composition and fuel properties of waste is provided and validated by examples. Indirect analysis of different waste types shows that the chemical composition...... of toxic elements is shown exemplified by Hg. The average concentration is evaluated to be affected by three occurrences; background, rare items and very rare items (1/800 tonnes), that are all important to the Hg average concentration....

  11. Non-Destructive Study of Bulk Crystallinity and Elemental Composition of Natural Gold Single Crystal Samples by Energy-Resolved Neutron Imaging.

    Science.gov (United States)

    Tremsin, Anton S; Rakovan, John; Shinohara, Takenao; Kockelmann, Winfried; Losko, Adrian S; Vogel, Sven C

    2017-01-19

    Energy-resolved neutron imaging enables non-destructive analyses of bulk structure and elemental composition, which can be resolved with high spatial resolution at bright pulsed spallation neutron sources due to recent developments and improvements of neutron counting detectors. This technique, suitable for many applications, is demonstrated here with a specific study of ~5-10 mm thick natural gold samples. Through the analysis of neutron absorption resonances the spatial distribution of palladium (with average elemental concentration of ~0.4 atom% and ~5 atom%) is mapped within the gold samples. At the same time, the analysis of coherent neutron scattering in the thermal and cold energy regimes reveals which samples have a single-crystalline bulk structure through the entire sample volume. A spatially resolved analysis is possible because neutron transmission spectra are measured simultaneously on each detector pixel in the epithermal, thermal and cold energy ranges. With a pixel size of 55 μm and a detector-area of 512 by 512 pixels, a total of 262,144 neutron transmission spectra are measured concurrently. The results of our experiments indicate that high resolution energy-resolved neutron imaging is a very attractive analytical technique in cases where other conventional non-destructive methods are ineffective due to sample opacity.

  12. Chemical Composition of Different Botanical Origin Honeys Produced by Sicilian Black Honeybees (Apis mellifera ssp. sicula).

    Science.gov (United States)

    Mannina, Luisa; Sobolev, Anatoly P; Di Lorenzo, Arianna; Vista, Silvia; Tenore, Gian Carlo; Daglia, Maria

    2015-07-01

    In 2008 a Slow Food Presidium was launched in Sicily (Italy) for an early warning of the risk of extinction of the Sicilian native breed of black honeybee (Apis mellifera L. ssp sicula). Today, the honey produced by these honeybees is the only Sicilian honey produced entirely by the black honeybees. In view of few available data regarding the chemical composition of A. mellifera ssp. sicula honeys, in the present investigation the chemical compositions of sulla honey (Hedysarum coronarium L.) and dill honey (Anethum graveolens L.) were studied with a multimethodological approach, which consists of HPLC-PDA-ESI-MSn and NMR spectroscopy. Moreover, three unifloral honeys (lemon honey (obtained from Citrus limon (L.) Osbeck), orange honey (Citrus arantium L.), and medlar honey (Eriobotrya japonica (Thunb.) Lindl)), with known phenol and polyphenol compositions, were studied with NMR spectroscopy to deepen the knowledge about sugar and amino acid compositions.

  13. Chemical composition of a sample of bright solar-metallicity stars

    CERN Document Server

    Caffau, E; Steffen, M; Bonifacio, P; Strassmeier, K G; Gallagher, A; Faraggiana, R; Sbordone, L

    2015-01-01

    We present a detailed analysis of seven young stars observed with the spectrograph SOPHIE at the Observatoire de Haute-Provence for which the chemical composition was incomplete or absent in the literature. For five stars, we derived the stellar parameters and chemical compositions using our automatic pipeline optimized for F, G, and K stars, while for the other two stars with high rotational velocity, we derived the stellar parameters by using other information (parallax), and performed a line-by-line analysis. Chromospheric emission-line fluxes from CaII are obtained for all targets. The stellar parameters we derive are generally in good agreement with what is available in the literature. We provide a chemical analysis of two of the stars for the first time. The star HIP 80124 shows a strong Li feature at 670.8 nm implying a high lithium abundance. Its chemical pattern is not consistent with it being a solar sibling, as has been suggested.

  14. Inorganic Chemical Composition of Swimming Pools in Amman-Jordan

    Directory of Open Access Journals (Sweden)

    Bety Saqarat

    2012-10-01

    Full Text Available Monitoring was carried out during summer 2011 in three types of swimming pools in Amman-Jordan. Thirty six water samples, collected from three users type of swimming pools (adults, family and infants, were examined for its major ionic composition (HCO3-, Cl-, NO3-, SO4=, Ca+2, Mg+2, Na+, K+ and PO4+4 in addition to its BOD and COD content. All of the examined samples from the swimming pools water were acceptable according to the local and WHO standards. The type and number of users as well as the maintenance of the swimming pool water influenced the water quality. The results showed that there was a noticeable increase in NO3, PO4 and Cl than other ions. All of the examined samples from the swimming pools water were acceptable according to the local and WHO standards and although the water of the infant’s users changed frequently, it showed the highest concentration of most of the parameters and Adults’ pool showed the lowest.

  15. Disentangling Hot Jupiters formation location from their chemical composition

    CERN Document Server

    Ali-Dib, Mohamad

    2016-01-01

    We use a population synthesis model that includes pebbles and gas accretion, planetary migration, and simplified chemistry scheme to study the formation of hot-Jupiters. Models have proposed that these planets can either originate beyond the snowline and then move inward via disk migration, or form "in-situ" inside the snowline. The goal of this work is to verify which of these two scenarios is more compatible with pebbles accretion, and if can we distinguish observationally between them via the resulting planetary C/O ratios and core masses. Our results show that, for solar system composition, the C/O ratios will vary but weakly between the two populations, since a significant amount of carbon and oxygen are locked up in refractories. In this case, we find a strong correlation between the carbon abundance and core mass. The C/O ratio variations are more pronounced in the case where we assume that all carbon and oxygen are in volatiles. On average, Hot-Jupiters forming "in-situ" inside the snowline will have ...

  16. Brazilian Red Propolis—Chemical Composition and Botanical Origin

    Directory of Open Access Journals (Sweden)

    Andreas Daugsch

    2008-01-01

    Full Text Available Propolis contains resinous substances collected by honey bees from various plant sources and has been used as a traditional folk medicine since ca 300 BC. Nowadays, the use of evidence-based complementary and alternative medicine (CAM is increasing rapidly and so is the use of propolis in order to treat or support the treatment of various diseases. Much attention has been focused on propolis from Populus sp. (Salicaceae and Baccharis dracunculifolia (Asteracea, but scientific information about the numerous other types of propolis is still sparse. We gathered six samples of red propolis in five states of Northeastern Brazil. The beehives were located near woody perennial shrubs along the sea and river shores. The bees were observed to collect red resinous exudates on Dalbergia ecastophyllum (L Taub. (Leguminosae to make propolis. The flavonoids of propolis and red resinous exudates were investigated using reversed-phase high-performance liquid chromatography and reversed-phase high-performance thin-layer chromatography. We conclude that the botanical origin of the reddish propolis is D. ecastophyllum. In areas where this source (D. ecastophyllum was scarce or missing, bees were collecting resinous material from other plants. Propolis, which contained the chemical constituents from the main botanical origin, showed higher antimicrobial activity.

  17. Characterization of biomass burning particles: chemical composition and processing

    Science.gov (United States)

    Hudson, P. K.; Murphy, D. M.; Cziczo, D. J.; Thomson, D. S.; Degouw, J.; Warneke, C.

    2003-12-01

    During the Intercontinental Transport and Chemical Transformation (ITCT) mission in April and May of 2002, a forest fire plume was intercepted over Utah on May 19. Gas phase species acetonitrile (CH3CN) (a biomass burning tracer) and carbon monoxide (CO) measured greater than five fold enhancements over background concentrations during this plume crossing. In the 100 sec plume crossing, the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument acquired 202 positive mass spectra of biomass burning particles. Many of these particles contained potassium in addition to organics, carbon, and NO+ (which is a signature for any nitrogen containing compound such as ammonium or nitrate). From characterization of the particle mass spectra obtained during the plume crossing, a qualitative signature has been determined for identifying biomass burning particles. By applying this analysis to the entire ITCT mission, several transport events of smoke plumes have been identified and were confirmed by gas phase measurements. Additional species, such as sulfate, found in the mass spectra of the transported particles indicated processing or aging of the biomass burning particles that had taken place. The analysis has been extended to other field missions (Crystal-Face, ACCENT, and WAM) to identify biomass burning particles without the added benefit of gas phase measurements.

  18. The chemical composition of Galactic ring nebulae around massive stars

    CERN Document Server

    Esteban, C; Morisset, C; Garcia-Rojas, J

    2016-01-01

    We present deep spectra of ring nebulae associated with Wolf-Rayet (WR) and O-type stars: NGC 6888, G2.4+1.4, RCW 58, S 308, NGC 7635 and RCW 52. The data have been taken with the 10m Gran Telescopio Canarias and the 6.5m Clay Telescope. We extract spectra of several apertures in some of the objects. We derive C$^{++}$ and O$^{++}$ abundances from faint recombination lines in NGC 6888 and NGC 7635, permitting to derive their C/H and C/O ratios and estimate the abundance discrepancy factor (ADF) of O$^{++}$. The ADFs are larger than the typical ones of normal HII regions but similar to those found in the ionised gas of star-forming dwarf galaxies. We find that chemical abundances are rather homogeneous in the nebulae where we have spectra of several apertures: NGC 6888, NGC 7635 and G2.4+1.4. We obtain very high values of electron temperature in a peripheral zone of NGC 6888, finding that shock excitation can reproduce its spectral properties. We find that all the objects associated with WR stars show N enrich...

  19. Application of chemical vapor composites (CVC) to terrestrial thermionics

    Science.gov (United States)

    Miskolczy, Gabor; Reagan, Peter

    1995-01-01

    Terrestrial flame fired thermionics took a great leap forward in the earlier 1980's with the development of reliable long-lived hot shells. These results were presented by Goodale (1981). The hot shell protects the fractory emitter from oxidizing in the combustion environment. In earlier efforts with supralloys emitters it was found that superalloys were poor thermionic emitters since they operated at too low a temperature for practical and economical use as discussed by Huffman (1978). With the development of Chemical Vapor Deposited (CVD) silicon carbide and CVD tungsten, it became possible to fabricate long-lived thermionic converters. These results were shown by Goodale (1980). Further improvements were achieved with the use of oxygen additives on the electrodes. These developments made thermionics attractive for topping a power plant or as the energy conversion part of a cogeneration plant as described by Miskolczy (1982) and Goodale (1983). The feasibility of a thermonic steam boiler and a thermionic topped gas turbine plant become a possibility, as shown by Miskolczy (1980).

  20. Antimicrobial, antioxidant activities and chemical composition of selected Thai spices

    Directory of Open Access Journals (Sweden)

    Juraithip Wungsintaweekul

    2010-12-01

    Full Text Available Nine volatile oils and six methanol extracts from Ocimum americanum, O. basilicum, O. sanctum, Citrus hystrix,Alpinia galanga, Curcuma zedoaria, Kaempferia parviflora and Zingiber cassumunar were assessed for antimicrobial andantioxidant activities. The volatile oils and extracts were investigated against eight bacteria and three fungi. The resultsillustrated that O. americanum volatile oil exhibited broad spectrum activity against tested bacteria with the MICs ranging1.4-3.6 mg/ml and Candida spp. with the MICs ranging from 0.5-0.6 mg/ml. The O. sanctum volatile oil showed a considerableactivity against only Candida spp. with the MICs ranging from 0.8-1.4 mg/ml. Interestingly, growth of Mycobacteriumphlei was inhibited by the volatiles of O. americanum, C. hystrix peel, and C. zedoaria with MIC of 1.7, 3.5 and 1.2 mg/ml,respectively. For antioxidant activity evaluation, the methanol extracts of C. hystrix (leaf and peel and K. parviflora hadpotent antioxidant activity by the radical-scavenging DPPH method with IC50 of 24.6, 66.3 and 61.5 mg/ml, respectively.GC-MS analysis revealed the typical chemical profiles of the volatile oils. The major component showed the characteristicsof the volatile oils and was probably responsible for the antimicrobial effect.

  1. Conical intersection seams in polyenes derived from their chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Nenov, Artur; Vivie-Riedle, Regina de [Department Chemie, Ludwig-Maximilians-Univerisitaet, Muenchen Butenandtstr. 11, 81377 Muenchen (Germany)

    2012-08-21

    The knowledge of conical intersection seams is important to predict and explain the outcome of ultrafast reactions in photochemistry and photobiology. They define the energetic low-lying reachable regions that allow for the ultrafast non-radiative transitions. In complex molecules it is not straightforward to locate them. We present a systematic approach to predict conical intersection seams in multifunctionalized polyenes and their sensitivity to substituent effects. Included are seams that facilitate the photoreaction of interest as well as seams that open competing loss channels. The method is based on the extended two-electron two-orbital method [A. Nenov and R. de Vivie-Riedle, J. Chem. Phys. 135, 034304 (2011)]. It allows to extract the low-lying regions for non-radiative transitions, which are then divided into small linear segments. Rules of thumb are introduced to find the support points for these segments, which are then used in a linear interpolation scheme for a first estimation of the intersection seams. Quantum chemical optimization of the linear interpolated structures yields the final energetic position. We demonstrate our method for the example of the electrocyclic isomerization of trifluoromethyl-pyrrolylfulgide.

  2. Conical intersection seams in polyenes derived from their chemical composition

    Science.gov (United States)

    Nenov, Artur; de Vivie-Riedle, Regina

    2012-08-01

    The knowledge of conical intersection seams is important to predict and explain the outcome of ultrafast reactions in photochemistry and photobiology. They define the energetic low-lying reachable regions that allow for the ultrafast non-radiative transitions. In complex molecules it is not straightforward to locate them. We present a systematic approach to predict conical intersection seams in multifunctionalized polyenes and their sensitivity to substituent effects. Included are seams that facilitate the photoreaction of interest as well as seams that open competing loss channels. The method is based on the extended two-electron two-orbital method [A. Nenov and R. de Vivie-Riedle, J. Chem. Phys. 135, 034304 (2011)], 10.1063/1.3608924. It allows to extract the low-lying regions for non-radiative transitions, which are then divided into small linear segments. Rules of thumb are introduced to find the support points for these segments, which are then used in a linear interpolation scheme for a first estimation of the intersection seams. Quantum chemical optimization of the linear interpolated structures yields the final energetic position. We demonstrate our method for the example of the electrocyclic isomerization of trifluoromethyl-pyrrolylfulgide.

  3. Structure of the chondrules and the chemical composition of olivine in meteorite Jesenice

    Directory of Open Access Journals (Sweden)

    Bojan Ambrožič

    2013-06-01

    Full Text Available This paper presents a mineralogical analysis of various chondrule types and chemical analysis of olivine indifferent parts of meteorite Jesenice. Quantitative energy-dispersive X-ray spectroscopy with a scanning electronmicroscope was used in the analyses. The results showed that the chemical composition of the olivine was homogeneousthroughout the meteorite with an average olivine composition of Fa 26.4 ± 0.6. The results of this study werein agreement with previous study of the meteorite, which showed that the meteorite Jesenice was an equilibratedL chondrite.

  4. Essential Oils from Thyme (Thymus vulgaris): Chemical Composition and Biological Effects in Mouse Model.

    Science.gov (United States)

    Vetvicka, Vaclav; Vetvickova, Jana

    2016-12-01

    Thymus species are popular spices and contain volatile oils as main chemical constituents. Recently, plant-derived essential oils are gaining significant attention due to their significant biological activities. Seven different thymus-derived essential oils were compared in our study. First, we focused on their chemical composition, which was followed up by testing their effects on phagocytosis, cytokine production, chemotaxis, edema inhibition, and liver protection. We found limited biological activities among tested oils, with no correlation between composition and biological effects. Similarly, no oils were effective in every reaction. Based on our data, the tested biological use of these essential oils is questionable.

  5. The chemical composition and biological properties of coconut (Cocos nucifera L.) water.

    Science.gov (United States)

    Yong, Jean W H; Ge, Liya; Ng, Yan Fei; Tan, Swee Ngin

    2009-12-09

    Coconut water (coconut liquid endosperm), with its many applications, is one of the world's most versatile natural product. This refreshing beverage is consumed worldwide as it is nutritious and beneficial for health. There is increasing scientific evidence that supports the role of coconut water in health and medicinal applications. Coconut water is traditionally used as a growth supplement in plant tissue culture/micropropagation. The wide applications of coconut water can be justified by its unique chemical composition of sugars, vitamins, minerals, amino acids and phytohormones. This review attempts to summarise and evaluate the chemical composition and biological properties of coconut water.

  6. Changes in chemical composition and nanostructure of SiC thin films prepared by PECVD during thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kuenle, Matthias; Janz, Stefan [Fraunhofer Institute of Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Nickel, Klaus Georg [Applied Mineralogy, Institute for Geosciences, Eberhard-Karl-University Tuebingen, Wilhelmstr. 52, 72074 Tuebingen (Germany); Eibl, Oliver [Institute for Applied Physics, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 10, 72074 Tuebingen (Germany)

    2011-08-15

    Silicon carbide (SiC) thin films were deposited on silicon (Si) using plasma enhanced chemical vapor deposition (PECVD). Annealing was done in a rapid thermal annealing furnace at a temperature of 1300 C. As-deposited and annealed Si-rich and stoichiometric SiC thin films were investigated by analytical transmission electron microscopy (AEM). TEM-energy-dispersive X-ray spectroscopy was used to quantify the chemical composition of the SiC thin films with high accuracy. The chemical composition of the near stoichiometric SiC thin film changed during annealing from Si{sub 0.4}C{sub 0.6} to Si{sub 0.5}C{sub 0.5} due to diffusion of Si from the Si substrate into the film. The Si-rich Si{sub 1-x}C{sub x} film had the identical chemical composition of Si{sub 0.8}C{sub 0.2} before and after annealing. As-deposited films show nanoporosity within the bulk film. During annealing, v-shaped defect structures were formed at the interface of the stoichiometric SiC thin film to the Si substrate. Diffraction patterns revealed that as-deposited films were amorphous. During annealing the crystallization of 3C-SiC occurred in near-stoichiometric SiC thin films, whereas in Si-rich Si{sub 1-x}C{sub x} thin films two phases, namely Si and 3C-SiC, crystallized. Low-loss and core-loss electron energy loss spectroscopy (EELS) verified the diffraction results. In the low-loss spectra of the near stoichiometric SiC thin film, a plasmon peak located at 20.2 eV before and at 22.3 eV after annealing was detected. The low-loss spectra of the Si-rich Si{sub 1-x}C{sub x} thin film showed an asymmetric plasmon peak with two maxima located at 18.5 and 25.0 eV in the as-deposited film and 18.6 and 24.3 eV in the annealed Si-rich Si{sub 1-x}C{sub x} film. The 18.5 eV plasmon peaks is assigned to Si and the 25 eV plasmon peak is attributed to the SiC phase. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Chemical Composition Variability of Essential Oils of Daucus gracilis Steinh. from Algeria.

    Science.gov (United States)

    Benyelles, Batoul; Allali, Hocine; El Amine Dib, Mohamed; Djabou, Nassim; Paolini, Julien; Costa, Jean

    2017-02-17

    The chemical compositions of 20 Algerian Daucus gracilis essential oils were investigated using GC-FID, GC/MS, and NMR analyses. Altogether, 47 compounds were identified, accounting for 90-99% of the total oil compositions. The main components were linalool (18; 12.5-22.6%), 2-methylbutyl 2-methylbutyrate (20; 9.2-20.2%), 2-methylbutyl isobutyrate (10; 4.2-12.2%), ammimajane (47; 2.6-37.1%), (E)-β-ocimene (15; 0.2-12.8%) and 3-methylbutyl isovalerate (19; 3.3-9.6%). The chemical composition of the essential oils obtained from separate organs was also studied. GC and GC/MS analysis of D. gracilis leaves and flowers allowed identifying 47 compounds, amounting to 92.3% and 94.1% of total oil composition, respectively. GC and GC/MS analysis of D. gracilis leaf and flower oils allowed identifying linalool (22.7%), 2-methylbutyl 2-methylbutyrate (18.9%), 2-methylbutyl isovalerate (13.6%), ammimajane (10.4%), 3-methylbutyl isovalerate (10.3%), (E)-β-ocimene (8.4%) and isopentyl 2-methylbutyrate (8.1%) as main components. The chemical variability of the Algerian oil samples was studied using statistical analysis, which allowed the discrimination of three main Groups. A direct correlation between the altitudes, nature of soils and the chemical compositions of the D. gracilis essential oils was evidenced. This article is protected by copyright. All rights reserved.

  8. Chemical composition of inks of diverse marine molluscs suggests convergent chemical defenses.

    Science.gov (United States)

    Derby, Charles D; Kicklighter, Cynthia E; Johnson, P M; Zhang, Xu

    2007-05-01

    Some marine molluscs, notably sea hares, cuttlefish, squid, and octopus, release ink when attacked by predators. The sea hare Aplysia californica releases secretions from the ink gland and opaline gland that protect individuals from injury or death from predatory spiny lobsters through a combination of mechanisms that include chemical deterrence, sensory disruption, and phagomimicry. The latter two mechanisms are facilitated by millimolar concentrations of free amino acids (FAA) in sea hare ink and opaline, which stimulate the chemosensory systems of predators, ultimately leading to escape by sea hares. We hypothesize that other inking molluscs use sensory disruption and/or phagomimicry as a chemical defense. To investigate this, we examined concentrations of 21 FAA and ammonium in the defensive secretions of nine species of inking molluscs: three sea hares (Aplysia californica, Aplysia dactylomela, Aplysia juliana) and six cephalopods (cuttlefish: Sepia officinalis; squid: Loligo pealei, Lolliguncula brevis, Dosidicus gigas; octopus: Octopus vulgaris, Octopus bimaculoides). We found millimolar levels of total FAA and ammonium in these secretions, and the FAA in highest concentration were taurine, aspartic acid, glutamic acid, alanine, and lysine. Crustaceans and fish, which are major predators of these molluscs, have specific receptor systems for these FAA. Our chemical analysis supports the hypothesis that inking molluscs have the potential to use sensory disruption and/or phagomimicry as a chemical defense.

  9. Hanford enhanced waste glass characterization. Influence of composition on chemical durability

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-01

    This report provides a review of the complete high-level waste (HLW) and low-activity waste (LAW) data sets for the glasses recently fabricated at Pacific Northwest National Laboratory and characterized at Savannah River National Laboratory (SRNL). The review is from the perspective of relating the chemical durability performance to the compositions of these study glasses, since the characterization work at SRNL focused on chemical analysis and ASTM Product Consistency Test (PCT) performance.

  10. Antioxidant capacity and chemical composition in seeds rich in omega-3: chia, flax, and perilla

    OpenAIRE

    Sheisa Cyléia Sargi; Beatriz Costa Silva; Hevelyse Munise Celestino Santos; Paula Fernandes Montanher; Joana Schuelter Boeing; Oscar Oliveira Santos Júnior; Nilson Evelázio de Souza; Jesuí Vergílio Visentainer

    2013-01-01

    The chemical composition and antioxidant capacity of five seeds, chia, golden flax, brown flax, white perilla, and brown perilla, were determined. The chemical properties analyzed included moisture, ash, crude protein, carbohydrates, total lipids, fatty acids, and antioxidant capacity (ABTS•+, DPPH•, and FRAP). The results showed the highest amounts of protein and total lipids in brown and white perilla. Perilla and chia showed higher amounts of alpha-linolenic fatty acid than those of flaxse...

  11. NGC 6388: Chemical Composition of Its Eight Cool Giants

    Science.gov (United States)

    Wallerstein, G.; Kovtyukh, V. V.; Andrievsky, S. M.

    2007-04-01

    Eight cool giants in the unusual globular cluster NGC 6388 have been investigated in order to derive their elemental abundances. Effective temperatures from 3500 to 3850 K were derived using the method of line-depth ratios. Surface gravities were derived in two ways. Spectroscopic gravities, derived by the requirement that the abundance of iron be the same from Fe I and Fe II lines, were rather low, ranging from -0.3 to 0.0. Photometric gravities, derived from the assumed stellar mass of 0.7 Modot and the luminosity and Teff of the stars, fell between +0.25 and +0.70. Mean [Fe/H] values were -0.8 for spectroscopic gravities and -0.6 for photometric gravities. A test using spectra of the same resolution of the two coolest red giants in the globular cluster M4 obtained at the Apache Point Observatory were analyzed for comparison with the definitive analysis of Ivans et al. (1999). The very cool metal-poor red giant HD 232078 was also analyzed for comparison with the analysis of Gonzalez & Wallerstein (1998). Both comparisons showed that our methods yield the same abundance scale as previous works. We have compared the composition of stars in NGC 6388 with those of K giants with similar [Fe/H] in 47 Tuc and the Galactic bulge. The observed value of [O/Fe] is near zero, which is less than in 47 Tuc and bulge stars of similar metallicity. The α-elements behave similarly to oxygen and show only small excesses at about the same level as do the α-elements in the globular clusters associated with the Sgr system. It is unclear whether these differences are responsible for the unusual color-magnitude diagram of NGC 6388.

  12. Chemical composition of nuts and seeds sold in Korea.

    Science.gov (United States)

    Chung, Keun Hee; Shin, Kyung Ok; Hwang, Hyo Jeong; Choi, Kyung-Soon

    2013-04-01

    Eleven types of nuts and seeds were analyzed to determine their energy (326-733 mg), moisture (1.6-18.3 mg), carbohydrate (8.8-70.9 mg), protein (4.9-30.5 mg), lipid (2.5-69.8 mg), and ash (1.2-5.5 mg) contents per 100 g of sample. Energy content was highest in pine nuts (733 mg/100 g), carbohydrate level was highest in dried figs (70.9 mg/100 g) and protein was highest in peanuts (30.5 mg/100 g). The amino acid compositions of nuts and seeds were characterized by the dominance of hydrophobic (range = 1,348.6-10,284.6 mg), hydrophilic (range = 341.1-3,244.3 mg), acidic (range = 956.1-8,426.5 mg), and basic (range = 408.6-4,738.5 mg) amino acids. Monounsaturated fatty acids (MUFA) were highest in macadamia nuts (81.3%), whereas polyunsaturated fatty acids (PUFA) were highest in the walnuts (76.7%). Macadamia nuts did not contain any vitamin E, whereas sunflower seeds contained the highest level (60.3 mg/kg). Iron (Fe) content was highest in pumpkin seeds (95.85 ± 33.01 ppm), zinc (Zn) content was highest in pistachios (67.24 ± 30.25 ppm), copper (Cu) content was greatest in walnuts (25.45 ± 21.51 ppm), and lead (Pb) content was greatest in wheat nuts (25.49 ± 4.64 ppm), significantly (P < 0.05). In conclusion, current commercial nuts and seeds have no safety concerns, although further analysis of Pb contents is necessary to ensure safety.

  13. Inorganic chemical composition and chemical reactivity of settled dust generated by the World Trade Center building collapse

    Science.gov (United States)

    Plumlee, Geoffrey S.; Hageman, Philip L.; Lamothe, Paul J.; Ziegler, Thomas L.; Meeker, Gregory P.; Theodorakos, Peter M.; Brownfield, Isabelle; Adams, Monique G.; Swayze, Gregg A.; Hoefen, Todd M.; Taggart, Joseph E.; Clark, Roger N.; Wilson, S.; Sutley, Stephen J.

    2009-01-01

    Samples of dust deposited around lower Manhattan by the September 11, 2001, World Trade Center (WTC) collapse have inorganic chemical compositions that result in part from the variable chemical contributions of concrete, gypsum wallboard, glass fibers, window glass, and other materials contained in the buildings. The dust deposits were also modified chemically by variable interactions with rain water or water used in street washing and fire fighting. Chemical leach tests using deionized water as the extraction fluid show the dust samples can be quite alkaline, due primarily to reactions with calcium hydroxide in concrete particles. Calcium and sulfate are the most soluble components in the dust, but many other elements are also readily leached, including metals such as Al, Sb, Mo Cr, Cu, and Zn. Indoor dust samples produce leachates with higher pH, alkalinity, and dissolved solids than outdoor dust samples, suggesting most outdoor dust had reacted with water and atmospheric carbon dioxide prior to sample collection. Leach tests using simulated lung fluids as the extracting fluid suggest that the dust might also be quite reactive in fluids lining the respiratory tract, resulting in dissolution of some particles and possible precipitation of new phases such as phosphates, carbonates, and silicates. Results of these chemical characterization studies can be used by health scientists as they continue to track and interpret health effects resulting from the short-term exposure to the initial dust cloud and the longer-term exposure to dusts resuspended during cleanup.

  14. Chemical composition of atmospheric aerosols between Moscow and Vladivostok

    Directory of Open Access Journals (Sweden)

    S. Kuokka

    2007-05-01

    Full Text Available The TROICA-9 expedition (Trans-Siberian Observations Into the Chemistry of the Atmosphere was carried out at the Trans-Siberian railway between Moscow and Vladivostok in October 2005. Measurements of aerosol physical and chemical properties were made from an observatory carriage connected to a passenger train. Black carbon (BC concentrations in fine particles (PM2.5, aerodynamic diameter <2.5 μm were measured with an aethalometer using a five-minute time resolution. Concentrations of inorganic ions and some organic compounds (Cl, NO3, SO42−, Na+, NH4+, K+, Ca2+, Mg2+, oxalate and methane sulphonate were measured continuously by using an on-line system with a 15-min time resolution. In addition, particle volume size distributions were determined for particles in the diameter range 3–850 nm using a 10-min. time resolution. The continuous measurements were completed with 24-h. PM2.5 filter samples which were stored in a refrigerator and later analyzed in chemical laboratory. The analyses included mass concentrations of PM2.5, ions, monosaccharide anhydrides (levoglucosan, galactosan and mannosan and trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V and Zn. The mass concentrations of PM2.5 varied in the range of 4.3–34.8 μg m−3 with an average of 21.6 μg m−3. Fine particle mass consisted mainly of BC (average 27.6%, SO42− (13.0%, NH4+ (4.1%, and NO3 (1.4%. One of the major constituents was obviously also organic carbon which was not determined. The contribution of BC was high compared with other studies made in Europe and Asia. High concentrations of ions, BC and particle volume were observed between Moscow and roughly 4000 km east of it, as well as close to

  15. Thermal analysis of bulk filled composite resin polymerization using various light curing modes according to the curing depth and approximation to the cavity wall

    Directory of Open Access Journals (Sweden)

    Hoon-Sang Chang

    2013-07-01

    Full Text Available OBJECTIVE: The purpose of this study was to investigate the polymerization temperature of a bulk filled composite resin light-activated with various light curing modes using infrared thermography according to the curing depth and approximation to the cavity wall. MATERIAL AND METHODS: Composite resin (AeliteFlo, Bisco, Schaumburg, IL, USA was inserted into a Class II cavity prepared in the Teflon blocks and was cured with a LED light curing unit (Dr's Light, GoodDoctors Co., Seoul, Korea using various light curing modes for 20 s. Polymerization temperature was measured with an infrared thermographic camera (Thermovision 900 SW/TE, Agema Infra-red Systems AB, Danderyd, Sweden for 40 s at measurement spots adjacent to the cavity wall and in the middle of the cavity from the surface to a 4 mm depth. Data were analyzed according to the light curing modes with one-way ANOVA, and according to curing depth and approximation to the cavity wall with two-way ANOVA. RESULTS: The peak polymerization temperature of the composite resin was not affected by the light curing modes. According to the curing depth, the peak polymerization temperature at the depth of 1 mm to 3 mm was significantly higher than that at the depth of 4 mm, and on the surface. The peak polymerization temperature of the spots in the middle of the cavity was higher than that measured in spots adjacent to the cavity wall. CONCLUSION: In the photopolymerization of the composite resin, the temperature was higher in the middle of the cavity compared to the outer surface or at the internal walls of the prepared cavity.

  16. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review].

    Science.gov (United States)

    Tao, Lin-Li; Yang, Xiu-Juan; Deng, Jun-Ming; Zhang, Xi

    2013-11-01

    In contrast to conventional methods for the determination of meat chemical composition, near infrared reflectance spectroscopy enables rapid, simple, secure and simultaneous assessment of numerous meat properties. The present review focuses on the use of near infrared reflectance spectroscopy to predict meat chemical compositions. The potential of near infrared reflectance spectroscopy to predict crude protein, intramuscular fat, fatty acid, moisture, ash, myoglobin and collagen of beef, pork, chicken and lamb is reviewed. This paper discusses existing questions and reasons in the current research. According to the published results, although published results vary considerably, they suggest that near-infrared reflectance spectroscopy shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. In particular, under commercial conditions where simultaneous measurements of different chemical components are required, near infrared reflectance spectroscopy is expected to be the method of choice. The majority of studies selected feature-related wavelengths using principal components regression, developed the calibration model using partial least squares and modified partial least squares, and estimated the prediction accuracy by means of cross-validation using the same sample set previously used for the calibration. Meat fatty acid composition predicted by near-infrared spectroscopy and non-destructive prediction and visualization of chemical composition in meat using near-infrared hyperspectral imaging and multivariate regression are the hot studying field now. On the other hand, near infrared reflectance spectroscopy shows great difference for predicting different attributes of meat quality which are closely related to the selection of calibration sample set, preprocessing of near-infrared spectroscopy and modeling approach. Sample preparation also has an important effect on the reliability of NIR prediction; in particular

  17. Shear and Bulk Viscosities of a Weakly Coupled Quark Gluon Plasma with Finite Chemical Potential and Temperature---Leading-Log Results

    CERN Document Server

    Chen, Jiunn-Wei; Song, Yu-Kun; Wang, Qun

    2012-01-01

    We calculate the shear (eta) and bulk (zeta) viscosities of a weakly coupled quark gluon plasma at the leading-log order with finite temperature T and quark chemical potential mu. We find that the shear viscosity to entropy density ratio eta/s increases monotonically with mu and eventually scales as (mu/T)^2 at large mu. In contrary, zeta/s is insensitive to mu. Both eta/s and zeta/s are monotonically decreasing functions of the quark flavor number N_f when N_f \\geq 2. This property is also observed in pion gas systems. Our perturbative calculation suggests that QCD becomes the most perfect (i.e. with the smallest eta/s) at mu=0 and N_f = 16 (the maximum N_f with asymptotic freedom). It would be interesting to test whether the currently smallest eta/s computed close to the phase transition with mu=0 and N_f = 0 can be further reduced by increasing N_f.

  18. Chemical pressure induced change in multiferroicity of Bi1+2xGd2x/2Fe1-2xO3 bulk ceramics

    Science.gov (United States)

    Pradhan, S. K.; Sahu, D. R.; Rout, P. P.; Das, S. K.; Pradhan, A. K.; Srinivasu, V. V.; Roul, B. K.

    2017-04-01

    We have optimized Gd ion substitution in BiFeO3 (BFO) and observed prominently change in structural, electrical and magnetic behavior of Bi1+2xGd2x/2Fe1-2xO3 ceramics synthesized through slow step sintering schedule. It is observed that with the increase in concentration of Gd (x=0.1), original structure of BFO is transformed from rhombohedral R3c space group to orthorhombic Pn21a space group. Surprisingly, unit cell volume is drastically contracted (35% for x=0.2) and the sintered specimen showed enhanced room temperature ferromagnetic behavior although the original BFO is normally G-type antiferromagnetic in nature at 643 K. It is expected that intrinsic chemical pressure within the bulk body built by the substitution of Gd in presence of excess bismuth greatly supported through unidirectional movement of electrical dipole moment with in each individual domain as a result of which suppression of leakage current with enhanced dielectric and ferroelectric hysteresis is observed.

  19. Effect of short-term versus long-term grassland management and seasonal variation in organic and conventional dairy farming on the composition of bulk tank milk.

    Science.gov (United States)

    Adler, S A; Jensen, S K; Govasmark, E; Steinshamn, H

    2013-09-01

    Bulk tank milk from 28 dairy farms was sampled every second month for 2 yr to assess the effects of grassland management, production system and season on milk fatty acid (FA) composition, concentrations of fat-soluble vitamins, Se, and milk sensory quality. Grassland management varied in terms of time since establishment. Short-term grassland management (SG) was defined as establishment or reseeding every fourth year or more often, and long-term grassland management (LG) was defined as less frequent establishment or reseeding. Fourteen organic (ORG) dairy farms with either short-term or long-term grassland management were paired with 14 conventional (CON) farms with respect to grassland management. Within ORG farms, SG farms differed from LG farms in herbage botanical composition, but not in concentrate FA concentrations, dry matter intake, or milk yield. Within CON farms, herbage composition, concentrate FA concentrations, dry matter intake, and milk yield showed no or insignificant variations. The ORG farms differed from CON farms in herbage botanical composition, concentrate FA concentrations, concentrate intake, and milk yield. Compared with ORG-LG farms, ORG-SG farms produced milk fat with higher proportions of C10:0 and C12:0 associated with higher herbage proportions of legumes (Fabaceae) and lower proportions of other dicotyledon families. Compared with milk from CON farms, milk fat from ORG farms had higher proportions of most saturated FA and all n-3 FA, but lower proportions of C18:0 and C18:1 cis-9 associated with higher forage proportion and differences in concentrations of FA in concentrates. Compared with the outdoor-feeding periods, the indoor feeding periods yielded milk fat with higher proportions of most short-chain and medium-chain FA and lower proportions of most C18-FA associated with grazing and higher forage proportions. Milk concentrations of α-tocopherol and β-carotene were lower during the grazing periods. Inclusion of fishmeal in

  20. Tribo-Mechanisms of Carbon Nanotubes: Friction and Wear Behavior of CNT-Reinforced Nickel Matrix Composites and CNT-Coated Bulk Nickel

    Directory of Open Access Journals (Sweden)

    Leander Reinert

    2016-04-01

    Full Text Available In this study, nickel matrix composites reinforced by carbon nanotubes (CNTs are compared to unreinforced CNT-coated (by drop-casting bulk nickel samples in terms of their friction and wear behavior, thus gaining significant knowledge regarding the tribological influence of CNTs and the underlying tribo-mechanism. It has been shown that the frictional behavior is mainly influenced by the CNTs present in the contact zone, as just minor differences in the coefficient of friction between the examined samples can be observed during run-in. Consequently, the known effect of a refined microstructure, thus leading to an increased hardness of the CNT reinforced samples, seems to play a minor role in friction reduction compared to the solid lubrication effect induced by the CNTs. Additionally, a continuous supply of CNTs to the tribo-contact can be considered isolated for the reinforced composites, which provides a long-term friction reduction compared to the CNT-coated sample. Finally, it can be stated that CNTs can withstand the accumulated stress retaining to some extent their structural state for the given strain. A comprehensive study performed by complementary analytical methods is employed, including Raman spectroscopy and scanning electron microscopy to understand the involved friction and wear mechanisms.

  1. Lantana montevidensis Essential Oil: Chemical Composition and Mosquito Repellent Activity against Aedes aegypti

    Science.gov (United States)

    The essential oil (EO) of Lantana montevidensis (Spreng.) Briq. (L. sellowiana Link & Otto) was investigated for its chemical composition and mosquito repellent activity. The essential oil obtained by hydrodistillation of aerial plant parts was analyzed by GC-FID and GC-MS. The major constituents we...

  2. Discerning the Chemical Composition and Mutagenic Effects of Soy Biodiesel PM

    Science.gov (United States)

    Discerning the Chemical Composition and Mutagenic Effects of Soy Biodiesel PM David G. Nashab, Esra Mutluc, William T. Prestond, Michael D. Haysb, Sarah H. Warrenc, Charly Kingc, William P. Linakb, M. lan Gilmourc, and David M. DeMarinic aOak Ridge Institute for Science and Ed...

  3. Phoenix dactylifera L. spathe essential oil: Chemical composition and repellent activity against the yellow fever mosquito

    Science.gov (United States)

    Date palm, Phoenix dactylifera L. (Arecaceae), grows commonly in the Arabian Peninsula and is traditionally used to treat various diseases. The aim of the present study was to identify chemical composition of the essential oil and to investigate the repellent activity. The essential oil of P. dacty...

  4. A survey on the microbiological and chemical composition of buffalo milk in China

    NARCIS (Netherlands)

    Han, B.Z.; Meng, Y.; Li, M.; Yang, Y.; Ren, F.; Zeng, Q.; Nout, M.J.R.

    2007-01-01

    One hundred and twelve samples of raw buffalo milk were collected at four locations in China, and their microbiological and chemical composition was analyzed. Average levels of major components were: fat 7.59% (v/v), crude protein 4.86% (w/w), lactose 4.74% (w/w), total solids 18.44% (w/w), ash 0.85

  5. Determination of the chemical composition of human renal stones with MDCT: influence of the surrounding media

    Science.gov (United States)

    Grosjean, Romain; Sauer, Benoît; Guerra, Rui; Kermarrec, Isabelle; Ponvianne, Yannick; Winninger, Daniel; Daudon, Michel; Blum, Alain; Felblinger, Jacques; Hubert, Jacques

    2007-03-01

    The selection of the optimal treatment method for urinary stones diseases depends on the chemical composition of the stone and its corresponding fragility. MDCT has become the most used modality to determine rapidly and accurately the presence of stones when evaluating urinary lithiasis treatment. That is why several studies have tempted to determine the chemical composition of the stones based on the stone X-ray attenuation in-vitro and invivo. However, in-vitro studies did not reproduce the normal abdominal wall and fat, making uncertain the standardization of the obtained values. The aim of this study is to obtain X-ray attenuation values (in Hounsfield Units) of the six more frequent types of human renal stones (n=217) and to analyze the influence of the surrounding media on these values. The stones were first placed in a jelly, which X-ray attenuation is similar to that of the human kidney (30 HU at 120 kV). They were then stuck on a grid, scanned in a water tank and finally scanned in the air. Significant differences in CT-attenuation values were obtained with the three different surrounding media (jelly, water, air). Furthermore there was an influence of the surrounding media and consequently discrepancies in determination of the chemical composition of the renal stones. Consequently, CT-attenuation values found in in-vitro studies cannot really be considered as a reference for the determination of the chemical composition except if the used phantom is an anthropomorphic one.

  6. Thermo-chemical simulation of a composite offshore vertical axis wind turbine blade

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study three dimensional steady state thermo-chemical simulation of a pultrusion process is investigated by using the finite element/nodal control volume (FE/NCV) technique. Pultrusion simulation of a composite having a C-shaped cross section is performed as a validation case...

  7. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria)

    NARCIS (Netherlands)

    Oonincx, D.G.A.B.; Poel, van der A.F.B.

    2011-01-01

    An experiment was conducted to determine the effects of diet on the chemical composition of migratory locusts (Locusta migratoria L.). Fresh and dry weight and the contents of dry matter, ash, lipid, protein, Ca, K, Mg, Na, P, Cu, Fe, Zn, retinol, lutein, zeaxanthine, cryptoxanthin, carotenes, lycop

  8. Chemical composition, functional and sensory characteristics of wheat-taro composite flours and biscuits.

    Science.gov (United States)

    Himeda, Makhlouf; Njintang Yanou, Nicolas; Fombang, Edith; Facho, Balaam; Kitissou, Pierre; Mbofung, Carl M F; Scher, Joel

    2014-09-01

    The physicochemical, alveographic and sensory characteristics of precooked taro-wheat composite flours and their biscuits were investigated. A 2x7 factorial design consisting of two varieties of taro flour (Red Ibo Ngaoundere, RIN, and egg-like varieties) and 7 levels of wheat substitutions (0, 5, 10, 15, 20, 25 and 30 %) was used for this purpose. It was observed that water absorption capacity (range 95-152 g/100 g), water solubility index (range 18.8-29.5 g/100 g) and swelling capacity (range 125.4-204.6 mL/100 g) of composite flours significantly (p < 0.05) increased with increase in taro level. Conversely the dough elasticity index (range 59.8-0 %), extensibility (78-22 mm) and strength (range 281-139 × 10(-4) joules) significantly (p < 0.05) diminished with increase in wheat substitution. Up to 10 % substitution with RIN taro flour and 15 % with egg-like taro flour, the composite taro-wheat dough exhibited elasticity indices acceptable for the production of baking products, whereas at all levels of taro substitution, the composite biscuits samples were either acceptable as or better (5-10 % substitution with RIN flour) than 100 % wheat biscuit.

  9. Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Min-Kang; Ma, Tae-Jun; Lee, Douk-Rae

    2002-08-01

    In this work, the effects of chemical treatment on Kevlar 29 fibers have been studied in a composite system. The surface characteristics of Kevlar 29 fibers were characterized by pH, acid-base value, X-ray photoelectron spectroscopy (XPS), and FT-IR. The mechanical interfacial properties of the final composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and specific fracture energy (G(IC)). Also, impact properties of the composites were investigated in the context of differentiating between initiation and propagation energies and ductile index (DI) along with maximum force and total energy. As a result, it was found that chemical treatment with phosphoric acid solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improved mechanical interfacial strength in the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force between fibers and matrix in a composite system.

  10. Densification and microstructure of carbon/carbon composites prepared by chemical vapor infiltration using ethanol as precursor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Chemical vapor infiltration of carbon fiber felts with uniform initial bulk density of 0.47 g·cm-3 was investigated at the ethanol partial pressures of 5-20 kPa,as well as the temperatures of 1050,1100,1150 and 1200°C.Ethanol,diluted by nitrogen,was employed as the precursor of pyrolytic carbon.Polarized light microscopy(PLM),scanning electron microscopy and X-ray diffraction were adopted to study the texture of pyrolytic carbon deposited at various temperatures.A change from medium-to high-textured pyrolytic carbon was observed in the sample infiltrated at 1050°C.Whereas,homogeneous high-textured pyrolytic carbons were deposited at the temperatures of 1100,1150 and 1200°C.Extinction angles of 19°-21° were determined for different regions in the samples densified at the temperatures ranging from 1100 to 1200°C.Scanning electron microscopy of the fracture surface after bending test indicated that the prepared carbon/carbon composite samples exhibited a pseudo-plastic fracture behavior.In addition,fracture behavior of the carbon/carbon samples was obviously effected by their infiltration temperature.The fracture mode of C/C composites was transformed from shearing failure to tensile breakage with increasing infiltration temperature. Results of this study show that ethanol is a promising carbon source to synthesize carbon/carbon composites with homogeneously high-textured pyrolytic carbon over a wide range of temperatures(from 1100 to 1200°C).

  11. Cuticle Structure in Relation to Chemical Composition: Re-assessing the Prevailing Model

    Science.gov (United States)

    Fernández, Victoria; Guzmán-Delgado, Paula; Graça, José; Santos, Sara; Gil, Luis

    2016-01-01

    The surface of most aerial plant organs is covered with a cuticle that provides protection against multiple stress factors including dehydration. Interest on the nature of this external layer dates back to the beginning of the 19th century and since then, several studies facilitated a better understanding of cuticular chemical composition and structure. The prevailing undertanding of the cuticle as a lipidic, hydrophobic layer which is independent from the epidermal cell wall underneath stems from the concept developed by Brongniart and von Mohl during the first half of the 19th century. Such early investigations on plant cuticles attempted to link chemical composition and structure with the existing technologies, and have not been directly challenged for decades. Beginning with a historical overview about the development of cuticular studies, this review is aimed at critically assessing the information available on cuticle chemical composition and structure, considering studies performed with cuticles and isolated cuticular chemical components. The concept of the cuticle as a lipid layer independent from the cell wall is subsequently challenged, based on the existing literature, and on new findings pointing toward the cell wall nature of this layer, also providing examples of different leaf cuticle structures. Finally, the need for a re-assessment of the chemical and structural nature of the plant cuticle is highlighted, considering its cell wall nature and variability among organs, species, developmental stages, and biotic and abiotic factors during plant growth. PMID:27066059

  12. CHEMICAL COMPOSITION VARIABILITY IN THE Uncaria tomentosa (cat’s claw WILD POPULATION

    Directory of Open Access Journals (Sweden)

    Evelyn Maribel Condori Peñaloza

    2015-03-01

    Full Text Available Uncaria tomentosa (cat's claw is a vine widely distributed throughout the South-American rainforest. Many studies investigating the chemical composition of cat's claw have focused on the pentacyclic (POA and tetracyclic oxindole alkaloids (TOA, quinovic acid glycosides (QAG, and polyphenols (PPH. Nevertheless, it is still uncertain how environmental factors affect chemical groups. The aim of this work was to better understand the influence of environmental factors (geographic origin, altitude, and season on cat's claw chemical composition. Stem bark, branches and leaf samples were extracted and analyzed by HPLC-PDA. The data obtained were explored by multivariate analysis (HCA and PCA. Higher amounts of oxindole alkaloids and PPH were found in leaves, followed by stem bark and branches. No clear relationship was verified among geographic origin or altitude and chemical composition, which remained unchanged regardless of season (dry or rainy. However, three oxindole alkaloid chemotypes were clearly recognized: chemotype I (POA with cis D/E ring junction; chemotype II (POA with trans D/E ring junction; and chemotype III (TOA. Thus, environmental factors appear to have only a minor influence on the chemical heterogeneity of the cat's claw wild population. Nevertheless, the occurrence of different chemotypes based on alkaloid profiles seems to be clear.

  13. EFFECT OF THERMAL TREATMENT ON THE CHEMICAL COMPOSITION AND MECHANICAL PROPERTIES OF BIRCH AND ASPEN

    Directory of Open Access Journals (Sweden)

    Duygu Kocaefe

    2008-05-01

    Full Text Available The high temperature treatment of wood is one of the alternatives to chemical treatment. During this process, the wood is heated to higher temperatures than those of conventional drying. The wood structure changes due to decomposition of hemicelluloses, ramification of lignin, and crystallization of cellulose. The wood becomes less hygroscopic. These changes improve the dimensional stability of wood, increase its resistance to micro-organisms, darken its color, and modify its hardness. However, wood also might loose some of its elasticity. Consequently, the heat treatment conditions have to be optimized. Therefore, it is important to understand the transformation of the chemical structure of wood caused by the treatment. In this study, the modification of the surface composition of the wood was followed with Fourier transform infrared spectroscopy (FTIR and inverse gas chromatography (IGC under different experimental conditions. The effect of maximum treatment temperatures on the chemical composition of Canadian birch and aspen as well as the correlations between their chemical transformation and different mechanical properties are presented. FTIR analysis results showed that the heat treatment affected the chemical composition of birch more compared to that of aspen. The results of IGC tests illustrated that the surfaces of the aspen and birch became more basic with heat treatment. The mechanical properties were affected by degradation of hemicellulose, ramification of lignin and cellulose crystallization.

  14. Cuticle structure in relation to chemical composition: re-assessing the prevailing model

    Directory of Open Access Journals (Sweden)

    Victoria eFernandez

    2016-03-01

    Full Text Available The surface of most aerial plant organs is covered with a cuticle that provides protection against multiple stress factors including dehydration. Interest on the nature of this external layer dates back to the beginning of the 19th century and since then, several studies facilitated a better understanding of cuticular chemical composition and structure. The prevailing undertanding of the cuticle as a lipidic, hydrophobic layer which is independent from the epidermal cell wall underneath stems from the concept developed by Brongniart and von Mohl during the first half of the 19th century. Such early investigations on plant cuticles attempted to link chemical composition and structure with the existing technologies, and have not been directly challenged for decades. Beginning with a historical overview about the development of cuticular studies, this review is aimed at critically assessing the information available on cuticle chemical composition and structure, considering studies performed with cuticles and isolated cuticular chemical components. The concept of the cuticle as a lipid layer independent from the cell wall is subsequently challenged, based on the existing literature, and on new findings pointing towards the cell wall nature of this layer, also providing examples of different leaf cuticle structures. Finally, the need for a re-assessment of the chemical and structural nature of the plant cuticle is highlighted, considering its cell wall nature and variability among organs, species, developmental stages, and biotic and abiotic factors during plant growth.

  15. The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    Energy Technology Data Exchange (ETDEWEB)

    Alba-Mejía, J.E.; Skladanka, J.; Hilger-Delgado, A.; Klíma, M.; Knot, P.; Doležal, P.; Horky, P.

    2016-11-01

    This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1) without additives, used as a control; 2) with bacterial inoculants; and 3) with chemical preservatives. The results indicated that the year factor (2012-2013) influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA) and acetic acid (AA) in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2%) in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process. (Author)

  16. The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    Directory of Open Access Journals (Sweden)

    Jhonny E. Alba-Mejía

    2016-06-01

    Full Text Available This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1 without additives, used as a control; 2 with bacterial inoculants; and 3 with chemical preservatives. The results indicated that the year factor (2012-2013 influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA and acetic acid (AA in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2% in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process.

  17. Influence of TEM specimen preparation on chemical composition of Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals.

    Science.gov (United States)

    Srot, Vesna; Gec, Medeja; van Aken, Peter A; Jeon, Jae-Ho; Ceh, Miran

    2014-07-01

    The influences of different transmission electron microscopy (TEM) specimen preparation techniques on the chemical composition of Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) single crystals was studied. Ion-milled samples where no cooling with liquid nitrogen (L-N2) was applied show permanently changed composition also deep inside the bulk material. When the PMN-PT samples were cooled to L-N2 temperature during the ion-milling process and in addition lower accelerating voltages were used, the chemical composition was altered only in the thinnest parts close to the specimen edge. Samples prepared using only tripod polishing technique show compositional irregularities close to the specimen edge. For the preparation of lead-containing samples, such as PMN-PT single crystals, a combination of tripod polishing and short Ar-ion-milling at low accelerating voltages while cooling the samples to liquid nitrogen temperature proved to be the most suitable to obtain artefact-free electron-transparent TEM lamellae.

  18. Composition and chemical variability of leaf oil of Myrtus communis from north-eastern Algeria.

    Science.gov (United States)

    Bouzabata, Amel; Boussaha, Faffani; Casanova, Joseph; Tomi, Félix

    2010-10-01

    The chemical composition of 27 oil samples of Myrtus communis isolated from leaves collected in three locations in north-eastern Algeria was investigated by GC(RI) and 13C NMR spectroscopy. Yields ranged between 0.2-1.2% (w/w). The chemical composition of the oils was largely dominated by monoterpene hydrocarbons, with alpha-pinene (40.5-64.0%), 1,8-cineole (10.9-29.1%) and limonene (6.7-8.2%) being the major compounds. In all the samples, 3,3,5,5,8,8-hexamethyl-7-oxabicyclo[4.3.0]non-1(6)-ene-2,4-dione was identified (0.8-1.5%). The composition is similar to that reported for myrtle oils from Corsica, Sardinia and Tunisia, but differed from that of Moroccan and Spanish myrtle oils.

  19. IMPROVEMENTS IN WOOD THERMOPLASTIC MATRIX COMPOSITE MATERIALS PROPERTIES BY PHYSICAL AND CHEMICAL TREATMENTS

    Directory of Open Access Journals (Sweden)

    Irena Zivkovic

    2016-03-01

    Full Text Available This paper presents a short overview of the developments made in the field of wood thermoplastic composites in terms of surface treatment, flammability, matrix/reinforcement model, properties and application of recycled polymer matrices. The usage of lignocellulosic fibers as reinforcement in composite materials demands well formed interface between the fiber and the matrix. Because of the different nature of reinforcement and matrix components some physical and chemical treatment methods which improve the fiber matrix adhesion were introduced, as well as the improvements of lignocellulosic fibers and thermoplastic polymer matrix based composites flammability characteristics. These physical and chemical treatments influence the hydrophilic character of the lignocellulosic fibers, and therefore change their physical and mechanical properties.

  20. Chemical composition and antibacterial activity of Opuntia ficus-indica f. inermis (cactus pear) flowers.

    Science.gov (United States)

    Ennouri, Monia; Ammar, Imene; Khemakhem, Bassem; Attia, Hamadi

    2014-08-01

    Opuntia ficus-indica f. inermis (cactus pear) flowers have wide application in folk medicine. However, there are few reports focusing on their biological activity and were no reports on their chemical composition. The nutrient composition and hexane extracts of Opuntia flowers at 4 flowering stages and their antibacterial and antifungal activities were investigated. The chemical composition showed considerable amounts of fiber, protein, and minerals. Potassium (K) was the predominant mineral followed by calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and zinc (Zn). The main compounds in the various hexane extracts were 9.12-octadecadienoic acid (29-44%) and hexadecanoic acid (8.6-32%). The antibacterial activity tests showed that O. inermis hexane extracts have high effectiveness against Escherichia coli and Staphylococcus aureus, making this botanical source a potential contender as a food preservative or food control additive.

  1. Chemical synthesis of nanocrystalline ZrO2-SnO2 composite powders

    Institute of Scientific and Technical Information of China (English)

    YANG Huaming; ZHANG Xiangchao; YANG Wuguo; HUANG Chenghuan; QIU Guanzhou

    2004-01-01

    ZrO2-SnO2 composite nanoparticles were prepared by heating the hydrate precursors synthesized by the chemical co-precipitation reaction of ZrOCl2 and SnCl4. The precursors were examined by differential thermal analysis (DTA) and thermogravimetric analysis (TGA). The composite powder was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and desorption isotherm (Barrett-Joyner-Halenda method). The average crystal size of the nanoparticle ranges from 15 to 30 nm for the sample containing 5%-25% ZrO2 (mass fraction). Most of the pores in the ZrO2-SnO2 nanoparticles are about 10-20 nm in diameter. The composite powder is promising for chemical sensors.

  2. Chemical composition measurements of the low activity waste (LAW) EPA-Series glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    In this report, the Savannah River National Laboratory provides chemical analysis results for a series of simulated low activity waste glasses provided by Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 100.2 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %.

  3. Chemical composition of AY Ceti: A flaring, spotted star with a white dwarf companion

    CERN Document Server

    Tautvaišienė, G; Berdyugina, S; Ilyin, I; Chorniy, Y

    2012-01-01

    The detailed chemical composition of the atmosphere AY Cet (HD 7672) is determined from a high-resolution spectrum in the optical region. The main atmospheric parameters and the abundances of 22 chemical elements, including key species such as 12C, 13C, N, and O, are determined. A differential line analysis gives T_eff=5080 K, log g=3.0, [Fe/H]=-0.33, [C/Fe]=-0.17, [N/Fe]=0.17, [O/Fe]=0.05, C/N=1.58, and 12C/13C=21. Despite the high chromospheric activity, the optical spectrum of AY Cet provides a chemical composition typical for first ascent giants after the first dredge-up.

  4. Wood Chemical Composition in Species of Cactaceae: The Relationship between Lignification and Stem Morphology

    Science.gov (United States)

    Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos

    2015-01-01

    In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level. PMID:25880223

  5. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology.

    Directory of Open Access Journals (Sweden)

    Jorge Reyes-Rivera

    Full Text Available In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35% of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level.

  6. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology.

    Science.gov (United States)

    Reyes-Rivera, Jorge; Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos; Terrazas, Teresa

    2015-01-01

    In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level.

  7. Differences in chemical composition of soil organic carbon resulting from long-term fertilization strategies.

    Science.gov (United States)

    Li, Zengqiang; Zhao, Bingzi; Wang, Qingyun; Cao, Xiaoyan; Zhang, Jiabao

    2015-01-01

    Chemical composition of soil organic carbon (SOC) is central to soil fertility. We hypothesize that change in SOC content resulting from various long-term fertilization strategies accompanies the shift in SOC chemical structure. This study examined the effect of fertilization strategies along with the time of fertilizer application on the SOC composition by 13C nuclear magnetic resonance (NMR) spectroscopy. The soils (Aquic Inceptisol) subjected to seven fertilizer treatments were collected in 1989, 1999 and 2009, representing 0, 10 and 20 years of fertilization, respectively. The seven fertilizer treatments were (1-3) balanced fertilization with application of nitrogen (N), phosphorus (P) and potassium (K) including organic compost (OM), half organic compost plus half chemical fertilizer (1/2OM), and pure chemical NPK fertilizer (NPK); (4-6) unbalanced chemical fertilization without application of one of the major elements including NP fertilizer (NP), PK fertilizer (PK), and NK fertilizer (NK); and (7) an unamended control (CK). The SOC content in the balanced fertilization treatments were 2.3-52.6% and 9.4-64.6% higher than in the unbalanced fertilization/CK treatments in 1999 and 2009, respectively, indicating significant differences in SOC content with time of fertilizer application between the two treatment groups. There was a significantly greater proportion of O-alkyl C and a lower proportion of aromatic C in the balanced fertilization than in unbalanced fertilization/CK treatments in 1999, but not in 2009, because their proportions in the former treatments approached the latter in 2009. Principal component analysis further showed that the C functional groups from various fertilization strategies tended to become compositionally similar with time. The results suggest that a shift in SOC chemical composition may be firstly dominated by fertilization strategies, followed by fertilization duration.

  8. Effect of chemical degradation followed by toothbrushing on the surface roughness of restorative composites

    Directory of Open Access Journals (Sweden)

    Fernanda Regina Voltarelli

    2010-12-01

    Full Text Available OBJECTIVES: The aim of the present study was to assess the effect of the exposure to food-simulating liquids prior to brushing simulation on the surface roughness of five composite materials (Quixfil, Filtek Supreme, Esthet-X, Filtek Z250, Tetric Ceram. Material and METHODS: Twenty cylinders (5 mm diameter and 4 mm height of each composite were randomly allocated to 4 groups (n=5, according to the food-simulating liquid in which they were immersed for 7 days at 37°C: artificial saliva, heptane, citric acid, and ethanol. After this period, the top surface of composite cylinders was submitted to 7,500 brushing cycles (200 g load. Measurements of the surface roughness (Ra, ¼m were carried out before and after the exposure to the chemicals/brushing simulation. Changes on the morphology of composite surfaces were observed through scanning electron microscopy (SEM. RESULTS: The statistical analysis (ANOVA with cofactor / Tukey's test, α=5% detected a significant interaction between solutions and composite resins. Esthet-X, Filtek Z250 and Tetric Ceram were not affected by the food-simulating liquids/toothbrushing. Citric acid and ethanol increased the surface roughness of Quixfil and Filtek Supreme, respectively. SEM images corroborate the surface roughness findings, demonstrating the negative effect from chemical solutions and mechanical abrasion. CONCLUSIONS: The surface roughness of composite resin materials are differently affected by the food-simulating solutions, depending on the immersion media.

  9. Chemical-garden formation, morphology, and composition. II. Chemical gardens in microgravity.

    Science.gov (United States)

    Cartwright, Julyan H E; Escribano, Bruno; Sainz-Díaz, C Ignacio; Stodieck, Louis S

    2011-04-05

    We studied the growth of metal-ion silicate chemical gardens under Earth gravity (1 g) and microgravity (μg) conditions. Identical sets of reaction chambers from an automated system (the Silicate Garden Habitat or SGHab) were used in both cases. The μg experiment was performed on board the International Space Station (ISS) within a temperature-controlled setup that provided still and video images of the experiment downlinked to the ground. Calcium chloride, manganese chloride, cobalt chloride, and nickel sulfate were used as seed salts in sodium silicate solutions of several concentrations. The formation and growth of osmotic envelopes and microtubes was much slower under μg conditions. In 1 g, buoyancy forces caused tubes to grow upward, whereas a random orientation for tube growth was found under μg conditions.

  10. Prediction of aged red wine aroma properties from aroma chemical composition. Partial least squares regression models.

    Science.gov (United States)

    Aznar, Margarita; López, Ricardo; Cacho, Juan; Ferreira, Vicente

    2003-04-23

    Partial least squares regression (PLSR) models able to predict some of the wine aroma nuances from its chemical composition have been developed. The aromatic sensory characteristics of 57 Spanish aged red wines were determined by 51 experts from the wine industry. The individual descriptions given by the experts were recorded, and the frequency with which a sensory term was used to define a given wine was taken as a measurement of its intensity. The aromatic chemical composition of the wines was determined by already published gas chromatography (GC)-flame ionization detector and GC-mass spectrometry methods. In the whole, 69 odorants were analyzed. Both matrixes, the sensory and chemical data, were simplified by grouping and rearranging correlated sensory terms or chemical compounds and by the exclusion of secondary aroma terms or of weak aroma chemicals. Finally, models were developed for 18 sensory terms and 27 chemicals or groups of chemicals. Satisfactory models, explaining more than 45% of the original variance, could be found for nine of the most important sensory terms (wood-vanillin-cinnamon, animal-leather-phenolic, toasted-coffee, old wood-reduction, vegetal-pepper, raisin-flowery, sweet-candy-cacao, fruity, and berry fruit). For this set of terms, the correlation coefficients between the measured and predicted Y (determined by cross-validation) ranged from 0.62 to 0.81. Models confirmed the existence of complex multivariate relationships between chemicals and odors. In general, pleasant descriptors were positively correlated to chemicals with pleasant aroma, such as vanillin, beta damascenone, or (E)-beta-methyl-gamma-octalactone, and negatively correlated to compounds showing less favorable odor properties, such as 4-ethyl and vinyl phenols, 3-(methylthio)-1-propanol, or phenylacetaldehyde.

  11. Raman spectra of Martian glass analogues: A tool to approximate their chemical composition

    Science.gov (United States)

    Di Genova, Danilo; Kolzenburg, Stephan; Vona, Alessandro; Chevrel, Magdalena Oryaëlle; Hess, Kai-Uwe; Neuville, Daniel R.; Ertel-Ingrisch, Werner; Romano, Claudia; Dingwell, Donald B.

    2016-05-01

    Raman spectrometers will form a key component of the analytical suite of future planetary rovers intended to investigate geological processes on Mars. In order to expand the applicability of these spectrometers and use them as analytical tools for the investigation of silicate glasses, a database correlating Raman spectra to glass composition is crucial. Here we investigate the effect of the chemical composition of reduced silicate glasses on their Raman spectra. A range of compositions was generated in a diffusion experiment between two distinct, iron-rich end-members (a basalt and a peralkaline rhyolite), which are representative of the anticipated compositions of Martian rocks. Our results show that for silica-poor (depolymerized) compositions the band intensity increases dramatically in the regions between 550-780 cm-1 and 820-980 cm-1. On the other hand, Raman spectra regions between 250-550 cm-1 and 1000-1250 cm-1 are well developed in silica-rich (highly polymerized) systems. Further, spectral intensity increases at ~965 cm-1 related to the high iron content of these glasses (~7-17 wt % of FeOtot). Based on the acquired Raman spectra and an ideal mixing equation between the two end-members we present an empirical parameterization that enables the estimation of the chemical compositions of silicate glasses within this range. The model is validated using external samples for which chemical composition and Raman spectra were characterized independently. Applications of this model range from microanalysis of dry and hydrous silicate glasses (e.g., melt inclusions) to in situ field investigations and studies under extreme conditions such as extraterrestrial (i.e., Mars) and submarine volcanic environments.

  12. Aerosol chemical composition at Cabauw, the Netherlands as observed in two intensive periods in May 2008 and March 2009

    NARCIS (Netherlands)

    Mensah, A.A.; Holzinger, R.; Otjes, R.; Trimborn, A.; Mentel, T.F.; Brink, H. ten; Henzing, B.; Kiendler-Scharr, A.

    2012-01-01

    Observations of aerosol chemical composition in Cabauw, the Netherlands, are presented for two intensive measurement periods in May 2008 and March 2009. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and is compared to observations from aerosol si

  13. The chemical composition of red giants in 47 Tucanae I: Fundamental parameters and chemical abundance patterns

    CERN Document Server

    Thygesen, A O; Andrievsky, S; Korotin, S; Yong, D; Zaggia, S; Ludwig, H -G; Collet, R; Asplund, M; D'Antona, F; Meléndez, J; D'Ercole, A

    2014-01-01

    Context: The study of chemical abundance patterns in globular clusters is of key importance to constrain the different candidates for intra-cluster pollution of light elements. Aims: We aim at deriving accurate abundances for a large range of elements in the globular cluster 47 Tucanae (NGC 104) to add new constraints to the pollution scenarios for this particular cluster, expanding the range of previously derived element abundances. Methods: Using tailored 1D LTE atmospheric models together with a combination of equivalent width measurements, LTE, and NLTE synthesis we derive stellar parameters and element abundances from high-resolution, high signal-to-noise spectra of 13 red giant stars near the tip of the RGB. Results: We derive abundances of a total 27 elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Ba, La, Ce, Pr, Nd, Eu, Dy). Departures from LTE were taken into account for Na, Al and Ba. We find a mean [Fe/H] = $-0.78\\pm0.07$ and $[\\alpha/{\\rm Fe}]=0.34\\pm0.03$ in...

  14. Expanding current knowledge on the chemical composition and antioxidant activity of the genus Lactarius.

    Science.gov (United States)

    Vieira, Vanessa; Barros, Lillian; Martins, Anabela; Ferreira, Isabel C F R

    2014-12-10

    Despite the presence of toxic compounds in inedible mushrooms, the question whether the chemical nutrients and non-nutrients compositions in edible and inedible Lactarius species are similar remains unanswered. To answer this question, Lactarius citriolens Pouzar and Lactarius turpis (Weinm.) Fr., two inedible species, were studied in order to obtain information about their chemical composition and bioactivity. Free sugars, fatty acids, tocopherols, organic and phenolic acids were analysed by chromatographic techniques coupled to different detectors. L. citriolens and L. turpis methanolic extracts were tested regarding antioxidant potential (reducing power, radical scavenging activity and lipid peroxidation inhibition). The composition of macronutrients varied among the two species, but the profiles were similar between them and among other Lactarius species; L. citriolens gave the highest energy contribution, saturated fatty acids and organic acids, while the L. turpis sample was richer in free sugars, mono- and polyunsaturated fatty acids, tocopherols and phenolic compounds. L. turpis methanolic extract showed the highest antioxidant activity. The absence of hepatoxicity of the methanolic extracts was confirmed in porcine liver primary cells (in vitro conditions). The present study provided new information about wild L. citriolens and L. turpis, comparing their chemical composition and antioxidant properties with other Lactarius species, and expanding the knowledge about this genus.

  15. Texture Profile Analysis of Sliced Cheese in relation to Chemical Composition and Storage Temperature

    Directory of Open Access Journals (Sweden)

    Yuanrong Zheng

    2016-01-01

    Full Text Available The quantitative relationships among chemical composition, storage temperature, and texture of cheese were not fully understood. In this study, the effects of composition and temperature on textural properties of eight common varieties of sliced cheese were examined. The textural properties of sliced cheeses, including firmness, cohesiveness, adhesiveness, springiness, chewiness, and resilience, were measured by texture profile analysis after storage at 4 and 25°C for 4 h. Multivariate logistic regression models were established to describe the quantitative relationships of textural properties (dependent variables to chemical composition and storage temperature (independent variables of sliced cheeses. Results showed that protein, fat, moisture, and sodium chloride contents as well as storage temperature significantly affected the texture of sliced cheeses (P<0.05. In particular, fat in the dry matter and moisture in the nonfat substances were negatively correlated with firmness of sliced cheeses (P<0.05. As storage temperature rose from 4 to 25°C, the average values of firmness, chewiness, and resilience substantially declined by 42%, 45%, and 17%, respectively (P<0.05. This study provided reference data for adjusting chemical composition and storage temperature of common cheese products to obtain favorable texture for Chinese consumers, which thereby facilitated the localization of cheese industry in Chinese market.

  16. Microbial and chemical composition of liquid-associated bacteria in goats' rumen and fermenters.

    Science.gov (United States)

    Abecia, L; Soto, E C; Ramos-Morales, E; Molina-Alcaide, E

    2014-10-01

    This study was undertaken to investigate the relationship between chemical composition and microbial profile of rumen liquid-associated bacteria (LAB) in vivo (Murciano-Granadina goats) and in a rumen simulation system (single-flow continuous-culture fermenters). To achieve this aim, analyses of purine bases along with some molecular techniques (quantitative PCR to assess abundance and DGGE to identify biodiversity and bacterial profile) were carried out. A control diet (AHC) based on alfalfa hay (AH) and concentrate (C) in a 1:1 ratio and two experimental diets (AHCBI and AHCBII), in which concentrate was partially replaced with multinutrient blocks, were used. Diets AHCBI and AHCBII included multinutrient blocks differing in the relative amount of two-stage olive cake and the source of protein (sunflower meal vs. fava beans). We aimed to investigate the effect of these blocks on rumen microbiota to evaluate their potential as safe substitutes of cereal-based concentrates. Similar patterns of response to diet were found for chemical composition, microbial abundances and diversity in LAB isolated from goat's rumen and fermenters. Whereas bacterial density (log10 gene copies/g FM: 11.6 and 9.4 for bacteria and methanogens, respectively, in rumen) and diversity indexes (Shannon index: 3.6) were not affected by diet, DGGE analyses showed that bacterial community profile was affected. The cluster analysis suggested differences in bacterial profile between LAB pellets isolated from the rumen of goat and fermenters. A relationship between chemical composition and bacterial community composition in LAB pellets seems to exist. Changes in the former were reflected in the bacterial community profile. Further research is needed to clarify the relationship between chemical and microbial composition of ruminal bacterial pellets with diets of different quality.

  17. Electrical Conductivity and Chemical Composition of Soil Solution: Comparison of Solution Samplers in Tropical Soils

    Directory of Open Access Journals (Sweden)

    Davi Lopes do Carmo

    2016-01-01

    Full Text Available ABSTRACT Soil solution samplers may have the same working principle, but they differ in relation to chemical and physical characteristics, cost and handling, and these aspects exert influence on the chemical composition of the soil solution obtained. This study was carried out to evaluate, over time, the chemical composition of solutions extracted by Suolo Acqua, with the hydrophilic membrane (HM as a standard, using soils with contrasting characteristics, and to determine the relationship between electrical conductivity (EC and concentration of ions and pH of soil solution samples. This study was carried out under laboratory conditions, using three soils samples with different clay and organic matter (OM contents. Soil solution contents of F−, Cl−, NO−3, Br−, SO42−, Na+, NH4+, K+, Mg2+, Ca2+, were analyzed, as well as inorganic, organic, and total C contents, pH, and EC, in four successive sampling times. Soil solution chemical composition extracted by the Suolo Acqua sampler is similar to that collected by the HM, but the Suolo Acqua extracted more Na+ and soluble organic C than the HM solution. Solution EC, cation and anion concentrations, and soluble C levels are higher in the soil with greater clay and OM contents (Latossolo and Cambissolo in this case. Soil solution composition varied over time, with considerable changes in pH, EC, and nutrient concentrations, especially associated with soil OM. Thus, single and isolated sampling of the soil solution must be avoided, otherwise composition of the soil solution may not be correctly evaluated. Soil solution EC was regulated by pH, as well as the sum of cation and anion concentrations, and the C contents determined in the soil liquid phase.

  18. Physico-chemical properties of Brazilian cocoa butter and industrial blends. Part I Chemical composition, solid fat content and consistency

    Directory of Open Access Journals (Sweden)

    Ribeiro, A. P. B.

    2012-03-01

    Full Text Available A comparative study of the primary properties of six cocoa butter samples, representative of industrial blends and cocoa butter extracted from fruits cultivated in different geographical areas in Brazil is presented. The samples were evaluated according to fatty acid composition, triacylglycerol composition, regiospecific distribution, melting point, solid fat content and consistency. The results allowed for differentiating the samples according to their chemical compositions, thermal resistance properties, hardness characteristics, as well as technological adequacies and potential use in regions with tropical climates.

    En este trabajo se presenta un estudio comparativo de las propiedades primarias de mantecas de cacao, representativas de las mezclas industriales, y de la manteca de cacao original de diferentes zonas geográficas de Brasil. Las muestras fueron evaluadas de acuerdo a la composición de ácidos grasos, composición de triglicéridos, distribución de los ácidos grasos en las moléculas de triglicéridos, punto de fusión, contenido de grasa sólida y consistencia. Los resultados permitieron diferenciar las muestras por su composición química, propiedades de resistencia térmica, características de dureza, así como en materia de adecuaciones tecnológicas y los usos potenciales en las regiones de clima tropical.

  19. Surface chemical composition of human maxillary first premolar as assessed by X-ray photoelectron spectroscopy (XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Leo [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta (Canada); Nelson, Alan E. [Department of Chemical and Materials Engineering, University of Alberta (Canada)], E-mail: aenelson@dow.com; Heo, Giseon [Department of Statistics, Department of Dentistry, University of Alberta (Canada); Major, Paul W. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta (Canada)

    2008-08-30

    The surface chemical composition of dental enamel has been postulated as a contributing factor in the variation of bond strength of brackets bonded to teeth, and hence, the probability of bracket failure during orthodontic treatment. This study systematically investigated the chemical composition of 98 bonding surfaces of human maxillary premolars using X-ray photoelectron spectroscopy (XPS) to ascertain compositional differences between right and left first premolars. The major elements detected in all samples were calcium, phosphorus, oxygen, nitrogen and carbon. Surface compositions were highly variable between samples and several elements were found to be highly correlated. No statistical significant difference in the chemical composition of the maxillary right and left first premolars was found (p > 0.05). Knowledge of the chemical composition of enamel surfaces will facilitate future studies that relate this information to the variations in dental enamel bond strength.

  20. Correlation between somatic cell count and chemical composition of cooled raw milk in properties of Rio Grande do Norte, Brazil

    Directory of Open Access Journals (Sweden)

    Adriano Henrique do Nascimento Rangel

    2014-06-01

    Full Text Available Due to the damage caused by subclinical mastitis in loss of production and quality of milk, the present study aimed to verify the correlation between somatic cell count (SCC and the chemical composition of cooled raw milk collected in the Agreste region of Rio Grande do Norte, Brazil, in drought and rain seasons. Samples were collected in seven dairy farms during morning time, between January 2010 and March 2012, and sent to the Brazilian et of Milk Quality Laboratory (ESALQ/USP. The contents of protein, fat, lactose, casein, total solids, nonfat dry extract and urea nitrogen, besides of SCC and total bacterial count were performed. Data were submitted to analysis of variance, correlation analysis and comparison of means by Tuckey test , 5%. The average SCC was 604,000 cells/mL and had significant variation in the dry period (558 000 cells/mL and rainy (650 000 cells/mL. The SCC was positively correlated with fat and total solids but negatively with the lactose cow’s milk of bulk tank, regardless of the season in the Agreste of Rio Grande do Norte.

  1. Determination of physical characteristics, chemical composition and digestion coefficients of treated lemon pulp with Saccharomyces cerevisiae in goat diet.

    Science.gov (United States)

    Dadvar, P; Dayani, O; Mehdipour, M; Morovat, M

    2015-02-01

    The aim of this study was to evaluate the effects of processing of lemon pulp with Saccharomyces cerevisiae on physical properties, chemical composition, digestion coefficients and blood parameters. Eight adult male Raeini goats were used in a 28-day period. The experimental design was a completely randomised design with two treatments and four replicates. The first 21 days were for adaptation, and the last 7 days were for collecting samples. The animals were housed in individual metabolic cages equipped with a urine-faeces separator and were fed with diet containing alfalfa hay (60%) and lemon pulp (40%) at the maintenance level. Collected data were subjected to analysis of completely randomised design. With diet containing processed lemon pulp, functional specific gravity, bulk density, soluble dry matter, percentage of crude protein, neutral detergent fibre (NDF), acid detergent fibre and crude ash were significantly increased and water-holding capacity, insoluble dry matter, insoluble ash percentage of dry matter, organic matter, crude fat, non-fibrous carbohydrates and nitrogen-free extract were significantly decreased (p lemon pulp (p lemon pulp, digestibility of crude protein and NDF was higher (p lemon pulp with S. cerevisiae improved the physical characteristics and increased the percentage of crude protein and the digestion coefficients of protein and NDF.

  2. Relating particle hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign

    Directory of Open Access Journals (Sweden)

    Z. J. Wu

    2013-03-01

    Full Text Available Particle hygroscopic growth at RH =90%, cloud condensation nuclei (CCN activity, and size-resolved chemical composition were concurrently measured in the Thüringer Wald mid-level mountain range in central Germany in fall season of 2010. The median hygroscopicity parameter values, κ, of 50, 75, 100, 150, 200, and 250 nm particles derived from hygroscopicity measurements are respectively 0.14, 0.14, 0.17, 0.21, 0.24, and 0.28 during the sampling period. The closure between HTDMA-measured (κHTDMA and chemical composition-derived (κchem hygroscopicity parameters was performed based on the Zdanovskii–Stokes–Robinson (ZSR mixing rule. Using size-averaged chemical composition, the κ values are substantially overpredicted (30% and 40% for 150 and 100 nm particles. Introducing size-resolved chemical composition substantially improved closure, and the differences between κHTDMA and κchem are within 10%. We found that the evaporation of NH4NO3, which may happen in H-TDMA system, could lead to a discrepancy in predicted and measured particle hygroscopic growth. The hygroscopic parameter of the organic fraction, κorg is positively correlated with the O : C ratio (κorg =0.19 · (O : C−0.03. Such correlation is helpful to define the κorg value in the closure study. κ derived from CCN measurement was around 30% (varied with particle diameters higher than that determined from particle hygroscopic growth measurements (here, hydrophilic mode is considered only. This difference might be explained by the surface tension effects, solution non-ideality, and the partial solubility of constituents or non-dissolved particle matter. However, due to these effects being included in HTDMA-derived κ calculations, we could not distinguish the specific roles of these effects in creating this gap. Therefore, extrapolating from HTDMA data to properties at the point of activation should be done with great care. Finally, closure study between CCNc-measured (κ

  3. Investigation of the chemical composition-antibacterial activity relationship of essential oils by chemometric methods.

    Science.gov (United States)

    Miladinović, Dragoljub L; Ilić, Budimir S; Mihajilov-Krstev, Tatjana M; Nikolić, Nikola D; Miladinović, Ljiljana C; Cvetković, Olga G

    2012-05-01

    The antibacterial effects of Thymus vulgaris (Lamiaceae), Lavandula angustifolia (Lamiaceae), and Calamintha nepeta (Lamiaceae) Savi subsp. nepeta var. subisodonda (Borb.) Hayek essential oils on five different bacteria were estimated. Laboratory control strain and clinical isolates from different pathogenic media were researched by broth microdilution method, with an emphasis on a chemical composition-antibacterial activity relationship. The main constituents of thyme oil were thymol (59.95%) and p-cymene (18.34%). Linalool acetate (38.23%) and β-linalool (35.01%) were main compounds in lavender oil. C. nepeta essential oil was characterized by a high percentage of piperitone oxide (59.07%) and limonene (9.05%). Essential oils have been found to have antimicrobial activity against all tested microorganisms. Classification and comparison of essential oils on the basis of their chemical composition and antibacterial activity were made by utilization of appropriate chemometric methods. The chemical principal component analysis (PCA) and hierachical cluster analysis (HCA) separated essential oils into two groups and two sub-groups. Thyme essential oil forms separate chemical HCA group and exhibits highest antibacterial activity, similar to tetracycline. Essential oils of lavender and C. nepeta in the same chemical HCA group were classified in different groups, within antibacterial PCA and HCA analyses. Lavender oil exhibits higher antibacterial ability in comparison with C. nepeta essential oil, probably based on the concept of synergistic activity of essential oil components.

  4. Diffusion in plasma: the Hall effect, compositional waves, and chemical spots

    CERN Document Server

    Urpin, Vadim

    2016-01-01

    We consider diffusion caused by a combined influence of the electric current and the Hall effect, and argue that such diffusion can form inhomogeneities of the chemical composition in plasma. The considered mechanism can be responsible for a formation of element spots in laboratory and astrophysical plasmas. This current-driven diffusion can be accompanied by propagation of a particular type waves in which the impurity number density oscillate alone. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure,

  5. Chemically produced tungsten-praseodymium oxide composite sintered by spark plasma sintering

    Science.gov (United States)

    Ding, Xiao-Yu; Luo, Lai-Ma; Lu, Ze-Long; Luo, Guang-Nan; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng

    2014-11-01

    Pr2O3 doped W composite were synthesized by a novel wet chemical method and spark plasma sintering. The grain size, relative density and the Vicker hardness HV0.2 of Pr2O3/W samples were 4 μm, 98.3% and 377.2, respectively. The tensile strength values of Pr2O3/W were higher than those of pure W. As the temperature rises from 25 °C to 800 °C, the conductivity of pure W and W-1 wt% Pr2O3 composites decreased with the same trend, was above 150 W/m K.

  6. Chemical composition of volatile oils from leaves of Nectandra megapotamica Spreng. (Lauraceae)

    Energy Technology Data Exchange (ETDEWEB)

    Romoff, Paulete; Ferreira, Marcelo J.P., E-mail: romoff@mackenzie.b [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil). Centro de Ciencias e Humanidades; Padilla, Ricardo; Toyama, Daniela O.; Favero, Oriana A. [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil). Centro de Ciencias Biologicas e da Saude; Lago, Joao Henrique G. [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil). Dept. de Ciencias Exatas e da Terra

    2010-07-01

    The volatile oils from Nectandra megapotamica Spreng. leaves, collected in February and August of 2007 and at 7:00 and 12:00 h (samples A - D), were extracted by hydrodistillation and the chemical composition was analyzed by GC-FID and GC/MS. A total of nineteen compounds were identified with predominance of oxygenated sesquiterpenes, among them, a-bisabolol, was the main constituent (62.3-69.4 %). After chromatographic separation procedures, this compound was purified from crude oil and its structure was confirmed by analysis of NMR data. This paper describes for the first time the composition of the leaves volatile oil from N. megapotamica. (author)

  7. Processing–structure–property relations of chemically bonded phosphate ceramic composites

    Indian Academy of Sciences (India)

    H A Colorado; C Hiel; H T Hahn

    2011-07-01

    Mechanical properties and microstructures of a chemically bonded phosphate ceramic (CBPC) and its composite with 1.0 wt% graphite nanoplatelets (GNPs) reinforcement have been investigated. Microstructure was identified by using optical and scanning electron microscopes, X-ray tomography, and X-ray diffraction. In addition, weight loss of the resin at room temperature was studied. The microstructure characterization shows that CBPC is itself a composite with several crystalline (wollastonite and brushite) and amorphous phases. SEM and micro tomography show a homogeneous distribution of crystalline phases. Bending and compression strength of the CBPC was improved by reducing bubbles via preparation in vacuum.

  8. Is there a chemical interaction between calcium phosphates and organic compounds in the organic/inorganic composites?

    Energy Technology Data Exchange (ETDEWEB)

    Dorozhkin, S.V. [Research Inst. of Fertilisers, Moscow (Russian Federation)

    2001-07-01

    Solid composites of three biologically relevant calcium phosphates and hydroxypropylmethylcellulose (HPMC) were prepared at temperatures of 121 C. Properties of the composites obtained were studied by FTIR, X-ray diffraction, and SEM techniques. Special attention was devoted to seeking of a possible chemical interaction between the calcium phosphates and HPMC. No chemical interaction was found. Thus, HPMC was proven to have no influence on the chemical properties of calcium phosphates. (orig.)

  9. Dynamic mechanical behavior and high pressure phase stability of a zirconium-based bulk metallic glass and its composite with tungsten

    Science.gov (United States)

    Martin, Morgana

    2008-10-01

    failure stress over the range of strain rates evaluated, and work-hardening decreased as strain-rate increased. Its deformation mode was found to transition from heterogeneous deformation below the glass transition temperature (of the BMG), to homogeneous deformation between the glass transition and crystallization temperatures, and then back to heterogeneous deformation behavior above the crystallization temperature. The composite exhibited a large susceptibility to shear failure, as evidenced by much decreased strain-to-failure in biaxial (compression-shear) specimens as compared to that in uniaxial (compression) specimens. Failure took place primarily in the glass matrix and at the tungsten particle interfaces at all strain rates. Overall, the deformation and failure behavior of the composite is dominated by that of tungsten, but characteristics of BMG deformation and failure are evident, especially between the glass transition and crystallization temperatures, and at extremely high strain rates. For the monolithic BMG, fracture surfaces became increasingly more disorganized as strain rate increased, with evidence of melting due to temperature rise during fracture. The deformation and elastic-plastic wave propagation and interaction response based on measured free surface velocity traces of the monolithic glass were quite well described by the pressure-hardening Drucker-Prager model. Likewise, the deformation response of the composite was described reasonably well considering a rule of mixtures combination of properties of the BMG and W. High-pressure equation of state experiments provided evidence of transition to a mixed phase region (at ˜26 GPa) and then to a high-pressure phase (at ˜67 GPa) with a bulk modulus of 288 GPa, 144% higher than that of the bulk modulus of the ambient pressure. Specimens obtained from recovery experiments did not reveal any crystallization, indicating that any crystallites that may have formed were too small and too few to detect

  10. Chemical Composition and Antimicrobial Activity of Echinophora spinosa L. (Apiaceae Essential Oil

    Directory of Open Access Journals (Sweden)

    Jasmina M. Glamočlija

    2011-01-01

    Full Text Available The present study was undertaken to investigate the chemical composition and effectiveness of the essential oil isolated from Echinophora spinosa on different bacterial and fungal species. Chemical analysis (GC/MS showed that δ³-carene (60,86 %, α-phellandrene (7,12%, p-cymene (6,22 %, myrcene (4,82 % and β-phellandrene (2,73 % were dominant components in this oil. Essential oil tested showed good antimicrobial activity. Antimicrobial potential of this oil was higher than potential of commercial antimicrobial drugs tested, streptomycin, bifonozole and ketoconazole.

  11. Planet signatures in the chemical composition of Sun-like stars

    CERN Document Server

    Melendez, Jorge

    2016-01-01

    There are two possible mechanisms to imprint planet signatures in the chemical composition of Sun-like stars: i) dust condensation at the early stages of planet formation, causing a depletion of refractory elements in the gas accreted by the star in the late stages of its formation; ii) planet engulfment, enriching the host star in lithium and refractory elements. We discuss both planet signatures, the influence of galactic chemical evolution, and the importance of binaries composed of stellar twins as laboratories to verify abundance anomalies imprinted by planets.

  12. Simulation of Gas Detonation Propagation in a Medium Having Variable Chemical Composition

    Science.gov (United States)

    Prokhorov, E. S.

    2017-01-01

    Within the framework of a quasi-one-dimensional approximation, a mathematical model of the propagation of a detonation wave in a tube filled with explosive gas mixture with spatially variable chemical composition has been formulated, and the respective problem has been solved numerically. The shift in the chemical equilibrium of detonation products as well as the friction and heat removal losses were taken into account. The proposed mathematical model allows one to describe steady-state (of Chapman-Jouguet) and over-compressed detonation regimes.

  13. Morphology tailoring of nano/micro-structured conductive polymers, composites and their applications in chemical sensors.

    Science.gov (United States)

    Ma, Xingfa; Gao, Mingjun; He, Xiaochun; Li, Guang

    2010-11-01

    Conductive polymer is one of the important multi-functional materials. It has many applications in light-emitting diodes, chemical sensors, biosensors, et al. This paper provides a relatively comprehensive review on the progress of conductive polymer and composite as sensitive film for sensors to chemical vapors including patents, papers and our preliminary research results. Especially, the feature of conjugated polymers, the processing technology, doping characteristics and some factors affecting gas responses are discussed. Otherwise, the developments of nanostructured conductive polymer and organic-inorganic hybrid film sensor with high sensitivity and rapid response to vapors are also described, and some suggestions are proposed.

  14. Chemical Composition and Dynamics of the Upper Troposphere and the Lower Stratosphere: Overview of the Project

    Science.gov (United States)

    Sofieva, V. F.; Liu, C.; Huang, F.; Kyrola, E.; Liu, Y.; Ialongo, I.; Hakkarainen, J.; Zhang, Y.

    2016-08-01

    The DRAGON-3 cooperation study on the upper troposphere and the lower stratosphere (UTLS) is based on new satellite data and modern atmospheric models. The objectives of the project are: (i) assessment of satellite data on chemical composition in UTLS, (ii) dynamical and chemical structures of the UTLS and its variability, (iii) multi-scale variability of stratospheric ozone, (iv) climatology of the stratospheric aerosol layer and its variability, and (v) updated ozone climatology and its relation to tropopause/multiple tropopauses.In this paper, we present the main results of the project.

  15. The Effect of Thermal Cycling Treatments on the Thermal Stability and Mechanical Properties of a Ti-Based Bulk Metallic Glass Composite

    Directory of Open Access Journals (Sweden)

    Fan Bu

    2016-11-01

    Full Text Available The effect of thermal cycling treatments on the thermal stability and mechanical properties of a Ti48Zr20Nb12Cu5Be15 bulk metallic glass composite (BMGC has been investigated. Results show that moderate thermal cycles in a temperature range of −196 °C (cryogenic temperature, CT to 25 °C (room temperature, RT or annealing time at CT has not induced obvious changes of thermal stability and then it decreases slightly over critical thermal parameters. In addition, the dendritic second phases with a bcc structure are homogeneously embedded in the amorphous matrix; no visible changes are detected, which shows structural stability. Excellent mechanical properties as high as 1599 MPa yield strength and 34% plastic strain are obtained, and the yield strength and elastic modulus also increase gradually. The effect on the stability is analyzed quantitatively by crystallization kinetics and plastic-flow models, and indicates that the reduction of structural relaxation enthalpy, which is related to the degradation of spatial heterogeneity, reduces thermal stability but does not imperatively deteriorate the plasticity.

  16. Er:YAG and CTH:YAG laser radiation: contact versus non-contact enamel ablation and sonic-activated bulk composite placement

    Science.gov (United States)

    Buckova, M.; Kasparova, M.; Dostalova, T.; Jelinkova, H.; Sulc, J.; Nemec, M.; Fibrich, M.; Bradna, P.; Miyagi, M.

    2013-05-01

    Laser radiation can be used for effective caries removal and cavity preparation without significant thermal effects, collateral damage of tooth structure, or patient discomfort. The aim of this study was to compare the quality of tissue after contact or non-contact Er:YAG and CTH:YAG laser radiation ablation. The second goal was to increase the sealing ability of hard dental tissues using sonic-activated bulk filling material with change in viscosity during processing. The artificial caries was prepared in intact teeth to simulate a demineralized surface and then the Er:YAG or CTH:YAG laser radiation was applied. The enamel artificial caries was gently removed by the laser radiation and sonic-activated composite fillings were inserted. A stereomicroscope and then a scanning electron microscope were used to evaluate the enamel surface. Er:YAG contact mode ablation in enamel was quick and precise; the cavity was smooth with a keyhole shaped prism and rod relief arrangement without a smear layer. The sonic-activated filling material was consistently regularly distributed; no cracks or microleakage in the enamel were observed. CTH:YAG irradiation was able to clean but not ablate the enamel surface; in contact and also in non-contact mode there was evidence of melting and fusing of the enamel.

  17. Comparative study on bulk and composite fibrous samples photophysical feature: synthesis and characterization of a fluorine-containing Re(I) complex and its electrospinning fibers.

    Science.gov (United States)

    Lin, Chen; Shaoyan, Wang; Cangming, Zhao; Qi, Wang

    2015-05-01

    This paper reported a diamine ligand 2-(4-fluorophenyl)-5-(pyridin-2-yl)-1,3,4-oxadiazole (referred to as FPOZ) owing two typical electron-withdrawing moieties of an oxidiazole group and a fluorine atom, as well as its corresponding Re(I) complex Re(CO)3(FPOZ)Br. Geometric structure and electronic nature of Re(CO)3(FPOZ)Br were explored and discussed by single crystal analysis and theoretical calculation, which suggested that Re(CO)3(FPOZ)Br took a distorted octahedral coordination field. The onset electronic transitions owned a mixed character of metal-to-ligand-charge-transfer (MLCT) and ligand-to-ligand-charge-transfer (LLCT). Re(CO)3(FPOZ)Br was then doped into a polymer host. Photophysical difference between resulting composite fibers and bulk Re(CO)3(FPOZ)Br was carefully performed, so that the correlation between emissive performance and electron-withdrawing group/geometric relaxation could be investigated. It was found that the immobilization in polymer matrix could repress MLCT excited state geometric relaxation, leading to improved PL parameters such as emission blue shift, longer excited state lifetime and higher photostability.

  18. Late Quaternary Environmental Changes Inferred from the stable Oxygen Isotope Composition of Aquatic Insects (Chironomidae: Diptera) and Stable Hydrogen Isotope Composition of bulk sediments from Idavain Lake, Southwest Alaska

    Science.gov (United States)

    Wang, Y.; Finney, B.; Wooller, M. J.

    2007-12-01

    Several techniques are available to examine the isotopic composition of historic lake waters, providing data that can subsequently be used to examine environmental changes. Recently-developed techniques are the stable oxygen isotope analysis of subfossil chironomid (Diptera: Chironomidae) head capsules (mostly chitin) preserved in lake sediments and stable hydrogen isotope analyses directly on bulk sediments. An advantage of using δ18O of chironomids is that the chitinous chironomid headcapsules preserve well in lake sediments, retaining the stable oxygen isotope signature of the lake in which they lived. An advantage of δD analyses of bulk sediments is that a sediment core can be analyzed relatively easily and when the %C (total organic carbon) and %H profiles correlate the data can be used to infer past δD changes of the organics in the sediments. We present results from these analyses of a lake sediment core from Idavain Lake (58°46'N, 155°57'W, 223m above sea level) in southwest Alaska in concert with other paleolimnological proxies, including δ15N, δ13C, LOI, magnetic susceptibility, organic content and opal concentrations for a better understanding of paleolimnological changes since deglaciation for the region. Our preliminilary result shows that downcore shifts of δ18O analyzed from chironomid head capsules coincide well with LOI and pollen changes. The δD of sediments and TOM showed large magnitude changes and reflected the relative lake level changes during the record. This study aim to test the correlation between stable isotope analyese on chiornomid head capsules, lake water, and bulk sediments. In the addition, our study will add to the relatively small database of paleoenvironmental reconstructions from terrestrial sites in Southwest Alaska.

  19. Determination of Chemical Compositions on Adult Kidney Stones—A Spectroscopic Study

    Science.gov (United States)

    Raju, K.; Rakkappan, C.

    2008-11-01

    The chemical compositions of the kidney stones of both the sexes of patients, aged from 40 to 70, living in and around Chidambaram town are determined by using FT-IR and X-RD technique. The kidney stone samples used in the present study were procured from the Rajah Muthiah Medical College and Hospital, Annamalai University. The FT-IR spectra of different kidney stone samples were recorded in the range of 4000-400 cm-1. By identifying the characteristic frequency, the chemical compositions of the samples are determined. The results analyzed by FTIR technique were confirmed by X-RD method, in which the recorded X-ray diffractogram are compared with JCPDS files using search match method. Further analysis of XRD pattern also reveals the same.

  20. Broadening Our Portfolio in the Genetic Improvement of Maize Chemical Composition.

    Science.gov (United States)

    Wen, Weiwei; Brotman, Yariv; Willmitzer, Lothar; Yan, Jianbing; Fernie, Alisdair R

    2016-08-01

    The adoption of recombinant inbred line and introgression line populations, as well as the study of association mapping panels, has greatly accelerated our ability to identify the genes underlying plant phenotypic variance. In tandem, the development of metabolomics approaches has greatly enhanced our ability to comprehensively define cellular chemical composition. As a consequence, breeding for chemical composition is being extended beyond our traditional targets of oil and protein to include components such as essential amino acids, vitamins, and antioxidant secondary metabolites with considerable purported consequences for human health. Here, we review the above-mentioned developments paying particular attention to the genetic architecture of metabolic traits as well as updating the perspective for utilizing metabolomics in maize improvement.

  1. Effect of Crossbreed on the Muscle Quality (Chemical Composition) in Yun-Ling Black Goats

    Institute of Scientific and Technical Information of China (English)

    JIA Jun-jing; TIAN Yun-bo; ZHANG Xi; HUANG Qi-chao; WEN Sheng-ping; GU Feng-ying; GE Chang-rong; CAO Zhen-hui; CHENG Zhi-bin; M. Jois

    2009-01-01

    Twenty castrated male goats, each of Yun-Ling Black goats (YLB goat), N×YLB hybrid goats (Nubian ♂×Yun-Ling Black goats ♀) and B×YLB hybrid goats (Boer ♂×Yun-Ling Black goats ♀), were used to evaluate the effect of crossbreeding on the meat chemical composition in the YLB goats of China. After weaning of 90 days, all the experimental goats were reared on natural pasture when they were slaughtered at an age of 730 days. The longissimus dorsi (LD) and biceps femoris (BF) muscles were sampled from each carcass to determine chemical compositions. Both hybrid goats had higher protein content (P0.05). The YLB goats had significantly higher (P0.05). In contrast, the proportion of poly-unsaturated in the YLB goats was significantly lower (P<0.05) than that in the hybrid goats.

  2. Chemical composition and antimicrobial activity of the essential oils of Pinus pinaster

    Directory of Open Access Journals (Sweden)

    Nouara Ait Mimoune

    2013-08-01

    Full Text Available Objective: To investigate the antimicrobial activity and chemical composition of essential oils of Pinus pinaster. Methods: Essential oils were extracted from the needles by hydrodistillation. The chemical composition of the obtained essential oils was analyzed using GC-MS technique. The antimicrobial potential has been tested against six microorganisms performing the disc diffusion assay. Results: Twenty-three components have been identified. β-caryophyllene (30.9% and β-selinene (13.45% were predominant compounds. The essential oil exhibited a moderate activity against Staphylococcus aureus, Bacillus subtilis and Escherichia coli, but did not affect the growth of Erwinia amylovora. Aspergillus flavus and Aspergillus niger were not inhibited by maritime pine essential oils. Conclusions: The essential oils from Pinus pinaster can be used as an antibacterial agent.

  3. Anionic markers for the forensic identification of Chemical Ignition Molotov Cocktail composition.

    Science.gov (United States)

    Martín-Alberca, C; Ferrando, J L; García-Ruiz, C

    2013-03-01

    An improved version of the famous Molotov cocktail is the Chemical Ignition Molotov Cocktail (CIMC). This incendiary device contains chemical reagents that enable its self-ignition. The analysis of anions from CIMC residues by capillary electrophoresis (CE) allows the identification of the reagents used to produce the device, and provides forensic analysts with valuable information. Although, sulfate, chlorate, chloride, and perchlorate anions have been recently proposed in the literature as target anions to determine the CIMC composition, the identification of some of them could be controversial due to their presence in the environment. Therefore, the purpose of this study was to identify highly reliable anions capable of indicating the components used to prepare these self-initiated devices. The relationship among the detected anions in CIMC residues and the reagents employed in their elaboration is discussed. Some anions have been proposed as anionic markers of CIMC as incendiary devices. Additionally, the viability of different CIMC compositions was studied.

  4. Chemical composition, phytotoxic and antifungal properties of Ruta chalepensis L. essential oils.

    Science.gov (United States)

    Bouabidi, Wafa; Hanana, Mohsen; Gargouri, Samia; Amri, Ismail; Fezzani, Tarek; Ksontini, Mustapha; Jamoussi, Bassem; Hamrouni, Lamia

    2015-01-01

    The chemical composition, and phytotoxic and antifungal activities of the essential oils isolated by using hydrodistillation from the aerial parts of Tunisian rue were evaluated. Significant variations were observed among harvest periods. The analysis of the chemical composition by gas chromatography/mass spectrometry showed that 2-undecanone (33.4-49.8%), 2-heptanol acetate (13.5-15.4%) and α-pinene (9.8-11.9%) were the main components. The antifungal ability of rue essential oils was tested by using disc agar diffusion against ten plant pathogenic fungi. A high antifungal activity was observed for the essential oil isolated at flowering developmental phase. Furthermore, rue essential oils showed high level of herbicidal activity against several weeds.

  5. Surge-Resistant Nanocomposite Enameled Wire Using Silica Nanoparticles with Binary Chemical Compositions on the Surface

    Directory of Open Access Journals (Sweden)

    Jeseung Yoo

    2015-01-01

    Full Text Available We developed polyesterimide (PEI nanocomposite enameled wires using surface-modified silica nanoparticles with binary chemical compositions on the surface. The modification was done using silanes assisted by ultrasound, which facilitated high density modification. Two different trimethoxysilanes were chosen for the modification on the basis of resemblance of chemical compositions on the silica surface to PEI varnish. The surface-modified silica was well dispersed in PEI varnish, which was confirmed by optical observation and viscosity measurement. The glass transition temperature of the silica-PEI nanocomposite increased with the silica content. The silica-dispersed PEI varnish was then used for enameled wire fabrication. The silica-PEI nanocomposite enameled wire exhibited a much longer lifetime compared to that of neat PEI enameled wire in partial discharge conditions.

  6. Chemical composition and antibacterial activity of essential oils from Myrcia alagoensis (Myrtaceae).

    Science.gov (United States)

    Silva, Aline do N; Uetanabaro, Ana Paula T; Lucchese, Angélica M

    2013-02-01

    The chemical composition and antibacterial activity of essential oils obtained from fresh and dried leaves of Myrcia alagoensis O. Berg, collected in a secondary forest remnant in north-eastern Brazil, was compared. The essential oils were obtained by hydrodistillation from fresh and dried leaves, and analysed by GC/FID and GC/MS. The antimicrobial properties of the oils were investigated against five bacteria by determination of the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC). The essential oils were rich in cyclic sesquiterpenes, such as germacrene B, with antibiotic action against Gram-positive and Gram-negative bacteria. The drying process after collection interfered with the chemical composition and antibacterial activity of the assessed samples.

  7. Evaluation of the Chemical Composition of Brazilian Commercial Cymbopogon citratus (D.C. Stapf Samples

    Directory of Open Access Journals (Sweden)

    Evandro de Castro Melo

    2008-08-01

    Full Text Available Abstract: The concentration and the chemical composition of the essential oils obtained from different samples of Cymbopogon citratus were evaluated. Among the 12 samples investigated (11 dried leaf samples and fresh plant leaves, seven presented essential oil concentrations within the threshold established by the Brazilian legislation. The moisture content was also determined and the majority of the samples presented humidity contents near 12%. The GC and GC/MS analyses of the essential oils led to identification of 22 compounds, with neral and geranial as the two major components. The total percentage of these two compounds varied within the investigated sample oils from 40.7% to 75.4%. In addition, a considerable variation in the chemical composition of the analyzed samples was observed. The process of grinding the leaves significantly decreased (by up to 68% the essential oil content, as well as the percentage of myrcene in the oils.

  8. [Characteristics of chemical composition of glass finds from the Qiemo tomb sites on the Silk Road].

    Science.gov (United States)

    Cheng, Qian; Guo, Jin-Long; Wang, Bo; Cui, Jian-Feng

    2012-07-01

    Qiemo was an ancient country on the south branch of the Silk Road. The Zagunluke tomb site is located at the Qiemo County of the Xinjiang Uygur Autonomous Region. Glass beads and only colourless glass cup were excavated from the 3rd cultural layer of the tomb site M133 and M49, dated between the 1st AD-6th AD. LA-ICP-AES was applied to analyse chemical composition of these glass finds with the corning glass as reference. According to the result, characteristics of chemical composition are very similar to typical soda-lime glass, which indicates the glasses were imported productions from the west. These soda-lime glasses were divided into two groups in terms of flux source: natron glass and plant ash glass. This analytical research indicates the history of glass trade and communication between the East and the West on the Silk Road.

  9. Effect of enzyme addition to forage at ensiling on silage chemical composition and NDF degradation characteristics

    DEFF Research Database (Denmark)

    Dehghani, Mohammad Reza; Weisbjerg, Martin Riis; Hvelplund, Torben

    2012-01-01

    The effect of different exogenous fibrolytic enzymes added to forages at ensiling was examined for effect on chemical composition and in vitro NDF degradability characteristics of the resulting silage. Maize stover and lucerne were used to study effect on chemical composition in experiment 1...... digestibility decreased in treated maize stover silage. Potential NDF degradability decreased due to enzyme treatments but not for all maize stover treatments. Treatments with combination of enzymes with glucanase, β-glucanase and pectinase activity mostly resulted in increases in fermentation products compared......, and two varieties of maize stover, lucerne and grass clover were used to study NDF degradation characteristics in experiment 2. Forages were treated with enzymes (500 mg crude protein of the enzyme products/kg DM) and ensiled for 60 days in vacuum-sealed bags. Samples of forage (before ensiling...

  10. Qualitative and quantitative studies of chemical composition of sandarac resin by GC-MS.

    Science.gov (United States)

    Kononenko, I; de Viguerie, L; Rochut, S; Walter, Ph

    2017-01-01

    The chemical composition of sandarac resin was investigated qualitatively and quantitatively by gas chromatography-mass spectrometry (GC-MS). Six compounds with labdane and pimarane skeletons were identified in the resin. The obtained mass spectra were interpreted and the mass spectrometric behaviour of these diterpenoids under EI conditions was described. Quantitative analysis by the method of internal standard revealed that identified diterpenoids represent only 10-30% of the analysed sample. The sandarac resin from different suppliers was analysed (from Kremer, Okhra, Color Rare, La Marchande de Couleurs, L'Atelier Montessori, Hevea). The analysis of different lumps of resins showed that the chemical composition differs from one lump to another, varying mainly in the relative distributions of the components.

  11. Chemical composition and in vitro antioxidative potential of essential oil isolated from Curcuma longa L. leaves

    Institute of Scientific and Technical Information of China (English)

    R. Priya; A. Prathapan; K.G Raghu; A. Nirmala Menon

    2012-01-01

    Objective: To determine the chemical composition and antioxidant potential of essential oil isolated from the leaves of Curcuma longa (turmeric). Methods: Chemical composition of the oil was analyzed using GC-MS. Antiperoxidative potential was evaluated using linoliec acid emulsion system. Free radical scavenging activity was evaluated using stable DPPH and ABTS free radicals. Results: GC-MS analyses showed that major compound present in the turmeric leaf oil is b-sesquiphellandrene (22.8%) followed by terpinolene (9.5%). Essential oil also exhibited reductive potential and antioxidant potential in linoleic acid emulsion system along with DPPH and ABTS free radical scavenging potential. Conclusions: The overall result suggests that turmeric leaf oil is capable of retarding oxidation reaction and free radical mediated damage and can be developed as a potent natural antioxidant.

  12. Chemical Composition and Fatty Acids of Glodok Fish by High Thermal Processing

    Directory of Open Access Journals (Sweden)

    Sri Purwaningsih

    2014-11-01

    Full Text Available Glodok is an economically underrated fish with a high nutrient content. The research aims to study the changes on chemical composition, fatty acids, omega-6 and omega-3 ratio in glodok muscle after processing with different methods of boiling, steaming, and boiling with addition of salt (3%. The results showed that the treatment (boiling, steaming, and boiling with addition of salt gives a significant effect (α=0.05 in water content, ash, lipid content, nervonat acid, linoleic acid, arachidonic acid, EPA, and DHA. The best processing method was steaming. The ratio of omega-3 and omega-6 in fresh glodok fish was 2,1:1, which is higher than WHO recommendation of 0,6:1,7.Keywords: chemical composition, fatty acid, glodok fish, processing

  13. Chemical Composition and Antibacterial Activity of Essential Oils of Two Species of Lamiaceae against Phytopathogenic Bacteria.

    Science.gov (United States)

    Gormez, Arzu; Bozari, Sedat; Yanmis, Derya; Gulluce, Medine; Sahin, Fikrettin; Agar, Guleray

    2015-01-01

    In this study, we aimed to determine chemical composition and antibacterial activities of Satureja hortensis and Calamintha nepeta against to 20 phytopathogenic bacteria causing serious crop loss. The essential oils of S. hortensis and C. nepeta were isolated by the hydrodistillation method and the chemical composition of the essential oils were analyzed by GC-MS. The antibacterial properties of the essential oils were evaluated against 20 phytopathogenic bacteria through Disc diffusion assay and micro dilution assay. The results revealed that the essential oils of S. hortensis and C. nepeta have significant antibacterial activity. Furthermore, the findings of the study are valuable for future investigations focusing on the alternative natural compounds to control plant diseases.

  14. Design and control of chemical compositions for high-performance austempered ductile iron

    Directory of Open Access Journals (Sweden)

    Gong Wenbang

    2012-05-01

    Full Text Available This paper presents the effects of chemical compositions of austempered ductile iron (ADI on casting quality, heat treatment process parameters and mechanical properties of final products. Through experiment and production practice, the impacts of carbon equivalent on ADI and its mechanical properties have been studied. Proper content ranges for carbon and silicon have been obtained to avoid ADI casting shrinkage and graphite floatation, as well as to achieve the optimal mechanical properties. According to the impact of silicon content on austenite phase transformation, the existing form of carbon in ADI has been analyzed, and also the formula and diagram showing the relationship between austenitizing temperature and carbon content in austenite have been deduced. The chemical composition range for high performance ADI and its control points have been recommended, to serve as a reference for production process.

  15. Chemical composition and antimicrobial activity of the essential oils of Pinus pinaster

    Institute of Scientific and Technical Information of China (English)

    Nouara Ait Mimoune; Djouher Ait Mimoune; Aziza Yataghene

    2013-01-01

    Objective: To investigate the antimicrobial activity and chemical composition of essential oils ofPinus pinaster. Methods: Essential oils were extracted from the needles by hydrodistillation. The chemical composition of the obtained essential oils was analyzed using GC-MS technique. The antimicrobial potential has been tested against six microorganisms performing the disc diffusion assay.Results:Twenty-three components have been identified. β-caryophyllene (30.9%) and β-selinene (13.45%) were predominant compounds. The essential oil exhibited a moderate activity againstStaphylococcus aureus, Bacillus subtilis and Escherichia coli, but did not affect the growth of Erwinia amylovora. Aspergillus flavus and Aspergillus niger were not inhibited by maritime pine essential oils.Conclusions:The essential oils from Pinus pinaster can be used as an antibacterial agent.

  16. Antioxidant properties, physico-chemical characteristics and proximate composition of five wild fruits of Manipur, India.

    Science.gov (United States)

    Sharma, Ph Baleshwor; Handique, Pratap Jyoti; Devi, Huidrom Sunitibala

    2015-02-01

    Antioxidant properties, physico-chemical characteristics and proximate composition of five wild fruits viz., Garcinia pedunculata, Garcinia xanthochymus, Docynia indica, Rhus semialata and Averrhoa carambola grown in Manipur, India were presented in the current study. The order of the antioxidant activity and reducing power of the fruit samples was found as R. semialata > D. indica > G. xanthochymus > A. carambola > G. pedunculata. Good correlation coefficient (R(2) > 0.99) was found among the three methods applied to determine antioxidant activity. Total phenolic content was positively correlated (R(2) = 0.960) with the antioxidant activity however, total flavonoid content was not positively correlated with the antioxidant activity. Physico-chemical and proximate composition of these fruits is documented for the first time.

  17. Low temperature impact strength of heavy section ductile iron castings: effects of microstructure and chemical composition

    Directory of Open Access Journals (Sweden)

    C. Labrecque

    2011-02-01

    Full Text Available A foundry research project has been recently initiated at RTIT in order to better understand the fabrication of as-cast heavy section DI parts meeting high impact energy requirements at low temperatures. The experimental castings have the following dimensions 180 mm x 180 mm x 190 mm. The achieved as-cast Charpy impact strengths were as follows: 17 J (RT, 16 J (-20°C and 11 J (-40°C. The foundry process, the chemical composition and the microstructure of this experimental casting are compared to the ones of various examples in order to show the detrimental effects of residual elements, microshrinkage and microcarbide on the impact properties. Finally, quality index empirical models (based on casting chemical compositions are used to analyse the impact tests results. This paper illustrates that an adequate nodule count can contribute to reducing the detrimental effects of the residual elements and microsegregation.

  18. Chemically Modified Ordered Mesoporous Carbon/Polyaniline Composites for Electrochemical Capacitors

    Institute of Scientific and Technical Information of China (English)

    KONG Ling-bin; ZHANG Jing; CAI Jian-jun; YANG Zhen-sheng; LUO Yong-chun; KANG Long

    2011-01-01

    Chemically modified ordered mesoporous carbon CMK-3 materials were prepared by means of an easy wet-oxidative method in 2 mol/L nitric acid aqueous solution. A large amount of oxygen-containing functional groups were introduced onto the CMK-3 surface. Modified CMK-3(m-CMK-3) and aniline monomer were polymerized via an in situ chemical oxidative polymerization method. Morphological characterizations of m-CMK-3/PANI (polyaniline) composites were carried out via field emission scanning electron microscopy(SEM). Their electrochemical properties were investigated with cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The m-CMK-3/PANI composites have excellent properties in capacitance, and the highest specific capacitance(SC) value was up to 489 F/g, suggesting their potential application in the electrode material for electrochemical capacitors.

  19. Chemical Composition and Antioxidant Activity of Euterpe oleracea Roots and Leaflets

    OpenAIRE

    2016-01-01

    Euterpe oleracea (açaí) is a palm tree well known for the high antioxidant activity of its berries used as dietary supplements. Little is known about the biological activity and the composition of its vegetative organs. The objective of this study was to investigate the antioxidant activity of root and leaflet extracts of Euterpe oleracea (E. oleracea) and characterize their phytochemicals. E. oleracea roots and leaflets extracts were screened in different chemical antioxidant assays (DPPH—2,...

  20. A Study on Chemical Compositions and Fiber Characteristics of Two Sympodial Bamboos

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The chemical composition and fiber characteristics of two sympodial bamboos have been studied in this paper. Based on analysis results, it is shown that the Whangee (D. Membranaceus Munro) bamboo is better than Yunnanicus bamboo(D. yunnaicus Hsueh et D. Z. Li) in utilization because of its higher specific gravity, better fiber length and its distribution rule and higher wall/lumen ratio, and that the Whangee bamboo is more suitable for papermaking and panel processing used in house construction. In addi...

  1. Chemical composition and antibacterial activity of essential oil of Pulicaria odora L.

    Science.gov (United States)

    Hanbali, Fadwa E L; Akssira, Mohamed; Ezoubeiri, Aicha; Gadhi, Chems Eddoha A; Mellouki, Fouad; Benherraf, Ahmed; Blazquez, Amparo M; Boira, Herminio

    2005-07-14

    The chemical composition of the volatile oil constituent from Pulicaria odora L. roots has been analyzed by GC/MS. Twenty-seven components were identified, being thymol (47.83%) and its derivative isobutyrate (30.05%) the main constituents in the oil. Furthermore, the oil was tested against seven bacteria at different concentrations. Results showed that the oil exhibited a significant antibacterial activity.

  2. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.).

    Science.gov (United States)

    Gigliarelli, Giulia; Becerra, Judith X; Curini, Massimo; Marcotullio, Maria Carla

    2015-12-12

    Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus) and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  3. Neem cake: chemical composition and larvicidal activity on Asian tiger mosquito.

    Science.gov (United States)

    Nicoletti, Marcello; Mariani, Susanna; Maccioni, Oliviero; Coccioletti, Tiziana; Murugan, Kardaray

    2012-07-01

    New pesticides based on natural products are urgently needed, in consideration of their environmental care and lower collateral effects. Neem oil, the main product obtained from Azadiractha indica A. Juss, commonly known as neem tree, is mainly used in medical devices, cosmetics and soaps, as well as important insecticide. Manufacturing of neem oil first includes the collection of the neem seeds as raw material used for the extraction. Neem cake is the waste by-product remaining after extraction processes. The quality of the oil, as that of the cake, strictly depends from the quality of seeds as well as from the type of extraction processes used, which strongly influences the chemical composition of the product. Currently, the different types of commercial neem cake on the market are roughly identified as oiled and deoiled cake, but several other differences can be detected. The differences are relevant and must be determined, to obtain the necessary correlation between chemical constitution and larvicidal activities. Six different batches of neem cake, marketed by several Indian and European companies, were analyzed by HPLC and HPTLC, and their fingerprints compared, obtaining information about the different compositions, focusing in particular on nortriterpenes, considered as the main active components of neem oil. Therefore, the chemical composition of each cake was connected with the biological activitiy, i.e., the effects of the extracts of the six neem cakes were tested on eggs and larvae of Aedes albopictus (Stegomyia albopicta) (Diptera: Culicidae), commonly known as Asian tiger mosquito. The results confirmed the previously reported larvicide effects of neem cake that, however, can now be related to the chemical composition, in particular with nortriterpenes, allowing in that way to discriminate between the quality of the various marketed products, as potential domestic insecticides.

  4. Progress of Chemical Composition and Pharmacological Effects of Meretrix meretrix Linnaeus

    Institute of Scientific and Technical Information of China (English)

    Du; Zhengcai; Hou; Xiaotao; Huang; Qing; Deng; Jiagang; Fanshi; Fangcao

    2014-01-01

    Meretrix meretrix Linnaeus is a traditional marine drug. There are more than two thousand years of history using clamshell as a component of medicine.After a review of relevant literature at home and abroad for nearly 20 years,the author summarized chemical composition and pharmacological effects of M. meretrix,in order to provide a scientific basis for further development and utilization of M. meretrix.

  5. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.

    Directory of Open Access Journals (Sweden)

    Giulia Gigliarelli

    2015-12-01

    Full Text Available Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  6. Biomass production, yield and chemical composition of peppermint essential oil using different organic fertilizer sources

    OpenAIRE

    Costa, Andressa Giovannini; Bertolucci,Suzan Kelly Vilela; Chagas,Jorge Henrique; Ferraz, Elza de Oliveira [UNESP; Pinto,José Eduardo Brasil Pereira

    2013-01-01

    Mentha x piperita L. is an aromatic and medicinal species belonging to the family Lamiaceae that is popularly known as peppermint. The aim of this study was to evaluate the effects of organic fertilizer sources on the biomass production, yield and chemical composition of peppermint (Mentha piperita L.) essential oil. The experiment was conducted using a completely randomized design (CRD) with a 2 x 5 factorial scheme, two sources of manure (cattle and poultry), five doses (0, 3, 6, 9 and 12 k...

  7. The Chemical Compositions of Thermal Waters at Ciarinem and Cilayu, Pameungpeuk, West Java - Indonesia

    Directory of Open Access Journals (Sweden)

    N.R. Herdianita

    2008-03-01

    Full Text Available Thermal waters at Ciarinem and Cilayu, Pameungpeuk, West Java, Indonesia have different characteristics: Ciarinem water is a steam heated sulfate type and occurs as hot springs, whereas Cilayu water discharges as hot pools and is a chloride water type. Their chemical compositions indicate that the thermal waters are outflows of a volcanic–magmatic associated geothermal system. The solute geothermometers calculate that the subsurface reservoir temperatures range from 150o to 200ºC.

  8. Chemical composition, antimicrobial, antioxidant and cytotoxic activity of Rosa centifolia L. essential oil

    OpenAIRE

    Nikolić, Miloš; Isabel C. F. R. Ferreira; Calhelha, Ricardo C.; Ângela FERNANDES; Marković, Dejan; Marković, Tatjana; Ćirić, Ana; Glamočlija, Jasmina; Soković, Marina

    2013-01-01

    The genus Rosa comprises more than 200 species appreciated for their use in perfume and cosmetic industry. The aim of this study was to investigate chemical composition, antimicrobial, antioxidant and cytotoxic activities of Rosa centifolia L. essential oil, in an attempt to contribute to the use of this plant as alternative product for microbial control and cancer therapy. The results of GC/MS analysis showed the presence of 12 components. The major constituents were: phenyl ethyl alcohol (5...

  9. Concentration of mycotoxins and chemical composition of corn silage: a farm survey using infrared thermography.

    Science.gov (United States)

    Schmidt, P; Novinski, C O; Junges, D; Almeida, R; de Souza, C M

    2015-09-01

    This work evaluated the chemical composition and mycotoxin incidence in corn silage from 5 Brazilian dairy-producing regions: Castro, in central-eastern Paraná State (n=32); Toledo, in southwestern Paraná (n=20); southeastern Goiás (n=14); southern Minas Gerais (n=23); and western Santa Catarina (n=20). On each dairy farm, an infrared thermography camera was used to identify 3 sampling sites that exhibited the highest temperature, a moderate temperature, and the lowest temperature on the silo face, and 1 sample was collected from each site. The chemical composition and concentrations of mycotoxins were evaluated, including the levels of aflatoxins B1, B2, G1, and G2; zearalenone; ochratoxin A; deoxynivalenol; and fumonisins B1 and B2. The corn silage showed a highly variable chemical composition, containing, on average, 7.1±1.1%, 52.5±5.4%, and 65.2±3.6% crude protein, neutral detergent fiber, and total digestible nutrients, respectively. Mycotoxins were found in more than 91% of the samples, with zearalenone being the most prevalent (72.8%). All samples from the Castro region contained zearalenone at a high average concentration (334±374µg/kg), even in well-preserved silage. The incidence of aflatoxin B1 was low (0.92%). Silage temperature and the presence of mycotoxins were not correlated; similarly, differences were not observed in the concentration or incidence of mycotoxins across silage locations with different temperatures. Infrared thermography is an accurate tool for identifying heat sites, but temperature cannot be used to predict the chemical composition or the incidence of mycotoxins that have been analyzed, within the silage. The pre-harvest phase of the ensiling process is most likely the main source of mycotoxins in silage.

  10. Chemical composition analysis of raw materials used in iron ore sinter plants in Poland

    Directory of Open Access Journals (Sweden)

    D. Burchart-Korol

    2014-07-01

    Full Text Available The main goal of the study was the analysis of the chemical compositions of raw materials used in iron ore sinter plants in Poland. The iron ore sintering process is the largest source of emissions of dust and gas pollution in the iron and steel industry. Hematite ores, magnetite concentrates, admixtures (dolomite, limestone and burnt lime, fuels (coke breeze, anthracite and by-products are used in Poland to produce the sinter mixture.

  11. Chemical composition of Kiscellian silty sediment (sivica from the Trobni Dol area, Eastern Slovenia

    Directory of Open Access Journals (Sweden)

    Miha Mišič

    2003-06-01

    Full Text Available Kiscellian marine silt termed »sivica« is widely developed in Tertiary basins of Eastern Slovenia. Chemical composition is rather uniform and reflects the dominance of filosilicates (mainly illite/muscovite, chlorite and montmorillonite and carbonates. PAAS normalised REE and Y abundances are slightly depleted for La, Ce, Pr and Nd, very close to PAAS for Sm, Eu, Gd and Tb, and depleted for Y, Ho, Er, Tm, Yb and Lu.

  12. Chemical Composition and Antifungal Activity of Ocimum basilicum L. Essential Oil

    OpenAIRE

    Neveen Helmy Abou El-Soud; Mohamed Deabes; Lamia Abou El-Kassem; Mona Khalil

    2015-01-01

    BACKGROUND: The leaves of Ocimum basilicum L. (basil) are used in traditional cuisine as spices; its essential oil has found a wide application in perfumery, dental products as well as antifungal agents. AIM: To assess the chemical composition as well as the in vitro antifungal activity of O. basilicum L. essential oil against Aspergillus flavus fungal growth and aflatoxin B1 production. MATERIAL AND METHODS: The essential oil of O. basilicum was obtained by hydrodistillation and anal...

  13. Chemical composition and antimicrobial activity of the essential oils of Pistacia lentiscus var. chia.

    Science.gov (United States)

    Magiatis, P; Melliou, E; Skaltsounis, A L; Chinou, I B; Mitaku, S

    1999-12-01

    The chemical composition of the three essential oils obtained by steam distillation of the mastic gum, leaves and twigs of Pistacia lentiscus var. chia, was studied by GC/MS. Sixty nine constituents were identified from the oils. alpha-Pinene, myrcene, trans-caryophyllene and germacrene D were found to be the major components. The in vitro antimicrobial activity of the three essential oils and of the resin (total, acid and neutral fraction) against six bacteria and three fungi is reported.

  14. Phylogenetic or environmental control on the organo-chemical composition of Sphagnum mosses?

    Science.gov (United States)

    Limpens, Juul; Nilsson, Mats

    2014-05-01

    Decomposition of organic material is one of the key processes that determines the size of the soil-feedback to global warming, but it is also a process surrounded with one of the largest uncertainties, making understanding its mechanistic drivers of crucial importance. In organic soils decomposition is closely determined by the organo-chemical composition of the litter entering the soil. But what, in turn drives the organo-chemical composition? Is it an emergent feature of the environment the species producing the litter grow in, or is it an evolutionary trait that can be tracked through the species' phylogeny? We set out to answer this question for one of the most import peat-forming plants on earth: the genus Sphagnum. We sampled 18 Sphagnum species, about equally distributed over 6 sites spanning a wide range of environmental conditions: most species were collected at multiple sites. For all species we characterised the chemical composition, focussing on three functional chemistry groups: (i) mineral elements, (ii) carbohydrate polymers (iii) non-carbohydrate polymers (aromatic and aliphatic compounds) . For each group of compounds we used multivariate statistical techniques to derive the degree of variation explained by environment: (site, position within site) and phylogeny (sections within genus Sphagnum). We found that the variation in mineral element concentrations was mostly explained by environment, with the biggest differences in the concentrations of basic cat-ions calcium and magnesium. In contrast, the variation in carbohydrates was mostly explained by phylogeny, with clear associations between sections and monosaccharides. The monosaccharide rhamnose was associated with species from the Acutifolia section known for their poor degradability, whereas xylose and galactose were closely associated with degradable species from the Cuspidata section. The composition non-carbohydrate polymers took an intermediate position: both environment and phylogeny

  15. Chemical composition of the volatile oil from Zanthoxylum avicennae and antimicrobial activities and cytotoxicity

    Directory of Open Access Journals (Sweden)

    Yin Lin

    2014-01-01

    Full Text Available Background: Through literature retrieval, there has been no report on the research of the chemical components in Zanthoxylum avicennae (Lam. DC. This paper extracted and determined the chemical components of the volatile oil in Z. avicennae, and at the same time, measured and evaluated the bioactivity of the volatile oil in Z. avicennae. Materials and Methods: We extract the volatile oil in Z. avicennae by steam distillation method, determined the chemical composition of the volatile oil by GC-MS coupling technique, and adopt the peak area normalization method to measured the relative percentage of each chemical composition in the volatile oil. Meanwhile, we use the Lethal-to-prawn larva bioactivity experiment to screen the cytotoxicity activities of the volatile oil in Z. avicennae, and using the slanting test-tube experiment to determine and evaluate its antibacterial activities in vitro for the eight kinds of plant pathogenic fungi in the volatile oil of the Z. avicennae. Results: The results show that 68 kinds of compounds are determined from the volatile oil of Z. avicennae. The determined part takes up 97.89% of the total peak area. The main ingredients in the volatile oil of Z. avicennae are sesquiterpenoids and monoterpene. The test results show that the volatile oil in Z. avicennae has strong antibacterial activities and cytotoxicity, with the strongest antibacterial activity against the Rhizoctonia solani AG1-1A. Conclusion: This research results will provide reference data for understanding the chemical composition of the volatile oil in the aromatic plant of Z. avicennae and its bioactivity, and for its further development and application.

  16. Differential characteristics in the chemical composition of bananas from Tenerife (Canary Islands) and Ecuador.

    Science.gov (United States)

    Forster, Markus Paul; Rodríguez Rodríguez, Elena; Díaz Romero, Carlos

    2002-12-18

    The contents of moisture, protein, ash, ascorbic acid, glucose, fructose, total sugars, and total and insoluble fiber were determined in cultivars of bananas (Gran Enana and Pequeña Enana) harvested in Tenerife and in bananas (Gran Enana) from Ecuador. The chemical compositions in the bananas from Tenerife and from Ecuador were clearly different. The cultivar did not influence the chemical composition, except for insoluble fiber content. Variations of the chemical composition were observed in the bananas from Tenerife according to cultivation method (greenhouse and outdoors), farming style (conventional and organic), and region of production (north and south). A highly significant (r = 0.995) correlation between glucose and fructose was observed. Correlations of ash and protein contents tend to separate the banana samples according to origin. A higher content of protein, ash, and ascorbic acid was observed as the length of the banana decreased. Applying factor analysis, the bananas from Ecuador were well separated from the bananas produced in Tenerife. An almost total differentiation (91.7%) between bananas from Tenerife and bananas from Ecuador was obtained by selecting protein, ash, and ascorbic acid content and applying stepwise discriminant analysis. By selecting the bananas Pequeña Enana and using discriminant analysis, a clear separation of the samples according to the region of production and farming style was observed.

  17. Composition and Physico-Chemical Properties of Meat from Capons Fed Cereals

    Institute of Scientific and Technical Information of China (English)

    Olga Díaz; Luisana Rodríguez; Alexandr Torres; Ángel Cobos

    2013-01-01

    Chemical composition, physico-chemical properties and fatty acid composition of breast and drumstick meat from capons (castrated male cockerels) fed cereals were studied. Three groups of capons were reared. One group was fed ad libitum the same commercial diet until the 4th mon of life. The last month of its life, the capons of this group were fed corn. The second and third group of capons were fed the same diet from caponization. The second group was fed mixture of corn (50%) and wheat (50%). The third group of capons was fed 2/3 corn and 1/3 mixture of corn (50%) and barley (50%). Capons were reared under free-range conditions and slaughtered at 150 d of age. Caponization was performed at 48 d. No signiifcant effects of feeding in chemical composition, pH, water holding capacity, drip and cooking losses and texture of the meat were observed. The meat of the third group (capons fed 83%corn) was more yellow and showed higher content of C18:2 than that of the other capons.

  18. GC-MS studies of the chemical composition of two inedible mushrooms of the genus Agaricus

    Directory of Open Access Journals (Sweden)

    Gjosheva Melania

    2007-12-01

    Full Text Available Abstract Background Mushrooms in the genus Agaricus have worldwide distribution and include the economically important species A. bisporus. Some Agaricus species are inedible, including A. placomyces and A. pseudopratensis, which are similar in appearance to certain edible species, yet are known to possess unpleasant odours and induce gastrointestinal problems if consumed. We have studied the chemical composition of these mushrooms using GC-MS. Results Our GC-MS studies on the volatile fractions and butanol extracts resulted in the identification of 44 and 34 compounds for A. placomyces and A. pseudopratensis, respectively, including fatty acids and their esters, amino acids, and sugar alcohols. The most abundant constituent in the volatiles and butanol were phenol and urea respectively. We also identified the presence of ergosterol and two Δ7-sterols. In addition, 5α,8α-Epidioxi-24(ξ-methylcholesta-6,22-diene-3β-ol was isolated for the first time from both mushrooms. Our study is therefore the first report on the chemical composition of these two species. Conclusion The results obtained contribute to the knowledge of the chemical composition of mushrooms belonging to the Agaricus genus, and provide some explanation for the reported mild toxicity of A. placomyces and A. pseudopratensis, a phenonomenon that can be explained by a high phenol content, similar to that found in other Xanthodermatei species.

  19. Application of infrared spectroscopy for assessing quality (chemical composition) of peatland plants, litter and soil

    Science.gov (United States)

    Straková, Petra; Laiho, Raija

    2016-04-01

    In this presentation, we assess the merits of using Fourier transform infrared (FTIR) spectra to estimate the organic matter composition in different plant biomass and peat soil samples. Infrared spectroscopy has a great potential in large-scale peatland studies that require low cost and high throughput techniques, as it gives a unique "chemical overview" of a sample, with all the chemical compounds present contributing to the spectrum produced. Our extensive sample sets include soil samples ranging from boreal to tropical peatlands, including sites under different environmental and/or land-use changes; above- and below-ground biomass of different peatland plant species; plant root mixtures. We mainly use FTIR to estimate (1) chemical composition of the samples (e.g., total C and N, C:N ratio, holocellulose, lignin and ash content), (2) proportion of each plant species in root mixtures, and (3) respiration of surface peat. The satisfactory results of our predictive models suggest that this experimental approach can, for example, be used as a screening tool in the evaluation of organic matter composition in peatlands during monitoring of their degradation and/or restoration success.

  20. Chemical composition and antioxidant activity of a Lebanese plant Euphorbia macroclada schyzoceras

    Institute of Scientific and Technical Information of China (English)

    Hussein Farhan; Hassan Rammal; Akram Hijazi; Ahmad Daher; Mohamad Reda; Hussein Annan; Ali Chokr; Ali Bassal; Bassam Badran

    2013-01-01

    Objective:To determine the chemical composition, total phenolic and total flavonoid contents of the crude extracts from leaves and stems of a Lebanese plant Euphorbia macroclada schyzoceras (E. macroclada), and to evaluate their antioxidant potential using DPPH, H2O2, and chelating of ferrous ions tests. Methods:Quantification of the total phenolic and total flavonoid contents of the crude extracts from leaves and stems and the antioxidant activities were evaluated using spectrophotometric analyses. The chemical composition has been estimated using different techniques such as IR, LC/MS and NMR. Results:Ethanolic extract from leaves of E. macroclada was better than aqueous extract and showed higher content in total phenolic and total flavonoid than found in the stems. On the other hand, using DPPH and H2O2 tests, this extract from leaves showed higher antioxidant capacity than aqueous extract. However, using the chelating of ferrous ions test, the antioxidant activity of the aqueous extract of both stems and leaves was stronger than that of ethanolic once. The chemical composition of the whole plant showed the presence of some aromatic compounds and fatty acids. Conclusions:Both ethanolic and water extracts from both parts of this plant are effective and have good antioxidant power. So, this plant can be used in the prevention of a number of diseases related to oxidative stress.