WorldWideScience

Sample records for bulk carriers

  1. Double-hulling of the bulk carriers%散货船的双壳化

    Institute of Scientific and Technical Information of China (English)

    莫中华

    2004-01-01

    This article analyses the technical background of the double-hulling of the bulk carriers and describes the 3 major problems for its design. It finally compares the characteristics of the single/double hull bulk carriers by listing.

  2. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c)...

  3. World largest capesized bulk carrier was born in WSC%中国最大的好望角型散货船交付使用

    Institute of Scientific and Technical Information of China (English)

    He Baoxin

    2005-01-01

    The world largest Capesized bulk carrier developed and designed by Waigaoqiao Shipbuilding Company, the 177000 dwt green environment friendly bulk carrier, has made its official debut in the market. The world bulk carrier shipping giant Bocimar International of Belgium became the first owner of this type of bulk carrier.

  4. Price Formation of Dry Bulk Carriers in the Chinese Shipbuilding Industry

    DEFF Research Database (Denmark)

    JIANG, Liping

    In this paper we present, for the first time, the price formation of China’s dry bulk carrier using vessel prices quoted by major Chinese shipyards in actual shipbuilding orders. This allows us to investigate the relationship of price and determinants in the Chinese shipbuilding industry...... by including generic market factors as well as Chinese elements. The analysis, employing Principal Component Regression (PCR) approach, indicates that the time charter rate has the most significantly positive impact. While increases in other four factors, namely shipbuilding cost, price cost margin...... to investigate what would happen to the Chinese dry bulk carrier prices under changes of time charter rate and shipbuilding cost. This paper has implications for the Chinese shipyards, shipbuilding industry customers and industry policy makers....

  5. A Forecasting Model of Required Number of Wheat Bulk Carriers for Africa

    Institute of Scientific and Technical Information of China (English)

    Masayoshi Kubo

    2008-01-01

    <正>The ocean transportation of grain bulk carriers is promoted by development of ocean economic.With the development of coastal region,the cargo transportation wi11 become more and more important,especially for the resource such as grain,oil and coal.In this study,a model is built to estimate the number of grain bulk carriers needed for wheat based upon analyzing the relationships between Tons and Ton-miles of Africa wheat transportation.We find that the agricultural policies greatly affect the wheat transportation to Africa.Then,using two scenarios, we predict how many ships are necessary for the maritime transportation of wheat from other places to Africa in the future.We believe that this research is extremely useful to maritime transportation of wheat to Africa.

  6. Optimal dimension design of a hatch cover for lightening a bulk carrier

    Directory of Open Access Journals (Sweden)

    Um Tae-Sub

    2015-06-01

    Full Text Available According to the increase of the operating cost and material cost of a ship due to the change of international oil price, a demand for the lightening of the ship weight is being made from various parties such as shipping companies, ship owners, and shipyards. To satisfy such demand, many studies for a light ship are being made. As one of them, an optimal design method of an existing hull structure, that is, a method for lightening the ship weight based on the optimization technique was proposed in this study. For this, we selected a hatch cover of a bulk carrier as an optimization target and formulated an optimization problem in order to determine optimal principal dimensions of the hatch cover for lightening the bulk carrier. Some dimensions representing the shape of the hatch cover were selected as design variables and some design considerations related to the maximum stress, maximum deflection, and geometry of the hatch cover were selected as constraints. In addition, the minimization of the weight of the hatch cover was selected as an objective function. To solve this optimization problem, we developed an optimization program based on the Sequential Quadratic Programming (SQP using C++ programming language. To evaluate the applicability of the developed program, it was applied to a problem for finding optimal principal dimensions of the hatch cover of a deadweight 180,000 ton bulk carrier. The result shows that the developed program can decrease the hatch cover’s weight by about 8.5%. Thus, this study will be able to contribute to make energy saving and environment-friendly ship in shipyard.

  7. A Model for Prediction of Propulsion Power and Emissions – Tankers and Bulk Carriers

    DEFF Research Database (Denmark)

    Lützen, Marie; Kristensen, Hans Otto Holmegaard

    To get an idea of the reduction in propulsion power and associated emissions by varying the speed and other ship design main parameters, a generic model for parameter studies of tankers and bulk carriers has been developed. With only a few input parameters of which the maximum deadweight capacity...... is the primary input a proposal for the main dimensions is made. Based on these dimensions and other ship particulars which are determined by the program the necessary installed propulsion power can be calculated. By adjusting the vessel design, i.e. the suggested main dimensions, and varying the speed...

  8. Incorporating mesh-insensitive structural stress into the fatigue assessment procedure of common structural rules for bulk carriers

    Directory of Open Access Journals (Sweden)

    Kim Seong-Min

    2015-01-01

    Full Text Available This study introduces a fatigue assessment procedure using mesh-insensitive structural stress method based on the Common Structural Rules for Bulk Carriers by considering important factors, such as mean stress and thickness effects. The fatigue assessment result of mesh-insensitive structural stress method have been compared with CSR procedure based on equivalent notch stress at major hot spot points in the area near the ballast hold for a 180 K bulk carrier. The possibility of implementing mesh-insensitive structural stress method in the fatigue assessment procedure for ship structures is discussed.

  9. Analysis of the Panamax bulk carrier charter market 1989-1994 in relation to the design characteristics

    NARCIS (Netherlands)

    Wijnolst, N.; Bartelds, M.

    1995-01-01

    Panamax bulk carriers form the largest homogeneous shiptype-group in the world fleet. The H. Clarkson database contained in 1994, 834 of these ships, in a dead-weight range of 50.000-76.000 tons. The dimensions of panamax vessels are restricted by the dimensions of the locks of the Panama Canal, esp

  10. Bulk charge carrier transport in push-pull type organic semiconductor.

    Science.gov (United States)

    Karak, Supravat; Liu, Feng; Russell, Thomas P; Duzhko, Volodimyr V

    2014-12-10

    Operation of organic electronic and optoelectronic devices relies on charge transport properties of active layer materials. The magnitude of charge carrier mobility, a key efficiency metrics of charge transport properties, is determined by the chemical structure of molecular units and their crystallographic packing motifs, as well as strongly depends on the film fabrication approaches that produce films with different degrees of anisotropy and structural order. Probed by the time-of-flight and grazing incidence X-ray diffraction techniques, bulk charge carrier transport, molecular packing, and film morphology in different structural phases of push-pull type organic semiconductor, 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophen]-5yl)benzo[c][1,2,5] thiadiazole), one of the most efficient small-molecule photovoltaic materials to-date, are described herein. In the isotropic phase, the material is ambipolar with high mobilities for a fluid state. The electron and hole mobilities at the phase onset at 210.78 °C are 1.0 × 10(-3) cm(2)/(V s) and 6.5 × 10(-4) cm(2)/(V s), respectively. Analysis of the temperature and electric field dependences of the mobilities in the framework of Gaussian disorder formalism suggests larger energetic and positional disorder for electron transport sites. Below 210 °C, crystallization into a polycrystalline film with a triclinic unit cell symmetry and high degree of anisotropy leads to a 10-fold increase of hole mobility. The mobility is limited by the charge transfer along the direction of branched alkyl side chains. Below 90 °C, faster cooling rates produce even higher hole mobilities up to 2 × 10(-2) cm(2)/(V s) at 25 °C because of the more isotropic orientations of crystalline domains. These properties facilitate in understanding efficient material performance in photovoltaic devices and will guide further development of materials and devices.

  11. The effect of carrier surface and bulk properties on drug particle detachment from crystalline lactose carrier particles during inhalation, as function of carrier payload and mixing time

    NARCIS (Netherlands)

    Dickhoff, B.H.J.; de Boer, Anne; Lambregts, D.; Frijlink, H.W.

    2003-01-01

    The effect of carrier payload and mixing time on the redispersion of drug particles from adhesive mixtures during inhalation for two different drugs (budesonide and disodium cromoglycate) has been investigated. A special test inhaler which retains carrier crystals during inhalation was used at 30 an

  12. Intrinsic carrier multiplication efficiency in bulk Si crystals evaluated by optical-pump/terahertz-probe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, G.; Nagai, M., E-mail: mnagai@mp.es.osaka-u.ac.jp, E-mail: ashida@mp.es.osaka-u.ac.jp; Ashida, M., E-mail: mnagai@mp.es.osaka-u.ac.jp, E-mail: ashida@mp.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, Osaka 560-8531 (Japan); Matsubara, E. [Graduate School of Engineering Science, Osaka University, Osaka 560-8531 (Japan); Department of Physics, Osaka Dental University, Hirakata, Osaka 573-1121 (Japan); Kanemitsu, Y. [Institute for Chemical Research, Kyoto University, Kyoto 611-0011 (Japan)

    2014-12-08

    We estimated the carrier multiplication efficiency in the most common solar-cell material, Si, by using optical-pump/terahertz-probe spectroscopy. Through close analysis of time-resolved data, we extracted the exact number of photoexcited carriers from the sheet carrier density 10 ps after photoexcitation, excluding the influences of spatial diffusion and surface recombination in the time domain. For incident photon energies greater than 4.0 eV, we observed enhanced internal quantum efficiency due to carrier multiplication. The evaluated value of internal quantum efficiency agrees well with the results of photocurrent measurements. This optical method allows us to estimate the carrier multiplication and surface recombination of carriers quantitatively, which are crucial for the design of the solar cells.

  13. Influence of optical interference and carrier lifetime on the short circuit current density of organic bulk heterojunction solar cells

    Institute of Scientific and Technical Information of China (English)

    You Hai-Long; Zhang Chun-Fu

    2009-01-01

    Based on simple analytical equations, short circuit current density (Jsc) of the organic bulk heterojunction solar cells has been calculated. It is found that the optical interference effect plays a very important role in the determination of JSC;and obvious oscillatory behaviour of Jsc was observed as a function of thickness. At the same time, the influence of JSC only increases the carrier lifetime on JSC also cannot be neglected. When the carrier lifetime is relatively short, at the initial stage and then decreases rapidly with the increase of active layer thickness. However, for a relatively long carrier lifetime, the exciton dissociation probability must be considered, and Jsc behaves wave-like with the increase of active layer thickness. The validity of this model is confirmed by the experimental results.

  14. Insights from transport modeling of unusual charge carrier behavior of PDTSiTzTz:PC71BM bulk heterojunction materials

    Science.gov (United States)

    Slobodyan, Oleksiy; Moench, Sarah; Liang, Kelly; Danielson, Eric; Holliday, Bradley; Dodabalapur, Ananth

    2015-03-01

    Development of hole-transporting copolymers for use in bulk heterojunctions (BHJs) has significantly improved organic solar cell performance. Despite advances on the materials side, the physics of charge carrier transport remains unsettled. Intrigued by its ability to maintain high fill factors in thick active layers, we studied the copolymer poly[2-(5-(4,4-dioctyl-4H-silolo[3,2-b:4,5-b’]dithiophen-2-yl)-3-tetradecylthiophen-2-yl)- 5-(3-tetradecylthiophen-2-yl)thiazolo[5,4-d]thiazole] (PDTSiTzTz) blended with PC71BM. Results show mobilities which are carrier-concentration-dependent and characterized by a negative Poole-Frenkel effect. Such behavior is not described by current carrier transport models. Established transport mechanisms like multiple-trap-and-release or variable range hopping yield dependence of mobility on carrier concentration. However, a more basic model like Gaussian distribution model (GDM) is needed to produce the negative Poole-Frenkel effect, though GDM cannot describe carrier-concentration-dependent mobility. We have combined key aspects of existing models to create a unified transport model capable of describing phenomena observed in PDTSiTzTz:PC71BM. This model can be used to address open questions about transport physics of organic BHJ materials. U.S. Department of Energy, Award Number DE-SC0001091.

  15. Charge-carrier selective electrodes for organic bulk heterojunction solar cell by contact-printed siloxane oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Hyun-Sik; Khang, Dahl-Young, E-mail: dykhang@yonsei.ac.kr

    2015-08-31

    ‘Smart’ (or selective) electrode for charge carriers, both electrons and holes, in organic bulk-heterojunction (BHJ) solar cells using insertion layers made of hydrophobically-recovered and contact-printed siloxane oligomers between electrodes and active material has been demonstrated. The siloxane oligomer insertion layer has been formed at a given interface simply by conformally-contacting a cured slab of polydimethylsiloxane stamp for less than 100 s. All the devices, either siloxane oligomer printed at one interface only or printed at both interfaces, showed efficiency enhancement when compared to non-printed ones. The possible mechanism that is responsible for the observed efficiency enhancement has been discussed based on the point of optimum symmetry and photocurrent analysis. Besides its simplicity and large-area applicability, the demonstrated contact-printing technique does not involve any vacuum or wet processing steps and thus can be very useful for the roll-based, continuous production scheme for organic BHJ solar cells. - Highlights: • Carrier-selective insertion layer in organic bulk heterojunction solar cells • Simple contact-printing of siloxane oligomers improves cell efficiency. • Printed siloxane layer reduces carrier recombination at electrode surfaces. • Siloxane insertion layer works equally well at both electrode surfaces. • Patterned PDMS stamp shortens the printing time within 100 s.

  16. Charge Carrier Generation, Recombination, and Extraction in Polymer–Fullerene Bulk Heterojunction Organic Solar Cells

    KAUST Repository

    Laquai, Frederic

    2016-12-20

    In this chapter we review the basic principles of photocurrent generation in bulk heterojunction organic solar cells, discuss the loss channels limiting their efficiency, and present case studies of several polymer–fullerene blends. Using steady-state and transient, optical, and electrooptical techniques, we create a precise picture of the fundamental processes that ultimately govern solar cell efficiency.

  17. Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking.

    Science.gov (United States)

    Yang, Haoran; Bahk, Je-Hyeong; Day, Tristan; Mohammed, Amr M S; Snyder, G Jeffrey; Shakouri, Ali; Wu, Yue

    2015-02-11

    To design superior thermoelectric materials the minority carrier blocking effect in which the unwanted bipolar transport is prevented by the interfacial energy barriers in the heterogeneous nanostructures has been theoretically proposed recently. The theory predicts an enhanced power factor and a reduced bipolar thermal conductivity for materials with a relatively low doping level, which could lead to an improvement in the thermoelectric figure of merit (ZT). Here we show the first experimental demonstration of the minority carrier blocking in lead telluride-silver telluride (PbTe-Ag2Te) nanowire heterostructure-based nanocomposites. The nanocomposites are made by sintering PbTe-Ag2Te nanowire heterostructures produced in a highly scalable solution-phase synthesis. Compared with Ag2Te nanowire-based nanocomposite produced in similar method, the PbTe-Ag2Te nanocomposite containing ∼5 atomic % PbTe exhibits enhanced Seebeck coefficient, reduced thermal conductivity, and ∼40% improved ZT, which can be well explained by the theoretical modeling based on the Boltzmann transport equations when energy barriers for both electrons and holes at the heterostructure interfaces are considered in the calculations. For this p-type PbTe-Ag2Te nanocomposite, the barriers for electrons, that is, minority carriers, are primarily responsible for the ZT enhancement. By extending this approach to other nanostructured systems, it represents a key step toward low-cost solution-processable nanomaterials without heavy doping level for high-performance thermoelectric energy harvesting.

  18. Anisotropic charge carrier mobilities in bulk silicon at high electric fields

    CERN Document Server

    Becker, Julian; Klanner, Robert

    2010-01-01

    The mobility of electrons and holes in silicon depends on many parameters. Two of them are the electric field and the temperature. It has been observed previously that the mobility in the transition region between ohmic transport and saturation velocities is a function of the orientation of the crystal lattice. This paper presents a new set of parameters for the mobility as function of temperature and electric field for $$ and $$ crystal orientation. These parameters are derived from time of flight measurements of drifting charge carriers in planar p$^+$nn$^+$ diodes in the temperature range between -30$^\\circ$C and 50$^\\circ$C and electric fields of 2$\\times$10$^3$~V/cm to 2$\\times$10$^4$~V/cm.

  19. Carrier transport and charge transfer properties in coumarin-doped bulk-heterojunction materials

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T.; Maeda, T.; Yamashita, K. [Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585 (Japan); Yanagi, H. [Graduate School of Materials Science, Nara Institute of Science and Technology, Nara 630-0192 (Japan)

    2012-12-15

    We have investigated photovoltaic properties of organic solar cells using polymer-fullerene bulk-heterojunction films doped with coumarin dyes. Whereas the coumarin molecules used in this study had similar absorption bands, evident difference was observed in the open-circuit voltage as well as in the short-circuit current. In particular, the doping of coumarin 307 was found to cause a distinct enhancement in the open-circuit voltage. On the other hand, the doping of coumarin 30 gave a serious degradation in the device performance. These results were strongly associated with calculated molecular energies of the doped dyes, especially with the highest occupied molecular orbital energy. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Fullerene mixing effect on carrier formation in bulk-hetero organic solar cell

    Science.gov (United States)

    Moritomo, Yutaka; Yasuda, Takeshi; Yonezawa, Kouhei; Sakurai, Takeaki; Takeichi, Yasuo; Suga, Hiroki; Takahashi, Yoshio; Inami, Nobuyuki; Mase, Kazuhiko; Ono, Kanta

    2015-01-01

    Organic solar cells (OSCs) with a bulk-heterojunction (BHJ) are promising energy conversion devices, because they are flexible and environmental-friendly, and can be fabricated by low-cost roll-to-roll process. Here, we systematically investigated the interrelations between photovoltaic properties and the domain morphology of the active layer in OSCs based on films of poly-(9,9-dioctylfluorene-co-bithiophene) (F8T2)/[6,6]-phenyl C71-butyric acid methyl ester (PC71BM) blend annealed at various temperatures (Tan). The scanning transmission X-ray microscopy (STXM) revealed that fullerene mixing (ΦFullerene) in the polymer matrix decreases with increase in Tan while the domain size (L) is nearly independent of Tan. The TEM-S mapping image suggests that the polymer matrix consist of polymer clusters of several nm and fullerene. We found that the charge formation efficiency (ΦCF), internal quantum efficiency (ΦIQ), and power conversion efficiency (PCE) are dominantly determined by ΦFullerene. We interpreted these observations in terms of the polymer clusters within the polymer matrix. PMID:25822809

  1. Fullerene mixing effect on carrier formation in bulk-hetero organic solar cell.

    Science.gov (United States)

    Moritomo, Yutaka; Yasuda, Takeshi; Yonezawa, Kouhei; Sakurai, Takeaki; Takeichi, Yasuo; Suga, Hiroki; Takahashi, Yoshio; Inami, Nobuyuki; Mase, Kazuhiko; Ono, Kanta

    2015-03-30

    Organic solar cells (OSCs) with a bulk-heterojunction (BHJ) are promising energy conversion devices, because they are flexible and environmental-friendly, and can be fabricated by low-cost roll-to-roll process. Here, we systematically investigated the interrelations between photovoltaic properties and the domain morphology of the active layer in OSCs based on films of poly-(9,9-dioctylfluorene-co-bithiophene) (F8T2)/[6,6]-phenyl C71-butyric acid methyl ester (PC71BM) blend annealed at various temperatures (Tan). The scanning transmission X-ray microscopy (STXM) revealed that fullerene mixing (ΦFullerene) in the polymer matrix decreases with increase in Tan while the domain size (L) is nearly independent of Tan. The TEM-S mapping image suggests that the polymer matrix consist of polymer clusters of several nm and fullerene. We found that the charge formation efficiency (ΦCF), internal quantum efficiency (ΦIQ), and power conversion efficiency (PCE) are dominantly determined by ΦFullerene. We interpreted these observations in terms of the polymer clusters within the polymer matrix.

  2. Fullerene mixing effect on carrier formation in bulk-hetero organic solar cell

    Science.gov (United States)

    Moritomo, Yutaka; Yasuda, Takeshi; Yonezawa, Kouhei; Sakurai, Takeaki; Takeichi, Yasuo; Suga, Hiroki; Takahashi, Yoshio; Inami, Nobuyuki; Mase, Kazuhiko; Ono, Kanta

    2015-03-01

    Organic solar cells (OSCs) with a bulk-heterojunction (BHJ) are promising energy conversion devices, because they are flexible and environmental-friendly, and can be fabricated by low-cost roll-to-roll process. Here, we systematically investigated the interrelations between photovoltaic properties and the domain morphology of the active layer in OSCs based on films of poly-(9,9-dioctylfluorene-co-bithiophene) (F8T2)/[6,6]-phenyl C71-butyric acid methyl ester (PC71BM) blend annealed at various temperatures (Tan). The scanning transmission X-ray microscopy (STXM) revealed that fullerene mixing (ΦFullerene) in the polymer matrix decreases with increase in Tan while the domain size (L) is nearly independent of Tan. The TEM-S mapping image suggests that the polymer matrix consist of polymer clusters of several nm and fullerene. We found that the charge formation efficiency (ΦCF), internal quantum efficiency (ΦIQ), and power conversion efficiency (PCE) are dominantly determined by ΦFullerene. We interpreted these observations in terms of the polymer clusters within the polymer matrix.

  3. How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency

    KAUST Repository

    Burke, Timothy M.

    2013-12-27

    Charge generation in champion organic solar cells is highly efficient in spite of low bulk charge-carrier mobilities and short geminate-pair lifetimes. In this work, kinetic Monte Carlo simulations are used to understand efficient charge generation in terms of experimentally measured high local charge-carrier mobilities and energy cascades due to molecular mixing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Interplay Between Side Chain Pattern, Polymer Aggregation, and Charge Carrier Dynamics in PBDTTPD:PCBM Bulk-Heterojunction Solar Cells

    KAUST Repository

    Dyer-Smith, Clare

    2015-05-01

    Poly(benzo[1,2-b:4,5-b′]dithiophene–alt–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors with linear side-chains yield bulk-heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor, while a PBDTTPD polymer with a combination of branched and linear substituents yields a doubling of the PCE to 8%. Using transient optical spectroscopy it is shown that while the exciton dissociation and ultrafast charge generation steps are not strongly affected by the side chain modifications, the polymer with branched side chains exhibits a decreased rate of nongeminate recombination and a lower fraction of sub-nanosecond geminate recombination. In turn the yield of long-lived charge carriers increases, resulting in a 33% increase in short circuit current (J sc). In parallel, the two polymers show distinct grazing incidence X-ray scattering spectra indicative of the presence of stacks with different orientation patterns in optimized thin-film BHJ devices. Independent of the packing pattern the spectroscopic data also reveals the existence of polymer aggregates in the pristine polymer films as well as in both blends which trap excitons and hinder their dissociation.

  5. 20.5万吨散货船的优化设计%Summarization of Optimization Design for 205,000-DWT Type Motor Bulk Carrier

    Institute of Scientific and Technical Information of China (English)

    周云龙

    2012-01-01

    With the rapid development of international shipping industry,especially use of ironstone is increasing.To improve the transport ability and efficiency,increase shipping tonnage,raise economic benefits,ship-owners prefer to constructing the larger bulk carriers which are also the development trend in future.A 205,000-DWT TYPE MOTOR BULK CARRIER is maximum tonnage ship of domestic construction currently.This thesis introduce hull structure optimization design method for the first domestic 205,000-DWT bulk carrier.%随着国际航运业的快速发展,尤其是铁矿石用量的增长,为了提高运输能力和效率,增加单程运输吨位,提高经济效益,船东更倾向建造吨位大的散货船舶。大型散货船也是未来发展的趋势。20.5万吨散货船是目前国内建造的吨位最大的散货船。本文介绍了国内建造的首艘20.5万吨散货船结构优化设计方法

  6. Application of picosecond four-wave mixing and photoluminescence techniques for investigation of carrier dynamics in bulk crystals and heterostructures of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Jarasiunas, K.; Malinauskas, T.; Kadys, A.; Aleksiejunas, R.; Sudzius, M.; Miasojedovas, S.; Jursenas, S.; Zukauskas, A. [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio ave. 9-3, 2040 Vilnius (Lithuania); Gogova, D.; Kakanakova-Georgieva, A.; Janzen, E.; Larsson, H.; Monemar, B. [Department of Physics and Measurement Technology, Linkoeping University (Sweden); Gibart, P.; Beaumont, B. [LUMILOG, 2720, Chemin Saint Bernard, Les Moulins I, 06220 Vallauris (France)

    2005-02-01

    Complementary characterization of the highly-excited nitrides has been performed by using time-resolved four-wave mixing and photoluminescence techniques. Defect-density and excitation dependent carrier recombination and transport have been studied in GaN heterostructures and free-standing crystals, grown by various technologies (hot-wall MOCVD, standard MOCVD, and HVPE) on different substrates (6H-SiC, 4H-SiC, or sapphire). The determined value of carrier lifetime varied from 300 ps in the GaN/SiC epilayers up to 3 ns in the bulk crystals, while the bipolar diffusion coefficient D was found to be in the range from 1.5 cm{sup 2}/s to 2.9 cm{sup 2}/s, correspondingly. An increase of D with excitation density in bulk HVPE crystals was attributed to screening of potential barriers around dislocations. A complete saturation of FWM diffraction in hot-wall MOCVD grown GaN/SiC heterostructures revealed a low threshold of stimulated recombination (0.5 mJ/cm{sup 2}), as confirmed by spectra and intensity of photoluminesce. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Ultra--fast carriers relaxation in bulk silicon following photo--excitation with a short and polarized laser pulse

    CERN Document Server

    Sangalli, Davide

    2014-01-01

    A novel approach based on the merging of the out--of--equilibrium Green's function method with the ab-initio, Density--Functional--Theory is used to describe the ultra--fast carriers relaxation in Silicon. The results are compared with recent two photon photo--emission measurements. We show that the interpretation of the carrier relaxation in terms of L -> X inter--valley scattering is not correct. The ultra--fast dynamics measured experimentally is, instead, due to the scattering between degenerate $L$ states that is activated by the non symmetric population of the conduction bands induced by the laser field. This ultra--fast relaxation is, then, entirely due to the specific experimental setup and it can be interpreted by introducing a novel definition of the quasi--particle lifetimes in an out--of--equilibrium context.

  8. Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%

    Science.gov (United States)

    Gasparini, Nicola; Jiao, Xuechen; Heumueller, Thomas; Baran, Derya; Matt, Gebhard J.; Fladischer, Stefanie; Spiecker, Erdmann; Ade, Harald; Brabec, Christoph J.; Ameri, Tayebeh

    2016-09-01

    In recent years the concept of ternary blend bulk heterojunction (BHJ) solar cells based on organic semiconductors has been widely used to achieve a better match to the solar irradiance spectrum, and power conversion efficiencies beyond 10% have been reported. However, the fill factor of organic solar cells is still limited by the competition between recombination and extraction of free charges. Here, we design advanced material composites leading to a high fill factor of 77% in ternary blends, thus demonstrating how the recombination thresholds can be overcome. Extending beyond the typical sensitization concept, we add a highly ordered polymer that, in addition to enhanced absorption, overcomes limits predicted by classical recombination models. An effective charge transfer from the disordered host system onto the highly ordered sensitizer effectively avoids traps of the host matrix and features an almost ideal recombination behaviour.

  9. Investigation on the Wave Loads of River-Sea Bulk Carriers%江海通航散货船波浪载荷研究

    Institute of Scientific and Technical Information of China (English)

    张文华; 刘光明; 吴卫国

    2011-01-01

    The long-term prediction of the wave loads of the river-sea bulk carriers was carried out u-sing ISSC two-parameter wave spectrum and wave scattering diagram of El sea areas, and compared with the design wave loads in CCS Rule for sea-going domestic ships and IACS Common Structure Rule (CSR) for bulk carriers. The formula regarding the height of the equivalent design wave, which will be applied to the finite element analysis of the river-sea ship, were fitted. The investigation showed that the vertical wave bending moment was 20%~25% less than that specified in the Rule for the sea-going ships at the unrestricted area, the vertical wave shear force was 4%~8% greater than that in the Rule and nearly equal to that in CSR, the horizontal bending moment was 18%-~30% less than that in CSR, and the wave torsion moment was 27% - 33% less than that in CSR as well.%采用ISSC二参数波浪谱和E1海区的波浪散布图对江海通航散货船的波浪载荷进行了长期预报,并与CCS海船规范和IACS散货船共同规范(CSR)中的设计波浪载荷进行了比较分析,拟合出了应用于江海通航船舶有限元分析的等效设计波高公式.研究表明:江海通航散货船的波浪载荷中垂向弯矩较无限航区海船规范值可降低20%~25%,波浪垂向剪力比《内河航行海船建造海规》规范值增大4%~8%,非常接近CSR规范值,水平波浪转矩比CSR规范值小18%~30%,波浪转矩比CSR规范值则要降低27%~33%.

  10. 38000 DWT 杂货船轴系方案比较分析%Comparative Analysis of Propulsion Shafting Arrangement for the 38 000 DWT Bulk Carrier

    Institute of Scientific and Technical Information of China (English)

    戴益民

    2014-01-01

    The 38 000 DWT bulk carrier propulsion shafting was taken as the research objection .For the two kinds of ar-rangement of the propulsion shafting system , one has fore and after stern tube bearing and the other only has after stern tube bear -ing, the bearing load and vertical displacement of bearing were compared , especially the bearing load distribution when main en-gine running at SMCR .The results showed that cancelling the fore stern tube bearing , and shift the intermediate bearing aft , it can improve the system running condition .%以38000 DWT杂货船推进轴系为研究对象,比较分析艉管有前、后轴承和艉管仅有后轴承两种轴系布置方案下各轴承负荷、垂直位移等变化,特别是SMCR工况下轴承负荷的分布情况。结果表明:仅有后轴承,并将中间轴承后移,能够更好地改善轴系运行状态。

  11. Fatigue Analysis of a Bulk Carrier based on CSR%基于共同规范的散货船疲劳分析

    Institute of Scientific and Technical Information of China (English)

    陈国建; 韩天宇

    2011-01-01

    Fatigue is one of the main reasons for ship hull damage. It is of great significance to increase structure fatigue life in the preliminary design phase. Combining the experience and feedback from ship building and operation, the structure fatigue analysis of a bulk carrier is carried out based on IACS’ Common Structure Rules (CSR). 2D longitudinal stiffener fatigue is analyzed; and fatigue analysis of the hull’s main supporting components is performed using 3D Finite Element Method to form a conclusion; key factors affecting the fatigue strength are also studied.%疲劳是船体损坏的主要因素之一,在设计建造阶段提高结构物疲劳寿命具有重要意义。结合船舶在建造和营运中的经验与反馈,以船级社共同规范为指导,对散货船船体结构的疲劳分析进行了探讨。分析了二维情况下的纵骨疲劳,同时利用三维有限元方法对船体主要支撑构件的疲劳强度进行了分析和总结,对影响疲劳强度的一些关键因素进行了讨论。

  12. Shafting installation and alignment for 76 000 t bulk carrier%76 000 t散货船轴系安装及校中

    Institute of Scientific and Technical Information of China (English)

    徐东洋; 刘皓

    2015-01-01

    As an important component of ship propulsion device, ship shafting has great requirements during installation and aligment. Take, for example, the shafting installation of a 76 000 t bulk carrier, this paper analyzes the process of the shafting installation combined with the relative production technology, demonstrates the shafting installation and alignment methods, and introduces the adjustment method of shafting loads in deatil. It analyzes and deals with the abnormal situations according to the lift curves of the bearings in different gear in order to make sure that the load parameters are within the technical requirements and the bearing loads are distributed resonably, which can meet the application requirements and improve the installation quality.%船舶轴系是船舶推进装置中的重要组成部分,其安装和校中过程要求都非常高。以76 000 t散货船轴系安装为例,结合相关生产工艺分析该船型轴系的基本情况。阐述轴系安装及校中的方法,并详细介绍轴承负荷的调整方法。根据各档轴承的顶升曲线,对异常情况进行分析和处理,确保负荷参数控制在工艺要求范围内,同时使得各轴承负荷合理分配,满足使用要求,提高轴系的安装质量。

  13. Prescriptive requirements of primary supporting members in double bottom of bulk carrier%散货船双层底主要支撑构件描述性要求研究

    Institute of Scientific and Technical Information of China (English)

    邱吉廷; 吴嘉蒙

    2015-01-01

    对于船长小于150 m的散货船,协调版共同结构规范(CSR-H)及散货船共同结构规范(CSR-BC)对双层底主要支撑构件规定了描述性要求。通过力学原理分析规范要求的理论背景,并以某典型散货船为例,对比双层底主要支撑构件按规范描述性要求和有限元评估要求得到的结果差异。在此基础上,对CSR-H关于150 m以下主要支撑构件的描述性规定给出了修改建议,并结合交叉梁系的力学推导和数值计算等,对散货船的主要支撑构件的描述性要求进行建议和计算流程归纳,可指导设计初始阶段确定主要支撑构件的腹板厚度。%For the bulk carrier with the length the less than 150 m, there are prescriptive requirements of primary supporting members in the double bottom for Harmonised Common Structural Rules (CSR-H) and Common Structural Rules for Bulk Carriers (CSR-BC). The theoretical background of the rule requirements is analyzed by mechanical principles. The primary supporting members in the double bottom from the prescriptive requirements of the rule are compared with those from the ifnite element assessment requirements for a typical bulk carrier. It provides the modiifcation suggestions for the prescriptive requirements of the primary supporting members for the ship with the length of hull less than 150 m in CSR-H. Combined with the mechanical derivation and numerical calculation of grillage beams, it summarizes suggestions and calculation procedure for the prescriptive requirements of the primary supporting members in a bulk carrier, guiding the determination of the web thickness of the primary supporting members at the beginning of the design stage.

  14. Ultrafast dynamics of free carriers induced by two-photon excitation in bulk ZnSe crystal%双光子激发ZnSe自由载流子超快动力学研究∗

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Semiconductor materials exhibiting large optical nonlinearities and ultrafast nonlinear response have received ex-tensive attention because of their potential applications in optical limiting, all-optical devices, optical telecommunication, and so on. As a direct-gap II-VI bulk semiconductor, ZnSe crystal has been exploited as the nonlinear optical devices in the regimes of nanoseconds and picoseconds during the past years. Owing to today’s fast advance of laser sources with ultrashort femtosecond pulse duration, it is possible to investigate the ultrafast optical nonlinearities in the bulk ZnSe crystal. In this paper, we experimentally investigate the ultrafast dynamics of free-carriers induced by two-photon excitation in the bulk ZnSe crystal. By performing open-aperture Z-scan experiments with 41 fs laser pulses at the wavelength of 532 nm under the condition of low excitation intensity, the two-photon absorption coefficient is measured. As the excitation intensity exceeds a critical value, the interplay between third- and fifth-order nonlinear absorption processes is observed. To evaluate the ultrafast dynamics of free carriers, we have carried out femtosecond time-resolved degen-erate pump-probe measurements with the same laser system used for Z-scan experiments in different levels of pump intensities. It is shown that the transient absorption signals peaked at the zero delay is a linearly increasing function of pump intensity, indicating that the observed instantaneous nonlinear absorption is dominated by the interband two-photon absorption process. At moderate irradiance, the transient absorption signals obviously indicate two components, arising from the two-photon absorption-induced free-carrier absorption, which is equivalent to the fifth-order nonlinear absorption process. Under the excitation of relatively high pump intensity, the magnitude of the reduction of free-carrier absorption signal becomes faster, suggesting that the ZnSe crystal exhibits a

  15. 基于协调版共同结构规范的18万吨散货船结构设计%Structure design of 180 000 t bulk carrier hull based on harmonised common structural rules

    Institute of Scientific and Technical Information of China (English)

    石义静; 赵仲秋; 周忠辉; 姜旭

    2015-01-01

    The current 180 000 t bulk carrier designed by CSDC is redesigned according to the harmonised common structural rules (CSR-H), which has been proposed by IACS in January, 2014. The increment of structural weight in cargo hold region that meets the requirements of CSR-H is calculated by CA stage 1 and CSR-H Bulk Check stage 2 programs of American Bureau of Shipping (ABS), as well as the ifnite element analysis. Firstly, it compares the requirements of bulk carriers in CSR-H with those in common structural rules (CSR), and analyzes the impact effect of the new requirements in CSR-H on the design of bulk carriers. Secondly, it studies the new requirements of the grillage and scantlings in CSR-H from the rule calculations of each transverse section in the cargo hold region, and analyzes the reason that each structure differs from the structure following with CSR. Lastly, it evaluates the yielding strength and the buckling strength of all cargo hold region by the direct calculation, and compares the scantlings calculated by the requirements of CSR-H with those calculated by the requirements of CSR.%根据IACS2014年1月推出的CSR-H,对目前CSDC设计的18万吨散货船进行符合CSR-H设计。分别运用美国船级社的CA Stage 1程序和CSR-H Bulk Check Stage 2程序进行规范计算和有限元计算,给出满足CSR-H要求的货舱区结构重量对于CSR规范的增加量。主要内容如下:一、比较CSR-H与CSR对散货船要求的差异,分析CSR-H对散货船设计的影响。二、对货舱区各个横剖面进行规范计算,研究CSR-H对板材和型材尺寸的新要求,分析各结构部位与满足CSR船型结构存在差异的原因。三、应用直接计算法对全船货舱区进行屈服和屈曲强度评估,比较基于CSR-H要求的计算结果与CSR要求结构尺寸存在的差异。

  16. Carrier dynamics in active regions for ultraviolet optoelectronics grown on thick, relaxed AlGaN on semipolar bulk GaN

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Gregory A.; Rotella, Paul; Shen, Hongen; Wraback, Michael [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783 (United States); Haeger, Daniel A.; Chung, Roy B.; Pfaff, Nathan; Young, Erin C.; DenBaars, Steven P.; Speck, James S.; Cohen, Daniel A. [Electrical and Computer Engineering and Materials Department, University of California, Santa Barbara, CA 93106 (United States)

    2012-03-15

    Active regions for mid-ultraviolet laser diodes grown on bulk AlGaN templates are investigated by time-resolved photoluminescence. The active regions were grown pseudomorphically on thick, relaxed AlGaN on bulk GaN in the semi-polar orientation where it has been shown that the glide of dislocations create strain relieving defects confined to the AlGaN/GaN interface, away from the active region. The photoluminescence lifetimes were found to have mono-exponential decays of around 500 ps and calculated radiative and non-radiative lifetimes are compared to previously reported results for active regions on bulk m-plane GaN. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Identifying barriers to charge-carriers in the bulk and surface regions of Cu2ZnSnS4 nanocrystal films by x-ray absorption fine structures (XAFSs)

    Science.gov (United States)

    Turnbull, Matthew J.; Vaccarello, Daniel; Yiu, Yun Mui; Sham, Tsun-Kong; Ding, Zhifeng

    2016-11-01

    Solar cell performance is most affected by the quality of the light absorber layer. For thin-film devices, this becomes a two-fold problem of maintaining a low-cost design with well-ordered nanocrystal (NC) structure. The use of Cu2ZnSnS4 (CZTS) NCs as the light absorber films forms an ideal low-cost design, but the quaternary structure makes it difficult to maintain a well-ordered layer without the use of high-temperature treatments. There is little understanding of how CZTS NC structures affect the photoconversion efficiency, the charge-carriers, and therefore the performance of the device manufactured from it. To examine these relationships, the measured photoresponse from the photo-generation of charge-carrier electron-hole pairs was compared against the crystal structure, as short-range and long-range crystal orders for the films. The photoresponse simplifies the electronic properties into three basic steps that can be associated with changes in energy levels within the band structure. These changes result in the formation of barriers to charge-carrier flow. The extent of these barriers was determined using synchrotron-based X-ray absorbance fine structure to probe the individual metal centers in the film, and comparing these to molecular simulations of the ideal extended x-ray absorbance fine structure scattering. This allowed for the quantification of bond lengths, and thus an interpretation of the distortions in the crystal lattice. The various characteristics of the photoresponse were then correlated to the crystallographic order and used to gain physical insight into barriers to charge-carriers in the bulk and surface regions of CZTS films.

  18. Separation of Cu2+, Cd2+ and Cr3+ in a Mixture Solution Using a Novel Carrier Poly(Methyl Thiazoleethyl Eugenoxy Acetate) with BLM (Bulk Liquid Membrane)

    Science.gov (United States)

    Djunaidi, M. C.; Khabibi; Ulumudin, I.

    2017-02-01

    The separation process using a novel carrier polyeugenol has active groups N and S has been done with the technique BLM. Polyeugenol has groups active N and S was synthesized from eugenol which is then polymerized into polyeugenol. This polymeric compounds was then acidified become acidic poly (eugenoksi acetate). After the acid formed, then the synthesis was continued by add 4-methyl-5-tiazoleetanol to form esters poly (methyl thiazole eugenoxy ethyl acetate) (PMTEEA). The result of the synthesis was analyzed by FTIR and 1H NMR. This polyester product synthesis was applied as a carrier for separating metal ions Cu2+, Cd2+ and Cr3+ with variations in feed phase pH = 5 and pH = 7 in the membrane of chloroform using techniques BLM. Receiving phase after 24 hours was analyzed by AAS. In variations of feed pH = 5 ions was obtained 66.21% Cd2+, 28.83% Cu2+ and 10.92% of Cr3+, at pH = 7 was obtained 70.77% Cd2+, 30.14% Cu2+, and 3.72% of Cr3+.

  19. A way for studying the impact of PEDOT:PSS interface layer on carrier transport in PCDTBT:PC{sub 71}BM bulk hetero junction solar cells by electric field induced optical second harmonic generation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Zubair, E-mail: zubairtarar@um.edu.my; Abdullah, Shahino Mah; Sulaiman, Khaulah [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Taguchi, Dai; Iwamoto, Mitsumasa [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2015-04-28

    Electric-field-induced optical second-harmonic generation (EFISHG) measurement was employed to study the impact of poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) interface layer on the carrier transport mechanism of the PCDTBT:PC{sub 71}BM bulk heterojunction (BHJ) organic solar cells (OSCs). We revealed that the electric fields in the PCDTBT and PC{sub 71}BM were allowed to be measured individually by choosing fundamental laser wavelengths of 1000 nm and 1060 nm, respectively, in dark and under illumination. The results showed that the direction of the internal electric fields in the PCDTBT:PC{sub 71}BM BHJ layer is reversed by introducing the PEDOT:PSS layer, and this results in longer electron transport time in the BHJ layer. We conclude that TR-EFISHG can be used as a novel way for studying the impact of interfacial layer on the transport of electrons and holes in the bulk-heterojunction OSCs.

  20. Estudio de los servicios sanitarios de generación, tratamiento y alimentación de agua dulce, técnica, potable fria y caliente, y de las cargas sanitarias de un bulk-carrier de unas 160.000 TPM.

    OpenAIRE

    Melgar Leveque, Juan Francisco

    2013-01-01

    Este trabajo tiene como objeto el exponer las consideraciones básicas y generales a fin de estudiar los servicios sanitarios de generación, tratamiento y alimentación de aguas sanitarias de un Bulk-Carrier de 160.000 TPM.

  1. Design of Cargo Hold Ventilation for Bulk Carrier Carrying Dangerous Cargoes%散货船装载危险品货舱通风系统的设计

    Institute of Scientific and Technical Information of China (English)

    黄荣杰

    2014-01-01

    By analyzing the different requirements of the Rules for cargo hold ventilation of bulk carrier carrying all kinds of dangerous cargoes, this paper classiifes the types of cargo hold ventilation for carrying dangerous cargoes, describes the design and typical arrangement of each type of cargo hold ventilation including the relevant rules and standards in order to simplify the design of cargo hold ventilation and reduce the cost of shipbuilding under the premise of meeting ship’s speciifcation and the Rules' minimum requirement.%本文通过分析散货船危险品货物清单中各种货物的装载和运输对货舱通风的不同要求,对散货船装载危险品货舱通风的型式进行归类,简述每一类货舱通风的设计及典型布置,分析其中所涉及到的相关规范和标准,旨在满足船东技术规格书要求和规范最低配置的前提下尽可能简化货舱通风系统的设计,降低船舶的建造成本。

  2. CSR-H对3.5万吨散货船的影响评估%Impact of harmonised common structural rules on 35 000 t bulk carrier

    Institute of Scientific and Technical Information of China (English)

    李妍; 冯成成

    2015-01-01

    以3.5万吨散货船实船为例,主要通过SDP规范计算和DSA有限元计算,校核CSR-H对该船结构尺寸和质量的影响。在规范计算方面,主要核算不同工况下的轻货舱、重货舱/风暴压载舱的弯曲强度、剪切强度、极限强度和剩余强度对主要结构尺寸的影响。同时,对重货舱同时兼做风暴压载舱第三货舱的所有区域进行屈服强度评估和屈曲强度评估。%Taking a 35 000 t bulk carrier as an example, the impact of harmonised common structural rules (CSR-H) on the structure scantlings and the weight is analyzed through the rule check by SDP and the ifnite element calculation by DSA. During rule check, the impact of bending strength, shear strength, ultimate strength and residual strength on the main structure scantlings has been assessed for the light cargo hold and the heavy cargo hold (lfoodable ballast tank) under the different loading conditions. Meanwhile, yielding strength and buckling strength are assessed for all regions of the No.3 heavy cargo hold that also served as a lfoodable ballast tank.

  3. 夹层板改善单舷侧散货船耐撞性能的数值模拟分析%Numerical Simulation of Improving the Crashworthiness of the Single Hull Bulk Carrier By Sandwich Plate

    Institute of Scientific and Technical Information of China (English)

    李慧; 张磊; 甘浪雄; 郑元洲; 赵晓博

    2015-01-01

    The bow of a ship colliding directly to another ship's amidships is the worst situation in ship-ship collision.In order to improve the crashworthiness of the ship, the sandwich material, such as honeycomb sandwich plate, tube-style sandwich panels, folding sandwich plate etc.can be filled in the side of the single-hull bulk carrier to increase the energy absorption capacity of side structure.The damage deformation, the critical collision speed as well as the energy absorption of improved side structure filled with sandwich are compared with the conventional type of side structure under lateral dynamic loads by MSC/Dytran.The results indicate that the improved side structure filled with sandwich can remarkably improve the side structure's ability against collision, and the effect of the tube-style sandwich panels structure is best whose upper skin is the main energy-absorbing compo-nent.%船舶碰撞事故中船艏对船中垂直碰撞是最为危险的情形,为提高船舶的防撞性,在单层壳舷侧填充夹层(蜂窝式夹层板、圆管式夹层板、折叠式夹层板等)以提高舷侧结构的能量吸收能力。利用有限元仿真软件MSC/Dytran对改进的夹层板舷侧结构及常规舷侧结构在横向冲击载荷作用下的变形损伤、能量吸收及极限撞击速度进行对比分析。数值仿真结果表明,改进的夹层板结构显著提高了舷侧结构的耐撞能力,是一种先进的船舶防护结构形式,且圆管式夹层板结构最理想,上蒙皮为其主要吸能构件。

  4. Diagnosis and T reatment for Harmful Vibration of 20 000 ton Offshore Bulk Carrier%20000t近海散货船有害振动诊断及治理

    Institute of Scientific and Technical Information of China (English)

    林永水; 吴卫国; 翁长俭

    2015-01-01

    A case study on the diagnosis and treatment aiming at harmful vibration of 20 000 ton off‐shore bulk carrier are presented .It is found that vibration source is the propeller by vibration test , self‐propulsion test and towing test ,evaluation of wake fields behind stern and numerical calculation and analysis with 3‐D FEM .The root of the problem is that the stern forms are unreasonable ,which cause wake fields serious non‐uniform and unsteady ,leading to excessive blade frequency and twice blade frequency propeller‐excited force .A set of comprehensive treatment is proposed ,such as rede‐signing propeller ,adopting vibration damping .Ship vibration are great improved by changing the pro‐peller ,w hich meets vibration criterion ISO—6954 .Also it gains beneficial experiences for ship vibra‐tion diagnosis and treatment and some suggestions for anti‐vibration are proposed at the design stage .%针对20000 t近海散货船的有害振动问题,通过实船振动测试、自航与拖模试验、尾部伴流场评估和三维有限元计算,找到主要振源是螺旋桨。振动问题的根源是尾部线型不合理,导致伴流严重不均匀和不定常,引起的螺旋桨叶频和倍叶频激励过大。提出更换螺旋桨、采用阻尼减振等一揽子综合减振措施。更换螺旋桨后,船舶的剧烈振动得到明显改善,满足ISO—6954振动衡准要求。同时在营运船舶有害振动诊断与治理方面取得了宝贵经验,并对船舶设计阶段的防振提出建议。

  5. 散货船和油船的结构冗余度及其验证%Hull Structural Redundancy and Its Verification for Bulk Carriers and Oil Tankers

    Institute of Scientific and Technical Information of China (English)

    罗海东; 洪英; 吴剑国; 师桂杰

    2016-01-01

    Based on relevant IMO regulations of hull structural redundancy, this paper studies the verification of the structural redundancy in IACS CSR-H rules satisfying the functional requirements in GBS IMO (Goal-based Ship Construction Standards) and proposes a technique procedure, including explanation of structural redundancy, damage assumption, load conditions, nonlinear finite element method, evaluation criteria, application flowchart, and verification of actual bulk carriers and oil tankers designed according CSR-H. All the computational results show that the actual ships satisfy the evaluation criteria of structural redundancy. That is to say, CSR-H implicitly provides necessary structural redundancy which is in compliance with IMO GBS requirements, and it is not necessary to introduce additional requirements of reinforcements into CSR-H.%基于国际船级社协会的《散货船和双壳油船协调共同结构规范》(CSR-H),提出了满足 IMO GBS 结构冗余度功能验证导则的技术路线和评估流程,包括问题分类、损坏假定、载荷情形、非线性有限元垮塌分析方法和结构冗余度衡准的建立,并实施了实船验算。计算结果表明,按照 CSR-H 规范设计的油船和散货船结构能够满足“任一加强筋的单一局部损伤不会导致整个加筋板格垮塌”的强度要求,具有适当的结构冗余度。新 CSR-H 规范无需再专门为结构冗余度而补充结构加强的要求。

  6. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    in Asia and will balance the carrier acquisitions of the United States, the United Kingdom, Russia and India. China’s current military strategy is predominantly defensive, its offensive elements being mainly focused on Taiwan. If China decides to acquire a large carrier with offensive capabilities......, then the country will also acquire the capability to project military power into the region beyond Taiwan, which it does not possess today. In this way, China will have the military capability to permit a change of strategy from the mainly defensive, mainland, Taiwan-based strategy to a more assertive strategy...... catapult with which to launch the fi ghter aircraft, not to mention the possible development of a nuclear power plant for the ship. The Russian press has indicated that China is negotiating to buy SU-33 fi ghters, which Russia uses on the Kuznetsov carrier. The SU-33 is, in its modernized version...

  7. Installation Technology and Inspection Requirements for Shaft Line of 32 500 DWT Bulk Carrier%32500DWT散货船轴系安装技术与检验要求

    Institute of Scientific and Technical Information of China (English)

    梁启龙

    2011-01-01

    This paper introduces the installation technology and inspection requirement for shaft line of 32500DWT Bulk cartier by analyzing all processes of fabricating and machining shaft line members, shaft centre line alignment, shaft line installation and inspection after installation to ensure shaft line is installed according to shaft line calculation.%本文介绍32500DWT散货船轴系安装技术与检验要求,通过对轴系零部件制作加工、轴系中心线望光、轴系安装和安装后的检测各环节进行分析,重点对关键工序进行详细介绍,指出本船轴系关键安装技术要求和检验过程应注意的要点,保证本船轴系安装满足《轴系计算书》的设计要求。

  8. Hydrogen carriers

    Science.gov (United States)

    He, Teng; Pachfule, Pradip; Wu, Hui; Xu, Qiang; Chen, Ping

    2016-12-01

    Hydrogen has the potential to be a major energy vector in a renewable and sustainable future energy mix. The efficient production, storage and delivery of hydrogen are key technical issues that require improvement before its potential can be realized. In this Review, we focus on recent advances in materials development for on-board hydrogen storage. We highlight the strategic design and optimization of hydrides of light-weight elements (for example, boron, nitrogen and carbon) and physisorbents (for example, metal-organic and covalent organic frameworks). Furthermore, hydrogen carriers (for example, NH3, CH3OH-H2O and cycloalkanes) for large-scale distribution and for on-site hydrogen generation are discussed with an emphasis on dehydrogenation catalysts.

  9. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Depleted bulk heterojunction colloidal quantum dot photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Barkhouse, D.A.R. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); IBM Thomas J. Watson Research Center, Kitchawan Road, Yorktown Heights, NY, 10598 (United States); Debnath, Ratan; Kramer, Illan J.; Zhitomirsky, David; Levina, Larissa; Sargent, Edward H. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Pattantyus-Abraham, Andras G. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Quantum Solar Power Corporation, 1055 W. Hastings, Ste. 300, Vancouver, BC, V6E 2E9 (Canada); Etgar, Lioz; Graetzel, Michael [Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland)

    2011-07-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  12. Carrier lifetimes in thin-film photovoltaics

    Science.gov (United States)

    Baek, Dohyun

    2015-09-01

    The carrier lifetimes in thin-film solar cells are reviewed and discussed. Shockley-Read-Hall recombination is dominant at low carrier density, Auger recombination is dominant under a high injection condition and high carrier density, and surface recombination is dominant under any conditions. Because the surface photovoltage technique is insensitive to the surface condition, it is useful for bulk lifetime measurements. The photoconductance decay technique measures the effective recombination lifetime. The time-resolved photoluminescence technique is very useful for measuring thin-film semiconductor or solar-cell materials lifetime, because the sample is thin, other techniques are not suitable for measuring the lifetime. Many papers have provided time-resolved photoluminescence (TRPL) lifetimes for copper-indium-gallium-selenide (CIGS) and CdTe thin-film solar cell. The TRPL lifetime strongly depends on open-circuit voltage and conversion efficiency; however, the TRPL life time is insensitive to the short-circuit current.

  13. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2008-01-01

    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  14. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  15. Radiative Bulk Viscosity

    CERN Document Server

    Chen, X

    2001-01-01

    Viscous resistance to changes in the volume of a gas arises when different degrees of freedom have different relaxation times. Collisions tend to oppose the resulting departures from equilibrium and, in so doing, generate entropy. Even for a classical gas of hard spheres, when the mean free paths or mean flight times of constituent particles are long, we find a nonvanishing bulk viscosity. Here we apply a method recently used to uncover this result for a classical rarefied gas to radiative transfer theory and derive an expression for the radiative stress tensor for a gray medium with absorption and Thomson scattering. We determine the transport coefficients through the calculation of the comoving entropy generation. When scattering dominates absorption, the bulk viscosity becomes much larger than either the shear viscosity or the thermal conductivity.

  16. Composite cam carrier

    Energy Technology Data Exchange (ETDEWEB)

    Wicks, Christopher Donald; Madin, Mark Michael

    2017-03-14

    A cam carrier assembly includes a cylinder head having valves and a camshaft having lobes. A cam carrier has a first side coupled with the cylinder head engaging around the valves and a second side with bearing surfaces supporting the camshaft. A series of apertures extend between the first and second sides for the lobes to interface with the valves. The cam carrier is made of carbon fiber composite insulating the camshaft from the cylinder head and providing substantial weight reduction to an upper section of an associated engine.

  17. Asymmetric Carrier Random PWM

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Lungeanu, Florin; Rasmussen, Peter Omand;

    2010-01-01

    This paper presents a new fixed carrier frequency random PWM method, where a new type of carrier wave is proposed for modulation. Based on the measurements, it is shown that the spread effect of the discrete components from the motor current spectra is very effective independent of the modulation...... index. The flat motor current spectrum generates an acoustical noise close to the white noise, which may improve the acoustical performance of the drive. The new carrier wave is easy to implement digitally, without employing any external circuits. The modulation method can be used in open, as well...

  18. Efficiency of bulk-heterojunction organic solar cells.

    Science.gov (United States)

    Scharber, M C; Sariciftci, N S

    2013-12-01

    During the last years the performance of bulk heterojunction solar cells has been improved significantly. For a large-scale application of this technology further improvements are required. This article reviews the basic working principles and the state of the art device design of bulk heterojunction solar cells. The importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterojunction solar cells are discussed. Assuming state of the art materials and device architectures several models predict power conversion efficiencies in the range of 10-15%. A more general approach assuming device operation close to the Shockley-Queisser-limit leads to even higher efficiencies. Bulk heterojunction devices exhibiting only radiative recombination of charge carriers could be as efficient as ideal inorganic photovoltaic devices.

  19. Photoinduced Transformation between Charge Carrier and Spin Carrier in Polymers

    Institute of Scientific and Technical Information of China (English)

    MEI Yuan; ZHAO Chang; SUN Xin

    2006-01-01

    By dynamical simulations, we show a transforming process between neutral soliton (spin carrier) and charged soliton (charge carrier) in polymers via photo-excitation, taking a polaron as the transitional bridge. It is photoinduced transformation between spin carrier and charge carrier. In this way, we demonstrate an access for polymers to be applied to spintronics.

  20. Reversible ultrafast melting in bulk CdSe

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenzhi [School of Electronic Engineering, Heilongjiang University, Harbin 150080 (China); Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); He, Feng; Wang, Yaguo, E-mail: yaguo.wang@austin.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); The Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2016-02-07

    In this work, transient reflectivity changes in bulk CdSe have been measured with two-color femtosecond pump-probe spectroscopy under a wide range of pump fluences. Three regions of reflectivity change with pump fluences have been consistently revealed for excited carrier density, coherent phonon amplitude, and lattice temperature. For laser fluences from 13 to 19.3 mJ/cm{sup 2}, ultrafast melting happens in first several picoseconds. This melting process is purely thermal and reversible. A complete phase transformation in bulk CdSe may be reached when the absorbed laser energy is localized long enough, as observed in nanocrystalline CdSe.

  1. Spectral dependence of carrier lifetimes in silicon for photovoltaic applications

    Science.gov (United States)

    Roller, John F.; Li, Yu-Tai; Dagenais, Mario; Hamadani, Behrang H.

    2016-12-01

    Charge carrier lifetimes in photovoltaic-grade silicon wafers were measured by a spectral-dependent, quasi-steady-state photoconductance technique. Narrow bandwidth light emitting diodes were used to excite excess charge carriers within the material, and the effective lifetimes of these carriers were measured as a function of wavelength and intensity. The dependence of the effective lifetime on the excitation wavelength was then analyzed within the context of an analytical model relating effective lifetime to the bulk lifetime and surface recombination velocity of the material. The agreement between the model and the experimental data provides validation for this technique to be used at various stages of the solar cell production line to investigate the quality of the passivation layers and the bulk properties of the material.

  2. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel;

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  3. The Incredible Bulk

    CERN Document Server

    Fukushima, Keita; Kumar, Jason; Sandick, Pearl; Yamamoto, Takahiro

    2014-01-01

    Recent experimental results from the LHC have placed strong constraints on the masses of colored superpartners. The MSSM parameter space is also constrained by the measurement of the Higgs boson mass, and the requirement that the relic density of lightest neutralinos be consistent with observations. Although large regions of the MSSM parameter space can be excluded by these combined bounds, leptophilic versions of the MSSM can survive these constraints. In this paper we consider a scenario in which the requirements of minimal flavor violation, vanishing $CP$-violation, and mass universality are relaxed, specifically focusing on scenarios with light sleptons. We find a large region of parameter space, analogous to the original bulk region, for which the lightest neutralino is a thermal relic with an abundance consistent with that of dark matter. We find that these leptophilic models are constrained by measurements of the magnetic and electric dipole moments of the electron and muon, and that these models have ...

  4. Creating bulk nanocrystalline metal.

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  5. Explosive bulk charge

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  6. The value of energy carriers

    NARCIS (Netherlands)

    Gool, W. van

    1987-01-01

    The value of energy carriers can be described thermodynamically by the amount of heat (enthalpy method) or work (exergy or availability method) that can be obtained from the carriers. Prices for energy carriers are used in economics to express their values. The prices for energy carriers are often r

  7. Study of Charge Carrier Transport in GaN Sensors

    Directory of Open Access Journals (Sweden)

    Eugenijus Gaubas

    2016-04-01

    Full Text Available Capacitor and Schottky diode sensors were fabricated on GaN material grown by hydride vapor phase epitaxy and metal-organic chemical vapor deposition techniques using plasma etching and metal deposition. The operational characteristics of these devices have been investigated by profiling current transients and by comparing the experimental regimes of the perpendicular and parallel injection of excess carrier domains. Profiling of the carrier injection location allows for the separation of the bipolar and the monopolar charge drift components. Carrier mobility values attributed to the hydride vapor phase epitaxy (HVPE GaN material have been estimated as μe = 1000 ± 200 cm2/Vs for electrons, and μh = 400 ± 80 cm2/Vs for holes, respectively. Current transients under injection of the localized and bulk packets of excess carriers have been examined in order to determine the surface charge formation and polarization effects.

  8. Study on magnetic gene transfer using HTS bulk magnet

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Kota, E-mail: nakagawa@qb.see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan); Ohaku, Yoshihiro; Tamada, Junya; Mishima, Fumihito; Akiyama, Yoko [Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan); Osako, Mariana Kiomy; Nakagami, Hironori [Graduate School of Medicine, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan); Nishijima, Shigehiro [Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan)

    2013-11-15

    Highlights: •DNA–magnetite complexes were prepared as ferromagnetic DNA carrier. •The condition of magnetic field to suppress the diffusion was found by calculation. •The result of model experiment showed the validity of the calculated value. •The results of in vivo experiments showed that the amount of gene expression was significantly increased by magnetic field. -- Abstract: This study aimed to realize local and high-efficient gene expression by suppressing the diffusion of ferromagnetic DNA carriers in a strong magnetic field generated by HTS bulk magnet. DNA–magnetite complexes were prepared as ferromagnetic DNA carrier and the magnetic gene transfer using the DNA carriers was examined. From the results of the simulation and the model experiment, it was shown that the particle diffusion was suppressed within 10 mm in diameter by the magnetic field at 20 mm above the HTS bulk magnet. The results of in vivo experiments showed that the amount of gene expression was significantly increased by magnetic field.

  9. Intestinal solute carriers

    DEFF Research Database (Denmark)

    Steffansen, Bente; Nielsen, Carsten Uhd; Brodin, Birger

    2004-01-01

    A large amount of absorptive intestinal membrane transporters play an important part in absorption and distribution of several nutrients, drugs and prodrugs. The present paper gives a general overview on intestinal solute carriers as well as on trends and strategies for targeting drugs and/or pro...

  10. Autonomous component carrier selection

    DEFF Research Database (Denmark)

    Garcia, Luis Guilherme Uzeda; Pedersen, Klaus; Mogensen, Preben

    2009-01-01

    in local areas, basing our study case on LTE-Advanced. We present extensive network simulation results to demonstrate that a simple and robust interference management scheme, called autonomous component carrier selection allows each cell to select the most attractive frequency configuration; improving...

  11. Bulk fabrication and properties of solar grade silicon microwires

    Directory of Open Access Journals (Sweden)

    F. A. Martinsen

    2014-11-01

    Full Text Available We demonstrate a substrate-free novel route for fabrication of solar grade silicon microwires for photovoltaic applications. The microwires are fabricated from low purity starting material via a bulk molten-core fibre drawing method. In-situ segregation of impurities during the directional solidification of the fibres yields solar grade silicon cores (microwires where the concentration of electrically detrimental transition metals has been reduced between one and two orders of magnitude. The microwires show bulk minority carrier diffusion lengths measuring ∼40 μm, and mobilities comparable to those of single-crystal silicon. Microwires passivated with amorphous silicon yield diffusion lengths comparable to those in the bulk.

  12. Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ye; Yang, Mengjin; Moore, David T.; Yan, Yong; Miller, Elisa M.; Zhu, Kai; Beard, Matthew C.

    2017-01-23

    Carrier recombination at defects is detrimental to the performance of solar energy conversion systems, including solar cells and photoelectrochemical devices. Point defects are localized within the bulk crystal while extended defects occur at surfaces and grain boundaries. If not properly managed, surfaces can be a large source of carrier recombination. Separating surface carrier dynamics from bulk and/or grain-boundary recombination in thin films is challenging. Here, we employ transient reflection spectroscopy to measure the surface carrier dynamics in methylammonium lead iodide perovskite polycrystalline films. We find that surface recombination limits the total carrier lifetime in perovskite polycrystalline thin films, meaning that recombination inside grains and/or at grain boundaries is less important than top and bottom surface recombination. The surface recombination velocity in polycrystalline films is nearly an order of magnitude smaller than that in single crystals, possibly due to unintended surface passivation of the films during synthesis.

  13. Can bulk viscosity drive inflation

    Energy Technology Data Exchange (ETDEWEB)

    Pacher, T.; Stein-Schabes, J.A.; Turner, M.S.

    1987-09-15

    Contrary to other claims, we argue that bulk viscosity associated with the interactions of non- relativistic particles with relativistic particles around the time of the grand unified theory (GUT) phase transition cannot lead to inflation. Simply put, the key ingredient for inflation, negative pressure, cannot arise due to the bulk-viscosity effects of a weakly interacting mixture of relativistic and nonrelativistic particles.

  14. Brane Couplings from Bulk Loops

    OpenAIRE

    Georgi, Howard; Grant, Aaron K.; Hailu, Girma

    2000-01-01

    We compute loop corrections to the effective action of a field theory on a five-dimensional $S_1/Z_2$ orbifold. We find that the quantum loop effects of interactions in the bulk produce infinite contributions that require renormalization by four-dimensional couplings on the orbifold fixed planes. Thus bulk couplings give rise to renormalization group running of brane couplings.

  15. Development of Passenger Air Carriers

    Directory of Open Access Journals (Sweden)

    Igor Diminik

    2006-09-01

    Full Text Available The work presents the development of carriers in passengerair traffic, and the focus is on the development and operationsof carriers in chartered passenger transport. After the SecondWorld War, there were only scheduled air carriers. The need formass transport of tourists resulted in the development of chartercarriers or usage of scheduled carriers under different commercialconditions acceptable for tourism. Eventually also low-costcarriers appeared and they realize an increasing share in thepassenger transport especially in the aviation developed countries.

  16. Maintainable substrate carrier for electroplating

    Science.gov (United States)

    Chen, Chen-An [Milpitas, CA; Abas, Emmanuel Chua [Laguna, PH; Divino, Edmundo Anida [Cavite, PH; Ermita, Jake Randal G [Laguna, PH; Capulong, Jose Francisco S [Laguna, PH; Castillo, Arnold Villamor [Batangas, PH; Ma,; Xiaobing, Diana [Saratoga, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  17. Maintainable substrate carrier for electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen-An; Abas, Emmanuel Chua; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor; Ma, Diana Xiaobing

    2016-08-02

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  18. Measurement of carrier transport and recombination parameter in heavily doped silicon

    Science.gov (United States)

    Swanson, Richard M.

    1986-01-01

    The minority carrier transport and recombination parameters in heavily doped bulk silicon were measured. Both Si:P and Si:B with bulk dopings from 10 to the 17th and 10 to the 20th power/cu cm were studied. It is shown that three parameters characterize transport in bulk heavily doped Si: the minority carrier lifetime tau, the minority carrier mobility mu, and the equilibrium minority carrier density of n sub 0 and p sub 0 (in p-type and n-type Si respectively.) However, dc current-voltage measurements can never measure all three of these parameters, and some ac or time-transient experiment is required to obtain the values of these parameters as a function of dopant density. Using both dc electrical measurements on bipolar transitors with heavily doped base regions and transients optical measurements on heavily doped bulk and epitaxially grown samples, lifetime, mobility, and bandgap narrowing were measured as a function of both p and n type dopant densities. Best fits of minority carrier mobility, bandgap narrowing and lifetime as a function of doping density (in the heavily doped range) were constructed to allow accurate modeling of minority carrier transport in heavily doped Si.

  19. Can bulk viscosity drive inflation

    Energy Technology Data Exchange (ETDEWEB)

    Pacher, T.; Stein-Schabes, J.A.; Turner, M.S.

    1987-04-01

    Contrary to other claims, we argue that, bulk viscosity associated with the interactions of nonrelativistic particles with relativistic particles around the time of the grand unified theory (GUT) phase transition cannot lead to inflation. Simply put, the key ingredient for inflation, negative pressure, cannot arise due to the bulk viscosity effects of a weakly-interacting mixture of relativistic and nonrelativistic particles. 13 refs., 1 fig.

  20. Glycosylation of solute carriers

    DEFF Research Database (Denmark)

    Pedersen, Nis Borbye; Carlsson, Michael C; Pedersen, Stine Helene Falsig

    2016-01-01

    as their posttranslational regulation, but only relatively little is known about the role of SLC glycosylation. Glycosylation is one of the most abundant posttranslational modifications of animal proteins and through recent advances in our understanding of protein-glycan interactions, the functional roles of SLC......Solute carriers (SLCs) are one of the largest groups of multi-spanning membrane proteins in mammals and include ubiquitously expressed proteins as well as proteins with highly restricted tissue expression. A vast number of studies have addressed the function and organization of SLCs as well...

  1. A possible high-mobility signal in bulk MoTe2: Temperature independent weak phonon decay

    Directory of Open Access Journals (Sweden)

    Titao Li

    2016-11-01

    Full Text Available Layered transition metal dichalcogenides (TMDs have attracted great attention due to their non-zero bandgap for potential application in high carrier mobility devices. Recent studies demonstrate that the carrier mobility of MoTe2 would decrease by orders of magnitude when used for few-layer transistors. As phonon scattering has a significant influence on carrier mobility of layered material, here, we first reported temperature-dependent Raman spectra of bulk 2H-MoTe2 from 80 to 300 K and discovered that the phonon lifetime of both E12g and A1g vibration modes are independent with temperature. These results were explained by the weak phonon decay in MoTe2. Our results imply the existence of a carrier mobility higher than the theoretical value in intrinsic bulk 2H-MoTe2 and the feasibility to obtain MoTe2-based transistors with sufficiently high carrier mobility.

  2. LIQUIFIED NATURAL GAS (LNG CARRIERS

    Directory of Open Access Journals (Sweden)

    Daniel Posavec

    2010-12-01

    Full Text Available Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 LNG carriers currently in operation (the paper is published in Croatian.

  3. The effect of morphology upon mobility : Implications for bulk heterojunction solar cells with nonuniform blend morphology

    NARCIS (Netherlands)

    Groves, C.; Koster, L. J. A.; Greenham, N. C.

    2009-01-01

    We use a Monte Carlo model to predict the effect of composition, domain size, and energetic disorder upon the mobility of carriers in an organic donor-acceptor blend. These simulations show that, for the changes in local morphology expected within the thickness of a typical bulk heterojunction photo

  4. Looking for a bulk point

    CERN Document Server

    Maldacena, Juan; Zhiboedov, Alexander

    2015-01-01

    We consider Lorentzian correlators of local operators. In perturbation theory, singularities occur when we can draw a position-space Landau diagram with null lines. In theories with gravity duals, we can also draw Landau diagrams in the bulk. We argue that certain singularities can arise only from bulk diagrams, not from boundary diagrams. As has been previously observed, these singularities are a clear diagnostic of bulk locality. We analyze some properties of these perturbative singularities and discuss their relation to the OPE and the dimensions of double-trace operators. In the exact nonperturbative theory, we expect no singularity at these locations. We prove this statement in 1+1 dimensions by CFT methods.

  5. Bulk nano-crystalline alloys

    OpenAIRE

    T.-S. Chin; Lin, C. Y.; Lee, M.C.; R.T. Huang; S. M. Huang

    2009-01-01

    Bulk metallic glasses (BMGs) Fe–B–Y–Nb–Cu, 2 mm in diameter, were successfully annealed to become bulk nano-crystalline alloys (BNCAs) with α-Fe crystallite 11–13 nm in size. A ‘crystallization-and-stop’ model was proposed to explain this behavior. Following this model, alloy-design criteria were elucidated and confirmed successful on another Fe-based BMG Fe–B–Si–Nb–Cu, 1 mm in diameter, with crystallite sizes 10–40 nm. It was concluded that BNCAs can be designed in general by the proposed cr...

  6. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise i...

  7. The Universe With Bulk Viscosity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Exact solutions for a model with variable G, A and bulk viscosity areobtained. Inflationary solutions with constant (de Sitter-type) and variable energydensity are found. An expanding anisotropic universe is found to isotropize duringits expansion but a static universe cannot isotropize. The gravitational constant isfound to increase with time and the cosmological constant decreases with time asAo∝t-2.

  8. 42 CFR 421.200 - Carrier functions.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Carrier functions. 421.200 Section 421.200 Public...) MEDICARE PROGRAM MEDICARE CONTRACTING Carriers § 421.200 Carrier functions. A contract between CMS and a carrier specifies the functions to be performed by the carrier. The contract may include any or all of...

  9. Determination of minority-carrier lifetime and surface recombination velocity with high spacial resolution

    Science.gov (United States)

    Watanabe, M.; Actor, G.; Gatos, H. C.

    1977-01-01

    Quantitative analysis of the electron beam induced current in conjunction with high-resolution scanning makes it possible to evaluate the minority-carrier lifetime three dimensionally in the bulk and the surface recombination velocity two dimensionally, with a high spacial resolution. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two-dimensional mapping of the surface recombination velocity of phosphorus-diffused silicon diodes is presented as well as a three-dimensional mapping of the changes in the minority-carrier lifetime in ion-implanted silicon.

  10. Low-resistivity bulk silicon prepared by hot-pressing boron- and phosphorus-hyperdoped silicon nanocrystals

    Directory of Open Access Journals (Sweden)

    Qingbin Luan

    2014-12-01

    Full Text Available Technologically important low-resistivity bulk Si has been usually produced by the traditional Czochralski growth method. We now explore a novel method to obtain low-resistivity bulk Si by hot-pressing B- and P-hyperdoped Si nanocrystals (NCs. In this work bulk Si with the resistivity as low as ∼ 0.8 (40 mΩ•cm has been produced by hot pressing P (B-hyperdoped Si NCs. The dopant type is found to make a difference for the sintering of Si NCs during the hot pressing. Bulk Si hot-pressed from P-hyperdoped Si NCs is more compact than that hot-pressed from B-hyperdoped Si NCs when the hot-pressing temperature is the same. This leads to the fact that P is more effectively activated to produce free carriers than B in the hot-pressed bulk Si. Compared with the dopant concentration, the hot-pressing temperature more significantly affects the structural and electrical properties of hot-pressed bulk Si. With the increase of the hot-pressing temperature the density of hot-pressed bulk Si increases. The highest carrier concentration (lowest resistivity of bulk Si hot-pressed from B- or P-hyperdoped Si NCs is obtained at the highest hot-pressing temperature of 1050 °C. The mobility of carriers in the hot-pressed bulk Si is low (≤  ∼ 30 cm-2V-1s-1 mainly due to the scattering of carriers induced by structural defects such as pores.

  11. Probing the carrier concentration profiles in phosphorus-implanted germanium using infrared spectroscopic ellipsometry

    Science.gov (United States)

    D'Costa, Vijay Richard; Yeo, Yee-Chia

    2015-02-01

    Spectroscopic ellipsometry with photon energy in the 0.045-0.65 eV range was used to investigate germanium samples implanted with 30 keV phosphorus ions and annealed at 700 °C. The infrared response of implanted layers is dominated by free carrier absorption which is modeled using a Drude oscillator. The carrier concentration profiles were modeled using an error function, and compared with those obtained by electrochemical capacitance-voltage profiling and secondary ion mass spectrometry. In the flat region of the carrier concentration profile, average carrier concentration and mobility of 1.40 × 1019 cm-3 and 336 cm2V-1s-1, respectively, were obtained. A phosphorus diffusivity of ˜1.2 × 10-13 cm2/s was obtained. The mobility versus carrier concentration relationships obtained for the implanted samples are close to the empirical relationship for bulk Ge.

  12. Effects of Magnetic Nanoparticles and External Magnetostatic Field on the Bulk Heterojunction Polymer Solar Cells

    Science.gov (United States)

    Wang, Kai; Yi, Chao; Liu, Chang; Hu, Xiaowen; Chuang, Steven; Gong, Xiong

    2015-03-01

    The price of energy to separate tightly bound electron-hole pair (or charge-transfer state) and extract freely movable charges from low-mobility materials represents fundamental losses for many low-cost photovoltaic devices. In bulk heterojunction (BHJ) polymer solar cells (PSCs), approximately 50% of the total efficiency lost among all energy loss pathways is due to the photogenerated charge carrier recombination within PSCs and low charge carrier mobility of disordered organic materials. To address these issues, we introduce magnetic nanoparticles (MNPs) and orientate these MNPS within BHJ composite by an external magnetostatic field. Over 50% enhanced efficiency was observed from BHJ PSCs incorporated with MNPs and an external magnetostatic field alignment when compared to the control BHJ PSCs. The optimization of BHJ thin film morphology, suppression of charge carrier recombination, and enhancement in charge carrier collection result in a greatly increased short-circuit current density and fill factor, as a result, enhanced power conversion efficiency.

  13. Effects of magnetic nanoparticles and external magnetostatic field on the bulk heterojunction polymer solar cells.

    Science.gov (United States)

    Wang, Kai; Yi, Chao; Liu, Chang; Hu, Xiaowen; Chuang, Steven; Gong, Xiong

    2015-03-18

    The price of energy to separate tightly bound electron-hole pair (or charge-transfer state) and extract freely movable charges from low-mobility materials represents fundamental losses for many low-cost photovoltaic devices. In bulk heterojunction (BHJ) polymer solar cells (PSCs), approximately 50% of the total efficiency lost among all energy loss pathways is due to the photogenerated charge carrier recombination within PSCs and low charge carrier mobility of disordered organic materials. To address these issues, we introduce magnetic nanoparticles (MNPs) and orientate these MNPS within BHJ composite by an external magnetostatic field. Over 50% enhanced efficiency was observed from BHJ PSCs incorporated with MNPs and an external magnetostatic field alignment when compared to the control BHJ PSCs. The optimization of BHJ thin film morphology, suppression of charge carrier recombination, and enhancement in charge carrier collection result in a greatly increased short-circuit current density and fill factor, as a result, enhanced power conversion efficiency.

  14. Basic Stand Alone Carrier Line Items PUF

    Data.gov (United States)

    U.S. Department of Health & Human Services — This release contains the Basic Stand Alone (BSA) Carrier Line Items Public Use Files (PUF) with information from Medicare Carrier claims. The CMS BSA Carrier Line...

  15. Bulk Superconductors in Mobile Application

    Science.gov (United States)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  16. Content Distribution for Telecom Carriers

    Directory of Open Access Journals (Sweden)

    Ben Falchuk

    2006-08-01

    Full Text Available Distribution of digital content is a key revenue opportunity for telecommunications carriers. As media content moves from analog and physical media-based distribution to digital on-line distribution, a great opportunity exists for carriers to claim their role in the media value chain and grow revenue by enhancing their broadband “all you can eat” high speed Internet access offer to incorporate delivery of a variety of paid content. By offering a distributed peer to peer content delivery capability with authentication, personalization and payment functions, carriers can gain a larger portion of the revenue paid for content both within and beyond their traditional service domains. This paper describes an approach to digital content distribution that leverages existing Intelligent Network infrastructure that many carriers already possess, as well as Web Services.

  17. Lower reflectivity and higher minority carrier lifetime of hand-tailored porous silicon

    Institute of Scientific and Technical Information of China (English)

    Zhang Nansheng; Ma Zhongquan; Zhou Chengyue; He Bo

    2009-01-01

    con layer is measured to be ~3.19 μs. These values are very close to the reflectivity and the minority carrier lifetime of Si3N4 as a passivation layer on a bulk silicon-based solar cell (0.33% and 3.03/μs, respectively).

  18. Comparative study of bulk and interface transport in disordered fullerene films

    Energy Technology Data Exchange (ETDEWEB)

    Pivrikas, Almantas [Linz Institute of Organic Solar Cells (LIOS), Johannes Kepler University Linz (Austria); School of Chemistry and Molecular Biosciences, COPE, The University of Queensland (Australia); Ullah, Mujeeb; Simbrunner, Clemens; Sitter, Helmut [Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz (Austria); Neugebauer, Helmut; Sariciftci, N. Serdar [Linz Institute of Organic Solar Cells (LIOS), Johannes Kepler University Linz (Austria)

    2011-11-15

    The characterization of the charge carrier transport in disordered fullerene films, grown by physical vapor deposition, is important for organic electronics in order to improve carrier mobility and understand transport processes. In this contribution, the electron mobility in the bulk of the fullerene film and at the interface with dielectrics are compared. The bulk mobility is measured in diode structures using the Charge Extraction by Linearly Increasing Voltage (CELIV) technique, which allows a simultaneous study of the electric field, concentration and temperature dependence. The interface mobility is determined using organic field effect transistor (OFET) geometry. The electron mobility values are lower and the dependence on carrier density, field and temperature is stronger in diodes compared to OFETs. In both structures different temperature dependence of the mobility on the carrier concentration and on the electric field is obtained. The dependence shows Meyer-Neldel rule (MN-rule) behavior with similar MN temperatures and MN energies. Activation energy for electron transport plotted as a function of the square root of electric field is linear (Gill's law behavior), in accordance with Poole-Frenkel-type charge carrier transport. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Bulk Moisture and Salinity Sensor

    Science.gov (United States)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  20. Toughness of Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Shantanu V. Madge

    2015-07-01

    Full Text Available Bulk metallic glasses (BMGs have desirable properties like high strength and low modulus, but their toughness can show much variation, depending on the kind of test as well as alloy chemistry. This article reviews the type of toughness tests commonly performed and the factors influencing the data obtained. It appears that even the less-tough metallic glasses are tougher than oxide glasses. The current theories describing the links between toughness and material parameters, including elastic constants and alloy chemistry (ordering in the glass, are discussed. Based on the current literature, a few important issues for further work are identified.

  1. Multi-THz spectroscopy of mobile charge carriers in P3HT:PCBM on a sub-100 fs time scale

    DEFF Research Database (Denmark)

    Cooke, David G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2013-01-01

    The dynamics of mobile charge carrier generation in polymer bulk heterojunction films is of vital importance to the development of more efficient organic photovoltaics. As with conventional semiconductors, the optical signatures of mobile carriers lie in the far-infrared (1-30 THz) although...

  2. Measuring the complete cross-cell carrier mobility distributions in bulk heterojunction solar cells

    Science.gov (United States)

    Seifter, Jason; Sun, Yanming; Choi, Hyosung; Lee, Byoung Hoon; Heeger, Alan

    2015-03-01

    Carbon nanotube-enabled, vertical, organic field effect transistors (CN-VFETs) based on the small molecule dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) have demonstrated high current, low-power operation suitable for driving active matix organic light emitting diode (AMOLED) displays. This performance is achieved without the need for costly high-resolution patterning, despite the low mobility of the organic semiconductor, by employing sub-micron channel widths, defined in the vertical devices by the thickness of the semiconducting layer. Replacing the thermally evaporated small molecule semiconductor with a solution-processed polymer would possibly further simplify the fabrication process and reduce manufacturing cost. Here we investigate several polymer systems as wide bandgap semiconducting channel layers for potentially air stable and transparent CN-VFETs. The field effect mobility and optical transparency of the polymer layers are determined, and the performance and air stability of CN-VFET devices are measured. A. S. gratefully acknowledges support from the National Science Foundation under DMR-1156737.

  3. Microscopic observation of carrier-transport dynamics in quantum-structure solar cells using a time-of-flight technique

    Energy Technology Data Exchange (ETDEWEB)

    Toprasertpong, Kasidit; Fujii, Hiromasa; Sugiyama, Masakazu; Nakano, Yoshiaki [School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032 (Japan); Kasamatsu, Naofumi; Kada, Tomoyuki; Asahi, Shigeo; Kita, Takashi [Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501 (Japan); Wang, Yunpeng; Watanabe, Kentaroh [Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904 (Japan)

    2015-07-27

    In this study, we propose a carrier time-of-flight technique to evaluate the carrier transport time across a quantum structure in an active region of solar cells. By observing the time-resolved photoluminescence signal with a quantum-well probe inserted under the quantum structure at forward bias, the carrier transport time can be efficiently determined at room temperature. The averaged drift velocity shows linear dependence on the internal field, allowing us to estimate the quantum structure as a quasi-bulk material with low effective mobility containing the information of carrier dynamics. We show that this direct and real-time observation is more sensitive to carrier transport than other conventional techniques, providing better insights into microscopic carrier transport dynamics to overcome a device design difficulty.

  4. Contactless Spectral-dependent Charge Carrier Lifetime Measurements in Silicon Photovoltaic Materials

    Science.gov (United States)

    Roller, John; Hamadani, Behrang; Dagenais, Mario

    Charge carrier lifetime measurements in bulk or unfinished photovoltaic (PV) materials allow for a more accurate estimate of power conversion efficiency in completed solar cells. In this work, carrier lifetimes in PV-grade silicon wafers are obtained by way of quasi-steady state photoconductance measurements. These measurements use a contactless RF system coupled with varying narrow spectrum input LEDs, ranging in wavelength from 460 nm to 1030 nm. Spectral dependent lifetime measurements allow for determination of bulk and surface properties of the material, including the intrinsic bulk lifetime and the surface recombination velocity. The effective lifetimes are fit to an analytical physics-based model to determine the desired parameters. Passivated and non-passivated samples are both studied and are shown to have good agreement with the theoretical model.

  5. The recent advances on carrier materials for microencapsulating lipophilic cores

    Directory of Open Access Journals (Sweden)

    JIN Minfeng

    2014-12-01

    Full Text Available Lipophilic ingredients,such as polyunsaturated fatty acids,play an important role in industrialized foods to fortify the nutrients.However,these materials are normally sensitive to oxygen,light or heat to be oxidized,and hard to flow and mix within the bulk food due to the hydrophobic nature.Microencapsulation of lipophilic materials could effectively extend their shelf lives,mask unsatisfied flavors,change their physicochemical properties,and enhance the mixing capacities.This work reviewed the different carrier materials applied in microencapsulating the lipophilic ingredients,and discussed their characteristics and effects on encapsulation efficiencies and release profiles of lipophilic cores.

  6. Low-cost carriers fare competition effect

    NARCIS (Netherlands)

    Carmona Benitez, R.B.; Lodewijks, G.

    2010-01-01

    This paper examines the effects that low-cost carriers (LCC’s) produce when entering new routes operated only by full-service carriers (FSC’s) and routes operated by low-cost carriers in competition with full-service carriers. A mathematical model has been developed to determine what routes should b

  7. Process optimization and biocompatibility of cell carriers suitable for automated magnetic manipulation.

    Science.gov (United States)

    Krejci, I; Piana, C; Howitz, S; Wegener, T; Fiedler, S; Zwanzig, M; Schmitt, D; Daum, N; Meier, K; Lehr, C M; Batista, U; Zemljic, S; Messerschmidt, J; Franzke, J; Wirth, M; Gabor, F

    2012-03-01

    There is increasing demand for automated cell reprogramming in the fields of cell biology, biotechnology and the biomedical sciences. Microfluidic-based platforms that provide unattended manipulation of adherent cells promise to be an appropriate basis for cell manipulation. In this study we developed a magnetically driven cell carrier to serve as a vehicle within an in vitro environment. To elucidate the impact of the carrier on cells, biocompatibility was estimated using the human adenocarcinoma cell line Caco-2. Besides evaluation of the quality of the magnetic carriers by field emission scanning electron microscopy, the rate of adherence, proliferation and differentiation of Caco-2 cells grown on the carriers was quantified. Moreover, the morphology of the cells was monitored by immunofluorescent staining. Early generations of the cell carrier suffered from release of cytotoxic nickel from the magnetic cushion. Biocompatibility was achieved by complete encapsulation of the nickel bulk within galvanic gold. The insulation process had to be developed stepwise and was controlled by parallel monitoring of the cell viability. The final carrier generation proved to be a proper support for cell manipulation, allowing proliferation of Caco-2 cells equal to that on glass or polystyrene as a reference for up to 10 days. Functional differentiation was enhanced by more than 30% compared with the reference. A flat, ferromagnetic and fully biocompatible carrier for cell manipulation was developed for application in microfluidic systems. Beyond that, this study offers advice for the development of magnetic cell carriers and the estimation of their biocompatibility.

  8. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals

    Science.gov (United States)

    Li, Mingjie; Bhaumik, Saikat; Goh, Teck Wee; Kumar, Muduli Subas; Yantara, Natalia; Grätzel, Michael; Mhaisalkar, Subodh; Mathews, Nripan; Sum, Tze Chien

    2017-02-01

    Hot-carrier solar cells can overcome the Schottky-Queisser limit by harvesting excess energy from hot carriers. Inorganic semiconductor nanocrystals are considered prime candidates. However, hot-carrier harvesting is compromised by competitive relaxation pathways (for example, intraband Auger process and defects) that overwhelm their phonon bottlenecks. Here we show colloidal halide perovskite nanocrystals transcend these limitations and exhibit around two orders slower hot-carrier cooling times and around four times larger hot-carrier temperatures than their bulk-film counterparts. Under low pump excitation, hot-carrier cooling mediated by a phonon bottleneck is surprisingly slower in smaller nanocrystals (contrasting with conventional nanocrystals). At high pump fluence, Auger heating dominates hot-carrier cooling, which is slower in larger nanocrystals (hitherto unobserved in conventional nanocrystals). Importantly, we demonstrate efficient room temperature hot-electrons extraction (up to ~83%) by an energy-selective electron acceptor layer within 1 ps from surface-treated perovskite NCs thin films. These insights enable fresh approaches for extremely thin absorber and concentrator-type hot-carrier solar cells.

  9. Handling of bulk solids theory and practice

    CERN Document Server

    Shamlou, P A

    1990-01-01

    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  10. Nanofluidics, from bulk to interfaces.

    Science.gov (United States)

    Bocquet, Lydéric; Charlaix, Elisabeth

    2010-03-01

    Nanofluidics has emerged recently in the footsteps of microfluidics, following the quest for scale reduction inherent to nanotechnologies. By definition, nanofluidics explores transport phenomena of fluids at nanometer scales. Why is the nanometer scale specific? What fluid properties are probed at nanometric scales? In other words, why does 'nanofluidics' deserve its own brand name? In this critical review, we will explore the vast manifold of length scales emerging for fluid behavior at the nanoscale, as well as the associated mechanisms and corresponding applications. We will in particular explore the interplay between bulk and interface phenomena. The limit of validity of the continuum approaches will be discussed, as well as the numerous surface induced effects occurring at these scales, from hydrodynamic slippage to the various electro-kinetic phenomena originating from the couplings between hydrodynamics and electrostatics. An enlightening analogy between ion transport in nanochannels and transport in doped semi-conductors will be discussed (156 references).

  11. New fermions in the bulk

    CERN Document Server

    de Brito, K P S

    2016-01-01

    Spinor fields on 5-dimensional Lorentzian manifolds are classified, according to the geometric Fierz identities that involve their bilinear covariants. Based upon this classification that generalises the celebrated 4-dimensional Lounesto classification of spinor fields, new non-trivial classes of 5-dimensional spinor fields are, hence, found, with important potential applications regarding bulk fermions and their subsequent localisation on brane-worlds. In addition, quaternionic bilinear covariants are used to derive the quaternionic spin density, through the truncated exterior bundle. In order to accomplish a realisation of these new spinors, a Killing vector field is constructed on the horizon of 5-dimensional Kerr black holes. This Killing vector field is shown to reach the time-like Killing vector field at the spatial infinity, through a current 1-form density, constructed with the derived new spinor fields. The current density is, moreover, expressed as the f\\"unfbein components, assuming a condensed for...

  12. New fermions in the bulk

    Science.gov (United States)

    de Brito, K. P. S.; da Rocha, Roldão

    2016-10-01

    The spinor fields on 5-dimensional Lorentzian manifolds are classified according to the geometric Fierz identities, which involve their bilinear covariants. Based upon this classification, which generalises the celebrated 4-dimensional Lounesto classification of spinor fields, new non-trivial classes of 5-dimensional spinor fields are hence found, with important potential applications regarding bulk fermions and their subsequent localisation on brane-worlds. In addition, quaternionic bilinear covariants are used to derive the quaternionic spin density through the truncated exterior bundle. In order to accomplish the realisation of these new spinors, a Killing vector field is constructed on the horizon of a 5-dimensional Kerr black hole. This Killing vector field is shown to reach the time-like Killing vector field at spatial infinity through a current 1-form density, constructed with the new derived spinor fields. The current density is, moreover, expressed as the fünfbein component, assuming a condensed form.

  13. Carrier localization in InN/InGaN multiple-quantum wells with high In-content

    Science.gov (United States)

    Valdueza-Felip, S.; Rigutti, L.; Naranjo, F. B.; Ruterana, P.; Mangeney, J.; Julien, F. H.; González-Herráez, M.; Monroy, E.

    2012-08-01

    We study the carrier localization in InN/In0.9Ga0.1N multiple-quantum-wells (MQWs) and bulk InN by means of temperature-dependent photoluminescence and pump-probe measurements at 1.55 μm. The S-shaped thermal evolution of the emission energy of the InN film is attributed to carrier localization at structural defects with an average localization energy of ˜12 meV. Carrier localization is enhanced in the MQWs due to well/barrier thickness and ternary alloy composition fluctuations, leading to a localization energy above 35 meV and longer carrier relaxation time. As a result, the luminescence efficiency in the MQWs is improved by a factor of five over bulk InN.

  14. Is metal nanofluid reliable as heat carrier?

    Science.gov (United States)

    Nine, Md J; Chung, Hanshik; Tanshen, Md Riyad; Osman, N A B Abu; Jeong, Hyomin

    2014-05-30

    A pre- and post experimental analysis of copper-water and silver-water nanofluids are conducted to investigate minimal changes in quality of nanofluids before and after an effective heat transfer. A single loop oscillating heat pipe (OHP) having inner diameter of 2.4mm is charged with aforementioned nanofluids at 60% filling ratio for end to end heat transfer. Post experimental analysis of both nanofluids raises questions to the physical, chemical and thermal stability of such suspension for hazardless uses in the field of heat transfer. The color, deposition, dispersibility, propensity to be oxidized, disintegration, agglomeration and thermal conductivity of metal nanofluids are found to be strictly affected by heat transfer process and vice versa. Such degradation in quality of basic properties of metal nanofluids implies its challenges in practical application even for short-term heat transfer operations at oxidative environment as nano-sized metal particles are chemically more unstable than its bulk material. The use of the solid/liquid suspension containing metal nanoparticles in any heat exchanger as heat carrier might be detrimental to the whole system.

  15. {sup 10}Be measurements at MALT using reduced-size samples of bulk sediments

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Kazuho, E-mail: kh@cc.hirosaki-u.ac.jp [Graduate School of Science and Technology, Hirosaki University, 3, Bunkyo-chou, Hirosaki, Aomori 036-8561 (Japan); Oniyanagi, Itsumi [Graduate School of Science and Technology, Hirosaki University, 3, Bunkyo-chou, Hirosaki, Aomori 036-8561 (Japan); Wasada, Hiroshi [Institute of Geology and Paleontology, Graduate school of Science, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578 (Japan); Matsuzaki, Hiroyuki [MALT, School of Engineering, University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2013-01-15

    In order to establish {sup 10}Be measurements on reduced-size (1-10 mg) samples of bulk sediments, we investigated four different pretreatment designs using lacustrine and marginal-sea sediments and the AMS system of the Micro Analysis Laboratory, Tandem accelerator (MALT) at University of Tokyo. The {sup 10}Be concentrations obtained from the samples of 1-10 mg agreed within a precision of 3-5% with the values previously determined using corresponding ordinary-size ({approx}200 mg) samples and the same AMS system. This fact demonstrates reliable determinations of {sup 10}Be with milligram levels of recent bulk sediments at MALT. On the other hand, a clear decline of the BeO{sup -} beam with tens of micrograms of {sup 9}Be carrier suggests that the combination of ten milligrams of sediments and a few hundred micrograms of the {sup 9}Be carrier is more convenient at this stage.

  16. 75 FR 2923 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-01-19

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces that its Motor Carrier Safety Advisory Committee (MCSAC)...

  17. 75 FR 72863 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-11-26

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces that the Agency's Motor Carrier Safety Advisory Committee...

  18. 75 FR 50797 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-08-17

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces that its Motor Carrier Safety Advisory Committee (MCSAC)...

  19. 76 FR 12214 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2011-03-04

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Notice: Announcement of Motor Carrier Safety Advisory Committee meeting; request for comment. SUMMARY: The Federal Motor Carrier Safety...

  20. 75 FR 29384 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-05-25

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee meeting. SUMMARY: FMCSA announces that its Motor Carrier Safety Advisory Committee (MCSAC)...

  1. Giant magneto-optical response in non-magnetic semiconductor BiTeI driven by bulk Rashba spin splitting

    OpenAIRE

    Demkó, L.; Schober, G. A. H.; Kocsis, V.; Bahramy, M.S.; Murakawa, H.; Lee, J. S.; Kézsmárki, I.; Arita, R.; Nagaosa, N.; Tokura, Y.

    2012-01-01

    We study the magneto-optical (MO) response of polar semiconductor BiTeI with giant bulk Rashba spin splitting at various carrier densities. Despite being non-magnetic, the material is found to yield a huge MO activity in the infrared region under moderate magnetic fields (

  2. Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal

    Directory of Open Access Journals (Sweden)

    Faccio D.

    2013-03-01

    Full Text Available We present supercontinuum generation pumped by femtosecond mid-infrared pulses in a bulk homogeneous material. The spectrum extends from 450 nm into the midinfrared, and carries high spectral energy density (3 pJ/nm–10 nJ/nm. The supercontinuum has high shot-to-shot reproducibility and preserves the carrier-to-envelope phase. Our result paves the way for compact supercontinuum sources with unprecedented bandwidth.

  3. ISS qualified thermal carrier equipment

    Science.gov (United States)

    Deuser, Mark S.; Vellinger, John C.; Jennings, Wm. M.

    2000-01-01

    Biotechnology is undergoing a period of rapid and sustained growth, a trend which is expected to continue as the general population ages and as new medical treatments and products are conceived. As pharmaceutical and biomedical companies continue to search for improved methods of production and, for answers to basic research questions, they will seek out new avenues of research. Space processing on the International Space Station (ISS) offers such an opportunity! Space is rapidly becoming an industrial laboratory for biotechnology research and processing. Space bioprocessing offers exciting possibilities for developing new pharmaceuticals and medical treatments, which can be used to benefit mankind on Earth. It also represents a new economic frontier for the private sector. For over eight years, the thermal carrier development team at SHOT has been working with government and commercial sector scientists who are conducting microgravity experiments that require thermal control. SHOT realized several years ago that the hardware currently being used for microgravity thermal control was becoming obsolete. It is likely that the government, academic, and industrial bioscience community members could utilize SHOT's hardware as a replacement to their current microgravity thermal carrier equipment. Moreover, SHOT is aware of several international scientists interested in utilizing our space qualified thermal carrier. SHOT's economic financing concept could be extremely beneficial to the international participant, while providing a source of geographic return for their particular region. Beginning in 2000, flight qualified thermal carriers are expected to be available to both the private and government sectors. .

  4. Hot carrier degradation in semiconductor devices

    CERN Document Server

    2015-01-01

    This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices.  Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance. • Describes the intricacies of hot carrier degradation in modern semiconductor technologies; • Covers the entire hot carrier degradation phenomenon, including topics such as characterization, carrier transport, carrier-defect interaction, technological impact, circuit impact, etc.; • Enables detailed understanding of carrier transport, interaction of the carrier ensemble with the defect precursors, and an accurate assessment of how the newly created defects imp...

  5. Thermal conductivity of bulk and monolayer MoS 2

    KAUST Repository

    Gandi, Appala

    2016-02-26

    © Copyright EPLA, 2016. We show that the lattice contribution to the thermal conductivity of MoS2 strongly dominates the carrier contribution in a broad temperature range from 300 to 800 K. Since theoretical insight into the lattice contribution is largely missing, though it would be essential for materials design, we solve the Boltzmann transport equation for the phonons self-consistently in order to evaluate the phonon lifetimes. In addition, the length scale for transition between diffusive and ballistic transport is determined. The low out-of-plane thermal conductivity of bulk MoS2 (2.3 Wm-1K-1 at 300 K) is useful for thermoelectric applications. On the other hand, the thermal conductivity of monolayer MoS2 (131 Wm-1K-1 at 300 K) is comparable to that of Si.

  6. Fast dissolution of poorly water soluble drugs from fluidized bed coated nanocomposites: Impact of carrier size.

    Science.gov (United States)

    Azad, Mohammad; Moreno, Jacqueline; Bilgili, Ecevit; Davé, Rajesh

    2016-11-20

    Formation of core-shell nanocomposites of Fenofibrate and Itraconazole, model poorly water soluble drugs, via fluidized bed (FB) coating of their well-stabilized high drug loaded nanosuspensions is investigated. Specifically, the extent of dissolution enhancement, when fine carrier particles (sub-50μm) as opposed to the traditional large carrier particles (>300μm) are used, is examined. This allows testing the hypothesis that greatly increased carrier surface area and more importantly, thinner shell for finer carriers at the same drug loading can significantly increase the dissolution rate when spray-coated nanosuspensions are well-stabilized. Fine sub-50μm lactose (GranuLac(®) 200) carrier particles were made fluidizable via dry coating with nano-silica, enabling decreased cohesion, fluidization and subsequent nanosuspension coating. For both drugs, 30% drug loaded suspensions were prepared via wet-stirred media milling using hydroxypropyl methyl cellulose and sodium dodecyl sulfate as stabilizers. The stabilizer concentrations were varied to affect the milled particle size and prepare a stable nanosuspension. The suspensions were FB coated onto hydrophilic nano-silica (M-5P) dry coated sub-50μm lactose (GranuLac(®) 200) carrier particles or larger carrier particles of median size >300μm (PrismaLac(®)40). The resulting finer composite powders (sub-100μm) based on GranuLac(®) 200 were freely flowing, had high bulk density, and had much faster, immediate dissolution of the poorly water-soluble drugs, in particular for Itraconazole. This is attributed to a much higher specific surface area of the carrier and corresponding thinner coating layer for fine carriers as opposed to those for large carrier particles.

  7. Coupling brane fields to bulk supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  8. Relative entropy equals bulk relative entropy

    CERN Document Server

    Jafferis, Daniel L; Maldacena, Juan; Suh, S Josephine

    2015-01-01

    We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.

  9. Minority carrier blocking to enhance the thermoelectric figure of merit in narrow-band-gap semiconductors

    Science.gov (United States)

    Bahk, Je-Hyeong; Shakouri, Ali

    2016-04-01

    We present detailed theoretical predictions on the enhancement of the thermoelectric figure of merit by minority carrier blocking with heterostructure barriers in bulk narrow-band-gap semiconductors. Bipolar carrier transport, which is often significant in a narrow-band-gap material, is detrimental to the thermoelectric energy conversion efficiency as it suppresses the Seebeck coefficient and increases the thermal conductivity. When the minority carriers are selectively prevented from participating in conduction while the transport of majority carriers is relatively unaffected by one-sided heterobarriers, the thermoelectric figure of merit can be drastically enhanced. Thermoelectric transport properties such as Seebeck coefficient, electrical conductivity, and electronic thermal conductivity including the bipolar term are calculated with and without the barriers based on the near-equilibrium Boltzmann transport equations under the relaxation time approximation to investigate the effects of minority carrier barriers on the thermoelectric figure of merit. For this, we provide details of carrier transport modeling and fitting results of experimental data for three important material systems, B i2T e3 -based alloys, M g2S i1 -xS nx , and S i1 -xG ex , that represent, respectively, near-room-temperature (300 K-500 K), midtemperature (600 K-900 K), and high-temperature (>1000 K ) applications. Theoretical maximum enhancement of thermoelectric figure of merit that can be achieved by minority carrier blocking is quantified and discussed for each of these semiconductors.

  10. 33 CFR 127.313 - Bulk storage.

    Science.gov (United States)

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The...

  11. Applications of bulk high-temperature superconductors

    Science.gov (United States)

    Hull, J. R.

    The development of high-temperature superconductors (HTS's) can be broadly generalized into thin-film electronics, wire applications, and bulk applications. We consider bulk HTS's to include sintered or crystallized forms that do not take the geometry of filaments or tapes, and we discuss major applications for these materials. For the most part applications may be realized with the HTS's cooled to 77 K, and the properties of the bulk HTS's are often already sufficient for commercial use. A non-exhaustive list of applications for bulk HTS's includes trapped field magnets, hysteresis motors, magnetic shielding, current leads, and magnetic bearings. These applications are briefly discussed in this paper.

  12. Ultrafast carrier dynamics and radiative recombination in multiferroic BiFeO3 single crystals and thin films

    Directory of Open Access Journals (Sweden)

    Taylor A. J.

    2013-03-01

    Full Text Available We report a detailed comparison of ultrafast carrier dynamics in single crystals and thin films of multiferroic BiFeO3 (BFO. Using degenerate femtosecond optical pump-probe spectroscopy, we find that the observed dynamics are qualitatively similar in both samples. After photoexcitation, electrons relax to the conduction band minimum through electron-phonon coupling, with subsequent carrier relaxation proceeding via various recombination pathways that extend to a nanosecond timescale. Subtle differences observed in our measurements indicate that BFO films have a higher band gap than single crystals. Overall, our results demonstrate that carrier relaxation in BFO is analogous to that in bulk semiconductors.

  13. Carrier localization in InN/InGaN multiple-quantum wells with high In-content

    OpenAIRE

    Valdueza Felip, Sirona; Rigutti, Lorenzo; Naranjo, Fernando; Ruterana, Pierre; Mangeney, Juliette; Julien, François H; González-Herráez, Miguel; Monroy, Eva

    2012-01-01

    We study the carrier localization in InN/In0.9Ga0.1N multiple-quantum-wells (MQWs) and bulk InN by means of temperature-dependent photoluminescence and pump-probe measurements at 1.55 lm. The S-shaped thermal evolution of the emission energy of the InN film is attributed to carrier localization at structural defects with an average localization energy of 12 meV. Carrier localization is enhanced in the MQWs due to well/barrier thickness and ternary alloy composition fluctuations, ...

  14. Free-carrier contribution to all-optical switching in Mie-resonant hydrogenated amorphous silicon nanodisks

    Science.gov (United States)

    Vabishchevich, Polina P.; Shorokhov, Alexander S.; Shcherbakov, Maxim R.; Fedyanin, Andrey A.

    2016-03-01

    Conventionally, all-optical switching devices made out from bulk silicon and other semiconductors are limited by free-carrier relaxation time which spans from picoseconds to microseconds. In this work, we discuss the possibility to suppress the undesired long free-carrier relaxation in subwavelength dielectric nanostructures exhibiting localized magnetic Mie resonances. Numerical calculations show the unsymmetrical modification of the transmittance spectra of the nanodisks due the free carriers photo-injection. Such a spectral dependance allows to control temporal response of the nanostructure by varying the laser pulse spectum.

  15. Carrier heating in disordered conjugated polymers in electric field

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2010-01-26

    The electric field dependence of charge carrier transport and the effect of carrier heating in disordered conjugated polymers were investigated. A parameter-free multiscale methodology consisting of classical molecular dynamics simulation for the generation of the atomic structure, large system electronic structure and electron-phonon coupling constants calculations and the procedure for extracting the bulk polymer mobility, was used. The results suggested that the mobility of a fully disordered poly(3-hexylthiophene) (P3HT) polymer increases with electric field which is consistent with the experimental results on samples of regiorandom P3HT and different from the results on more ordered regioregular P3HT polymers, where the opposite trend is often observed at low electric fields. We calculated the electric field dependence of the effective carrier temperature and showed however that the effective temperature cannot be used to replace the joint effect of temperature and electric field, in contrast to previous theoretical results from phenomenological models. Such a difference was traced to originate from the use of simplified Miller-Abrahams hopping rates in phenomenological models in contrast to our considerations that explicitly take into account the electronic state wave functions and the interaction with all phonon modes.

  16. Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics.

    Science.gov (United States)

    Webster, David M; Sundaram, Padma; Byrne, Mark E

    2013-05-01

    Therapeutics such as nucleic acids, proteins/peptides, vaccines, anti-cancer, and other drugs have disadvantages of low bio-availability, rapid clearance, and high toxicity. Thus, there is a significant need for the development of efficient delivery methods and carriers. Injectable nanocarriers have received much attention due to their vast range of structures and ability to contain multiple functional groups, both within the bulk material and on the surface of the particles. Nanocarriers may be tailored to control drug release and/or increase selective cell targeting, cellular uptake, drug solubility, and circulation time, all of which lead to a more efficacious delivery and action of therapeutics. The focus of this review is injectable, targeted nanoparticle drug delivery carriers highlighting the diversity of nanoparticle materials and structures as well as highlighting current therapeutics and targeting moieties. Structures and materials discussed include liposomes, polymersomes, dendrimers, cyclodextrin-containing polymers (CDPs), carbon nanotubes (CNTs), and gold nanoparticles. Additionally, current clinical trial information and details such as trial phase, treatment, active drug, carrier sponsor, and clinical trial identifier for different materials and structures are presented and discussed.

  17. Fatigue reliability for LNG carrier

    Institute of Scientific and Technical Information of China (English)

    Xiao Taoyun; Zhang Qin; Jin Wulei; Xu Shuai

    2011-01-01

    The procedure of reliability-based fatigue analysis of liquefied natural gas (LNG) carrier of membrane type under wave loads is presented. The stress responses of the hotspots in regular waves with different wave heading angles and wave lengths are evaluated by global ship finite element method (FEM). Based on the probabilistic distribution function of hotspots' short-term stress-range using spectral-based analysis, Weibull distribution is adopted and discussed for fitting the long-term probabilistic distribution of stress-range. Based on linear cumulative damage theory, fatigue damage is characterized by an S-N relationship, and limit state function is established. Structural fatigue damage behavior of several typical hotspots of LNG middle ship section is clarified and reliability analysis is performed. It is believed that the presented results and conclusions can be of use in calibration for practical design and initial fatigue safety evaluation for membrane type LNG carrier.

  18. A Customized Finger Brachytherapy Carrier

    OpenAIRE

    Wadhwa, Supneet Singh; Duggal, Nidhi

    2013-01-01

    In recent years, radiation therapy has been used with increasing frequency in the management of neoplasms of the head and neck region. Brachytherapy is a method of radiation treatment in which sealed radioactive sources are used to deliver the dose a short distance by interstitial (direct insertion into tissue), intracavitary (placement within a cavity) or surface application (molds). Mold brachytherapy is radiation delivered via a custom-fabricated carriers, designed to provide a more consta...

  19. MOSFET Carrier Surface Effective Mobility with Thin Gate-Oxide Thickness

    Institute of Scientific and Technical Information of China (English)

    ZHAOYang; PARKEStephen; CHUJiamei; BURKEFranklyn

    2005-01-01

    Mobility is a key parameter in MOSFET (Metal-oxide-semiconduetor field effect transistor) modeling. However, due to the influence of transverse electric field as a result of thin gate-oxide thickness in modern MOSFET, conventional carriers mobility of bulk device is no longer appropriate. In this paper the measurement of carrier surface effective mobility with thin gate-oxide of 40A thickness device is completed, and the modeling and characterization of this mobility is presented by employing BSIM model. Results show that our approach is effective to model surface mobility of thin gate-oxide device.

  20. Preventative maintenance of straddle carriers

    Directory of Open Access Journals (Sweden)

    Si Li

    2015-02-01

    Full Text Available Background: Robotic vehicles such as straddle carriers represent a popular form of cargo handling amongst container terminal operators.Objectives: The purpose of this industry-driven study is to model preventative maintenance (PM influences on the operational effectiveness of straddle carriers.Method: The study employs historical data consisting of 21 273 work orders covering a 27-month period. Two models are developed, both of which forecast influences of PM regimes for different types of carrier.Results: The findings of the study suggest that the reliability of the straddle fleet decreases with increased intervals of PM services. The study also finds that three factors – namely resources, number of new straddles, and the number of new lifting work centres – influence the performances of straddles.Conclusion: The authors argue that this collaborative research exercise makes a significant contribution to existing supply chain management literature, particularly in the area of operations efficiency. The study also serves as an avenue to enhance relevant management practice.

  1. Orbital magnetism of graphene nanostructures: Bulk and confinement effects

    Science.gov (United States)

    Heße, Lisa; Richter, Klaus

    2014-11-01

    We consider the orbital magnetic properties of noninteracting charge carriers in graphene-based nanostructures in the low-energy regime. The magnetic response of such systems results both from bulk contributions and from confinement effects that can be particularly strong in ballistic quantum dots. First we provide a comprehensive study of the magnetic susceptibility χ of bulk graphene in a magnetic field for the different regimes arising from the relative magnitudes of the energy scales involved, i.e., temperature, Landau-level spacing, and chemical potential. We show that for finite temperature or chemical potential, χ is not divergent although the diamagnetic contribution χ0 from the filled valance band exhibits the well-known -B-1 /2 dependence. We further derive oscillatory modulations of χ , corresponding to de Haas-van Alphen oscillations of conventional two-dimensional electron gases. These oscillations can be large in graphene, thereby compensating the diamagnetic contribution χ0 and yielding a net paramagnetic susceptibility for certain energy and magnetic field regimes. Second, we predict and analyze corresponding strong, confinement-induced susceptibility oscillations in graphene-based quantum dots with amplitudes distinctly exceeding the corresponding bulk susceptibility. Within a semiclassical approach we derive generic expressions for orbital magnetism of graphene quantum dots with regular classical dynamics. Graphene-specific features can be traced back to pseudospin interference along the underlying periodic orbits. We demonstrate the quality of the semiclassical approximation by comparison with quantum-mechanical results for two exemplary mesoscopic systems, a graphene disk with infinite mass-type edges, and a rectangular graphene structure with armchair and zigzag edges, using numerical tight-binding calculations in the latter case.

  2. Spacelab carrier complement thermal design and performance

    Science.gov (United States)

    Bancroft, S.; Key, R.; Kittredge, S.

    1992-01-01

    The present discussion of the Spacelab carrier complement, which encompasses a Module Carrier, a Module-Pallet Carrier, and a Multiplexer/Demultiplexer Pallet, gives attention to both active and passive thermal performance capabilities, and presents ground testing and analytical results obtained to date. An account is given of the prospective use of a Spacelab Multipurpose Experiment Support Structure.

  3. Responsible implementation of expanded carrier screening

    Science.gov (United States)

    Henneman, Lidewij; Borry, Pascal; Chokoshvili, Davit; Cornel, Martina C; van El, Carla G; Forzano, Francesca; Hall, Alison; Howard, Heidi C; Janssens, Sandra; Kayserili, Hülya; Lakeman, Phillis; Lucassen, Anneke; Metcalfe, Sylvia A; Vidmar, Lovro; de Wert, Guido; Dondorp, Wybo J; Peterlin, Borut

    2016-01-01

    This document of the European Society of Human Genetics contains recommendations regarding responsible implementation of expanded carrier screening. Carrier screening is defined here as the detection of carrier status of recessive diseases in couples or persons who do not have an a priori increased risk of being a carrier based on their or their partners' personal or family history. Expanded carrier screening offers carrier screening for multiple autosomal and X-linked recessive disorders, facilitated by new genetic testing technologies, and allows testing of individuals regardless of ancestry or geographic origin. Carrier screening aims to identify couples who have an increased risk of having an affected child in order to facilitate informed reproductive decision making. In previous decades, carrier screening was typically performed for one or few relatively common recessive disorders associated with significant morbidity, reduced life-expectancy and often because of a considerable higher carrier frequency in a specific population for certain diseases. New genetic testing technologies enable the expansion of screening to multiple conditions, genes or sequence variants. Expanded carrier screening panels that have been introduced to date have been advertised and offered to health care professionals and the public on a commercial basis. This document discusses the challenges that expanded carrier screening might pose in the context of the lessons learnt from decades of population-based carrier screening and in the context of existing screening criteria. It aims to contribute to the public and professional discussion and to arrive at better clinical and laboratory practice guidelines. PMID:26980105

  4. Responsible implementation of expanded carrier screening.

    Science.gov (United States)

    Henneman, Lidewij; Borry, Pascal; Chokoshvili, Davit; Cornel, Martina C; van El, Carla G; Forzano, Francesca; Hall, Alison; Howard, Heidi C; Janssens, Sandra; Kayserili, Hülya; Lakeman, Phillis; Lucassen, Anneke; Metcalfe, Sylvia A; Vidmar, Lovro; de Wert, Guido; Dondorp, Wybo J; Peterlin, Borut

    2016-06-01

    This document of the European Society of Human Genetics contains recommendations regarding responsible implementation of expanded carrier screening. Carrier screening is defined here as the detection of carrier status of recessive diseases in couples or persons who do not have an a priori increased risk of being a carrier based on their or their partners' personal or family history. Expanded carrier screening offers carrier screening for multiple autosomal and X-linked recessive disorders, facilitated by new genetic testing technologies, and allows testing of individuals regardless of ancestry or geographic origin. Carrier screening aims to identify couples who have an increased risk of having an affected child in order to facilitate informed reproductive decision making. In previous decades, carrier screening was typically performed for one or few relatively common recessive disorders associated with significant morbidity, reduced life-expectancy and often because of a considerable higher carrier frequency in a specific population for certain diseases. New genetic testing technologies enable the expansion of screening to multiple conditions, genes or sequence variants. Expanded carrier screening panels that have been introduced to date have been advertised and offered to health care professionals and the public on a commercial basis. This document discusses the challenges that expanded carrier screening might pose in the context of the lessons learnt from decades of population-based carrier screening and in the context of existing screening criteria. It aims to contribute to the public and professional discussion and to arrive at better clinical and laboratory practice guidelines.

  5. 7 CFR 33.4 - Carrier.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Carrier. 33.4 Section 33.4 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... ISSUED UNDER AUTHORITY OF THE EXPORT APPLE ACT Definitions § 33.4 Carrier. Carrier means any common...

  6. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio and...

  7. 27 CFR 20.191 - Bulk articles.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of...

  8. 49 CFR 376.22 - Exemption for private carrier leasing and leasing between authorized carriers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Exemption for private carrier leasing and leasing... MOTOR CARRIER SAFETY REGULATIONS LEASE AND INTERCHANGE OF VEHICLES Exemptions for the Leasing Regulations § 376.22 Exemption for private carrier leasing and leasing between authorized carriers....

  9. Analytical Model for Voltage-Dependent Photo and Dark Currents in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Mesbahus Saleheen

    2016-05-01

    Full Text Available A physics-based explicit mathematical model for the external voltage-dependent forward dark current in bulk heterojunction (BHJ organic solar cells is developed by considering Shockley-Read-Hall (SRH recombination and solving the continuity equations for both electrons and holes. An analytical model for the external voltage-dependent photocurrent in BHJ organic solar cells is also proposed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs, carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun’s model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The overall net current is calculated considering the actual solar spectrum. The mathematical models are verified by comparing the model calculations with various published experimental results. We analyze the effects of the contact properties, blend compositions, charge carrier transport properties (carrier mobility and lifetime, and cell design on the current-voltage characteristics. The power conversion efficiency of BHJ organic solar cells mostly depends on electron transport properties of the acceptor layer. The results of this paper indicate that improvement of charge carrier transport (both mobility and lifetime and dissociation of bound EHPs in organic blend are critically important to increase the power conversion efficiency of the BHJ solar cells.

  10. Carrier synchronization for STBC OFDM systems

    Institute of Scientific and Technical Information of China (English)

    Cai Jueping; Song Wentao; Li Zan; Ge Jianhua

    2005-01-01

    All-digital carrier synchronization strategies and algorithms for space-time block coding (STBC) orthogonal frequency division multiplexing (OFDM) are proposed in this paper. In our scheme, the continuous pilots (CP) are saved, and the complexity of carrier synchronization is reduced significantly by dividing the process into three steps. The coarse carrier synchronization and the fine carrier synchronization algorithms are investigated and analyzed in detail. Simulations show that the carrier can be locked into tracking mode quickly, and the residual frequency error satisfies the system requirement in both stationary and mobile environments.

  11. Low-cost carriers fare competition effect

    OpenAIRE

    Carmona Benitez, R.B.; Lodewijks, G.

    2010-01-01

    This paper examines the effects that low-cost carriers (LCC’s) produce when entering new routes operated only by full-service carriers (FSC’s) and routes operated by low-cost carriers in competition with full-service carriers. A mathematical model has been developed to determine what routes should be operated by a low-cost carrier with better possibilities to subsist. The proposed model in this paper was set up by analyzing The United States domestic air transport market 2005 year database fr...

  12. Non-permeable substrate carrier for electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Abas, Emmanuel Chua; Chen, Chen-An; Ma, Diana Xiaobing; Ganti, Kalyana Bhargava

    2012-11-27

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  13. Non-permeable substrate carrier for electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Abas, Emmanuel Chua; Chen, Chen-an; Ma, Diana Xiaobing; Ganti, Kalyana; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor

    2015-12-29

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  14. Optimization of Sour Cherry Juice Spray Drying as
Affected by Carrier Material and Temperature

    Science.gov (United States)

    Zorić, Zoran; Pedisić, Sandra; Dragović-Uzelac, Verica

    2016-01-01

    Summary Response surface methodology was applied for optimization of the sour cherry Marasca juice spray drying process with 20, 30 and 40% of carriers maltodextrin with dextrose equivalent (DE) value of 4–7 and 13–17 and gum arabic, at three drying temperatures: 150, 175 and 200 °C. Increase in carrier mass per volume ratio resulted in lower moisture content and powder hygroscopicity, higher bulk density, solubility and product yield. Higher temperatures decreased the moisture content and bulk density of powders. Temperature of 200 °C and 27% of maltodextrin with 4–7 DE were found to be the most suitable for production of sour cherry Marasca powder. PMID:28115901

  15. Wuestite - a solar energy carrier

    Energy Technology Data Exchange (ETDEWEB)

    Weidenkaff, A.; Nueesch, P.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Reller, A. [Hamburg Univ., Hamburg (Germany)

    1997-06-01

    Hydrogen is produced when Wuestite (Fe{sub 1-y}O) is oxidised by water. This reaction is part of a two-step thermochemical metal oxide cycle for the storage of solar energy in the form of chemical energy carriers, characterised by a high chemical potential. The reaction was studied in a tubular furnace with on-line gas analysis and further characterised in detail by DTA und high-temperature X-ray powder diffraction. The influence of non-stoichiometry, morphology and temperature on the mechanism and kinetics of the water-splitting reaction was determined. (author) 3 figs., tabs., 3 refs.

  16. At What Cost a Carrier?

    Science.gov (United States)

    2013-03-01

    brushed At What Cost a Carrier?M A R C H 2 0 1 3 4 | with interest, consequently pushing to convert the coal supply ship Jupiter into an American aircra...began to pay o!. By 1999 only 4 tons of bombs were needed to accomplish the mission, regardless of the weather at the target. Couple this fact with...there, how many bombs does it drop? | 7 #e &rst fact that needs to be understood in answer- ing these questions is that piloting an aircra" onto the

  17. Hydrogen - A sustainable energy carrier

    Directory of Open Access Journals (Sweden)

    Kasper T. Møller

    2017-02-01

    Full Text Available Hydrogen may play a key role in a future sustainable energy system as a carrier of renewable energy to replace hydrocarbons. This review describes the fundamental physical and chemical properties of hydrogen and basic theories of hydrogen sorption reactions, followed by the emphasis on state-of-the-art of the hydrogen storage properties of selected interstitial metallic hydrides and magnesium hydride, especially for stationary energy storage related utilizations. Finally, new perspectives for utilization of metal hydrides in other applications will be reviewed.

  18. 78 FR 66801 - Motor Carrier Safety Advisory Committee; Charter Renewal

    Science.gov (United States)

    2013-11-06

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee; Charter Renewal AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Announcement of advisory... Committee that provides the Agency with advice and recommendations on motor carrier safety programs...

  19. Ultrafast carrier dynamics in bimetallic nanostructure-enhanced methylammonium lead bromide perovskites.

    Science.gov (United States)

    Zarick, Holly F; Boulesbaa, Abdelaziz; Puretzky, Alexander A; Talbert, Eric M; DeBra, Zachary R; Soetan, Naiya; Geohegan, David B; Bardhan, Rizia

    2017-01-26

    In this work, we examine the impact of hybrid bimetallic Au/Ag core/shell nanostructures on the carrier dynamics of methylammonium lead tribromide (MAPbBr3) mesoporous perovskite solar cells (PSCs). Plasmon-enhanced PSCs incorporated with Au/Ag nanostructures demonstrated improved light harvesting and increased power conversion efficiency by 26% relative to reference devices. Two complementary spectral techniques, transient absorption spectroscopy (TAS) and time-resolved photoluminescence (trPL), were employed to gain a mechanistic understanding of plasmonic enhancement processes. TAS revealed a decrease in the photobleach formation time, which suggests that the nanostructures improve hot carrier thermalization to an equilibrium distribution, relieving hot phonon bottleneck in MAPbBr3 perovskites. TAS also showed a decrease in carrier decay lifetimes, indicating that nanostructures enhance photoinduced carrier generation and promote efficient electron injection into TiO2 prior to bulk recombination. Furthermore, nanostructure-incorporated perovskite films demonstrated quenching in steady-state PL and decreases in trPL carrier lifetimes, providing further evidence of improved carrier injection in plasmon-enhanced mesoporous PSCs.

  20. Silicon ball grid array chip carrier

    Science.gov (United States)

    Palmer, David W.; Gassman, Richard A.; Chu, Dahwey

    2000-01-01

    A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

  1. Superconducting bulk magnets for magnetic levitation systems

    Science.gov (United States)

    Fujimoto, H.; Kamijo, H.

    2000-06-01

    The major applications of high-temperature superconductors have mostly been confined to products in the form of wires and thin films. However, recent developments show that rare-earth REBa 2Cu 3O 7- x and light rare-earth LREBa 2Cu 3O 7- x superconductors prepared by melt processes have a high critical-current density at 77 K and high magnetic fields. These superconductors will promote the application of bulk high-temperature superconductors in high magnetic fields; the superconducting bulk magnet for the Maglev train is one possible application. We investigated the possibility of using bulk magnets in the Maglev system, and examined flux-trapping characteristics of multi-superconducting bulks arranged in array.

  2. Sustained delivery of biomolecules from gelatin carriers for applications in bone regeneration.

    Science.gov (United States)

    Song, Jiankang; Leeuwenburgh, Sander Cg

    2014-08-01

    Local delivery of therapeutic biomolecules to stimulate bone regeneration has matured considerably during the past decades, but control over the release of these biomolecules still remains a major challenge. To this end, suitable carriers that allow for tunable spatial and temporal delivery of biomolecules need to be developed. Gelatin is one of the most widely used natural polymers for the controlled and sustained delivery of biomolecules because of its biodegradability, biocompatibility, biosafety and cost-effectiveness. The current study reviews the applications of gelatin as carriers in form of bulk hydrogels, microspheres, nanospheres, colloidal gels and composites for the programmed delivery of commonly used biomolecules for applications in bone regeneration with a specific focus on the relationship between carrier properties and delivery characteristics.

  3. Measuring Bulk Flows in Large Scale Surveys

    CERN Document Server

    Feldman, H A; Feldman, Hume A.; Watkins, Richard

    1993-01-01

    We follow a formalism presented by Kaiser to calculate the variance of bulk flows in large scale surveys. We apply the formalism to a mock survey of Abell clusters \\'a la Lauer \\& Postman and find the variance in the expected bulk velocities in a universe with CDM, MDM and IRAS--QDOT power spectra. We calculate the velocity variance as a function of the 1--D velocity dispersion of the clusters and the size of the survey.

  4. Prospects for Detecting a Cosmic Bulk Flow

    Science.gov (United States)

    Rose, Benjamin; Garnavich, Peter M.; Mathews, Grant James

    2015-01-01

    The ΛCDM model is based upon a homogeneous, isotropic space-time leading to uniform expansion with random peculiar velocities caused by local gravitation perturbations. The Cosmic Microwave Background (CMB) radiation evidences a significant dipole moment in the frame of the Local Group. This motion is usually explained with the Local Group's motion relative to the background Hubble expansion. An alternative explanation, however, is that the dipole moment is the result of horizon-scale curvature remaining from the birth of space-time, possibly a result of quantum entanglement with another universe. This would appear as a single velocity (a bulk flow) added to all points in space. These two explanations differ observationally on cosmic distance scales (z > 0.1). There have been many differing attempts to detect a bulk flow, many with no detectable bulk flow but some with a bulk flow velocity as large as 1000 km/s. Here we report on a technique based upon minimizing the scatter around the expected cosine distribution of the Hubble redshift residuals with respect to angular distance on the sky. That is, the algorithm searches for a directional dependence of Hubble residuals. We find results consistent with most other bulk flow detections at z Type Ia Supernovae to be ~0.01, whereas the current error (~0.2.) is more than an order of magnitude too large for the detection of bulk flow beyond z~0.05.

  5. Differential Analysis of the Nasal Microbiome of Pig Carriers or Non-Carriers of Staphylococcus aureus

    DEFF Research Database (Denmark)

    Espinosa-Gongora, Carmen; Larsen, Niels; Schonning, Kristian;

    2016-01-01

    pathogen in animal carriers. The aim of this study was to determine whether the nasal microbiome of pig S. aureus carriers differs from that of non-carriers. The V3-V5 region of the 16S rRNA gene was sequenced from nasal swabs of 44 S. aureus carriers and 56 non-carriers using the 454 GS FLX titanium...... microbiome of pigs that are not colonized with S. aureus harbours several species/taxa that are significantly less abundant in pig carriers, suggesting that the nasal microbiota may play a role in the individual predisposition to S. aureus nasal carriage in pigs. Further research is warranted to isolate...

  6. Ultrafast carriers dynamics in filled-skutterudites

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Liang; Xu, Xianfan, E-mail: xxu@purdue.edu [School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Salvador, James R. [Chemical and Materials Systems Laboratory, GM Global R and D, Warren, Michigan 48090 (United States)

    2015-06-08

    Carrier dynamics of filled-skutterudites, an important class of thermoelectric materials, is investigated using ultrafast optical spectroscopy. By tuning the wavelength of the probe laser, charge transfers at different electronic energy levels are interrogated. Analysis based on the Kramers-Kronig relation explains the complex spectroscopy data, which is mainly due to band filling caused by photo-excited carriers and free carrier absorption. The relaxation time of hot carriers is found to be about 0.4–0.6 ps, depending on the electronic energy level, and the characteristic time for carrier-phonon equilibrium is about 0.95 ps. These studies of carrier dynamics, which fundamentally determines the transport properties of thermoelectric material, can provide guidance for the design of materials.

  7. Impact of carriers in oral absorption

    DEFF Research Database (Denmark)

    Gram, Luise Kvisgaard; Rist, Gerda Marie; Lennernäs, Hans

    2009-01-01

    (APP) was not described by carrier kinetics. However, glipizide is affecting exsorption for ES, due to interactions on basolateral carrier. The study confirms that estrone-3-sulfate can be used to characterize anionic carrier kinetics. Furthermore it is suggested that estrone-3-sulfate may be used to identify compounds......Carriers may mediate the permeation across enterocytes for drug substances being organic anions. Carrier mediated permeation for the organic anions estrone-3-sulfate (ES) and glipizide across Caco-2 cells were investigated kinetically, and interactions on involved carriers evaluated. Initial...... uptakes (P(UP)) at apical and basolateral membranes, apparent permeabilities (P(APP)) and corresponding intracellular end-point accumulations (P(EPA)) of radioactive labeled compounds were studied. Possible effects of other anionic compounds were investigated. Apical P(UP) and absorptive P(APP) for ES...

  8. Ultrafast carriers dynamics in filled-skutterudites

    Science.gov (United States)

    Guo, Liang; Xu, Xianfan; Salvador, James R.

    2015-06-01

    Carrier dynamics of filled-skutterudites, an important class of thermoelectric materials, is investigated using ultrafast optical spectroscopy. By tuning the wavelength of the probe laser, charge transfers at different electronic energy levels are interrogated. Analysis based on the Kramers-Kronig relation explains the complex spectroscopy data, which is mainly due to band filling caused by photo-excited carriers and free carrier absorption. The relaxation time of hot carriers is found to be about 0.4-0.6 ps, depending on the electronic energy level, and the characteristic time for carrier-phonon equilibrium is about 0.95 ps. These studies of carrier dynamics, which fundamentally determines the transport properties of thermoelectric material, can provide guidance for the design of materials.

  9. Carriers of the astronomical 2175 ? extinction feature

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J; Dai, Z; Ernie, R; Browning, N; Graham, G; Weber, P; Smith, J; Hutcheon, I; Ishii, H; Bajt, S; Floss, C; Stadermann, F

    2004-07-20

    The 2175 {angstrom} extinction feature is by far the strongest spectral signature of interstellar dust observed by astronomers. Forty years after its discovery the origin of the feature and the nature of the carrier remain controversial. The feature is enigmatic because although its central wavelength is almost invariant its bandwidth varies strongly from one sightline to another, suggesting multiple carriers or a single carrier with variable properties. Using a monochromated transmission electron microscope and valence electron energy-loss spectroscopy we have detected a 5.7 eV (2175 {angstrom}) feature in submicrometer-sized interstellar grains within interplanetary dust particles (IDPs) collected in the stratosphere. The carriers are organic carbon and amorphous silicates that are abundant and closely associated with one another both in IDPs and in the interstellar medium. Multiple carriers rather than a single carrier may explain the invariant central wavelength and variable bandwidth of the astronomical 2175 {angstrom} feature.

  10. Time Resolved Studies of Carrier Dynamics in III -v Heterojunction Semiconductors.

    Science.gov (United States)

    Westland, Duncan James

    Available from UMI in association with The British Library. Requires signed TDF. Picosecond time-resolution photoluminescence spectroscopy has been used to study transient processes in Ga _{.47}In_{.53 }As/InP multiple quantum wells (MQWs), and in bulk Ga_{.47}In _{.53}As and GaSb. To facilitate the experimental studies, apparatus was constructed to allow the detection of transient luminescence with 3ps time resolution. A frequency upconversion technique was employed. Relaxation of energetic carriers in bulk Ga _{.47}In_{.53 }As by optic phonons has been investigated, and, at carrier densities ~3 times 10^{18}cm ^{-3} is found to be a considerably slower process than simple theory predicts. The discrepancy is resolved by the inclusion of a non-equilibrium population of longitudinal optic phonons in the theoretical description. Slow energy loss is also observed in a 154A MQW under similar conditions, but carriers are found to relax more quickly in a 14A MQW with a comparable repeat period. The theory of non-equilibrium mode occupation is modified to describe the case of a MQW and is found to agree with experiment. Carrier relaxation in GaSb is studied and the importance of occupation of the L _6 conduction band valley in this material is demonstrated. The ambipolar diffusion of a photoexcited carrier plasma through an InP capping layer was investigated using an optical time-of-flight technique. This experiment also enables the efficiency of carrier capture by a Ga _{.47}In_{.53 }As quantum well to be determined. A capture time of 4ps was found.

  11. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-05-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young\\'s modulus suggests that Li-intercalation increases the intrinsic stiffness. For decreasing Li-C interaction, the Dirac point shifts to the Fermi level and the associated band splitting vanishes. For Li-intercalated bilayer graphene on SiC(0 0 0 1) the splitting at the Dirac point is tiny. It is also very small at the two Dirac points of Li-intercalated trilayer graphene on SiC(0 0 0 1). For all the systems under study, a large enhancement of the charge carrier density is achieved by Li intercalation. © 2012 Elsevier B.V. All rights reserved.

  12. New Dimensions of Moving Bed Biofilm Carriers

    OpenAIRE

    Piculell, Maria

    2016-01-01

    The moving bed biofilm reactor (MBBR) is a biological wastewater treatment process in which microorganisms grow as biofilms on suspended carriers. Conventionally, MBBRs are mainly designed and optimized based on the carrier surface area, neglecting the dynamic relationship between carrier design, reactor operation and biofilm characteristics, such as biofilm thickness and the composition of the microbial community. The purpose of this research project was to learn more about the roles of the ...

  13. Carriers by chemical vapor deposition

    Science.gov (United States)

    Mronga, Norbert; Adel, J.; Czech, Erwin

    1990-07-01

    Printed materials are affecting people's lives in a variety of ways and to a constantly increasing extent, both in the private and in the business spheres. In particular, the predicted reduction of printed materials resulting from electronic data processing - the so-called "paperless electronic office" - has not occured, indeed quite the reverse. In recent years electrophotographic reprography has established itself successfully as a competitor to conventional printing processes. In the office a photocopier is now a part of the standard equipment. Because of BASF's traditional intensive involvement with pigments and colored printing inks its interest in new technologies in these areas is especially great. BASF has therefore been engaged in research on carriers for some years now.

  14. Charge carrier dynamics in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Strothkaemper, Christian

    2013-06-24

    This work investigates the charge carrier dynamics in three different technological approaches within the class of thin film solar cells: radial heterojunctions, the dye solar cell, and microcrystalline CuInSe{sub 2}, focusing on charge transport and separation at the electrode, and the relaxation of photogenerated charge carriers due to recombination and energy dissipation to the phonon system. This work relies mostly on optical-pump terahertz-probe (OPTP) spectroscopy, followed by transient absorption (TA) and two-photon photoemission (2PPE). The charge separation in ZnO-electrode/In{sub 2}S{sub 3}-absorber core/shell nanorods, which represent a model system of a radial heterojunction, is analyzed by OPTP. It is concluded, that the dynamics in the absorber are determined by multiple trapping, which leads to a dispersive charge transport to the electrode that lasts over hundreds of picoseconds. The high trap density on the order of 10{sup 19}/cm{sup 3} is detrimental for the injection yield, which exhibits a decrease with increasing shell thickness. The heterogeneous electron transfer from a series of model dyes into ZnO proceeds on a time-scale of 200 fs. However, the photoconductivity builds up just on a 2-10 ps timescale, and 2PPE reveals that injected electrons are meanwhile localized spatially and energetically at the interface. It is concluded that the injection proceeds through adsorbate induced interface states. This is an important result because the back reaction from long lived interface states can be expected to be much faster than from bulk states. While the charge transport in stoichiometric CuInSe{sub 2} thin films is indicative of free charge carriers, CuInSe{sub 2} with a solar cell grade composition (Cu-poor) exhibits signs of carrier localization. This detrimental effect is attributed to a high density of charged defects and a high degree of compensation, which together create a spatially fluctuating potential that inhibits charge transport. On

  15. 75 FR 64585 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Science.gov (United States)

    2010-10-19

    ... nonsubstantive changes, however, to correct grammar, internal paragraph references, and a temperature conversion... means the English version of the ``International Maritime Solid Bulk Cargoes Code'' published by...

  16. Designing Passivating, Carrier-Selective Contacts for Photovoltaic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Boccard, Matthieu [Arizona State Univ., Tempe, AZ (United States); Koswatta, Priyaranga [Arizona State Univ., Tempe, AZ (United States); Holman, Zachary [Arizona State Univ., Tempe, AZ (United States)

    2015-04-06

    "The first step towards building a high-efficiency solar cell is to develop an absorber with few recombination-active defects. Many photovoltaic technologies have already achieved this (monocrystalline Si, III-V materials grown on lattice-matched substrates, perovskites, polycrystalline CdTe and CIGS); those that have not (a-Si:H, organics) have been limited to low open-circuit voltage. The second step is to develop contacts that both inhibit surface recombination and allow for low-resistance collection of either only electrons or only holes. For most photovoltaic technologies, this step is both more difficult and less explored than the first, and we are unaware of a prescribed methodology for selecting materials for contacts to solar cells. We elucidate a unified, conceptual understanding of contacts within which existing contacting schemes can be interpreted and future contacting schemes can be imagined. Whereas a split of the quasi-Fermi levels of holes and electrons is required in the absorber of any solar cell to generate a voltage, carriers are eventually collected through a metallic wire in which no such quasi-Fermi-level split exists. We define a contact to be all layers between the bulk of the absorber and the recombination-active interface through which carriers are extracted. The quasi-Fermi levels must necessarily collapse at this interface, and thus the transition between maximal quasi-Fermi-level splitting (in the absorber) and no splitting occurs entirely in the contact. Depending on the solar cell architecture, the contact will usually extend from the surface of the absorber to the surface of a metal or transparent conductive oxide layer, and may include deposited or diffused doped layers (e.g., as in crystalline and thin-film Si cells) and heterostructure buffer layers (e.g., the CdS layer in a CdTe device). We further define a passivating contact as one that enables high quasi-Fermi-level splitting in the absorber (large “internal” voltage

  17. Unusual charge transport and reduced bimolecular recombination in PDTSiTzTz:PC71BM bulk heterojunction blend

    Science.gov (United States)

    Slobodyan, O. V.; Danielson, E. L.; Moench, S. J.; Dinser, J. A.; Gutierrez, M.; Vanden Bout, D. A.; Holliday, B. J.; Dodabalapur, A.

    2015-06-01

    Solar cells with bulk heterojunction active layers containing donor-acceptor copolymer PDTSiTzTz exhibit persistent high fill factors with thicknesses up to 400 nm. Transport and recombination in a blend of PDTSiTzTz and fullerene derivative PC71BM is studied using lateral organic photovoltaic structures. This material system is characterized by carrier-concentration-dependent charge carrier mobilities, a strongly reduced bimolecular recombination factor, and a negative Poole-Frenkel coefficient. The analysis provides an explanation for the relatively thickness-independent fill factor behaviour seen in solar cells using the copolymer PDTSiTzTz. Cumulative insights from this copolymer can be employed for future organic photovoltaic material development, study of existing high performance bulk heterojunciton blends, and improved solar cell design.

  18. Into the Bulk: A Covariant Approach

    CERN Document Server

    Engelhardt, Netta

    2016-01-01

    I propose a general, covariant way of defining when one region is "deeper in the bulk" than another. This definition is formulated outside of an event horizon (or in the absence thereof) in generic geometries; it may be applied to both points and surfaces, and may be used to compare the depth of bulk points or surfaces relative to a particular boundary subregion or relative to the entire boundary. Using the recently proposed "lightcone cut" formalism, the comparative depth between two bulk points can be determined from the singularity structure of Lorentzian correlators in the dual field theory. I prove that, by this definition, causal wedges of progressively larger regions probe monotonically deeper in the bulk. The definition furthermore matches expectations in pure AdS and in static AdS black holes with isotropic spatial slices, where a well-defined holographic coordinate exists. In terms of holographic RG flow, this new definition of bulk depth makes contact with coarse-graining over both large distances ...

  19. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  20. 25th anniversary article: Bulk heterojunction solar cells: understanding the mechanism of operation.

    Science.gov (United States)

    Heeger, Alan J

    2014-01-08

    The status of understanding of the operation of bulk heterojunction (BHJ) solar cells is reviewed. Because the carrier photoexcitation recombination lengths are typically 10 nm in these disordered materials, the length scale for self-assembly must be of order 10-20 nm. Experiments have verified the existence of the BHJ nanostructure, but the morphology remains complex and a limiting factor. Three steps are required for generation of electrical power: i) absorption of photons from the sun; ii) photoinduced charge separation and the generation of mobile carriers; iii) collection of electrons and holes at opposite electrodes. The ultrafast charge transfer process arises from fundamental quantum uncertainty; mobile carriers are directly generated (electrons in the acceptor domains and holes in the donor domains) by the ultrafast charge transfer (≈70%) with ≈30% generated by exciton diffusion to a charge separating heterojunction. Sweep-out of the mobile carriers by the internal field prior to recombination is essential for high performance. Bimolecular recombination dominates in materials where the donor and acceptor phases are pure. Impurities degrade performance by introducing Shockly-Read-Hall decay. The review concludes with a summary of the problems to be solved to achieve the predicted power conversion efficiencies of >20% for a single cell.

  1. Effect of film nanostructure on in-plane charge transport in organic bulk heterojunction materials

    Science.gov (United States)

    Danielson, Eric; Ooi, Zi-En; Dodabalapur, Ananth

    2013-09-01

    Bulk heterojunction (BHJ) organic solar cells are a promising alternative energy technology, but a thorough understanding of charge transport behavior in BHJ materials is necessary in order to design devices with high power conversion efficiencies. Parameters such as carrier mobilities, carrier concentrations, and the recombination coefficient have traditionally been successfully measured using vertical structures similar to organic photovoltaic (OPV) cells. We have developed a lateral BHJ device which complements these vertical techniques by allowing spatially resolved measurement along the transport direction of charge carriers. This is essential for evaluating the effect of nanoscale structure and morphology on these important charge transport parameters. Nanomorphology in organic BHJ films has been controlled using a variety of methods, but the effect of these procedures has been infrequently correlated with the charge transport parameter of the BHJ material. Electron beam lithography has been used to create lateral device structures with many voltage probes at a sub-micron resolution throughout the device channel. By performing in-situ potentiometry, we can calculate both carrier mobilities and determine the effect of solvent choice and annealing procedure on the charge transport in BHJ system. Spin coated P3HT:PCBM films prepared from solutions in chloroform and o-xylene are characterized using this technique.

  2. Dynamical effects and terahertz harmonic generation in low-doped bulk semiconductors and submicron structures

    Energy Technology Data Exchange (ETDEWEB)

    Persano Adorno, D.; Capizzo, M.C.; Zarcone, M. [Dipartimento di Fisica e Tecnologie Relative, Viale delle Scienze, Ed. 18, 90128, Palermo (Italy)

    2006-08-15

    We present results obtained using a three-dimensional multivalleys Monte Carlo (MC) model to simulate the nonlinear carrier dynamics under the influence of an intense sub-terahertz electric field in a doped bulk semiconductor. By self-consistently coupling a one-dimensional Poisson solver to the ensemble MC code we simulate also the nonlinear carrier dynamics in n{sup +}nn{sup +} structures operating under large-amplitude periodic signals and investigate the voltage-current characteristic hysteresis cycle and the high-order harmonic efficiency. For both cases we discuss the dependence of the nonlinearities and of the harmonic generation efficiency on the frequency and the intensity of the alternating signal. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Carrier-carrier relaxation kinetics in quantum well semiconductor structures with nonparabolic energy bands

    DEFF Research Database (Denmark)

    Dery, H.; Tromborg, Bjarne; Eisenstein, G.

    2003-01-01

    We describe carrier-carrier scattering dynamics in an inverted quantum well structure including the nonparabolic nature of the valance band. A solution of the semiconductor Bloch equations yields strong evidence to a large change in the temporal evolution of the carrier distributions compared...

  4. Bulk fields from the boundary OPE

    CERN Document Server

    Guica, Monica

    2016-01-01

    Previous work has established an equality between the geodesic integral of a free bulk field in AdS and the contribution of the conformal descendants of its dual CFT primary operator to the OPE of two other operators inserted at the endpoints of the geodesic. Working in the context of AdS$_3$/CFT$_2$, we extend this relation to include all $1/N$ corrections to the bulk field obtained by dressing it with i) a $U(1)$ current and ii) the CFT stress tensor, and argue it equals the contribution of the Ka\\v{c}-Moody/the Virasoro block to the respective boundary OPE. This equality holds for a particular framing of the bulk field to the boundary that involves a split Wilson line.

  5. A Diphoton Resonance from Bulk RS

    CERN Document Server

    Csaki, Csaba

    2016-01-01

    Recent LHC data hints at a 750 GeV mass resonance that decays into two photons. A significant feature of this resonance is that its decays to Higges and to any other Standard Model particles are so far too low to be detected. Such a state has a compelling explanation in terms of a scalar or a pseudoscalar that is strongly coupled to vector states charged under the Standard Model gauge groups. We argue that if the state is a scalar, some form of sequestering is likely to be necessary to naturally explain the suppressed scalar-Higgs interactions. Such a scenario is readily accommodated in bulk RS with a scalar localized in the bulk away from the Higgs. Turning this around, we argue that a good way to find the elusive bulk RS model might be the search for a resonance with prominent couplings to gauge bosons.

  6. Bulk Comptonization by Turbulence in Accretion Disks

    CERN Document Server

    Kaufman, J

    2016-01-01

    Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent "wave" temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, ra...

  7. A diphoton resonance from bulk RS

    Science.gov (United States)

    Csáki, Csaba; Randall, Lisa

    2016-07-01

    Recent LHC data hinted at a 750 GeV mass resonance that decays into two photons. A significant feature of this resonance is that its decays to any other Standard Model particles would be too low to be detected so far. Such a state has a compelling explanation in terms of a scalar or a pseudoscalar that is strongly coupled to vector states charged under the Standard Model gauge groups. Such a scenario is readily accommodated in bulk RS with a scalar localized in the bulk away from but close to the Higgs. Turning this around, we argue that a good way to find the elusive bulk RS model might be the search for a resonance with prominent couplings to gauge bosons.

  8. Orchestrating Bulk Data Movement in Grid Environments

    Energy Technology Data Exchange (ETDEWEB)

    Vazhkudai, SS

    2005-01-25

    Data Grids provide a convenient environment for researchers to manage and access massively distributed bulk data by addressing several system and transfer challenges inherent to these environments. This work addresses issues involved in the efficient selection and access of replicated data in Grid environments in the context of the Globus Toolkit{trademark}, building middleware that (1) selects datasets in highly replicated environments, enabling efficient scheduling of data transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads from mirrored sites. These efforts have demonstrated a decentralized data scheduling architecture, a set of forecasting tools that predict bandwidth availability within 15% error and co-allocation architecture, and heuristics that expedites data downloads by up to 2 times.

  9. Multiphase composites with extremal bulk modulus

    DEFF Research Database (Denmark)

    Gibiansky, L. V.; Sigmund, Ole

    2000-01-01

    This paper is devoted to the analytical and numerical study of isotropic elastic composites made of three or more isotropic phases. The ranges of their effective bulk and shear moduli are restricted by the Hashin-Shtrikman-Walpole (HSW) bounds. For two-phase composites, these bounds are attainable......, that is, there exist composites with extreme bulk and shear moduli. For multiphase composites, they may or may not be attainable depending on phase moduli and volume fractions. Sufficient conditions of attainability of the bounds and various previously known and new types of optimal composites...... are described. Most of our new results are related to the two-dimensional problem. A numerical topology optimization procedure that solves the inverse homogenization problem is adopted and used to look for two-dimensional three-phase composites with a maximal effective bulk modulus. For the combination...

  10. A stereoscopic look into the bulk

    Science.gov (United States)

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Mosk, Benjamin; Sully, James

    2016-07-01

    We present the foundation for a holographic dictionary with depth perception. The dictionary consists of natural CFT operators whose duals are simple, diffeomorphisminvariant bulk operators. The CFT operators of interest are the "OPE blocks," contributions to the OPE from a single conformal family. In holographic theories, we show that the OPE blocks are dual at leading order in 1 /N to integrals of effective bulk fields along geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation in the area of a minimal surface. Thus, our operators pave the way for generalizing the Ryu-Takayanagi relation to other bulk fields.

  11. Spherically symmetric brane spacetime with bulk gravity

    Science.gov (United States)

    Chakraborty, Sumanta; SenGupta, Soumitra

    2015-01-01

    Introducing term in the five-dimensional bulk action we derive effective Einstein's equation on the brane using Gauss-Codazzi equation. This effective equation is then solved for different conditions on dark radiation and dark pressure to obtain various spherically symmetric solutions. Some of these static spherically symmetric solutions correspond to black hole solutions, with parameters induced from the bulk. Specially, the dark pressure and dark radiation terms (electric part of Weyl curvature) affect the brane spherically symmetric solutions significantly. We have solved for one parameter group of conformal motions where the dark radiation and dark pressure terms are exactly obtained exploiting the corresponding Lie symmetry. Various thermodynamic features of these spherically symmetric space-times are studied, showing existence of second order phase transition. This phenomenon has its origin in the higher curvature term with gravity in the bulk.

  12. Providing resilience for carrier ethernet multicast traffic

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Wessing, Henrik; Zhang, Jiang

    2009-01-01

    This paper presents an overview of the Carrier Ethernet technology with specific focus on resilience. In particular, we detail how multicast traffic, which is essential for e.g. IPTV can be protected. We present Carrier Ethernet resilience methods for linear and ring networks and show by simulation...

  13. Protection switching for carrier ethernet multicast

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Wessing, Henrik; Berger, Michael Stübert

    2010-01-01

    This paper addresses network survivability for IPTV multicast transport in Carrier Ethernet networks. The impact of link failures is investigated and suggestions for intelligent multicast resilience schemes are proposed. In particular, functions of the multicast tree are integrated with the Carrier...

  14. Recombination lifetime of free polarons in polymer/fullerene bulk heterojunction solar cells

    Science.gov (United States)

    Li, Kejia; Li, Lijun; Campbell, Joe C.

    2012-02-01

    The recombination lifetime of free polarons was measured using three different methods: electrical field-dependent photoresponse, transient photoconductivity, and forward-to-zero bias transient-current response. The average free polaron recombination lifetime is estimated to be a few microseconds for poly (3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) solar cells. The competition between sweep-out by the internal field and the loss of photogenerated carriers by recombination is analyzed. The short-circuit free polaron collection efficiency for P3HT:PCBM bulk heterojunction material was determined to be in the range of 80% to 90%.

  15. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Emin, David, E-mail: emin@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Akhtari, Massoud [Semple Institutes for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Ellingson, B. M. [Department of Radiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Mathern, G. W. [Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2015-08-15

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  16. Ultrafast magneto-photocurrents in GaAs: Separation of surface and bulk contributions

    CERN Document Server

    Schmidt, Christian B; Tarasenko, Sergey A; Bieler, Mark

    2015-01-01

    We induce ultrafast magneto-photocurrents in a GaAs crystal employing interband excitation with femtosecond laser pulses at room temperature and non-invasively separate surface and bulk contributions to the overall current response. The separation between the different symmetry contributions is achieved by measuring the simultaneously emitted terahertz radiation for different sample orientations. Excitation intensity and photon energy dependences of the magneto-photocurrents for linearly and circularly polarized excitations reveal an involvement of different microscopic origins, one of which we believe is the inverse Spin-Hall effect. Our experiments are important for a better understanding of the complex momentum-space carrier dynamics in magnetic fields.

  17. Study of LO-phonon decay in semiconductors for hot carrier solar cell

    Science.gov (United States)

    Levard, Hugo; Vidal, Julien; Laribi, Sana; Guillemoles, Jean-François

    2014-03-01

    Knowledge of phonon decay is of crucial importance when studying basic properties of semiconductors, since they are closely related to Raman linewidth and non-equilibrium-hot-carriers cooling. The latter indeed cools down to the bottom of the conduction band within a picosecond range because of electron-phonon interaction. The eventual emitted hot phonons then decay in few picoseconds. The hot carriers cooling can be slowed down by considering the decay rate dependence of phonon on conservation rules, whose tuning may reduce the allowed two-phonon final states density. This is of direct interest for the third generation photovoltaic devices that are Hot Carrier Solar Cells (HCSC), in which the photoexcited carriers are extracted at an energy higher than thermal equilibrium. One of the HCSC main challenges then is to find an absorber material in which the hot phonons has a relaxation time longer than the carriers cooling time, so that we can expect the electron to ``reabsorb'' a phonon, slowing down the electronic cooling. HCSC yield is ultimately limited by LO phonon decay, though. In this work, we present theoretical results obtained from ab initio calculations of phonon lifetime in III-V and IV-IV semiconductors through a three-phonon process. Common approximations in the literature are questioned. In particular, we show that the usual ``zone-center approximation'' is not valid in some specific semiconductors. The analysis allows to correctly investigate phonon decay mechanisms in bulk and nanostructured materials.

  18. Ohm's Law for a Bipolar Semiconductor: The Role of Carrier Concentration and Energy Nonequilibria

    Science.gov (United States)

    Lashkevych, Igor; Titov, Oleg Yu.; Gurevich, Yuri G.

    2016-09-01

    The effective linear electrical conductivity of a nondegenerate bipolar semiconductor, sandwiched between two metals, is investigated taking into account both its nonequilibrium charge carriers (both electrons and holes) and nonequilibrium temperature. We stress that even in the linear perturbative approximation both carrier concentration and energy nonequilbria arise automatically when an electrical current flows. The expression for the effective electrical conductivity is obtained and shown to depend on the electron and hole electrical conductivity, the thermal conductivity, the bandgap, charge carriers lifetimes, and both bulk and surface recombination rates. The effective electrical conductivity is equal to the classical result, i.e., the sum of the electron and hole electrical conductivities, only if the surface recombination rate at the interface is sufficiently strong or the charge carrier lifetime is sufficiently small. In this article, partial cases are considered, specifically, semiconductors with small and large thermal conductivities, semiconductors with monopolar electron and monopolar holes, strong and weak surface recombination rates, and small and large charge carrier lifetimes. Expressions for the effective electrical conductivity are obtained in all partial cases.

  19. Ohm's Law for a Bipolar Semiconductor: The Role of Carrier Concentration and Energy Nonequilibria

    Science.gov (United States)

    Lashkevych, Igor; Titov, Oleg Yu.; Gurevich, Yuri G.

    2017-01-01

    The effective linear electrical conductivity of a nondegenerate bipolar semiconductor, sandwiched between two metals, is investigated taking into account both its nonequilibrium charge carriers (both electrons and holes) and nonequilibrium temperature. We stress that even in the linear perturbative approximation both carrier concentration and energy nonequilbria arise automatically when an electrical current flows. The expression for the effective electrical conductivity is obtained and shown to depend on the electron and hole electrical conductivity, the thermal conductivity, the bandgap, charge carriers lifetimes, and both bulk and surface recombination rates. The effective electrical conductivity is equal to the classical result, i.e., the sum of the electron and hole electrical conductivities, only if the surface recombination rate at the interface is sufficiently strong or the charge carrier lifetime is sufficiently small. In this article, partial cases are considered, specifically, semiconductors with small and large thermal conductivities, semiconductors with monopolar electron and monopolar holes, strong and weak surface recombination rates, and small and large charge carrier lifetimes. Expressions for the effective electrical conductivity are obtained in all partial cases.

  20. Selection of Carrier Waveforms for PWM Inverter

    Institute of Scientific and Technical Information of China (English)

    陈国呈; 屈克庆; 许春雨; 孙承波

    2003-01-01

    In this paper the influence of different carrier waveforms upon the output characteristics of PWM inverter is described in detail. When a triangular carrier waveform is used in hard-switching PWM inverters, harmonics exist in the neighborhood of the output frequency of the inverter output voltage and current due to the dead time. The triangular carrier waveform used in soft-switching PWM inverter will cause difficulties in controlling resonance-trigger time, higher loss in the resonant circuit, and less utilization of the DC bus voltage. If a sawtooth carrier is used in hard-switching PWM inverter, there will be severe distortion in the current waveform. When sawtooth carriers with alternate positive and negative slopes are used in soft-switching PWM inverters, the resonancetrigger time is easy to control, and distortion in the output voltage and current caused by the dead time will not appear.

  1. The Kinetics of Carrier Transport Inhibition

    DEFF Research Database (Denmark)

    Rosenberg, T.; Wilbrandt, Robert Walter

    1962-01-01

    The kinetical treatment of enzymatic carrier transports as given in previous communications has been extended to conditions of inhibition. Various possible types of inhibitors have been considered differing in the site of attack (enzyme or carrier), in the mode of action (competing...... with the substrate for the enzyme or the carrier or for both, competing with the carrier for the enzyme, or non-competitive) and in the ability of penetrating the membrane. Experiments are reported on the inhibition of glucose and fructose transport across the human red cell membrane by phlorizine, phloretine...... the first order asymmetry severalfold (“second order asymmetry”). It was shown that a substrate competitive mode of action involving competition both for the enzyme and for the enzyme-bound carrier will result in a behaviour resembling the observed “second order asymmetry”. It is felt, therefore...

  2. Modeling of Carrier Dynamics in Electroabsorption Modulators

    DEFF Research Database (Denmark)

    Højfeldt, Sune

    2002-01-01

    and a phenomenological model for the carrier sweep-out dynamics, we investigate all-optical wavelength conversion, all-optical signal regeneration, and all-optical demultiplexing. A detailed drift-diffusion type model for the sweerp-out of photo-excited carriers in electroabsorption modulators is presented. We use...... the model to calclulate absorption spectra and steady-state carrier distributions in different modulator structures. This allows us to investigate a number of important properties of electroabsorption modulators, such as the electroabsorption effect and th saturation properties. We also investigate...... the influence that carrier recapture has on the device properties, and we discuss the recapture process on a more fundamental level. The model is also used to investigate in detail the carrier sweep-out process in electroabsorption modulators. We investigate how the intrinsic-region width, the separate...

  3. Making bulk-conductive glass microchannel plates

    Science.gov (United States)

    Yi, Jay J. L.; Niu, Lihong

    2008-02-01

    The fabrication of microchannel plate (MCP) with bulk-conductive characteristics has been studied. Semiconducting clad glass and leachable core glass were used for drawing fibers and making MCP. Co-axial single fiber was drawn from a platinum double-crucible in an automatic fiberizing system, and the fibers were stacked and redrawn into multifiber by a special gripping mechanism. The multifibers were stacked again and the boule was made and sliced into discs. New MCPs were made after chemically leaching process without the traditional hydrogen firing. It was shown that bulk-conductive glass MCP can operate at higher voltage with lower noise.

  4. Synthesis of Bulk Superconducting Magnesium Diboride

    Directory of Open Access Journals (Sweden)

    Margie Olbinado

    2002-06-01

    Full Text Available Bulk polycrystalline superconducting magnesium diboride, MgB2, samples were successfully prepared via a one-step sintering program at 750°C, in pre Argon with a pressure of 1atm. Both electrical resistivity and magnetic susceptibility measurements confirmed the superconductivity of the material at 39K, with a transition width of 5K. The polycrystalline nature, granular morphology, and composition of the sintered bulk material were confirmed using X-ray diffractometry (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX.

  5. Towards a Reconstruction of General Bulk Metrics

    CERN Document Server

    Engelhardt, Netta

    2016-01-01

    We prove that the metric of a general holographic spacetime can be reconstructed (up to an overall conformal factor) from distinguished spatial slices - "light-cone cuts" - of the conformal boundary. Our prescription is covariant and applies to bulk points in causal contact with the boundary. Furthermore, we describe a procedure for determining the light-cone cuts corresponding to bulk points in the causal wedge of the boundary in terms of the divergences of correlators in the dual field theory. Possible extensions for determining the conformal factor and including the cuts of points outside of the causal wedge are discussed. We also comment on implications for subregion/subregion duality.

  6. Innovative approaches to improve bulk heterojunction organic photovoltaic device performance

    Science.gov (United States)

    Zhang, Ye

    In this thesis we studied the electrical properties of bulk heterojunction organic photovoltaic (OPV) devices fabricated using a variety of conjugated polymers, including regioregular P3HT, regiorandom P3HT, MEH-PPV and Mercedes, and several fullerene derivatives including [C61]PCBM, [C71]PCBM, bis-PCBM, Jalapeno and Habanero. We first optimized the fabrication recipe for P3HT/PCBM devices to yield a power conversion efficiency ˜3.5%, which is comparable to the reported state-of-the-art P3HT/PCBM device performance. We then fabricated OPV devices using alternative high LUMO fullerenes and a narrow bandgap/deep HOMO polymer to enhance OPV device performance and studied the electrical properties of these devices. Devices fabricated using P3HT/Jalapeno demonstrate a high efficiency ˜5%. Finally, we discovered an innovative spin-related method, which can potentially compliment the use of alternative donor/acceptor materials, to enhance OPV device performance. We doped the spin ½ radial Galvinoxyl into P3HT/PCBM devices and improved efficiency from 3.5% to 4%. Our experimental results suggest that the existence of Galvinoxyl at the P3HT/PCBM interface facilitates the exciton/polaron dissociation process, while Galvinoxyl molecules that are sparsely distributed in PCBM domains yield enhanced free charge carrier transport.

  7. Study on silicon nanocrystals and polymer bulk heterojunction structures

    Science.gov (United States)

    Sugaya, Michihiro; Ding, Yi; Zhou, Shu; Nozaki, Tomohiro

    2015-09-01

    Silicon nanocrystals (SiNCs) and semiconductor-polymer (P3HT) nanostructured thin film is investigated for better understanding of bulk heterojunction structure of hybrid solar cell and improving its photon-to-electron conversion performance. SiNCs are synthesized by VHF plasma CVD using silicon tetrachloride. SiNC thin film transistor (TFT) was fabricated to investigate carrier transport properties of SiNC network. As a result, hydrogen-terminated SiNCs behave as n-type semiconductor materials, and electron mobility of SiNC network is improved dramatically. In contrast, chlorine-terminated SiNCs behave as metallic materials and show poor electron transport property because of surface doping effect: electrons are not flow over the SiNC network due to a large electronegativity of chlorine. Additionally, when the chlorine-terminated SiNCs are blended with P3HT, new peaks appear in FTIR absorption spectrum. The result implies that the thiophene structure, which forms the hole transporting pathway, may be damaged by highly reactive surface chlorine and therefore the hole transport property of Cl:SiNCs/P3HT blended film would be deteriorated dramatically. These results are well correlated with Cl- and H-terminated/P3HT hybrid solar cell performance.

  8. Solution processed organic bulk heterojunction tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Steve; Neher, Dieter [Soft Matter Physics, University of Potsdam, D-14476 Potsdam (Germany)

    2011-07-01

    One of the critical issues regarding the preparation of organic tandem solar cells from solution is the central recombination contact. This contact should be highly transparent and conductive to provide high recombination currents. Moreover it should protect the 1st subcell from the solution processing of the 2nd subcell. Here, we present a systematic study of various recombination contacts in organic bulk heterojunction tandem solar cells made from blends of different polymers with PCBM. We compare solution processed recombination contacts fabricated from metal-oxides (TiO{sub 2} and ZnO) and PEDOT:PSS with evaporated recombination contacts made from thin metal layers and molybdenum-oxide. The solar cell characteristics as well as the morphology of the contacts measured by AFM and SEM are illustrated. To compare the electrical properties of the varying contacts we show measurements on single carrier devices for different contact-structures. Alongside we present the results of optical modeling of the subcells and the complete tandem device and relate these results to experimental absorption and reflection spectra of the same structures. Based on these studies, layer thicknesses were adjusted for optimum current matching and device performance.

  9. Charge Carrier Generation Followed by Triplet State Formation, Annihilation, and Carrier Recreation in PBDTTT-C:PC 60 BM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.

    2015-05-22

    Triplet state formation after photoexcitation of low-bandgap polymer:fullerene blends has recently been demonstrated, however, the precise mechanism and its impact on solar cell performance is still under debate. Here, we study exciton dissociation, charge carrier generation and triplet state formation in low-bandgap polymer PBDTTT-C:PC60BM bulk heterojunction photovoltaic blends by a combination of fs-µs broadband Vis-NIR transient absorption (TA) pump-probe spectroscopy and multivariate curve resolution (MCR) data analysis. We found sub-ps exciton dissociation and charge generation followed by sub-ns triplet state creation. The carrier dynamics and triplet state dynamics exhibited a very pronounced intensity dependence indicating non-geminate recombination of free carriers is the origin of triplet formation in these blends. Triplets were found to be the dominant state present on the nanosecond timescale. Surprisingly, the carrier population increased again on the ns-µs timescale. We attribute this to triplet-triplet annihilation and the formation of higher energy excited states that subsequently underwent charge transfer. This unique dip and recovery of the charge population is a clear indication that triplets are formed by non-geminate recombination, as such a kinetic is incompatible with a monomolecular triplet state formation process.

  10. Hydrogen: the future energy carrier.

    Science.gov (United States)

    Züttel, Andreas; Remhof, Arndt; Borgschulte, Andreas; Friedrichs, Oliver

    2010-07-28

    Since the beginning of the twenty-first century the limitations of the fossil age with regard to the continuing growth of energy demand, the peaking mining rate of oil, the growing impact of CO2 emissions on the environment and the dependency of the economy in the industrialized world on the availability of fossil fuels became very obvious. A major change in the energy economy from fossil energy carriers to renewable energy fluxes is necessary. The main challenge is to efficiently convert renewable energy into electricity and the storage of electricity or the production of a synthetic fuel. Hydrogen is produced from water by electricity through an electrolyser. The storage of hydrogen in its molecular or atomic form is a materials challenge. Some hydrides are known to exhibit a hydrogen density comparable to oil; however, these hydrides require a sophisticated storage system. The system energy density is significantly smaller than the energy density of fossil fuels. An interesting alternative to the direct storage of hydrogen are synthetic hydrocarbons produced from hydrogen and CO2 extracted from the atmosphere. They are CO2 neutral and stored like fossil fuels. Conventional combustion engines and turbines can be used in order to convert the stored energy into work and heat.

  11. Methanol as an energy carrier

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, P.; Grube, T.; Hoehlein, B. (eds.)

    2006-07-01

    For the future, a strongly growing energy demand is expected in the transport sector worldwide. Economically efficient oil production will run through a maximum in the next decade. Higher fuel prices and an environmentally desirable reduction of emissions will increase the pressure for reducing fuel consumption and emissions in road traffic. These criteria show the urgent necessity of structural changes in the fuel market. Due to its advantages concerning industrial-scale production, storage and global availability, methanol has the short- to medium-term potential for gaining increased significance as a substitution product in the energy market. Methanol can be produced both from fossil energy sources and from biomass or waste materials through the process steps of synthesis gas generation with subsequent methanol synthesis. Methanol has the potential to be used in an environmentally friendly manner in gasoline/methanol mixtures for flexible fuel vehicles with internal combustion engines and in diesel engines with pure methanol. Furthermore, it can be used in fuel cell vehicles with on-board hydrogen production in direct methanol fuel cell drives, and in stationary systems for electricity and heat generation as well as for hydrogen production. Finally, in portable applications it serves as an energy carrier for electric power generation. In this book, the processes for the production and use of methanol are presented and evaluated, markets and future options are discussed and issues of safety and environmental impacts are addressed by a team of well-known authors. (orig.)

  12. Ultrafast carrier dynamics and the role of grain boundaries in polycrystalline silicon thin films grown by molecular beam epitaxy

    Science.gov (United States)

    Titova, Lyubov V.; Cocker, Tyler L.; Xu, Sijia; Baribeau, Jean-Marc; Wu, Xiaohua; Lockwood, David J.; Hegmann, Frank A.

    2016-10-01

    We have used time-resolved terahertz spectroscopy to study microscopic photoconductivity and ultrafast photoexcited carrier dynamics in thin, pure, non-hydrogenated silicon films grown by molecular beam epitaxy on quartz substrates at temperatures ranging from 335 °C to 572 °C. By controlling the growth temperature, thin silicon films ranging from completely amorphous to polycrystalline with minimal amorphous phase can be achieved. Film morphology, in turn, determines its photoconductive properties: in the amorphous phase, carriers are trapped in bandtail states on sub-picosecond time scales, while the carriers excited in crystalline grains remain free for tens of picoseconds. We also find that in polycrystalline silicon the photoexcited carrier mobility is carrier-density-dependent, with higher carrier densities mitigating the effects of grain boundaries on inter-grain transport. In a film grown at the highest temperature of 572 °C, the morphology changes along the growth direction from polycrystalline with needles of single crystals in the bulk of the film to small crystallites interspersed with amorphous silicon at the top of the film. Depth profiling using different excitation wavelengths shows corresponding differences in the photoconductivity: the photoexcited carrier lifetime and mobility are higher in the first 100-150 nm from the substrate, suggesting that thinner, low-temperature grown polycrystalline silicon films are preferable for photovoltaic applications.

  13. Selective observation of photo-induced electric fields inside different material components in bulk-heterojunction organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, S3-33 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2014-01-06

    By using electric-field-induced optical second-harmonic generation (EFISHG) measurement at two laser wavelengths of 1000 nm and 860 nm, we investigated carrier behavior inside the pentacene and C{sub 60} component of co-deposited pentacene:C{sub 60} bulk-heterojunctions (BHJs) organic solar cells (OSCs). The EFISHG experiments verified the presence of two carrier paths for electrons and holes in BHJs OSCs. That is, two kinds of electric fields pointing in opposite directions are identified as a result of the selectively probing of SHG activation from C{sub 60} and pentacene. Also, under open-circuit conditions, the transient process of the establishment of open-circuit voltage inside the co-deposited layer has been directly probed, in terms of photovoltaic effect. The EFISHG provides an additional promising method to study carrier path of electrons and holes as well as dissociation of excitons in BHJ OSCs.

  14. 77 FR 46555 - Motor Carrier Safety Advisory Committee: Public Meeting

    Science.gov (United States)

    2012-08-03

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee: Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of meeting of Motor Carrier... major motor carrier safety provisions of the recently enacted Moving Ahead for Progress in the...

  15. Differential Analysis of the Nasal Microbiome of Pig Carriers or Non-Carriers of Staphylococcus aureus

    DEFF Research Database (Denmark)

    Espinosa-Gongora, Carmen; Larsen, Niels; Schonning, Kristian;

    2016-01-01

    Staphylococcus aureus is presently regarded as an emerging zoonotic agent due to the spread of specific methicillin-resistant S. aureus (MRSA) clones in pig farms. Studying the microbiota can be useful for the identification of bacteria that antagonize such opportunistic veterinary and zoonotic...... pathogen in animal carriers. The aim of this study was to determine whether the nasal microbiome of pig S. aureus carriers differs from that of non-carriers. The V3-V5 region of the 16S rRNA gene was sequenced from nasal swabs of 44 S. aureus carriers and 56 non-carriers using the 454 GS FLX titanium...... system. Carriers and non-carriers were selected on the basis of quantitative longitudinal data on S. aureus carriage in 600 pigs sampled at 20 Danish herds included in two previous studies in Denmark. Raw sequences were analysed with the BION meta package and the resulting abundance matrix was analysed...

  16. Theoretical investigation of the phonon-limited carrier mobility in (001) Si films

    Science.gov (United States)

    Li, Jing; Lampin, Evelyne; Delerue, Christophe; Niquet, Yann-Michel

    2016-11-01

    We calculate the phonon-limited carrier mobility in (001) Si films with a fully atomistic framework based on a tight-binding (TB) model for the electronic structure, a valence-force-field model for the phonons, and the Boltzmann transport equation. This framework reproduces the electron and phonon bands over the whole first Brillouin zone and accounts for all possible carrier-phonon scattering processes. It can also handle one-dimensional (wires) and three-dimensional (bulk) structures and therefore provides a consistent description of the effects of dimensionality on the phonon-limited mobilities. We first discuss the dependence of the electron and hole mobilities on the film thickness and carrier density. The mobility tends to decrease with decreasing film thickness and increasing carrier density, as the structural and electric confinement enhances the electron-phonon interactions. We then compare hydrogen-passivated and oxidized films in order to understand the impact of surface passivation on the mobility and discuss the transition from nanowires to films and bulk. Finally, we compare the semi-classical TB mobilities with quantum Non-Equilibrium Green's Function calculations based on k ṡ p band structures and on deformation potentials for the electron-phonon interactions (KP-NEGF). The TB mobilities show a stronger dependence on carrier density than the KP-NEGF mobilities, yet weaker than the experimental data on Fully Depleted-Silicon-on-Insulator devices. We discuss the implications of these results on the nature of the apparent increase of the electron-phonon deformation potentials in silicon thin films.

  17. THE OPTIMIZATION OF PLUSH YARNS BULKING PROCESS

    Directory of Open Access Journals (Sweden)

    VINEREANU Adam

    2014-05-01

    Full Text Available This paper presents the experiments that were conducted on the installation of continuous bulking and thermofixing “SUPERBA” type TVP-2S for optimization of the plush yarns bulking process. There were considered plush yarns Nm 6.5/2, made of the fibrous blend of 50% indigenous wool sort 41 and 50% PES. In the first stage, it performs a thermal treatment with a turboprevaporizer at a temperature lower than thermofixing temperature, at atmospheric pressure, such that the plush yarns - deposed in a freely state on a belt conveyor - are uniformly bulking and contracting. It was followed the mathematical modeling procedure, working with a factorial program, rotatable central composite type, and two independent variables. After analyzing the parameters that have a direct influence on the bulking degree, there were selected the pre-vaporization temperature (coded x1,oC and the velocity of belt inside pre-vaporizer (coded x 2, m/min. As for the dependent variable, it was chosen the plush yarn diameter (coded y, mm. There were found the coordinates of the optimal point, and then this pair of values was verified in practice. These coordinates are: x1optim= 90oC and x 2optim= 6.5 m/min. The conclusion is that the goal was accomplished: it was obtained a good cover degree f or double-plush carpets by reducing the number of tufts per unit surface.

  18. The Bulk Multicore Architecture for Improved Programmability

    Science.gov (United States)

    2009-12-01

    dependences bundled together. In the Bulk Multi- core, the log must store only the total order of chunk commits, an approach we call DeLorean .13 The...ACM Press, New York, 2007, 69–80. 13. Montesinos, P., Ceze, L., and Torrellas, J. DeLorean : Recording and deterministically replaying shared

  19. Failure by fracture in bulk metal forming

    DEFF Research Database (Denmark)

    Silva, C.M.A.; Alves, Luis M.; Nielsen, Chris Valentin

    2015-01-01

    This paper revisits formability in bulk metal forming in the light of fundamental concepts of plasticity,ductile damage and crack opening modes. It proposes a new test to appraise the accuracy, reliability and validity of fracture loci associated with crack opening by tension and out-of-plane she...

  20. Bulk viscosity effects on ultrasonic thermoacoustic instability

    Science.gov (United States)

    Lin, Jeffrey; Scalo, Carlo; Hesselink, Lambertus

    2016-11-01

    We have carried out unstructured fully-compressible Navier-Stokes simulations of a minimal-unit traveling-wave ultrasonic thermoacoustic device in looped configuration. The model comprises a thermoacoustic stack with 85% porosity and a tapered area change to suppress the fundamental standing-wave mode. A bulk viscosity model, which accounts for vibrational and rotational molecular relaxation effects, is derived and implemented via direct modification of the viscous stress tensor, τij ≡ 2 μSij +λ/2 μ ∂uk/∂xk δij , where the bulk viscosity is defined by μb ≡ λ +2/3 μ . The effective bulk viscosity coefficient accurately captures acoustic absorption from low to high ultrasonic frequencies and matches experimental wave attenuation rates across five decades. Using pressure-based similitude, the model was downscaled from total length L = 2 . 58 m to 0 . 0258 m, corresponding to the frequency range f = 242 - 24200 Hz, revealing the effects of bulk viscosity and direct modification of the thermodynamic pressure. Simulations are carried out to limit cycle and exhibit growth rates consistent with linear stability analyses, based on Rott's theory.

  1. Forming of bulk metallic glass microcomponents

    DEFF Research Database (Denmark)

    Wert, John A.; Thomsen, Christian; Jensen, Rune Debel

    2009-01-01

    The present article considers forward extrusion, closed-die forging and backward extrusion processes for fabrication of individual microcomponents from two bulk metallic glass (BMG) compositions: Mg60Cu30Y10 and Zr44Cu40Ag8Al8. Two types of tooling were used in the present work: relatively massive...

  2. Polymer-fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Janssen, RAJ; Hummelen, JC; Saricifti, NS

    2005-01-01

    Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated Polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy, processing from solution on a variety of substrate

  3. Fluctuating brane in a dilatonic bulk

    CERN Document Server

    Brax, P; Rodríguez-Martinez, M; Brax, Philippe; Langlois, David; Rodriguez-Martinez, Maria

    2003-01-01

    We consider a cosmological brane moving in a static five-dimensional bulk spacetime endowed with a scalar field whose potential is exponential. After studying various cosmological behaviours for the homogeneous background, we investigate the fluctuations of the brane that leave spacetime unaffected. A single mode embodies these fluctuations and obeys a wave equation which we study for bouncing and ever-expanding branes.

  4. Longitudinal bulk a coustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja;

    2009-01-01

    Design, fabrication and characterization, in terms of mass sensitivity, is presented for a polycrystalline silicon longitudinal bulk acoustic cantilever. The device is operated in air at 51 MHz, resulting in a mass sensitivity of 100 HZ/fg (1 fg = 10{su−15 g). The initial characterization...

  5. A Stereoscopic Look into the Bulk

    CERN Document Server

    Czech, Bartlomiej; McCandlish, Samuel; Mosk, Benjamin; Sully, James

    2016-01-01

    We present the foundation for a holographic dictionary with depth perception. The dictionary consists of natural CFT operators whose duals are simple, diffeomorphism-invariant bulk operators. The CFT operators of interest are the "OPE blocks," contributions to the OPE from a single conformal family. In holographic theories, we show that the OPE blocks are dual at leading order in 1/N to integrals of effective bulk fields along geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation in the area of a minimal surface. Thus, our operators pave the way for generalizing the Ryu-Takayanagi relation to other bulk fields. Although the OPE blocks are non-local operators in the CFT, they admit a simple geometric description as fields in kinematic space--the space of pairs of CFT points. We develop the tools for constructing local bulk operators in terms of these non-local objects. The OPE blocks also allow ...

  6. Integration of bulk piezoelectric materials into microsystems

    Science.gov (United States)

    Aktakka, Ethem Erkan

    Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100microm. The characterized processes include reliable low-temperature (200°C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (+/-0.5microm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12microm PP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with management IC, which incorporates a supply-independent bias circuitry, an active diode for low-dropout rectification, a bias-flip system for higher efficiency, and a trickle battery charger. The overall system does not require a pre-charged battery, and has power consumption of sleep-mode (simulated). Under lg vibration at 155Hz, a 70mF ultra-capacitor is charged from OV to 1.85V in 50 minutes.

  7. 46 CFR 148.04-23 - Unslaked lime in bulk.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Unslaked lime in bulk. 148.04-23 Section 148.04-23... HAZARDOUS MATERIALS IN BULK Special Additional Requirements for Certain Material § 148.04-23 Unslaked lime in bulk. (a) Unslaked lime in bulk must be transported in unmanned, all steel, double-hulled...

  8. Side chain engineering of fused aromatic thienopyrazine based low band-gap polymers for enhanced charge carrier mobility

    KAUST Repository

    Mondal, Rajib

    2011-01-01

    A strategic side-chain engineering approach leads to the two orders of magnitude enhancement of charge carrier mobility in phenanthrene based fused aromatic thienopyrazine polymers. Hole carrier mobility up to 0.012 cm 2/Vs can be obtained in thin film transistor devices. Polymers were also utilized to fabricate bulk heterojunction photovoltaic devices and the maximum PCE obtained in these OPV\\'s was 1.15%. Most importantly, performances of the devices were correlated with thin morphological analysis performed by atomic force microscopy and grazing incidence X-ray scattering. © 2011 The Royal Society of Chemistry.

  9. Carrier scattering in metals and semiconductors

    CERN Document Server

    Gantmakher, VF

    1987-01-01

    The transport properties of solids, as well as the many optical phenomena in them are determined by the scattering of current carriers. ``Carrier Scattering in Metals and Semiconductors'' elucidates the state of the art in the research on the scattering mechanisms for current carriers in metals and semiconductors and describes experiments in which these mechanisms are most dramatically manifested.The selection and organization of the material is in a form to prepare the reader to reason independently and to deal just as independently with available theoretical results and experimental

  10. Study on diffusion and recombination of minority carriers by the method of photoconductive decay

    Science.gov (United States)

    Chow, R. H.

    1984-09-01

    This paper describes an experiment relating to the diffusion of charge carriers in homogeneous semiconductor material. Diffusion theory, as outlined in this paper, is applied to deduce from measurements a quantity called the bulk lifetime of excess minority carriers: a quantity which is independent of the size, shape, and surface condition of the semiconductor sample. Because of this independence, the bulk lifetime is used as one of the characterizing quantities of semiconductor material. In performing this experiment, the student will gain a working knowledge of diffusion theory as applied to semiconductor carriers, and at the same time become acquainted with an important technique for the characterization of semiconductor material. The actual duration of involvement will depend upon the amount of setting up of equipment, sample preparation, etc., that is expected of the student. An oscilloscope of fast rise time (200-MHz bandwidth), and a xenon flash tube with pulse duration of a few microseconds (General Radio 1542-B electronic stroboscope is a proven possibility), are the major items of equipment needed.

  11. Physician Fee Schedule Carrier Specific Files

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Centers for Medicare and Medicaid Services (CMS) has condensed all 56 Physician Fee Schedule (PFS) carrier specific pricing files into one zip file. It is...

  12. What It Means to be a Carrier

    Science.gov (United States)

    ... Life Planning Daily Living Strategies Genetic Counselor Research Biomarker Research Program News, Reports and Commentaries Previously Funded ... with the premutation are at increased risk for depression. It is therefore recommended that any premutation carrier ...

  13. Simulation of dual transponder carrier ranging measurements

    Institute of Scientific and Technical Information of China (English)

    Xiang-yu ZHAO; Xiao-jun JIN; Zhong-he JIN

    2009-01-01

    The most dominant error source for microwave ranging is the frequency instability of the oscillator that generates the carrier phase signal. The oscillator noise is very difficult to filter due to its extremely low frequency. A dual transponder carrier ranging method can effectively minimize the oscillator noise by combing the reference phase and the to-and-fro measurement phase from the same single oscillator. This method does not require an accurate time tagging system, since it extracts phases on the same satellite. This paper analyzes the dual transponder carrier ranging system by simulation of the phase measurements with comprehensive error models. Both frequency domain and time domain noise transfer characteristics were simulated to compare them with dual one-way ranging. The simulation results in the two domains conformed to each other and demonstrated that a high level of accuracy can also be achieved by use of the dual transponder carrier ranging system, with relatively simple instruments.

  14. Towards 100 gigabit carrier ethernet transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Zhang, Jiang; Yu, Hao;

    2010-01-01

    Ethernet as a transport technology has, up to now, lacked the features such as network layer architecture, customer separation and manageability that carriers require for wide-scale deployment. However, with the advent of PBB-TE and TMPLS, it is now possible to use Ethernet as a transport...... technology, making the use of Ethernet as a convergence layer for Next Generation Networks a distinct possibility. Triple Play services, in particular IPTV, are expected to be a main drivers for carrier Ethernet, however, a number of challenges must be addressed including QoS enabled control plane, enhanced...... OAM functions, survivability and the increased bandwidth requirements of carrier class systems. This article provides an overview of PBB-TE and T-MPLS and demonstrates how IPTV services can be realized in the framework of Carrier Ethernet. In addition we provide a case study on performing bit error...

  15. High capacity carrier ethernet transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Zhang, Jiang; Yu, Hao;

    2009-01-01

    Ethernet as a transport technology has, up to now, lacked the features such as network layer architecture, customer separation and manageability that carriers require for wide-scale deployment. However, with the advent of PBB-TE and T-MPLS, it is now possible to use Ethernet as a transport...... technology, making the use of Ethernet as a convergence layer for Next Generation Networks a distinct possibility. Triple Play services, in particular IPTV, are expected to be a main drivers for carrier Ethernet, however, a number of challenges must be addressed including QoS enabled control plane, enhanced...... OAM functions, survivability and the increased bandwidth requirements of carrier class systems. This article provides an overview of PBB-TE and T-MPLS and demonstrates how IPTV services can be realized in the framework of Carrier Ethernet. In addition we provide a case study on performing bit error...

  16. Giant Rashba-type spin splitting in bulk BiTeI.

    Science.gov (United States)

    Ishizaka, K; Bahramy, M S; Murakawa, H; Sakano, M; Shimojima, T; Sonobe, T; Koizumi, K; Shin, S; Miyahara, H; Kimura, A; Miyamoto, K; Okuda, T; Namatame, H; Taniguchi, M; Arita, R; Nagaosa, N; Kobayashi, K; Murakami, Y; Kumai, R; Kaneko, Y; Onose, Y; Tokura, Y

    2011-06-19

    There has been increasing interest in phenomena emerging from relativistic electrons in a solid, which have a potential impact on spintronics and magnetoelectrics. One example is the Rashba effect, which lifts the electron-spin degeneracy as a consequence of spin-orbit interaction under broken inversion symmetry. A high-energy-scale Rashba spin splitting is highly desirable for enhancing the coupling between electron spins and electricity relevant for spintronic functions. Here we describe the finding of a huge spin-orbit interaction effect in a polar semiconductor composed of heavy elements, BiTeI, where the bulk carriers are ruled by large Rashba-like spin splitting. The band splitting and its spin polarization obtained by spin- and angle-resolved photoemission spectroscopy are well in accord with relativistic first-principles calculations, confirming that the spin splitting is indeed derived from bulk atomic configurations. Together with the feasibility of carrier-doping control, the giant-Rashba semiconductor BiTeI possesses excellent potential for application to various spin-dependent electronic functions.

  17. Exciton delocalization incorporated drift-diffusion model for bulk-heterojunction organic solar cells

    Science.gov (United States)

    Wang, Zi Shuai; Sha, Wei E. I.; Choy, Wallace C. H.

    2016-12-01

    Modeling the charge-generation process is highly important to understand device physics and optimize power conversion efficiency of bulk-heterojunction organic solar cells (OSCs). Free carriers are generated by both ultrafast exciton delocalization and slow exciton diffusion and dissociation at the heterojunction interface. In this work, we developed a systematic numerical simulation to describe the charge-generation process by a modified drift-diffusion model. The transport, recombination, and collection of free carriers are incorporated to fully capture the device response. The theoretical results match well with the state-of-the-art high-performance organic solar cells. It is demonstrated that the increase of exciton delocalization ratio reduces the energy loss in the exciton diffusion-dissociation process, and thus, significantly improves the device efficiency, especially for the short-circuit current. By changing the exciton delocalization ratio, OSC performances are comprehensively investigated under the conditions of short-circuit and open-circuit. Particularly, bulk recombination dependent fill factor saturation is unveiled and understood. As a fundamental electrical analysis of the delocalization mechanism, our work is important to understand and optimize the high-performance OSCs.

  18. Evaluating multicast resilience in carrier ethernet

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Wessing, Henrik; Zhang, Jiang;

    2010-01-01

    This paper gives an overview of the Carrier Ethernet technology with specific focus on resilience. In particular, we show how multicast traffic, which is essential for IPTV can be protected. We detail the ackground for resilience mechanisms and their control and e present Carrier Ethernet...... resilience methods for linear nd ring networks. By simulation we show that the vailability of a multicast connection can be significantly increased by applying protection methods....

  19. Hiding secret data into a carrier image

    OpenAIRE

    Ovidiu COSMA

    2012-01-01

    The object of steganography is embedding hidden information in an appropriate multimedia carrier, e.g., image, audio, or video. There are several known methods of solving this problem, which operate either in the space domain or in the frequency domain, and are distinguished by the following characteristics: payload, robustness and strength. The payload is the amount of secret data that can be embedded in the carrier without inducing suspicious artefacts, robustness indicates the degree in wh...

  20. Minority carrier lifetime in indium phosphide

    Science.gov (United States)

    Jenkins, Phillip; Landis, Geoffrey A.; Weinberg, Irving; Kneisel, Keith

    1991-01-01

    Transient photoluminescence is used to measure the minority carrier lifetime on n-type and p-type InP wafers. The measurements show that unprocessed InP wafers have very high minority carrier lifetimes. Lifetimes of 200 ns and 700 ns were observed for lightly-doped p- and n-type material respectively. Lifetimes over 5 ns were found in heavily doped n-type material.

  1. Towards a reconstruction of general bulk metrics

    Science.gov (United States)

    Engelhardt, Netta; Horowitz, Gary T.

    2017-01-01

    We prove that the metric of a general holographic spacetime can be reconstructed (up to an overall conformal factor) from distinguished spatial slices—‘light-cone cuts’—of the conformal boundary. Our prescription is covariant and applies to bulk points in causal contact with the boundary. Furthermore, we describe a procedure for determining the light-cone cuts corresponding to bulk points in the causal wedge of the boundary in terms of the divergences of correlators in the dual field theory. Possible extensions for determining the conformal factor and including the cuts of points outside of the causal wedge are discussed. We also comment on implications for subregion/subregion duality.

  2. Modeling direct interband tunneling. I. Bulk semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Andrew, E-mail: pandrew@ucla.edu [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Chui, Chi On [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095 (United States)

    2014-08-07

    Interband tunneling is frequently studied using the semiclassical Kane model, despite uncertainty about its validity. Revisiting the physical basis of this formula, we find that it neglects coupling to other bands and underestimates transverse tunneling. As a result, significant errors can arise at low and high fields for small and large gap materials, respectively. We derive a simple multiband tunneling model to correct these defects analytically without arbitrary parameters. Through extensive comparison with band structure and quantum transport calculations for bulk InGaAs, InAs, and InSb, we probe the accuracy of the Kane and multiband formulas and establish the superiority of the latter. We also show that the nonlocal average electric field should be used when applying either of these models to nonuniform potentials. Our findings are important for efficient analysis and simulation of bulk semiconductor devices involving tunneling.

  3. Multilayer Integrated Film Bulk Acoustic Resonators

    CERN Document Server

    Zhang, Yafei

    2013-01-01

    Multilayer Integrated Film Bulk Acoustic Resonators mainly introduces the theory, design, fabrication technology and application of a recently developed new type of device, multilayer integrated film bulk acoustic resonators, at the micro and nano scale involving microelectronic devices, integrated circuits, optical devices, sensors and actuators, acoustic resonators, micro-nano manufacturing, multilayer integration, device theory and design principles, etc. These devices can work at very high frequencies by using the newly developed theory, design, and fabrication technology of nano and micro devices. Readers in fields of IC, electronic devices, sensors, materials, and films etc. will benefit from this book by learning the detailed fundamentals and potential applications of these advanced devices. Prof. Yafei Zhang is the director of the Ministry of Education’s Key Laboratory for Thin Films and Microfabrication Technology, PRC; Dr. Da Chen was a PhD student in Prof. Yafei Zhang’s research group.

  4. Portable design rules for bulk CMOS

    Science.gov (United States)

    Griswold, T. W.

    1982-01-01

    It is pointed out that for the past several years, one school of IC designers has used a simplified set of nMOS geometric design rules (GDR) which is 'portable', in that it can be used by many different nMOS manufacturers. The present investigation is concerned with a preliminary set of design rules for bulk CMOS which has been verified for simple test structures. The GDR are defined in terms of Caltech Intermediate Form (CIF), which is a geometry-description language that defines simple geometrical objects in layers. The layers are abstractions of physical mask layers. The design rules do not presume the existence of any particular design methodology. Attention is given to p-well and n-well CMOS processes, bulk CMOS and CMOS-SOS, CMOS geometric rules, and a description of the advantages of CMOS technology.

  5. Fully antisymmetrised dynamics for bulk fermion systems

    CERN Document Server

    Vantournhout, Klaas

    2011-01-01

    The neutron star's crust and mantel are typical examples of non-uniform bulk systems with spacial localisations. When modelling such systems at low temperatures, as is the case in the crust, one has to work with antisymmetrised many-body states to get the correct fermion behaviour. Fermionic molecular dynamics, which works with an antisymmetrised product of localised wave packets, should be an appropriate choice. Implementing periodic boundary conditions into the fermionic molecular dynamics formalism would allow the study of the neutron star's crust as a bulk quantum system. Unfortunately, the antisymmetrisation is a non-local entanglement which reaches far out of the periodically repeated unit cell. In this proceeding, we give a brief overview how periodic boundary conditions and fermionic molecular dynamics can be combined without truncating the long-range many-body correlation induced by the antisymmetry of the many-body state.

  6. Bulk and shear viscosity in Hagedorn fluid

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, A.; Wahba, M. [Egyptian Center for Theoretical Physics (ECTP), MTI University, Faculty of Engineering, Cairo (Egypt)

    2010-11-15

    Assuming that the Hagedorn fluid composed of known particles and resonances with masses m <2 GeV obeys the first-order theory (Eckart) of relativistic fluid, we discuss the transport properties of QCD confined phase. Based on the relativistic kinetic theory formulated under the relaxation time approximation, expressions for bulk and shear viscosity in thermal medium of hadron resonances are derived. The relaxation time in the Hagedorn dynamical fluid exclusively takes into account the decay and eventually van der Waals processes. We comment on the in-medium thermal effects on bulk and shear viscosity and averaged relaxation time with and without the excluded-volume approach. As an application of these results, we suggest the dynamics of heavy-ion collisions, non-equilibrium thermodynamics and the cosmological models, which require thermo- and hydro-dynamics equations of state. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Bulk and Shear Viscosity in Hagedorn Fluid

    CERN Document Server

    Tawfik, A

    2010-01-01

    Assuming that the Hagedorn fluid composed of known particles and resonances with masses $m<2\\,$GeV obeys the {\\it first-order} theory (Eckart) of relativistic fluid, we discuss the transport properties of QCD confined phase. Based on the relativistic kinetic theory formulated under the relaxation time approximation, expressions for bulk and shear viscosity in thermal medium are derived. The relaxation time in the Hagedorn dynamical fluid exclusively takes into account the decay and eventually van der Waals processes. We comment on the {\\it in-medium} thermal effects on bulk and shear viscosities and averaged relaxation time with and without the excluded-volume approach. As an application of these results, we suggest the dynamics of heavy-ion collisions, non-equlibrium thermodynamics and the cosmological models, which require thermo and hydrodynamics equations of state.

  8. Microfabricated bulk wave acoustic bandgap device

    Science.gov (United States)

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  9. Hot-Carrier Seebeck Effect: Diffusion and Remote Detection of Hot Carriers in Graphene.

    Science.gov (United States)

    Sierra, Juan F; Neumann, Ingmar; Costache, Marius V; Valenzuela, Sergio O

    2015-06-10

    We investigate hot carrier propagation across graphene using an electrical nonlocal injection/detection method. The device consists of a monolayer graphene flake contacted by multiple metal leads. Using two remote leads for electrical heating, we generate a carrier temperature gradient that results in a measurable thermoelectric voltage V(NL) across the remaining (detector) leads. Due to the nonlocal character of the measurement, V(NL) is exclusively due to the Seebeck effect. Remarkably, a departure from the ordinary relationship between Joule power P and V(NL), V(NL) ∼ P, becomes readily apparent at low temperatures, representing a fingerprint of hot-carrier dominated thermoelectricity. By studying V(NL) as a function of bias, we directly determine the carrier temperature and the characteristic cooling length for hot-carrier propagation, which are key parameters for a variety of new applications that rely on hot-carrier transport.

  10. Hot-Carrier Seebeck Effect: Diffusion and Remote Detection of Hot Carriers in Graphene

    Science.gov (United States)

    Sierra, Juan F.; Neumann, Ingmar; Costache, Marius V.; Valenzuela, Sergio O.

    2015-06-01

    We investigate hot carrier propagation across graphene using an electrical nonlocal injection/detection method. The device consists of a monolayer graphene flake contacted by multiple metal leads. Using two remote leads for electrical heating, we generate a carrier temperature gradient that results in a measurable thermoelectric voltage VNL across the remaining (detector) leads. Due to the nonlocal character of the measurement, VNL is exclusively due to the Seebeck effect. Remarkably, a departure from the ordinary relationship between Joule power P and VNL, VNL ~ P, becomes readily apparent at low temperatures, representing a fingerprint of hot-carrier dominated thermoelectricity. By studying VNL as a function of bias, we directly determine the carrier temperature and the characteristic cooling length for hot-carrier propagation, which are key parameters for a variety of new applications that rely on hot-carrier transport.

  11. Radio Science Measurements with Suppressed Carrier

    Science.gov (United States)

    Asmar, Sami; Divsalar, Dariush; Oudrhiri, Kamal

    2013-01-01

    Radio Science started when it became apparent with early Solar missions that occultations by planetary atmospheres would affect the quality of radio communications. Since then the atmospheric properties and other aspects of planetary science, solar science, and fundamental physics were studied by scientists. Radio Science data was always extracted from a received pure residual carrier (without data modulation). For some missions, it is very desirable to obtain Radio Science data from a suppressed carrier modulation. In this paper we propose a method to extract Radio Science data when a coded suppressed carrier modulation is used in deep space communications. Type of modulation can be BPSK, QPSK, OQPSK, MPSK or even GMSK. However we concentrate mostly on BPSK modulation. The proposed method for suppressed carrier simply tries to wipe out data that acts as an interference for Radio Science measurements. In order to measure the estimation errors in amplitude and phase of the Radio Science data we use Cramer-Rao bound (CRB). The CRB for the suppressed carrier modulation with non-ideal data wiping is then compared with residual carrier modulation under the same noise condition. The method of derivation of CRB for non-ideal data wiping is an innovative method that presented here. Some numerical results are provided for coded system.

  12. On bulk viscosity and moduli decay

    OpenAIRE

    M. Laine

    2010-01-01

    This pedagogically intended lecture, one of four under the header "Basics of thermal QCD", reviews an interesting relationship, originally pointed out by Bodeker, that exists between the bulk viscosity of Yang-Mills theory (of possible relevance to the hydrodynamics of heavy ion collision experiments) and the decay rate of scalar fields coupled very weakly to a heat bath (appearing in some particle physics inspired cosmological scenarios). This topic serves, furthermore, as a platform on whic...

  13. Effects of bulk viscosity on cosmological evolution

    CERN Document Server

    Pimentel, L O; Pimentel, L O; Diaz-Rivera, L M

    1994-01-01

    Abstract:The effect of bulk viscisity on the evolution of the homogeneous and isotropic cosmological models is considered. Solutions are found, with a barotropic equation of state, and a viscosity coefficient that is proportional to a power of the energy density of the universe. For flat space, power law expansions, related to extended inflation are found as well as exponential solutions, related to old inflation; also a solution with expansion that is an exponential of an exponential of the time is found.

  14. Raman characterization of bulk ferromagnetic nanostructured graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, Helena, E-mail: hpardo@fq.edu.uy [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay); Divine Khan, Ngwashi [Mantfort University, Leicester (United Kingdom); Faccio, Ricardo [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay); Araujo-Moreira, F.M. [Grupo de Materiais e Dispositivos-CMDMC, Departamento de Fisica e Engenharia Fisica, UFSCar, Caixa Postal 676, 13565-905, Sao Carlos SP (Brazil); Fernandez-Werner, Luciana [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay)

    2012-08-15

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm{sup -1} showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  15. Modeling of Microimprinting of Bulk Metallic Glasses

    Institute of Scientific and Technical Information of China (English)

    Ming CHENG; John A. Wert

    2006-01-01

    A finite element analysis (FEA) model has been developed to analyze microimprinting of bulk metallic glasses (BMG) near the glass transition temperature (Tg). The results reveal an approximately universal imprinting response for BMG, independent of surface feature length scale. The scale-independent nature of BMG imprinting derives from the flow characteristics of BMG in the temperature range above Tg. It also shows that the lubrication condition has a mild influence on BMG imprinting in the temperature range above Tg.

  16. Pseudo-Riemannian Universe from Euclidean bulk

    CERN Document Server

    Vasilić, Milovan

    2015-01-01

    I develop the idea that our world is a brane-like object embedded in Euclidean bulk. In its ground state, the brane constituent matter is assumed to be homogeneous and isotropic, and of negligible influence on the bulk geometry. No action functional is initially specified. Instead, the brane dynamics is derived from the universally valid stress-energy conservation equations. The present work studies the cosmology of a $3$-sphere in the $5$-dimensional Euclidean bulk. It is shown that the conventional equation of state $p=\\alpha\\rho$ is universal in the sector of small energy densities, and so is the resulting brane dynamics. The inequality $\\alpha<0$ is found to be a necessary condition for the existence of a stable ground state of the Universe. It is demonstrated that the generic braneworld physics rules out the Big Bang cosmology, and in that matter, any cosmology of finite lifetime. I also demonstrate that stable brane vibrations satisfy Klein-Gordon-like equation with an effective metric of Minkowski s...

  17. Bulk viscous cosmology in early Universe

    Indian Academy of Sciences (India)

    C P Singh

    2008-07-01

    The effect of bulk viscosity on the early evolution of Universe for a spatially homogeneous and isotropic Robertson-Walker model is considered. Einstein's field equations are solved by using `gamma-law' equation of state = ( - 1)ρ, where the adiabatic parameter gamma () depends on the scale factor of the model. The `gamma' function is defined in such a way that it describes a unified solution of early evolution of the Universe for inflationary and radiation-dominated phases. The fluid has only bulk viscous term and the coefficient of bulk viscosity is taken to be proportional to some power function of the energy density. The complete general solutions have been given through three cases. For flat space, power-law as well as exponential solutions are found. The problem of how the introduction of viscosity affects the appearance of singularity, is briefly discussed in particular solutions. The deceleration parameter has a freedom to vary with the scale factor of the model, which describes the accelerating expansion of the Universe.

  18. Bulk Higgs with a heavy diphoton signal

    Science.gov (United States)

    Frank, Mariana; Pourtolami, Nima; Toharia, Manuel

    2017-02-01

    We consider scenarios of warped extra dimensions with all matter fields in the bulk and in which both the hierarchy and the flavor puzzles of the Standard Model are addressed. Inspired by the puzzling excess of diphoton events at 750 GeV reported in the early LHC Run II data (since then understood as a statistical excess), we consider here the general question as to whether the simplest extra-dimensional extension of the Standard Model Higgs sector, i.e., a five-dimensional bulk Higgs doublet, can lead to an intermediate mass resonance (between 500 GeV and 1.5 TeV) of which the first signature would be the presence of diphoton events. This surprising phenomenology can happen if the resonance is the lightest C P -odd state coming from the Higgs sector. No new matter content is required, the only new ingredient being the presence of (positive) brane localized kinetic terms associated to the five-dimensional bulk Higgs (which reduce the mass of the C P -odd states). Production and decay of this resonance can naturally give rise to observable diphoton signals, keeping dijet production under control, with very low ZZ and WW signals and with a highly reduced top pair production in an important region of parameter space. We use the 750 GeV excess as an example case scenario.

  19. Cosmological Implications of QGP Bulk Viscosity

    CERN Document Server

    Anand, Sampurn; Bhatt, Jitesh R

    2016-01-01

    Recent studies of the hot QCD matter indicate that the bulk viscosity ($\\zeta$) of quark-gluon plasma (QGP) rises sharply near the critical point of the QCD phase transition. In this work, we show that such a sharp rise of the bulk viscosity will lead to an effective negative pressure near the critical temperature, $T_{c}$ which in turn drives the Universe to inflate. This inflation has a natural graceful exist when the viscous effect evanesce. We estimate that, depending upon the peak value of $\\zeta$, universe expands by a factor of $10$ to $80$ times in a very short span ($\\Delta t\\sim 10^{-8}$ seconds). Another important outcome of the bulk viscosity dominated dynamics is the cavitation of QGP around $T \\sim 1.5T_{c}$. This would lead to the phenomenon of formation of cavitation bubbles within the QGP phase. The above scenario is independent of the order of QCD phase transition. We delineate some of the important cosmological consequences of the inflation and the cavitation.

  20. Bulk Rashba Semiconductors and Related Quantum Phenomena.

    Science.gov (United States)

    Bahramy, Mohammad Saeed; Ogawa, Naoki

    2017-03-29

    Bithmuth tellurohalides BiTeX (X = Cl, Br and I) are model examples of bulk Rashba semiconductors, exhibiting a giant Rashba-type spin splitting among their both valence and conduction bands. Extensive spectroscopic and transport experiments combined with the state-of-the-art first-principles calculations have revealed many unique quantum phenomena emerging from the bulk Rashba effect in these systems. The novel features such as the exotic inter- and intra-band optical transitions, enhanced magneto-optical response, divergent orbital dia-/para-magnetic susceptibility and helical spin textures with a nontrivial Berry's phase in the momentum space are among the salient discoveries, all arising from this effect. Also, it is theoretically proposed and indications have been experimentally reported that bulk Rashba semiconductors such as BiTeI have the capability of becoming a topological insulator under the application of a hydrostatic pressure. Here, we overview these studies and show that BiTeX are an ideal platform to explore the next aspects of quantum matter, which could ultimately be utilized to create spintronic devices with novel functionalities.

  1. Molecular imprinting of bulk, microporous silica

    Science.gov (United States)

    Katz, Alexander; Davis, Mark E.

    2000-01-01

    Molecular imprinting aims to create solid materials containing chemical functionalities that are spatially organized by covalent or non-covalent interactions with imprint (or template) molecules during the synthesis process. Subsequent removal of the imprint molecules leaves behind designed sites for the recognition of small molecules, making the material ideally suited for applications such as separations, chemical sensing and catalysis. Until now, the molecular imprinting of bulk polymers and polymer and silica surfaces has been reported, but the extension of these methods to a wider range of materials remains problematic. For example, the formation of substrate-specific cavities within bulk silica, while conceptually straightforward, has been difficult to accomplish experimentally. Here we describe the imprinting of bulk amorphous silicas with single aromatic rings carrying up to three 3-aminopropyltriethoxysilane side groups; this generates and occupies microporosity and attaches functional organic groups to the pore walls in a controlled fashion. The triethoxysilane part of the molecules' side groups is incorporated into the silica framework during sol-gel synthesis, and subsequent removal of the aromatic core creates a cavity with spatially organized aminopropyl groups covalently anchored to the pore walls. We find that the imprinted silicas act as shape-selective base catalysts. Our strategy can be extended to imprint other functional groups, which should give access to a wide range of functionalized materials.

  2. Evidence for Bulk Ripplocations in Layered Solids

    Science.gov (United States)

    Gruber, Jacob; Lang, Andrew C.; Griggs, Justin; Taheri, Mitra L.; Tucker, Garritt J.; Barsoum, Michel W.

    2016-09-01

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation–best described as an atomic scale ripple–was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain.

  3. Tailoring Magnetic Properties in Bulk Nanostructured Solids

    Science.gov (United States)

    Morales, Jason Rolando

    Important magnetic properties and behaviors such as coercivity, remanence, susceptibility, energy product, and exchange coupling can be tailored by controlling the grain size, composition, and density of bulk magnetic materials. At nanometric length scales the grain size plays an increasingly important role since magnetic domain behavior and grain boundary concentration determine bulk magnetic behavior. This has spurred a significant amount of work devoted to developing magnetic materials with nanometric features (thickness, grain/crystallite size, inclusions or shells) in 0D (powder), 1D (wires), and 2D (thin films) materials. Large 3D nanocrystalline materials are more suitable for many applications such as permanent magnets, magneto-optical Faraday isolators etc. Yet there are relatively few successful demonstrations of 3D magnetic materials with nanoscale influenced properties available in the literature. Making dense 3D bulk materials with magnetic nanocrystalline microstructures is a challenge because many traditional densification techniques (HIP, pressureless sintering, etc.) move the microstructure out of the "nano" regime during densification. This dissertation shows that the Current Activated Pressure Assisted Densification (CAPAD) method, also known as spark plasma sintering, can be used to create dense, bulk, magnetic, nanocrystalline solids with varied compositions suited to fit many applications. The results of my research will first show important implications for the use of CAPAD for the production of exchange-coupled nanocomposite magnets. Decreases in grain size were shown to have a significant role in increasing the magnitude of exchange bias. Second, preferentially ordered bulk magnetic materials were produced with highly anisotropic material properties. The ordered microstructure resulted in changing magnetic property magnitudes (ex. change in coercivity by almost 10x) depending on the relative orientation (0° vs. 90°) of an externally

  4. Charge transport and recombination dynamics in organic bulk heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Andreas

    2011-08-02

    The charge transport in disordered organic bulk heterojunction (BHJ) solar cells is a crucial process affecting the power conversion efficiency (PCE) of the solar cell. With the need of synthesizing new materials for improving the power conversion efficiency of those cells it is important to study not only the photophysical but also the electrical properties of the new material classes. Thereby, the experimental techniques need to be applicable to operating solar cells. In this work, the conventional methods of transient photoconductivity (also known as ''Time-of-Flight'' (TOF)), as well as the transient charge extraction technique of ''Charge Carrier Extraction by Linearly Increasing Voltage'' (CELIV) are performed on different organic blend compositions. Especially with the latter it is feasible to study the dynamics - i.e. charge transport and charge carrier recombination - in bulk heterojunction (BHJ) solar cells with active layer thicknesses of 100-200 nm. For a well performing organic BHJ solar cells the morphology is the most crucial parameter finding a trade-off between an efficient photogeneration of charge carriers and the transport of the latter to the electrodes. Besides the morphology, the nature of energetic disorder of the active material blend and its influence on the dynamics are discussed extensively in this work. Thereby, the material system of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C{sub 61}butyric acid methyl ester (PC{sub 61}BM) serves mainly as a reference material system. New promising donor or acceptor materials and their potential for application in organic photovoltaics are studied in view of charge dynamics and compared with the reference system. With the need for commercialization of organic solar cells the question of the impact of environmental conditions on the PCE of the solar cells raises. In this work, organic BHJ solar cells exposed to synthetic air for finite duration are

  5. Existence of the transverse relaxation time in optically excited bulk semiconductors

    Institute of Scientific and Technical Information of China (English)

    Zhang Hai-Chao; Lin Wei-Zhu; Wang Yu-Zhu

    2006-01-01

    Two basic types of depolarization mechanisms,carrier-carrier (CC) and carrier-phonon (CP) scattering,are investigated in optically excited bulk semiconductors (3D),in which the existence of the transverse relaxation time is proven based on the vector property of the interband transition matrix elements.The dephasing rates for both CC and CP scattering are determined to be equal to one half of the total scattering-rate-integrals weighted by the factors (1-COSx),wherex are the scattering angles.Analytical expressions of the polarization dephasing due to CC scattering are established by using an uncertainty broadening approach,and analytical ones due to both the polar optical-phonon and non-polar deformation potential scattering (including inter-valley scattering) are also presented by using the sharp spectral functions in the dephasing rate calculations.These formulas,which reveal the trivial role of the Coulomb screening effect in the depolarization processes,are used to explain the experimental results at hand and provide a clear physical picture that is difficult to extract from numerical treatments.

  6. Copper selenide nanowires and nanocrystallites in alumina: Carrier relaxation, recombination, and trapping

    Science.gov (United States)

    Statkutė, G.; Tomašiùnas, R.; Jagminas, A.

    2007-06-01

    Nonequilibrium carrier dynamics in copper selenide (Cu2-δSe δ=0.15, Cu3Se2) nanowires (diameter ≈18 nm, height ≈2 μm) and nanocrystallites (diameter≈18 nm) in femto- and picosecond time domains by the means of a transient dynamic grating technique were investigated. Bulk and quantum confinement approaches were used to fit the experimental results using nonequilibrium carrier fast relaxation, recombination, and trapping mechanisms. A nonradiative Auger recombination was concluded to be the main mechanism of nonequilibrium carrier recombination. The Auger coefficient for copper selenide was estimated of the order of 10-30-10-29 cm6 s-1. Hole trapping at shallow impurity centers in nanowires was interpreted. From calculating the experimental results the trapping parameters and high concentration of centers >1020 cm-3 were evaluated. Finally, direct measurement of carrier lifetime in copper selenide nanostructures showed values of the order of ≈10-10 s. Samples were characterized by the means of transmission electron microscopy, scanning electron microscopy, x-ray diffraction, and optical spectroscopy.

  7. Free Carrier Generation in Fullerene Acceptors and Its Effect on Polymer Photovoltaics

    KAUST Repository

    Burkhard, George F.

    2012-12-20

    Early research on C60 led to the discovery that the absorption of photons with energy greater than 2.35 eV by bulk C60 produces free charge carriers at room temperature. We find that not only is this also true for many of the soluble fullerene derivatives commonly used in organic photovoltaics, but also that the presence of these free carriers has significant implications for the modeling, characterization, and performance of devices made with these materials. We demonstrate that the discrepancy between absorption and quantum efficiency spectra in P3HT:PCBM is due to recombination of such free carriers in large PCBM domains before they can be separated at a donor/acceptor interface. Since most theories assume that all free charges result from the separation of excitons at a donor/acceptor interface, the presence of free carrier generation in fullerenes can have a significant impact on the interpretation of data generated by numerous field-dependent techniques. © 2012 American Chemical Society.

  8. Discovery of superconductivity in KTaO₃ by electrostatic carrier doping.

    Science.gov (United States)

    Ueno, K; Nakamura, S; Shimotani, H; Yuan, H T; Kimura, N; Nojima, T; Aoki, H; Iwasa, Y; Kawasaki, M

    2011-05-22

    Superconductivity at interfaces has been investigated since the first demonstration of electric-field-tunable superconductivity in ultrathin films in 1960(1). So far, research on interface superconductivity has focused on materials that are known to be superconductors in bulk. Here, we show that electrostatic carrier doping can induce superconductivity in KTaO(3), a material in which superconductivity has not been observed before. Taking advantage of the large capacitance of the self-organized electric double layer that forms at the interface between an ionic liquid and KTaO(3) (ref. 12), we achieve a charge carrier density that is an order of magnitude larger than the density that can be achieved with conventional chemical doping. Superconductivity emerges in KTaO(3) at 50 mK for two-dimensional carrier densities in the range 2.3 × 10(14) to 3.7 × 10(14) cm(-2). The present result clearly shows that electrostatic carrier doping can lead to new states of matter at nanoscale interfaces.

  9. Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, V.; McBranch, D.; Schwarz, C.

    1998-08-10

    Low-dimensional semiconductors have attracted great interest due to the potential for tailoring their linear and nonlinear optical properties over a wide-range. Semiconductor nanocrystals (NC's) represent a class of quasi-zero-dimensional objects or quantum dots. Due to quantum cordhement and a large surface-to-volume ratio, the linear and nonlinear optical properties, and the carrier dynamics in NC's are significantly different horn those in bulk materials. napping at surface states can lead to a fast depopulation of quantized states, accompanied by charge separation and generation of local fields which significantly modifies the nonlinear optical response in NC's. 3D carrier confinement also has a drastic effect on the energy relaxation dynamics. In strongly confined NC's, the energy-level spacing can greatly exceed typical phonon energies. This has been expected to significantly inhibit phonon-related mechanisms for energy losses, an effect referred to as a phonon bottleneck. It has been suggested recently that the phonon bottleneck in 3D-confined systems can be removed due to enhanced role of Auger-type interactions. In this paper we report femtosecond (fs) studies of ultrafast optical nonlinearities, and energy relaxation and trap ping dynamics in three types of quantum-dot systems: semiconductor NC/glass composites made by high temperature precipitation, ion-implanted NC's, and colloidal NC'S. Comparison of ultrafast data for different samples allows us to separate effects being intrinsic to quantum dots from those related to lattice imperfections and interface properties.

  10. An ion-exchange route for the synthesis of hierarchical In2S3/ZnIn2S4 bulk composite and its photocatalytic activity under visible-light irradiation.

    Science.gov (United States)

    Mei, Zongwei; Ouyang, Shuxin; Tang, Dai-Ming; Kako, Tetsuya; Golberg, Dmitri; Ye, Jinhua

    2013-02-28

    In(2)S(3)/ZnIn(2)S(4) bulk composite was successfully synthesized through an ion-exchange route using NaInS(2) as a precursor. Compared with the constituent pure component (In(2)S(3) or ZnIn(2)S(4)), the photocatalytic H(2) evolution of the composite was greatly enhanced because of the efficient separation and migration of photoexcited carriers (electrons and holes) at the interface of the bulk composite.

  11. Performance of Uplink Carrier Aggregation in LTE-Advanced Systems

    DEFF Research Database (Denmark)

    Wang, Hua; Rosa, Claudio; Pedersen, Klaus

    2010-01-01

    Carrier aggregation (CA) has been proposed to aggregate two or more component carriers (CCs) to support a much wider transmission bandwidth for LTE-Advanced systems. With carrier aggregation, it is possible to schedule a user equipment (UE) on multiple component carriers simultaneously. In this p...

  12. 47 CFR 64.1140 - Carrier liability for slamming.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Carrier liability for slamming. 64.1140 Section 64.1140 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES... Providers § 64.1140 Carrier liability for slamming. (a) Carrier Liability for Charges. Any...

  13. 76 FR 32390 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2011-06-06

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory... MCSAC will complete action on Task 11-01, regarding Patterns of Safety Violations by Motor...

  14. Ballast Water Treatment, U.S. Great Lakes Bulk Carrier Engineering and Cost Study. Volume 1: Present Conditions

    Science.gov (United States)

    2013-11-01

    Calcite , MI Carrollton, MI Dearborn, MI Buffalo, NY Hancock, MI Presque Isle (UP), MI Escanaba, MI Calumet, IL Cedarville, MI Essexville, MI...2,584,280 6.1 4 Duluth 2,008,944 4.8 5 Calcite 1,926,582 4.6 6 Port Inland 1,805,522 4.3 7 Marquette 1,600,102 3.8 8 Presque Isle 1,414,239 3.4 9...River Rouge Presque Isle Buffington Calcite Buffington Calcite Buffington Stoneport Newer, Intermediate Capacity 800’ –900’ Laker N.W. Lake

  15. Existing Design Trends for Tankers and Bulk Carriers - Design Changes for Improvement of the EEDI in the Future

    DEFF Research Database (Denmark)

    Kristensen, Hans Otto Holmegaard; Lützen, Marie

    To get an idea of the reduction in propulsion power and associated emissions by varying the speed and other ship design main parameters, a generic model for parameter studies has been developed. With only a few input parameters of which the maximum deadweight capacity is the primary one, a proposal...

  16. Materials for Bulk Acoustic Resonators and Filters

    Science.gov (United States)

    Loebl, Hans-Peter

    2003-03-01

    Highly selective solidly mounted bulk acoustic wave (BAW) band pass filters are suited for mobile and wireless systems in the GHz frequency range between 0.8 and 10 GHz. Electro-acoustic thin film BAW resonators are the building blocks these BAW filters. Piezoelectric materials used in these resonators include mainly AlN or ZnO which can be deposited by dedicated thin film sputter deposition techniques. Using these piezo-electric materials and using suited materials for the acoustic Bragg reflector, BAW resonators with high quality factors can be fabricated. The achievable filter bandwidth is approximately 4Alternatively, also ferroelectric thin films might be used to achieve higher coupling coefficient and thus filter bandwidth. BAW resonators and filters have been designed and fabricated on 6" Silicon and glass wafers. Results are presented for resonators and filters operating between 1.95 and 8 GHz. The talk will give an overview of the material aspects which are important for BAW devices. It will be shown that modeling of the resonator and filter response using 1D electro-acoustic simulation (1,2) which includes losses is essential to extract acoustic and electrical material parameters. (1) Solidly Mounted Bulk Acoustic Wave Filters for the Ghz Frequency Range, H.P. Loebl, C. Metzmacher , D.N.Peligrad , R. Mauczok , M. Klee , W. Brand , R.F. Milsom , P.Lok , F.van Straten , A. Tuinhout , J.W.Lobeek, IEEE 2002 Ultrasonics Symposium Munich, October 2002. (2) Combined Acoustic-Electromagnetic Simulation Of Thin-Film Bulk Acoustic Wave Filters, R.F. Milsom, H-P. Löbl, D.N. Peligrad, J-W. Lobeek, A. Tuinhout, R. H. ten Dolle IEEE 2002 Ultrasonics Symposium Munich, October 2002.

  17. Improving the bulk data transfer experience

    Energy Technology Data Exchange (ETDEWEB)

    Guok, Chin; Guok, Chin; Lee, Jason R.; Berket, Karlo

    2008-05-07

    Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path. In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation. In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

  18. Binary Cu-Zr Bulk Metallic Glasses

    Institute of Scientific and Technical Information of China (English)

    TANG Mei-Bo; ZHAO De-Qian; PAN Ming-Xiang; WANG Wei-Hua

    2004-01-01

    @@ We report that bulk metallic glasses (BMGs) can be produced up to 2 mm by a copper mould casting in Cux Zr1-x binary alloy with a wide glass forming composition range (45 < x < 60 at.%). We find that the formation mechanism for the binary Cu-Zr binary BMG-forming alloy is obviously different from that of the intensively studied multicomponent BMGs. Our results demonstrate that the criteria for the multicomponent alloys with composition near deep eutectic and strong liquid behaviour are no longer the major concern for designing BMGs.

  19. Calculated Bulk Properties of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1978-01-01

    Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...

  20. Diffusion and bulk flow in phloem loading

    DEFF Research Database (Denmark)

    Dölger, Julia; Rademaker, Hanna; Liesche, Johannes

    2014-01-01

    loading mechanism, active symplasmic loading, also called the polymer trap mechanism, where sucrose is transformed into heavier sugars, such as raffinose and stachyose, in the intermediary-type companion cells bordering the sieve elements in the minor veins of the phloem. Keeping the heavier sugars from......%-20% to the sucrose flux into the intermediary cells, while the main part is transported by diffusion. On the other hand, the subsequent sugar translocation into the sieve elements would very likely be carried predominantly by bulk water flow through the plasmodesmata. Thus, in contrast to apoplasmic loaders, all...

  1. Fabrication of Porous Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    Keqiang QIU; Yinglei REN

    2005-01-01

    An open-cell porous bulk metallic glass (BMG)with a diameter of at least 6 mm was fabricated by using an U-turn quartz tube and infiltration casting aroundsoluble NaCl placeholders. The pore formation and glassy structure were examined by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the pores or cells are connected to each other and the specimenis composed of a mostly glassy phase.This paper provides a suitable method for fabrication of porous BMG and BMG with larger size in diameter.

  2. Hubble Parameter in Bulk Viscous Cosmology

    CERN Document Server

    Tawfik, A; Wahba, M

    2009-01-01

    We discuss influences of bulk viscosity on the Early Universe, which is modeled by Friedmann-Robertson-Walker metric and Einstein field equations. We assume that the matter filling the isotropic and homogeneous background is relativistic viscous characterized by ultra-relativistic equations of state deduced from recent lattice QCD simulations. We obtain a set of complicated differential equations, for which we suggest approximate solutions for Hubble parameter $H$. We find that finite viscosity in Eckart and Israel-Stewart fluids would significantly modify our picture about the Early Universe.

  3. Production, Properties and Applications of Bulk Amorphous Alloys

    Institute of Scientific and Technical Information of China (English)

    Tao Zhang; Akihisa Inoue

    2000-01-01

    A review is given of recent work concerned with the production method, the characteristic properties(1) Bulk amorphous system; (2) Mechanical and magnetic properties of bulkamorphous alloys; (3)application of bulk amorphous alloys.

  4. Electrical conductivity plus probability of superconductivity in α-CuSe/klockmannite; bulk and nano-layers

    Energy Technology Data Exchange (ETDEWEB)

    Shojaei, Ali Reza, E-mail: Ali.r.shojaei@gmail.com

    2015-05-25

    Highlights: • We calculated electrical conductivity of α-CuSe in bulk state and nano-layers (NLs). • We found a large anisotropy (nearly six orders of magnitude) in bulk conductivities. • Our studies show probability of superconductivity occurrence in α-CuSe bulk. • We considered a simple model for feasibility study of this occurrence in CuSe bulk. • We found a high anisotropy (nearly 10{sup 6} orders of magnitude) in NLs conductivities. - Abstract: In this paper, a computational study is carried out on unusual electrical conductivity of α-CuSe compound in the bulk state and its nano-layers (NLs). The property is studied by using Full-potential calculations and the Boltzmann transport equation assuming a suitable temperature-dependent relaxation time for charge carriers. The dependence of electrical conductivity per temperature changes is considered from 80 up to 330 K as well as separately in low-temperature. Our results show that CuSe has a high anisotropy electrical conductivity meaning that the in-plane conductivity is very good, with high hole transport but the z-axis transport is completely different, with two types of electron and hole carriers. By considering the curves of electrical conductivity in low-temperature and again reviewing the experimental data, we predict probability of occurrence of a superconductivity phase transition in this compound in a temperature about 3 K. This possibility has been discussed by assuming a simple model. In continuation of our previous work, we calculate the values of electrical conductivity of the most stable NLs of CuSe. Our results show that the electrical conductivity of NLs in x (or y) direction is nearly 10{sup 6} orders of magnitude than z direction. Therefore, the NLs have very good hole conductive in x (or y) direction but their conductivity is ultra-low in z-axis.

  5. Enhancement of minority carrier lifetime of GaInP with lateral composition modulation structure grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Park, K. W.; Ravindran, Sooraj; Kang, S. J.; Hwang, H. Y.; Jho, Y. D. [School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Park, C. Y. [School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Jo, Y. R.; Kim, B. J. [School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Y. T., E-mail: ytlee@gist.ac.kr [School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-07-28

    We report the enhancement of the minority carrier lifetime of GaInP with a lateral composition modulated (LCM) structure grown using molecular beam epitaxy (MBE). The structural and optical properties of the grown samples are studied by transmission electron microscopy and photoluminescence, which reveal the formation of vertically aligned bright and dark slabs corresponding to Ga-rich and In-rich GaInP regions, respectively, with good crystal quality. With the decrease of V/III ratio during LCM GaInP growth, it is seen that the band gap of LCM GaInP is reduced, while the PL intensity remains high and is comparable to that of bulk GaInP. We also investigate the minority carrier lifetime of LCM structures made with different flux ratios. It is found that the minority carrier lifetime of LCM GaInP is ∼37 times larger than that of bulk GaInP material, due to the spatial separation of electrons and holes by In-rich and Ga-rich regions of the LCM GaInP, respectively. We further demonstrate that the minority carrier lifetime of the grown LCM GaInP structures can easily be tuned by simply adjusting the V/III flux ratio during MBE growth, providing a simple yet powerful technique to tailor the electrical and optical properties at will. The exceptionally high carrier lifetime and the reduced band gap of LCM GaInP make them a highly attractive candidate for forming the top cell of multi-junction solar cells and can enhance their efficiency, and also make them suitable for other optoelectronics devices, such as photodetectors, where longer carrier lifetime is beneficial.

  6. Hot Carrier extraction with plasmonic broadband absorbers

    CERN Document Server

    Ng, Charlene; Dligatch, Svetlana; Roberts, Ann; Davis, Timothy J; Mulvaney, Paul; Gomez, Daniel E

    2016-01-01

    Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photo-catalysis, photovoltaics and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assembled on a multi-stack layered configuration to achieve broad-band, near-unit light absorption, which is spatially localised on the nanoparticle layer. We show that this enhanced light absorbance leads to $\\sim$ 40-fold increases in the photon-to-electron conversion efficiency by the plasmonic nanostructures. We developed a model that successfully captures the essential physics of the plasmonic hot-electron charge generation and separation in these structures. This model also allowed us to establish that efficient hot carrier extraction is limited to spectral regions where the photons possessing energies higher than the S...

  7. Development of radioisotope labeled polymeric carriers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Jeong, Jea Min; Hwang, Hyun Jeong [Ewha Womans University, Seoul (Korea)

    2000-04-01

    This research was performed with the aim of developing polymeric radioisotope or drug carriers for obtaining efficient diagnostic therapeutic efficacy. As polymers, polyethylene oxides, polylactides, polycaprolactone were chosen to prepare the devices including micelle system, microemulsion, nanospheres. In addition, anticancer drug loaded polylactide microparticulates were fabricated as a regional chemotherapeutics for the treatment of cancer. Technetium or radioactive iodine was labeled to the polymeric carriers via ligands such as DTPA and HPP, respectively. Labeling efficiency was above 90% and stable enough up to 24 hours. Moreover, injected polymer carriers demonstrated higher blood maintenance and bone uptake than Tin colloid, a control. These results suggested that radioisotope carrying polymeric particulate are promising tools for diagnosing blood vessels or bones. Besides, anticancer drug loaded particulates demonstrated appropriate maintenance of therapeutic concentration and localization. Therefore it was proposed that this therapeutic system may be potential as a cancer therapy modality. 20 refs., 24 figs.,5 tabs. (Author)

  8. Hiding secret data into a carrier image

    Directory of Open Access Journals (Sweden)

    Ovidiu COSMA

    2012-06-01

    Full Text Available The object of steganography is embedding hidden information in an appropriate multimedia carrier, e.g., image, audio, or video. There are several known methods of solving this problem, which operate either in the space domain or in the frequency domain, and are distinguished by the following characteristics: payload, robustness and strength. The payload is the amount of secret data that can be embedded in the carrier without inducing suspicious artefacts, robustness indicates the degree in which the secret data is affected by the normal processing of the carrier e.g., compression, and the strength indicate how easy the presence of hidden data can be detected by steganalysis techniques. This paper presents a new method of hiding secret data into a digital image compressed by a technique based on the Discrete Wavelet Transform (DWT [2] and the Set Partitioning In Hierarchical Trees (SPIHT subband coding algorithm [6]. The proposed method admits huge payloads and has considerable strength.

  9. [Therapy of hepatitis B virus carriers].

    Science.gov (United States)

    Bereza, N M; Petiĭ, S I

    1986-01-01

    Examination of 200 gastroenterological patients with a suspected chronic diffuse liver disease has demonstrated that only in 18.9% of the patients with chronic hepatitis, the disease was induced by the virus. Based on the experience gained with the treatment of 7 patients with chronic hepatitis B it is concluded that sanitation may be performed with levamisole. However, the data obtained in the course of the 5-year observation over sanitation of HBsAg carriers (25 subjects) do not provide any convincing evidence in favour of levamisole sanitation. The authors hold that at the blood transfusion stations the prophylaxis of serum hepatitis falls short of ideal. Selection of the donors according to CCIE does not give any guarantee against the viral hepatitis B carrier state. Like patients with viral hepatitis B, the HBsAg carriers badly need active prophylactic-and-treatment medical examination with the use of the antiviral agents.

  10. Enhancing bulk superconductivity by engineering granular materials

    Science.gov (United States)

    Mayoh, James; García García, Antonio

    2014-03-01

    The quest for higher critical temperatures is one of the main driving forces in the field of superconductivity. Recent theoretical and experimental results indicate that quantum size effects in isolated nano-grains can boost superconductivity with respect to the bulk limit. Here we explore the optimal range of parameters that lead to an enhancement of the critical temperature in a large three dimensional array of these superconducting nano-grains by combining mean-field, semiclassical and percolation techniques. We identify a broad range of parameters for which the array critical temperature, TcArray, can be up to a few times greater than the non-granular bulk limit, Tc 0. This prediction, valid only for conventional superconductors, takes into account an experimentally realistic distribution of grain sizes in the array, charging effects, dissipation by quasiparticles and limitations related to the proliferation of thermal fluctuations for sufficiently small grains. For small resistances we find the transition is percolation driven. Whereas at larger resistances the transition occurs above the percolation threshold due to phase fluctuations. JM acknowledes support from an EPSRC Ph.D studentship, AMG acknowledges support from EPSRC, grant No. EP/I004637/1, FCT, grant PTDC/FIS/111348/2009 and a Marie Curie International Reintegration Grant PIRG07-GA-2010-268172.

  11. Characterization of bulk superconductors through EBSD methods

    Science.gov (United States)

    Koblischka, M. R.; Koblischka-Veneva, A.

    2003-10-01

    The application of electron backscatter diffraction (EBSD) technique to bulk high- Tc superconductors is presented and reviewed. Due to the ceramic nature and the complex crystallographic unit cells of the perovskite-type high- Tc superconductors, the EBSD analysis is not yet as common as it deserves. We have successfully performed EBSD analysis on a variety of high- Tc compounds and samples including polycrystalline YBCO (pure and doped by alkali metals), melt-textured YBCO, thin and thick films of YBCO; the “green phase” Y 2BaCuO 5, thin film and melt-textured NdBa 2Cu 3O x and Bi-2212 single crystals and tapes. It is shown that the surface preparation of the samples is crucial due to the small information depth (up to 100 nm) of the EBSD technique. High quality Kikuchi patterns are the requirement in order to enable the automated EBSD mapping, which yields phase distributions, individual grain orientations and the misorientation angle distribution. The results can be presented in form of mappings, as charts, and as pole figures. These informations are required for a better understanding of the growth mechanism(s) of bulk high- Tc superconductors intended for applications.

  12. Perovskite oxides: Oxygen electrocatalysis and bulk structure

    Science.gov (United States)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, Ernest

    1987-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  13. A Batch Feeder for Inhomogeneous Bulk Materials

    Science.gov (United States)

    Vislov, I. S.; Kladiev, S. N.; Slobodyan, S. M.; Bogdan, A. M.

    2016-04-01

    The work includes the mechanical analysis of mechanical feeders and batchers that find application in various technological processes and industrial fields. Feeders are usually classified according to their design features into two groups: conveyor-type feeders and non-conveyor feeders. Batchers are used to batch solid bulk materials. Less frequently, they are used for liquids. In terms of a batching method, they are divided into volumetric and weighting batchers. Weighting batchers do not provide for sufficient batching accuracy. Automatic weighting batchers include a mass controlling sensor and systems for automatic material feed and automatic mass discharge control. In terms of operating principle, batchers are divided into gravitational batchers and batchers with forced feed of material using conveyors and pumps. Improved consumption of raw materials, decreased loss of materials, ease of use in automatic control systems of industrial facilities allows increasing the quality of technological processes and improve labor conditions. The batch feeder suggested by the authors is a volumetric batcher that has no comparable counterparts among conveyor-type feeders and allows solving the problem of targeted feeding of bulk material batches increasing reliability and hermeticity of the device.

  14. Bulk nanocrystalline Al prepared by cryomilling

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Bulk nanocrystalline Al was fabricated by mechanically milling at cryogenic temperature (cryomilling) and then by hot pressing in vacuum. By using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), the microstructure evolution of the material during cryomilling and consolidation was investigated. With increasing the milling time, the grain size decreased sharply and reduced to 42 nm when cryomilled for 12 h. The grains had grown up, and the columnar grain was formed under the hot pressing and extrusion compared with the cryomilled powders. The grain size of as-extruded specimen was approximately 300-500 nm. The reason of high thermal stability of this bulk was attributed primarily to the Zener pinning from the grain boundary of the AlN arising from cryomilling and the solute drag of the impurity. Tensile tests show that the strength of nanocrystalline Al is enhanced with decreasing grain size. The ultimate tensile strength and tensile elongation were 173 MPa and 17.5%, respectively. It appears that the measured high strength in the cryomilled Al is related to a grain-size effect, dispersion strengthening, and dislocation strengthening.

  15. Substantial bulk photovoltaic effect enhancement via nanolayering.

    Science.gov (United States)

    Wang, Fenggong; Young, Steve M; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M

    2016-01-21

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials' responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)(1-x)). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times due to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. This opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.

  16. 19 CFR 151.24 - Unlading facilities for bulk sugar.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a...

  17. 30 CFR 56.6802 - Bulk delivery vehicles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bulk delivery vehicles. 56.6802 Section 56.6802... § 56.6802 Bulk delivery vehicles. No welding or cutting shall be performed on a bulk delivery vehicle until the vehicle has been washed down and all explosive material has been removed. Before welding...

  18. 30 CFR 57.6802 - Bulk delivery vehicles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bulk delivery vehicles. 57.6802 Section 57.6802...-Surface and Underground § 57.6802 Bulk delivery vehicles. No welding or cutting shall be performed on a bulk delivery vehicle until the vehicle has been washed down and all explosive material has...

  19. Impact of Molecular Orientation and Packing Density on Electronic Polarization in the Bulk and at Surfaces of Organic Semiconductors.

    Science.gov (United States)

    Ryno, Sean M; Risko, Chad; Brédas, Jean-Luc

    2016-06-08

    The polarizable environment surrounding charge carriers in organic semiconductors impacts the efficiency of the charge transport process. Here, we consider two representative organic semiconductors, tetracene and rubrene, and evaluate their polarization energies in the bulk and at the organic-vacuum interface using a polarizable force field that accounts for induced-dipole and quadrupole interactions. Though both oligoacenes pack in a herringbone motif, the tetraphenyl substituents on the tetracene backbone of rubrene alter greatly the nature of the packing. The resulting change in relative orientations of neighboring molecules is found to reduce the bulk polarization energy of holes in rubrene by some 0.3 eV when compared to tetracene. The consideration of model organic-vacuum interfaces highlights the significant variation in the electrostatic environment for a charge carrier at a surface although the net change in polarization energy is small; interestingly, the environment of a charge even just one layer removed from the surface can be viewed already as representative of the bulk. Overall, it is found that in these herringbone-type layered crystals the polarization energy has a much stronger dependence on the intralayer packing density than interlayer packing density.

  20. Impact of Molecular Orientation and Packing Density on Electronic Polarization in the Bulk and at Surfaces of Organic Semiconductors

    KAUST Repository

    Ryno, Sean M.

    2016-05-16

    The polarizable environment surrounding charge carriers in organic semiconductors impacts the efficiency of the charge transport process. Here, we consider two representative organic semiconductors, tetracene and rubrene, and evaluate their polarization energies in the bulk and at the organic-vacuum interface using a polarizable force field that accounts for induced-dipole and quadrupole interactions. Though both oligoacenes pack in a herringbone motif, the tetraphenyl substituents on the tetracene backbone of rubrene alter greatly the nature of the packing. The resulting change in relative orientations of neighboring molecules is found to reduce the bulk polarization energy of holes in rubrene by some 0.3 eV when compared to tetracene. The consideration of model organic-vacuum interfaces highlights the significant variation in the electrostatic environment for a charge carrier at a surface although the net change in polarization energy is small; interestingly, the environment of a charge even just one layer removed from the surface can be viewed already as representative of the bulk. Overall, it is found that in these herringbone-type layered crystals the polarization energy has a much stronger dependence on the intralayer packing density than interlayer packing density.

  1. Hot-carrier effects in MOS devices

    CERN Document Server

    Takeda, Eiji; Miura-Hamada, Akemi

    1995-01-01

    The exploding number of uses for ultrafast, ultrasmall integrated circuits has increased the importance of hot-carrier effects in manufacturing as well as for other technological applications. They are rapidly movingout of the research lab and into the real world.This book is derived from Dr. Takedas book in Japanese, Hot-Carrier Effects, (published in 1987 by Nikkei Business Publishers). However, the new book is much more than a translation. Takedas original work was a starting point for developing this much more complete and fundamental text on this increasingly important topic. The new work

  2. Effective Charge Carrier Utilization in Photocatalytic Conversions.

    Science.gov (United States)

    Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong

    2016-05-17

    Continuous efforts have been devoted to searching for sustainable energy resources to alleviate the upcoming energy crises. Among various types of new energy resources, solar energy has been considered as one of the most promising choices, since it is clean, sustainable, and safe. Moreover, solar energy is the most abundant renewable energy, with a total power of 173 000 terawatts striking Earth continuously. Conversion of solar energy into chemical energy, which could potentially provide continuous and flexible energy supplies, has been investigated extensively. However, the conversion efficiency is still relatively low since complicated physical, electrical, and chemical processes are involved. Therefore, carefully designed photocatalysts with a wide absorption range of solar illumination, a high conductivity for charge carriers, a small number of recombination centers, and fast surface reaction kinetics are required to achieve a high activity. This Account describes our recent efforts to enhance the utilization of charge carriers for semiconductor photocatalysts toward efficient solar-to-chemical energy conversion. During photocatalytic reactions, photogenerated electrons and holes are involved in complex processes to convert solar energy into chemical energy. The initial step is the generation of charge carriers in semiconductor photocatalysts, which could be enhanced by extending the light absorption range. Integration of plasmonic materials and introduction of self-dopants have been proved to be effective methods to improve the light absorption ability of photocatalysts to produce larger amounts of photogenerated charge carriers. Subsequently, the photogenerated electrons and holes migrate to the surface. Therefore, acceleration of the transport process can result in enhanced solar energy conversion efficiency. Different strategies such as morphology control and conductivity improvement have been demonstrated to achieve this goal. Fine-tuning of the

  3. Biogenesis of the mitochondrial phosphate carrier

    OpenAIRE

    Zara, Vincenzo; Rassow, Joachim; Wachter, Elmar; Tropschug, Maximilian; Palmieri, Ferdinando; Neupert, Walter; Pfanner, Nikolaus

    1991-01-01

    The mitochondrial phosphate carrier (PiC) is a member of the family of inner-membrane carrier proteins which are generally synthesized without a cleavable presequence. Surprisingly, the cDNA sequences of bovine and rat PiC suggested the existence of an amino-terminal extension sequence in the precursor of PiC. By expressing PiC in vitro, we found that PiC is indeed synthesized as a larger precursor. This precursor was imported and proteolytically processed by mitochondria, whereby the correct...

  4. Line broadening caused by Coulomb carrier-carrier correlations and dynamics of carrier capture and emission in quantum dots

    DEFF Research Database (Denmark)

    Uskov, Alexander V; Magnúsdóttir, Ingibjörg; Tromborg, Bjarne;

    2001-01-01

    Mechanisms of pure dephasing in quantum dots due to Coulomb correlations and the dynamics of carrier capture and emission are suggested, and a phenomenological model for the dephasing is developed. It is shown that, if the rates of these capture and emission processes are sufficiently high...

  5. Engineered semiconductor nanocrystals with enhanced carrier multiplication yields

    Science.gov (United States)

    Klimov, Victor

    2014-03-01

    Carrier multiplication (CM) is a process whereby absorption of a single photon results in multiple electron-hole pairs (excitons). This process could benefit a number of solar-energy conversion technologies, most notably photocatalysis and photovoltaics. This presentation overviews recent progress in understanding the CM process in semiconductor nanocrystals, motivated by an outstanding challenge in this field - the lack of capability to predict the CM performance of nanocrystals based on their known photophysical properties or documented parameters of parental bulk solids. Here, we present a possible solution to this problem by showing that, using biexciton Auger lifetimes and intraband relaxation rates inferred from ultrafast spectroscopic studies, we can rationalize relative changes in CM yields as a function of nanocrystal composition, size and shape. Further, guided by this model, we demonstrate a two-fold enhancement in multiexciton yields in PbSe nanorods vs. quantum dots attributed to enhanced Coulomb interactions. We also explore the control of competing intra-band cooling for increasing multiexciton production. Specifically, we design a new type of hetero-structured PbSe/CdSe quantum dots with reduced rates of intra-band relaxation and demonstrate a four-fold boost in the multiexciton yield. These studies provide useful guidelines for future efforts to achieve the ultimate, energy-conservation-defined CM efficiencies.

  6. Advanced two-way satellite frequency transfer by carrier-phase and carrier-frequency measurements

    Science.gov (United States)

    Fujieda, Miho; Gotoh, Tadahiro; Amagai, Jun

    2016-06-01

    Carrier-phase measurement is one of the ways to improve the measurement resolution of two-way satellite frequency transfer. We introduce two possible methods for carrier-phase measurement: direct carrier-phase detection identified by Two-Way Carrier-Phase (TWCP) and the use of carrier-frequency information identified by Two-Way Carrier Frequency (TWCF). We performed the former using an arbitrary waveform generator and an analog-to-digital sampler and the latter using a conventional modem. The TWCF measurement using the modem had a resolution of 10-13 and the result agreed with that obtained by GPS carrier-phase frequency transfer in a 1500 km baseline. The measurement accuracy may have been limited by the poor frequency resolution of the modem; however, the TWCF measurement was able to improve the stability of conventional two-way satellite frequency transfer. Additionally, we show that the TWCP measurement system has the potential to achieve a frequency stability of 10-17.

  7. Carrier Aggregation for LTE-Advanced

    DEFF Research Database (Denmark)

    Pedersen, Klaus Ingemann; Frederiksen, Frank; Rosa, Claudio

    2011-01-01

    Carrier aggregation (CA) is one of the key features for LTE-Advanced. By means of CA, users gain access to a total bandwidth of up to 100 MHz in order to meet the IMT-Advanced requirements. The system bandwidth may be contiguous, or composed of several non-contiguous bandwidth chunks, which are a...

  8. Roch Carrier, Popular Language, and Joual.

    Science.gov (United States)

    Walkley, Max

    1997-01-01

    Discusses the language problems in Roch Carrier's French Canadian short stories, as well as his concise, nostalgic writing style. The article gives examples of vocabulary in his characters' dialogue; reviews the evolvement of French in Quebec and the question of "joual," in particular; and focuses on expressions posing difficulty for…

  9. A NEW SYNTHETIC FUNCTIONALIZED ANTIGEN CARRIER

    NARCIS (Netherlands)

    DRIJFHOUT, JW; BLOEMHOFF, W

    1991-01-01

    A new synthetic functionalized antigen carrier is described. It consists of a core of seven branched lysine residues, of which each of the four N-terminal lysine residues contains two N-(S-acetylmercaptoacetyl)-glutamyl residues. After removal of the protecting S-acetyl groups affording eight thiol

  10. Microemulsions as Potential Carriers of Nisin

    DEFF Research Database (Denmark)

    Chatzidaki, Maria D; Papadimitriou, Konstantinos; Alexandraki, Voula

    2016-01-01

    Water-in-oil (W/O) microemulsions based on either refined olive oil (ROO) or sunflower oil (SO), distilled monoglycerides (DMG), and ethanol were used as nisin carriers in order to ensure its effectiveness as a biopreservative. This work presents experimental evidence on the effects of ethanol...

  11. Polyester Dendrimers: Smart Carriers for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jean–d’Amour K. Twibanire

    2014-01-01

    Full Text Available Polyester dendrimers have been shown to be outstanding candidates for biomedical applications. Compared to traditional polymeric drug vehicles, these biodegradable dendrimers show excellent advantages especially as drug delivery systems because they are non-toxic. Here, advances on polyester dendrimers as smart carriers for drug delivery applications have been surveyed. Both covalent and non-covalent incorporation of drugs are discussed.

  12. Dextran: A promising macromolecular drug carrier

    Directory of Open Access Journals (Sweden)

    Dhaneshwar Suneela

    2006-01-01

    Full Text Available Over the past three decades intensive efforts have been made to design novel systems able to deliver the drug more effectively to the target site. The ongoing intense search for novel and innovative drug delivery systems is predominantly a consequence of the well-established fact that the conventional dosage forms are not sufficiently effective in conveying the drug compound to its site of action and once in the target area, in releasing the active agent over a desired period of time. The potential use of macromolecular prodrugs as a means of achieving targeted drug delivery has attracted considerable interest in recent years. Macromolecules such as antibodies, lipoproteins, lectins, proteins, polypeptides, polysaccharides, natural as well as synthetic polymers offer potential applicabilities as high molecular weight carriers for various therapeutically active compounds. Dextrans serve as one of the most promising macromolecular carrier candidates for a wide variety of therapeutic agents due to their excellent physico-chemical properties and physiological acceptance. The present contribution attempts to review various features of the dextran carrier like its source, structural and physico-chemical characteristics, pharmacokinetic fate and its applications as macromolecular carrier with special emphasis on dextran prodrugs.

  13. A universal thermal conductance of charge carriers

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, A.; Reggiani, L. [Lecce, Univ. (Italy). Ist. Nazionale di Fisica della Materia. Dipt. di Scienza dei Materiali; Kuhn, T. [Munster, Westfalische Wilhelms-Univ. (Germany). Inst. fur Theoretische Physik II; Varani, L. [Montpellier, Univ. Montpellier II (France). Centre d`Electronique et de Micro-optoelectronique

    1996-12-01

    A universal thermal conductance of charge carriers K = 2{pi}{sup 2}k{sub B}{sup 2}T / (3h) is rigorously derived within a correlation-function formalism. Similar to the case of the universal electrical conductance G = 2e{sup 2} / h this result pertains to one-dimensional, ballistic, and degenerate conditions for non-interacting particles.

  14. Itaconic acid carrier ampholytes for isoelectric focusing.

    Science.gov (United States)

    Brenna, O

    1977-04-11

    Commercial carrier ampholytes, obtained by coupling polyethylene polyamines to acrylic acid, exhibit a conductivity minimum in the pH range 5.5-6.5 owing to the lack of appropriate pK values of the polyamine in this pH region. By replacing acrylic with itaconic acid, it has been possible to effect substantial improvements in the pH range 5.5-6.5 as itaconic acid has a pK2 value of 5.45. Upon coupling, the pK of the gramma-carboxyl group remains virtually unaltered. With itoconic acid carrier ampholytes it has been possible to improve the conductivity in the pH range 5.5-6.5 by as much as 400% compared with conventional carrier ampholytes. It is suggected that the commercial products should be supplemented with itaconic acid carrier ampholytes in order to obtain a more uniform conductivity and buffering capacity in the pH range 3-10.

  15. 7 CFR 35.4 - Carrier.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Carrier. 35.4 Section 35.4 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS EXPORT...

  16. Terahertz carrier dynamics and dielectric properties of GaN epilayers with different carrier concentrations

    Science.gov (United States)

    Guo, H. C.; Zhang, X. H.; Liu, W.; Yong, A. M.; Tang, S. H.

    2009-09-01

    Using terahertz time-domain spectroscopy, we measured the complex conductivity and dielectric function of n-type GaN with various carrier concentrations on sapphire substrate. The measured complex conductivity, which is due to the free carriers, is well fitted by simple Drude model. The contribution from the lattice vibration to the complex dielectric function increases with the decrease in free carrier concentration. A better fitting of the frequency-dependent complex dielectric response was obtained by considering both of the Drude and the classical damped oscillator model.

  17. Technical issues of a high-Tc superconducting bulk magnet

    Science.gov (United States)

    Fujimoto, Hiroyuki

    2000-06-01

    Superconducting magnets made of high-Tc superconductors are promising for industrial applications. It is well known that REBa2Cu3O7-x superconductors prepared by melt processes have a high critical current density, Jc, at 77 K and high magnetic fields. The materials are very promising for high magnetic field applications as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. Light rare-earth (LRE) BaCuO bulks, compared with REBaCuO bulks, exhibit a larger Jc in high magnetic fields and a much improved irreversibility field, Hirr, at 77 K. In this study, we discuss technical issues of a high-Tc superconducting bulk magnet, namely the aspects of the melt processing for bulk superconductors, their characteristic superconducting properties and mechanical properties, and trapped field properties of a superconducting bulk magnet. One of the possible applications is a superconducting bulk magnet for the magnetically levitated (Maglev) train in the future.

  18. Bulk disk resonator based ultrasensitive mass sensor

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Davis, Zachary James

    2009-01-01

    In the framework of developing an innovative label-free sensor for multiarrayed biodetection applications, we present a novel bulk resonator based mass sensor. The sensor is a polysilicon disk which shows a Q-factor of 6400 in air at 68.8 MHz, resulting in mass resolutions down in the femtogram...... range. The sensor has been characterized in terms of sensitivity both for distributed mass detection, performing six consecutive depositions of e-beam evaporated Au, and localized mass detection, depositing approximately 7.5 pg of Pt/Ga/C three times consecutively with a Focused Ion Beam system....... The sensor has an extremely high distributed mass to frequency shift sensitivity of 60104 Hzcm2/¿g and shows a localized mass to frequency sensitivity up to 4405 Hz/pg with a localized mass resolution down to 15 fg. The device has been fabricated with a new microfabrication process that uses only two...

  19. Bulk heterojunction solar cells of three polythienothiophenes

    Directory of Open Access Journals (Sweden)

    Elif Alturk Parlak

    2015-06-01

    Full Text Available Semiconducting conjugated copolymers poly(3-phenyl-2-(thiophen-2-ylthieno[3,2-b]thiophene (PTTPh, poly(3-(4-methoxyphenyl-2-(thiophen-2-ylthieno[3,2-b]thiophene (PTTPh-OMe and poly(3-(4-N,N-dimethylaminophenyl-2-(thiophen-2-ylthieno[3,2-b]thiophene (PTTPh-N(CH 3 2, which were synthesized previously through Suzuki coupling method, were fabricated for solar cell applications. The devices had a structure of glass/ITO/PEDOT:PSS/polymer:PC61BM/Al. Bulk heterojunction photovoltaic cells were prepared as blends of PTTPh, PTTPh-OMe, PTTPh-N(CH 3 2 and PC61BM in a 1:1 ratio, which delivered power conversion efficiencies of 0.43%, 0.039% and 0.027%, respectively, without addition of additives or device optimization.

  20. Universe Models with Negative Bulk Viscosity

    CERN Document Server

    Brevik, Iver

    2013-01-01

    The concept of negative temperatures has occasionally been used in connection with quantum systems. A recent example of this sort is reported in the paper of S. Braun et al. [Science 339,52 (2013)], where an attractively interacting ensemble of ultracold atoms is investigated experimentally and found to correspond to a negative-temperature system since the entropy decreases with increasing energy at the high end of the energy spectrum. As the authors suggest, it would be of interest to investigate whether a suitable generalization of standard cosmological theory could be helpful, in order to elucidate the observed accelerated expansion of the universe usually explained in terms of a positive tensile stress (negative pressure). In the present note we take up this basic idea and investigate a generalization of the standard viscous cosmological theory, not by admitting negative temperatures but instead by letting the bulk viscosity take negative values. Evidently, such an approach breaks standard thermodynamics,...

  1. DEPLOYMENT OF THE BULK TRITIUM SHIPPING PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, P.

    2013-10-10

    A new Bulk Tritium Shipping Package (BTSP) was designed by the Savannah River National Laboratory to be a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The BTSP was certified by the National Nuclear Safety Administration in 2011 for shipments of up to 150 grams of Tritium. Thirty packages were procured and are being delivered to various DOE sites for operational use. This paper summarizes the design features of the BTSP, as well as associated engineered material improvements. Fabrication challenges encountered during production are discussed as well as fielding requirements. Current approved tritium content forms (gas and tritium hydrides), are reviewed, as well as, a new content, tritium contaminated water on molecular sieves. Issues associated with gas generation will also be discussed.

  2. Bulk metamaterials: Design, fabrication and characterization

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Alabastri, Alessandro

    2009-01-01

    Bulk metamaterials claim a lot of attention worldwide. We report about our activity and advances in design, fabrication and characterization of metal-dielectric composites with three-dimensional lattices. The nomenclature of designs exhibiting negative index behaviour in the near infrared includes...... the generic family of so-called nested structures. Such designs allow keeping the cubic symmetry of the unit cell along with the electric and magnetic responses showed by different parts in separate. For extraction of effective parameters we employ homemade wave propagation retrieving method free from...... ambiguity generic to the standard S-parameters retrieval method. Accurateness of the method is highlighted by a set of numerical checks. To fabricate smooth metal three-dimensional structures we develop an electroless chemical technique. We present the results of silver deposition on the surface of a 30...

  3. On bulk viscosity and moduli decay

    CERN Document Server

    Laine, M

    2010-01-01

    This pedagogically intended lecture, one of four under the header "Basics of thermal QCD", reviews an interesting relationship, originally pointed out by Bodeker, that exists between the bulk viscosity of Yang-Mills theory (of possible relevance to the hydrodynamics of heavy ion collision experiments) and the decay rate of scalar fields coupled very weakly to a heat bath (appearing in some particle physics inspired cosmological scenarios). This topic serves, futhermore, as a platform on which a number of generic thermal field theory concepts are illustrated. The other three lectures (on the QCD equation of state and the rates of elastic as well as inelastic processes experienced by heavy quarks) are recapitulated in brief encyclopedic form.

  4. Transformation of bulk alloys to oxide nanowires

    Science.gov (United States)

    Lei, Danni; Benson, Jim; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2017-01-01

    One dimensional (1D) nanostructures offer prospects for enhancing the electrical, thermal, and mechanical properties of a broad range of functional materials and composites, but their synthesis methods are typically elaborate and expensive. We demonstrate a direct transformation of bulk materials into nanowires under ambient conditions without the use of catalysts or any external stimuli. The nanowires form via minimization of strain energy at the boundary of a chemical reaction front. We show the transformation of multimicrometer-sized particles of aluminum or magnesium alloys into alkoxide nanowires of tunable dimensions, which are converted into oxide nanowires upon heating in air. Fabricated separators based on aluminum oxide nanowires enhanced the safety and rate capabilities of lithium-ion batteries. The reported approach allows ultralow-cost scalable synthesis of 1D materials and membranes.

  5. Organoboron polymers for photovoltaic bulk heterojunctions.

    Science.gov (United States)

    Cataldo, Sebastiano; Fabiano, Simone; Ferrante, Francesco; Previti, Francesco; Patanè, Salvatore; Pignataro, Bruno

    2010-07-15

    We report on the application of three-coordinate organoboron polymers, inherently strong electron acceptors, in flexible photovoltaic (PV) cells. Poly[(1,4-divinylenephenylene)(2,4,6-triisopropylphenylborane)] (PDB) has been blended with poly(3-hexylthiophene-2,5-diyl) (P3HT) to form a thin film bulk heterojunction (BHJ) on PET/ITO substrates. Morphology may be modulated to give a high percentage of domains (10-20 nm in size) allowing exciton separation. The photoelectric properties of the BHJs in devices with aluminium back electrodes were imaged by light beam induced current (LBIC) and light beam induced voltage (LBIV) techniques. Open circuit voltages, short circuit currents and overall external quantum efficiencies obtained are among the highest reported for all-polymer PV cells.

  6. New optical technique for bulk magnetostriction measurement

    CERN Document Server

    Samata, H; Uchida, T; Abe, S

    2000-01-01

    A new optical technique was applied to the measurement of magnetostriction in bulk samples. This technique utilizes an optical fiber bundle, AC-modulated light and lock-in detection. Deformation of the sample is determined from the ratio of the incident and reflected light intensities. Noise due to the instability of the light source is eliminated by obtaining the ratio of the incident and reflected light intensities, and the noise caused in the detector circuit can be reduced by lock-in detection. The performance of this method was characterized with a series of measurements using a gold film and crystal disks of pure iron and nickel. This technique offers a resolution of 0.5 nm and is sensitive enough to measure magnetostriction as small as 5x10 sup - sup 7 in 1 mm thick samples.

  7. Bulk semiconducting scintillator device for radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Stowe, Ashley C.; Burger, Arnold; Groza, Michael

    2016-08-30

    A bulk semiconducting scintillator device, including: a Li-containing semiconductor compound of general composition Li-III-VI.sub.2, wherein III is a Group III element and VI is a Group VI element; wherein the Li-containing semiconductor compound is used in one or more of a first mode and a second mode, wherein: in the first mode, the Li-containing semiconductor compound is coupled to an electrical circuit under bias operable for measuring electron-hole pairs in the Li-containing semiconductor compound in the presence of neutrons and the Li-containing semiconductor compound is also coupled to current detection electronics operable for detecting a corresponding current in the Li-containing semiconductor compound; and, in the second mode, the Li-containing semiconductor compound is coupled to a photodetector operable for detecting photons generated in the Li-containing semiconductor compound in the presence of the neutrons.

  8. A route to transparent bulk metals

    KAUST Repository

    Schwingenschlögl, Udo

    2012-07-23

    Hypothetical compounds based on a sapphire host are investigated with respect to their structural as well as electronic features. The results are obtained by electronic structure calculations within density functional theory and the generalized gradient approximation. A quarter of the Al atoms in Al 2O 3 is replaced by a 4d transition metal M ion, with d 0 to d 9 electronic configuration. We perform structure optimizations for all the compounds and analyze the electronic states. Due to the sizeable band gap of the Al 2O 3 host, we can identify promising candidates for transparent bulk metals. We explain the mechanisms leading to this combination of materials properties. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Vortices in superconducting bulk, films and SQUIDs

    Indian Academy of Sciences (India)

    Ernst Helmut Brandt

    2006-01-01

    The properties of the ideal periodic vortex lattice in bulk superconductors and in films of any thickness can be calculated from Ginzburg-Landau theory by an iteration method using Fourier series. The London theory yields general analytic expressions for the magnetic field and energy of arbitrary arrangements of straight or curved vortex lines. The elasticity of the vortex lattice is highly nonlocal. The magnetic response of superconductors of realistic shapes like thin and thick strips and disks or thin rectangular plates or films, containing pinned vortices, can be computed within continuum theory by solving an integral equation. A useful example is a thin square with a central hole and a radial slit, used as superconducting quantum interference device (SQUID).

  10. Combustion of bulk titanium in oxygen

    Science.gov (United States)

    Clark, A. F.; Moulder, J. C.; Runyan, C. C.

    1975-01-01

    The combustion of bulk titanium in one atmosphere oxygen is studied using laser ignition and several analytical techniques. These were high-speed color cinematography, time and space resolved spectra in the visible region, metallography (including SEM) of specimens quenched in argon gas, X-ray and chemical product analyses, and a new optical technique, the Hilbert transform method. The cinematographic application of this technique for visualizing phase objects in the combustion zone is described. The results indicate an initial vapor phase reaction immediately adjacent to the molten surface but as the oxygen uptake progresses the evaporation approaches the point of congruency and a much reduced evaporation rate. This and the accumulation of the various soluble oxides soon drive the reaction zone below the surface where gas formation causes boiling and ejection of particles. The buildup of rutile cuts off the oxygen supply and the reaction ceases.

  11. Tuneable film bulk acoustic wave resonators

    CERN Document Server

    Gevorgian, Spartak Sh; Vorobiev, Andrei K

    2013-01-01

    To handle many standards and ever increasing bandwidth requirements, large number of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumption of these systems, including cellular phones, critical issues. At present, the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance -form factor-cost issues. Even though the FBARs improve the overall performances the complexity of these systems remains high.  Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacing fixed frequency filter banks by one tuneable filter is the most desired and widely considered scenario. As an example, development of the softwa...

  12. Charm mass effects in bulk channel correlations

    CERN Document Server

    Burnier, Y

    2013-01-01

    The bulk viscosity of thermalized QCD matter at temperatures above a few hundred MeV could be significantly influenced by charm quarks because their contribution arises four perturbative orders before purely gluonic effects. In an attempt to clarify the challenges of a lattice study, we determine the relevant imaginary-time correlator (of massive scalar densities) up to NLO in perturbation theory, and compare with existing data. We find discrepancies much larger than in the vector channel; this may hint, apart from the importance of taking a continuum limit, to larger non-perturbative effects in the scalar channel. We also recall how a transport peak related to the scalar density spectral function encodes non-perturbative information concerning the charm quark chemical equilibration rate close to equilibrium.

  13. Holographic bulk viscosity: GPR vs EO

    CERN Document Server

    Buchel, Alex; Kiritsis, Elias

    2011-01-01

    Recently Eling and Oz (EO) proposed a formula for the holographic bulk viscosity, in arXiv:1103.1657, derived from the null horizon focusing equation. This formula seems different from that obtained earlier by Gubser, Pufu and Rocha (GPR) in arXiv:0806.0407 calculated from the IR limit of the two-point function of the trace of the stress tensor. The two were shown to agree only for some simple scaling cases. We point out that the two formulae agree in two non-trivial holographic theories describing RG flows. The first is the strongly coupled N=2* gauge theory plasma. The second is the semi-phenomenological model of Improved Holographic QCD.

  14. Organic hybrid planar-nanocrystalline bulk heterojunctions

    Science.gov (United States)

    Forrest, Stephen R.; Yang, Fan

    2011-03-01

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  15. Assessment of bioburden encapsulated in bulk materials

    Science.gov (United States)

    Schubert, Wayne W.; Newlin, Laura; Chung, Shirley Y.; Ellyin, Raymond

    2016-05-01

    The National Aeronautics and Space Administration (NASA) imposes bioburden limitations on all spacecraft destined for solar system bodies that might harbor evidence of extant or extinct life. The subset of microorganisms trapped within solid materials during manufacture and assembly is referred to as encapsulated bioburden. In the absence of spacecraft-specific data, NASA relies on specification values to estimate total spacecraft encapsulated bioburden, typically 30 endospores/cm3 or 300 viable cells/cm3 in non-electronic materials. Specification values for endospores have been established conservatively, and represent no less than an order of magnitude greater abundance than that derived from empirical assessments of actual spacecraft materials. The goal of this study was to generate data germane to determining whether revised bulk encapsulated material values (lower than those estimated by historical specifications) tailored specifically to the materials designated in modern-day spacecraft design could be used, on a case-by-case basis, to comply with planetary protection requirements. Organic materials having distinctly different chemical properties and configurations were selected. This required more than one experimental and analytical approach. Filtration was employed for liquid electrolytes, lubricants were suspended in an aqueous solution and solids (wire and epoxy sealant) were cryogenically milled. The final data characteristic for all bioburden estimates was microbial colony formation in rich agar growth medium. To assess survival potential, three non-spore-forming bacterial cell lines were systematically encapsulated in an epoxy matrix, liberated via cryogenic grinding, and cultured. Results suggest that bulk solid materials harbor significantly fewer encapsulated microorganisms than are estimated by specification values. Lithium-ion battery electrolyte reagents housed fewer than 1 CFU/cm3. Results also demonstrated that non-spore-forming microorganisms

  16. PAPR Reduction in OFDM Systems with Large Number of Sub-Carriers by Carrier Interferometry Approaches

    Institute of Scientific and Technical Information of China (English)

    HE Jian-hui; QUAN Zi-yi; MEN Ai-dong

    2004-01-01

    High Peak-to-Average Power Ratio (PAPR) is one of the major drawbacks of Orthogonal Frequency Division Multiplexing ( OFDM) systems. This paper presents the structures of the particular bit sequences leading to the maximum PAPR (PAPRmax) in Carrier-Interferometry OFDM (CI/OFDM) and Pseudo Orthogonal Carrier-Interferometry OFDM (PO-CI/OFDM) systems for Binary Phase Shift Keying (BPSK) modulation. Furthermore, the simulation and analysis of PAPRmax and PAPR cumulative distribution in CI/OFDM and PO-CI/OFDM systems with 2048 sub-carriers are presented in this paper. The results show that the PAPR of OFDM system with large number of sub-carriers reduced evidently via CI approaches.

  17. LWS/SET Technology Experiment Carrier

    Science.gov (United States)

    Sherman, Barry; Giffin, Geoff

    2002-01-01

    This paper examines the approach taken to building a low-cost, modular spacecraft bus that can be used to support a variety of technology experiments in different space environments. It describes the techniques used and design drivers considered to ensure experiment independence from as yet selected host spacecraft. It describes the technology experiment carriers that will support NASA's Living With a Star Space Environment Testbed space missions. NASA has initiated the Living With a Star (LWS) Program to develop a better scientific understanding to address the aspects of the connected Sun-Earth system that affect life and society. A principal goal of the program is to bridge the gap between science, engineering, and user application communities. The Space Environment Testbed (SET) Project is one element of LWS. The Project will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The SET Project is highly budget constrained and must seek to take advantage of as yet undetermined partnering opportunities for access to space. SET will conduct technology validation experiments hosted on available flight opportunities. The SET Testbeds will be developed in a manner that minimizes the requirements for accommodation, and will be flown as flight opportunities become available. To access the widest range of flight opportunities, two key development requirements are to maintain flexibility with respect to accommodation constraints and to have the capability to respond quickly to flight opportunities. Experiments, already developed to the technology readiness level of needing flight validation in the variable Sun-Earth environment, will be selected on the basis of the need for the subject technology, readiness for flight, need for flight resources and particular orbit. Experiments will be

  18. Resistivity, carrier concentration, and carrier mobility of electrochemically deposited CdTe films

    OpenAIRE

    Takahashi, Makoto; Uosaki, Kohei; Kita, Hideaki; Yamaguchi, Shoji

    1986-01-01

    The electrical type, resistivity, and donor or acceptor concentration of CdTe films deposited electrochemically at various potentials were measured. The carrier mobilities of the films were determined from these results. The deposition potential dependence of the mobility was small and the deposition potential dependence of the resistivity was mainly controlled by the deposition potential dependence of the donor or acceptor concentration. The carrier mobilities were very small compared with t...

  19. Carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool

    Science.gov (United States)

    Cai, Yu; Sha, Shuang

    2016-09-01

    This paper proposes a new carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool used in a cylindrical borehole environment during oil-based mud drilling processes. The new tool is an orthogonal frequency division multiplexing access-based contactless multi-measurand detection tool. The tool can measure formation resistivity in different azimuthal angles and elevational depths. It can measure many more measurands simultaneously in a specified bandwidth than the legacy frequency division multiplexing multi-measurand tool without a channel-select filter while avoiding inter-carrier interference. The paper also shows that formation resistivity is not sensitive to frequency in certain frequency bands. The average resistivity collected from N subcarriers can increase the measurement of the signal-to-noise ratio (SNR) by N times given no amplitude clipping in the current-injection electrode. If the clipping limit is taken into account, with the phase rotation of each single carrier, the amplitude peak-to-average ratio can be reduced by 3 times, and the SNR can achieve a 9/N times gain over the single-carrier system. The carrier-interleaving technique is also introduced to counter the carrier frequency offset (CFO) effect, where the CFO will cause inter-pad interference. A qualitative analysis and simulations demonstrate that block-interleaving performs better than tone-interleaving when coping with a large CFO. The theoretical analysis also suggests that increasing the subcarrier number can increase the measurement speed or enhance elevational resolution without sacrificing receiver performance. The complex orthogonal multi-pad multi-carrier resistivity logging tool, in which all subcarriers are complex signals, can provide a larger available subcarrier pool than other types of transceivers.

  20. Enhanced infrared magneto-optical response of the nonmagnetic semiconductor BiTeI driven by bulk Rashba splitting.

    Science.gov (United States)

    Demkó, L; Schober, G A H; Kocsis, V; Bahramy, M S; Murakawa, H; Lee, J S; Kézsmárki, I; Arita, R; Nagaosa, N; Tokura, Y

    2012-10-19

    We study the magneto-optical (MO) response of the polar semiconductor BiTeI with giant bulk Rashba spin splitting at various carrier densities. Despite being nonmagnetic, the material is found to yield a huge MO activity in the infrared region under moderate magnetic fields (up to 3 T). Our first-principles calculations show that the enhanced MO response of BiTeI comes mainly from the intraband transitions between the Rashba-split bulk conduction bands. These transitions connecting electronic states with opposite spin directions become active due to the presence of strong spin-orbit interaction and give rise to distinct features in the MO spectra with a systematic doping dependence. We predict an even more pronounced enhancement in the low-energy MO response and dc Hall effect near the crossing (Dirac) point of the conduction bands.

  1. Enhanced infrared magneto-optical response of the nonmagnetic semiconductor BiTeI driven by bulk Rashba splitting

    Energy Technology Data Exchange (ETDEWEB)

    Demko, L.; Tokura, Y. [Multiferroics Project, ERATO, JST, c/o Department of Applied Physics, University of Tokyo (Japan); Schober, G.A.H. [Institute for Theoretical Physics, University of Heidelberg (Germany); Kocsis, V.; Kezsmarki, I. [Department of Physics, Budapest University of Technology and Economics and Condensed Matter Research Group of the Hungarian Academy of Sciences (Hungary); Bahramy, M.S.; Murakawa, H. [CMRG and CERG, RIKEN ASI (Japan); Lee, J.S.; Arita, R.; Nagaosa, N. [Department of Applied Physics, University of Tokyo (Japan)

    2013-07-01

    We study the magneto-optical (MO) response of the polar semiconducting BiTeI with giant bulk Rashba spin splitting at various carrier densities. Despite being nonmagnetic, the material is found to yield a huge MO activity in the infrared region under moderate magnetic fields (up to 3 T). Our first-principles calculations show that the enhanced MO response of BiTeI comes mainly from the intraband transitions between the Rashba-split bulk conduction bands. These transitions connecting electronic states with opposite spin directions become active due to the presence of strong spin-orbit interaction and give rise to distinct features in the MO spectra with a systematic doping dependence. We predict an even more pronounced enhancement in the low-energy MO response and dc Hall effect near the crossing (Dirac) point of the conduction bands.

  2. Performance and applications of quench melt-growth bulk magnets

    Science.gov (United States)

    Nariki, S.; Teshima, H.; Morita, M.

    2016-03-01

    This paper describes the progress in quench melt-growth (QMG) bulk magnets, developed by the Nippon Steel & Sumitomo Metal Corporation, which consist of single crystalline RE123 phase and finely dispersed RE211 particles. QMG bulks can trap high magnetic fields. The field-trapping ability of QMG bulks is largely increased with an improvement in its J c and size, promising the realization of various applications such as flywheel energy-storage systems, ship motors, NMR/MRI spectrometers, wind-power generators and so on. Intensive research has revealed that the optimal RE element is different depending on application requirements. Gd-QMG bulk is the most promising material for several high-field engineering applications. The trapped magnetic field of Gd-QMG bulk 60 mm in diameter at 77 K is twice as large as that of Y-QMG bulk with a similar size due to its excellent J c properties. The large Gd-based QMG bulks up to 150 mm in diameter are fabricated by incorporating the RE compositional gradient method. Compact NMR/MRI spectrometers are one of the promising applications of bulk superconductors. Eu-QMG bulks are suitable for NMR magnets. NMR applications require extremely homogeneous magnetic fields. In the Eu-system, the small paramagnetic moment of a Eu ion compared to a Gd ion improves the field homogeneity in the bulk. For the application of current leads, Dy-based QMG is available by utilizing a low thermal conductivity.

  3. Bulk heterojunction organic photovoltaic based on polythiophene-polyelectrolyte carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Reyes, M. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico); Lopez-Sandoval, R. [Advanced Materials Department, IPICYT, Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi 78216 (Mexico); Liu, J.; Carroll, D.L. [Center for Nanotechnology and Molecular Materials, Wake Forest University, Winston-Salem, NC (United States)

    2007-09-22

    It is shown that carbon nanotubes can be used to enhance carrier mobility for efficient removal of the charges in thin film polymer-conjugated/fullerene photovoltaic devices. The fabricated photovoltaic devices consist of poly(3-octylthiophene) (P3OT) polymer blended with undoped multiwalled carbon nanotubes (MWNTs) and carbon nanotubes doped with nitrogen (CNx-MWNTs). Nanophase formation and dispersion problems associated with the use of carbon nanotubes in polymer devices were addressed through the generation of functional groups and electrostatic attaching of the polyelectrolyte poly(dimethyldiallylamine) chloride (PDDA) in both MWNTs and CNx-MWNT systems. The resultant nanophase was highly dispersed allowing for excellent bulk heterojunction formation. Our results indicate that CNx-MWNTs enhance the efficiency of P3OT solar cells in comparison with MWNTs. (author)

  4. Femtosecond spectroscopic studies of photoinduced electron transfer in MDMO-PPV:ZnO hybrid bulk heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Cecchetto, E.; De Cola, L. [Institute of Physics, University of Muenster, Mendelstrasse 7, 48149 Muenster (Germany); Slooff, H. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Zhang, H. [Van ' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam (Netherlands)

    2007-01-15

    The photophysics of charge carriers (polaron) in MDMO-PPV:ZnO hybrid bulk heterojunction is studied at 80 K by femtosecond transient absorption spectroscopy. A short-lived positive polaron is observed in the blend phase in MDMO-PPV:ZnO blend films with a weight ratio of 1:1 and 1:2. Further increase of ZnO weight ratio results in a significant quenching of the polaron absorption. The results are discussed in the concept that both pristine polymer and MDMO-PPV:ZnO blend phases coexist in the blend films. It is concluded that a polaron is photogenerated within the excitation laser pulse (<100 fs) and electron transfer efficiency is highest in blend films 1:1 and 1:2. Lack of the interfacial area and faster back electron transfer process are discussed to be responsible for the quenching of the electron transfer efficiency in blend film 1:3.

  5. Health risks in international container and bulk cargo transport due to volatile toxic compounds

    DEFF Research Database (Denmark)

    Baur, Xaver; Budnik, Lygia T; Zhao, Zhiwei

    2015-01-01

    on the toxic substance, its chemical reactivity, concentration, the temperature, the contaminated matrix (goods and packing materials), and the packing density in the transport units. Regulations on declaration and handling dangerous goods are mostly not followed. It is obvious that this hazardous situation...... shown to contain volatile toxic substances above the exposure limit values. Possible exposure to these toxic chemicals may occur not only for the applicators but also the receiver by off gassing from products, packing materials or transport units like containers. A number of intoxications, some...... with lethal outcome, occur not only during the fumigation, but also during freight transport (on bulk carriers and other transport vessels), as well as in the logistic lines during loading and unloading. Risk occupations include dock-workers, seafarers, inspectors, as well as the usually uninformed workers...

  6. Enhancing Carrier Injection Using Graded Superlattice Electron Blocking Layer for UVB Light-Emitting Diodes

    KAUST Repository

    Janjua, Bilal

    2014-12-01

    We have studied enhanced carrier injection by having an electron blocking layer (EBL) based on a graded superlattice (SL) design. Here, we examine, using a selfconsistent 6 × 6 k.p method, the energy band alignment diagrams under equilibrium and forward bias conditions while also considering carrier distribution and recombination rates (Shockley-Read-Hall, Auger, and radiative recombination rates). The graded SL is based on AlxGa1-xN (larger bandgap) Al0:5Ga0:5N (smaller bandgap) SL, where x is changed from 0.8 to 0.56 in steps of 0.06. Graded SL was found to be effective in reducing electron leakage and enhancing hole injection into the active region. Due to our band engineering scheme for EBL, four orders-of-magnitude enhancement were observed in the direct recombination rate, as compared with the conventional bulk EBL consisting of Al0:8Ga0:2N. An increase in the spatial overlap of carrier wavefunction was obtained due to polarization-induced band bending in the active region. An efficient single quantum-well ultraviolet-B light-emitting diode was designed, which emits at 280 nm. This is the effective wavelength for water disinfection application, among others.

  7. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy.

    Science.gov (United States)

    Sun, Jingya; Adhikari, Aniruddha; Shaheen, Basamat S; Yang, Haoze; Mohammed, Omar F

    2016-03-17

    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser's relatively large penetration depth and consequently these techniques record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and subpicosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample's surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystal and its powder film. We also discuss the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.

  8. Carrier and heat transport properties of polycrystalline GeSn films on SiO2

    Science.gov (United States)

    Uchida, Noriyuki; Maeda, Tatsuro; Lieten, Ruben R.; Okajima, Shingo; Ohishi, Yuji; Takase, Ryohei; Ishimaru, Manabu; Locquet, Jean-Pierre

    2015-12-01

    We evaluated the potential of polycrystalline (poly-) GeSn as channel material for the fabrication of thin film transistors (TFTs) at a low thermal budget (GeSn films with a grain size of ˜50 nm showed a carrier mobility of ˜30 cm2 V-1 s-1 after low-temperature annealing at 475-500 °C. Not only carrier mobility but also thermal conductivity of the films is important in assessing the self-heating effect of the poly-GeSn channel TFT. The thermal conductivity of the poly-GeSn films is 5-9 W m-1 K-1, which is significantly lower compared with 30-60 W m-1 K-1 of bulk Ge; this difference results from phonon scattering at grain boundaries and Sn interstitials. The poly-GeSn films have higher carrier mobility and thermal conductivity than poly-Ge films annealed at 600 °C, because of the improved crystal quality and coarsened grain size resulting from Sn-induced crystallization. Therefore, the poly-GeSn film is well-suited as channel material for TFTs, fabricated with a low thermal budget.

  9. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya

    2016-02-25

    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser’s relatively large penetration depth and consequently they record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and sub-picosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample’s surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystals and its powder film. We also provide the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.

  10. Polymer-fullerene bulk-heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Van Duren, J.K.J.

    2004-03-08

    In 2000 polymer:fullerene bulk-heterojunction solar cells reached power conversion efficiencies of < 1%. Improving the performance, stability, and lifetime of bulk-heterojunction solar cells requires more insight in the preparation, and operation of these devices. This thesis discusses the preparation and the morphological and electrical characterization of devices made from MDMO-PPV (poly 2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene), PCBM (1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)-methanofullerene), and their mixtures. The understanding of the influence of morphology on the device performance should aid in obtaining insight in the fundamental issues of the bulk-heterojunction concept. Furthermore, new materials are introduced in an attempt to improve performance. In chapter 2, it is shown that bulk-heterojunction solar cells made from MDMO-PPV and PCBM reach power conversion efficiencies of 2.5% under simulated solar light. It is shown for the first time that replacing the orange MDMO-PPV with a low-bandgap conjugated material results in a more red-shifted spectral response of these solar cells. Additionally, in an attempt to control the nanoscale morphology of the photoactive layer, the first example of a covalently linked donor polymer with pendant fullerenes incorporated in working solar cells is reported. The results indicated that more fundamental questions concerning the operation of the device and the influence of morphology must be addressed, before a rational improvement in device performance can be expected. Chapter 3 discusses the influence of morphology on transport in disordered organic semiconductors. Morphological investigations on films of PCBM and several PPVs are combined with the analysis of charge-carrier-mobility data. The morphological disorder observed in the PCBM films is in agreement with its charge-transport properties. Imaging individual conjugated polymer chains and aggregates on cast films with scanning force

  11. Experimental distribution of entanglement with separable carriers.

    Science.gov (United States)

    Fedrizzi, A; Zuppardo, M; Gillett, G G; Broome, M A; Almeida, M P; Paternostro, M; White, A G; Paterek, T

    2013-12-01

    The key requirement for quantum networking is the distribution of entanglement between nodes. Surprisingly, entanglement can be generated across a network without direct transfer-or communication-of entanglement. In contrast to information gain, which cannot exceed the communicated information, the entanglement gain is bounded by the communicated quantum discord, a more general measure of quantum correlation that includes but is not limited to entanglement. Here, we experimentally entangle two communicating parties sharing three initially separable photonic qubits by exchange of a carrier photon that is unentangled with either party at all times. We show that distributing entanglement with separable carriers is resilient to noise and in some cases becomes the only way of distributing entanglement through noisy environments.

  12. Solid lipid nanoparticles: A drug carrier system

    Directory of Open Access Journals (Sweden)

    Rashmi R Kokardekar

    2011-01-01

    Full Text Available Solid lipid nanoparticles (SLN are a type of nanoparticles. They are submicron colloidal carriers which are composed of physiological lipids, dispersed in water or in aqueous surfactant solutions. SLN have wide range of advantages over other types of nanoparticles. These include availability of large-scale production methods and no signs of cytotoxicity, which are main hindrances in the application of other types of nanoparticles. Hot and cold homogenization techniques are mainly employed for its production. They are mainly evaluated on the basis of their drug release profile and particle internal structure. The products based on SLN are under development. They have a very wide range of applications in cosmetics and pharmaceuticals. They can be applied for any purpose, for which nanoparticles have a distinct advantage. Thus, SLN can be used extensively as an alternative to the existing drug carrier systems, providing more flexibility with respect to the area of applications and also aspects for commercialization.

  13. Controlling carrier dynamics at the nanoscale

    Science.gov (United States)

    Cánovas, Enrique; Bonn, Mischa

    2016-10-01

    This Special issue is motivated by the occasion of the International Conference on Charge Carrier Dynamics at the Nanoscale (CCDNano), held in Santiago de Compostela (Spain) in September 2015. As chairs for the CCDNano meeting, we aimed at bringing together experts from different scientific fields in order to trigger interdisciplinary discussions and collaborations; the ultimate goal of the conference was to serve as a platform to advance and help unifying methodologies and theories from different research sub-fields. We also aimed at a deeper understanding of charge dynamics to contribute to the development of improved or novel nanostructured devices. This special issue keeps that spirit, and intends to provide an overview of ongoing research efforts regarding charge carrier dynamics at the nanoscale.

  14. Energy carriers in Norway; Energibaerere i Norge

    Energy Technology Data Exchange (ETDEWEB)

    2008-01-15

    Within the Norwegian energy consumption, electricity is by far the most dominant energy carrier. In the last thirty years electricity has had an increased significance, while oil has been reduce. A trend that is likely to continue. Energy politics has among others these objectives: environment, reliability of supply and effective energy supply. These objectives are somewhat contradictory. In agreement with the environmental politic phasing out oil leads to a reduction in greenhouse gases. However this politic will have a local impact only effecting Norway, in a larger European connection it might lead to a larger net emission of CO{sub 2}. A political intervention in the energy market might also lead to a reduction in the energy markets effectiveness and flexibility. This report addresses this problem: If a total phase out of the stationary oil consumption is conducted, what energy carriers will this consumption convert to?

  15. Superconductivity in carrier-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Takahiro Muranaka, Yoshitake Kikuchi, Taku Yoshizawa, Naoki Shirakawa and Jun Akimitsu

    2008-01-01

    Full Text Available We report growth and characterization of heavily boron-doped 3C-SiC and 6H-SiC and Al-doped 3C-SiC. Both 3C-SiC:B and 6H-SiC:B reveal type-I superconductivity with a critical temperature Tc=1.5 K. On the other hand, Al-doped 3C-SiC (3C-SiC:Al shows type-II superconductivity with Tc=1.4 K. Both SiC:Al and SiC:B exhibit zero resistivity and diamagnetic susceptibility below Tc with effective hole-carrier concentration n higher than 1020 cm−3. We interpret the different superconducting behavior in carrier-doped p-type semiconductors SiC:Al, SiC:B, Si:B and C:B in terms of the different ionization energies of their acceptors.

  16. Terahertz transport dynamics of graphene charge carriers

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due

    The electronic transport dynamics of graphene charge carriers at femtosecond (10-15 s) to picosecond (10-12 s) time scales are investigated using terahertz (1012 Hz) time-domain spectroscopy (THz-TDS). The technique uses sub-picosecond pulses of electromagnetic radiation to gauge the electrodynamic...... response of thin conducting films at up to multi-terahertz frequencies. In this thesis THz-TDS is applied towards two main goals; (1) investigation of the fundamental carrier transport dynamics in graphene at femtosecond to picosecond timescales and (2) application of terahertz time-domain spectroscopy...... to rapid and non-contact electrical characterization of large-area graphene, relevant for industrial integration. We show that THz-TDS is an accurate and reliable probe of graphene sheet conductance, and that the technique provides insight into fundamental aspects of the nanoscopic nature of conduction...

  17. DETECTION OF COMPLEXES OLIGODEOXYNUCLEOTIDES WITH POLYMERIC CARRIERS

    Directory of Open Access Journals (Sweden)

    V. V. Vlizlo

    2013-10-01

    Full Text Available The new method for detection of cationic oligoelectrolytes conjugates with oligodeoxyonucleotides, based on free diffusion of these substances in 0.8% agarose gels is developed. It enables to simplify and reduce the cost of visual identification of the best carrier among various polymer compounds and to uncover the fact of complex formation between the interacting agents resulting in formation of a ring precipitation. The universality of the proposed methodological approach is confirmed by interaction of coligodeoxynucleotides with other cationic polymer of natural origin, namely chitosan. Comparative analysis of our approach applicationto turbidimetry data concerning coligodeoxynucleotides complexes and their electrophoresis showed some advantages, among them are the ability to screen simultaneously a large number of polymeric carriers and no need for using of more expensive equipment and materials. To conclude the complexing occurrence it is enough nanomol amounts of oligodeoxynucleotide.

  18. Gravitational potential wells and the cosmic bulk flow

    CERN Document Server

    Kumar, Abhinav; Feldman, Hume A; Watkins, Richard

    2015-01-01

    The bulk flow is a volume average of the peculiar velocities and a useful probe of the mass distribution on large scales. The gravitational instability model views the bulk flow as a potential flow that obeys a Maxwellian Distribution. We use two N-body simulations, the LasDamas Carmen and the Horizon Run, to calculate the bulk flows of various sized volumes in the simulation boxes. Once we have the bulk flow velocities as a function of scale, we investigate the mass and gravitational potential distribution around the volume. We found that matter densities can be asymmetrical and difficult to detect in real surveys, however, the gravitational potential and its gradient may provide better tools to investigate the underlying matter distribution. This study shows that bulk flows are indeed potential flows and thus provides information on the flow sources. We also show that bulk flow magnitudes follow a Maxwellian distribution on scales $>10\\ h^{-1}$Mpc.

  19. A CFT Perspective on Gravitational Dressing and Bulk Locality

    CERN Document Server

    Lewkowycz, Aitor; Verlinde, Herman

    2016-01-01

    We revisit the construction of local bulk operators in AdS/CFT with special focus on gravitational dressing and its consequences for bulk locality. Specializing to 2+1-dimensions, we investigate these issues via the proposed identification between bulk operators and cross-cap boundary states. We obtain explicit expressions for correlation functions of bulk fields with boundary stress tensor insertions, and find that they are free of non-local branch cuts but do have non-local poles. We recover the HKLL recipe for restoring bulk locality for interacting fields as the outcome of a natural CFT crossing condition. We show that, in a suitable gauge, the cross-cap states solve the bulk wave equation for general background geometries, and satisfy a conformal Ward identity analogous to a soft graviton theorem, Virasoro symmetry, the large N conformal bootstrap and the uniformization theorem all play a key role in our derivations.

  20. Finsler geometric perspective on the bulk flow in the universe

    CERN Document Server

    Cahng, Zhe; Wang, Sai

    2013-01-01

    Astronomical observations showed that there exists a bulk flow with peculiar velocities in the universe, which contradicts with the (\\Lambda)CDM model. The bulk flow reveals that the observational universe is anisotropic at large scales. In this paper, we propose a "wind" scenario to the bulk flow. Under the influence of the "wind", the spacetime metric could become a Finsler structure. By resolving the null geodesic equation, we obtain the modified luminosity distance, which has a dipolar form at the leading order. Thus, the "wind" describes well the bulk flow. In addition, we perform a least-(\\chi^2) fit to the data of type Ia supernovae (SNe Ia) in the Union2.1 compilation. The peculiar velocity of the bulk flow has an upper limit (v_{bulk}\\lesssim 4000 \\rm{km/s}), which is compatible with all the existing observational values.

  1. Macroscopic and direct light propulsion of bulk graphene material

    CERN Document Server

    Zhang, Tengfei; Wu, Yingpeng; Xiao, Peishuang; Yi, Ningbo; Lu, Yanhong; Ma, Yanfeng; Huang, Yi; Zhao, Kai; Yan, Xiao-Qing; Liu, Zhi-Bo; Tian, Jian-Guo; Chen, Yongsheng

    2015-01-01

    It has been a great challenge to achieve the direct light manipulation of matter on a bulk scale. In this work, the direct light propulsion of matter was observed on a macroscopic scale for the first time using a bulk graphene based material. The unique structure and properties of graphene and the morphology of the bulk graphene material make it capable of not only absorbing light at various wavelengths but also emitting energetic electrons efficiently enough to drive the bulk material following Newtonian mechanics. Thus, the unique photonic and electronic properties of individual graphene sheets are manifested in the response of the bulk state. These results offer an exciting opportunity to bring about bulk scale light manipulation with the potential to realize long-sought proposals in areas such as the solar sail and space transportation driven directly by sunlight.

  2. Bulk Glassy Alloys: Historical Development and Current Research

    Directory of Open Access Journals (Sweden)

    Akihisa Inoue

    2015-06-01

    Full Text Available This paper reviews the development of current research in bulk glassy alloys by focusing on the trigger point for the synthesis of the first bulk glassy alloys by the conventional mold casting method. This review covers the background, discovery, characteristics, and applications of bulk glassy alloys, as well as recent topics regarding them. Applications of bulk glassy alloys have been expanding, particularly for Fe-based bulk glassy alloys, due to their unique properties, high glass-forming ability, and low cost. In the near future, the engineering importance of bulk glassy alloys is expected to increase steadily, and continuous interest in these novel metallic materials for basic science research is anticipated.

  3. Influence of Cu content on the n → p transition of 15% Sn-doped Cu{sub x}(In,Ga)Se{sub 2} bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Monsefi, Mehrdad; Kuo, Dong-Hau, E-mail: dhkuo@mail.ntust.edu.tw

    2013-12-15

    Highlights: •We studied the donor Sn-doped Cu(In,Ga)Se{sub 2} or CIGSe bulks at different Cu contents. •Cu-less CIGSe is used to control carrier concentration but easily loss mobility. •Sn doping here is to control the carrier concentration but keep high Cu content. •By changing the Cu content, n- and p-type CIGSe with good properties were achieved. •The CIGSe absorber shows the property diversity with the donor doping. -- Abstract: The elaborated Sn-doped Cu(In,Ga)Se{sub 2} (Sn-CIGSe) bulk materials with different Cu ratios had been sintered at 650 °C. Sn-CIGSe was reactively sintered with Sb{sub 2}S{sub 3} and Te sintering aids. Electrical properties of Sn-CIGSe were measured and the variations in mobility, charge carrier density, and conductivity were rationalized. The Sn{sup 4+} donor in Cu-poor CIGSe favored the n-type behavior and the Cu deficiency increased electron concentration due to the formation of the indium-to-copper donor. The n → p transition for the Cu-rich Sn-CIGSe is related to the partial formation of the copper-to-indium and Sn{sup 2+} acceptor. Carrier mobility above 12 cm{sup 2}/V s can be achieved for Sn-CIGSe with a higher Cu content. The advantages of Sn doping in CIGSe were claimed.

  4. Recent developments of film bulk acoustic resonators

    Science.gov (United States)

    Gao, Junning; Liu, Guorong; Li, Jie; Li, Guoqiang

    2016-06-01

    Film bulk acoustic wave resonator (FBAR) experienced skyrocketing development in the past 15 years, owing to the explosive development of mobile communication. It stands out in acoustic filters mainly because of high quality factor, which enables low insertion loss and sharp roll off. Except for the massive application in wireless communication, FBARs are also promising sensors because of the high sensitivity and readily integration ability to miniaturize circuits. On the ground of summarizing FBAR’s application in wireless communication as filters and in sensors including electronic nose, bio field, and pressure sensing, this paper review the main challenges of each application faced. The number of filters installed in the mobile phone has being grown explosively, which leads to overcrowded bands and put harsh requirements on component size and power consumption control for each unit. Data flow and rate are becoming increasingly demanding as well. This paper discusses three promising technical strategies addressing these issues. Among which coupled resonator filter is given intense attention because it is able to vigorously reduce the filter size by stacking two or more resonators together, and it is a great technique to increase data flow and rate. Temperature compensation methods are discussed considering their vital influence on frequency stability. Finally, materials improvement and novel materials exploration for band width modulation, tunable band acquisition, and quality factor improvement are discussed. The authors appeal attention of the academic society to bring AlN epitaxial thin film into the FBAR fabrication and have proposed a configuration to implement this idea.

  5. Fault current limiter using bulk oxides superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Belmont, O.; Ferracci, P.; Porcar, L.; Barbut, J.M. [Schneider Electric, Grenoble (France). Usine A3; Tixador, P.; Noudem, J.G.; Bourgault, D.; Tournier, R

    1998-08-01

    We study the limitation possibilities of bulk Bi high T{sub c} materials. For this we test these materials with AC or DC currents above their critical currents. We study particularly the evolution of the voltage with time or with current. The material, the value of the current and the time duration play important parts. For sintered Bi samples the voltage depends only on the current even for values much larger than the critical current. With textured samples the V(I) curves shows an hysteretic behaviour due to a warming up. The textured materials are more interesting than sintered ones in terms of required volume for the current limitation. In both cases the superconductors are in a dissipative state but not in the normal state. This state is nevertheless reached if the dissipated energy inside the sample is sufficient. We have tried to apply a magnetic field on the samples in order to trigger a more effective limitation. The voltage increases but with a limited effect for currents much higher (3-4 times) than the critical zero field current. We think that the dissipative state is due mainly to the grain boundaries which become resistive above the critical current. (orig.) 11 refs.

  6. On methods of estimating cosmological bulk flows

    CERN Document Server

    Nusser, Adi

    2015-01-01

    We explore similarities and differences between several estimators of the cosmological bulk flow, $\\bf B$, from the observed radial peculiar velocities of galaxies. A distinction is made between two theoretical definitions of $\\bf B$ as a dipole moment of the velocity field weighted by a radial window function. One definition involves the three dimensional (3D) peculiar velocity, while the other is based on its radial component alone. Different methods attempt at inferring $\\bf B$ for either of these definitions which coincide only for a constant velocity field. We focus on the Wiener Filtering (WF, Hoffman et al. 2015) and the Constrained Minimum Variance (CMV,Feldman et al. 2010) methodologies. Both methodologies require a prior expressed in terms of the radial velocity correlation function. Hoffman et al. compute $\\bf B$ in Top-Hat windows from a WF realization of the 3D peculiar velocity field. Feldman et al. infer $\\bf B$ directly from the observed velocities for the second definition of $\\bf B$. The WF ...

  7. Bulk viscous cosmology: statefinder and entropy

    CERN Document Server

    He, X

    2006-01-01

    The statefinder diagnostic pair is adopted to differentiate viscous cosmology models and it is found that the trajectories of these viscous cosmology models on the statefinder pair $s-r$ plane are quite different from those of the corresponding non-viscous cases. Particularly for the quiessence model, the singular properties of state parameter $w=-1$ are obviously demonstrated on the statefinder diagnostic pair planes. We then discuss the entropy of the viscous / dissipative cosmology system which may be more practical to describe the present cosmic observations as the perfect fluid is just a global approximation to the complicated cosmic media in current universe evolution. When the bulk viscosity takes the form of $\\zeta=\\zeta_{1}\\dot{a}/a$($\\zeta_{1}$ is constant), the relationship between the entropy $S$ and the redshift $z$ is explicitly given out. We find that the entropy of the viscous cosmology is always increasing and consistent with the thermodynamics arrow of time for the universe evolution. With t...

  8. Determination of Bulk Dimensional Variation in Castings

    Energy Technology Data Exchange (ETDEWEB)

    Dr. James F. Cuttino Dr. Edward P. Morse

    2005-04-14

    The purpose of this work is to improve the efficiency of green sand foundries so that they may continue to compete as the most cost-effective method of fabrication while meeting tightening constraints on near-net shape manufacturing. In order to achieve this objective, the study is divided into two major components. The first component concentrated on identifying which processes control surface finish on the castings and which provide potential reductions in variations. The second component identified metrological methods that effectively discern between the geometry of bulk material versus surface finish in order to more accurately determine the quality of a part. The research resulted in the determination of an empirical relationship relating pouring parameters to dimensional variation, with an R2 value of greater than 0.79. A significant difference in variations obtained from vertical vs. horizontal molding machines was also noticed. When analyzed separately, however, the resulting empirical relationships for horizontal and vertical machines had reduced R2 values, probably due to the reduced data sets. Significant parameters when considering vertical and horizontal molding machines together included surface roughness, pattern type, iron type, pouring rate, copper content, amount of Western Bentonite, and permeability.

  9. Material Profile Influences in Bulk-Heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Roehling, John D.; Rochester, Christopher W.; Ro, Hyun W.; Wang, Peng; Majewski, Jaroslaw; Batenburg, Kees J.; Arslan, Ilke; Delongchamp, Dean M.; Moule, Adam J.

    2014-10-01

    he morphology in mixed bulk-heterojunction films are compared using three different quantitative measurement techniques. We compare the vertical composition changes using high-angle annular dark-field scanning transmission electron microscopy with electron tomography and neutron and x-ray reflectometry. The three measurement techniques yield qualita-tively comparable vertical concentration measurements. The presence of a metal cathode during thermal annealing is observed to alter the fullerene concentration throughout the thickness of the film for all measurements. However, the abso-lute vertical concentration of fullerene is quantitatively different for the three measurements. The origin of the quantitative measurement differences is discussed. The authors thank Luna Innovations, Inc. for donating the endohedral fullerenes used in this study and Plextronics for the P3HT. They are gratefully thank the National Science Foundation Energy for Sustainability Program, Award No. 0933435. This work benefited from the use of the Lujan Neutron Scattering Center at Los Alamos Neutron Science Center funded by the DOE Office of Basic Energy Sciences and Los Alamos National Laboratory under DOE Contract DE-AC52-06NA25396. This research was also supported in part by Laboratory Directed Research & Development program at PNNL. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830.

  10. Failure Prediction in Bulk Metal Forming Process

    Directory of Open Access Journals (Sweden)

    Ameen Topa

    2014-01-01

    Full Text Available An important concern in metal forming is whether the desired deformation can be accomplished without defects in the final product. Various ductile fracture criteria have been developed and experimentally verified for a limited number of cases of metal forming processes. These criteria are highly dependent on the geometry of the workpiece and cannot be utilized for complicated shapes without experimental verification. However, experimental work is a resource hungry process. This paper proposes the ability of finite element analysis (FEA software such as LS-DYNA to pinpoint the crack-like flaws in bulk metal forming products. Two different approaches named as arbitrary Lagrangian-Eulerian (ALE and smooth particle hydrodynamics (SPH formulations were adopted. The results of the simulations agree well with the experimental work and a comparison between the two formulations has been carried out. Both approximation methods successfully predicted the flow of workpiece material (plastic deformation. However ALE method was able to pinpoint the location of the flaws.

  11. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  12. Thermodynamic properties of bulk and confined water

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco, E-mail: francesco.mallamace@unime.it [Dipartimento di Fisica e Scienza della Terra Università di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienza della Terra Università di Messina and CNISM, I-98168 Messina (Italy); Mallamace, Domenico [Dipartimento di Scienze dell' Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Università di Messina, I-98166 Messina (Italy); Vasi, Sebastiano; Vasi, Cirino [IPCF-CNR, I-98166 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States)

    2014-11-14

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (T{sub L} ≃ 225 K). The second, T{sup *} ∼ 315 ± 5 K, is a special locus of the isothermal compressibility K{sub T}(T, P) and the thermal expansion coefficient α{sub P}(T, P) in the P–T plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (T{sub L}) and the onset of the unfolding process (T{sup *})

  13. Leasing in low-cost carriers

    OpenAIRE

    Aleixo, José Frederico Pais

    2014-01-01

    The aim of this paper is to explore the use of aircraft leasing as a financing instrument in the low-cost carriers’ sector. These airlines have been showing a huge growth in the customers’ preferences, while aircraft leasing plays a relevant role in the financing options of airlines. In this study we determined that lease future commitments represent on average 80% of other debt commitments in low-cost carriers. Furthermore, we discovered that the leasing rate in low-cost ai...

  14. Formic Acid as a Hydrogen Energy Carrier

    KAUST Repository

    Eppinger, Jorg

    2016-12-15

    The high volumetric capacity (S3 g H-2/L) and its low toxicity and flammability under ambient conditions make formic acid a promising hydrogen energy carrier. Particularly, in the past decade, significant advancements have been achieved in catalyst development for selective hydrogen generation from formic acid. This Perspective highlights the advantages of this approach with discussions focused on potential applications in the transportation sector together with analysis of technical requirements, limitations, and costs.

  15. Polymeric micellar drug carriers with fluorescent properties

    OpenAIRE

    Abreu, Ana Sofia Lemos Machado; Sá, Arsénio Vasconcelos; Oliveira, Manuel; Moura, I; Machado, A.V.

    2015-01-01

    Self-assembling polymeric surfactants, based on amphiphilic block copolymers into nanosized aggregates in aqueous solution, are of great interest in the biomedical fields as one class of promising carrier systems, for drug delivery, gene therapy and diagnostic biosensors.[1] The incorporation of fluorescent probes into polymeric micelles has been fulfilled either by physically encapsulation or chemically attachment of fluorophores. [2] These micelle-based fluorescent probes not only facili...

  16. Commercial Air Carrier Vulnerabilities to Information Operations

    Science.gov (United States)

    2007-11-02

    GMO /ENS/02E-11 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio...AFIT/ GMO /ENS/02E-11 COMMERCIAL AIR CARRIER VULNERABILITIES TO INFORMATION OPERATIONS...networks that without them, “there is no water coming out of your tap; there is no electricity lighting your room; there is no food being transported to

  17. Carrier-free, continuous primary beer fermentation

    OpenAIRE

    Pires, Eduardo J.; Teixeira, J. A; Brányik, Tomáš; A.A. Vicente

    2014-01-01

    Developing a sustainable continuous fermentation reactor is one of the most ambitious tasks in brewing science, but it could bring great benefits regarding volumetric productivity to modern breweries. Immobilized cell technology is often applied to reach the large densities of yeast needed in a continuous fermentation process. However, the financial cost associated with the use of carriers for yeast immobilization is one of the major drawbacks in the technology. This work suggests that yeast ...

  18. Photoinduced carrier annihilation in silicon pn junction

    Science.gov (United States)

    Sameshima, Toshiyuki; Motoki, Takayuki; Yasuda, Keisuke; Nakamura, Tomohiko; Hasumi, Masahiko; Mizuno, Toshihisa

    2015-08-01

    We report analysis of the photo-induced minority carrier effective lifetime (τeff) in a p+n junction formed on the top surfaces of a n-type silicon substrate by ion implantation of boron and phosphorus atoms at the top and bottom surfaces followed by activation by microwave heating. Bias voltages were applied to the p+ boron-doped surface with n+ phosphorus-doped surface kept at 0 V. The values of τeff were lower than 1 × 10-5 s under the reverse-bias condition. On the other hand, τeff markedly increased to 1.4 × 10-4 s as the forward-bias voltage increased to 0.7 V and then it leveled off when continuous-wave 635 nm light was illuminated at 0.74 mW/cm2 on the p+ surface. The carrier annihilation velocity S\\text{p + } at the p+ surface region was numerically estimated from the experimental τeff. S\\text{p + } ranged from 4000 to 7200 cm/s under the reverse-bias condition when the carrier annihilation velocity S\\text{n + } at the n+ surface region was assumed to be a constant value of 100 cm/s. S\\text{p + } markedly decreased to 265 cm/s as the forward-bias voltage increased to 0.7 V.

  19. 49 CFR 373.101 - Motor carrier bills of lading.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Motor carrier bills of lading. 373.101 Section 373.101 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS RECEIPTS...

  20. Carrier peptide-mediated transepithelial permeation of biopharmaceuticals

    DEFF Research Database (Denmark)

    Kristensen, Mie; Nielsen, Hanne Mørck

    2015-01-01

    of the molar mixing ratio between the carrier peptide and the therapeutic cargo, whereas the direct conjugation approach ensures an inherent proximity of the carrier peptide to its therapeutic cargo. So far studies addressing the choice of using the co-administration approach over the conjugation approach......-34)) and the widely studied CPP penetratin were employed as therapeutic cargo and carrier peptide, respectively....

  1. Terahertz carrier dynamics in graphene and graphene nanostructures

    DEFF Research Database (Denmark)

    Jensen, Søren A.; Turchinovich, Dmitry; Tielrooij, Klaas Jan

    2014-01-01

    Photoexcited charge carriers in 2D graphene and in 1D graphene nanostructures were studied with optical pump-THz probe spectroscopy. We find efficient hot-carrier multiplication in 2D graphene, and predominantly free carrier early time response in 1D nanostructures. © 2014 OSA....

  2. 14 CFR 252.3 - Smoking ban: air carriers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Smoking ban: air carriers. 252.3 Section... PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.3 Smoking ban: air carriers. Air carriers shall prohibit smoking on all scheduled passenger flights....

  3. 14 CFR 252.5 - Smoking ban: foreign air carriers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Smoking ban: foreign air carriers. 252.5... PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.5 Smoking ban: foreign air carriers. (a) Foreign air carriers shall prohibit smoking on all scheduled passenger flight segments: (1) Between...

  4. 19 CFR 18.2 - Receipt by carrier; manifest.

    Science.gov (United States)

    2010-04-01

    ... TREASURY TRANSPORTATION IN BOND AND MERCHANDISE IN TRANSIT General Provisions § 18.2 Receipt by carrier... Carrier (or Exporter) Attorney-in-fact or Agent of Carrier (or Exporter) Date (3) Merchandise delivered... prescribed in subpart D of part 123 of this chapter, relating to merchandise in transit through the...

  5. Preliminary study of superconducting bulk magnets for Maglev

    Science.gov (United States)

    Fujimoto, Hiroyuki; Kamijo, Hiroki

    Recent development shows that melt-processed YBaCuO (Y123) or Rare Earth (RE)123 superconductors have a high Jc at 77 K and high magnetic field, leading to high field application as a superconducting quasi-permanent bulk magnet with the liquid nitrogen refrigeration. One of the promising applications is a superconducting magnet for the magnetically levitated (Maglev) train. We discuss a superconducting bulk magnet for the Maglev train in the aspect of a preliminary design of the bulk magnet and also processing for (L)REBaCuO bulk superconductors and their characteristic superconducting properties.

  6. Bulk flow scaling for turbulent channel and pipe flows

    CERN Document Server

    Chen, Xi; She, Zhen-Su

    2016-01-01

    We report a theory deriving bulk flow scaling for canonical wall-bounded flows. The theory accounts for the symmetries of boundary geometry (flat plate channel versus circular pipe) by a variational calculation for a large-scale energy length, which characterizes its bulk flow scaling by a simple exponent, i.e. $m=4$ for channel and 5 for pipe. The predicted mean velocity shows excellent agreement with several dozen sets of quality empirical data for a wide range of the Reynolds number (Re), with a universal bulk flow constant $\\kappa\\approx0.45$. Predictions for dissipation and turbulent transport in the bulk flow are also given, awaiting data verification.

  7. Joint Iterative Carrier Synchronization and Signal Detection for Dual Carrier 448 Gb/s PDM 16-QAM

    DEFF Research Database (Denmark)

    Zibar, Darko; Carvalho, Luis; Estaran Tolosa, Jose Manuel;

    2013-01-01

    Soft decision driven joint carrier synchronization and signal detection, employing expectation maximization, is experimentally demonstrated. Employing soft decisions offers an improvement of 0.5 dB compared to hard decision digital PLL based carrier synchronization and demodulation....

  8. Literature review of the passenger airline business models: Full service carrier, low-cost carrier and charter airlines

    NARCIS (Netherlands)

    Carmona Benitez, R.B.; Lodewijks, G.

    2008-01-01

    The deregulation and liberalization of the air transportation industry have developed three main passenger business models: full service carriers, low-cost carriers, and charter airlines. Deregulation removed regulated fares and routes increasing competition and yields. Airlines business models main

  9. Study of road dust magnetic phases as the main carrier of potentially harmful trace elements.

    Science.gov (United States)

    Bourliva, Anna; Papadopoulou, Lambrini; Aidona, Elina

    2016-05-15

    Mineralogical and morphological characteristics and heavy metal content of different fractions (bulk, non-magnetic fraction-NMF and magnetic fraction-MF) of road dusts from the city of Thessaloniki (Northern Greece) were investigated. Main emphasis was given on the magnetic phases extracted from these dusts. High magnetic susceptibility values were presented, whereas the MFs content of road dust samples ranged in 2.2-14.7 wt.%. Thermomagnetic analyses indicated that the dominating magnetic carrier in all road dust samples was magnetite, while the presence of hematite and iron sulphides in the investigated samples cannot be excluded. SEM/EDX analyses identified two groups of ferrimagnetic particles: spherules with various surface morphologies and textures and angular/aggregate particles with elevated heavy metal contents, especially Cr. The road dusts (bulk samples) were dominated by calcium, while the mean concentrations of trace elements decreased in the order Zn > Mn > Cu > Pb > Cr > Ni > V > Sn > As > Sb > Co > Mo > W > Cd. MFs exhibited significantly higher concentrations of trace elements compared to NMFs indicating that these potentially harmful elements (PHEs) are preferentially enriched in the MFs and highly associated with the ferrimagnetic particles. Hazard Index (HI) obtained for both adults and children through exposure to bulk dust samples were lower or close to the safe level (=1). On the contrary, the HIs for the magnetic phases indicated that both children and adults are experiencing potential health risk since HI for Cr was significantly higher than safe level. Cancer risk due to road dust exposure is low.

  10. Diffusion of oxygen in bulk GaN crystals at high temperature and at high pressure

    Science.gov (United States)

    Sadovyi, B.; Nikolenko, A.; Weyher, J. L.; Grzegory, I.; Dziecielewski, I.; Sarzynski, M.; Strelchuk, V.; Tsykaniuk, B.; Belyaev, O.; Petrusha, I.; Turkevich, V.; Kapustianyk, V.; Albrecht, M.; Porowski, S.

    2016-09-01

    Experimental studies of diffusion of oxygen in bulk wurtzite-type GaN crystals grown by Halide Vapor Phase Epitaxy (HVPE) are reported. Oxygen concentration profiles were studied in as-grown GaN crystals and also after annealing of crystals at temperatures up to 3400 K and pressures up to 9 GPa. Investigated crystals contained large conical defects i.e. pinholes of significantly higher oxygen concentration (NO=(2-4)×1019 cm-3) than that in the bulk matrix (NOGaN samples. Confocal micro-Raman spectroscopy was applied to measure the profiles of free electron concentration, which directly corresponds to the concentration of oxygen impurity. Lateral scanning across the interfaces between pinholes and matrix in the as-grown HVPE GaN crystals showed sharp step-like carrier concentration profiles. Annealing at high temperature and high pressure resulted in the diffusion blurring of the profiles. Analysis of obtained data allowed for the first time for estimation of oxygen diffusion coefficients DO(T, P). The obtained values of DO(T, P) are anomalously small similarly to the values obtained by Harafuji et al. by molecular dynamic calculations for self-diffusion of nitrogen. Whereas oxygen and nitrogen are on the same sublattice it could explain the similarity of their diffusion coefficients.

  11. Bulk Vitrification Castable Refractory Block Protection Study

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.; Bagaasen, Larry M.; Beck, Andrew E.; Brouns, Thomas M.; Caldwell, Dustin D.; Elliott, Michael L.; Matyas, Josef; Minister, Kevin BC; Schweiger, Michael J.; Strachan, Denis M.; Tinsley, Bronnie P.; Hollenberg, Glenn W.

    2005-05-01

    Bulk vitrification (BV) was selected for a pilot-scale test and demonstration facility for supplemental treatment to accelerate the cleanup of low-activity waste (LAW) at the Hanford U.S. DOE Site. During engineering-scale (ES) tests, a small fraction of radioactive Tc (and Re, its nonradioactive surrogate) were transferred out of the LAW glass feed and molten LAW glass, and deposited on the surface and within the pores of the castable refractory block (CRB). Laboratory experiments were undertaken to understand the mechanisms of the transport Tc/Re into the CRB during vitrification and to evaluate various means of CRB protection against the deposition of leachable Tc/Re. The tests used Re as a chemical surrogate for Tc. The tests with the baseline CRB showed that the molten LAW penetrates into CRB pores before it converts to glass, leaving deposits of sulfates and chlorides when the nitrate components decompose. Na2O from the LAW reacts with the CRB to create a durable glass phase that may contain Tc/Re. Limited data from a single CRB sample taken from an ES experiment indicate that, while a fraction of Tc/Re is present in the CRB in a readily leachable form, most of the Tc/Re deposited in the refractory is retained in the form of a durable glass phase. In addition, the molten salts from the LAW, mainly sulfates, chlorides, and nitrates, begin to evaporate from BV feeds at temperatures below 800 C and condense on solid surfaces at temperatures below 530 C. Three approaches aimed at reducing or preventing the deposition of soluble Tc/Re within the CRB were proposed: metal lining, sealing the CRB surface with a glaze, and lining the CRB with ceramic tiles. Metal liners were deemed unsuitable because evaluations showed that they can cause unacceptable distortions of the electric field in the BV system. Sodium silicate and a low-alkali borosilicate glaze were selected for testing. The glazes slowed down molten salt condensate penetration, but did little to reduce the

  12. Cavitation instability in bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    Dai L.H.

    2015-01-01

    Full Text Available Recent experiments have shown that fracture surfaces of bulk metallic glasses (BMGs usually exhibit an intriguing nanoscale corrugation like fractographic feature mediated by nanoscale void formation. We attribute the onset of this nanoscale corrugation to TTZs (tension transformation zones mediated cavitation. In our recent study, the spall experiments of Zr-based BMG using a single-stage light gas gun were performed. To uncover the mechanisms of the spallation damage nucleation and evolution, the samples were designed to be subjected to dynamic tensile loadings of identical amplitude but with different durations by making use of the multi-stress pulse and the double-flyer techniques. It is clearly revealed that the macroscopic spall fracture in BMGs originates from the nucleation, growth and coalescence of micro-voids. Then, a microvoid nucleation model of BMGs based on free volume theory is proposed, which indicates that the nucleation of microvoids at the early stage of spallation in BMGs is resulted from diffusion and coalescence of free volume. Furthermore, a theoretical model of void growth in BMGs undergoing remote dynamic hydrostatic tension is developed. The critical condition of cavitation instability is obtained. It is found that dynamic void growth in BMGs can be well controlled by a dimensionless inertial number characterizing the competition between intrinsic and extrinsic time scales. To unveil the atomic-level mechanism of cavitation, a systematic molecular dynamics (MD simulation of spallation behaviour of a binary metallic glass with different impact velocities was performed. It is found that micro-void nucleation is determined TTZs while the growth is controlled by shear transformation zones (STZs at atomic scale.

  13. Silicon bulk micromachined hybrid dimensional artifact.

    Energy Technology Data Exchange (ETDEWEB)

    Claudet, Andre A.; Tran, Hy D.; Bauer, Todd Marks; Shilling, Katherine Meghan; Oliver, Andrew David

    2010-03-01

    A mesoscale dimensional artifact based on silicon bulk micromachining fabrication has been developed and manufactured with the intention of evaluating the artifact both on a high precision coordinate measuring machine (CMM) and video-probe based measuring systems. This hybrid artifact has features that can be located by both a touch probe and a video probe system with a k=2 uncertainty of 0.4 {micro}m, more than twice as good as a glass reference artifact. We also present evidence that this uncertainty could be lowered to as little as 50 nm (k=2). While video-probe based systems are commonly used to inspect mesoscale mechanical components, a video-probe system's certified accuracy is generally much worse than its repeatability. To solve this problem, an artifact has been developed which can be calibrated using a commercially available high-accuracy tactile system and then be used to calibrate typical production vision-based measurement systems. This allows for error mapping to a higher degree of accuracy than is possible with a glass reference artifact. Details of the designed features and manufacturing process of the hybrid dimensional artifact are given and a comparison of the designed features to the measured features of the manufactured artifact is presented and discussed. Measurement results from vision and touch probe systems are compared and evaluated to determine the capability of the manufactured artifact to serve as a calibration tool for video-probe systems. An uncertainty analysis for calibration of the artifact using a CMM is presented.

  14. Transmission line model for strained quantum well lasers including carrier transport and carrier heating effects.

    Science.gov (United States)

    Xia, Mingjun; Ghafouri-Shiraz, H

    2016-03-01

    This paper reports a new model for strained quantum well lasers, which are based on the quantum well transmission line modeling method where effects of both carrier transport and carrier heating have been included. We have applied this new model and studied the effect of carrier transport on the output waveform of a strained quantum well laser both in time and frequency domains. It has been found that the carrier transport increases the turn-on, turn-off delay times and damping of the quantum well laser transient response. Also, analysis in the frequency domain indicates that the carrier transport causes the output spectrum of the quantum well laser in steady state to exhibit a redshift which has a narrower bandwidth and lower magnitude. The simulation results of turning-on transients obtained by the proposed model are compared with those obtained by the rate equation laser model. The new model has also been used to study the effects of pump current spikes on the laser output waveforms properties, and it was found that the presence of current spikes causes (i) wavelength blueshift, (ii) larger bandwidth, and (iii) reduces the magnitude and decreases the side-lobe suppression ratio of the laser output spectrum. Analysis in both frequency and time domains confirms that the new proposed model can accurately predict the temporal and spectral behaviors of strained quantum well lasers.

  15. Bulk forming of industrial micro components in conventional metals and bulk metallic glasses

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Paldan, Nikolas Aulin; Eriksen, Rasmus Solmer;

    2007-01-01

    For production of micro components in large numbers, forging is an interesting and challenging process. The conventional metals like silver, steel and aluminum often require multi-step processes, but high productivity and increased strength justify the investment. As an alternative, bulk metallic...... glasses will at elevated temperatures behave like a highly viscous liquid, which can easily form even complicated geometries in 1 step. The strengths and limitations of forming the 2 materials are analyzed for a micro 3D component in a silver alloy and an Mg-Cu-Y BMG. ©2007 American Institute of Physics...

  16. Optimization, formulation, and characterization of multiflavonoids-loaded flavanosome by bulk or sequential technique

    Science.gov (United States)

    Karthivashan, Govindarajan; Masarudin, Mas Jaffri; Kura, Aminu Umar; Abas, Faridah; Fakurazi, Sharida

    2016-01-01

    This study involves adaptation of bulk or sequential technique to load multiple flavonoids in a single phytosome, which can be termed as “flavonosome”. Three widely established and therapeutically valuable flavonoids, such as quercetin (Q), kaempferol (K), and apigenin (A), were quantified in the ethyl acetate fraction of Moringa oleifera leaves extract and were commercially obtained and incorporated in a single flavonosome (QKA–phosphatidylcholine) through four different methods of synthesis – bulk (M1) and serialized (M2) co-sonication and bulk (M3) and sequential (M4) co-loading. The study also established an optimal formulation method based on screening the synthesized flavonosomes with respect to their size, charge, polydispersity index, morphology, drug–carrier interaction, antioxidant potential through in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics, and cytotoxicity evaluation against human hepatoma cell line (HepaRG). Furthermore, entrapment and loading efficiency of flavonoids in the optimal flavonosome have been identified. Among the four synthesis methods, sequential loading technique has been optimized as the best method for the synthesis of QKA–phosphatidylcholine flavonosome, which revealed an average diameter of 375.93±33.61 nm, with a zeta potential of −39.07±3.55 mV, and the entrapment efficiency was >98% for all the flavonoids, whereas the drug-loading capacity of Q, K, and A was 31.63%±0.17%, 34.51%±2.07%, and 31.79%±0.01%, respectively. The in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics of the flavonoids indirectly depicts the release kinetic behavior of the flavonoids from the carrier. The QKA-loaded flavonosome had no indication of toxicity toward human hepatoma cell line as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide result, wherein even at the higher concentration of 200 µg/mL, the flavonosomes exert >85% of cell viability. These results suggest that sequential loading technique may be a

  17. SOLID LIPID NANOPARTICLES AND NANO LIPID CARRIERS: AS NOVEL SOLID LIPID BASED DRUG CARRIER

    Directory of Open Access Journals (Sweden)

    Girish B. Singhal

    2011-02-01

    Full Text Available Interest in lipid based drug delivery has developed over the past decade fuelled by a better understanding of the multiple roles lipids may play in enhancing oral bioavailability. Moreover, the emergence of novel excipients with acceptable regulatory and safety profiles coupled with advances in formulation technologies have greatly improved the potential for successful lipid based formulations. Solid lipid nanoparticles (SLN introduced in 1991 represent an alternative carrier system to traditional colloidal carriers, such as emulsions, liposomes and polymeric micro- and nanoparticles. SLN combine advantages of the traditional systems but avoid some of their major disadvantages. This paper reviews the present state of the art regarding production techniques for SLN/ nanostructured lipid carrier (NLC, drug incorporation method and types, stability. The potential of SLN/NLC to be exploited for the different administration routes is also highlighted.

  18. Advanced and new developments in bulk metal forming

    DEFF Research Database (Denmark)

    Bay, Niels; Wanheim, Tarras; Ravn, Bjarne Gottlieb;

    2000-01-01

    Increasing demands to manufacturing industry of faster, better and cheaper production has intensified the research and development of bulk metal forming. The present paper gives examples on European industrial research on secondary bulk metal forming processes. The R&D follows three lines of appr...

  19. T-duality trivializes bulk-boundary correspondence

    CERN Document Server

    Mathai, Varghese

    2015-01-01

    Recently we introduced T-duality in the study of topological insulators. In this paper, we study the bulk-boundary correspondence for three phenomena in condensed matter physics, namely, the quantum Hall effect, the Chern insulator, and time reversal invariant topological insulators. In all of these cases, we show that T-duality trivializes the bulk-boundary correspondence.

  20. 7 CFR 58.211 - Packaging room for bulk products.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Packaging room for bulk products. 58.211 Section 58... Service 1 Rooms and Compartments § 58.211 Packaging room for bulk products. A separate room or area shall... dust within the packaging room and where needed, a dust collector shall be provided and...

  1. Import and Export of Bulk Pharmaceuticals in 2006

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ According to customs statistics, the total import and export value of bulk pharmaceuticals (excluding chemical raw materials and bulk pesticides) in China was US$10.346 billion in 2006. The export value was US$7.482 billion - an increase of 22% over the 2005.

  2. 27 CFR 24.301 - Bulk still wine record.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk still wine record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.301 Bulk still wine record. A proprietor who produces or receives still wine in bond, (including wine intended for use as distilling material or...

  3. Nucleation of bulk superconductivity close to critical magnetic fields

    DEFF Research Database (Denmark)

    Fournais, Søren; Kachmar, Ayman

    2011-01-01

    threshold value of the applied magnetic field for which bulk superconductivity contributes to the leading order of the energy. Furthermore, the energy of the bulk is related to that of the Abrikosov problem in a periodic lattice. A key ingredient of the proof is a novel L∞ -bound which is of independent...

  4. Diagnosis of the anaerobic reject water effects on WWTP operational characteristics as a precursor of bulking and foaming.

    Science.gov (United States)

    Erdirençelebi, Dilek; Küçükhemek, Murat

    2015-01-01

    This study investigates the effects observed on operational parameters in a large and full-scale wastewater treatment plant subjected to anaerobic reject water (ARW) diversion off the main line for a 3-month period and further monitoring for a 2-year period. The plant's secondary unit consists of a two-stage plug-flow-modified Bardenpho process receiving wastewater from both municipal and industrial origins. As a result, ARW was found to have a direct effect on bulking in secondary clarifiers and foaming in anaerobic digesters (AD) despite its relatively small flow rate. During the cut-off period a highly stable sludge volume index at 80 mL g(-1) level was obtained in the secondary clarifiers, effluent suspended solids concentration was reduced and continuous feeding to AD was recovered. Sludge density increased in the thickeners during hot season. Secondary clarifiers showed good and stable settleability despite low dissolved oxygen, food/microorganism ratio and high sludge retention time and ammonium levels in the biological unit. The bulking and foaming effect was presented on the plant's internal flow balance. ARW needs serious consideration for elimination by appropriate technologies because of its high potential as a multi-dimensional pollutant source, not only as a carrier of nutrients but also as a possible carrier of filamentous bacteria, which might promote chronic seeding and retention in the system.

  5. Stability of bulk metallic glass structure

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D.B.

    2003-06-18

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub (80-x)}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  6. How Europe's Low-Cost Carriers Sidestepped Traditional Carriers' Competitive Advantages

    DEFF Research Database (Denmark)

    Hvass, Kristian Anders

    The initial appearance of U.S. low-cost carriers forced incumbents to create new forms of competitive advantage. These were successful hindrances for nearly two decades. Concurrently, incumbents in Europe implemented similar tools, although within a regulated market. However, Europe's low-cost...... airlines were more successful and had a greater initial impact in their early years than their U.S. compatriots. This paper will attempt to highlight some of the differences between the two markets and explain why European low-cost airlines had more advantages following their market deregulation...... and sidestepped traditional carriers' competitive advantages....

  7. Carbon nanotubes grown on bulk materials and methods for fabrication

    Science.gov (United States)

    Menchhofer, Paul A.; Montgomery, Frederick C.; Baker, Frederick S.

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  8. Bulk density - RTD results and status of the standardisation

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, T.; Hartmann, H. [Technologie- und Foerderzentrum fuer Nachwachsende Rohstoffe - TFZ, Straubing (Germany); Daugbjerg Jensen, P. [Royal Veterinary and Agricultural University, Vejle (Denmark). Danish Centre for Forest, Landscape and Planning - DFLRI; Temmerman, M.; Rabier, F. [CRA, Gembloux (Belgium). Department Genie Rural; Jirjis, R.; Burvall, J. [Swedish University of Agricultural Sciences, Uppsala (Sweden). Department of Bioenergy; Hersener, J.L. [Ingenieurbuero HERSENER, Wiesendangen (Switzerland); Rathbauer, J. [Bundesanstalt fuer Landtechnik - BLT, Wieselburg (Austria)

    2004-07-01

    Bulk density is an important property for determining storage and transportation room demands and for volume based payment of biofuels. It is also used for calculation of the energy density. Furthermore, bulk density influences the readings from many physical principles for rapid moisture content determination (e. g. microwave reflection method, time domain reflectometric or capacitive sensors [6]). Although bulk density is mostly regarded as an easily determinable parameter, the applied national and international standard methods are highly inconsistent in practice [1, 4, 8]. The goal of the here presented research was therefore to provide a sound knowledge basis for bulk density determination, which shall be used in the ongoing process of European biofuel standardisation. In particular the research focus was to determine the - effect of container size and shape in respect of different biofuels, - effect of shock impact and the - effect of moisture content (as received) on measured bulk density (dry basis). (orig.)

  9. Bulk viscosity, interaction and the viability of phantom solutions

    CERN Document Server

    Leyva, Yoelsy

    2016-01-01

    We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann-Robertson-Walker (FRW) universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with $w<-1$. From the different cases that we study, the only possible scenario, with bulk viscosity and interac...

  10. Bulk viscosity of spin-one color superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sa' d, Basil A.

    2009-08-27

    The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window. (orig.)

  11. A new lubricant carrier for metal forming

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Bay, Niels; Tang, Peter Torben

    2009-01-01

    A lubricant carrier for metal forming processes is developed. Surfaces with pores of micrometer size for entrapping lubricant are generated by electrochemical deposition of an alloy, consisting of two immiscible metals, of which one metal subsequently is etched away leaving 5 mu m layers...... with a sponge-like structure, The pores will actas lubricant reservoirs during severe forming processes. The deposited microporous layer is evaluated by friction tests in the form of ring compression tests and double cup extrusion tests. Furthermore the anti-seizure properties are investigated by single cup...

  12. Hardware Trojan by Hot Carrier Injection

    CERN Document Server

    Shiyanovskii, Y; Papachristou, C; Weyer, D; Clay, W

    2009-01-01

    This paper discusses how hot carrier injection (HCI) can be exploited to create a trojan that will cause hardware failures. The trojan is produced not via additional logic circuitry but by controlled scenarios that maximize and accelerate the HCI effect in transistors. These scenarios range from manipulating the manufacturing process to varying the internal voltage distribution. This new type of trojan is difficult to test due to its gradual hardware degradation mechanism. This paper describes the HCI effect, detection techniques and discusses the possibility for maliciously induced HCI trojans.

  13. Carbon-neutral fuels and energy carriers

    CERN Document Server

    Muradov, Nazim Z

    2011-01-01

    Concerns over an unstable energy supply and the adverse environmental impact of carbonaceous fuels have triggered considerable efforts worldwide to find carbon-free or low-carbon alternatives to conventional fossil fuels. Carbon-Neutral Fuels and Energy Carriers emphasizes the vital role of carbon-neutral energy sources, transportation fuels, and associated technologies for establishing a sustainable energy future. Each chapter draws on the insight of world-renowned experts in such diverse fields as photochemistry and electrochemistry, solar and nuclear energy, biofuels and synthetic fuels, ca

  14. The solute carrier 6 family of transporters

    DEFF Research Database (Denmark)

    Bröer, Stefan; Gether, Ulrik

    2012-01-01

    The solute carrier 6 (SLC6) family of the human genome comprises transporters for neurotransmitters, amino acids, osmolytes and energy metabolites. Members of this family play critical roles in neurotransmission, cellular and whole body homeostasis. Malfunction or altered expression...... of these transporters is associated with a variety of diseases. Pharmacological inhibition of the neurotransmitter transporters in this family is an important strategy in the management of neurological and psychiatric disorders. This review provides an overview of the biochemical and pharmacological properties...... of the SLC6 family transporters....

  15. 78 FR 5243 - Motor Carrier Safety Advisory Committee (MCSAC): Public Meeting of Subcommittees

    Science.gov (United States)

    2013-01-24

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee (MCSAC): Public Meeting of Subcommittees AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of meeting of Motor Carrier Safety Advisory Committee (MCSAC). SUMMARY: FMCSA announces that...

  16. 76 FR 62496 - Motor Carrier Safety Advisory Committee Series of Public Subcommittee Meetings

    Science.gov (United States)

    2011-10-07

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Series of Public Subcommittee Meetings AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of meeting. SUMMARY: The FMCSA's Motor Carrier Safety Advisory Committee (MCSAC) will hold working group...

  17. 76 FR 5424 - Motor Carrier Safety Advisory Committee; Request for Nominations

    Science.gov (United States)

    2011-01-31

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee; Request for Nominations AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Request for Nominations to the Motor Carrier Safety Advisory Committee (MCSAC). SUMMARY: The FMCSA solicits nominations...

  18. 77 FR 60507 - Motor Carrier Safety Advisory Committee (MCSAC): Public Subcommittee Meeting

    Science.gov (United States)

    2012-10-03

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee (MCSAC): Public Subcommittee Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Meeting of Compliance, Safety, Accountability (CSA) Subcommittee of Motor Carrier Safety...

  19. Hall and Seebeck measurements estimate the thickness of a (buried) carrier system: Identifying interface electrons in In-doped SnO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Papadogianni, Alexandra; Bierwagen, Oliver [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin (Germany); White, Mark E.; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Galazka, Zbigniew [Leibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, D-12489 Berlin (Germany)

    2015-12-21

    We propose a simple method based on the combination of Hall and Seebeck measurements to estimate the thickness of a carrier system within a semiconductor film. As an example, this method can distinguish “bulk” carriers, with homogeneous depth distribution, from “sheet” carriers, that are accumulated within a thin layer. The thickness of the carrier system is calculated as the ratio of the integral sheet carrier concentration, extracted from Hall measurements, to the volume carrier concentration, derived from the measured Seebeck coefficient of the same sample. For rutile SnO{sub 2}, the necessary relation of Seebeck coefficient to volume electron concentration in the range of 3 × 10{sup 17} to 3 × 10{sup 20 }cm{sup −3} has been experimentally obtained from a set of single crystalline thin films doped with varying Sb-doping concentrations and unintentionally doped bulk samples, and is given as a “calibration curve.” Using this calibration curve, our method demonstrates the presence of interface electrons in homogeneously deep-acceptor (In) doped SnO{sub 2} films on sapphire substrates.

  20. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Nicola H. Perry

    2016-10-01

    Full Text Available Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic, and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER, Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance.

  1. Application of the penetration theory for gas - Liquid mass transfer without liquid bulk : Differences with system with a bulk

    NARCIS (Netherlands)

    van Elk, E. P.; Knaap, M. C.; Versteeg, G. F.

    2007-01-01

    Frequently applied micro models for gas-liquid mass transfer all assume the presence of a liquid bulk. However, some systems are characterized by the absence of a liquid bulk, a very thin layer of liquid flows over a solid surface. An example of such a process is absorption in a column equipped with

  2. Facilitated transport near the carrier saturation limit

    Directory of Open Access Journals (Sweden)

    Anawat Sungpet

    2002-11-01

    Full Text Available Permeation of ethylbenzene, styrene and 1-hexene through perfluorosulfonate ionomer membranes was carried out with the feed concentrations ranging from 1 M to pure. On comparison, fluxes of ethylbenzene through the Ag+-form membrane were the lowest. Only a small increase in ethylbenzene flux was observed after the feed concentration exceeded 3 M, indicating the existence of carrier saturation. The increase in styrene flux was suppressed to some degree at high concentration driving forces. In contrast, 1-hexene flux was the highest and continued to increase even at very high feed concentrations. After the experiments with pure feeds, extraction of the solutes from the membranes revealed that 62.5% of Ag+ ions reacted with 1-hexene as against 40.6% for styrene and 28.9% for ethylbenzene. Equilibrium constants, determined by distribution method, of 1-hexene, styrene and ethylbenzene were 129, 2.2 and 0.7 M-1 respectively, which suggested that stability of the complex was a key factor in the carrier saturation phenomenon.

  3. Theory of Carrier Phase Ambiguity Resolution

    Institute of Scientific and Technical Information of China (English)

    P. J. G. Teunissen

    2003-01-01

    Carrier phase ambiguity resolution is the key to high precision Global Navigation Satellite System(GNSS) positioning and navigation. It applies to a great variety of current and future models of GPS, modernized GPS and Galileo. A proper handling of carrier phase ambiguity resolution requires a proper understanding of the underlying theory of integer inference. In this contribution a brief review is given of the probabilistic theory of integer ambiguity estimation. We describe the concept of ambiguity pull-in regions, introduce the class of admissible integer estimators, determine their probability mass functions and show how their variability solution. The theory is worked out in more detail for integer least-squares and integer bootstrapping. It is shown that the integer least-squares principle maximizes the probability of correct integer estimation. Sharp and easy-to-compute bounds are given for both the ambiguity success rate and the baseline's probability of concentration. Finally the probability density function of the ambiguity residuals is determined. This allows one for the first time to formulate rigorous tests for the integerness of the parameters.

  4. Localized charge carriers in graphene nanodevices

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, D., E-mail: dominikb@phys.ethz.ch; Varlet, A.; Simonet, P.; Eich, M.; Overweg, H. C.; Ihn, T.; Ensslin, K. [Solid State Physics Laboratory, ETH Zurich, 8093 Zurich (Switzerland)

    2015-09-15

    Graphene—two-dimensional carbon—is a material with unique mechanical, optical, chemical, and electronic properties. Its use in a wide range of applications was therefore suggested. From an electronic point of view, nanostructured graphene is of great interest due to the potential opening of a band gap, applications in quantum devices, and investigations of physical phenomena. Narrow graphene stripes called “nanoribbons” show clearly different electronical transport properties than micron-sized graphene devices. The conductivity is generally reduced and around the charge neutrality point, the conductance is nearly completely suppressed. While various mechanisms can lead to this observed suppression of conductance, disordered edges resulting in localized charge carriers are likely the main cause in a large number of experiments. Localized charge carriers manifest themselves in transport experiments by the appearance of Coulomb blockade diamonds. This review focuses on the mechanisms responsible for this charge localization, on interpreting the transport details, and on discussing the consequences for physics and applications. Effects such as multiple coupled sites of localized charge, cotunneling processes, and excited states are discussed. Also, different geometries of quantum devices are compared. Finally, an outlook is provided, where open questions are addressed.

  5. High charge-carrier mobility enables exploitation of carrier multiplication in quantum-dot films

    NARCIS (Netherlands)

    Suchand Sandeep, C.S.; Ten Cate, S.; Schins, J.M.; Savenije, T.J.; Liu, Y.; Law, M.; Kinge, S.; Houtepen, A.J.; Siebbeles, L.D.A.

    2013-01-01

    Carrier multiplication, the generation of multiple electron–hole pairs by a single photon, is of great interest for solar cells as it may enhance their photocurrent. This process has been shown to occur efficiently in colloidal quantum dots, however, harvesting of the generated multiple charges has

  6. Graphene, a material for high temperature devices; intrinsic carrier density, carrier drift velocity, and lattice energy

    CERN Document Server

    Yin, Yan; Wang, Li; Jin, Kuijuan; Wang, Wenzhong

    2016-01-01

    Heat has always been a killing matter for traditional semiconductor machines. The underlining physical reason is that the intrinsic carrier density of a device made from a traditional semiconductor material increases very fast with a rising temperature. Once reaching a temperature, the density surpasses the chemical doping or gating effect, any p-n junction or transistor made from the semiconductor will fail to function. Here, we measure the intrinsic Fermi level (|E_F|=2.93k_B*T) or intrinsic carrier density (n_in=3.87*10^6 cm^-2 K^-2*T^2), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400 K. Our results show intrinsic carrier density of graphene is an order of magnitude less sensitive to temperature than those of Si or Ge, and reveal the great potentials of graphene as a material for high temperature devices. We also observe a linear decline of saturation drift velocity with increasing temperature, and identify the temperature coefficients of ...

  7. Time-resolved measurements of charge carrier dynamics and optical nonlinearities in narrow-bandgap semiconductors

    Science.gov (United States)

    Olson, Benjamin Varberg

    generating excess carriers near one end of a MWIR T2SL and measuring the transit time to a thin, 2 lower-bandgap superlattice placed at the other end, the time-of-flight of vertically diffusing carriers is determined. Through investigation of both unintentionally doped and p-type superlattices at 77 K, the vertical hole and electron diffusion coefficients are determined to be 0.04+/-0.03 cm2/s and 4.7+/-0.5 cm2/s, corresponding to vertical mobilities of 6+/-5 cm 2/Vs and 700+/-80 cm2/Vs, respectively. These measurements are, to my knowledge, the first direct measurements of vertical transport properties in narrow-bandgap superlattices. Lastly, the widely tunable two-color ultrafast laser system used in this research allowed for the investigation of nonlinear optical properties in narrow-bandgap semiconductors. Time-resolved measurements taken at 77 K of the nondegenerate two-photon absorption spectrum of bulk n-type GaSb have provided new information about the nonresonant change in absorption and two-photon absorption coefficients in this material. Furthermore, as the nondegenerate spectrum was measured over a wide range of optical frequencies, a Kramers-Kronig transformation allowed the dispersion of the nondegenerate nonlinear refractive index to be calculated.

  8. Improving Performance in Dense Wireless Spaces by Controlling Bulk Traffic

    Directory of Open Access Journals (Sweden)

    Marat Zhanikeev

    2017-01-01

    Full Text Available The growing number of wireless devices nowadays often results in congestion of wireless channels. In research, this topic is referred to as networking in dense wireless spaces. The literature on the topic shows that the biggest problem is the high number of concurrent sessions to a wireless access point. The obvious solution is to reduce the number of concurrent sessions. This paper proposes a simple method called Bulk-n-Pick which minimizes the number of prolonged concurrent sessions by separating bulk from sync traffic. Aiming at educational applications, under the proposed design, web applications would distribute the main bulk of content once at the beginning of a class and then rely on small messages for real time sync traffic during the class. For realistic performance analysis, this paper first performs real-life experiments with various counts of wireless devices, bulk sizes, and levels of sync intensity. Based on the experiments, this paper shows that the proposed Bulk-n-Pick method outperforms the traditional design even when only two concurrent bulk sessions are allowed. The experiment shows that up to 10 concurrent bulk sessions are feasible in practice. Based on these results, a method for online performance optimization is proposed and validated in a trace-based emulation.

  9. Photoconductivity of CdTe Nanocrystal-Based Thin Films. Te2- Ligands Lead To Charge Carrier Diffusion Lengths Over 2 Micrometers

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, Ryan W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Callahan, Rebecca [National Renewable Energy Lab. (NREL), Golden, CO (United States); Reid, Obadiah G. [Univ. of Colorado, Boulder, CO (United States); Dolzhnikov, Dmitriy S. [Univ. of Chicago, IL (United States); Talapin, Dmitri V. [Univ. of Chicago, IL (United States); Rumbles, Garry [National Renewable Energy Lab. (NREL), Golden, CO (United States); Luther, Joseph M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kopidakis, Nikos [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-16

    We report on photoconductivity of films of CdTe nanocrystals (NCs) using time-resolved microwave photoconductivity (TRMC). Spherical and tetrapodal CdTe NCs with tunable size-dependent properties are studied as a function of surface ligand (including inorganic molecular chalcogenide species) and annealing temperature. Relatively high carrier mobility is measured for films of sintered tetrapod NCs (4 cm2/(V s)). Our TRMC findings show that Te2- capped CdTe NCs show a marked improvement in carrier mobility (11 cm2/(V s)), indicating that NC surface termination can be altered to play a crucial role in charge-carrier mobility even after the NC solids are sintered into bulk films.

  10. Photoconductivity of CdTe Nanocrystal-Based Thin Films: Te(2-) Ligands Lead To Charge Carrier Diffusion Lengths Over 2 μm.

    Science.gov (United States)

    Crisp, Ryan W; Callahan, Rebecca; Reid, Obadiah G; Dolzhnikov, Dmitriy S; Talapin, Dmitri V; Rumbles, Garry; Luther, Joseph M; Kopidakis, Nikos

    2015-12-03

    We report on photoconductivity of films of CdTe nanocrystals (NCs) using time-resolved microwave photoconductivity (TRMC). Spherical and tetrapodal CdTe NCs with tunable size-dependent properties are studied as a function of surface ligand (including inorganic molecular chalcogenide species) and annealing temperature. Relatively high carrier mobility is measured for films of sintered tetrapod NCs (4 cm(2)/(V s)). Our TRMC findings show that Te(2-) capped CdTe NCs show a marked improvement in carrier mobility (11 cm(2)/(V s)), indicating that NC surface termination can be altered to play a crucial role in charge-carrier mobility even after the NC solids are sintered into bulk films.

  11. Determination of charge-carrier diffusion length in the photosensing layer of HgCdTe n-on-p photovoltaic infrared focal plane array detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vishnyakov, A. V.; Stuchinsky, V. A., E-mail: stuchin@isp.nsc.ru; Brunev, D. V.; Zverev, A. V.; Dvoretsky, S. A. [Institute of Semiconductor Physics, Russian Academy of Science, Siberian Division, 13, Acad. Lavrent' ev Avenue, Novosibirsk 630090 (Russian Federation)

    2014-03-03

    In the present paper, we propose a method for evaluating the bulk diffusion length of minority charge carriers in the photosensing layer of photovoltaic focal plane array (FPA) photodetectors. The method is based on scanning a strip-shaped illumination spot with one of the detector diodes at a low level of photocurrents j{sub ph} being registered; such scanning provides data for subsequent analysis of measured spot-scan profiles within a simple diffusion model. The asymptotic behavior of the effective (at j{sub ph} ≠ 0) charge-carrier diffusion length l{sub d} {sub eff} as a function of j{sub ph} for j{sub ph} → 0 inferred from our experimental data proved to be consistent with the behavior of l{sub d} {sub eff} vs j{sub ph} as predicted by the model, while the obtained values of the bulk diffusion length of minority carriers (electrons) in the p-HgCdTe film of investigated HgCdTe n-on-p FPA photodetectors were found to be in a good agreement with the previously reported carrier diffusion-length values for HgCdTe.

  12. Comparison of carrier multiplication yields in PbS and PbSe nanocrystals: The role of competing energy-loss processes

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, John T.; Padilha, Lazaro A.; Qazilbash, M. M.; Pietryga, Jeffrey M.; Midgett, Aaron G; Luther, Joseph M; Beard, Matthew C; Nozik, Arthur J; Klimov, Victor I.

    2012-02-08

    Infrared band gap semiconductor nanocrystals are promising materials for exploring generation III photovoltaic concepts that rely on carrier multiplication or multiple exciton generation, the process in which a single high-energy photon generates more than one electron–hole pair. In this work, we present measurements of carrier multiplication yields and biexciton lifetimes for a large selection of PbS nanocrystals and compare these results to the well-studied PbSe nanocrystals. The similar bulk properties of PbS and PbSe make this an important comparison for discerning the pertinent properties that determine efficient carrier multiplication. We observe that PbS and PbSe have very similar biexciton lifetimes as a function of confinement energy. Together with the similar bulk properties, this suggests that the rates of multiexciton generation, which is the inverse of Auger recombination, are also similar. The carrier multiplication yields in PbS nanocrystals, however, are strikingly lower than those observed for PbSe nanocrystals. We suggest that this implies the rate of competing processes, such as phonon emission, is higher in PbS nanocrystals than in PbSe nanocrystals. Indeed, our estimations for phonon emission mediated by the polar Fröhlich-type interaction indicate that the corresponding energy-loss rate is approximately twice as large in PbS than in PbSe.

  13. Perimeter Governed Minority Carrier Lifetimes in 4H-SiC p(+)-n Diodes Measured by Reverse Recovery Switching Transient Analysis

    Science.gov (United States)

    Neudeck, Philip G.

    1998-01-01

    Minority carrier lifetimes in epitaxial 4H-SiC p(+)-n junction diodes were measured via an analysis of reverse recovery switching characteristics. Behavior of reverse recovery storage time (t(s)) as a function of initial ON-state forward current (I(F)) and OFF-state reverse current (I(R)) followed well-documented trends which have been observed for decades in silicon p-n rectifiers. Average minority carrier (hole) lifetimes (tau(p)) calculated from plots of t(s) vs I(R)/I(F) strongly decreased with decreasing device area. Bulk and perimeter components of average hole lifetimes were separated by plotting 1/tau(p) as a function of device perimeter-to- area ratio (P/A). This plot reveals that perimeter recombination is dominant in these devices, whose areas are all less than 1 sq mm. The bulk minority carrier (hole) lifetime extracted from the 1/tau(p) vs P/A plot is approximately 0.7 micro-s, well above the 60 ns to 300 ns average iit'eptimes obtained when perimeter recombination effects are ignored in the analysis. Given the fact that there has been little previous investigation of bipolar diode and transistor performance as a function of perimeter-to-area ratio, this work raises the possibility that perimeter recombination may be partly responsible for poor effective minority carrier lifetimes and limited performance obtained in many previous SiC bipolar junction devices.

  14. Eco Issues in Bulk Materials Handling Technologies in Ports

    Directory of Open Access Journals (Sweden)

    Nenad Zrnić

    2011-09-01

    Full Text Available This paper deals with eco issues in bulk materials handling in ports. Solid, free-flowing materials are said to be in bulk. Bulk materials handling is very difficult, because it incorporates all the features of liquids, gasses and mass solids. Energy efficiency, dust emissions in nearby environment, dust explosions, jamming, noise, handling of hazardous materials and protection of materials from contamination are issues that will be considered in this paper. Here are also presented possible solutions for some of these issues

  15. Bulk sound velocity of porous materials at high pressures

    Institute of Scientific and Technical Information of China (English)

    耿华运; 吴强; 谭华; 蔡灵仓; 经福谦

    2002-01-01

    A correction of Walsh's method for bulk sound velocity calculation for shocked porous materials is accomplishedbased on the Wu-Jing thermodynamic equation of state. The corrected bulk velocities for solid and porous sampleswith low porosities are in good agreement with the corresponding experimental data published previously. On the basisof this corrected equation, the influence of thermoelectrons on the bulk velocity of shocked materials is discussed indetail at pressures of 50, 70 and 200 GPa. Some interesting phenomena are revealed, which seem to be the uniquefeatures of a dynamic-pressure-loading process and could not be found in static experiments.

  16. Negative Effects of Sludge Bulking in Membrane Bio-Reactor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; HUANG Zhi; REN Nanqi; MENG Qingjuan

    2006-01-01

    Sludge bulking property of membrane bio-reactor was investigated in this study through contrast research. When the sludge bulking appeared, the removal efficiency of COD in membrane bio-reactor increased slightly through the function of filamentous bacteria. However, the negative effects of the higher net water-head differential pressures, the high block rate of membrane pore and the great quantity of filamentous bacteria at the external surface presented at the same time. Thus, plenty of methods should be performed to control sludge bulking once it happened in membrane bio-reactor.

  17. Optimization and Performance Analysis of Bulk-Driven Differential Amplifier

    Directory of Open Access Journals (Sweden)

    Antarpreet kaur

    2014-04-01

    Full Text Available In recent years, there has been an increasing demand for high-speed digital circuits at low power consumption. This paper presents a design of input stage of Operational Amplifier i.e cascode differential amplifier using a standard 65nm CMOS Technology.A comparison betweem gate-driven, bulk-driven and cascode bulk driven bulk-driven differential amplifier is described. The Results demonstrate that CMMR is 83.98 dB, 3-dB Bandwidth is 1.04 MHz. The circuit dissipate power of 28uWunder single supply of 1.0V.

  18. Alternative technology of nanoparticles consolidation in the bulk material

    Directory of Open Access Journals (Sweden)

    VOLKOV Georgiy Michailovich

    2016-02-01

    Full Text Available Theoretical bases and technological principles of single-stages nanoparticles conso-lidation into bulk material were offered. The theory was implemented on the model system of carbon-carbon in the process of high-temperature pyrolysis of hydrocar-bons. The bulk carbon nanomaterial with unique technical properties was produced. That made it possible to create engineering products which technical characteristics are higher than the existing level in the world. The proposed theory can be adapted to other gas-phase, liquid phase and secondary crystallization processes to create bulk nanomaterials of another chemical composition with no less unique properties.

  19. Control of bulking phenomena and foaming by respirometry; Control del fenomeno bulking y foaming por respirometria

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, E.

    2002-07-01

    The kinetic respirometry may represent an irreplaceable tool for the F/M control and toxicity detection in a waste water treatment plant control. The benefit of the respirometry lies on the fact that when using the genuine activated sludge from the own plant biological reactor, it reflects its current reality. On the other hand, the simplicity of the technique offers its possibility to be incorporated in different types of monitoring and control systems. In addition to a possible out of range dissolved oxygen and pH, the most common cause of the bulking and foaming phenomenon appearance may come from the F/M unbalance and toxicity. The type of respirometry we should make use lies on a kinetic system in where a serie of respiration rates can graphically represent the metabolization process of the organic matter. On this subject, we are utilizing a biological activity parameter figured out from the specific respiration rate Rsp determination. (Author)

  20. Charge-carrier relaxation dynamics in highly ordered poly( p -phenylene vinylene): Effects of carrier bimolecular recombination and trapping

    Science.gov (United States)

    Soci, Cesare; Moses, Daniel; Xu, Qing-Hua; Heeger, Alan J.

    2005-12-01

    We have studied the charge-carrier relaxation dynamics in highly ordered poly( p -phenylene vinylene) over a broad time range using fast (t>100ps) transient photoconductivity measurements. The carrier density was also monitored (t>100fs) by means of photoinduced absorption probed at the infrared active vibrational modes. We find that promptly upon charge-carrier photogeneration, the initial polaron dynamics is governed by bimolecular recombination, while later in the subnanosecond time regime carrier trapping gives rise to an exponential decay of the photocurrent. The more sensitive transient photocurrent measurements indicate that in the low excitation regime, when the density of photocarriers is comparable to that of the trapping states (˜1016cm-3) , carrier hopping between traps along with transport via extended states determines the carrier relaxation, a mechanism that is manifested by a long-lived photocurrent “tail.” This photocurrent tail is reduced by lowering the temperature and/or by increasing the excitation density. Based on these data, we develop a comprehensive kinetic model that takes into account the bipolar charge transport, the free-carrier bimolecular recombination, the carrier trapping, and the carrier recombination involving free and trapped carriers.

  1. The carrier-generating analysis of MEMS gyroscope interface circuit

    Directory of Open Access Journals (Sweden)

    GuangMin Yuan

    2014-03-01

    Full Text Available In this paper, the main factors which influence the noise ratio of gyroscope output signal were analysed, according to the MEMS gyro interface circuit technology. A working principle of a carrier in the gyroscope circuit was discussed, the process formula of the carrier amplitude and frequency in the interface circuit of modulation and demodulation was deduced, and the error components lead-in from carrier to gyroscope circuit was distinguished. Several commonly used carrier-generating circuit schemes were analysed and compared, and a carrier-generating program in the interface circuits of the micro-gyroscope was designed, which was applied in a MEMS gyro developed by our laboratory. The measurement results show that the amplitude stability and frequency stability is 1.3 ppm and 12 ppm, respectively, meeting the performance requirements of carrier generating in the MEMS gyro circuit.

  2. The carrier-generating analysis of MEMS gyroscope interface circuit

    Science.gov (United States)

    Yuan, GuangMin; Yuan, Weizheng; Zhu, Xiaobo; Chang, HongLong

    2014-03-01

    In this paper, the main factors which influence the noise ratio of gyroscope output signal were analysed, according to the MEMS gyro interface circuit technology. A working principle of a carrier in the gyroscope circuit was discussed, the process formula of the carrier amplitude and frequency in the interface circuit of modulation and demodulation was deduced, and the error components lead-in from carrier to gyroscope circuit was distinguished. Several commonly used carrier-generating circuit schemes were analysed and compared, and a carrier-generating program in the interface circuits of the micro-gyroscope was designed, which was applied in a MEMS gyro developed by our laboratory. The measurement results show that the amplitude stability and frequency stability is 1.3 ppm and 12 ppm, respectively, meeting the performance requirements of carrier generating in the MEMS gyro circuit.

  3. Characteristics of participants in a gestational carrier program.

    Science.gov (United States)

    Braverman, A M; Corson, S L

    1992-08-01

    Genetic parents and gestational carriers in our gestational carrier program were evaluated by psychodiagnostic interview and by the Minnesota Multiphasic Personality Interview-2 (MMPI-2), a widely used objective psychological test, to identify psychopathology and describe personality characteristics. Overall, participants exhibited no overt psychopathology. Personality differences were found between gestational carriers and genetic mothers and genetic fathers and mothers. Clinical interviews revealed that gestational carriers tended to be the dominant partner in the relationship, were motivated by a wish to help an infertile couple, enjoyed being pregnant, showed narcissistic needs, and expressed a wish for secondary financial gain. The majority of gestational carriers stated that they had considered becoming a traditional surrogate but felt they could not surrender a child that was genetically theirs. These results indicate that there is not any predisposing psychopathology which attracts participants to the gestational carrier program.

  4. Phonon-assisted coherent control of injected carriers in indirect bandgap semiconductors

    Science.gov (United States)

    Rioux, Julien; Nastos, Fred; Sipe, John E.

    2007-03-01

    Charge and spin currents can be generated in direct semiconductors by quantum interference between one- and two-photon absorption. For semiconductors such as Si and Ge, optical injection of carriers over the indirect bandgap must be assisted by momentum transfer from phonon scattering. We consider the optical properties for such 1+2 photon processes in the presence of the electron-phonon interaction. The latter is modelled by acoustic deformation potential. Indirect transitions involve double Brillouin zone integrations, which are computed by a linearized tetrahedron method. We compare our results to those for bulk GaAs. M.J. Stevens, R.D.R. Bhat, A. Najmaie, H.M. van Driel, J.E. Sipe and A.L. Smirl, in Optics of Semiconductors and Their Nanostructures, edited by H. Kalt and M. Hetterich (Springer, Berlin, 2004), vol. 146 of Springer Series in Solid-State Sciences, p. 209.

  5. On the role of local charge carrier mobility in the charge separation mechanism of organic photovoltaics.

    Science.gov (United States)

    Yoshikawa, Saya; Saeki, Akinori; Saito, Masahiko; Osaka, Itaru; Seki, Shu

    2015-07-21

    Although the charge separation (CS) and transport processes that compete with geminate and non-geminate recombination are commonly regarded as the governing factors of organic photovoltaic (OPV) efficiency, the details of the CS mechanism remain largely unexplored. Here we provide a systematic investigation on the role of local charge carrier mobility in bulk heterojunction films of ten different low-bandgap polymers and polythiophene analogues blended with methanofullerene (PCBM). By correlating with the OPV performances, we demonstrated that the local mobility of the blend measured by time-resolved microwave conductivity is more important for the OPV output than those of the pure polymers. Furthermore, the results revealed two separate trends for crystalline and semi-crystalline polymers. This work offers guidance in the design of high-performance organic solar cells.

  6. Variability of bandgap and carrier mobility caused by edge defects in ultra-narrow graphene nanoribbons

    Science.gov (United States)

    Poljak, M.; Wang, K. L.; Suligoj, T.

    2015-06-01

    We report the results of multi-scale modeling of ultra-narrow graphene nanoribbons (GNRs) that combines atomistic non-equilibrium Green's function (NEGF) approach with semiclassical mobility modeling. The variability of the transport gap and carrier mobility caused by random edge defects is analyzed. We find that the variability increases as the GNR width is downscaled and that even the minimum variation of the total mobility reaches more than 100% compared to average mobility in edge-defected nanoribbons. It is shown that scattering by optical phonons exhibits significantly more variability than the acoustic, line-edge roughness and Coulomb scattering mechanisms. The simulation results demonstrate that sub-5 nm-wide nanoribbons offer no improvement over conventional bulk semiconductors, however, GNRs are comparable with sub-7 nm-thick silicon-on-insulator devices in terms of mobility-bandgap trade-off characteristics.

  7. Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals

    DEFF Research Database (Denmark)

    Falås, Per; Baillon-Dhumez, Aude; Andersen, Henrik Rasmus

    2012-01-01

    Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct...... and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast...

  8. A Multi-Carrier Scheduling Algorithm for LTE-Advanced

    DEFF Research Database (Denmark)

    Vulpe, Alexander; Mihovska, Albena D.; Prasad, Ramjee

    2013-01-01

    LTE-Advanced aims to provide a transmission bandwidth of 100 MHz by using Carrier Aggregation to aggregate LTE Rel. 8 carriers. In order to increase the system capacity, resource allocation becomes a very good tool, and, in the context of the existence of multiple Component Carriers in LTE-Advanc......Net scenario) that respects the 3GPP specifications. Numerical results show that this algorithm has better performances than the traditional Round Robin and Proportionally Fair resource scheduling algorithms....

  9. A Silicon Micromachined Gyroscope Driven by the Rotating Carrier Self

    Institute of Scientific and Technical Information of China (English)

    Fuxue Zhang; Xu Mao; Yu Liu; Nan Zhang; Wei Zhang

    2006-01-01

    This paper reported a silicon micromachined gyroscope which is driven by the rotating carrier's angular velocity, the silicon was manufactured by anisotropy etching. The design, fabrication and packing of the sensing element were introduced in the paper. The imitation experimentation and performance test have certificated that the principle of the gyroscope is correct and the gyroscope can be used to sense yawing or pitching angular velocity of the rotating carrier, and the angular velocity of the rotating carrier itself.

  10. An evaluation of low-cost payload carrier

    Science.gov (United States)

    Yost, V. H.

    1980-01-01

    Payload carrier designed for space vehicles is essentially cargo carrier that supports, positions, and protects various equipment and materials used in conducting experiments in weightless space environment. Proposed carrier entitled Materials Experiment Assembly II (MEA-II) is considered superior to previously developed models in size, weight, and cost to user. Structure is lightweight with insulated exterior and can be custom sized to meet user needs.

  11. Carrier Statistics and Quantum Capacitance Models of Graphene Nanoscroll

    Directory of Open Access Journals (Sweden)

    M. Khaledian

    2014-01-01

    schematic perfect scroll-like Archimedes spiral. The DOS model was derived at first, while it was later applied to compute the carrier concentration and quantum capacitance model. Furthermore, the carrier concentration and quantum capacitance were modeled for both degenerate and nondegenerate regimes, along with examining the effect of structural parameters and chirality number on the density of state and carrier concentration. Latterly, the temperature effect on the quantum capacitance was studied too.

  12. Hot carrier injection degradation under dynamic stress

    Institute of Scientific and Technical Information of China (English)

    Ma Xiao-Hua; Cao Yan-Rong; Hao Yue; Zhang Yue

    2011-01-01

    In this paper, we have studied hot carrier injection (HCI) under alternant stress. Under different stress modes, different degradations are obtained from the experiment results. The different alternate stresses can reduce or enhance the HC effect, which mainly depends on the latter condition of the stress cycle. In the stress mode A (DC stress with electron injection), the degradation keeps increasing. In the stress modes B (DC stress and then stress with the smallest gate injection) and C (DC stress and then stress with hole injection under Vg=0V and Vd = 1.8 V), recovery appears in the second stress period. And in the stress mode D (DC stress and then stress with hole injection under Vg = -1.8 V and Vd = 1.8 V), as the traps filled in by holes can be smaller or greater than the generated interface states, the continued degradation or recovery in different stress periods can be obtained.

  13. Carbon phosphide monolayers with superior carrier mobility

    Science.gov (United States)

    Wang, Gaoxue; Pandey, Ravindra; Karna, Shashi P.

    2016-04-01

    Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics.Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great

  14. Robust GPS carrier tracking under ionospheric scintillation

    Science.gov (United States)

    Susi, M.; Andreotti, M.; Aquino, M. H.; Dodson, A.

    2013-12-01

    Small scale irregularities present in the ionosphere can induce fast and unpredictable fluctuations of Radio Frequency (RF) signal phase and amplitude. This phenomenon, known as scintillation, can degrade the performance of a GPS receiver leading to cycle slips, increasing the tracking error and also producing a complete loss of lock. In the most severe scenarios, if the tracking of multiple satellites links is prevented, outages in the GPS service can also occur. In order to render a GPS receiver more robust under scintillation, particular attention should be dedicated to the design of the carrier tracking stage, that is the receiver's part most sensitive to these types of phenomenon. This paper exploits the reconfigurability and flexibility of a GPS software receiver to develop a tracking algorithm that is more robust under ionospheric scintillation. For this purpose, first of all, the scintillation level is monitored in real time. Indeed the carrier phase and the post correlation terms obtained by the PLL (Phase Locked Loop) are used to estimate phi60 and S4 [1], the scintillation indices traditionally used to quantify the level of phase and amplitude scintillations, as well as p and T, the spectral parameters of the fluctuations PSD. The effectiveness of the scintillation parameter computation is confirmed by comparing the values obtained by the software receiver and the ones provided by a commercial scintillation monitoring, i.e. the Septentrio PolarxS receiver [2]. Then the above scintillation parameters and the signal carrier to noise density are exploited to tune the carrier tracking algorithm. In case of very weak signals the FLL (Frequency Locked Loop) scheme is selected in order to maintain the signal lock. Otherwise an adaptive bandwidth Phase Locked Loop (PLL) scheme is adopted. The optimum bandwidth for the specific scintillation scenario is evaluated in real time by exploiting the Conker formula [1] for the tracking jitter estimation. The performance

  15. Take advantage of your insurance carrier

    Energy Technology Data Exchange (ETDEWEB)

    Carlow, S.M.

    1990-02-01

    The primary objective of the developer of an independent energy facility is to make a profit through the sale of electricity and steam. The most effective way to achieve this objective is to design, build and operate a facility in a way that maximizes its availability and efficiency without increasing expenses. A property carrier has a range of insurance products and engineering services designed not only to transfer risk but to increase availability and efficiency and reduce the cost of operating and maintaining a facility. The independent energy producer can benefit by taking full advantage of traditional and specialty insurance products as well as engineering services that are available today. There is a whole range of insurance products that apply during the various stages of pre-construction, construction, testing and commercial operation, and these are described.

  16. Carrier Induced Magnetism In Correlated Materials

    Science.gov (United States)

    Lee, Byounghak; Trivedi, Nandini; Zhang, Shiwei; Martin, Richard

    2003-03-01

    We study a two dimensional Hubbard model with magnetic impurities using a combination of single particle and quantum Monte Carlo techniques. Our aim is to determine the interaction between magnetic ions in both strongly interacting hosts, such as magnetic perovskites, and weakly interacting hosts, such as magnetic semiconductors. In the first step, the interactions are treated within an inhomogeneous Hartree-Fock approach and self-consistency is demanded at each site, providing a more accurate treatment of disorder effects compared with other mean-field treatments such as virtual crystal and coherent potential approximations. These are then augmented with determinantal quantum Monte Carlo techniques that treat the electron interactions more accurately. We calculate the exchange coupling as a function of the magnetic impurity concentration, the repulsive electron-electron interaction, carrier concentration, and temperature. We compare the calculated local density of states with STM measurements and also obtain the ferromagnetic transition temperature.

  17. Advanced Manufacturing Technologies (AMT): Bulk Metallic Glass Element

    Data.gov (United States)

    National Aeronautics and Space Administration — The first major objective of the ‘Bulk Metallic Glasses (BMGs) for Space Applications’ project is to raise the technology readiness level dry lubricated,...

  18. Bulk metallic glasses: A new class of engineering materials

    Indian Academy of Sciences (India)

    Joysurya Basu; S Ranganathan

    2003-06-01

    Bulk glass-forming alloys have emerged over the past fifteen years with attractive properties and technological promise. A number of alloy systems based on lanthanum, magnesium, zirconium, palladium, iron, cobalt and nickel have been discovered. Glass-forming ability depends on various factors like enthalpy of mixing, atomic size and multicomponent alloying. A number of processes is available to synthesise bulk metallic glasses. The crystallisation behaviour and mechanical properties of these alloys pose interesting scientific questions. Upon crystallisation many of these glasses transform to bulk nanocrystals and nanoquasicrystals. A detailed study of the structure and the crystallisation behaviour of glasses has enabled the elucidation of the possible atomic configuration in liquid alloys. Their crystallisation behaviour can be exploited to synthesise novel nanocomposite microstructures and their mechanical properties can be enhanced. A broad overview of the present status of the science and technology of bulk metallic glasses and their potential technological uses is presented.

  19. 27 CFR 19.588 - Construction of bulk conveyances.

    Science.gov (United States)

    2010-04-01

    ... compartment) shall be so arranged that it can be completely drained. (3) Each tank car or tank truck shall... device, for carrying required marks or brands shall be provided on each bulk conveyance. (6)...

  20. Nondestructive Method for Bulk Chemical Characterization of Barred Olivine Chondrules

    Science.gov (United States)

    Montoya-Perez, M. A.; Cervantes-de la Cruz, K. E.; Ruvalcaba-Sil, J. L.

    2017-02-01

    This work develops a bulk chemical characterization of barred olivine chondrules based on the XRF analysis using a portable equipment at the National Research and Conservation Science Laboratory of Cultural Heritage (LANCIC-IF) in Mexico City.

  1. Bulk modification of PDMS microchips by an amphiphilic copolymer.

    Science.gov (United States)

    Xiao, Yan; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A simple and rapid bulk-modification method based on adding an amphiphilic copolymer during the fabrication process was employed to modify PDMS microchips. Poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) was used as the additive substance. Compared to the native PDMS microchips, both the contact angle and the EOF of the bulk-modified PDMS microchips decreased. The effects of the additive loading and the pH on the EOF were investigated in detail. The bulk-modified PDMS microchips exhibited reproducible and stable EOF behavior. The application of the bulk-modified PDMS microchips was also studied and the results indicated that they could be successfully used to separate amino acids and to suppress protein adsorption.

  2. Bulk Viscosity Effects in Event-by-Event Relativistic Hydrodynamics

    CERN Document Server

    Noronha-Hostler, Jacquelyn; Noronha, Jorge; Andrade, Rone P G; Grassi, Frederique

    2013-01-01

    Bulk viscosity effects on the collective flow harmonics in heavy ion collisions are investigated, on an event by event basis, using a newly developed 2+1 Lagrangian hydrodynamic code named v-USPhydro which implements the Smoothed Particle Hydrodynamics (SPH) algorithm for viscous hydrodynamics. A new formula for the bulk viscous corrections present in the distribution function at freeze-out is derived starting from the Boltzmann equation for multi-hadron species. Bulk viscosity is shown to enhance the collective flow Fourier coefficients from $v_2(p_T)$ to $v_5(p_T)$ when $% p_{T}\\sim 1-3$ GeV even when the bulk viscosity to entropy density ratio, $% \\zeta/s$, is significantly smaller than $1/(4\\pi)$.

  3. Bulk metallic glass for low noise fluxgate Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The team of Prime Photonics, Virginia Tech, and Utron Kinetics propose to demonstrate a method for fabrication of a bulk, amorphous, cobalt-rich material that...

  4. Solidex 84 - modern technology in bulk solids handling

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Proceedings from Conference on solids handling. Sections which are of interest include coal and ash handling, and flow problems and explosion hazards in bulk handling plant. 14 papers have been abstracted separately.

  5. Obstacle avoidance and path planning for carrier aircraft launching

    Directory of Open Access Journals (Sweden)

    Wu Yu

    2015-06-01

    Full Text Available Launching safety and efficiency are important indexes to measure the fighting capacity of carrier. The study on path planning for taxi of carrier aircraft launching under actual deck environment is of great significance. In actual deck scheduling, manual command is applied to taxi of carrier aircraft, which has negative effects on the safety of staff and carrier aircraft launching. In consideration of both the safety and efficiency of carrier aircraft launching, the key elements of the problem are abstracted based on the analysis of deck environment, carrier aircraft maneuver performance and task requirements. According to the problem description, the mathematical model is established including various constraints. The carrier aircraft and the obstacles are reasonably simplified as circle and polygons respectively. What’s more, the proposed collision detection model reduces the calculations. Aimed at the features of model, the theory of model predictive control (MPC is applied to the path search. Then a dynamic weight heuristic function is designed and a dynamic multistep optimization algorithm is proposed. Taking the Nimitz-class aircraft carrier as an example, the paths from parking place to catapult are planned, which indicate the rationality of the model and the effectiveness of the algorithm by comparing the planning results under different simulation environments. The main contribution of research is the establishment of obstacle avoidance and path planning model. In addition, it provides the solution of model and technological foundations for comprehensive command and real-time decision-making of the carrier aircraft.

  6. Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

    2009-09-01

    Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

  7. Alternative technology of nanoparticles consolidation in the bulk material

    OpenAIRE

    VOLKOV Georgiy Michailovich

    2016-01-01

    Theoretical bases and technological principles of single-stages nanoparticles conso-lidation into bulk material were offered. The theory was implemented on the model system of carbon-carbon in the process of high-temperature pyrolysis of hydrocar-bons. The bulk carbon nanomaterial with unique technical properties was produced. That made it possible to create engineering products which technical characteristics are higher than the existing level in the world. The proposed theory can be ada...

  8. LHC signatures of vector boson emission from brane to bulk

    CERN Document Server

    Kirpichnikov, D V

    2012-01-01

    In the framework of the RSII-n model with n compact and one infinite extra dimensions, we study the production of Z-bosons and photons, which escape into the bulk, in association with a jet in pp collisions at the LHC energies. This would show up as the process pp -> jet+bulk. We calculate the distributions in the jet transverse momentum and rapidity and compare them with the Standard Model background pp->jet +\

  9. Dirac Fermions without bulk backscattering in rhombohedral topological insulators

    Science.gov (United States)

    Mera Acosta, Carlos; Lima, Matheus; Seixas, Leandro; da Silva, Antônio; Fazzio, Adalberto

    2015-03-01

    The realization of a spintronic device using topological insulators is not trivial, because there are inherent difficulties in achieving the surface transport regime. The majority of 3D topological insulators materials (3DTI) despite of support helical metallic surface states on an insulating bulk, forming topological Dirac fermions protected by the time-reversal symmetry, exhibit electronic scattering channels due to the presence of residual continuous bulk states near the Dirac-point. From ab initio calculations, we studied the microscopic origin of the continuous bulk states in rhombohedral topological insulators materials with the space group D3d 5 (R 3 m) , showing that it is possible to understand the emergence of residual continuous bulk states near the Dirac-point into a six bands effective model, where the breaking of the R3 symmetry beyond the Γ point has an important role in the hybridization of the px, py and pz atomic orbitals. Within these model, the mechanisms known to eliminate the bulk scattering, for instance: the stacking faults (SF), electric field and alloy, generated the similar effect in the effective states of the 3DTI. Finally, we show how the surface electronic transport is modified by perturbations of bulk with SF. We would like to thank the financial support by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

  10. Bulk flow of halos in $\\Lambda$CDM simulation

    CERN Document Server

    Li, Ming; Gao, Liang; Jing, Yipeng; Yang, Xiaohu; Chi, Xuebin; Feng, Longlong; Kang, Xi; Lin, Weipeng; Shang, Guihua; Wang, Long; Zhao, Donghai; Zhang, Pengjie

    2012-01-01

    Analysis of the Pangu N-body simulation validates that bulk flow of halos follows Maxwellian distribution of which variance is consistent with prediction of linear perturbation theory of structure formation. We propose that consistency between observed bulk velocity and theories shall be examined at the effective scale as radius of spherical top-hat window function yielding the same smoothed velocity variance in linear theory as the sample window does. Then we compared some recently estimated bulk flows from observational samples with prediction of the $\\Lambda$CDM model we used, some results deviate the expectation at level of $\\sim 3\\sigma$ but the tension is not as severe as previously claimed. We disclose that bulk flow is weakly correlated with dipole of internal mass distribution, alignment angle between mass dipole and bulk flow has broad distribution but is peaked at $\\sim 30-50^\\circ$, meanwhile bulk flow shows little dependence on mass of halos used for estimation. In the simulation of box size $1h^...

  11. Correlation between nanoscale surface potential and power conversion efficiency of P3HT/TiO2 nanorod bulk heterojunction photovoltaic devices.

    Science.gov (United States)

    Wu, Ming-Chung; Wu, Yi-Jen; Yen, Wei-Che; Lo, Hsi-Hsing; Lin, Ching-Fuh; Su, Wei-Fang

    2010-08-01

    This is an in depth study on the surface potential changes of P3HT/TiO(2) nanorod bulk heterojunction thin films. They are affected by interlayer structures, the molecular weight of P3HT, the processing solvents and the surface ligands on the TiO(2). The addition of an electron blocking layer and/or the hole blocking layer to the P3HT/TiO(2) thin film can facilitate charge carrier transport and result in a high surface potential shift. The changes in surface potential of multilayered bulk heterojunction films are closely correlated to their power conversion efficiency of photovoltaic devices. Changing ligand leads to the largest change in surface potential yielding the greatest effect on the power conversion efficiency. Merely changing the P3HT molecular weight is less effective and varying the processing solvents is least effective in increasing power conversion efficiency. The steric effect of the ligand has a large influence on the reduction of charge carrier recombination resulting in a great effect on the power conversion efficiency. By monitoring the changes in the surface potential of bulk heterojunction film of multilayer structures, we have obtained a useful guide for the fabrication of high performance photovoltaic devices.

  12. Control of polythiophene film microstructure and charge carrier dynamics through crystallization temperature

    KAUST Repository

    Marsh, Hilary S.

    2014-03-22

    The microstructure of neat conjugated polymers is crucial in determining the ultimate morphology and photovoltaic performance of polymer/fullerene blends, yet until recently, little work has focused on controlling the former. Here, we demonstrate that both the long-range order along the (100)-direction and the lamellar crystal thickness along the (001)-direction in neat poly(3-hexylthiophene) (P3HT) and poly[(3,3″-didecyl[2,2′:5′, 2″-terthiophene]-5,5″-diyl)] (PTTT-10) thin films can be manipulated by varying crystallization temperature. Changes in crystalline domain size impact the yield and dynamics of photogenerated charge carriers. Time-resolved microwave conductivity measurements show that neat polymer films composed of larger crystalline domains have longer photoconductance lifetimes and charge carrier yield decreases with increasing crystallite size for P3HT. Our results suggest that the classical polymer science description of temperature-dependent crystallization of polymers from solution can be used to understand thin-film formation in neat conjugated polymers, and hence, should be considered when discussing the structural evolution of organic bulk heterojunctions. © 2014 Wiley Periodicals, Inc.

  13. Charge Carrier Transport and Photogeneration in P3HT:PCBM Photovoltaic Blends

    KAUST Repository

    Laquai, Frederic

    2015-05-03

    This article reviews the charge transport and photogeneration in bulk-heterojunction solar cells made from blend films of regioregular poly(3-hexylthiophene) (RR-P3HT) and methano­fullerene (PCBM). The charge transport, specifically the hole mobility in the RR-P3HT phase of the polymer:fullerene photovoltaic blend, is dramatically affected by thermal annealing. The hole mobility increases more than three orders of magnitude and reaches a value of up to 2 × 10−4 cm2 V−1 s−1 after the thermal annealing process as a result of an improved semi-crystallinity of the film. This significant increase of the hole mobility balances the electron and hole mobilities in a photovoltaic blend in turn reducing space-charge formation, and this is the most important factor for the strong enhancement of the photovoltaic efficiency compared to an as cast, that is, non-annealed device. In fact, the balanced charge carrier mobility in RR-P3HT:PCBM blends in combination with a field- and temperature-independent charge carrier generation and greatly reduced non-geminate recombination explains the large quantum efficiencies mea­sured in P3HT:PCBM photovoltaic devices.

  14. Charge trapping and carrier transport mechanism in silicon-rich silicon oxynitride

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhenrui [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico)]. E-mail: yinaoep@yahoo.mx; Aceves, Mariano [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico); Carrillo, Jesus [CIDS, BUAP, Puebla, Pue. (Mexico); Lopez-Estopier, Rosa [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico)

    2006-12-05

    The charge-trapping and carrier transport properties of silicon-rich silicon oxynitride (SRO:N) were studied. The SRO:N films were deposited by low pressure chemical vapor deposition. Infrared (IR) and transmission electron microscopic (TEM) measurements were performed to characterize their structural properties. Capacitance versus voltage and current versus voltage measurements (I-V) were used to study the charge-trapping and carrier transport mechanism. IR and TEM measurements revealed the existence of Si nanodots in SRO:N films. I-V measurements revealed that there are two conduction regimes divided by a threshold voltage V {sub T}. When the applied voltage is smaller than V {sub T}, the current is dominated by the charge transfer between the SRO:N and substrate; and in this regime only dynamic charging/discharging of the SRO:N layer is observed. When the voltage is larger than V {sub T}, the current increases rapidly and is dominated by the Poole-Frenkel mechanism; and in this regime, large permanent trapped charge density is obtained. Nitrogen incorporation significantly reduced the silicon nanodots or defects near the SRO:N/Si interface. However, a significant increase of the density of silicon nanodot in the bulk of the SRO:N layer is obtained.

  15. Heterogeneous nucleation promotes carrier transport in solution-processed organic field-effect transistors

    KAUST Repository

    Li, Ruipeng

    2012-09-04

    A new way to investigate and control the growth of solution-cast thin films is presented. The combination of in situ quartz crystal microbalance measurements with dissipation capabilities (QCM-D) and in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) in an environmental chamber provides unique quantitative insights into the time-evolution of the concentration of the solution, the onset of nucleation, and the mode of growth of the organic semiconductor under varied drying conditions. It is demonstrated that careful control over the kinetics of solution drying enhances carrier transport significantly by promoting phase transformation predominantly via heterogeneous nucleation and sustained surface growth of a highly lamellar structure at the solid-liquid interface at the expense of homogeneous nucleation. A new way to investigate and control the growth of drop-cast thin films is presented. The solution-processing of small-molecule thin films of TIPS-pentacene is investigated using time-resolved techniques to reveal the mechanisms of nucleation and growth leading to solid film formation. By tuning the drying speed of the solution, the balance between surface and bulk growth modes is altered, thereby controlling the lamellar formation and tuning the carrier mobility in organic field-effect transistors Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electron field emission from wide bandgap semiconductors under intervalley carrier redistribution

    Science.gov (United States)

    Litovchenko, V.; Grygoriev, A.; Evtukh, A.; Yilmazoglu, O.; Hartnagel, H. L.; Pavlidis, D.

    2009-11-01

    Electron field emission phenomena from semiconductors (and, in particular, wide band gap materials) are analyzed theoretically for the general case, i.e., by taking into consideration aspects that have not been considered earlier such as two (or more) valleys of the energy band structure, nondegenerated statistics for the free electrons, heating of conduction band electrons, intervalley carrier redistribution under applied electrical fields, size quantization of electron band spectra, and change in the field emission characteristics. Comparisons with experiments performed on the highly structured (micro- and nano) surfaces of the GaN wide bandgap semiconductor have been made. The influence of the above factors on the current-voltage Fowler-Nordheim characteristics was demonstrated by theory and experiment. From theoretical and experimental results the intervalley energy difference (ΔE) for GaN quantum-sized cathodes was estimated to be 0.8 eV, which is considerably less than that predicted for bulk semiconductor (ΔE =1.2-1.5 eV). Furthermore the field emission currents were several orders higher than for bulk material. This is in good agreement with the prediction of the proposed theoretical model.

  17. Utilizing Energy Transfer in Binary and Ternary Bulk Heterojunction Organic Solar Cells.

    Science.gov (United States)

    Feron, Krishna; Cave, James M; Thameel, Mahir N; O'Sullivan, Connor; Kroon, Renee; Andersson, Mats R; Zhou, Xiaojing; Fell, Christopher J; Belcher, Warwick J; Walker, Alison B; Dastoor, Paul C

    2016-08-17

    Energy transfer has been identified as an important process in ternary organic solar cells. Here, we develop kinetic Monte Carlo (KMC) models to assess the impact of energy transfer in ternary and binary bulk heterojunction systems. We used fluorescence and absorption spectroscopy to determine the energy disorder and Förster radii for poly(3-hexylthiophene-2,5-diyl), [6,6]-phenyl-C61-butyric acid methyl ester, 4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl]squaraine (DIBSq), and poly(2,5-thiophene-alt-4,9-bis(2-hexyldecyl)-4,9-dihydrodithieno[3,2-c:3',2'-h][1,5]naphthyridine-5,10-dione). Heterogeneous energy transfer is found to be crucial in the exciton dissociation process of both binary and ternary organic semiconductor systems. Circumstances favoring energy transfer across interfaces allow relaxation of the electronic energy level requirements, meaning that a cascade structure is not required for efficient ternary organic solar cells. We explain how energy transfer can be exploited to eliminate additional energy losses in ternary bulk heterojunction solar cells, thus increasing their open-circuit voltage without loss in short-circuit current. In particular, we show that it is important that the DIBSq is located at the electron donor-acceptor interface; otherwise charge carriers will be trapped in the DIBSq domain or excitons in the DIBSq domains will not be able to dissociate efficiently at an interface. KMC modeling shows that only small amounts of DIBSq (energy transfer.

  18. Characterization of the "Escherichia Coli" Acyl Carrier Protein Phosphodiesterase

    Science.gov (United States)

    Thomas, Jacob

    2009-01-01

    Acyl carrier protein (ACP) is a small essential protein that functions as a carrier of the acyl intermediates of fatty acid synthesis. ACP requires the posttranslational attachment of a 4'phosphopantetheine functional group, derived from CoA, in order to perform its metabolic function. A Mn[superscript 2+] dependent enzymatic activity that removes…

  19. Proposal for tutorial: Resilience in carrier Ethernet transport

    DEFF Research Database (Denmark)

    Berger, Michael Stübert; Wessing, Henrik; Ruepp, Sarah Renée

    2009-01-01

    This tutorial addresses how Carrier Ethernet technologies can be used in the transport network to provide resilience to the packet layer. Carrier Ethernet networks based on PBB-TE and T-MPLS/MPLS-TP are strong candidates for reliable transport of triple-play services. These technologies offer...

  20. Screening in crystalline liquids protects energetic carriers in hybrid perovskites

    Science.gov (United States)

    Zhu, Haiming; Miyata, Kiyoshi; Fu, Yongping; Wang, Jue; Joshi, Prakriti P.; Niesner, Daniel; Williams, Kristopher W.; Jin, Song; Zhu, X.-Y.

    2016-09-01

    Hybrid lead halide perovskites exhibit carrier properties that resemble those of pristine nonpolar semiconductors despite static and dynamic disorder, but how carriers are protected from efficient scattering with charged defects and optical phonons is unknown. Here, we reveal the carrier protection mechanism by comparing three single-crystal lead bromide perovskites: CH3NH3PbBr3, CH(NH2)2PbBr3, and CsPbBr3. We observed hot fluorescence emission from energetic carriers with ~102-picosecond lifetimes in CH3NH3PbBr3 or CH(NH2)2PbBr3, but not in CsPbBr3. The hot fluorescence is correlated with liquid-like molecular reorientational motions, suggesting that dynamic screening protects energetic carriers via solvation or large polaron formation on time scales competitive with that of ultrafast cooling. Similar protections likely exist for band-edge carriers. The long-lived energetic carriers may enable hot-carrier solar cells with efficiencies exceeding the Shockley-Queisser limit.

  1. Cardiac involvement in carriers of Duchenne and Becker muscular dystrophy

    NARCIS (Netherlands)

    Hoogerwaard, EM; van der Wouw, PA; Wilde, AAM; Bakker, E; Ippel, PF; Oosterwijk, JC; Majoor-Krakauer, DF; van Essen, AJ; Leschot, NJ; de Visser, M

    1999-01-01

    A cross-sectional study in a cohort of DNA proven carriers of Duchenne (DMD) and Becker (BMD) muscular dystrophy was undertaken with the following objectives: (1) to estimate the frequency of electrocardiographic (ECG) and echocardiographic abnormalities; (2) to establish the proportion of carriers

  2. Carriers of foot-and-mouth disease virus: a review

    NARCIS (Netherlands)

    Moonen, P.; Schrijver, R.

    2000-01-01

    This review describes current knowledge about persistent foot-and-mouth disease virus (FMDV) infections, the available methods to detect carrier animals, the properties of persisting virus, the immunological mechanisms, and the risk of transmission. In particular, knowledge about the carrier state,

  3. Spread Spectrum Modulation by Using Asymmetric-Carrier Random PWM

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Lungeanu, Florin; Sera, Dezso;

    2012-01-01

    This paper presents a new fixed carrier frequency random PWM method, where a new type of carrier wave is proposed for modulation. Based on simulations and experimental measurements, it is shown that the spread effect of the discrete components from the motor current spectra and acoustic spectra i...

  4. Joint Iterative Carrier Synchronization and Signal Detection Employing Expectation Maximization

    DEFF Research Database (Denmark)

    Zibar, Darko; de Carvalho, Luis Henrique Hecker; Estaran Tolosa, Jose Manuel

    2014-01-01

    In this paper, joint estimation of carrier frequency, phase, signal means and noise variance, in a maximum likelihood sense, is performed iteratively by employing expectation maximization. The parameter estimation is soft decision driven and allows joint carrier synchronization and data detection...

  5. Tracking Ultrafast Carrier Dynamics in Single Semiconductor Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Taylor A.J.

    2013-03-01

    Full Text Available An understanding of non-equilibrium carrier dynamics in silicon (Si nanowires (NWs and NW heterostructures is very important due to their many nanophotonic and nanoelectronics applications. Here, we describe the first measurements of ultrafast carrier dynamics and diffusion in single heterostructured Si nanowires, obtained using ultrafast optical microscopy. By isolating individual nanowires, we avoid complications resulting from the broad size and alignment distribution in nanowire ensembles, allowing us to directly probe ultrafast carrier dynamics in these quasi-one-dimensional systems. Spatially-resolved pump-probe spectroscopy demonstrates the influence of surface-mediated mechanisms on carrier dynamics in a single NW, while polarization-resolved femtosecond pump-probe spectroscopy reveals a clear anisotropy in carrier lifetimes measured parallel and perpendicular to the NW axis, due to density-dependent Auger recombination. Furthermore, separating the pump and probe spots along the NW axis enabled us to track space and time dependent carrier diffusion in radial and axial NW heterostructures. These results enable us to reveal the influence of radial and axial interfaces on carrier dynamics and charge transport in these quasi-one-dimensional nanosystems, which can then be used to tailor carrier relaxation in a single nanowire heterostructure for a given application.

  6. AQUASOMES: A NOVEL CARRIER FOR DRUG DELIVERY

    Directory of Open Access Journals (Sweden)

    Vishal Sutariya

    2012-03-01

    Full Text Available Nanobiopharmaceutics involves delivery of biopharmaceutical product through different biomaterials like multifunctional nanoparticles, quantum dots, aquasomes, superparamagnetic iron oxide crystals, and liposomes dendrimers. Nanotechnology has emerged fields of biomedical research in the last few decades the presents context is an attempt to present the brief information about nanobiotechnological applications. Aquasomes are nanoparticulate carrier system but instead of being simple nanoparticles these arse three layered self assembled structures, comprised of a solid phase nanocrystalline core coated with oligomeric film to which biochemically active molecules are adsorbed with or without modification. Aquasomes are spherical 60–300 nm particles used for drug and antigen delivery. Aquasomes discovery comprises a principle from microbiology, food chemistry, biophysics and many discoveries including solid phase synthesis, supramolecular chemistry, molecular shape change and self assembly. Three types of core materials are mainly used for producing aquasomes: tin oxide, nanocrystalline carbon ceramics (diamonds and brushite (calcium phosphate dihydrate. Calcium phosphate is the core of interest, owing to its natural presence in the body. The brushite is unstable and converts to hydroxyapatite upon prolong storage. Hydroxyapatite seems, therefore, a better core for the preparation of aquasomes. It is widely used for the preparation of implants for drug delivery. The solid core provides the structural stability, while the carbohydrate coating protects against dehydration and stabilizes the biochemically active molecules. This property of maintaining the conformational integrity of bioactive molecules has led to the proposal that aquasomes have potential as a carrier system for delivery of peptide, protein, hormones, antigens and genes to specific sites. Aquasome deliver their content through specific targeting, molecular sheiling and slow

  7. Experimental and Ab Initio Ultrafast Carrier Dynamics in Plasmonic Nanoparticles

    Science.gov (United States)

    Brown, Ana M.; Sundararaman, Ravishankar; Narang, Prineha; Schwartzberg, Adam M.; Goddard, William A.; Atwater, Harry A.

    2017-02-01

    Ultrafast pump-probe measurements of plasmonic nanostructures probe the nonequilibrium behavior of excited carriers, which involves several competing effects obscured in typical empirical analyses. Here we present pump-probe measurements of plasmonic nanoparticles along with a complete theoretical description based on first-principles calculations of carrier dynamics and optical response, free of any fitting parameters. We account for detailed electronic-structure effects in the density of states, excited carrier distributions, electron-phonon coupling, and dielectric functions that allow us to avoid effective electron temperature approximations. Using this calculation method, we obtain excellent quantitative agreement with spectral and temporal features in transient-absorption measurements. In both our experiments and calculations, we identify the two major contributions of the initial response with distinct signatures: short-lived highly nonthermal excited carriers and longer-lived thermalizing carriers.

  8. Experimental and ab initio ultrafast carrier dynamics in plasmonic nanoparticles

    CERN Document Server

    Brown, Ana M; Narang, Prineha; Schwartzberg, Adam M; Goddard, William A; Atwater, Harry A

    2016-01-01

    Ultrafast pump-probe measurements of plasmonic nanostructures probe the non-equilibrium behavior of excited carriers, which involves several competing effects obscured in typical empirical analyses. Here we present pump-probe measurements of plasmonic nanoparticles along with a complete theoretical description based on first-principles calculations of carrier dynamics and optical response, free of any fitting parameters. We account for detailed electronic-structure effects in the density of states, excited carrier distributions, electron-phonon coupling, and dielectric functions which allow us to avoid effective electron temperature approximations. Using this calculation method, we obtain excellent quantitative agreement with spectral and temporal features in transient-absorption measurements. In both our experiments and calculations, we identify the two major contributions of the initial response with distinct signatures: short-lived highly non-thermal excited carriers and longer-lived thermalizing carriers.

  9. Charge carrier coherence and Hall effect in organic semiconductors.

    Science.gov (United States)

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  10. Carrier-dependent temporal processing in an auditory interneuron.

    Science.gov (United States)

    Sabourin, Patrick; Gottlieb, Heather; Pollack, Gerald S

    2008-05-01

    Signal processing in the auditory interneuron Omega Neuron 1 (ON1) of the cricket Teleogryllus oceanicus was compared at high- and low-carrier frequencies in three different experimental paradigms. First, integration time, which corresponds to the time it takes for a neuron to reach threshold when stimulated at the minimum effective intensity, was found to be significantly shorter at high-carrier frequency than at low-carrier frequency. Second, phase locking to sinusoidally amplitude modulated signals was more efficient at high frequency, especially at high modulation rates and low modulation depths. Finally, we examined the efficiency with which ON1 detects gaps in a constant tone. As reflected by the decrease in firing rate in the vicinity of the gap, ON1 is better at detecting gaps at low-carrier frequency. Following a gap, firing rate increases beyond the pre-gap level. This "rebound" phenomenon is similar for low- and high-carrier frequencies.

  11. Bombarding Cancer: Biolistic Delivery of therapeutics using Porous Si Carriers

    Science.gov (United States)

    Zilony, Neta; Tzur-Balter, Adi; Segal, Ester; Shefi, Orit

    2013-08-01

    A new paradigm for an effective delivery of therapeutics into cancer cells is presented. Degradable porous silicon carriers, which are tailored to carry and release a model anti-cancer drug, are biolistically bombarded into in-vitro cancerous targets. We demonstrate the ability to launch these highly porous microparticles by a pneumatic capillary gene gun, which is conventionally used to deliver cargos by heavy metal carriers. By optimizing the gun parameters e.g., the accelerating gas pressure, we have successfully delivered the porous carriers, to reach deep targets and to cross a skin barrier in a highly spatial resolution. Our study reveals significant cytotoxicity towards the target human breast carcinoma cells following the delivery of drug-loaded carriers, while administrating empty particles results in no effect on cell viability. The unique combination of biolistics with the temporal control of payload release from porous carriers presents a powerful and non-conventional platform for designing new therapeutic strategies.

  12. Nonequilibrium carrier dynamics in transition metal dichalcogenide semiconductors

    Science.gov (United States)

    Steinhoff, A.; Florian, M.; Rösner, M.; Lorke, M.; Wehling, T. O.; Gies, C.; Jahnke, F.

    2016-09-01

    When exploring new materials for their potential in (opto)electronic device applications, it is important to understand the role of various carrier interaction and scattering processes. In atomically thin transition metal dichalcogenide semiconductors, the Coulomb interaction is known to be much stronger than in quantum wells of conventional semiconductors like GaAs, as witnessed by the 50 times larger exciton binding energy. The question arises, whether this directly translates into equivalently faster carrier-carrier Coulomb scattering of excited carriers. Here we show that a combination of ab initio band-structure and many-body theory predicts Coulomb-mediated carrier relaxation on a sub-100 fs time scale for a wide range of excitation densities, which is less than an order of magnitude faster than in quantum wells.

  13. Clinical disease presentation and ECG characteristics of LMNA mutation carriers

    Science.gov (United States)

    Ollila, Laura; Nikus, Kjell; Holmström, Miia; Jalanko, Mikko; Jurkko, Raija; Kaartinen, Maija; Koskenvuo, Juha; Kuusisto, Johanna; Kärkkäinen, Satu; Palojoki, Eeva; Reissell, Eeva; Piirilä, Päivi; Heliö, Tiina

    2017-01-01

    Objective Mutations in the LMNA gene encoding lamins A and C of the nuclear lamina are a frequent cause of cardiomyopathy accounting for 5–8% of familial dilated cardiomyopathy (DCM). Our aim was to study disease onset, presentation and progression among LMNA mutation carriers. Methods Clinical follow-up data from 27 LMNA mutation carriers and 78 patients with idiopathic DCM without an LMNA mutation were collected. In addition, ECG data were collected and analysed systematically from 20 healthy controls. Results Kaplan-Meier analysis revealed no difference in event-free survival (death, heart transplant, resuscitation and appropriate implantable cardioverter-defibrillator therapy included as events) between LMNA mutation carriers and DCM controls (p=0.5). LMNA mutation carriers presented with atrial fibrillation at a younger age than the DCM controls (47 vs 57 years, p=0.003). Male LMNA mutation carriers presented with clinical manifestations roughly a decade earlier than females. In close follow-up non-sustained ventricular tachycardia was detected in 78% of LMNA mutation carriers. ECG signs of septal remodelling were present in 81% of the LMNA mutation carriers, 21% of the DCM controls and none of the healthy controls giving a high sensitivity and specificity for the standard ECG in distinguishing LMNA mutation carriers from patients with DCM and healthy controls. Conclusions Male LMNA mutation carriers present clinical manifestations at a younger age than females. ECG septal remodelling appears to distinguish LMNA mutation carriers from healthy controls and patients with DCM without LMNA mutations. PMID:28123761

  14. Natural off-stoichiometry causes carrier doping in half-Heusler filled tetrahedral structures

    Science.gov (United States)

    Yu, Yonggang G.; Zhang, Xiuwen; Zunger, Alex

    2017-02-01

    The half-Heusler filled tetrahedral structures (FTSs) are zinc-blende-like compounds, where an additional atom is filling its previously empty interstitial site. The FTSs having 18 valence electrons per formula unit are an emerging family of functional materials, whose intrinsic doping trends underlying a wide range of electronic functionalities are yet to be understood. Interestingly, even pristine compounds without any attempt at impurity/chemical doping exhibit intriguing trends in the free carriers they exhibit. Applying the first principles theory of doping to a few prototype compounds in the AIVBXCIV and AIVBIXCV groups, we describe the key ingredients controlling the materials' propensity for both intrinsic and extrinsic doping: (a) The spontaneous deviations from 1:1:1 stoichiometry reflect predictable thermodynamic stability of specific competing phases. (b) Bulk ABC compounds containing 3 d elements in the B position (ZrNiSn and ZrCoSb) are predicted to be naturally 3 d rich. The B =3 d interstitials are the prevailing shallow donors, whereas the potential acceptors (e.g., Zr vacancy and Sn-on-Zr antisite) are ineffective electron killers, resulting in an overall uncompensated n -type character, even without any chemical doping. In these materials, the band edges are "natural impurity bands" due to non-Daltonian off-stoichiometry, such as B interstitials, not intrinsic bulk controlled states as in a perfect crystal. (c) Bulk ABC compounds containing 5 d elements in the B position (ZrPtSn, ZrIrSb, and TaIrGe) are predicted to be naturally C rich and A poor. This promotes the hole-producing C -on-A antisite defects rather than B -interstitial donors. The resultant p -type character (without chemical doping) therein is "latent" for C =Sn and Sb; however, as the C -on-A hole-producing acceptors are rather deep and p typeness is manifest only at high temperature or via impurity doping. In contrast, in TaIrGe (B =Ir , 5 d ) , the prevailing hole-producing Ge

  15. Dark goo: Bulk viscosity as an alternative to dark energy

    CERN Document Server

    Gagnon, Jean-Sebastien

    2011-01-01

    We present a simple (microscopic) model in which bulk viscosity plays a role in explaining the present acceleration of the universe. The effect of bulk viscosity on the Friedmann equations is to turn the pressure into an "effective" pressure containing the bulk viscosity. For a sufficiently large bulk viscosity, the effective pressure becomes negative and could mimic a dark energy equation of state. Our microscopic model includes self-interacting spin-zero particles (for which the bulk viscosity is known) that are added to the usual energy content of the universe. We study both background equations and linear perturbations in this model. We show that a dark energy behavior is obtained for reasonable values of the two parameters of the model (i.e. the mass and coupling of the spin-zero particles) and that linear perturbations are well-behaved. There is no apparent fine tuning involved. We also discuss the conditions under which hydrodynamics holds, in particular that the spin-zero particles must be in local eq...

  16. Thermoplastic Micro-Forming of Bulk Metallic Glasses: A Review

    Science.gov (United States)

    Li, Ning; Chen, Wen; Liu, Lin

    2016-04-01

    Bulk metallic glasses are a fascinating class of metallic alloys with an isotropic amorphous structure that is rapidly quenched from liquid melts. The absence of a crystalline micro-structure endows them with a portfolio of properties such as high strength, high elasticity, and excellent corrosion resistance. Whereas the limited plasticity and hence poor workability at ambient temperature impede the structural application of bulk metallic glasses, the unique superplasticity within the supercooled liquid region opens an alternative window of so-called thermoplastic forming, which allows precise and versatile net-shaping of complex geometries on length scales ranging from nanometers to centimeters that were previously unachievable with conventional crystalline metal processing. Thermoplastic forming not only breaks through the bottleneck of the manufacture of bulk metallic glasses at ambient temperature but also offers an alluring prospect in micro-engineering applications. This paper comprehensively reviews some pivotal aspects of bulk metallic glasses during thermoplastic micro-forming, including an in-depth understanding of the crystallization kinetics of bulk metallic glasses and the thermoplastic processing time window, the thermoplastic forming map that clarifies the relationship between the flow characteristics and the formability, the interfacial friction in micro-forming and novel forming methods to improve the formability, and the potential applications of the hot-embossed micro-patterns/components.

  17. Large-scale HTS bulks for magnetic application

    Science.gov (United States)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500-3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  18. Developments in the processing of bulk (RE)BCO superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Babu, N. Hari, E-mail: mtsthbn@brunel.ac.u [Brunel Centre for Advanced Solidification Technology (BCAST), Brunel University, West London UB8 3PH (United Kingdom); Shi, Y.-H.; Pathak, S.K.; Dennis, A.R.; Cardwell, D.A. [Bulk Superconductivity Group, Engineering Department, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)

    2011-03-15

    Research highlights: {yields} (RE)-Ba-Cu-O bulk superconductors containing nano-scale inclusions are fabricated. {yields} Generic seed crystal development enabled batch process for Gd-Ba-Cu-O. {yields} Multi-grains with strongly coupled grain boundaries are fabricated. {yields} We propose recycling concept for bulk superconductors. - Abstract: The development of a practical processing method for the fabrication of high performance large, single grain bulk superconductors is essential for their cost-effective application in a variety of high field engineering devices. We discuss recent developments in the processing of these materials that enable high performance bulk superconductors to be fabricated in a practical way. These include the introduction of nano-scale second phase inclusions to the superconducting phase matrix, the development of a generic seed crystal, the development of practical, batch processing routes for the fabrication of light rare earth superconductors, the processing of complex shaped geometries via controlled multi-seeding and recycling of scrap bulk samples into high performance, single grains.

  19. Depth of cure of bulk-fill flowable composite resins.

    Science.gov (United States)

    Pedalino, Inaam; Hartup, Grant R; Vandewalle, Kraig S

    2015-01-01

    In recent years, manufacturers have introduced flowable composite resins that reportedly can be placed in increments of 4 mm or greater. The purpose of this study was to evaluate the depth of cure of bulk-fill flowable composite resins (SureFil SDR Flow, Grandio Flow, and Venus Bulk Fill) and a conventional flowable composite resin (Revolution Formula 2). Depth of cure was measured in terms of bottom-maximum Knoop hardness number (KHN) ratios and the International Organization for Standardization (ISO) 4049 scrape technique. Shades A2 and A3 of SureFil SDR Flow, Grandio Flow, and Revolution Formula 2 were tested. Venus Bulk Fill was tested in its only available shade (universal). Specimens in thicknesses of 2, 3, 4, 5, and 6 mm were polymerized for 20 or 40 seconds, and a hardness tester was used to determine the hardness ratios for each shade at each thickness. For the scraping technique, after specimens were exposed to the curing light, unpolymerized composite resin was removed with a plastic instrument, the polymerized composite was measured, and the length was divided by 2 per ISO guidelines. According to the KHN ratios and the scrape test, Venus Bulk Fill predictably exceeded the manufacturer's claim of a 4-mm depth of cure at both 20 and 40 seconds of curing time. The overall results for depth of cure showed that Venus Bulk Fill ≥ SureFil SDR Flow ≥ Grandio Flow ≥ Revolution Formula 2.

  20. Universal properties of bulk viscosity near the QCD phase transition

    CERN Document Server

    Karsch, F; Tuchin, K

    2008-01-01

    We extract the bulk viscosity of hot quark-gluon matter in the presence of light quarks from the recent lattice data on the QCD equation of state. For that purpose we extend the sum rule analysis by including the contribution of light quarks. We also discuss the universal properties of bulk viscosity in the vicinity of a second order phase transition, as it might occur in the chiral limit of QCD at fixed strange quark mass and most likely does occur in two-flavor QCD. We point out that a chiral transition in the O(4) universality class at zero baryon density as well as the transition at the chiral critical point which belongs to the Z(2) universality class both lead to the critical behavior of bulk viscosity. In particular, the latter universality class implies the divergence of the bulk viscosity, which may be used as a signature of the critical point. We discuss the physical picture behind the dramatic increase of bulk viscosity seen in our analysis, and devise possible experimental tests of related phenome...