WorldWideScience

Sample records for bulk carriers

  1. Double-hulling of the bulk carriers%散货船的双壳化

    Institute of Scientific and Technical Information of China (English)

    莫中华

    2004-01-01

    This article analyses the technical background of the double-hulling of the bulk carriers and describes the 3 major problems for its design. It finally compares the characteristics of the single/double hull bulk carriers by listing.

  2. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c)...

  3. Temperature-independent carrier formation dynamics in bulk heterojunction

    Science.gov (United States)

    Yonezawa, Kouhei; Yasuda, Takeshi; Moritomo, Yutaka

    2015-11-01

    We investigated the effects of temperature on the carrier formation dynamics in a small-molecular blend film, 2,5-di-(2-ethylhexyl)-3,6-bis-(5‧‧-n-hexy-[2,2‧,5‧,2‧‧]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrolo-1,4-dione (SMDPPEH)/[6,6]-phenyl C71-butyric acid methyl ester (PC71BM). We spectroscopically determined the absolute numbers of donor (n\\text{D*}) and acceptor (n\\text{A*}) excitons per absorbed photon as functions of the delay time (t), in addition to the relative number of donor carries (n\\text{D+}). We found that the carrier formation dynamics is independent of temperature at 300 and 80 K: the carrier formation time (τrise = 0.4 ps) is much faster than the decay time (τdecay ≈ 2.5 ps) of donor excitons. The temperature independence strongly suggests that only excitons created near the donor-acceptor interface contribute to the carrier formation.

  4. World largest capesized bulk carrier was born in WSC%中国最大的好望角型散货船交付使用

    Institute of Scientific and Technical Information of China (English)

    He Baoxin

    2005-01-01

    The world largest Capesized bulk carrier developed and designed by Waigaoqiao Shipbuilding Company, the 177000 dwt green environment friendly bulk carrier, has made its official debut in the market. The world bulk carrier shipping giant Bocimar International of Belgium became the first owner of this type of bulk carrier.

  5. Scanning Fuel Tanks’ Corrosion Wastage of Some Aged Bulk Carriers Due to Security Reasons

    OpenAIRE

    Bauk, Sanja; Aleksić, Marinko; Ivošević, Špiro

    2011-01-01

    This paper deals with two different approaches in modelling corrosion wastage over the fuel tanks’ structures on the example of ten aged bulk carriers. The first applied method might be treated as a short-term, rather random oriented one, and it is based on the Monte Carlo simulation technique. This technique has been used in creating an appropriate predictive model for the characteristic steel damages over the bulk carriers’ fuel tanks caused by general corrosion in relatively short time int...

  6. A Forecasting Model of Required Number of Wheat Bulk Carriers for Africa

    Institute of Scientific and Technical Information of China (English)

    Masayoshi Kubo

    2008-01-01

    <正>The ocean transportation of grain bulk carriers is promoted by development of ocean economic.With the development of coastal region,the cargo transportation wi11 become more and more important,especially for the resource such as grain,oil and coal.In this study,a model is built to estimate the number of grain bulk carriers needed for wheat based upon analyzing the relationships between Tons and Ton-miles of Africa wheat transportation.We find that the agricultural policies greatly affect the wheat transportation to Africa.Then,using two scenarios, we predict how many ships are necessary for the maritime transportation of wheat from other places to Africa in the future.We believe that this research is extremely useful to maritime transportation of wheat to Africa.

  7. Approaching Bulk Carrier Dynamics in Organo-Halide Perovskite Nanocrystalline Films by Surface Passivation.

    Science.gov (United States)

    Stewart, Robert J; Grieco, Christopher; Larsen, Alec V; Maier, Joshua J; Asbury, John B

    2016-04-01

    The electronic properties of organo-halide perovskite absorbers described in the literature have been closely associated with their morphologies and processing conditions. However, the underlying origins of this dependence remain unclear. A combination of inorganic synthesis, surface chemistry, and time-resolved photoluminescence spectroscopy was used to show that charge recombination centers in organo-halide perovskites are almost exclusively localized on the surfaces of the crystals rather than in the bulk. Passivation of these surface defects causes average charge carrier lifetimes in nanocrystalline thin films to approach the bulk limit reported for single-crystal organo-halide perovskites. These findings indicate that the charge carrier lifetimes of perovskites are correlated with their thin-film processing conditions and morphologies through the influence these have on the surface chemistry of the nanocrystals. Therefore, surface passivation may provide a means to decouple the electronic properties of organo-halide perovskites from their thin-film processing conditions and corresponding morphologies. PMID:26966792

  8. Price Formation of Dry Bulk Carriers in the Chinese Shipbuilding Industry

    DEFF Research Database (Denmark)

    JIANG, Liping

    In this paper we present, for the first time, the price formation of China’s dry bulk carrier using vessel prices quoted by major Chinese shipyards in actual shipbuilding orders. This allows us to investigate the relationship of price and determinants in the Chinese shipbuilding industry by inclu......In this paper we present, for the first time, the price formation of China’s dry bulk carrier using vessel prices quoted by major Chinese shipyards in actual shipbuilding orders. This allows us to investigate the relationship of price and determinants in the Chinese shipbuilding industry...... by including generic market factors as well as Chinese elements. The analysis, employing Principal Component Regression (PCR) approach, indicates that the time charter rate has the most significantly positive impact. While increases in other four factors, namely shipbuilding cost, price cost margin...... to investigate what would happen to the Chinese dry bulk carrier prices under changes of time charter rate and shipbuilding cost. This paper has implications for the Chinese shipyards, shipbuilding industry customers and industry policy makers....

  9. The Design of Bulk Carrier Cargo Holds State Integrated Monitoring System

    Directory of Open Access Journals (Sweden)

    Gao Ru-jiang

    2016-01-01

    Full Text Available Most ship cargo hold Internal uses artificial watch or is unattended. Therefore, it is impossible to know the appropriate information of the cargo holds Internal timely and accurately. Cargo damage and ship accidents occurred frequently. Automation remote processing and monitoring alarm system for the bulk carrier is an important part of the marine automation. The system plays a significant role to guarantee the navigation safety for bulk carriers. The paper introduced the important parts of the integrated monitoring system, structural design, hardware configuration, various modules communication transmission and various data processing software design were included. Based on embedded development, the real time information including the cargo hold internal humidity temperature, oxygen concentration, smoke gas concentration, cold water well level and other data were collected, as well the hatch closed state was detected and the cargo hold internal real time video information was collected. Then the real-time communication between the control display and acquisition modules were assured. By adjusting the corresponding buttons on the bridge according to the monitoring information, so that the cargo hold always in a safe environment, so as to avoid cargo hold accidents.

  10. Influence of the required EEDI reduction factor on the CO2 emission from bulk carriers

    International Nuclear Information System (INIS)

    In order to improve energy efficiency for ships International Maritime Organization (IMO) introduced Energy Efficiency Design Index (EEDI). For every new ship the attained EEDI has to be calculated and not higher than the required EEDI which is calculated from the reference line value and appropriate reduction factor. The reference line value represents the world fleet average and is dependent on the ship type and size. The reduction factor represents a reduction for the EEDI relative to the reference line value and is increased in a set of time intervals. However, the scheme of the reduction factor change seems to be rigidly set and could lead to design issues and ship under powering. This study estimates the CO2 emission from bulk carriers based on the current reduction factor change policy. Other policies and some innovative approaches are also discussed and the CO2 emission in every scenario is estimated. The results are then compared with the requirement of reaching mean global CO2 stabilization level of 550 ppm in the atmosphere. It is concluded that policies which include feedback from the shipbuilding sector impose requirements that could be much easier to satisfy and which will lead to overall lower CO2 emission. -- Highlights: •The growth in seaborne trade and the growth in the fleet size is compared. •The CO2 emission from bulk carriers in various scenarios is estimated. •Current reduction factor change policy is analyzed. •Other policies and some innovative approaches are also discussed. •Market self-regulation policies will lead to overall lower CO2 emission

  11. Incorporating mesh-insensitive structural stress into the fatigue assessment procedure of common structural rules for bulk carriers

    Directory of Open Access Journals (Sweden)

    Kim Seong-Min

    2015-01-01

    Full Text Available This study introduces a fatigue assessment procedure using mesh-insensitive structural stress method based on the Common Structural Rules for Bulk Carriers by considering important factors, such as mean stress and thickness effects. The fatigue assessment result of mesh-insensitive structural stress method have been compared with CSR procedure based on equivalent notch stress at major hot spot points in the area near the ballast hold for a 180 K bulk carrier. The possibility of implementing mesh-insensitive structural stress method in the fatigue assessment procedure for ship structures is discussed.

  12. Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: Comparison with bulk amplifiers

    DEFF Research Database (Denmark)

    Borri, P.; Langbein, W.; Hvam, Jørn Märcher;

    2001-01-01

    The ultrafast gain dynamics in an electrically pumped InAs/InGaAs/GaAs quantum-dot amplifier are measured at room temperature with femtosecond resolution, and compared with results on an InGaAsP bulk amplifier. The role of spectral hole burning and carrier heating in the recovery of the gain...... compression is investigated. Reduced carrier heating for both gain and refractive index dynamics of the quantum-dot device is found, which is a promising prerequisite for high-speed applications....

  13. Photogeneration and recombination of charge carrier pairs and free charge carriers in polymer/fullerene bulk heterojunction films

    Energy Technology Data Exchange (ETDEWEB)

    Sliauzys, Gytis; Gulbinas, Vidmantas [Center for Physical Sciences and Technology, Savanoriu av. 231, 02300 Vilnius (Lithuania); Arlauskas, Kestutis [Department of Solid State Electronics, Vilnius University, Sauletekio al. 9, Build. 3, 10222 Vilnius (Lithuania)

    2012-07-15

    Photo-generation and recombination of free charge carriers in poly-3 (hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) blend films has been studied at different PCBM concentrations by means of fluorescence spectroscopy and transient photocurrent methods. We show that more than 80% of excitons form charge transfer (CT) states at PCBM concentrations above 4%. Efficiency of the CT state dissociation into free charge carries strongly depends on the PCBM concentration; the dissociation efficiency increases more than 30 times when PCBM concentration increases from 1 to 32%. We attribute the strong concentration dependence to formation of PCBM clusters facilitating electron migration and/or delocalization. Reduced charge carrier recombination coefficient has also been observed at high PCBM concentrations. We suggest that this may be partly caused by the reduced stability of reformed Coulombicaly bound charge pairs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Uncertainty Assessment of Wave Loads and Ultimate Strength of Tankers and Bulk Carriers in a Reliability Framework

    OpenAIRE

    Shu, Zhi

    2010-01-01

    The main aim of the research work in this thesis is to investigate the uncertainty of wave-induced loads and ultimate strength of tankers and bulk carriers in a reliability framework. The ship structure is generally designed in accordance with a classification society's rules to be able to withstand the extreme external environmental loads and internal cargo and ballast loads and fulfill its function in the expected service life span without serious negative consequences such as oil leakage, ...

  15. Influence of optical interference and carrier lifetime on the short circuit current density of organic bulk heterojunction solar cells

    Institute of Scientific and Technical Information of China (English)

    You Hai-Long; Zhang Chun-Fu

    2009-01-01

    Based on simple analytical equations, short circuit current density (Jsc) of the organic bulk heterojunction solar cells has been calculated. It is found that the optical interference effect plays a very important role in the determination of JSC;and obvious oscillatory behaviour of Jsc was observed as a function of thickness. At the same time, the influence of JSC only increases the carrier lifetime on JSC also cannot be neglected. When the carrier lifetime is relatively short, at the initial stage and then decreases rapidly with the increase of active layer thickness. However, for a relatively long carrier lifetime, the exciton dissociation probability must be considered, and Jsc behaves wave-like with the increase of active layer thickness. The validity of this model is confirmed by the experimental results.

  16. Dephasing of free carriers and excitons in bulk CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Sprinzl, D.; Kunc, J.; Ostatnicky, T.; Horodysky, P.; Grill, R.; Franc, J.; Maly, P.; Nemec, P. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic)

    2007-05-15

    In this paper we report on the measurements of the dephasing of free carriers and excitons using a self-diffraction technique in thin platelets of CdTe with different concentration of preparation-induced dislocations. We show that in a high-quality sample at low temperature the characteristic dephasing time constant is 1 ps and 2 ps for free carriers and excitons, respectively. The increased concentration of preparation-induced dislocations leads to much stronger acceleration of the dephasing for free carriers than for excitons. We also discuss the intensity and temperature dependence of the dephasing. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Existing Design Trends for Tankers and Bulk Carriers - Design Changes for Improvement of the EEDI in the Future

    DEFF Research Database (Denmark)

    Kristensen, Hans Otto Holmegaard; Lützen, Marie

    from bulk carriers and tankers, including emissions of carbon dioxide (CO2). A calculation procedure for estimating the Energy Efficiency Design Index (EEDI) is also included in the model. The IHS Fairplay World Fleet Statistics for vessels built in the period 1990–2010 are used as a basis....... The block coefficient has increased during the last twenty years while the length displacement ratio (L/displ.volume1/3) has decreased over the same period. These two design changes have resulted in an increased EEDI. This development must be changed in the coming years when the EEDI shall be reduced...

  18. Extraction of photo-generated charge carriers from polymer-fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Koster, LJA; Mihailetchi, VD; Blom, PWM; Heremans, PL; Muccini, M; Hofstraat, H

    2004-01-01

    Two models describing charge extraction from insulators have been used to interpret the experimental photocurrent data of 20:80 wt% blends of poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-p-phenylene vinylene) (MDMO-PPV) and [6,6]phenyl C-61,-butyric acid methyl ester (PCBM) bulk heterojunction solar ce

  19. Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking.

    Science.gov (United States)

    Yang, Haoran; Bahk, Je-Hyeong; Day, Tristan; Mohammed, Amr M S; Snyder, G Jeffrey; Shakouri, Ali; Wu, Yue

    2015-02-11

    To design superior thermoelectric materials the minority carrier blocking effect in which the unwanted bipolar transport is prevented by the interfacial energy barriers in the heterogeneous nanostructures has been theoretically proposed recently. The theory predicts an enhanced power factor and a reduced bipolar thermal conductivity for materials with a relatively low doping level, which could lead to an improvement in the thermoelectric figure of merit (ZT). Here we show the first experimental demonstration of the minority carrier blocking in lead telluride-silver telluride (PbTe-Ag2Te) nanowire heterostructure-based nanocomposites. The nanocomposites are made by sintering PbTe-Ag2Te nanowire heterostructures produced in a highly scalable solution-phase synthesis. Compared with Ag2Te nanowire-based nanocomposite produced in similar method, the PbTe-Ag2Te nanocomposite containing ∼5 atomic % PbTe exhibits enhanced Seebeck coefficient, reduced thermal conductivity, and ∼40% improved ZT, which can be well explained by the theoretical modeling based on the Boltzmann transport equations when energy barriers for both electrons and holes at the heterostructure interfaces are considered in the calculations. For this p-type PbTe-Ag2Te nanocomposite, the barriers for electrons, that is, minority carriers, are primarily responsible for the ZT enhancement. By extending this approach to other nanostructured systems, it represents a key step toward low-cost solution-processable nanomaterials without heavy doping level for high-performance thermoelectric energy harvesting.

  20. Anisotropic charge carrier mobilities in bulk silicon at high electric fields

    CERN Document Server

    Becker, Julian; Klanner, Robert

    2010-01-01

    The mobility of electrons and holes in silicon depends on many parameters. Two of them are the electric field and the temperature. It has been observed previously that the mobility in the transition region between ohmic transport and saturation velocities is a function of the orientation of the crystal lattice. This paper presents a new set of parameters for the mobility as function of temperature and electric field for $$ and $$ crystal orientation. These parameters are derived from time of flight measurements of drifting charge carriers in planar p$^+$nn$^+$ diodes in the temperature range between -30$^\\circ$C and 50$^\\circ$C and electric fields of 2$\\times$10$^3$~V/cm to 2$\\times$10$^4$~V/cm.

  1. Carrier transport and charge transfer properties in coumarin-doped bulk-heterojunction materials

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T.; Maeda, T.; Yamashita, K. [Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585 (Japan); Yanagi, H. [Graduate School of Materials Science, Nara Institute of Science and Technology, Nara 630-0192 (Japan)

    2012-12-15

    We have investigated photovoltaic properties of organic solar cells using polymer-fullerene bulk-heterojunction films doped with coumarin dyes. Whereas the coumarin molecules used in this study had similar absorption bands, evident difference was observed in the open-circuit voltage as well as in the short-circuit current. In particular, the doping of coumarin 307 was found to cause a distinct enhancement in the open-circuit voltage. On the other hand, the doping of coumarin 30 gave a serious degradation in the device performance. These results were strongly associated with calculated molecular energies of the doped dyes, especially with the highest occupied molecular orbital energy. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Fullerene mixing effect on carrier formation in bulk-hetero organic solar cell

    Science.gov (United States)

    Moritomo, Yutaka; Yasuda, Takeshi; Yonezawa, Kouhei; Sakurai, Takeaki; Takeichi, Yasuo; Suga, Hiroki; Takahashi, Yoshio; Inami, Nobuyuki; Mase, Kazuhiko; Ono, Kanta

    2015-03-01

    Organic solar cells (OSCs) with a bulk-heterojunction (BHJ) are promising energy conversion devices, because they are flexible and environmental-friendly, and can be fabricated by low-cost roll-to-roll process. Here, we systematically investigated the interrelations between photovoltaic properties and the domain morphology of the active layer in OSCs based on films of poly-(9,9-dioctylfluorene-co-bithiophene) (F8T2)/[6,6]-phenyl C71-butyric acid methyl ester (PC71BM) blend annealed at various temperatures (Tan). The scanning transmission X-ray microscopy (STXM) revealed that fullerene mixing (ΦFullerene) in the polymer matrix decreases with increase in Tan while the domain size (L) is nearly independent of Tan. The TEM-S mapping image suggests that the polymer matrix consist of polymer clusters of several nm and fullerene. We found that the charge formation efficiency (ΦCF), internal quantum efficiency (ΦIQ), and power conversion efficiency (PCE) are dominantly determined by ΦFullerene. We interpreted these observations in terms of the polymer clusters within the polymer matrix.

  3. How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency

    KAUST Repository

    Burke, Timothy M.

    2013-12-27

    Charge generation in champion organic solar cells is highly efficient in spite of low bulk charge-carrier mobilities and short geminate-pair lifetimes. In this work, kinetic Monte Carlo simulations are used to understand efficient charge generation in terms of experimentally measured high local charge-carrier mobilities and energy cascades due to molecular mixing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Interplay Between Side Chain Pattern, Polymer Aggregation, and Charge Carrier Dynamics in PBDTTPD:PCBM Bulk-Heterojunction Solar Cells

    KAUST Repository

    Dyer-Smith, Clare

    2015-05-01

    Poly(benzo[1,2-b:4,5-b′]dithiophene–alt–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors with linear side-chains yield bulk-heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor, while a PBDTTPD polymer with a combination of branched and linear substituents yields a doubling of the PCE to 8%. Using transient optical spectroscopy it is shown that while the exciton dissociation and ultrafast charge generation steps are not strongly affected by the side chain modifications, the polymer with branched side chains exhibits a decreased rate of nongeminate recombination and a lower fraction of sub-nanosecond geminate recombination. In turn the yield of long-lived charge carriers increases, resulting in a 33% increase in short circuit current (J sc). In parallel, the two polymers show distinct grazing incidence X-ray scattering spectra indicative of the presence of stacks with different orientation patterns in optimized thin-film BHJ devices. Independent of the packing pattern the spectroscopic data also reveals the existence of polymer aggregates in the pristine polymer films as well as in both blends which trap excitons and hinder their dissociation.

  5. 20.5万吨散货船的优化设计%Summarization of Optimization Design for 205,000-DWT Type Motor Bulk Carrier

    Institute of Scientific and Technical Information of China (English)

    周云龙

    2012-01-01

    With the rapid development of international shipping industry,especially use of ironstone is increasing.To improve the transport ability and efficiency,increase shipping tonnage,raise economic benefits,ship-owners prefer to constructing the larger bulk carriers which are also the development trend in future.A 205,000-DWT TYPE MOTOR BULK CARRIER is maximum tonnage ship of domestic construction currently.This thesis introduce hull structure optimization design method for the first domestic 205,000-DWT bulk carrier.%随着国际航运业的快速发展,尤其是铁矿石用量的增长,为了提高运输能力和效率,增加单程运输吨位,提高经济效益,船东更倾向建造吨位大的散货船舶。大型散货船也是未来发展的趋势。20.5万吨散货船是目前国内建造的吨位最大的散货船。本文介绍了国内建造的首艘20.5万吨散货船结构优化设计方法

  6. Carrier-induced ferromagnetism in bulk phosphorus-doped Zn1-xMnxTe achieved by annealing under high pressure

    International Nuclear Information System (INIS)

    We report the observation of carrier-induced ferromagnetism in bulk phosphorus-doped Zn1-xMnxTe. Using high-pressure Bridgman growth and with post-growth high-pressure annealing, we were able to overcome self-compensation in this material, thus achieving unprecedented concentrations of electrically active acceptors. Magnetic susceptibility and magnetic circular dichroism measurements on samples prepared in this way clearly reveal ferromagnetic ordering of the Mn ions. For example, Zn0.97Mn0.03Te:P with hole concentration of p = 4.8 x 1018 cm-3 showed a Curie temperature TC 2.5 K. (authors)

  7. Determination of CdTe bulk carrier lifetime and interface recombination velocity of CdTe/MgCdTe double heterostructures grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    The bulk Shockley-Read-Hall carrier lifetime of CdTe and interface recombination velocity at the CdTe/Mg0.24Cd0.76Te heterointerface are estimated to be around 0.5 μs and (4.7 ± 0.4) × 102 cm/s, respectively, using time-resolved photoluminescence (PL) measurements. Four CdTe/MgCdTe double heterostructures (DHs) with varying CdTe layer thicknesses were grown on nearly lattice-matched InSb (001) substrates using molecular beam epitaxy. The longest lifetime of 179 ns is observed in the DH with a 2 μm thick CdTe layer. It is also shown that the photon recycling effect has a strong influence on the bulk radiative lifetime, and the reabsorption process affects the measured PL spectrum shape and intensity

  8. Ultra--fast carriers relaxation in bulk silicon following photo--excitation with a short and polarized laser pulse

    CERN Document Server

    Sangalli, Davide

    2014-01-01

    A novel approach based on the merging of the out--of--equilibrium Green's function method with the ab-initio, Density--Functional--Theory is used to describe the ultra--fast carriers relaxation in Silicon. The results are compared with recent two photon photo--emission measurements. We show that the interpretation of the carrier relaxation in terms of L -> X inter--valley scattering is not correct. The ultra--fast dynamics measured experimentally is, instead, due to the scattering between degenerate $L$ states that is activated by the non symmetric population of the conduction bands induced by the laser field. This ultra--fast relaxation is, then, entirely due to the specific experimental setup and it can be interpreted by introducing a novel definition of the quasi--particle lifetimes in an out--of--equilibrium context.

  9. Application of picosecond four-wave mixing and photoluminescence techniques for investigation of carrier dynamics in bulk crystals and heterostructures of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Jarasiunas, K.; Malinauskas, T.; Kadys, A.; Aleksiejunas, R.; Sudzius, M.; Miasojedovas, S.; Jursenas, S.; Zukauskas, A. [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio ave. 9-3, 2040 Vilnius (Lithuania); Gogova, D.; Kakanakova-Georgieva, A.; Janzen, E.; Larsson, H.; Monemar, B. [Department of Physics and Measurement Technology, Linkoeping University (Sweden); Gibart, P.; Beaumont, B. [LUMILOG, 2720, Chemin Saint Bernard, Les Moulins I, 06220 Vallauris (France)

    2005-02-01

    Complementary characterization of the highly-excited nitrides has been performed by using time-resolved four-wave mixing and photoluminescence techniques. Defect-density and excitation dependent carrier recombination and transport have been studied in GaN heterostructures and free-standing crystals, grown by various technologies (hot-wall MOCVD, standard MOCVD, and HVPE) on different substrates (6H-SiC, 4H-SiC, or sapphire). The determined value of carrier lifetime varied from 300 ps in the GaN/SiC epilayers up to 3 ns in the bulk crystals, while the bipolar diffusion coefficient D was found to be in the range from 1.5 cm{sup 2}/s to 2.9 cm{sup 2}/s, correspondingly. An increase of D with excitation density in bulk HVPE crystals was attributed to screening of potential barriers around dislocations. A complete saturation of FWM diffraction in hot-wall MOCVD grown GaN/SiC heterostructures revealed a low threshold of stimulated recombination (0.5 mJ/cm{sup 2}), as confirmed by spectra and intensity of photoluminesce. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%

    Science.gov (United States)

    Gasparini, Nicola; Jiao, Xuechen; Heumueller, Thomas; Baran, Derya; Matt, Gebhard J.; Fladischer, Stefanie; Spiecker, Erdmann; Ade, Harald; Brabec, Christoph J.; Ameri, Tayebeh

    2016-09-01

    In recent years the concept of ternary blend bulk heterojunction (BHJ) solar cells based on organic semiconductors has been widely used to achieve a better match to the solar irradiance spectrum, and power conversion efficiencies beyond 10% have been reported. However, the fill factor of organic solar cells is still limited by the competition between recombination and extraction of free charges. Here, we design advanced material composites leading to a high fill factor of 77% in ternary blends, thus demonstrating how the recombination thresholds can be overcome. Extending beyond the typical sensitization concept, we add a highly ordered polymer that, in addition to enhanced absorption, overcomes limits predicted by classical recombination models. An effective charge transfer from the disordered host system onto the highly ordered sensitizer effectively avoids traps of the host matrix and features an almost ideal recombination behaviour.

  11. Impact assessment of 206 000 t bulk carrier based on harmonised common structural rules%协调版共同结构规范对20.6万吨散货船的影响评估

    Institute of Scientific and Technical Information of China (English)

    陈倩; 邱吉廷; 吴嘉蒙; 张帆

    2015-01-01

    以20.6万吨散货船为例,通过描述性规定与直接强度计算,对比分析协调版共同规范与油船共同规范的差异,评估新规范对目前散货船结构可能带来的影响。%The differences between common structural rules for bulk carriers (CSR-BC) and harmonised common structural rules (CSR-H) are analyzed according to the prescriptive regulation and direct strength calculation of a 206 000 t bulk carrier. The possible impact of the new rules on the structural design of bulk carriers is then assessed.

  12. Energy Band Gap, Intrinsic Carrier Concentration and Fermi Level of CdTe Bulk Crystal between 304 K and 1067 K

    Science.gov (United States)

    Su, Ching-Hua

    2007-01-01

    Optical transmission measurements were performed on CdTe bulk single crystal. It was found that when a sliced and polished CdTe wafer was used, a white film started to develop when the sample was heated above 530 K and the sample became opaque. Therefore, a bulk crystal of CdTe was first grown in the window area by physical vapor transport; the optical transmission was then measured and from which the energy band gap was derived between 304 and 1067 K. The band gaps of CdTe can be fit well as a function of temperature using the Varshini expression: Eg (e V) = 1.5860 - 5.9117xl0(exp -4) T(sup 2)/(T + 160). Using the band gap data, the high temperature electron-hole equilibrium was calculated numerically by assuming the Kane's conduction band structure and a heavy-hole parabolic valance band. The calculated intrinsic carrier concentrations agree well with the experimental data reported previously. The calculated intrinsic Fermi levels between 270 and 1200 K were also presented.

  13. Investigation on the Wave Loads of River-Sea Bulk Carriers%江海通航散货船波浪载荷研究

    Institute of Scientific and Technical Information of China (English)

    张文华; 刘光明; 吴卫国

    2011-01-01

    The long-term prediction of the wave loads of the river-sea bulk carriers was carried out u-sing ISSC two-parameter wave spectrum and wave scattering diagram of El sea areas, and compared with the design wave loads in CCS Rule for sea-going domestic ships and IACS Common Structure Rule (CSR) for bulk carriers. The formula regarding the height of the equivalent design wave, which will be applied to the finite element analysis of the river-sea ship, were fitted. The investigation showed that the vertical wave bending moment was 20%~25% less than that specified in the Rule for the sea-going ships at the unrestricted area, the vertical wave shear force was 4%~8% greater than that in the Rule and nearly equal to that in CSR, the horizontal bending moment was 18%-~30% less than that in CSR, and the wave torsion moment was 27% - 33% less than that in CSR as well.%采用ISSC二参数波浪谱和E1海区的波浪散布图对江海通航散货船的波浪载荷进行了长期预报,并与CCS海船规范和IACS散货船共同规范(CSR)中的设计波浪载荷进行了比较分析,拟合出了应用于江海通航船舶有限元分析的等效设计波高公式.研究表明:江海通航散货船的波浪载荷中垂向弯矩较无限航区海船规范值可降低20%~25%,波浪垂向剪力比《内河航行海船建造海规》规范值增大4%~8%,非常接近CSR规范值,水平波浪转矩比CSR规范值小18%~30%,波浪转矩比CSR规范值则要降低27%~33%.

  14. The Design Key Points for Function of Timber Carrying about Open Hatch Bulk Carrier%大开口型散货船运木功能设计要点分析

    Institute of Scientific and Technical Information of China (English)

    张卫锋

    2014-01-01

    In light of the 37,000 DWT timber/bulk carrier, the structural characteristics of the timber/bulk carrier with large opening hatch are compared with the ones of ordinary bulk carrier .The key and main points in the design of timber/bulk carrier are investigated , such as timber lashing system , safe access and operation space , the arrangement and protection of outfit-ting on deck etc .The design plan and some suggestions are given .%针对37000 DWT大开口散货/运木船,比较大开口型散货船与普通散货船特点,分析大开口型散货船运木功能的实现方面需要注意的绑扎系统的布置与强度、安全通道的布置与操作空间、甲板面布置与舾装件的保护等的设计要点,给出设计方案和建议。

  15. Fatigue Analysis of a Bulk Carrier based on CSR%基于共同规范的散货船疲劳分析

    Institute of Scientific and Technical Information of China (English)

    陈国建; 韩天宇

    2011-01-01

    Fatigue is one of the main reasons for ship hull damage. It is of great significance to increase structure fatigue life in the preliminary design phase. Combining the experience and feedback from ship building and operation, the structure fatigue analysis of a bulk carrier is carried out based on IACS’ Common Structure Rules (CSR). 2D longitudinal stiffener fatigue is analyzed; and fatigue analysis of the hull’s main supporting components is performed using 3D Finite Element Method to form a conclusion; key factors affecting the fatigue strength are also studied.%疲劳是船体损坏的主要因素之一,在设计建造阶段提高结构物疲劳寿命具有重要意义。结合船舶在建造和营运中的经验与反馈,以船级社共同规范为指导,对散货船船体结构的疲劳分析进行了探讨。分析了二维情况下的纵骨疲劳,同时利用三维有限元方法对船体主要支撑构件的疲劳强度进行了分析和总结,对影响疲劳强度的一些关键因素进行了讨论。

  16. Closed-form expressions correlating exciton transport and interfacial charge carrier generation with the donor/acceptor morphology in organic bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Organic bulk heterojunction (BHJ) solar cells are frequently modeled with effective-medium device models; these models, however, do not resolve the relation between excitonic processes in the donor/acceptor (D/A) blend and the D/A morphology. In this context, we derive a simple analytical model to relate the interfacial exciton flux and the volumetric generation rate of interfacial electron–hole pairs with the morphological characteristics of a D/A blend. Our approach does not require explicit morphological information of the D/A blend, except for the specific interfacial area and the blending ratio between donor and acceptor materials, both of which can be assessed experimentally. The expressions are verified with numerical simulations based on randomly generated three-dimensional D/A morphologies – overall, good agreement is found. The analytical expressions developed in this paper can easily be integrated into existing effective-medium device models, allowing them to capture the effect of exciton transport and morphology on free charge carrier generation in more detail. These expressions potentially allow morphological features in a D/A blend to be optimized within a fast, 1D computational framework

  17. Prescriptive requirements of primary supporting members in double bottom of bulk carrier%散货船双层底主要支撑构件描述性要求研究

    Institute of Scientific and Technical Information of China (English)

    邱吉廷; 吴嘉蒙

    2015-01-01

    对于船长小于150 m的散货船,协调版共同结构规范(CSR-H)及散货船共同结构规范(CSR-BC)对双层底主要支撑构件规定了描述性要求。通过力学原理分析规范要求的理论背景,并以某典型散货船为例,对比双层底主要支撑构件按规范描述性要求和有限元评估要求得到的结果差异。在此基础上,对CSR-H关于150 m以下主要支撑构件的描述性规定给出了修改建议,并结合交叉梁系的力学推导和数值计算等,对散货船的主要支撑构件的描述性要求进行建议和计算流程归纳,可指导设计初始阶段确定主要支撑构件的腹板厚度。%For the bulk carrier with the length the less than 150 m, there are prescriptive requirements of primary supporting members in the double bottom for Harmonised Common Structural Rules (CSR-H) and Common Structural Rules for Bulk Carriers (CSR-BC). The theoretical background of the rule requirements is analyzed by mechanical principles. The primary supporting members in the double bottom from the prescriptive requirements of the rule are compared with those from the ifnite element assessment requirements for a typical bulk carrier. It provides the modiifcation suggestions for the prescriptive requirements of the primary supporting members for the ship with the length of hull less than 150 m in CSR-H. Combined with the mechanical derivation and numerical calculation of grillage beams, it summarizes suggestions and calculation procedure for the prescriptive requirements of the primary supporting members in a bulk carrier, guiding the determination of the web thickness of the primary supporting members at the beginning of the design stage.

  18. Ultrafast dynamics of free carriers induced by two-photon excitation in bulk ZnSe crystal%双光子激发ZnSe自由载流子超快动力学研究∗

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Semiconductor materials exhibiting large optical nonlinearities and ultrafast nonlinear response have received ex-tensive attention because of their potential applications in optical limiting, all-optical devices, optical telecommunication, and so on. As a direct-gap II-VI bulk semiconductor, ZnSe crystal has been exploited as the nonlinear optical devices in the regimes of nanoseconds and picoseconds during the past years. Owing to today’s fast advance of laser sources with ultrashort femtosecond pulse duration, it is possible to investigate the ultrafast optical nonlinearities in the bulk ZnSe crystal. In this paper, we experimentally investigate the ultrafast dynamics of free-carriers induced by two-photon excitation in the bulk ZnSe crystal. By performing open-aperture Z-scan experiments with 41 fs laser pulses at the wavelength of 532 nm under the condition of low excitation intensity, the two-photon absorption coefficient is measured. As the excitation intensity exceeds a critical value, the interplay between third- and fifth-order nonlinear absorption processes is observed. To evaluate the ultrafast dynamics of free carriers, we have carried out femtosecond time-resolved degen-erate pump-probe measurements with the same laser system used for Z-scan experiments in different levels of pump intensities. It is shown that the transient absorption signals peaked at the zero delay is a linearly increasing function of pump intensity, indicating that the observed instantaneous nonlinear absorption is dominated by the interband two-photon absorption process. At moderate irradiance, the transient absorption signals obviously indicate two components, arising from the two-photon absorption-induced free-carrier absorption, which is equivalent to the fifth-order nonlinear absorption process. Under the excitation of relatively high pump intensity, the magnitude of the reduction of free-carrier absorption signal becomes faster, suggesting that the ZnSe crystal exhibits a

  19. 基于协调版共同结构规范的18万吨散货船结构设计%Structure design of 180 000 t bulk carrier hull based on harmonised common structural rules

    Institute of Scientific and Technical Information of China (English)

    石义静; 赵仲秋; 周忠辉; 姜旭

    2015-01-01

    The current 180 000 t bulk carrier designed by CSDC is redesigned according to the harmonised common structural rules (CSR-H), which has been proposed by IACS in January, 2014. The increment of structural weight in cargo hold region that meets the requirements of CSR-H is calculated by CA stage 1 and CSR-H Bulk Check stage 2 programs of American Bureau of Shipping (ABS), as well as the ifnite element analysis. Firstly, it compares the requirements of bulk carriers in CSR-H with those in common structural rules (CSR), and analyzes the impact effect of the new requirements in CSR-H on the design of bulk carriers. Secondly, it studies the new requirements of the grillage and scantlings in CSR-H from the rule calculations of each transverse section in the cargo hold region, and analyzes the reason that each structure differs from the structure following with CSR. Lastly, it evaluates the yielding strength and the buckling strength of all cargo hold region by the direct calculation, and compares the scantlings calculated by the requirements of CSR-H with those calculated by the requirements of CSR.%根据IACS2014年1月推出的CSR-H,对目前CSDC设计的18万吨散货船进行符合CSR-H设计。分别运用美国船级社的CA Stage 1程序和CSR-H Bulk Check Stage 2程序进行规范计算和有限元计算,给出满足CSR-H要求的货舱区结构重量对于CSR规范的增加量。主要内容如下:一、比较CSR-H与CSR对散货船要求的差异,分析CSR-H对散货船设计的影响。二、对货舱区各个横剖面进行规范计算,研究CSR-H对板材和型材尺寸的新要求,分析各结构部位与满足CSR船型结构存在差异的原因。三、应用直接计算法对全船货舱区进行屈服和屈曲强度评估,比较基于CSR-H要求的计算结果与CSR要求结构尺寸存在的差异。

  20. A way for studying the impact of PEDOT:PSS interface layer on carrier transport in PCDTBT:PC{sub 71}BM bulk hetero junction solar cells by electric field induced optical second harmonic generation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Zubair, E-mail: zubairtarar@um.edu.my; Abdullah, Shahino Mah; Sulaiman, Khaulah [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Taguchi, Dai; Iwamoto, Mitsumasa [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2015-04-28

    Electric-field-induced optical second-harmonic generation (EFISHG) measurement was employed to study the impact of poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) interface layer on the carrier transport mechanism of the PCDTBT:PC{sub 71}BM bulk heterojunction (BHJ) organic solar cells (OSCs). We revealed that the electric fields in the PCDTBT and PC{sub 71}BM were allowed to be measured individually by choosing fundamental laser wavelengths of 1000 nm and 1060 nm, respectively, in dark and under illumination. The results showed that the direction of the internal electric fields in the PCDTBT:PC{sub 71}BM BHJ layer is reversed by introducing the PEDOT:PSS layer, and this results in longer electron transport time in the BHJ layer. We conclude that TR-EFISHG can be used as a novel way for studying the impact of interfacial layer on the transport of electrons and holes in the bulk-heterojunction OSCs.

  1. CSR-H对3.5万吨散货船的影响评估%Impact of harmonised common structural rules on 35 000 t bulk carrier

    Institute of Scientific and Technical Information of China (English)

    李妍; 冯成成

    2015-01-01

    以3.5万吨散货船实船为例,主要通过SDP规范计算和DSA有限元计算,校核CSR-H对该船结构尺寸和质量的影响。在规范计算方面,主要核算不同工况下的轻货舱、重货舱/风暴压载舱的弯曲强度、剪切强度、极限强度和剩余强度对主要结构尺寸的影响。同时,对重货舱同时兼做风暴压载舱第三货舱的所有区域进行屈服强度评估和屈曲强度评估。%Taking a 35 000 t bulk carrier as an example, the impact of harmonised common structural rules (CSR-H) on the structure scantlings and the weight is analyzed through the rule check by SDP and the ifnite element calculation by DSA. During rule check, the impact of bending strength, shear strength, ultimate strength and residual strength on the main structure scantlings has been assessed for the light cargo hold and the heavy cargo hold (lfoodable ballast tank) under the different loading conditions. Meanwhile, yielding strength and buckling strength are assessed for all regions of the No.3 heavy cargo hold that also served as a lfoodable ballast tank.

  2. 散货船和油船的结构冗余度及其验证%Hull Structural Redundancy and Its Verification for Bulk Carriers and Oil Tankers

    Institute of Scientific and Technical Information of China (English)

    罗海东; 洪英; 吴剑国; 师桂杰

    2016-01-01

    Based on relevant IMO regulations of hull structural redundancy, this paper studies the verification of the structural redundancy in IACS CSR-H rules satisfying the functional requirements in GBS IMO (Goal-based Ship Construction Standards) and proposes a technique procedure, including explanation of structural redundancy, damage assumption, load conditions, nonlinear finite element method, evaluation criteria, application flowchart, and verification of actual bulk carriers and oil tankers designed according CSR-H. All the computational results show that the actual ships satisfy the evaluation criteria of structural redundancy. That is to say, CSR-H implicitly provides necessary structural redundancy which is in compliance with IMO GBS requirements, and it is not necessary to introduce additional requirements of reinforcements into CSR-H.%基于国际船级社协会的《散货船和双壳油船协调共同结构规范》(CSR-H),提出了满足 IMO GBS 结构冗余度功能验证导则的技术路线和评估流程,包括问题分类、损坏假定、载荷情形、非线性有限元垮塌分析方法和结构冗余度衡准的建立,并实施了实船验算。计算结果表明,按照 CSR-H 规范设计的油船和散货船结构能够满足“任一加强筋的单一局部损伤不会导致整个加筋板格垮塌”的强度要求,具有适当的结构冗余度。新 CSR-H 规范无需再专门为结构冗余度而补充结构加强的要求。

  3. Diagnosis and T reatment for Harmful Vibration of 20 000 ton Offshore Bulk Carrier%20000t近海散货船有害振动诊断及治理

    Institute of Scientific and Technical Information of China (English)

    林永水; 吴卫国; 翁长俭

    2015-01-01

    A case study on the diagnosis and treatment aiming at harmful vibration of 20 000 ton off‐shore bulk carrier are presented .It is found that vibration source is the propeller by vibration test , self‐propulsion test and towing test ,evaluation of wake fields behind stern and numerical calculation and analysis with 3‐D FEM .The root of the problem is that the stern forms are unreasonable ,which cause wake fields serious non‐uniform and unsteady ,leading to excessive blade frequency and twice blade frequency propeller‐excited force .A set of comprehensive treatment is proposed ,such as rede‐signing propeller ,adopting vibration damping .Ship vibration are great improved by changing the pro‐peller ,w hich meets vibration criterion ISO—6954 .Also it gains beneficial experiences for ship vibra‐tion diagnosis and treatment and some suggestions for anti‐vibration are proposed at the design stage .%针对20000 t近海散货船的有害振动问题,通过实船振动测试、自航与拖模试验、尾部伴流场评估和三维有限元计算,找到主要振源是螺旋桨。振动问题的根源是尾部线型不合理,导致伴流严重不均匀和不定常,引起的螺旋桨叶频和倍叶频激励过大。提出更换螺旋桨、采用阻尼减振等一揽子综合减振措施。更换螺旋桨后,船舶的剧烈振动得到明显改善,满足ISO—6954振动衡准要求。同时在营运船舶有害振动诊断与治理方面取得了宝贵经验,并对船舶设计阶段的防振提出建议。

  4. Radionuclide carriers

    International Nuclear Information System (INIS)

    A new carrier for radionuclide technetium 99m has been prepared for scintiscanning purposes. The new preparate consists of physiologically acceptable water-insoluble Tcsup(99m)-carrier containing from 0.2 to 0.8 weight percent of stannic ion as reductor, bound to an anionic starch derivative with about 1-20% of phosphate substituents. (EG)

  5. Bulk undercooling

    Science.gov (United States)

    Kattamis, T. Z.

    1984-01-01

    Bulk undercooling methods and procedures will first be reviewed. Measurement of various parameters which are necessary to understand the solidification mechanism during and after recalescence will be discussed. During recalescence of levitated, glass-encased large droplets (5 to 8 mm diam) high speed temperature sensing devices coupled with a rapid response oscilloscope are now being used at MIT to measure local thermal behavior in hypoeutectic and eutectic binary Ni-Sn alloys. Dendrite tip velocities were measured by various investigators using thermal sensors or high speed cinematography. The confirmation of the validity of solidification models of bulk-undercooled melts is made difficult by the fineness of the final microstructure, the ultra-rapid evolution of the solidifying system which makes measurements very awkward, and the continuous modification of the microstructure which formed during recalescence because of precipitation, remelting and rapid coarsening.

  6. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    in Asia and will balance the carrier acquisitions of the United States, the United Kingdom, Russia and India. China’s current military strategy is predominantly defensive, its offensive elements being mainly focused on Taiwan. If China decides to acquire a large carrier with offensive capabilities......, then the country will also acquire the capability to project military power into the region beyond Taiwan, which it does not possess today. In this way, China will have the military capability to permit a change of strategy from the mainly defensive, mainland, Taiwan-based strategy to a more assertive strategy...... to acquire a carrier, they can either buy one or build it themselves. The easiest way would be to buy a carrier, and if that is the chosen option, then Russia would be the most likely country to build it. Technologically, it will be a major challenge for them to build one themselves and it is likely...

  7. Preconception Carrier Screening

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Preconception Carrier Screening Home For Patients Search FAQs Preconception Carrier Screening ... Screening FAQ179, August 2012 PDF Format Preconception Carrier Screening Pregnancy What is preconception carrier screening? What is ...

  8. Marked dependence on carrier-ligand bulk but not on carrier-ligand chirality of the duplex versus single-strand forms of a DNA oligonucleotide with a series of G-Pt(II)-G intrastrand cross-links modeling cisplatin-DNA adducts.

    Science.gov (United States)

    Beljanski, Vladimir; Villanueva, Julie M; Doetsch, Paul W; Natile, Giovanni; Marzilli, Luigi G

    2005-11-16

    The N7-Pt-N7 adjacent G,G intrastrand DNA cross-link responsible for cisplatin anticancer activity is dynamic, promotes local "melting" in long DNA, and converts many oligomer duplexes to single strands. For 5'-d(A1T2G3G4G5T6A7C8C9C10A11T12)-3' (G3), treatment of the (G3)2 duplex with five pairs of [LPt(H2O)2]2+ enantiomers (L = an asymmetric diamine) formed mixtures of LPt-G3 products (1 Pt per strand) cross-linked at G3,G4 or at G4,G5 in all cases. L chirality exerted little influence. For primary diamines L with bulk on chelate ring carbons (e.g., 1,2-diaminocyclohexane), the duplex was converted completely into single strands (G3,G4 coils and G4,G5 hairpins), exactly mirroring results for cisplatin, which lacks bulk. In sharp contrast, for secondary diamines L with bulk on chelate ring nitrogens (e.g., 2,2'-bipiperidine, Bip), unexpectedly stable duplexes having two platinated strands (even a unique G3,G4/G4,G5 heteroduplex) were formed. After enzymatic digestion of BipPt-G3 duplexes, the conformation of the relatively nondynamic G,G units was shown to be head-to-head (HH) by HPLC/mass spectrometric characterization. Because the HH conformation dominates at the G,G lesion in duplex DNA and in the BipPt-G3 duplexes, the stabilization of the duplex form only when the L nitrogen adducts possess bulk suggests that H-bonding interactions of the Pt-NH groups with the flanking DNA lead to local melting and to destabilization of oligomer duplexes. The marked dependence of adduct properties on L bulk and the minimal dependence on L chirality underscore the need for future exploration of the roles of the L periphery in affecting anticancer activity. PMID:16277526

  9. What Is Carrier Screening?

    Science.gov (United States)

    ... you want to learn. Search form Search Carrier screening You are here Home Testing & Services Testing for ... help you make the decision. What Is Carrier Screening? Carrier screening checks if a person is a " ...

  10. 载气对炭/炭复合材料沉积速率、体密度和微观结构的影响%Effect of carrier gases on densification rate, bulk density and microstructure of carbon/carbon composites

    Institute of Scientific and Technical Information of China (English)

    侯振华; 郝名扬; 罗瑞盈; 向巧; 杨威; 商海东; 许怀哲

    2015-01-01

    分别采用H2和CO2作为载气,CH4为前躯体,通过等温化学气相渗积制备炭/炭复合材料,通过偏光显微镜、拉曼光谱、X射线衍射和透射电镜对材料微观结构表征以及渗积过程密度变化,研究载气对沉积速率、体密度和微观结构的影响规律。结果表明:在渗积前50 h,CH4-H2体系的沉积速率明显大于CH4-CO2体系,但在其余渗积时间里,CH4-H2体系的沉积速率小于CH4-CO2体系。当载气从H2变成CO2时,复合材料的体密度从1.626 g/cm3增加到1.723 g/cm3,最大径向密度梯度从0.074 g/cm3减小到0.056 g/cm3。同时,基体炭从纯的粗糙体炭转变为杂化粗糙体炭含有过度生长锥,且平均石墨化度从62.7%下降到50.8%。这些显著的变化是由于CO2的氧化作用降低了表面沉积速率,却没有降低孔内沉积速率,同时大量的缺陷形成于层状石墨烯结构中导致形成过度生长锥,降低了热解炭织构。%Effect of carrier gases( H2 and CO2 ) on the densification rate, bulk density and microstructure of carbon/carbon com-posites fabricated by isothermalchemical vapor infiltration from methane ( CH4 ) was investigated. In the initial 50 h, the densifica-tion rate obtained from CH4-H2 is obviously higher than that from CH4-CO2 , while the densification rate from CH4-H2 is lower than that from CH4-CO2 with a further increase of infiltration time. When the carrier gas is switched from H2 to CO2 , the average bulk density of the compositeincreases from 1. 626 to 1. 723 g/cm3 , the maximum radial density gradient decreases from 0. 074 to 0. 056 g/cm3 , the matrix changes from the pure rough laminar to hybrid rough laminar pyrocarbon with overgrowth cones, and the average degree of graphitization reduces from 62. 7% to 50. 8%. These significant changes are caused by the fact that CO2 can ef-fectively reduce the surface deposition rate but does not inhibit the in-pore infiltration, and thatdefects are formed in the deposits by a

  11. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  13. Carrier lifetimes in thin-film photovoltaics

    Science.gov (United States)

    Baek, Dohyun

    2015-09-01

    The carrier lifetimes in thin-film solar cells are reviewed and discussed. Shockley-Read-Hall recombination is dominant at low carrier density, Auger recombination is dominant under a high injection condition and high carrier density, and surface recombination is dominant under any conditions. Because the surface photovoltage technique is insensitive to the surface condition, it is useful for bulk lifetime measurements. The photoconductance decay technique measures the effective recombination lifetime. The time-resolved photoluminescence technique is very useful for measuring thin-film semiconductor or solar-cell materials lifetime, because the sample is thin, other techniques are not suitable for measuring the lifetime. Many papers have provided time-resolved photoluminescence (TRPL) lifetimes for copper-indium-gallium-selenide (CIGS) and CdTe thin-film solar cell. The TRPL lifetime strongly depends on open-circuit voltage and conversion efficiency; however, the TRPL life time is insensitive to the short-circuit current.

  14. Asymmetric Carrier Random PWM

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Lungeanu, Florin; Rasmussen, Peter Omand;

    2010-01-01

    This paper presents a new fixed carrier frequency random PWM method, where a new type of carrier wave is proposed for modulation. Based on the measurements, it is shown that the spread effect of the discrete components from the motor current spectra is very effective independent of the modulation...

  15. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  16. Bulk band gaps in divalent hexaborides

    Energy Technology Data Exchange (ETDEWEB)

    Denlinger, Jonathan; Clack, Jules A.; Allen, James W.; Gweon, Gey-Hong; Poirier, Derek M.; Olson, Cliff G.; Sarrao, John L.; Bianchi, Andrea D.; Fisk, Zachary

    2002-08-01

    Complementary angle-resolved photoemission and bulk-sensitive k-resolved resonant inelastic x-ray scattering of divalent hexaborides reveal a >1 eV X-point gap between the valence and conduction bands, in contradiction to the band overlap assumed in several models of their novel ferromagnetism. This semiconducting gap implies that carriers detected in transport measurements arise from defects, and the measured location of the bulk Fermi level at the bottom of the conduction band implicates boron vacancies as the origin of the excess electrons. The measured band structure and X-point gap in CaB6 additionally provide a stringent test case for proper inclusion of many-body effects in quasi-particle band calculations.

  17. Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: From bulk to monolayer

    OpenAIRE

    Lv, H. Y.; Lu, W. J.; Shao, D. F.; Liu, Y; Tan, S. G.; Y. P. Sun

    2014-01-01

    The electronic structure of WTe2 bulk and layers are investigated by using the first principles calculations. The perfect electron-hole (n-p) charge compensation and high carrier mobilities are found in WTe2 bulk, which may result in the large and non-saturating magnetoresistance (MR) observed very recently in the experiment [Ali et al., Nature 514, 205 (2014)]. The monolayer and bilayer of WTe2 preserve the semimetallic property, with the equal hole and electron carrier concentrations. Moreo...

  18. Extracting hot carriers from photoexcited semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  19. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2008-01-01

    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  20. Bulk materials handling review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-02-15

    The paper provides details of some of the most important coal handling projects and technologies worldwide. It describes development by Aubema Crushing Technology GmbH, Bedeschi, Cimbria Moduflex, DBT, Dynamic Air Conveying Systems, E & F Services, InBulk Technologies, Nord-Sen Metal Industries Ltd., Pebco Inc, Primasonics International Ltd., R.J.S. Silo Clean (International) Ltd., Takraf GmbH, and The ACT Group. 17 photos.

  1. Fullerenes: A New Carrier Phase for Noble Gases in Meteorites

    Science.gov (United States)

    Becker, Luann

    2004-01-01

    The major focus of our research effort has been to measure the noble gases encapsulated within fullerenes, a new carbon carrier phase and compare it to the myriad of components found in the bulk meteorite acid residues. We have concentrated on the carbonaceous chondrites (Allende, Murchison and Tagish Lake) since they have abundant noble gases, typically with a planetary signature that dominates the stepped-release of the meteorite bulk acid residue. They also contain an extractable fullerene component that can be isolated and purified from the same bulk material.

  2. Ultrafast carrier dynamics in thin-films of the topological insulator Bi2Se3

    OpenAIRE

    Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Mikel B. Holcomb; Lederman, David

    2013-01-01

    Transient reflectivity measurements of thin films, ranging from 6 to 40 nm in thickness, of the topological insulator Bi2Se3 revealed a strong dependence of the carrier relaxation time on the film thickness. For thicker films the relaxation dynamics are similar to those of bulk Bi2Se3, where the contribution of the bulk insulating phase dominates over that of the surface metallic phase. The carrier relaxation time shortens with decreasing film thickness, reaching values comparable to those of...

  3. Photoinduced Transformation between Charge Carrier and Spin Carrier in Polymers

    Institute of Scientific and Technical Information of China (English)

    MEI Yuan; ZHAO Chang; SUN Xin

    2006-01-01

    By dynamical simulations, we show a transforming process between neutral soliton (spin carrier) and charged soliton (charge carrier) in polymers via photo-excitation, taking a polaron as the transitional bridge. It is photoinduced transformation between spin carrier and charge carrier. In this way, we demonstrate an access for polymers to be applied to spintronics.

  4. The value of energy carriers

    NARCIS (Netherlands)

    Gool, W. van

    1987-01-01

    The value of energy carriers can be described thermodynamically by the amount of heat (enthalpy method) or work (exergy or availability method) that can be obtained from the carriers. Prices for energy carriers are used in economics to express their values. The prices for energy carriers are often r

  5. Duchenne muscular dystrophy carriers

    International Nuclear Information System (INIS)

    By means of magnetic resonance imaging (MRI), the proton spin-lattice relaxation times (T1 values) of the skeletal muscles were measured in Duchenne muscular dystrophy (DMD) carriers and normal controls. The bound water fraction (BWF) was calculated from the T1 values obtained, according to the fast proton diffusion model. In the DMD carriers, T1 values of the gluteus maximus and quadriceps femoris muscles were significantly higher, and BWFs of these muscles were significantly lower than in normal control. Degenerative muscular changes accompanied by interstitial edema were presumed responsible for this abnormality. No correlation was observed between the muscle T1 and serum creatine kinase values. The present study showed that MRI could be a useful method for studying the dynamic state of water in both normal and pathological skeletal muscles. Its possible utility for DMD carrier detection was discussed briefly. (orig.)

  6. The value of energy carriers

    OpenAIRE

    Gool, W. van

    1987-01-01

    The value of energy carriers can be described thermodynamically by the amount of heat (enthalpy method) or work (exergy or availability method) that can be obtained from the carriers. Prices for energy carriers are used in economics to express their values. The prices for energy carriers are often related to their enthalpies when other properties and conditions are equivalent. However, it has been suggested that the exergy of the energy carriers is the proper quantity to establish their value...

  7. Wormholes in Bulk Viscous Cosmology

    OpenAIRE

    Jamil, Mubasher

    2008-01-01

    We investigate the effects of the accretion of phantom energy with non-zero bulk viscosity onto a Morris-Thorne wormhole. We have found that if the bulk viscosity is large then the mass of wormhole increases rapidly as compared to small or zero bulk viscosity.

  8. Reversible ultrafast melting in bulk CdSe

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenzhi [School of Electronic Engineering, Heilongjiang University, Harbin 150080 (China); Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); He, Feng; Wang, Yaguo, E-mail: yaguo.wang@austin.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); The Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2016-02-07

    In this work, transient reflectivity changes in bulk CdSe have been measured with two-color femtosecond pump-probe spectroscopy under a wide range of pump fluences. Three regions of reflectivity change with pump fluences have been consistently revealed for excited carrier density, coherent phonon amplitude, and lattice temperature. For laser fluences from 13 to 19.3 mJ/cm{sup 2}, ultrafast melting happens in first several picoseconds. This melting process is purely thermal and reversible. A complete phase transformation in bulk CdSe may be reached when the absorbed laser energy is localized long enough, as observed in nanocrystalline CdSe.

  9. Information and Its Carriers.

    Science.gov (United States)

    Herrmann, F.; And Others

    1985-01-01

    Describes: (1) the structure of a data transmission source, carrier, and receiver; (2) a quantitative measure for the amount of data, followed by some quantitative examples of data transmission processes; (3) the concept of data current; (4) data containers; and (5) how this information can be used to structure physics courses. (JN)

  10. The Incredible Bulk

    CERN Document Server

    Fukushima, Keita; Kumar, Jason; Sandick, Pearl; Yamamoto, Takahiro

    2014-01-01

    Recent experimental results from the LHC have placed strong constraints on the masses of colored superpartners. The MSSM parameter space is also constrained by the measurement of the Higgs boson mass, and the requirement that the relic density of lightest neutralinos be consistent with observations. Although large regions of the MSSM parameter space can be excluded by these combined bounds, leptophilic versions of the MSSM can survive these constraints. In this paper we consider a scenario in which the requirements of minimal flavor violation, vanishing $CP$-violation, and mass universality are relaxed, specifically focusing on scenarios with light sleptons. We find a large region of parameter space, analogous to the original bulk region, for which the lightest neutralino is a thermal relic with an abundance consistent with that of dark matter. We find that these leptophilic models are constrained by measurements of the magnetic and electric dipole moments of the electron and muon, and that these models have ...

  11. Creating bulk nanocrystalline metal.

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  12. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since...... assimilate movement includes an apoplasmic step, this mode is called apoplasmic loading. Well established is also the polymer-trap loading mode, where the phloem-transport sugars are raffinose-family oligomers in herbaceous plants. Also this mode depends on the investment of energy, here for sugar......Assimilates synthesized in the mesophyll of mature leaves move along the pre-phloem transport pathway to the bundle sheath of the minor veins from which they are loaded into the phloem. The present review discusses the most probable driving force(s) for the pre-phloem pathway, diffusion down...

  13. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel;

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  14. Comparison of recombination models in organic bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Recombination in bulk-heterojunction (BHJ) organic solar cells is the key loss mechanism, and it directly affects characteristic parameters such as power conversion efficiency, short-circuit current, open-circuit voltage, and fill factor. However, which recombination mechanism dominates the loss in organic materials is unclear at present. In this work, we simulate state-of-art BHJ solar cells using five recombination models, including direct recombination, Langevin recombination, charge transfer state recombination, trap-assisted recombination, and recombination via tail. All processes are strongly dependent on charge carrier mobility and exhibit a similar recombination distribution in active layer. For high mobilities, all models present a similar behavior along with the increased mobilities, whereas, there are slight differences in open-circuit voltage between trap/tail model and other ones at lower mobilities, resulting from the interaction between photo-carriers and dark-carriers

  15. Intestinal solute carriers

    DEFF Research Database (Denmark)

    Steffansen, Bente; Nielsen, Carsten Uhd; Brodin, Birger;

    2004-01-01

    membrane transporters in the small intestine in order to increase oral bioavailabilities of drug or prodrug, the major influence on in vivo pharmacokinetics is suggested to be dose-dependent increase in bioavailability as well as prolonged blood circulation due to large capacity facilitated absorption......A large amount of absorptive intestinal membrane transporters play an important part in absorption and distribution of several nutrients, drugs and prodrugs. The present paper gives a general overview on intestinal solute carriers as well as on trends and strategies for targeting drugs and....../or prodrugs to these carriers in order to increasing oral bioavailability and distribution. A number of absorptive intestinal transporters are described in terms of gene and protein classification, driving forces, substrate specificities and cellular localization. When targeting absorptive large capacity...

  16. Hungarian students’ carrier aspirations

    Directory of Open Access Journals (Sweden)

    A.S. Gubik

    2014-06-01

    Full Text Available The article analyzes the students’ carrier aspiration, right after their graduation and five years after their studies. It examines the differences arising from the students’ family business background and their most important social variables (gender, age. Then the study highlights the effects of study field on the students’ intention. The direct effect of education on starting an enterprise is undiscovered in the literature, the paper deals with the influence of availability and services use, offered by higher institutions.

  17. Bulk limited conduction in electroluminescent polymer devices

    Science.gov (United States)

    Campbell, A. J.; Weaver, M. S.; Lidzey, D. G.; Bradley, D. D. C.

    1998-12-01

    The current-voltage (J-V) characteristics of ITO/polymer film/Al or Au structures of poly(phenylene vinylene) (PPV) and a dialkoxy PPV copolymer have been recorded for a range of different film thickness d and temperatures T. At high applied bias all the characteristics can be fitted over a given range to a power law J=KVm, where m increases with decreasing T, log(K) is proportional to m, and K is proportional to d-α m, where α˜2 (ITO/polymer film/Al devices) and ˜1 (ITO/polymer film/Au devices). Different single carrier space charge limited conduction theories have been used to try and explain this behavior. The analytical theory in which the carrier density is decreased by an exponential trap distribution lying below effectively isoelectronic transport states is in good agreement, but cannot explain the thickness dependence of the ITO/polymer film/Au devices and can be criticized as being physically unreasonable. A numerical analysis in which the mobility has the field and temperature dependence found for hopping transport in disordered systems is also in good agreement, but can only fit a small range of J and cannot explain the magnitude of K, the temperature dependence of m or the abrupt change in slope in the J-V characteristics with increasing bias. Mixed models are equally good but cannot explain the deviations from experiment. We consider that further experimental studies of carrier mobilities and the nature of the traps present in such materials is required to distinguish between these models and resolve the nature of bulk limited conduction in conjugated polymers.

  18. Carrier transport uphill. I. General

    DEFF Research Database (Denmark)

    Rosenberg, T; Wilbrandt, W

    1963-01-01

    A quantitative treatment of a carrier pump operating with two carrier forms C and Z is presented. Asymmetric metabolic reactions are assumed to transform Z into C on one and C into Z on the other side of the membrane, establishing a carrier cycle. The kinetical consequences of this mechanism...

  19. Bulk fabrication and properties of solar grade silicon microwires

    Directory of Open Access Journals (Sweden)

    F. A. Martinsen

    2014-11-01

    Full Text Available We demonstrate a substrate-free novel route for fabrication of solar grade silicon microwires for photovoltaic applications. The microwires are fabricated from low purity starting material via a bulk molten-core fibre drawing method. In-situ segregation of impurities during the directional solidification of the fibres yields solar grade silicon cores (microwires where the concentration of electrically detrimental transition metals has been reduced between one and two orders of magnitude. The microwires show bulk minority carrier diffusion lengths measuring ∼40 μm, and mobilities comparable to those of single-crystal silicon. Microwires passivated with amorphous silicon yield diffusion lengths comparable to those in the bulk.

  20. Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: From bulk to monolayer

    Science.gov (United States)

    Lv, H. Y.; Lu, W. J.; Shao, D. F.; Liu, Y.; Tan, S. G.; Sun, Y. P.

    2015-05-01

    The electronic structures of the WTe2 bulk and layers are investigated by using the first-principles calculations. The perfect electron-hole (n\\text-p) charge compensation and high carrier mobilities are found in the WTe2 bulk, which may result in the large and non-saturating magnetoresistance (MR) observed very recently in the experiment (Ali M. N. et al, Nature, 514 (2014) 205). The monolayer and bilayer of WTe2 preserve the semimetallic property, with equal hole and electron carrier concentrations. Moreover, very high carrier mobilities are also found in WTe2 monolayer, indicating that the WTe2 monolayer would have the same extraordinary MR effect as the bulk, which could have promising applications in nanostructured magnetic devices.

  1. Maintainable substrate carrier for electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen-An; Abas, Emmanuel Chua; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor; Ma, Diana Xiaobing

    2016-08-02

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  2. Impact Excitation by Hot Carriers in Carbon Nanotubes

    OpenAIRE

    Perebeinos, Vasili; Avouris, Phaedon

    2006-01-01

    We investigate theoretically the efficiency of intra-molecular hot carrier induced impact ionization and excitation processes in carbon nanotubes. The electron confinement and reduced screening lead to drastically enhanced excitation efficiencies over those in bulk materials. Strong excitonic coupling favors neutral excitations over ionization, while the impact mechanism populates a different set of states than that produced by photoexcitation. The excitation rate is strongly affected by opti...

  3. Mining the bulk positron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Aourag, H.; Guittom, A. [Centre de Recherche Nucleaire d' Alger (CRNA), Alger Gare - Algiers (Algeria)

    2009-02-15

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Mining the bulk positron lifetime

    International Nuclear Information System (INIS)

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Advances in bulk port development

    Energy Technology Data Exchange (ETDEWEB)

    Soros, P. (Soros Associates Consulting Engineers, New York, NY (USA))

    1991-03-01

    The article features several recently developed bulk ports which illustrate aspects of new technology or concepts in maritime transport. Low handling capacity bulk terminals at Ponta da Madeira, Brazil and Kooragang Island, Australia and the low-cost bulk port at Port of Corpus Christi, Texas are described. Operations at the ports of Pecket and Tocopilla in Chile, which had special technical problems, are mentioned. Coal terminals at Port Kembla, Australia and St. Johns River in Florid Jacksonville, Florida are featured as examples of terminals which had to be designed to meet high environmental standards. 13 refs., 2 figs., 14 photos.

  6. Bulk Nuclear Properties from Reactions

    OpenAIRE

    Danielewicz, P.

    2002-01-01

    Extraction of bulk nuclear properties by comparing reaction observables to results from semiclassical transport-model simulations is discussed. Specific properties include the nuclear viscosity, incompressibility and constraints on the nuclear pressure at supranormal densities.

  7. Autonomous component carrier selection

    DEFF Research Database (Denmark)

    Garcia, Luis Guilherme Uzeda; Pedersen, Klaus; Mogensen, Preben

    2009-01-01

    in local areas, basing our study case on LTE-Advanced. We present extensive network simulation results to demonstrate that a simple and robust interference management scheme, called autonomous component carrier selection allows each cell to select the most attractive frequency configuration; improving......Low-power base stations such as e.g. Femto-cells are one of the candidates for high data rate provisioning in local areas, such as residences, apartment complexes, business offices and outdoor hotspot scenarios. Unfortunately, the benefits are not without new challenges in terms of interference...... management and efficient system operation. Due to the expected large number of user-deployed cells, centralized network planning becomes unpractical and new scalable alternatives must be sought. In this article, we propose a fully distributed and scalable solution to the interference management problem...

  8. Extraction and Transport of Amino Acids Using Kryptofix 5 as Carrier through Liquid Membrane

    OpenAIRE

    Pankaj Raizada; Uma Sharma

    2013-01-01

    The present work explores membrane-mediated extraction and transport studies of amino acids through artificial bulk liquid membrane system with kryptofix 5 as a carrier. The various reaction parameters such as amino acid concentration, carrier concentration, time, pH, and stirring effect were studied to optimize reaction conditions. The stirring of source and receiving phases increased the efficiency of extraction process. Noncyclic receptor kryptofix 5 with five oxyethylene units an...

  9. The effect of morphology upon mobility : Implications for bulk heterojunction solar cells with nonuniform blend morphology

    NARCIS (Netherlands)

    Groves, C.; Koster, L. J. A.; Greenham, N. C.

    2009-01-01

    We use a Monte Carlo model to predict the effect of composition, domain size, and energetic disorder upon the mobility of carriers in an organic donor-acceptor blend. These simulations show that, for the changes in local morphology expected within the thickness of a typical bulk heterojunction photo

  10. Spin dynamics in bulk CdTe at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nahalkova, P. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Nemec, P. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic)]. E-mail: nemec@karlov.mff.cuni.cz; Sprinzl, D. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Belas, E. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Horodysky, P. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Franc, J. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Hlidek, P. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Maly, P. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic)

    2006-01-25

    In this paper, we report on the room temperature dynamics of spin-polarized carriers in undoped bulk CdTe. Platelets of CdTe with different concentration of preparation-induced dislocations were prepared by combining the mechanical polishing and chemical etching. Using the polarization-resolved pump-probe experiment in transmission geometry, we have observed a systematic decrease of both the signal polarization and the electron spin dephasing time (from 52 to 36 ps) with the increased concentration of defects. We have suggested that the Elliot-Yafet mechanism might be the dominant spin dephasing mechanism in platelets of CdTe at room temperature.

  11. Spin dynamics in bulk CdTe at room temperature

    International Nuclear Information System (INIS)

    In this paper, we report on the room temperature dynamics of spin-polarized carriers in undoped bulk CdTe. Platelets of CdTe with different concentration of preparation-induced dislocations were prepared by combining the mechanical polishing and chemical etching. Using the polarization-resolved pump-probe experiment in transmission geometry, we have observed a systematic decrease of both the signal polarization and the electron spin dephasing time (from 52 to 36 ps) with the increased concentration of defects. We have suggested that the Elliot-Yafet mechanism might be the dominant spin dephasing mechanism in platelets of CdTe at room temperature

  12. Looking for a bulk point

    CERN Document Server

    Maldacena, Juan; Zhiboedov, Alexander

    2015-01-01

    We consider Lorentzian correlators of local operators. In perturbation theory, singularities occur when we can draw a position-space Landau diagram with null lines. In theories with gravity duals, we can also draw Landau diagrams in the bulk. We argue that certain singularities can arise only from bulk diagrams, not from boundary diagrams. As has been previously observed, these singularities are a clear diagnostic of bulk locality. We analyze some properties of these perturbative singularities and discuss their relation to the OPE and the dimensions of double-trace operators. In the exact nonperturbative theory, we expect no singularity at these locations. We prove this statement in 1+1 dimensions by CFT methods.

  13. Bulk Viscosity of Interacting Hadrons

    OpenAIRE

    Wiranata, A.; M. Prakash

    2009-01-01

    We show that first approximations to the bulk viscosity $\\eta_v$ are expressible in terms of factors that depend on the sound speed $v_s$, the enthalpy, and the interaction (elastic and inelastic) cross section. The explicit dependence of $\\eta_v$ on the factor $(\\frac 13 - v_s^2)$ is demonstrated in the Chapman-Enskog approximation as well as the variational and relaxation time approaches. The interesting feature of bulk viscosity is that the dominant contributions at a given temperature ari...

  14. Bulk Viscosity of Interacting Hadrons

    CERN Document Server

    Wiranata, A

    2009-01-01

    We show that first approximations to the bulk viscosity $\\eta_v$ are expressible in terms of factors that depend on the sound speed $v_s$, the enthalpy, and the interaction (elastic and inelastic) cross section. The explicit dependence of $\\eta_v$ on the factor $(\\frac 13 - v_s^2)$ is demonstrated in the Chapman-Enskog approximation as well as the variational and relaxation time approaches. The interesting feature of bulk viscosity is that the dominant contributions at a given temperature arise from particles which are neither extremely nonrelativistic nor extremely relativistic. Numerical results for a model binary mixture are reported.

  15. Nanostructured Lipid Carriers: A potential drug carrier for cancer chemotherapy

    Directory of Open Access Journals (Sweden)

    Selvamuthukumar Subramanian

    2012-11-01

    Full Text Available Abstract Nanotechnology having developed exponentially, the aim has been on therapeutic undertaking, particularly for cancerous disease chemotherapy. Nanostructured lipid carriers have attracted expanding scientific and commercial vigilance in the last couple of years as alternate carriers for the pharmaceutical consignment, particularly anticancer pharmaceuticals. Shortcomings often came across with anticancer mixtures, such as poor solubility, normal tissue toxicity, poor specificity and steadiness, as well as the high incidence rate of pharmaceutical resistance and the rapid degradation, need of large-scale output procedures, a fast release of the pharmaceutical from its carrier scheme, steadiness troubles, the residues of the organic solvents utilized in the output method and the toxicity from the polymer with esteem to the carrier scheme are anticipated to be overcome through use of the Nanostructured Lipid Carrier. In this review the benefits, types, drug release modulations, steadiness and output techniques of NLCs are discussed. In supplement, the function of NLC in cancer chemotherapy is presented and hotspots in research are emphasized. It is foreseen that, in the beside future, nanostructured lipid carriers will be further advanced to consign cytotoxic anticancer compounds in a more efficient, exact and protected manner.

  16. Probing the carrier concentration profiles in phosphorus-implanted germanium using infrared spectroscopic ellipsometry

    Science.gov (United States)

    D'Costa, Vijay Richard; Yeo, Yee-Chia

    2015-02-01

    Spectroscopic ellipsometry with photon energy in the 0.045-0.65 eV range was used to investigate germanium samples implanted with 30 keV phosphorus ions and annealed at 700 °C. The infrared response of implanted layers is dominated by free carrier absorption which is modeled using a Drude oscillator. The carrier concentration profiles were modeled using an error function, and compared with those obtained by electrochemical capacitance-voltage profiling and secondary ion mass spectrometry. In the flat region of the carrier concentration profile, average carrier concentration and mobility of 1.40 × 1019 cm-3 and 336 cm2V-1s-1, respectively, were obtained. A phosphorus diffusivity of ˜1.2 × 10-13 cm2/s was obtained. The mobility versus carrier concentration relationships obtained for the implanted samples are close to the empirical relationship for bulk Ge.

  17. Basic Stand Alone Carrier Line Items PUF

    Data.gov (United States)

    U.S. Department of Health & Human Services — This release contains the Basic Stand Alone (BSA) Carrier Line Items Public Use Files (PUF) with information from Medicare Carrier claims. The CMS BSA Carrier Line...

  18. Bulk viscosity and deflationary universes

    CERN Document Server

    Lima, J A S; Waga, I

    2007-01-01

    We analyze the conditions that make possible the description of entropy generation in the new inflationary model by means of a nearequilibrium process. We show that there are situations in which the bulk viscosity cannot describe particle production during the coherent field oscillations phase.

  19. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja;

    2009-01-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise i...

  20. Influences of bulk and surface recombinations on the power conversion efficiency of perovskite solar cells

    Science.gov (United States)

    Xie, Ziang; Sun, Shuren; Yan, Yu; Wang, Wei; Qin, Laixiang; Qin, G. G.

    2016-07-01

    For a novel kind of solar cell (SC) material, it is critical to estimate how far the power conversion efficiencies (PCEs) of the SCs made of it can go. In 2010 Han and Chen proposed the equation for the ultimate efficiency of SCs without considering the carrier recombination η un. η un is capable of estimating the theoretical upper limits of the SC efficiencies and has attracted much attention. However, carrier recombination, which is one of the key factors influencing the PCEs of the SCs, is ignored in the equation for η un. In this paper, we develop a novel equation to calculate the ultimate efficiency for the SCs, η ur, which considers both the bulk and the surface carrier recombinations. The novel equation for η ur can estimate how much the bulk and the surface carrier recombinations influence the PCEs of the SCs. Moreover, with η ur we can estimate how much PCE improvement space can be gained only by reducing the influence of the carrier recombination to the least. The perovskite organometal trihalide SCs have attracted tremendous attention lately. For the planar CH3NH3PbI3 SCs, in the material depth range from 31.25–2000 nm, we apply the equation of η ur to investigate how the bulk and the surface carrier recombinations affect PCE. From a typically reported PCE of 15% for the planar CH3NH3PbI3 SC, using the equation of η ur, it is concluded that by reducing the influence of carrier recombination to the least the improvement of PCE is in the range of 17–30%.

  1. Coulombic Fluids Bulk and Interfaces

    CERN Document Server

    Freyland, Werner

    2011-01-01

    Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.

  2. Lower reflectivity and higher minority carrier lifetime of hand-tailored porous silicon

    Institute of Scientific and Technical Information of China (English)

    Zhang Nansheng; Ma Zhongquan; Zhou Chengyue; He Bo

    2009-01-01

    con layer is measured to be ~3.19 μs. These values are very close to the reflectivity and the minority carrier lifetime of Si3N4 as a passivation layer on a bulk silicon-based solar cell (0.33% and 3.03/μs, respectively).

  3. Bulk Superconductors in Mobile Application

    Science.gov (United States)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  4. Straddle carrier radiation portal monitoring

    Science.gov (United States)

    Andersen, Eric S.; Samuel, Todd J.; Mullen, O. Dennis

    2005-05-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation"s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. The U.S. ports of entry include the following vectors: land border crossings, seaports, airports, rail crossings, and mail and express consignment courier facilities. U.S. Customs and Border Protection (CBP) determined that a screening solution was needed for Seaport cargo containers being transported by Straddle Carriers (straddle carriers). A stationary Radiation Portal Monitor (RPM) for Straddle Carriers (SCRPM) is needed so that cargo containers can be scanned while in transit under a Straddle Carrier. The Straddle Carrier Portal operational impacts were minimized by conducting a time-motion study at the Port, and adaptation of a Remotely Operated RPM (RO-RPM) booth concept that uses logical lighting schemes for traffic control, cameras, Optical Character Recognition, and wireless technology.

  5. Microscopic observation of carrier-transport dynamics in quantum-structure solar cells using a time-of-flight technique

    Energy Technology Data Exchange (ETDEWEB)

    Toprasertpong, Kasidit; Fujii, Hiromasa; Sugiyama, Masakazu; Nakano, Yoshiaki [School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032 (Japan); Kasamatsu, Naofumi; Kada, Tomoyuki; Asahi, Shigeo; Kita, Takashi [Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501 (Japan); Wang, Yunpeng; Watanabe, Kentaroh [Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904 (Japan)

    2015-07-27

    In this study, we propose a carrier time-of-flight technique to evaluate the carrier transport time across a quantum structure in an active region of solar cells. By observing the time-resolved photoluminescence signal with a quantum-well probe inserted under the quantum structure at forward bias, the carrier transport time can be efficiently determined at room temperature. The averaged drift velocity shows linear dependence on the internal field, allowing us to estimate the quantum structure as a quasi-bulk material with low effective mobility containing the information of carrier dynamics. We show that this direct and real-time observation is more sensitive to carrier transport than other conventional techniques, providing better insights into microscopic carrier transport dynamics to overcome a device design difficulty.

  6. Impact of carriers in oral absorption

    DEFF Research Database (Denmark)

    Gram, Luise Kvisgaard; Rist, Gerda Marie; Lennernäs, Hans;

    2009-01-01

    Carriers may mediate the permeation across enterocytes for drug substances being organic anions. Carrier mediated permeation for the organic anions estrone-3-sulfate (ES) and glipizide across Caco-2 cells were investigated kinetically, and interactions on involved carriers evaluated. Initial......(APP) was not described by carrier kinetics. However, glipizide is affecting exsorption for ES, due to interactions on basolateral carrier. The study confirms that estrone-3-sulfate can be used to characterize anionic carrier kinetics. Furthermore it is suggested that estrone-3-sulfate may be used to identify compounds...... which may interact on anionic carriers....

  7. The recent advances on carrier materials for microencapsulating lipophilic cores

    Directory of Open Access Journals (Sweden)

    JIN Minfeng

    2014-12-01

    Full Text Available Lipophilic ingredients,such as polyunsaturated fatty acids,play an important role in industrialized foods to fortify the nutrients.However,these materials are normally sensitive to oxygen,light or heat to be oxidized,and hard to flow and mix within the bulk food due to the hydrophobic nature.Microencapsulation of lipophilic materials could effectively extend their shelf lives,mask unsatisfied flavors,change their physicochemical properties,and enhance the mixing capacities.This work reviewed the different carrier materials applied in microencapsulating the lipophilic ingredients,and discussed their characteristics and effects on encapsulation efficiencies and release profiles of lipophilic cores.

  8. RANS computations of flow around a bulk carrier with energy saving device

    OpenAIRE

    Lidtke, Artur; Lakshmynarayanana, Arun; Camilleri, Josef; Banks, Joseph; Phillips, Alexander; Turnock, Stephen,; Badoe, charles

    2015-01-01

    The Fluid Structure Interactions group (University of Southampton) has been extensively involved in many research projects focusing on computations of ship wake field and the interactions between the propeller, rudder and the hull. A finite-volume RANS code, OpenFOAM (OpenFOAM, 2014) has been used mostly in majority of these works. The goal of the group has been to improve the in-house capability of prediction of ship stern flows using open-source software. In the present work OpenFOAM is ben...

  9. Measuring the complete cross-cell carrier mobility distributions in bulk heterojunction solar cells

    Science.gov (United States)

    Seifter, Jason; Sun, Yanming; Choi, Hyosung; Lee, Byoung Hoon; Heeger, Alan

    2015-03-01

    Carbon nanotube-enabled, vertical, organic field effect transistors (CN-VFETs) based on the small molecule dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) have demonstrated high current, low-power operation suitable for driving active matix organic light emitting diode (AMOLED) displays. This performance is achieved without the need for costly high-resolution patterning, despite the low mobility of the organic semiconductor, by employing sub-micron channel widths, defined in the vertical devices by the thickness of the semiconducting layer. Replacing the thermally evaporated small molecule semiconductor with a solution-processed polymer would possibly further simplify the fabrication process and reduce manufacturing cost. Here we investigate several polymer systems as wide bandgap semiconducting channel layers for potentially air stable and transparent CN-VFETs. The field effect mobility and optical transparency of the polymer layers are determined, and the performance and air stability of CN-VFET devices are measured. A. S. gratefully acknowledges support from the National Science Foundation under DMR-1156737.

  10. Distinguishing between plasmon-induced and photo-excited carriers in a device geometry (Presentation Recording)

    Science.gov (United States)

    Zhao, Hangqi; Zheng, Bob Y.; Manjavacas, Alejandro; McClain, Michael J.; Nordlander, Peter; Halas, Naomi J.

    2015-09-01

    The use of surface plasmons, charge density oscillations of conduction electrons of metallic nanostructures, could drastically alter how sunlight is converted into electricity or fuels by increasing the efficiency of light-harvesting devices through enhanced light-matter interactions. Surface plasmons can decay directly into energetic electron-hole pairs, or "hot" carriers, which can be used for photocurrent generation or photocatalysis. However, little has been understood about the fundamental mechanisms behind plasmonic carrier generation. Here we use metallic nano-wire based hot carrier devices on a wide-bandgap semiconductor substrate to show that plasmonic hot carrier generation is proportional to field intensity enhancement instead of bulk material absorption. We also show that interband carrier generation results in less energetic carriers than plasmon-induced generation, and a plasmon is required to inject electrons over a large energy barrier. Finite Difference Time Domain (FDTD) method is used for theoretical calculations, which match well with experimental results. This work points to a clear route to increasing the efficiency of plasmonic hot carrier devices and drastically simplifies the theoretical framework for understanding the mechanisms of hot carrier generation.

  11. Process optimization and biocompatibility of cell carriers suitable for automated magnetic manipulation.

    Science.gov (United States)

    Krejci, I; Piana, C; Howitz, S; Wegener, T; Fiedler, S; Zwanzig, M; Schmitt, D; Daum, N; Meier, K; Lehr, C M; Batista, U; Zemljic, S; Messerschmidt, J; Franzke, J; Wirth, M; Gabor, F

    2012-03-01

    There is increasing demand for automated cell reprogramming in the fields of cell biology, biotechnology and the biomedical sciences. Microfluidic-based platforms that provide unattended manipulation of adherent cells promise to be an appropriate basis for cell manipulation. In this study we developed a magnetically driven cell carrier to serve as a vehicle within an in vitro environment. To elucidate the impact of the carrier on cells, biocompatibility was estimated using the human adenocarcinoma cell line Caco-2. Besides evaluation of the quality of the magnetic carriers by field emission scanning electron microscopy, the rate of adherence, proliferation and differentiation of Caco-2 cells grown on the carriers was quantified. Moreover, the morphology of the cells was monitored by immunofluorescent staining. Early generations of the cell carrier suffered from release of cytotoxic nickel from the magnetic cushion. Biocompatibility was achieved by complete encapsulation of the nickel bulk within galvanic gold. The insulation process had to be developed stepwise and was controlled by parallel monitoring of the cell viability. The final carrier generation proved to be a proper support for cell manipulation, allowing proliferation of Caco-2 cells equal to that on glass or polystyrene as a reference for up to 10 days. Functional differentiation was enhanced by more than 30% compared with the reference. A flat, ferromagnetic and fully biocompatible carrier for cell manipulation was developed for application in microfluidic systems. Beyond that, this study offers advice for the development of magnetic cell carriers and the estimation of their biocompatibility.

  12. Multiple carrier transport in N-face indium nitride

    International Nuclear Information System (INIS)

    We present temperature (20-300 K) dependent multi-carrier measurements of electron species in N-face indium nitride. N-face InN samples were grown to different thicknesses (500-2000 nm) via plasma-assisted molecular beam epitaxy on C-face SiC substrates. Surface and bulk electron transport properties were extracted using a quantitative mobility spectrum analysis. Mobility of both bulk and surface electron species increase with film thickness. The temperature dependence of the mobility of both species differs to that of In-polar samples studied previously, while the mobility of surface electrons is more than twice that of In-polar samples with only a slight corresponding reduction in sheet concentration. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Contactless Spectral-dependent Charge Carrier Lifetime Measurements in Silicon Photovoltaic Materials

    Science.gov (United States)

    Roller, John; Hamadani, Behrang; Dagenais, Mario

    Charge carrier lifetime measurements in bulk or unfinished photovoltaic (PV) materials allow for a more accurate estimate of power conversion efficiency in completed solar cells. In this work, carrier lifetimes in PV-grade silicon wafers are obtained by way of quasi-steady state photoconductance measurements. These measurements use a contactless RF system coupled with varying narrow spectrum input LEDs, ranging in wavelength from 460 nm to 1030 nm. Spectral dependent lifetime measurements allow for determination of bulk and surface properties of the material, including the intrinsic bulk lifetime and the surface recombination velocity. The effective lifetimes are fit to an analytical physics-based model to determine the desired parameters. Passivated and non-passivated samples are both studied and are shown to have good agreement with the theoretical model.

  14. Carrier sense data highway system

    Science.gov (United States)

    Frankel, Robert

    1984-02-14

    A data transmission system includes a transmission medium which has a certain propagation delay time over its length. A number of data stations are successively coupled to the transmission medium for communicating with one another. Each of the data stations includes a transmitter for originating signals, each signal beginning with a carrier of a duration which is at least the propagation delay time of the transmission medium. Each data station also includes a receiver which receives other signals from other data stations and inhibits operation of the transmitter at the same data station when a carrier of another signal is received.

  15. Iron - based bulk amorphous alloys

    Directory of Open Access Journals (Sweden)

    R. Babilas

    2010-07-01

    Full Text Available Purpose: The paper presents a structure characterization, thermal and soft magnetic properties analysis of Fe-based bulk amorphous materials in as-cast state and after crystallization process. In addition, the paper gives some brief review about achieving, formation and structure of bulk metallic glasses as a special group of amorphous materials.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4 metallic glass in form of ribbons and rods. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The thermal properties of the glassy samples were measured using differential thermal analysis (DTA and differential scanning calorimetry (DSC. The magnetic properties contained initial and maximum magnetic permeability, coercive force and magnetic after-effects measurements were determined by the Maxwell-Wien bridge and VSM methods.Findings: The X-ray diffraction and transmission electron microscopy investigations revealed that the studied as-cast bulk metallic glasses in form of ribbons and rods were amorphous. Two stage crystallization process was observed for studied bulk amorphous alloy. The differences of crystallization temperature between ribbons and rods with chosen thickness are probably caused by different amorphous structures as a result of the different cooling rates in casting process. The SEM images showed that studied fractures could be classified as mixed fractures with indicated two zones contained “river” and “smooth” areas. The changing of chosen soft magnetic properties (μr, Bs, Hc obtained for samples with different thickness is a result of the non-homogenous amorphous structure of tested metallic glasses. The annealing process in temperature range from 373 to 773 K causes structural relaxation of tested amorphous materials, which leads to changes in their physical properties. The qualitative

  16. Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang Werner; Hvam, Jørn Märcher;

    2000-01-01

    The ultrafast gain and index dynamics in a set of InAs-InGaAs-GaAs quantum-dot (QD) amplifiers are measured at room temperature with femtosecond resolution. The role of spectral hole-burning (SHB) and carrier heating (CH) in the recovery of gain compression is investigated in detail. An ultrafast...... recovery of the spectral hole within ~100 fs is measured, comparable to bulk and quantum-well amplifiers, which is contradicting a carrier relaxation bottleneck in electrically pumped QD devices. The CH dynamics in the QD is quantitatively compared with results on an InGaAsP bulk amplifier. Reduced CH for...... both gain and refractive index dynamics of the QD devices is found, which is a promising prerequisite for high-speed applications. This reduction is attributed to reduced free-carrier absorption-induced heating caused by the small carrier density necessary to provide amplification in these low...

  17. Hot carrier degradation in semiconductor devices

    CERN Document Server

    2015-01-01

    This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices.  Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance. • Describes the intricacies of hot carrier degradation in modern semiconductor technologies; • Covers the entire hot carrier degradation phenomenon, including topics such as characterization, carrier transport, carrier-defect interaction, technological impact, circuit impact, etc.; • Enables detailed understanding of carrier transport, interaction of the carrier ensemble with the defect precursors, and an accurate assessment of how the newly created defects imp...

  18. Handling of bulk solids theory and practice

    CERN Document Server

    Shamlou, P A

    1990-01-01

    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  19. New fermions in the bulk

    CERN Document Server

    de Brito, K P S

    2016-01-01

    Spinor fields on 5-dimensional Lorentzian manifolds are classified, according to the geometric Fierz identities that involve their bilinear covariants. Based upon this classification that generalises the celebrated 4-dimensional Lounesto classification of spinor fields, new non-trivial classes of 5-dimensional spinor fields are, hence, found, with important potential applications regarding bulk fermions and their subsequent localisation on brane-worlds. In addition, quaternionic bilinear covariants are used to derive the quaternionic spin density, through the truncated exterior bundle. In order to accomplish a realisation of these new spinors, a Killing vector field is constructed on the horizon of 5-dimensional Kerr black holes. This Killing vector field is shown to reach the time-like Killing vector field at the spatial infinity, through a current 1-form density, constructed with the derived new spinor fields. The current density is, moreover, expressed as the f\\"unfbein components, assuming a condensed for...

  20. Ordered bulk degradation via autophagy

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S

    2008-01-01

    During amino acid starvation, cells undergo macroautophagy which is regarded as an unspecific bulk degradation process. Lately, more and more organelle-specific autophagy subtypes such as reticulophagy, mitophagy and ribophagy have been described and it could be shown, depending on the experimental...... setup, that autophagy specifically can remove certain subcellular components. We used an unbiased quantitative proteomics approach relying on stable isotope labeling by amino acids in cell culture (SILAC) to study global protein dynamics during amino acid starvation-induced autophagy. Looking...... at proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what...

  1. Microwave disinfestation of bulk timber.

    Science.gov (United States)

    Plaza, Pedro Jose; Zona, Angela Tatiana; Sanchís, Raul; Balbastre, Juan Vicente; Martínez, Antonio; Muñoz, Eva Maria; Gordillo, Javier; de los Reyes, Elías

    2007-01-01

    In this paper a complete microwave system for bulk timber disinfestation is developed and tested. A commercial FEM simulator has been used to design the applicator, looking for structures providing uniform field distributions, which is a factor of capital relevance for a successful treatment. Special attention has also been given to the reduction of electromagnetic energy leakage. A dual polarized cylindrical applicator with a corrugated flange has been designed. The applicator has also been numerically tested emulating some real-life operating conditions. A prototype has been built using two low-cost magnetrons of 900 W and high power coaxial cables and it has been tested inside a shielded semianechoic chamber. The tests have been carried out in three stages: validation of the applicator design, determination of the lethal dosage as a function of the insect position and the maximum wood temperature allowed and statement of safe operation procedures. PMID:18351001

  2. Isotopic signatures by bulk analyses

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory has developed a series of measurement techniques for identification of nuclear signatures by analyzing bulk samples. Two specific applications for isotopic fingerprinting to identify the origin of anthropogenic radioactivity in bulk samples are presented. The first example is the analyses of environmental samples collected in the US Arctic to determine the impact of dumping of radionuclides in this polar region. Analyses of sediment and biota samples indicate that for the areas sampled the anthropogenic radionuclide content of sediments was predominantly the result of the deposition of global fallout. The anthropogenic radionuclide concentrations in fish, birds and mammals were very low. It can be surmised that marine food chains are presently not significantly affected. The second example is isotopic fingerprinting of water and sediment samples from the Rocky Flats Facility (RFP). The largest source of anthropogenic radioactivity presently affecting surface-waters at RFP is the sediments that are currently residing in the holding ponds. One gram of sediment from a holding pond contains approximately 50 times more plutonium than 1 liter of water from the pond. Essentially 100% of the uranium in Ponds A-1 and A-2 originated as depleted uranium. The largest source of radioactivity in the terminal Ponds A-4, B-5 and C-2 was naturally occurring uranium and its decay product radium. The uranium concentrations in the waters collected from the terminal ponds contained 0.05% or less of the interim standard calculated derived concentration guide for uranium in waters available to the public. All of the radioactivity observed in soil, sediment and water samples collected at RFP was naturally occurring, the result of processes at RFP or the result of global fallout. No extraneous anthropogenic alpha, beta or gamma activities were detected. The plutonium concentrations in Pond C-2 appear to vary seasonally

  3. Minority carrier blocking to enhance the thermoelectric figure of merit in narrow-band-gap semiconductors

    Science.gov (United States)

    Bahk, Je-Hyeong; Shakouri, Ali

    2016-04-01

    We present detailed theoretical predictions on the enhancement of the thermoelectric figure of merit by minority carrier blocking with heterostructure barriers in bulk narrow-band-gap semiconductors. Bipolar carrier transport, which is often significant in a narrow-band-gap material, is detrimental to the thermoelectric energy conversion efficiency as it suppresses the Seebeck coefficient and increases the thermal conductivity. When the minority carriers are selectively prevented from participating in conduction while the transport of majority carriers is relatively unaffected by one-sided heterobarriers, the thermoelectric figure of merit can be drastically enhanced. Thermoelectric transport properties such as Seebeck coefficient, electrical conductivity, and electronic thermal conductivity including the bipolar term are calculated with and without the barriers based on the near-equilibrium Boltzmann transport equations under the relaxation time approximation to investigate the effects of minority carrier barriers on the thermoelectric figure of merit. For this, we provide details of carrier transport modeling and fitting results of experimental data for three important material systems, B i2T e3 -based alloys, M g2S i1 -xS nx , and S i1 -xG ex , that represent, respectively, near-room-temperature (300 K-500 K), midtemperature (600 K-900 K), and high-temperature (>1000 K ) applications. Theoretical maximum enhancement of thermoelectric figure of merit that can be achieved by minority carrier blocking is quantified and discussed for each of these semiconductors.

  4. Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal

    Directory of Open Access Journals (Sweden)

    Faccio D.

    2013-03-01

    Full Text Available We present supercontinuum generation pumped by femtosecond mid-infrared pulses in a bulk homogeneous material. The spectrum extends from 450 nm into the midinfrared, and carries high spectral energy density (3 pJ/nm–10 nJ/nm. The supercontinuum has high shot-to-shot reproducibility and preserves the carrier-to-envelope phase. Our result paves the way for compact supercontinuum sources with unprecedented bandwidth.

  5. Fatigue reliability for LNG carrier

    Institute of Scientific and Technical Information of China (English)

    Xiao Taoyun; Zhang Qin; Jin Wulei; Xu Shuai

    2011-01-01

    The procedure of reliability-based fatigue analysis of liquefied natural gas (LNG) carrier of membrane type under wave loads is presented. The stress responses of the hotspots in regular waves with different wave heading angles and wave lengths are evaluated by global ship finite element method (FEM). Based on the probabilistic distribution function of hotspots' short-term stress-range using spectral-based analysis, Weibull distribution is adopted and discussed for fitting the long-term probabilistic distribution of stress-range. Based on linear cumulative damage theory, fatigue damage is characterized by an S-N relationship, and limit state function is established. Structural fatigue damage behavior of several typical hotspots of LNG middle ship section is clarified and reliability analysis is performed. It is believed that the presented results and conclusions can be of use in calibration for practical design and initial fatigue safety evaluation for membrane type LNG carrier.

  6. Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics.

    Science.gov (United States)

    Webster, David M; Sundaram, Padma; Byrne, Mark E

    2013-05-01

    Therapeutics such as nucleic acids, proteins/peptides, vaccines, anti-cancer, and other drugs have disadvantages of low bio-availability, rapid clearance, and high toxicity. Thus, there is a significant need for the development of efficient delivery methods and carriers. Injectable nanocarriers have received much attention due to their vast range of structures and ability to contain multiple functional groups, both within the bulk material and on the surface of the particles. Nanocarriers may be tailored to control drug release and/or increase selective cell targeting, cellular uptake, drug solubility, and circulation time, all of which lead to a more efficacious delivery and action of therapeutics. The focus of this review is injectable, targeted nanoparticle drug delivery carriers highlighting the diversity of nanoparticle materials and structures as well as highlighting current therapeutics and targeting moieties. Structures and materials discussed include liposomes, polymersomes, dendrimers, cyclodextrin-containing polymers (CDPs), carbon nanotubes (CNTs), and gold nanoparticles. Additionally, current clinical trial information and details such as trial phase, treatment, active drug, carrier sponsor, and clinical trial identifier for different materials and structures are presented and discussed.

  7. Gemini surfactants as gene carriers

    Directory of Open Access Journals (Sweden)

    Teresa Piskorska

    2010-03-01

    Full Text Available Gemini surfactants are a new class of amphiphilic compounds built from two classic surfactant moieties bound together by a special spacer group. These compounds appear to be excellent for creating complexes with DNA and are effective in mediating transfection. Thanks to their construction, DNA carrier molecules built from gemini surfactants are able to deliver genes to cells of almost any DNA molecule size, unattainable when using viral gene delivery systems. Moreover, they are much safer for living organisms.

  8. Free-carrier contribution to all-optical switching in Mie-resonant hydrogenated amorphous silicon nanodisks

    Science.gov (United States)

    Vabishchevich, Polina P.; Shorokhov, Alexander S.; Shcherbakov, Maxim R.; Fedyanin, Andrey A.

    2016-03-01

    Conventionally, all-optical switching devices made out from bulk silicon and other semiconductors are limited by free-carrier relaxation time which spans from picoseconds to microseconds. In this work, we discuss the possibility to suppress the undesired long free-carrier relaxation in subwavelength dielectric nanostructures exhibiting localized magnetic Mie resonances. Numerical calculations show the unsymmetrical modification of the transmittance spectra of the nanodisks due the free carriers photo-injection. Such a spectral dependance allows to control temporal response of the nanostructure by varying the laser pulse spectum.

  9. Preventative maintenance of straddle carriers

    Directory of Open Access Journals (Sweden)

    Si Li

    2015-02-01

    Full Text Available Background: Robotic vehicles such as straddle carriers represent a popular form of cargo handling amongst container terminal operators.Objectives: The purpose of this industry-driven study is to model preventative maintenance (PM influences on the operational effectiveness of straddle carriers.Method: The study employs historical data consisting of 21 273 work orders covering a 27-month period. Two models are developed, both of which forecast influences of PM regimes for different types of carrier.Results: The findings of the study suggest that the reliability of the straddle fleet decreases with increased intervals of PM services. The study also finds that three factors – namely resources, number of new straddles, and the number of new lifting work centres – influence the performances of straddles.Conclusion: The authors argue that this collaborative research exercise makes a significant contribution to existing supply chain management literature, particularly in the area of operations efficiency. The study also serves as an avenue to enhance relevant management practice.

  10. Responsible implementation of expanded carrier screening

    Science.gov (United States)

    Henneman, Lidewij; Borry, Pascal; Chokoshvili, Davit; Cornel, Martina C; van El, Carla G; Forzano, Francesca; Hall, Alison; Howard, Heidi C; Janssens, Sandra; Kayserili, Hülya; Lakeman, Phillis; Lucassen, Anneke; Metcalfe, Sylvia A; Vidmar, Lovro; de Wert, Guido; Dondorp, Wybo J; Peterlin, Borut

    2016-01-01

    This document of the European Society of Human Genetics contains recommendations regarding responsible implementation of expanded carrier screening. Carrier screening is defined here as the detection of carrier status of recessive diseases in couples or persons who do not have an a priori increased risk of being a carrier based on their or their partners' personal or family history. Expanded carrier screening offers carrier screening for multiple autosomal and X-linked recessive disorders, facilitated by new genetic testing technologies, and allows testing of individuals regardless of ancestry or geographic origin. Carrier screening aims to identify couples who have an increased risk of having an affected child in order to facilitate informed reproductive decision making. In previous decades, carrier screening was typically performed for one or few relatively common recessive disorders associated with significant morbidity, reduced life-expectancy and often because of a considerable higher carrier frequency in a specific population for certain diseases. New genetic testing technologies enable the expansion of screening to multiple conditions, genes or sequence variants. Expanded carrier screening panels that have been introduced to date have been advertised and offered to health care professionals and the public on a commercial basis. This document discusses the challenges that expanded carrier screening might pose in the context of the lessons learnt from decades of population-based carrier screening and in the context of existing screening criteria. It aims to contribute to the public and professional discussion and to arrive at better clinical and laboratory practice guidelines. PMID:26980105

  11. Spacelab carrier complement thermal design and performance

    Science.gov (United States)

    Bancroft, S.; Key, R.; Kittredge, S.

    1992-01-01

    The present discussion of the Spacelab carrier complement, which encompasses a Module Carrier, a Module-Pallet Carrier, and a Multiplexer/Demultiplexer Pallet, gives attention to both active and passive thermal performance capabilities, and presents ground testing and analytical results obtained to date. An account is given of the prospective use of a Spacelab Multipurpose Experiment Support Structure.

  12. 7 CFR 33.4 - Carrier.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Carrier. 33.4 Section 33.4 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... ISSUED UNDER AUTHORITY OF THE EXPORT APPLE ACT Definitions § 33.4 Carrier. Carrier means any common...

  13. MOSFET Carrier Surface Effective Mobility with Thin Gate-Oxide Thickness

    Institute of Scientific and Technical Information of China (English)

    ZHAOYang; PARKEStephen; CHUJiamei; BURKEFranklyn

    2005-01-01

    Mobility is a key parameter in MOSFET (Metal-oxide-semiconduetor field effect transistor) modeling. However, due to the influence of transverse electric field as a result of thin gate-oxide thickness in modern MOSFET, conventional carriers mobility of bulk device is no longer appropriate. In this paper the measurement of carrier surface effective mobility with thin gate-oxide of 40A thickness device is completed, and the modeling and characterization of this mobility is presented by employing BSIM model. Results show that our approach is effective to model surface mobility of thin gate-oxide device.

  14. Relative entropy equals bulk relative entropy

    CERN Document Server

    Jafferis, Daniel L; Maldacena, Juan; Suh, S Josephine

    2015-01-01

    We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.

  15. Coupling brane fields to bulk supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  16. Coupling brane fields to bulk supergravity

    International Nuclear Information System (INIS)

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  17. Diagnosis of Dry Bulk Shipping Market

    Institute of Scientific and Technical Information of China (English)

    Wendy Wu

    2009-01-01

    @@ A sudden severe winter for dry bulk shipping market Since the second half of last year,dry bulk shipping market experienced a sudden and dramatical change which caught everyone off guard in just a few months'time.As the wind vane of dry bulk shipping market,BDI index(Baltic index)has been climbing higher and higher from the middle of 2005.It began to nearly shoot up into the 2007.

  18. 49 CFR 376.22 - Exemption for private carrier leasing and leasing between authorized carriers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Exemption for private carrier leasing and leasing... MOTOR CARRIER SAFETY REGULATIONS LEASE AND INTERCHANGE OF VEHICLES Exemptions for the Leasing Regulations § 376.22 Exemption for private carrier leasing and leasing between authorized carriers....

  19. Bulk scalar field in DGP braneworld cosmology

    CERN Document Server

    Ansari, Rizwan ul Haq

    2007-01-01

    We investigated the effects of bulk scalar field in the braneworld cosmological scenario. The Friedmann equations and acceleration condition in presence of the bulk scalar field for a zero tension brane and cosmological constant are studied. In DGP model the effective Einstein equation on the brane is obtained with bulk scalar field. The rescaled bulk scalar field on the brane in the DGP model behaves as an effective four dimensional field, thus standard type cosmology is recovered. In present study of the DGP model, the late-time accelerating phase of the universe can be explained .

  20. Carrier synchronization for STBC OFDM systems

    Institute of Scientific and Technical Information of China (English)

    Cai Jueping; Song Wentao; Li Zan; Ge Jianhua

    2005-01-01

    All-digital carrier synchronization strategies and algorithms for space-time block coding (STBC) orthogonal frequency division multiplexing (OFDM) are proposed in this paper. In our scheme, the continuous pilots (CP) are saved, and the complexity of carrier synchronization is reduced significantly by dividing the process into three steps. The coarse carrier synchronization and the fine carrier synchronization algorithms are investigated and analyzed in detail. Simulations show that the carrier can be locked into tracking mode quickly, and the residual frequency error satisfies the system requirement in both stationary and mobile environments.

  1. Reflectors and resonators for high-k bulk Bloch plasmonic waves in multilayer hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Lavrinenko, Andrei

    2012-01-01

    We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength-scale struc......We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength......-scale structuring. This multiscale approach is shown to be a promising platform for using bulk plasmonic waves in complex multilayer metamaterials as a new kind of information carriers....

  2. Enhancement of minority carrier diffusion length in grains of cast Si by hydrogen heat treatments

    Science.gov (United States)

    Mimila-Arroyo, J.; Duenas-Santos, F.; del Valle, J. L.

    Minority carrier diffusion length (mcdl) enhancement in the bulk of grains of cast poly-silicon for solar cells has been produced by hydrogen heat treatments. Measurements made by LBIC method, showed an increase of mcdl in the bulk of grains from a mean value of 53 microns to a mean value of 69 microns, before and after the hydrogen heat treatments, respectively, under white light illumination. A mean increase ratio of 33% in the mcdl was obtained in a reproducible way and it was verified that hydrogen was effectively responsible. This result clearly establishes the hydrogen passivating role in this material

  3. Orbital magnetism of graphene nanostructures: Bulk and confinement effects

    Science.gov (United States)

    Heße, Lisa; Richter, Klaus

    2014-11-01

    We consider the orbital magnetic properties of noninteracting charge carriers in graphene-based nanostructures in the low-energy regime. The magnetic response of such systems results both from bulk contributions and from confinement effects that can be particularly strong in ballistic quantum dots. First we provide a comprehensive study of the magnetic susceptibility χ of bulk graphene in a magnetic field for the different regimes arising from the relative magnitudes of the energy scales involved, i.e., temperature, Landau-level spacing, and chemical potential. We show that for finite temperature or chemical potential, χ is not divergent although the diamagnetic contribution χ0 from the filled valance band exhibits the well-known -B-1 /2 dependence. We further derive oscillatory modulations of χ , corresponding to de Haas-van Alphen oscillations of conventional two-dimensional electron gases. These oscillations can be large in graphene, thereby compensating the diamagnetic contribution χ0 and yielding a net paramagnetic susceptibility for certain energy and magnetic field regimes. Second, we predict and analyze corresponding strong, confinement-induced susceptibility oscillations in graphene-based quantum dots with amplitudes distinctly exceeding the corresponding bulk susceptibility. Within a semiclassical approach we derive generic expressions for orbital magnetism of graphene quantum dots with regular classical dynamics. Graphene-specific features can be traced back to pseudospin interference along the underlying periodic orbits. We demonstrate the quality of the semiclassical approximation by comparison with quantum-mechanical results for two exemplary mesoscopic systems, a graphene disk with infinite mass-type edges, and a rectangular graphene structure with armchair and zigzag edges, using numerical tight-binding calculations in the latter case.

  4. Carrier frequencies, holomorphy and unwinding

    CERN Document Server

    Coifman, Ronald R; Wu, Hau-tieng

    2016-01-01

    We prove that functions of intrinsic-mode type (a classical models for signals) behave essentially like holomorphic functions: adding a pure carrier frequency $e^{int}$ ensures that the anti-holomorphic part is much smaller than the holomorphic part $ \\| P_{-}(f)\\|_{L^2} \\ll \\|P_{+}(f)\\|_{L^2}.$ This enables us to use techniques from complex analysis, in particular the \\textit{unwinding series}. We study its stability and convergence properties and show that the unwinding series can stabilize and show that the unwinding series can provide a high resolution time-frequency representation, which is robust to noise.

  5. Biocheese: A Food Probiotic Carrier

    Directory of Open Access Journals (Sweden)

    J. M. Castro

    2015-01-01

    Full Text Available This review describes some aspects related to the technological barriers encountered in the development and stability of probiotic cheeses. Aspects concerning the viability of probiotic cultures in this matrix are discussed and the potential of cheese as a biofunctional food carrier is analyzed, outlying some points related to health and safety. In general, the manufacture of probiotic cheese should have little change when compared with the elaboration of cheese in the traditional way. The physicochemical and technological parameters influencing the quality of these products have also to be measured so as to obtain a process optimization.

  6. Wuestite - a solar energy carrier

    Energy Technology Data Exchange (ETDEWEB)

    Weidenkaff, A.; Nueesch, P.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Reller, A. [Hamburg Univ., Hamburg (Germany)

    1997-06-01

    Hydrogen is produced when Wuestite (Fe{sub 1-y}O) is oxidised by water. This reaction is part of a two-step thermochemical metal oxide cycle for the storage of solar energy in the form of chemical energy carriers, characterised by a high chemical potential. The reaction was studied in a tubular furnace with on-line gas analysis and further characterised in detail by DTA und high-temperature X-ray powder diffraction. The influence of non-stoichiometry, morphology and temperature on the mechanism and kinetics of the water-splitting reaction was determined. (author) 3 figs., tabs., 3 refs.

  7. 27 CFR 20.191 - Bulk articles.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of...

  8. Analytical Model for Voltage-Dependent Photo and Dark Currents in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Mesbahus Saleheen

    2016-05-01

    Full Text Available A physics-based explicit mathematical model for the external voltage-dependent forward dark current in bulk heterojunction (BHJ organic solar cells is developed by considering Shockley-Read-Hall (SRH recombination and solving the continuity equations for both electrons and holes. An analytical model for the external voltage-dependent photocurrent in BHJ organic solar cells is also proposed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs, carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun’s model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The overall net current is calculated considering the actual solar spectrum. The mathematical models are verified by comparing the model calculations with various published experimental results. We analyze the effects of the contact properties, blend compositions, charge carrier transport properties (carrier mobility and lifetime, and cell design on the current-voltage characteristics. The power conversion efficiency of BHJ organic solar cells mostly depends on electron transport properties of the acceptor layer. The results of this paper indicate that improvement of charge carrier transport (both mobility and lifetime and dissociation of bound EHPs in organic blend are critically important to increase the power conversion efficiency of the BHJ solar cells.

  9. Bulk equations of motion from CFT correlators

    CERN Document Server

    Kabat, Daniel

    2015-01-01

    To O(1/N) we derive, purely from CFT data, the bulk equations of motion for interacting scalar fields and for scalars coupled to gauge fields and gravity. We first uplift CFT operators to mimic local AdS fields by imposing bulk microcausality. This requires adding an infinite tower of smeared higher-dimension double-trace operators to the CFT definition of a bulk field, with coefficients that we explicitly compute. By summing the contribution of the higher-dimension operators we derive the equations of motion satisfied by these uplifted CFT operators and show that we precisely recover the expected bulk equations of motion. We exhibit the freedom in the CFT construction which corresponds to bulk field redefinitions.

  10. Carrier detection in xeroderma pigmentosum

    International Nuclear Information System (INIS)

    We were able to detect clinically normal carriers of xeroderma pigmentosum (XP) genes with coded samples of either peripheral blood lymphocytes or skin fibroblasts, using a cytogenetic assay shown previously to detect individuals with cancer-prone genetic disorders. Metaphase cells of phytohemagglutinin-stimulated T-lymphocytes from eight individuals who are obligate heterozygotes for XP were compared with those from nine normal controls at 1.3, 2.3, and 3.3 h after x-irradiation (58 R) during the G2 phase of the cell cycle. Lymphocytes from the XP heterozygotes had twofold higher frequencies of chromatid breaks or chromatid gaps than normal (P less than 10(-5)) when fixed at 2.3 or 3.3 h after irradiation. Lymphocytes from six XP homozygotes had frequencies of breaks and gaps threefold higher than normal. Skin fibroblasts from an additional obligate XP heterozygote, when fixed approximately 2 h after x-irradiation (68 R), had a twofold higher frequency of chromatid breaks and a fourfold higher frequency of gaps than fibroblasts from a normal control. This frequency of aberrations in cells from the XP heterozygote was approximately half that observed in the XP homozygote. The elevated frequencies of chromatid breaks and gaps after G2 phase x-irradiation may provide the basis of a test for identifying carriers of the XP gene(s) within known XP families

  11. Carrier localization in gallium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, C. [Lawrence Berkeley National Lab., CA (United States)][California Univ., Berkeley, CA (United States); Walukiewicz, W. [Lawrence Berkeley National Lab., CA (United States); Haller, E.E. [Lawrence Berkeley National Lab., CA (United States)][California Univ., Berkeley, CA (United States)] [and others

    1996-09-01

    In wide bandgap GaN, a large number of interesting and important scientific questions remain to be answered. For example, the large free electron concentration reaching 10{sup 19} to 10{sup 20} cm{sup - 3} in nominally undoped material are ascribed to intrinsic defects because no chemical impurity has been found at such high concentrations. According to theoretical models, a nitrogen vacancy acts as a donor but its formation energy is very large in n-type materials, making this suggestion controversial. We have investigated the nature of this yet unidentified donor at large hydrostatic pressure. Results from infrared reflection and Raman scattering indicate strong evidence for localization of free carriers by large pressures. The carrier density is drastically decreased by two orders of magnitude between 20 and 30 GPa. Several techniques provide independent evidence for results in earlier reports and present the first quantitative analysis. A possible interpretation of this effect in terms of the resonant donor level is presented.

  12. Silicon ball grid array chip carrier

    Science.gov (United States)

    Palmer, David W.; Gassman, Richard A.; Chu, Dahwey

    2000-01-01

    A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

  13. Slower carriers limit charge generation in organic semiconductor light-harvesting systems

    Science.gov (United States)

    Stolterfoht, Martin; Armin, Ardalan; Shoaee, Safa; Kassal, Ivan; Burn, Paul; Meredith, Paul

    2016-01-01

    Blends of electron-donating and -accepting organic semiconductors are widely used as photoactive materials in next-generation solar cells and photodetectors. The yield of free charges in these systems is often determined by the separation of interfacial electron–hole pairs, which is expected to depend on the ability of the faster carrier to escape the Coulomb potential. Here we show, by measuring geminate and non-geminate losses and key transport parameters in a series of bulk-heterojunction solar cells, that the charge-generation yield increases with increasing slower carrier mobility. This is in direct contrast with the well-established Braun model where the dissociation rate is proportional to the mobility sum, and recent models that underscore the importance of fullerene aggregation for coherent electron propagation. The behaviour is attributed to the restriction of opposite charges to different phases, and to an entropic contribution that favours the joint separation of both charge carriers. PMID:27324720

  14. Differential Analysis of the Nasal Microbiome of Pig Carriers or Non-Carriers of Staphylococcus aureus

    DEFF Research Database (Denmark)

    Espinosa-Gongora, Carmen; Larsen, Niels; Schonning, Kristian;

    2016-01-01

    pathogen in animal carriers. The aim of this study was to determine whether the nasal microbiome of pig S. aureus carriers differs from that of non-carriers. The V3-V5 region of the 16S rRNA gene was sequenced from nasal swabs of 44 S. aureus carriers and 56 non-carriers using the 454 GS FLX titanium...... microbiome of pigs that are not colonized with S. aureus harbours several species/taxa that are significantly less abundant in pig carriers, suggesting that the nasal microbiota may play a role in the individual predisposition to S. aureus nasal carriage in pigs. Further research is warranted to isolate...

  15. Carriers of the astronomical 2175 ? extinction feature

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J; Dai, Z; Ernie, R; Browning, N; Graham, G; Weber, P; Smith, J; Hutcheon, I; Ishii, H; Bajt, S; Floss, C; Stadermann, F

    2004-07-20

    The 2175 {angstrom} extinction feature is by far the strongest spectral signature of interstellar dust observed by astronomers. Forty years after its discovery the origin of the feature and the nature of the carrier remain controversial. The feature is enigmatic because although its central wavelength is almost invariant its bandwidth varies strongly from one sightline to another, suggesting multiple carriers or a single carrier with variable properties. Using a monochromated transmission electron microscope and valence electron energy-loss spectroscopy we have detected a 5.7 eV (2175 {angstrom}) feature in submicrometer-sized interstellar grains within interplanetary dust particles (IDPs) collected in the stratosphere. The carriers are organic carbon and amorphous silicates that are abundant and closely associated with one another both in IDPs and in the interstellar medium. Multiple carriers rather than a single carrier may explain the invariant central wavelength and variable bandwidth of the astronomical 2175 {angstrom} feature.

  16. Ultrafast carriers dynamics in filled-skutterudites

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Liang; Xu, Xianfan, E-mail: xxu@purdue.edu [School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Salvador, James R. [Chemical and Materials Systems Laboratory, GM Global R and D, Warren, Michigan 48090 (United States)

    2015-06-08

    Carrier dynamics of filled-skutterudites, an important class of thermoelectric materials, is investigated using ultrafast optical spectroscopy. By tuning the wavelength of the probe laser, charge transfers at different electronic energy levels are interrogated. Analysis based on the Kramers-Kronig relation explains the complex spectroscopy data, which is mainly due to band filling caused by photo-excited carriers and free carrier absorption. The relaxation time of hot carriers is found to be about 0.4–0.6 ps, depending on the electronic energy level, and the characteristic time for carrier-phonon equilibrium is about 0.95 ps. These studies of carrier dynamics, which fundamentally determines the transport properties of thermoelectric material, can provide guidance for the design of materials.

  17. Ultrafast carriers dynamics in filled-skutterudites

    Science.gov (United States)

    Guo, Liang; Xu, Xianfan; Salvador, James R.

    2015-06-01

    Carrier dynamics of filled-skutterudites, an important class of thermoelectric materials, is investigated using ultrafast optical spectroscopy. By tuning the wavelength of the probe laser, charge transfers at different electronic energy levels are interrogated. Analysis based on the Kramers-Kronig relation explains the complex spectroscopy data, which is mainly due to band filling caused by photo-excited carriers and free carrier absorption. The relaxation time of hot carriers is found to be about 0.4-0.6 ps, depending on the electronic energy level, and the characteristic time for carrier-phonon equilibrium is about 0.95 ps. These studies of carrier dynamics, which fundamentally determines the transport properties of thermoelectric material, can provide guidance for the design of materials.

  18. Global Telecommunications Services: Strategies of Major Carriers

    OpenAIRE

    Jerry Mccreary; William R. Boulton; Chetan Sankar

    1993-01-01

    The globalization of telecommunications markets is of primary concern for today’s large telecommunications carriers. International business telecommunications is growing at a rate twice that of domestic traffic. Multi-national customers with offices around the world are demanding integrated solutions to their telecommunications needs. As telecommunication carriers respond to these customers’ needs, the carriers are beginning to expand outside their national boundaries. This paper identifi...

  19. Secure quantum carriers for quantum state sharing

    OpenAIRE

    Karimipour, Vahid; Marvian, Milad

    2010-01-01

    We develop the concept of quantum carrier and show that messages can be uploaded and downloaded from this carrier and while in transit, these messages are hidden from external agents. We explain in detail the working of the quantum carrier for different communication tasks, including quantum key distribution, classical secret and quantum state sharing among a set of $n$ players according to general threshold schemes. The security of the protocol is discussed and it is shown that only the legi...

  20. Heterozygote advantage in Tay-Sachs carriers?

    OpenAIRE

    Spyropoulos, B; Moens, P B; Davidson, J.; Lowden, J. A.

    1981-01-01

    Chi-square analyses of new data as well as data previously reported by Myrianthopoulos have shown that grandparents of Tay-Sachs carriers die from proportionally the same causes as grandparents of noncarriers. It is unlikely that there is any advantage to being a Tay-Sachs carrier insofar as resistance to tuberculosis is concerned. Our results are further evidence to support Fraikor's claim that the high carrier frequency of the allele in Ashkenazi Jews is probably caused by a combination of ...

  1. Carriers by chemical vapor deposition

    Science.gov (United States)

    Mronga, Norbert; Adel, J.; Czech, Erwin

    1990-07-01

    Printed materials are affecting people's lives in a variety of ways and to a constantly increasing extent, both in the private and in the business spheres. In particular, the predicted reduction of printed materials resulting from electronic data processing - the so-called "paperless electronic office" - has not occured, indeed quite the reverse. In recent years electrophotographic reprography has established itself successfully as a competitor to conventional printing processes. In the office a photocopier is now a part of the standard equipment. Because of BASF's traditional intensive involvement with pigments and colored printing inks its interest in new technologies in these areas is especially great. BASF has therefore been engaged in research on carriers for some years now.

  2. Time Resolved Studies of Carrier Dynamics in III -v Heterojunction Semiconductors.

    Science.gov (United States)

    Westland, Duncan James

    Available from UMI in association with The British Library. Requires signed TDF. Picosecond time-resolution photoluminescence spectroscopy has been used to study transient processes in Ga _{.47}In_{.53 }As/InP multiple quantum wells (MQWs), and in bulk Ga_{.47}In _{.53}As and GaSb. To facilitate the experimental studies, apparatus was constructed to allow the detection of transient luminescence with 3ps time resolution. A frequency upconversion technique was employed. Relaxation of energetic carriers in bulk Ga _{.47}In_{.53 }As by optic phonons has been investigated, and, at carrier densities ~3 times 10^{18}cm ^{-3} is found to be a considerably slower process than simple theory predicts. The discrepancy is resolved by the inclusion of a non-equilibrium population of longitudinal optic phonons in the theoretical description. Slow energy loss is also observed in a 154A MQW under similar conditions, but carriers are found to relax more quickly in a 14A MQW with a comparable repeat period. The theory of non-equilibrium mode occupation is modified to describe the case of a MQW and is found to agree with experiment. Carrier relaxation in GaSb is studied and the importance of occupation of the L _6 conduction band valley in this material is demonstrated. The ambipolar diffusion of a photoexcited carrier plasma through an InP capping layer was investigated using an optical time-of-flight technique. This experiment also enables the efficiency of carrier capture by a Ga _{.47}In_{.53 }As quantum well to be determined. A capture time of 4ps was found.

  3. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-05-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young\\'s modulus suggests that Li-intercalation increases the intrinsic stiffness. For decreasing Li-C interaction, the Dirac point shifts to the Fermi level and the associated band splitting vanishes. For Li-intercalated bilayer graphene on SiC(0 0 0 1) the splitting at the Dirac point is tiny. It is also very small at the two Dirac points of Li-intercalated trilayer graphene on SiC(0 0 0 1). For all the systems under study, a large enhancement of the charge carrier density is achieved by Li intercalation. © 2012 Elsevier B.V. All rights reserved.

  4. Holographic representation of local bulk operators

    CERN Document Server

    Hamilton, A; Lifschytz, G; Lowe, D A; Hamilton, Alex; Kabat, Daniel; Lifschytz, Gilad; Lowe, David A.

    2006-01-01

    The Lorentzian AdS/CFT correspondence implies a map between local operators in supergravity and non-local operators in the CFT. By explicit computation we construct CFT operators which are dual to local bulk fields in the semiclassical limit. The computation is done for general dimension in global, Poincare and Rindler coordinates. We find that the CFT operators can be taken to have compact support in a region of the complexified boundary whose size is set by the bulk radial position. We show that at finite N the number of independent commuting operators localized within a bulk volume saturates the holographic bound.

  5. Bulk viscosity in holographic Lifshitz hydrodynamics

    OpenAIRE

    Carlos Hoyos; Bom Soo Kim; Yaron Oz

    2014-01-01

    We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical ...

  6. Bulk viscosity in holographic Lifshitz hydrodynamics

    International Nuclear Information System (INIS)

    We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical exponent and the hyperscaling violation exponent

  7. Bulk viscosity of hot and dense hadrons

    International Nuclear Information System (INIS)

    The bulk viscosity of hot and dense hadrons has been estimated within the framework of hadronic resonance gas model. We observe that the bulk viscosity to entropy ratio increases faster with temperature for higher μB. The magnitude of ζ is more at high μB. This results will have crucial importance for fire-ball produced at low energy nuclear collisions (FAIR, NICA). We note that the bulk to shear viscosity ratio remains above the bound set by AdS/CFT

  8. The Kinetics of Carrier Transport Inhibition

    DEFF Research Database (Denmark)

    Rosenberg, T.; Wilbrandt, Robert Walter

    1962-01-01

    The kinetical treatment of enzymatic carrier transports as given in previous communications has been extended to conditions of inhibition. Various possible types of inhibitors have been considered differing in the site of attack (enzyme or carrier), in the mode of action (competing with the subst......The kinetical treatment of enzymatic carrier transports as given in previous communications has been extended to conditions of inhibition. Various possible types of inhibitors have been considered differing in the site of attack (enzyme or carrier), in the mode of action (competing...

  9. CARRIER/CASK HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    E.F. Loros

    2000-06-23

    The Carrier/Cask Handling System receives casks on railcars and legal-weight trucks (LWTs) (transporters) that transport loaded casks and empty overpacks to the Monitored Geologic Repository (MGR) from the Carrier/Cask Transport System. Casks that come to the MGR on heavy-haul trucks (HHTs) are transferred onto railcars before being brought into the Carrier/Cask Handling System. The system is the interfacing system between the railcars and LWTs and the Assembly Transfer System (ATS) and Canister Transfer System (CTS). The Carrier/Cask Handling System removes loaded casks from the cask transporters and transfers the casks to a transfer cart for either the ATS or CTS, as appropriate, based on cask contents. The Carrier/Cask Handling System receives the returned empty casks from the ATS and CTS and mounts the casks back onto the transporters for reshipment. If necessary, the Carrier/Cask Handling System can also mount loaded casks back onto the transporters and remove empty casks from the transporters. The Carrier/Cask Handling System receives overpacks from the ATS loaded with canisters that have been cut open and emptied and mounts the overpacks back onto the transporters for disposal. If necessary, the Carrier/Cask Handling System can also mount empty overpacks back onto the transporters and remove loaded overpacks from them. The Carrier/Cask Handling System is located within the Carrier Bay of the Waste Handling Building System. The system consists of cranes, hoists, manipulators, and supporting equipment. The Carrier/Cask Handling System is designed with the tooling and fixtures necessary for handling a variety of casks. The Carrier/Cask Handling System performance and reliability are sufficient to support the shipping and emplacement schedules for the MGR. The Carrier/Cask Handling System interfaces with the Carrier/Cask Transport System, ATS, and CTS as noted above. The Carrier/Cask Handling System interfaces with the Waste Handling Building System for building

  10. Charge carrier dynamics in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Strothkaemper, Christian

    2013-06-24

    This work investigates the charge carrier dynamics in three different technological approaches within the class of thin film solar cells: radial heterojunctions, the dye solar cell, and microcrystalline CuInSe{sub 2}, focusing on charge transport and separation at the electrode, and the relaxation of photogenerated charge carriers due to recombination and energy dissipation to the phonon system. This work relies mostly on optical-pump terahertz-probe (OPTP) spectroscopy, followed by transient absorption (TA) and two-photon photoemission (2PPE). The charge separation in ZnO-electrode/In{sub 2}S{sub 3}-absorber core/shell nanorods, which represent a model system of a radial heterojunction, is analyzed by OPTP. It is concluded, that the dynamics in the absorber are determined by multiple trapping, which leads to a dispersive charge transport to the electrode that lasts over hundreds of picoseconds. The high trap density on the order of 10{sup 19}/cm{sup 3} is detrimental for the injection yield, which exhibits a decrease with increasing shell thickness. The heterogeneous electron transfer from a series of model dyes into ZnO proceeds on a time-scale of 200 fs. However, the photoconductivity builds up just on a 2-10 ps timescale, and 2PPE reveals that injected electrons are meanwhile localized spatially and energetically at the interface. It is concluded that the injection proceeds through adsorbate induced interface states. This is an important result because the back reaction from long lived interface states can be expected to be much faster than from bulk states. While the charge transport in stoichiometric CuInSe{sub 2} thin films is indicative of free charge carriers, CuInSe{sub 2} with a solar cell grade composition (Cu-poor) exhibits signs of carrier localization. This detrimental effect is attributed to a high density of charged defects and a high degree of compensation, which together create a spatially fluctuating potential that inhibits charge transport. On

  11. The bulk radio expansion of Cassiopeia A

    International Nuclear Information System (INIS)

    Comparison, in the visibility plane, or radio observations of Cassiopeia A made at 151 MHz over a 2.3 yr interval indicates that the bulk of the radio emitting material has not been decelerated strongly

  12. Characterisation of multiple carrier transport in indium nitride grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Quantitative mobility spectrum analysis (QMSA) was performed on multiple magnetic field Hall effect measurements of indium nitride grown by molecular beam epitaxy. This enables two clearly distinct electron species to be identified, which are attributed to the bulk and a surface accumulation layer. In this material, single magnetic field data corresponds to neither electron species, as both contribute significantly to the total conduction. The bulk electron distribution has an extracted average Hall mobility of 3570 cm2/(Vs) at 300 K with a concentration of 1.5 x 1017 cm-3, while the surface electrons have sheet charge density that is an order of magnitude higher than previously reported surface concentrations. The high quality bulk characteristics revealed emphasise the importance of using multi-carrier analysis when performing transport measurements on InN. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  13. Designing Passivating, Carrier-Selective Contacts for Photovoltaic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Boccard, Matthieu [Arizona State Univ., Tempe, AZ (United States); Koswatta, Priyaranga [Arizona State Univ., Tempe, AZ (United States); Holman, Zachary [Arizona State Univ., Tempe, AZ (United States)

    2015-04-06

    "The first step towards building a high-efficiency solar cell is to develop an absorber with few recombination-active defects. Many photovoltaic technologies have already achieved this (monocrystalline Si, III-V materials grown on lattice-matched substrates, perovskites, polycrystalline CdTe and CIGS); those that have not (a-Si:H, organics) have been limited to low open-circuit voltage. The second step is to develop contacts that both inhibit surface recombination and allow for low-resistance collection of either only electrons or only holes. For most photovoltaic technologies, this step is both more difficult and less explored than the first, and we are unaware of a prescribed methodology for selecting materials for contacts to solar cells. We elucidate a unified, conceptual understanding of contacts within which existing contacting schemes can be interpreted and future contacting schemes can be imagined. Whereas a split of the quasi-Fermi levels of holes and electrons is required in the absorber of any solar cell to generate a voltage, carriers are eventually collected through a metallic wire in which no such quasi-Fermi-level split exists. We define a contact to be all layers between the bulk of the absorber and the recombination-active interface through which carriers are extracted. The quasi-Fermi levels must necessarily collapse at this interface, and thus the transition between maximal quasi-Fermi-level splitting (in the absorber) and no splitting occurs entirely in the contact. Depending on the solar cell architecture, the contact will usually extend from the surface of the absorber to the surface of a metal or transparent conductive oxide layer, and may include deposited or diffused doped layers (e.g., as in crystalline and thin-film Si cells) and heterostructure buffer layers (e.g., the CdS layer in a CdTe device). We further define a passivating contact as one that enables high quasi-Fermi-level splitting in the absorber (large “internal” voltage

  14. PHONON ECHOES IN BULK AND POWDERED MATERIALS

    OpenAIRE

    Kajimura, K.

    1981-01-01

    Experimental and theoretical studies of phonon echoes in bulk and powdered materials are reviewed. Phonon echoes have been observed in many materials such as bulk piezoelectric crystals, paramagnets, glasses, doped semiconductors, and piezoelectric, magnetic, and metallic powders, etc. The echoes arise from a time reversal of the phase, like spin echoes, of a primary pulsed acoustic excitation due to a second acoustic or rf pulse. The phase reversal occurs through the nonlinear interactions o...

  15. An intrinsic mobility ceiling of Si bulk

    OpenAIRE

    Garcia-Castello, Nuria; Prades, Joan Daniel; Cirera, Albert

    2011-01-01

    We compute by Density Functional Theory-Non Equilibrium Green Functions Formalism (DFT-NEGFF) the conductance of bulk Si along different crystallographic directions. We find a ceiling value for the intrinsic mobility of bulk silicon of $8.4\\cdot10^6 cm^2/V\\cdot s$. We suggest that this result is related to the lowest effective mass of the $$ direction.

  16. Enhanced attached growth of microalgae Scenedesmus. LX1 through ambient bacterial pre-coating of cotton fiber carriers.

    Science.gov (United States)

    Zhuang, Lin-Lan; Azimi, Yaldah; Yu, Dawei; Wang, Wen-Long; Wu, Yin-Hu; Dao, Guo-Hua; Hu, Hong-Ying

    2016-10-01

    The role of bacteria/extracellular polymeric substances (EPS) coated carriers on attached microalgae growth in suspended-solid phase photobioreactor (sspBR) was assessed in this study. The results showed that pre-coating cotton with ambient bacteria and their EPS improved the attached microalgal growth by as much as 230% in terms of attached microalgae density. Additionally, the single cell dry weight, chemical composition and oxygen evolving activity of attached microalgae were significantly affected by the presence of bacteria/EPS coating on the cotton carriers. The protein content of microalgae cells cultivated in the ssPBRs with carriers coated by bacteria and sterilized bacteria were on average 26% and 15% more than uncoated carriers, respectively. Through absorbing and immobilizing nutrients from the bulk medium, the bacteria/EPS coating provided the attached microalgae with nitrogen/phosphorus for protein synthesis, especially during the late stages of batch cultivation. PMID:27416514

  17. Carrier-carrier relaxation kinetics in quantum well semiconductor structures with nonparabolic energy bands

    DEFF Research Database (Denmark)

    Dery, H.; Tromborg, Bjarne; Eisenstein, G.

    2003-01-01

    We describe carrier-carrier scattering dynamics in an inverted quantum well structure including the nonparabolic nature of the valance band. A solution of the semiconductor Bloch equations yields strong evidence to a large change in the temporal evolution of the carrier distributions compared...

  18. Transient terahertz photoconductivity measurements of minority-carrier lifetime in tin sulfide thin films: Advanced metrology for an early stage photovoltaic material

    OpenAIRE

    Jaramillo, R.; Sher, Meng-Ju; Ofori-Okai, Benjamin; Steinmann, V; Yang, Chuanxi; Hartman, Katy; Nelson, Keith; Lindenberg, Aaron; Gordon, Roy Gerald; Buonsassisi, T

    2016-01-01

    Materials research with a focus on enhancing the minority-carrier lifetime of the light-absorbing semiconductor is key to advancing solar energy technology for both early stage and mature material platforms alike. Tin sulfide (SnS) is an absorber material with several clear advantages for manufacturing and deployment, but the record power conversion efficiency remains below 5%. We report measurements of bulk and interface minority-carrier recombination rates in SnSthin films using optical-pum...

  19. Transient terahertz photoconductivity measurements of minority-carrier lifetime in tin sulfide thin films: Advanced metrology for an early-stage photovoltaic material

    OpenAIRE

    Jaramillo, R.; Sher, Meng-Ju; Ofori-Okai, Benjamin K.; Steinmann, V; Yang, Chuanxi; Hartman, Katy; Nelson, Keith A.; Lindenberg, Aaron M.; Gordon, Roy G.; Buonassisi, T.

    2015-01-01

    Materials research with a focus on enhancing the minority-carrier lifetime of the light-absorbing semiconductor is key to advancing solar energy technology for both early-stage and mature material platforms alike. Tin sulfide (SnS) is an absorber material with several clear advantages for manufacturing and deployment, but the record power conversion efficiency remains below 5%. We report measurements of bulk and interface minority-carrier recombination rates in SnS thin films using optical-pu...

  20. Inert carrier drying and coating process

    International Nuclear Information System (INIS)

    An inert carrier process is described for drying radioactive (particularly low level) waste material and for incorporating the dry material into a binder matrix from which the dried material will not be leached. Experimental details, and examples of the carrier and binder materials, are given. (U.K.)

  1. 14 CFR Section 04 - Air Carrier Groupings

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC... upon their level of operations and the nature of these operations. In order to determine the level of... carrier's level of operations passes the upper or lower limit of its currently assigned carrier...

  2. Providing resilience for carrier ethernet multicast traffic

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Wessing, Henrik; Zhang, Jiang;

    2009-01-01

    This paper presents an overview of the Carrier Ethernet technology with specific focus on resilience. In particular, we detail how multicast traffic, which is essential for e.g. IPTV can be protected. We present Carrier Ethernet resilience methods for linear and ring networks and show by simulation...

  3. Modeling of Carrier Dynamics in Electroabsorption Modulators

    DEFF Research Database (Denmark)

    Højfeldt, Sune

    2002-01-01

    and a phenomenological model for the carrier sweep-out dynamics, we investigate all-optical wavelength conversion, all-optical signal regeneration, and all-optical demultiplexing. A detailed drift-diffusion type model for the sweerp-out of photo-excited carriers in electroabsorption modulators is presented. We use...... the model to calclulate absorption spectra and steady-state carrier distributions in different modulator structures. This allows us to investigate a number of important properties of electroabsorption modulators, such as the electroabsorption effect and th saturation properties. We also investigate...... the influence that carrier recapture has on the device properties, and we discuss the recapture process on a more fundamental level. The model is also used to investigate in detail the carrier sweep-out process in electroabsorption modulators. We investigate how the intrinsic-region width, the separate...

  4. Selection of Carrier Waveforms for PWM Inverter

    Institute of Scientific and Technical Information of China (English)

    陈国呈; 屈克庆; 许春雨; 孙承波

    2003-01-01

    In this paper the influence of different carrier waveforms upon the output characteristics of PWM inverter is described in detail. When a triangular carrier waveform is used in hard-switching PWM inverters, harmonics exist in the neighborhood of the output frequency of the inverter output voltage and current due to the dead time. The triangular carrier waveform used in soft-switching PWM inverter will cause difficulties in controlling resonance-trigger time, higher loss in the resonant circuit, and less utilization of the DC bus voltage. If a sawtooth carrier is used in hard-switching PWM inverter, there will be severe distortion in the current waveform. When sawtooth carriers with alternate positive and negative slopes are used in soft-switching PWM inverters, the resonancetrigger time is easy to control, and distortion in the output voltage and current caused by the dead time will not appear.

  5. An analytical model for analyzing the current-voltage characteristics of bulk heterojunction organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Arnab, Salman M.; Kabir, M. Z., E-mail: kabir@encs.concordia.ca [Department of Electrical and Computer Engineering, Concordia University, 1455 Blvd. de Maisonneuve West, Montreal, Quebec H3G 1M8 (Canada)

    2014-01-21

    An analytical model for analyzing the current-voltage (J-V) characteristics of bulk heterojunction (BHJ) organic solar cells is developed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs), carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun's model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The charge carrier concentrations and hence the photocurrent are calculated by solving the carrier continuity equation for both holes and electrons in the organic layer. The overall load current is calculated considering the actual solar spectrum and voltage dependent forward dark current. The model is verified by published experimental results. The efficiency of the P3HT:PCBM based solar cells critically depends on the dissociation of bound EHPs. On the other hand, cells made of a blend of the conjugated polymer (PCDTBT) with the soluble fullerene derivative (PCBM) show nearly unity dissociation efficiency, and their cell efficiency strongly depends on the charge collection efficiency. The effects of carrier lifetimes on the performance of PCDTBT solar cells have also been studied. The model is also used to investigate the effect of titanium oxide (TiO{sub x}) layer (at the back contact) on the J-V characteristics of PCDTBT solar cells. The results of this paper indicate that improvement of charge carrier transport in PCDTBT:PCBM blend and dissociation of bound EHPs in P3HT:PCBM blend are extremely important to increase the power conversion efficiency of the respective BHJ solar cells.

  6. Methanol as an energy carrier

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, P.; Grube, T.; Hoehlein, B. (eds.)

    2006-07-01

    For the future, a strongly growing energy demand is expected in the transport sector worldwide. Economically efficient oil production will run through a maximum in the next decade. Higher fuel prices and an environmentally desirable reduction of emissions will increase the pressure for reducing fuel consumption and emissions in road traffic. These criteria show the urgent necessity of structural changes in the fuel market. Due to its advantages concerning industrial-scale production, storage and global availability, methanol has the short- to medium-term potential for gaining increased significance as a substitution product in the energy market. Methanol can be produced both from fossil energy sources and from biomass or waste materials through the process steps of synthesis gas generation with subsequent methanol synthesis. Methanol has the potential to be used in an environmentally friendly manner in gasoline/methanol mixtures for flexible fuel vehicles with internal combustion engines and in diesel engines with pure methanol. Furthermore, it can be used in fuel cell vehicles with on-board hydrogen production in direct methanol fuel cell drives, and in stationary systems for electricity and heat generation as well as for hydrogen production. Finally, in portable applications it serves as an energy carrier for electric power generation. In this book, the processes for the production and use of methanol are presented and evaluated, markets and future options are discussed and issues of safety and environmental impacts are addressed by a team of well-known authors. (orig.)

  7. Ohm's Law for a Bipolar Semiconductor: The Role of Carrier Concentration and Energy Nonequilibria

    Science.gov (United States)

    Lashkevych, Igor; Titov, Oleg Yu.; Gurevich, Yuri G.

    2016-09-01

    The effective linear electrical conductivity of a nondegenerate bipolar semiconductor, sandwiched between two metals, is investigated taking into account both its nonequilibrium charge carriers (both electrons and holes) and nonequilibrium temperature. We stress that even in the linear perturbative approximation both carrier concentration and energy nonequilbria arise automatically when an electrical current flows. The expression for the effective electrical conductivity is obtained and shown to depend on the electron and hole electrical conductivity, the thermal conductivity, the bandgap, charge carriers lifetimes, and both bulk and surface recombination rates. The effective electrical conductivity is equal to the classical result, i.e., the sum of the electron and hole electrical conductivities, only if the surface recombination rate at the interface is sufficiently strong or the charge carrier lifetime is sufficiently small. In this article, partial cases are considered, specifically, semiconductors with small and large thermal conductivities, semiconductors with monopolar electron and monopolar holes, strong and weak surface recombination rates, and small and large charge carrier lifetimes. Expressions for the effective electrical conductivity are obtained in all partial cases.

  8. Optoelectronic characterization of carrier extraction in a hot carrier photovoltaic cell structure

    Science.gov (United States)

    Dimmock, James A. R.; Kauer, Matthias; Smith, Katherine; Liu, Huiyun; Stavrinou, Paul N.; Ekins-Daukes, Nicholas J.

    2016-07-01

    A hot carrier photovoltaic cell requires extraction of electrons on a timescale faster than they can lose energy to the lattice. We optically and optoelectronically characterize two resonant tunneling structures, showing their compatability with hot carrier photovoltaic operation, demonstrating structural and carrier extraction properties necessary for such a device. In particular we use time resolved and temperature dependent photoluminescence to determine extraction timescales and energy levels in the structures and demonstrate fast carrier extraction by tunneling. We also show that such devices are capable of extracting photo-generated electrons at high carrier densities, with an open circuit voltage in excess of 1 V.

  9. Effects of carrier-carrier scattering on population inversion in graphene under pulse photoexcitation

    Science.gov (United States)

    Satou, Akira; Ryzhii, Victor; Otsuji, Taiichi

    2015-01-01

    We study the carrier relaxation dynamics in intrinsic graphene after pulse photoexcitation and reveal effects of intraband carrier-carrier scattering on population inversion in the terahertz region, by conducting simulation based on the quasi-classical Boltzmann equation. It is demonstrated that by changing the dielectric constant of the surrounding materials the rate of carrier-carrier scattering can be controlled and the relaxation dynamics differs for cases with low and high dielectric constants. It is also found that the Pauli blocking of photogeneration in case of the pulse photoexcitation causes decrease in the photocarrier concentration and thus weakening of population inversion with higher dielectric constant.

  10. Charge Carrier Generation Followed by Triplet State Formation, Annihilation, and Carrier Recreation in PBDTTT-C:PC 60 BM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.

    2015-05-22

    Triplet state formation after photoexcitation of low-bandgap polymer:fullerene blends has recently been demonstrated, however, the precise mechanism and its impact on solar cell performance is still under debate. Here, we study exciton dissociation, charge carrier generation and triplet state formation in low-bandgap polymer PBDTTT-C:PC60BM bulk heterojunction photovoltaic blends by a combination of fs-µs broadband Vis-NIR transient absorption (TA) pump-probe spectroscopy and multivariate curve resolution (MCR) data analysis. We found sub-ps exciton dissociation and charge generation followed by sub-ns triplet state creation. The carrier dynamics and triplet state dynamics exhibited a very pronounced intensity dependence indicating non-geminate recombination of free carriers is the origin of triplet formation in these blends. Triplets were found to be the dominant state present on the nanosecond timescale. Surprisingly, the carrier population increased again on the ns-µs timescale. We attribute this to triplet-triplet annihilation and the formation of higher energy excited states that subsequently underwent charge transfer. This unique dip and recovery of the charge population is a clear indication that triplets are formed by non-geminate recombination, as such a kinetic is incompatible with a monomolecular triplet state formation process.

  11. Unusual charge transport and reduced bimolecular recombination in PDTSiTzTz:PC71BM bulk heterojunction blend

    International Nuclear Information System (INIS)

    Solar cells with bulk heterojunction active layers containing donor-acceptor copolymer PDTSiTzTz exhibit persistent high fill factors with thicknesses up to 400 nm. Transport and recombination in a blend of PDTSiTzTz and fullerene derivative PC71BM is studied using lateral organic photovoltaic structures. This material system is characterized by carrier-concentration-dependent charge carrier mobilities, a strongly reduced bimolecular recombination factor, and a negative Poole–Frenkel coefficient. The analysis provides an explanation for the relatively thickness-independent fill factor behaviour seen in solar cells using the copolymer PDTSiTzTz. Cumulative insights from this copolymer can be employed for future organic photovoltaic material development, study of existing high performance bulk heterojunciton blends, and improved solar cell design. (paper)

  12. Dynamical effects and terahertz harmonic generation in low-doped bulk semiconductors and submicron structures

    Energy Technology Data Exchange (ETDEWEB)

    Persano Adorno, D.; Capizzo, M.C.; Zarcone, M. [Dipartimento di Fisica e Tecnologie Relative, Viale delle Scienze, Ed. 18, 90128, Palermo (Italy)

    2006-08-15

    We present results obtained using a three-dimensional multivalleys Monte Carlo (MC) model to simulate the nonlinear carrier dynamics under the influence of an intense sub-terahertz electric field in a doped bulk semiconductor. By self-consistently coupling a one-dimensional Poisson solver to the ensemble MC code we simulate also the nonlinear carrier dynamics in n{sup +}nn{sup +} structures operating under large-amplitude periodic signals and investigate the voltage-current characteristic hysteresis cycle and the high-order harmonic efficiency. For both cases we discuss the dependence of the nonlinearities and of the harmonic generation efficiency on the frequency and the intensity of the alternating signal. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Determination of doping effects on Si and GaAs bulk samples properties by photothermal investigations

    International Nuclear Information System (INIS)

    The knowledge of doping effects on optical and thermal properties of semiconductors is crucial for the development of opto-electronic compounds. The purpose of this work is to investigate these effects by mirage effect technique and spectroscopic ellipsometry SE. The near gap optical spectra are obtained from photothermal signal for differently doped Si and GaAs bulk samples. However, the above bandgap absorption is determined from SE. These spectra show that absorption in the near IR increases with dopant density and also the bandgap shifts toward low energies. This behavior is due to free carrier absorption which could be obtained by subtracting phonon-assisted absorption from the measured spectrum. This carrier absorption is related to the dopant density through a semi-empirical model. We have also used the photothermal signal phase to measure the influence of doping on thermal diffusivity

  14. Determination of doping effects on Si and GaAs bulk samples properties by photothermal investigations

    Energy Technology Data Exchange (ETDEWEB)

    Abroug, Sameh [Photothermal Laboratory, IPEIN, BP.62, Merazka 8000, Nabeul (Tunisia); Saadallah, Faycel [Photothermal Laboratory, IPEIN, BP.62, Merazka 8000, Nabeul (Tunisia)], E-mail: Faycel1@yahoo.fr; Yacoubi, Noureddine [Photothermal Laboratory, IPEIN, BP.62, Merazka 8000, Nabeul (Tunisia)

    2007-11-15

    The knowledge of doping effects on optical and thermal properties of semiconductors is crucial for the development of opto-electronic compounds. The purpose of this work is to investigate these effects by mirage effect technique and spectroscopic ellipsometry SE. The near gap optical spectra are obtained from photothermal signal for differently doped Si and GaAs bulk samples. However, the above bandgap absorption is determined from SE. These spectra show that absorption in the near IR increases with dopant density and also the bandgap shifts toward low energies. This behavior is due to free carrier absorption which could be obtained by subtracting phonon-assisted absorption from the measured spectrum. This carrier absorption is related to the dopant density through a semi-empirical model. We have also used the photothermal signal phase to measure the influence of doping on thermal diffusivity.

  15. Ultrafast carrier dynamics and the role of grain boundaries in polycrystalline silicon thin films grown by molecular beam epitaxy

    Science.gov (United States)

    Titova, Lyubov V.; Cocker, Tyler L.; Xu, Sijia; Baribeau, Jean-Marc; Wu, Xiaohua; Lockwood, David J.; Hegmann, Frank A.

    2016-10-01

    We have used time-resolved terahertz spectroscopy to study microscopic photoconductivity and ultrafast photoexcited carrier dynamics in thin, pure, non-hydrogenated silicon films grown by molecular beam epitaxy on quartz substrates at temperatures ranging from 335 °C to 572 °C. By controlling the growth temperature, thin silicon films ranging from completely amorphous to polycrystalline with minimal amorphous phase can be achieved. Film morphology, in turn, determines its photoconductive properties: in the amorphous phase, carriers are trapped in bandtail states on sub-picosecond time scales, while the carriers excited in crystalline grains remain free for tens of picoseconds. We also find that in polycrystalline silicon the photoexcited carrier mobility is carrier-density-dependent, with higher carrier densities mitigating the effects of grain boundaries on inter-grain transport. In a film grown at the highest temperature of 572 °C, the morphology changes along the growth direction from polycrystalline with needles of single crystals in the bulk of the film to small crystallites interspersed with amorphous silicon at the top of the film. Depth profiling using different excitation wavelengths shows corresponding differences in the photoconductivity: the photoexcited carrier lifetime and mobility are higher in the first 100-150 nm from the substrate, suggesting that thinner, low-temperature grown polycrystalline silicon films are preferable for photovoltaic applications.

  16. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  17. Into the Bulk: A Covariant Approach

    CERN Document Server

    Engelhardt, Netta

    2016-01-01

    I propose a general, covariant way of defining when one region is "deeper in the bulk" than another. This definition is formulated outside of an event horizon (or in the absence thereof) in generic geometries; it may be applied to both points and surfaces, and may be used to compare the depth of bulk points or surfaces relative to a particular boundary subregion or relative to the entire boundary. Using the recently proposed "lightcone cut" formalism, the comparative depth between two bulk points can be determined from the singularity structure of Lorentzian correlators in the dual field theory. I prove that, by this definition, causal wedges of progressively larger regions probe monotonically deeper in the bulk. The definition furthermore matches expectations in pure AdS and in static AdS black holes with isotropic spatial slices, where a well-defined holographic coordinate exists. In terms of holographic RG flow, this new definition of bulk depth makes contact with coarse-graining over both large distances ...

  18. Effectiveness of Shield Termination Techniques Tested with TEM Cell and Bulk Current Injection

    Science.gov (United States)

    Bradley, Arthur T.; Hare, Richard J.

    2009-01-01

    This paper presents experimental results of the effectiveness of various shield termination techniques. Each termination technique is evaluated by two independent noise injection methods; transverse electromagnetic (TEM) cell operated from 3 MHz 400 MHz, and bulk current injection (BCI) operated from 50 kHz 400 MHz. Both single carrier and broadband injection tests were investigated. Recommendations as to how to achieve the best shield transfer impedance (i.e. reduced coupled noise) are made based on the empirical data. Finally, the noise injection techniques themselves are indirectly evaluated by comparing the results obtained from the TEM Cell to those from BCI.

  19. Ultrafast magneto-photocurrents in GaAs: Separation of surface and bulk contributions

    International Nuclear Information System (INIS)

    We induce ultrafast magneto-photocurrents in a GaAs crystal employing interband excitation with femtosecond laser pulses at room temperature and non-invasively separate surface and bulk contributions to the overall current response. The separation between the different symmetry contributions is achieved by measuring the simultaneously emitted terahertz radiation for different sample orientations. Excitation intensity and photon energy dependences of the magneto-photocurrents for linearly and circularly polarized excitations reveal an involvement of different microscopic origins, one of which is the inverse spin Hall effect. Our experiments are important for a better understanding of the complex momentum-space carrier dynamics in magnetic fields

  20. Jump chaotic behaviour of ultra low loss bulk acoustic wave cavities

    Energy Technology Data Exchange (ETDEWEB)

    Goryachev, Maxim, E-mail: maxim.goryachev@uwa.edu.au; Farr, Warrick G.; Tobar, Michael E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia); Galliou, Serge [Department of Time and Frequency, FEMTO-ST Institute, ENSMM, 26 Chemin de l' Épitaphe 25000 Besançon (France)

    2014-08-11

    We demonstrate a previously unobserved nonlinear phenomenon in an ultra-low loss quartz bulk acoustic wave cavity (Q>3>10{sup 9}), which only occurs below 20 mK in temperature and under relatively weak pumping. The phenomenon reveals the emergence of several stable equilibria (at least two foci and two nodes) and jumps between these quasi states at random times. The degree of this randomness as well as separations between levels can be controlled by the frequency of the incident carrier signal. It is demonstrated that the nature of the effect lies beyond the standard Duffing model.

  1. Ultrafast magneto-photocurrents in GaAs: Separation of surface and bulk contributions

    CERN Document Server

    Schmidt, Christian B; Tarasenko, Sergey A; Bieler, Mark

    2015-01-01

    We induce ultrafast magneto-photocurrents in a GaAs crystal employing interband excitation with femtosecond laser pulses at room temperature and non-invasively separate surface and bulk contributions to the overall current response. The separation between the different symmetry contributions is achieved by measuring the simultaneously emitted terahertz radiation for different sample orientations. Excitation intensity and photon energy dependences of the magneto-photocurrents for linearly and circularly polarized excitations reveal an involvement of different microscopic origins, one of which we believe is the inverse Spin-Hall effect. Our experiments are important for a better understanding of the complex momentum-space carrier dynamics in magnetic fields.

  2. Recombination lifetime of free polarons in polymer/fullerene bulk heterojunction solar cells

    Science.gov (United States)

    Li, Kejia; Li, Lijun; Campbell, Joe C.

    2012-02-01

    The recombination lifetime of free polarons was measured using three different methods: electrical field-dependent photoresponse, transient photoconductivity, and forward-to-zero bias transient-current response. The average free polaron recombination lifetime is estimated to be a few microseconds for poly (3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) solar cells. The competition between sweep-out by the internal field and the loss of photogenerated carriers by recombination is analyzed. The short-circuit free polaron collection efficiency for P3HT:PCBM bulk heterojunction material was determined to be in the range of 80% to 90%.

  3. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Emin, David, E-mail: emin@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Akhtari, Massoud [Semple Institutes for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Ellingson, B. M. [Department of Radiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Mathern, G. W. [Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2015-08-15

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  4. Chloroboron (III) subnaphthalocyanine as an electron donor in bulk heterojunction photovoltaic cells

    International Nuclear Information System (INIS)

    In this work, chloroboron (III) subnaphthalocyanine (SubNc) was used as an electron donor, combined with a [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM) or fullerene C70 acceptor in bulk heterojunction photovoltaic cells. In spite of the limited solubility of SubNc in organic solvents, the solution processed device exhibited an efficiency of 4.0% under 1 sun, AM1.5G solar irradiation at room temperature, and 5.0% at 80 ° C due to the temperature-dependence of the carrier mobilities. SubNc:C70 bulk heterojunctions were also fabricated via thermal co-evaporation, demonstrating an efficiency of 4.4%. This result shows that SubNc is a promising material for photovoltaic applications via various processing techniques, such as vacuum deposition and wet coating. (paper)

  5. Orchestrating Bulk Data Movement in Grid Environments

    Energy Technology Data Exchange (ETDEWEB)

    Vazhkudai, SS

    2005-01-25

    Data Grids provide a convenient environment for researchers to manage and access massively distributed bulk data by addressing several system and transfer challenges inherent to these environments. This work addresses issues involved in the efficient selection and access of replicated data in Grid environments in the context of the Globus Toolkit{trademark}, building middleware that (1) selects datasets in highly replicated environments, enabling efficient scheduling of data transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads from mirrored sites. These efforts have demonstrated a decentralized data scheduling architecture, a set of forecasting tools that predict bandwidth availability within 15% error and co-allocation architecture, and heuristics that expedites data downloads by up to 2 times.

  6. A diphoton resonance from bulk RS

    Science.gov (United States)

    Csáki, Csaba; Randall, Lisa

    2016-07-01

    Recent LHC data hinted at a 750 GeV mass resonance that decays into two photons. A significant feature of this resonance is that its decays to any other Standard Model particles would be too low to be detected so far. Such a state has a compelling explanation in terms of a scalar or a pseudoscalar that is strongly coupled to vector states charged under the Standard Model gauge groups. Such a scenario is readily accommodated in bulk RS with a scalar localized in the bulk away from but close to the Higgs. Turning this around, we argue that a good way to find the elusive bulk RS model might be the search for a resonance with prominent couplings to gauge bosons.

  7. Bulk fields from the boundary OPE

    CERN Document Server

    Guica, Monica

    2016-01-01

    Previous work has established an equality between the geodesic integral of a free bulk field in AdS and the contribution of the conformal descendants of its dual CFT primary operator to the OPE of two other operators inserted at the endpoints of the geodesic. Working in the context of AdS$_3$/CFT$_2$, we extend this relation to include all $1/N$ corrections to the bulk field obtained by dressing it with i) a $U(1)$ current and ii) the CFT stress tensor, and argue it equals the contribution of the Ka\\v{c}-Moody/the Virasoro block to the respective boundary OPE. This equality holds for a particular framing of the bulk field to the boundary that involves a split Wilson line.

  8. Multiphase composites with extremal bulk modulus

    DEFF Research Database (Denmark)

    Gibiansky, L. V.; Sigmund, Ole

    2000-01-01

    This paper is devoted to the analytical and numerical study of isotropic elastic composites made of three or more isotropic phases. The ranges of their effective bulk and shear moduli are restricted by the Hashin-Shtrikman-Walpole (HSW) bounds. For two-phase composites, these bounds are attainable......, that is, there exist composites with extreme bulk and shear moduli. For multiphase composites, they may or may not be attainable depending on phase moduli and volume fractions. Sufficient conditions of attainability of the bounds and various previously known and new types of optimal composites...... are described. Most of our new results are related to the two-dimensional problem. A numerical topology optimization procedure that solves the inverse homogenization problem is adopted and used to look for two-dimensional three-phase composites with a maximal effective bulk modulus. For the combination...

  9. A Diphoton Resonance from Bulk RS

    CERN Document Server

    Csaki, Csaba

    2016-01-01

    Recent LHC data hints at a 750 GeV mass resonance that decays into two photons. A significant feature of this resonance is that its decays to Higges and to any other Standard Model particles are so far too low to be detected. Such a state has a compelling explanation in terms of a scalar or a pseudoscalar that is strongly coupled to vector states charged under the Standard Model gauge groups. We argue that if the state is a scalar, some form of sequestering is likely to be necessary to naturally explain the suppressed scalar-Higgs interactions. Such a scenario is readily accommodated in bulk RS with a scalar localized in the bulk away from the Higgs. Turning this around, we argue that a good way to find the elusive bulk RS model might be the search for a resonance with prominent couplings to gauge bosons.

  10. Bulk Comptonization by Turbulence in Accretion Disks

    CERN Document Server

    Kaufman, J

    2016-01-01

    Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent "wave" temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, ra...

  11. Carrier scattering in metals and semiconductors

    CERN Document Server

    Gantmakher, VF

    1987-01-01

    The transport properties of solids, as well as the many optical phenomena in them are determined by the scattering of current carriers. ``Carrier Scattering in Metals and Semiconductors'' elucidates the state of the art in the research on the scattering mechanisms for current carriers in metals and semiconductors and describes experiments in which these mechanisms are most dramatically manifested.The selection and organization of the material is in a form to prepare the reader to reason independently and to deal just as independently with available theoretical results and experimental

  12. High capacity carrier ethernet transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Zhang, Jiang; Yu, Hao;

    2009-01-01

    Ethernet as a transport technology has, up to now, lacked the features such as network layer architecture, customer separation and manageability that carriers require for wide-scale deployment. However, with the advent of PBB-TE and T-MPLS, it is now possible to use Ethernet as a transport...... OAM functions, survivability and the increased bandwidth requirements of carrier class systems. This article provides an overview of PBB-TE and T-MPLS and demonstrates how IPTV services can be realized in the framework of Carrier Ethernet. In addition we provide a case study on performing bit error...

  13. ISRAEL’S NATIONAL WATER CARRIER

    OpenAIRE

    Nathan Cohen

    2008-01-01

    The National Water Carrier of Israel (Ha Movil Ha' Artzi). It is the main water project of Israel and its main task is to transfer water from the rainy north to the center and to the arid south. The National Water Carrier connects the Sea of Galilee with Israel's water system. The original goal was to provide irrigation water to Negev. Today 80% of the water is utilized for Israel's domestic consumption. Most of the water works in Israel are combined with the National Water Carrier for about...

  14. Solution processed organic bulk heterojunction tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Steve; Neher, Dieter [Soft Matter Physics, University of Potsdam, D-14476 Potsdam (Germany)

    2011-07-01

    One of the critical issues regarding the preparation of organic tandem solar cells from solution is the central recombination contact. This contact should be highly transparent and conductive to provide high recombination currents. Moreover it should protect the 1st subcell from the solution processing of the 2nd subcell. Here, we present a systematic study of various recombination contacts in organic bulk heterojunction tandem solar cells made from blends of different polymers with PCBM. We compare solution processed recombination contacts fabricated from metal-oxides (TiO{sub 2} and ZnO) and PEDOT:PSS with evaporated recombination contacts made from thin metal layers and molybdenum-oxide. The solar cell characteristics as well as the morphology of the contacts measured by AFM and SEM are illustrated. To compare the electrical properties of the varying contacts we show measurements on single carrier devices for different contact-structures. Alongside we present the results of optical modeling of the subcells and the complete tandem device and relate these results to experimental absorption and reflection spectra of the same structures. Based on these studies, layer thicknesses were adjusted for optimum current matching and device performance.

  15. Radiation-hardened bulk CMOS technology

    International Nuclear Information System (INIS)

    The evolutionary development of a radiation-hardened bulk CMOS technology is reviewed. The metal gate hardened CMOS status is summarized, including both radiation and reliability data. The development of a radiation-hardened bulk silicon gate process which was successfully implemented to a commercial microprocessor family and applied to a new, radiation-hardened, LSI standard cell family is also discussed. The cell family is reviewed and preliminary characterization data is presented. Finally, a brief comparison of the various radiation-hardened technologies with regard to performance, reliability, and availability is made

  16. Remedial investigations for quarry bulk wastes

    International Nuclear Information System (INIS)

    The US Department of Energy proposes, as a separate operable unit of the Weldon Spring Site Remedial Action Project, to remove contaminated bulk wastes from the Weldon Spring quarry and transport them approximately four miles to the chemical plant portion of the raffinate pits and chemical plant area. The wastes will be held in temporary storage prior to the record of decision for the overall remedial action. The decision on the ultimate disposal of these bulk wastes will be included as part of the decision for management of the waste materials resulting from remedial action activities at the raffinate pits and chemical plant area. 86 refs., 71 figs., 83 tabs

  17. Bulk Entropy in Loop Quantum Gravity

    OpenAIRE

    Livine, Etera R; Terno, Daniel R.

    2007-01-01

    In the framework of loop quantum gravity (LQG), having quantum black holes in mind, we generalize the previous boundary state counting (gr-qc/0508085) to a full bulk state counting. After a suitable gauge fixing we are able to compute the bulk entropy of a bounded region (the "black hole") with fixed boundary. This allows us to study the relationship between the entropy and the boundary area in details and we identify a holographic regime of LQG where the leading order of the entropy scales w...

  18. Bulk Entropy in Loop Quantum Gravity

    CERN Document Server

    Livine, Etera R

    2007-01-01

    In the framework of loop quantum gravity (LQG), having quantum black holes in mind, we generalize the previous boundary state counting (gr-qc/0508085) to a full bulk state counting. After a suitable gauge fixing we are able to compute the bulk entropy of a bounded region (the "black hole") with fixed boundary. This allows us to study the relationship between the entropy and the boundary area in details and we identify a holographic regime of LQG where the leading order of the entropy scales with the area. We show that in this regime we can fine tune the factor between entropy and area without changing the Immirzi parameter.

  19. Thermal relics in cosmology with bulk viscosity

    International Nuclear Information System (INIS)

    In this paper we discuss some consequences of cosmological models in which the primordial cosmic matter is described by a relativistic imperfect fluid. The latter takes into account the dissipative effects (bulk viscosity) arising from different cooling rates of the fluid components in the expanding Universe. We discuss, in particular, the effects of the bulk viscosity on Big Bang Nucleosynthesis and on the thermal relic abundance of particles, looking at recent results of PAMELA experiment. The latter has determined an anomalous excess of positron events, which cannot be explained by conventional cosmology and particle physics. (orig.)

  20. Synthesis of Bulk Superconducting Magnesium Diboride

    Directory of Open Access Journals (Sweden)

    Margie Olbinado

    2002-06-01

    Full Text Available Bulk polycrystalline superconducting magnesium diboride, MgB2, samples were successfully prepared via a one-step sintering program at 750°C, in pre Argon with a pressure of 1atm. Both electrical resistivity and magnetic susceptibility measurements confirmed the superconductivity of the material at 39K, with a transition width of 5K. The polycrystalline nature, granular morphology, and composition of the sintered bulk material were confirmed using X-ray diffractometry (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX.

  1. Selective observation of photo-induced electric fields inside different material components in bulk-heterojunction organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, S3-33 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2014-01-06

    By using electric-field-induced optical second-harmonic generation (EFISHG) measurement at two laser wavelengths of 1000 nm and 860 nm, we investigated carrier behavior inside the pentacene and C{sub 60} component of co-deposited pentacene:C{sub 60} bulk-heterojunctions (BHJs) organic solar cells (OSCs). The EFISHG experiments verified the presence of two carrier paths for electrons and holes in BHJs OSCs. That is, two kinds of electric fields pointing in opposite directions are identified as a result of the selectively probing of SHG activation from C{sub 60} and pentacene. Also, under open-circuit conditions, the transient process of the establishment of open-circuit voltage inside the co-deposited layer has been directly probed, in terms of photovoltaic effect. The EFISHG provides an additional promising method to study carrier path of electrons and holes as well as dissociation of excitons in BHJ OSCs.

  2. Side chain engineering of fused aromatic thienopyrazine based low band-gap polymers for enhanced charge carrier mobility

    KAUST Repository

    Mondal, Rajib

    2011-01-01

    A strategic side-chain engineering approach leads to the two orders of magnitude enhancement of charge carrier mobility in phenanthrene based fused aromatic thienopyrazine polymers. Hole carrier mobility up to 0.012 cm 2/Vs can be obtained in thin film transistor devices. Polymers were also utilized to fabricate bulk heterojunction photovoltaic devices and the maximum PCE obtained in these OPV\\'s was 1.15%. Most importantly, performances of the devices were correlated with thin morphological analysis performed by atomic force microscopy and grazing incidence X-ray scattering. © 2011 The Royal Society of Chemistry.

  3. Abnormal electrical characteristics of multi-layered MoS2 FETs attributed to bulk traps

    Science.gov (United States)

    Kim, Choong-Ki; Yu, Chan Hak; Hur, Jae; Bae, Hagyoul; Jeon, Seung-Bae; Park, Hamin; Kim, Yong Min; Choi, Kyung Cheol; Choi, Yang-Kyu; Choi, Sung-Yool

    2016-03-01

    Multiple layers of MoS2 are used as channel materials in a type of field-effect transistor (FET). It was found that the hysteresis in transfer curves and low-frequency noise (LFN) characteristics are varied by the number of layers in MoS2 due to the different influences of bulk traps. The LFN characteristics of a FET composed of a ‘bi-layer’ MoS2 channel, which was passivated with an atomic-layer-deposited (ALD) Al2O3 layer, follow the conventional carrier number fluctuation (CNF) model. However, FETs consisting of multi-layered MoS2 channels (4, 7, 9, and 18 layers) show abnormal LFN characteristics, which substantially deviate from well-established 1/f noise models such as the CNF and Hooge’s mobility fluctuation models. The bulk traps inside the MoS2 layers are the origin of the abnormal LFN characteristics and the large hysteresis of FETs with multi-layered MoS2 is due to its randomly embedded bulk traps. Secondary ion mass spectrometry (SIMS) confirms the existence of oxygen species that induce the electrical bulk trap in the MoS2 layers.

  4. Intraoral radiation carrier for edentulous patients

    International Nuclear Information System (INIS)

    The principles of fabricating an intraoral radioactive carrier have been described to treat malignant diseases of the oral cavity. The prosthesis provides consistent direction and fixation of the radioactive source into the same location

  5. Intraoral radiation carrier for edentulous patients

    Energy Technology Data Exchange (ETDEWEB)

    Sela, M.; Taicher, S.

    1983-12-01

    The principles of fabricating an intraoral radioactive carrier have been described to treat malignant diseases of the oral cavity. The prosthesis provides consistent direction and fixation of the radioactive source into the same location.

  6. Simulation of dual transponder carrier ranging measurements

    Institute of Scientific and Technical Information of China (English)

    Xiang-yu ZHAO; Xiao-jun JIN; Zhong-he JIN

    2009-01-01

    The most dominant error source for microwave ranging is the frequency instability of the oscillator that generates the carrier phase signal. The oscillator noise is very difficult to filter due to its extremely low frequency. A dual transponder carrier ranging method can effectively minimize the oscillator noise by combing the reference phase and the to-and-fro measurement phase from the same single oscillator. This method does not require an accurate time tagging system, since it extracts phases on the same satellite. This paper analyzes the dual transponder carrier ranging system by simulation of the phase measurements with comprehensive error models. Both frequency domain and time domain noise transfer characteristics were simulated to compare them with dual one-way ranging. The simulation results in the two domains conformed to each other and demonstrated that a high level of accuracy can also be achieved by use of the dual transponder carrier ranging system, with relatively simple instruments.

  7. Physician Fee Schedule Carrier Specific Files

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Centers for Medicare and Medicaid Services (CMS) has condensed all 56 Physician Fee Schedule (PFS) carrier specific pricing files into one zip file. It is...

  8. Evaluating multicast resilience in carrier ethernet

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Wessing, Henrik; Zhang, Jiang;

    2010-01-01

    This paper gives an overview of the Carrier Ethernet technology with specific focus on resilience. In particular, we show how multicast traffic, which is essential for IPTV can be protected. We detail the ackground for resilience mechanisms and their control and e present Carrier Ethernet resilie...... resilience methods for linear nd ring networks. By simulation we show that the vailability of a multicast connection can be significantly increased by applying protection methods....

  9. Preparation and application of magnetic microsphere carriers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bo; XING Jianmin; LIU Huizhou

    2007-01-01

    Magnetic microsphere carriers have received considerable attention,primarily because of their wide applications in the fields of biomedicine and bioengineering.In this paper,preparation methods,surface modification and application of magnetic carriers are reviewed.Emphasis will be placed on recent biological and biomedical developments and trends such as enzyme immobilization,cell isolation,protein purification,target drugs and DNA separation.

  10. THE OPTIMIZATION OF PLUSH YARNS BULKING PROCESS

    Directory of Open Access Journals (Sweden)

    VINEREANU Adam

    2014-05-01

    Full Text Available This paper presents the experiments that were conducted on the installation of continuous bulking and thermofixing “SUPERBA” type TVP-2S for optimization of the plush yarns bulking process. There were considered plush yarns Nm 6.5/2, made of the fibrous blend of 50% indigenous wool sort 41 and 50% PES. In the first stage, it performs a thermal treatment with a turboprevaporizer at a temperature lower than thermofixing temperature, at atmospheric pressure, such that the plush yarns - deposed in a freely state on a belt conveyor - are uniformly bulking and contracting. It was followed the mathematical modeling procedure, working with a factorial program, rotatable central composite type, and two independent variables. After analyzing the parameters that have a direct influence on the bulking degree, there were selected the pre-vaporization temperature (coded x1,oC and the velocity of belt inside pre-vaporizer (coded x 2, m/min. As for the dependent variable, it was chosen the plush yarn diameter (coded y, mm. There were found the coordinates of the optimal point, and then this pair of values was verified in practice. These coordinates are: x1optim= 90oC and x 2optim= 6.5 m/min. The conclusion is that the goal was accomplished: it was obtained a good cover degree f or double-plush carpets by reducing the number of tufts per unit surface.

  11. A Stereoscopic Look into the Bulk

    CERN Document Server

    Czech, Bartlomiej; McCandlish, Samuel; Mosk, Benjamin; Sully, James

    2016-01-01

    We present the foundation for a holographic dictionary with depth perception. The dictionary consists of natural CFT operators whose duals are simple, diffeomorphism-invariant bulk operators. The CFT operators of interest are the "OPE blocks," contributions to the OPE from a single conformal family. In holographic theories, we show that the OPE blocks are dual at leading order in 1/N to integrals of effective bulk fields along geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation in the area of a minimal surface. Thus, our operators pave the way for generalizing the Ryu-Takayanagi relation to other bulk fields. Although the OPE blocks are non-local operators in the CFT, they admit a simple geometric description as fields in kinematic space--the space of pairs of CFT points. We develop the tools for constructing local bulk operators in terms of these non-local objects. The OPE blocks also allow ...

  12. Bulk metamaterials: Design, fabrication and characterization

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Alabastri, Alessandro;

    2009-01-01

    Bulk metamaterials claim a lot of attention worldwide. We report about our activity and advances in design, fabrication and characterization of metal-dielectric composites with three-dimensional lattices. The nomenclature of designs exhibiting negative index behaviour in the near infrared includes...

  13. Realistic anomaly mediation with bulk gauge fields

    International Nuclear Information System (INIS)

    We present a simple general framework for realistic models of supersymmetry breaking driven by anomaly mediation. We consider a 5-dimensional 'brane universe' where the visible and hidden sectors are localized on different branes, and the standard model gauge bosons propagate in the bulk. In this framework there can be charged scalar messengers that have contact interactions with the hidden sector, either localized in the hidden sector or in the bulk. These scalars obtain soft masses that feed into visible sector scalar masses at two loop order via bulk gauge interactions. This contribution is automatically flavor-blind, and can be naturally positive. If the messengers are in the bulk this contribution is automatically the same order of magnitude as the anomaly mediated contribution, independent of the brane spacing. If the messengers are localized to a brane the two effects are of the same order for relatively small brane spacings. The gaugino masses and A terms are determined completely by anomaly mediation. In order for anomaly mediation to dominate over radion mediation the radion must be is stabilized in a manner that preserves supersymmetry, with supergravity effects included. We show that this occurs in simple models. We also show that the mu problem can be solved by the vacuum expectation value of a singlet in this framework. (author)

  14. Longitudinal bulk a coustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja;

    2009-01-01

    Design, fabrication and characterization, in terms of mass sensitivity, is presented for a polycrystalline silicon longitudinal bulk acoustic cantilever. The device is operated in air at 51 MHz, resulting in a mass sensitivity of 100 HZ/fg (1 fg = 10{su−15 g). The initial characterization...

  15. Thermoelectric properties of p-type PbTe/Ag{sub 2}Te bulk composites by extrinsic phase mixing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Ho; Rhyee, Jong-Soo, E-mail: jsrhyee@khu.ac.kr [Department of Applied Physics and Institute of Natural Sciences, Kyung Hee University, Yongin 446-701 (Korea, Republic of)

    2015-12-15

    We investigated the thermoelectric properties of PbTe/Ag{sub 2}Te bulk composites, synthesized by hand milling, mixing, and hot press sintering. From x-ray diffraction and energy dispersive x-ray spectroscopy measurements, we observed Ag{sub 2}Te phase separation in the PbTe matrix without Ag atom diffusion. In comparison with previously reported pseudo-binary (PbTe){sub 1−x}(Ag{sub 2}Te){sub x} composites, synthesized by high temperature phase separation, the PbTe/Ag{sub 2}Te bulk composites fabricated with a low temperature phase mixing process give rise to p-type conduction of carriers with significantly decreased electrical conductivity. This indicates that Ag atom diffusion in the PbTe matrix changes the sign of the Seebeck coefficient to n-type and also increases the carrier concentration. Effective p-type doping with low temperature phase separation by mixing and hot press sintering can enhance the thermoelectric performance of PbTe/Ag{sub 2}Te bulk composites, which can be used as a p-type counterpart of n-type (PbTe){sub 1−x}(Ag{sub 2}Te){sub x} bulk composites.

  16. Integration of bulk piezoelectric materials into microsystems

    Science.gov (United States)

    Aktakka, Ethem Erkan

    Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100microm. The characterized processes include reliable low-temperature (200°C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (+/-0.5microm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12microm PP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with management IC, which incorporates a supply-independent bias circuitry, an active diode for low-dropout rectification, a bias-flip system for higher efficiency, and a trickle battery charger. The overall system does not require a pre-charged battery, and has power consumption of sleep-mode (simulated). Under lg vibration at 155Hz, a 70mF ultra-capacitor is charged from OV to 1.85V in 50 minutes.

  17. Bulk sulfur (S) deposition in China

    Science.gov (United States)

    Liu, Lei; Zhang, Xiuying; Wang, Shanqian; Zhang, Wuting; Lu, Xuehe

    2016-06-01

    A systematic dataset of an observation network on a national scale has been organized to investigate the spatial distribution of bulk sulfur (S) deposition (Sdep) throughout China during 2000-2013, representing by far the most detailed data set to track the bulk sulfur deposition throughout China since 2000. Such a dataset is needed for ecosystem studies and for developing emission control policies. Bulk Sdep values showed great variations, ranging from 2.17 to 70.55 kg ha-1 y-1, with an average of 22.99 kg ha-1 y-1. The average rate of bulk Sdep located in East Coastal region (35.97 kg ha-1 y-1), Middle Yangtze region (57.90 kg ha-1 y-1), Middle Yellow River region (23.42 kg ha-1 y-1), North Coastal region (42.19 kg ha-1 y-1), Northeast region (34.28 kg ha-1 y-1), South Coastal region (36.97 kg S ha-1 y-1), Southwest region (33.85 kg ha-1 y-1) was 4.50, 7.24, 2.93, 5.28, 4.29, 4.63 and 4.24 times than that in Northwest region (7.99 kg ha-1 y-1). Bulk Sdep over China was mainly from fossil fuel combustion (76.96%), biomass burning (7.64%), crust (6.22%), aged sea salt (5.48%) and agriculture (3.68%). A systematic observation network on a national scale should be established to conduct a long-term monitoring atmospheric Sdep (including wet and dry deposition), based on exiting ecological stations administrated by different departments in China.

  18. Bulk solitary waves in elastic solids

    Science.gov (United States)

    Samsonov, A. M.; Dreiden, G. V.; Semenova, I. V.; Shvartz, A. G.

    2015-10-01

    A short and object oriented conspectus of bulk solitary wave theory, numerical simulations and real experiments in condensed matter is given. Upon a brief description of the soliton history and development we focus on bulk solitary waves of strain, also known as waves of density and, sometimes, as elastic and/or acoustic solitons. We consider the problem of nonlinear bulk wave generation and detection in basic structural elements, rods, plates and shells, that are exhaustively studied and widely used in physics and engineering. However, it is mostly valid for linear elasticity, whereas dynamic nonlinear theory of these elements is still far from being completed. In order to show how the nonlinear waves can be used in various applications, we studied the solitary elastic wave propagation along lengthy wave guides, and remarkably small attenuation of elastic solitons was proven in physical experiments. Both theory and generation for strain soliton in a shell, however, remained unsolved problems until recently, and we consider in more details the nonlinear bulk wave propagation in a shell. We studied an axially symmetric deformation of an infinite nonlinearly elastic cylindrical shell without torsion. The problem for bulk longitudinal waves is shown to be reducible to the one equation, if a relation between transversal displacement and the longitudinal strain is found. It is found that both the 1+1D and even the 1+2D problems for long travelling waves in nonlinear solids can be reduced to the Weierstrass equation for elliptic functions, which provide the solitary wave solutions as appropriate limits. We show that the accuracy in the boundary conditions on free lateral surfaces is of crucial importance for solution, derive the only equation for longitudinal nonlinear strain wave and show, that the equation has, amongst others, a bidirectional solitary wave solution, which lead us to successful physical experiments. We observed first the compression solitary wave in the

  19. Differential Analysis of the Nasal Microbiome of Pig Carriers or Non-Carriers of Staphylococcus aureus.

    Science.gov (United States)

    Espinosa-Gongora, Carmen; Larsen, Niels; Schønning, Kristian; Fredholm, Merete; Guardabassi, Luca

    2016-01-01

    Staphylococcus aureus is presently regarded as an emerging zoonotic agent due to the spread of specific methicillin-resistant S. aureus (MRSA) clones in pig farms. Studying the microbiota can be useful for the identification of bacteria that antagonize such opportunistic veterinary and zoonotic pathogen in animal carriers. The aim of this study was to determine whether the nasal microbiome of pig S. aureus carriers differs from that of non-carriers. The V3-V5 region of the 16S rRNA gene was sequenced from nasal swabs of 44 S. aureus carriers and 56 non-carriers using the 454 GS FLX titanium system. Carriers and non-carriers were selected on the basis of quantitative longitudinal data on S. aureus carriage in 600 pigs sampled at 20 Danish herds included in two previous studies in Denmark. Raw sequences were analysed with the BION meta package and the resulting abundance matrix was analysed using the DESeq2 package in R to identify operational taxonomic units (OTUs) with differential abundance between S. aureus carriers and non-carriers. Twenty OTUs were significantly associated to non-carriers, including species with known probiotic potential and antimicrobial effect such as lactic acid-producing isolates described among Leuconostoc spp. and some members of the Lachnospiraceae family, which is known for butyrate production. Further 5 OTUs were significantly associated to carriage, including known pathogenic bacteria such as Pasteurella multocida and Klebsiella spp. Our results show that the nasal microbiome of pigs that are not colonized with S. aureus harbours several species/taxa that are significantly less abundant in pig carriers, suggesting that the nasal microbiota may play a role in the individual predisposition to S. aureus nasal carriage in pigs. Further research is warranted to isolate these bacteria and assess their possible antagonistic effect on S. aureus for the pursuit of new strategies to control MRSA in pig farming. PMID:27509169

  20. Differential Analysis of the Nasal Microbiome of Pig Carriers or Non-Carriers of Staphylococcus aureus

    Science.gov (United States)

    Espinosa-Gongora, Carmen; Larsen, Niels; Schønning, Kristian; Fredholm, Merete; Guardabassi, Luca

    2016-01-01

    Staphylococcus aureus is presently regarded as an emerging zoonotic agent due to the spread of specific methicillin-resistant S. aureus (MRSA) clones in pig farms. Studying the microbiota can be useful for the identification of bacteria that antagonize such opportunistic veterinary and zoonotic pathogen in animal carriers. The aim of this study was to determine whether the nasal microbiome of pig S. aureus carriers differs from that of non-carriers. The V3-V5 region of the 16S rRNA gene was sequenced from nasal swabs of 44 S. aureus carriers and 56 non-carriers using the 454 GS FLX titanium system. Carriers and non-carriers were selected on the basis of quantitative longitudinal data on S. aureus carriage in 600 pigs sampled at 20 Danish herds included in two previous studies in Denmark. Raw sequences were analysed with the BION meta package and the resulting abundance matrix was analysed using the DESeq2 package in R to identify operational taxonomic units (OTUs) with differential abundance between S. aureus carriers and non-carriers. Twenty OTUs were significantly associated to non-carriers, including species with known probiotic potential and antimicrobial effect such as lactic acid-producing isolates described among Leuconostoc spp. and some members of the Lachnospiraceae family, which is known for butyrate production. Further 5 OTUs were significantly associated to carriage, including known pathogenic bacteria such as Pasteurella multocida and Klebsiella spp. Our results show that the nasal microbiome of pigs that are not colonized with S. aureus harbours several species/taxa that are significantly less abundant in pig carriers, suggesting that the nasal microbiota may play a role in the individual predisposition to S. aureus nasal carriage in pigs. Further research is warranted to isolate these bacteria and assess their possible antagonistic effect on S. aureus for the pursuit of new strategies to control MRSA in pig farming. PMID:27509169

  1. Free Carrier Generation in Fullerene Acceptors and Its Effect on Polymer Photovoltaics

    KAUST Repository

    Burkhard, George F.

    2012-12-20

    Early research on C60 led to the discovery that the absorption of photons with energy greater than 2.35 eV by bulk C60 produces free charge carriers at room temperature. We find that not only is this also true for many of the soluble fullerene derivatives commonly used in organic photovoltaics, but also that the presence of these free carriers has significant implications for the modeling, characterization, and performance of devices made with these materials. We demonstrate that the discrepancy between absorption and quantum efficiency spectra in P3HT:PCBM is due to recombination of such free carriers in large PCBM domains before they can be separated at a donor/acceptor interface. Since most theories assume that all free charges result from the separation of excitons at a donor/acceptor interface, the presence of free carrier generation in fullerenes can have a significant impact on the interpretation of data generated by numerous field-dependent techniques. © 2012 American Chemical Society.

  2. SELECTIVE TRANSPORT OF GOLD(Ⅱ) THROUGH THE LIQUID MEMBRANE CONTAINING POLYTHIOETHER OLIGOMER AS CARRIER

    Institute of Scientific and Technical Information of China (English)

    XUYuwu; WANGYing; 等

    1993-01-01

    This paper deals with the transport properties of oligomer of polythioether PSA used as moble carrier in bulk liquid membrane for gold(Ⅲ).It was found that Au(Ⅲ) can be transported by PSA from source phase to receiving phase completely under appropriate conditions and only Au(Ⅲ) can be transferred through the liquid membrane to receiving phase from a mixture of Na(I)-Cu(Ⅱ)-Au(Ⅲ)-Fe(Ⅲ)-Pt(Ⅳ) in the following system:HAuCl4-HCl(aq.)/PSA-ClCH2-CH2Cl/(NH2)2CS-HCl(aq.).The transport rate of Au(Ⅲ) depended on the concentration of carrier,the thickness of liquid membrane,the concentration of Au(Ⅲ) in source phase and the acidity of the media.

  3. Extraction and Transport of Amino Acids Using Kryptofix 5 as Carrier through Liquid Membrane

    Directory of Open Access Journals (Sweden)

    Pankaj Raizada

    2013-01-01

    Full Text Available The present work explores membrane-mediated extraction and transport studies of amino acids through artificial bulk liquid membrane system with kryptofix 5 as a carrier. The various reaction parameters such as amino acid concentration, carrier concentration, time, pH, and stirring effect were studied to optimize reaction conditions. The stirring of source and receiving phases increased the efficiency of extraction process. Noncyclic receptor kryptofix 5 with five oxyethylene units and terminal aromatic donor end groups governs its transport and extraction efficiency. The extraction and transport efficiency followed the following trend: valine > alanine > glycine > threonine. Supported liquid membrane (SLM studies were performed using cellulose nitrate, PTFE, eggshell, and onion membranes. The egg shell membrane support proved to be most efficient due to intricate network of water insoluble proteins fibers with very high surface area and homogeneity.

  4. Efficacy of pH elevation as a bactericidal strategy for treating ballast water of freight carriers

    OpenAIRE

    Starliper, Clifford E.; Barnaby J. Watten; Iwanowicz, Deborah D.; Green, Phyllis A.; Bassett, Noel L.; Adams, Cynthia R

    2015-01-01

    Treatment of ship ballast water with sodium hydroxide (NaOH) is one method currently being developed to minimize the risk to introduce aquatic invasive species. The bactericidal capability of sodium hydroxide was determined for 148 bacterial strains from ballast water collected in 2009 and 2010 from the M/V Indiana Harbor, a bulk-freight carrier plying the Laurentian Great Lakes, USA. Primary culture of bacteria was done using brain heart infusion agar and a developmental medium. Strains were...

  5. NPP bulk equipment dismantling problems and experience

    International Nuclear Information System (INIS)

    NPP bulk equipment dismantling problems and experience are summarized. 'ECOMET-S' JSC is shown as one of the companies which are able to make NPPs industrial sites free from stored bulk equipment with its further utilization. 'ECOMET-S' JSC is the Russian Federation sole specialized metallic LLW (MLLW) treatment and utilization facility. Company's main objectives are waste predisposal volume reduction and treatment for the unrestricted release as a scrap. Leningrad NPP decommissioned main pumps and moisture separators/steam super heaters dismantling results are presented. Prospective fragmentation technologies (diamond and electro-erosive cutting) testing results are described. The electro-erosive cutting machine designed by 'ECOMET-S' JSC is presented. The fragmentation technologies implementation plans for nuclear industry are presented too. (author)

  6. Bulk and shear viscosity in Hagedorn fluid

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, A.; Wahba, M. [Egyptian Center for Theoretical Physics (ECTP), MTI University, Faculty of Engineering, Cairo (Egypt)

    2010-11-15

    Assuming that the Hagedorn fluid composed of known particles and resonances with masses m <2 GeV obeys the first-order theory (Eckart) of relativistic fluid, we discuss the transport properties of QCD confined phase. Based on the relativistic kinetic theory formulated under the relaxation time approximation, expressions for bulk and shear viscosity in thermal medium of hadron resonances are derived. The relaxation time in the Hagedorn dynamical fluid exclusively takes into account the decay and eventually van der Waals processes. We comment on the in-medium thermal effects on bulk and shear viscosity and averaged relaxation time with and without the excluded-volume approach. As an application of these results, we suggest the dynamics of heavy-ion collisions, non-equilibrium thermodynamics and the cosmological models, which require thermo- and hydro-dynamics equations of state. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Bulk and Shear Viscosity in Hagedorn Fluid

    CERN Document Server

    Tawfik, A

    2010-01-01

    Assuming that the Hagedorn fluid composed of known particles and resonances with masses $m<2\\,$GeV obeys the {\\it first-order} theory (Eckart) of relativistic fluid, we discuss the transport properties of QCD confined phase. Based on the relativistic kinetic theory formulated under the relaxation time approximation, expressions for bulk and shear viscosity in thermal medium are derived. The relaxation time in the Hagedorn dynamical fluid exclusively takes into account the decay and eventually van der Waals processes. We comment on the {\\it in-medium} thermal effects on bulk and shear viscosities and averaged relaxation time with and without the excluded-volume approach. As an application of these results, we suggest the dynamics of heavy-ion collisions, non-equlibrium thermodynamics and the cosmological models, which require thermo and hydrodynamics equations of state.

  8. Bulk Locality and Boundary Creating Operators

    CERN Document Server

    Nakayama, Yu

    2015-01-01

    We formulate a minimum requirement for CFT operators to be localized in the dual AdS. In any spacetime dimensions, we show that a general solution to the requirement is a linear superposition of operators creating spherical boundaries in CFT, with the dilatation by the imaginary unit from their centers. This generalizes the recent proposal by Miyaji et al. for bulk local operators in the three dimensional AdS. We show that Ishibashi states for the global conformal symmetry in any dimensions and with the imaginary dilatation obey free field equations in AdS and that incorporating bulk interactions require their superpositions. We also comment on the recent proposals by Kabat et al., and by H. Verlinde.

  9. Brane plus Bulk Supersymmetry in Ten Dimensions

    CERN Document Server

    Bergshoeff, E A; Ortín, Tomas; Roest, D; Van Proeyen, A

    2001-01-01

    We discuss a generalized form of IIA/IIB supergravity depending on all R-R potentials C^(p) (p=0,1,...,9) as the effective field theory of Type IIA/IIB superstring theory. For the IIA case we explicitly break this R-R democracy to either p=5 which allows us to write a new bulk action that can be coupled to N=1 supersymmetric brane actions. The case of 8-branes is studied in detail using the new bulk & brane action. The supersymmetric negative tension branes without matter excitations can be viewed as orientifolds in the effective action. These D8-branes and O8-planes are fundamental in Type I' string theory. A BPS 8-brane solution is given which satisfies the jump conditions on the wall. As an application of our results we derive a quantization of the mass parameter and the cosmological constant in string units.

  10. Surface-Bulk Vibrational Correlation Spectroscopy.

    Science.gov (United States)

    Roy, Sandra; Covert, Paul A; Jarisz, Tasha A; Chan, Chantelle; Hore, Dennis K

    2016-05-01

    Homo- and heterospectral correlation analysis are powerful methods for investigating the effects of external influences on the spectra acquired using distinct and complementary techniques. Nonlinear vibrational spectroscopy is a selective and sensitive probe of surface structure changes, as bulk molecules are excluded on the basis of symmetry. However, as a result of this exquisite specificity, it is blind to changes that may be occurring in the solution. We demonstrate that correlation analysis between surface-specific techniques and bulk probes such as infrared absorption or Raman scattering may be used to reveal additional details of the adsorption process. Using the adsorption of water and ethanol binary mixtures as an example, we illustrate that this provides support for a competitive binding model and adds new insight into a dimer-to-bilayer transition proposed from previous experiments and simulations. PMID:27058265

  11. Bulk entropy in loop quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Livine, Etera R. [Laboratoire de Physique ENS Lyon, CNRS UMR 5672, 46 Allee d' Italie, 69364 Lyon Cedex 07 (France)], E-mail: etera.livine@ens-lyon.fr; Terno, Daniel R. [Centre for Quantum Computer Technology, Department of Physics, Macquarie University, Sydney NSW 2109 (Australia)], E-mail: dterno@physics.mq.edu.au

    2008-05-01

    In the framework of loop quantum gravity (LQG), we generalize previous boundary state counting for black hole entropy [E.R. Livine, D.R. Terno, Quantum black holes: Entropy and entanglement on the horizon, Nucl. Phys. B 741 (2006) 131, (gr-qc/0508085)] to a full bulk state counting. After suitable gauge fixing, we show how to compute the bulk entropy of a bounded region of space (the 'black hole') with fixed boundary conditions. This allows to study in detail the relationship between the entropy and the boundary area and to identify a holographic regime for LQG where the leading order of the entropy scales with the area. In this regime we can fine tune the factor between entropy and area without changing the Immirzi parameter.

  12. 49 CFR 1139.22 - Revenue data for study carriers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Revenue data for study carriers. 1139.22 Section... BOARD, DEPARTMENT OF TRANSPORTATION RULES OF PRACTICE PROCEDURES IN MOTOR CARRIER REVENUE PROCEEDINGS Intercity Bus Industry § 1139.22 Revenue data for study carriers. The study carriers, as identified...

  13. Charge carrier transport in liquid crystals

    International Nuclear Information System (INIS)

    The materials exhibiting charge carrier mobility ranging from 10−3 to 0.1 cm2/Vs, i.e., between those of amorphous and crystalline materials, had been missing before the 1990s when the electronic conduction in liquid crystals was discovered. Since then, various liquid crystalline materials including discotic and calamitic liquid crystals have been studied in order to clarify their charge carrier transport properties in liquid crystalline mesophases. In this article, the historical background of the discovery of electronic conduction in liquid crystals, intrinsic and extrinsic conductions, unique properties of the charge carrier transport, the effect of molecular alignment on it, and the conduction mechanism in liquid crystalline mesophases are shortly described on the basis of the experimental and theoretical studies accumulated in these two decades, noting that the missing materials were liquid crystals. - Highlights: • Liquid crystals exhibit charge mobility ranging from 10–3 to 0.1 cm2/Vs. • Electronic (intrinsic) and ionic (extrinsic) conductions in liquid crystals • Unique charge carrier transport properties in liquid crystals • Effect of molecular alignment in mesophases on charge carrier transport • Conduction mechanism in smectic liquid crystals

  14. Raman characterization of bulk ferromagnetic nanostructured graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, Helena, E-mail: hpardo@fq.edu.uy [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay); Divine Khan, Ngwashi [Mantfort University, Leicester (United Kingdom); Faccio, Ricardo [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay); Araujo-Moreira, F.M. [Grupo de Materiais e Dispositivos-CMDMC, Departamento de Fisica e Engenharia Fisica, UFSCar, Caixa Postal 676, 13565-905, Sao Carlos SP (Brazil); Fernandez-Werner, Luciana [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay)

    2012-08-15

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm{sup -1} showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  15. Material profile influences in bulk-heterojunctions

    OpenAIRE

    Roehling, J.D.; Rochester, C.W.; Ro, H.W.; Wang, P.; Majewski, J; Batenburg, Joost; Arslan, I; Delongchamp, D.M.; Moulé, A.J.

    2014-01-01

    The morphology in mixed bulk-heterojunction films are compared using three different quantitative measurement techniques. We compare the vertical composition changes using high-angle annular dark-field scanning transmission electron microscopy with electron tomography and neutron and x-ray reflectometry. The three measurement techniques yield qualitatively comparable vertical concentration measurements. The presence of a metal cathode during thermal annealing is observed to alter the fulleren...

  16. Superconducting RF cavities film of bulk

    CERN Document Server

    Darriulat, Pierre

    1999-01-01

    The successful operation of LEP2 has demonstrated the feasibility of using on a large scale copper accelerating cavities coated with a thin superconducting niobium film. Yet other existing or planned installations such as CEBAF and TESLA, rely instead on the bulk niobium technology. The reason is a wide spread belief that the film technology would suffer from fundamental limitations preventing high gradients to be reached...

  17. Dedicated Carrier Deployment in Heterogeneous Networks with Inter-site Carrier Aggregation

    DEFF Research Database (Denmark)

    Wang, Hua; Rosa, Claudio; Pedersen, Klaus I.

    2013-01-01

    ) or picos with dedicated carrier deployment. Collaborative inter-site carrier aggregation (CA) is proposed in scenarios with macro+RRH deployment to make an efficient use of the fragmented spectrum from multiple cells. While in scenarios with macro+pico deployment, UEs can only connect to either...

  18. Reluctance motors with bulk HTS material

    International Nuclear Information System (INIS)

    In recent years we have successfully designed, built and tested several reluctance motors with YBCO bulk material incorporated into the rotor, working at 77 K. Our last motor type SRE150 was tested up to 200 kW. The aim of our investigations is the construction of motors with extremely high power density and dynamics. In comparison to conventional motor types the advantage of HTS reluctance motors with respect to size and dynamics could be demonstrated. Some fields of possible future applications will be described. These motors show a significant improvement in performance using high quality HTS bulk elements in the rotor. Until now the motor parameters have been limited by the current density which could be obtained in the bulk material at 77 K and by the geometric dimensions of the segments available. Therefore we expect further improvements in the case of these materials. Since the total motor including stator and rotor is working at low temperature we have to optimize the windings and the magnetic circuit to these operation conditions. A new design of a 200 kW motor in order to achieve increased power density and the theoretical results of our calculations will be shown

  19. Evidence for Bulk Ripplocations in Layered Solids

    Science.gov (United States)

    Gruber, Jacob; Lang, Andrew C.; Griggs, Justin; Taheri, Mitra L.; Tucker, Garritt J.; Barsoum, Michel W.

    2016-01-01

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation–best described as an atomic scale ripple–was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain. PMID:27640724

  20. Cosmological Implications of QGP Bulk Viscosity

    CERN Document Server

    Anand, Sampurn; Bhatt, Jitesh R

    2016-01-01

    Recent studies of the hot QCD matter indicate that the bulk viscosity ($\\zeta$) of quark-gluon plasma (QGP) rises sharply near the critical point of the QCD phase transition. In this work, we show that such a sharp rise of the bulk viscosity will lead to an effective negative pressure near the critical temperature, $T_{c}$ which in turn drives the Universe to inflate. This inflation has a natural graceful exist when the viscous effect evanesce. We estimate that, depending upon the peak value of $\\zeta$, universe expands by a factor of $10$ to $80$ times in a very short span ($\\Delta t\\sim 10^{-8}$ seconds). Another important outcome of the bulk viscosity dominated dynamics is the cavitation of QGP around $T \\sim 1.5T_{c}$. This would lead to the phenomenon of formation of cavitation bubbles within the QGP phase. The above scenario is independent of the order of QCD phase transition. We delineate some of the important cosmological consequences of the inflation and the cavitation.

  1. Superconducting State Parameters of Bulk Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Aditya M. Vora

    2012-12-01

    Full Text Available Well recognized empty core (EMC pseudopotential of Ashcroft is used to investigate the superconducting state parameters viz; electron-phonon coupling strength λ, Coulomb pseudopotential μ*, transition temperature TC, isotope effect exponent α and effective interaction strength NOV of some (Ni33Zr671 – xVx (x = 0, 0.05, 0.1, 0.15 bulk amorphous alloys. We have incorporated five different types of local field correction functions, proposed by Hartree (H, Taylor (T, Ichimaru-Utsumi (IU, Farid et al. (F and Sarkar et al. (S to show the effect of exchange and correlation on the aforesaid properties. Very strong influence of the various exchange and correlation functions is concluded from the present study. The TC obtained from Sarkar et al. (S local field correction function are found an excellent agreement with available theoretical data. Quadratic TC equation has been proposed, which provide successfully the TC values of bulk amorphous alloys under consideration. Also, the present results are found in qualitative agreement with other such earlier reported data, which confirms the superconducting phase in the s bulk amorphous alloys.

  2. Bulk viscous cosmology in early Universe

    Indian Academy of Sciences (India)

    C P Singh

    2008-07-01

    The effect of bulk viscosity on the early evolution of Universe for a spatially homogeneous and isotropic Robertson-Walker model is considered. Einstein's field equations are solved by using `gamma-law' equation of state = ( - 1)ρ, where the adiabatic parameter gamma () depends on the scale factor of the model. The `gamma' function is defined in such a way that it describes a unified solution of early evolution of the Universe for inflationary and radiation-dominated phases. The fluid has only bulk viscous term and the coefficient of bulk viscosity is taken to be proportional to some power function of the energy density. The complete general solutions have been given through three cases. For flat space, power-law as well as exponential solutions are found. The problem of how the introduction of viscosity affects the appearance of singularity, is briefly discussed in particular solutions. The deceleration parameter has a freedom to vary with the scale factor of the model, which describes the accelerating expansion of the Universe.

  3. Evidence for Bulk Ripplocations in Layered Solids

    Science.gov (United States)

    Gruber, Jacob; Lang, Andrew C.; Griggs, Justin; Taheri, Mitra L.; Tucker, Garritt J.; Barsoum, Michel W.

    2016-09-01

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation–best described as an atomic scale ripple–was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain.

  4. Evidence for Bulk Ripplocations in Layered Solids.

    Science.gov (United States)

    Gruber, Jacob; Lang, Andrew C; Griggs, Justin; Taheri, Mitra L; Tucker, Garritt J; Barsoum, Michel W

    2016-01-01

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation-best described as an atomic scale ripple-was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain. PMID:27640724

  5. Bulk Comptonization by turbulence in accretion discs

    Science.gov (United States)

    Kaufman, J.; Blaes, O. M.

    2016-06-01

    Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent `wave' temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, radiation viscous dissipation is suppressed, and the evolution of local photon spectra can be understood in terms of compression and expansion of the strongly coupled photon and gas fluids. We discuss the consequences of these effects for self-consistently resolving and interpreting turbulent Comptonization in spectral calculations in radiation magnetohydrodynamic simulations of high luminosity accretion flows.

  6. Dicyclohexano-18-crown-6 as a novel carrier in the liquid membrane permeation of actinides

    International Nuclear Information System (INIS)

    The proven extractability and profound selectivity of dicyclohexano-18-crown-6 (DC18C6) has been exploited by selecting this crown ether as the ionophore in liquid membrane transport. Macrocycle-facilitated transport of Pu(IV) and U(VI) against their concentration gradient from aqueous nitric acid solutions across organic bulk liquid membrane (BLM) and thin-sheet supported liquid membrane (SLM) containing DC18C6 as the mobile carrier and toluene as the membrane solvent was investigated. (author). 23 refs., 9 tabs., 7 figs

  7. LINEAR POLYSILOXANE WITH DIBENZO-18-CROWN-6 MOIETIES AS LIQUID MEMBRANE CARRIER

    Institute of Scientific and Technical Information of China (English)

    GONG Shuling; LU Xueran; LU Xianming; CHEN Yuanyin

    1995-01-01

    A modified method of preparing crown functionalized linear polysiloxane has beendescribed. 4'-Allyldibenzo- 18-crown-6 was subjected to hydrosilylation withmethyldichlorosilane, followed by polycondensation with silanol-terminatedpolydimethylsiloxane to give the title crown functionalized linear polysiloxane. Thetransport properties of sodium, potassium, and ammonium salt through a bulk liquidmembrane system using the new type of crown functionalized linear polysiloxane as acarrier were investigated. It is worthy to point out that the carrier can be used repeatedlyat least six runs with no apparent change in the transport rate of potassium ion.

  8. Charge transport and recombination dynamics in organic bulk heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Andreas

    2011-08-02

    The charge transport in disordered organic bulk heterojunction (BHJ) solar cells is a crucial process affecting the power conversion efficiency (PCE) of the solar cell. With the need of synthesizing new materials for improving the power conversion efficiency of those cells it is important to study not only the photophysical but also the electrical properties of the new material classes. Thereby, the experimental techniques need to be applicable to operating solar cells. In this work, the conventional methods of transient photoconductivity (also known as ''Time-of-Flight'' (TOF)), as well as the transient charge extraction technique of ''Charge Carrier Extraction by Linearly Increasing Voltage'' (CELIV) are performed on different organic blend compositions. Especially with the latter it is feasible to study the dynamics - i.e. charge transport and charge carrier recombination - in bulk heterojunction (BHJ) solar cells with active layer thicknesses of 100-200 nm. For a well performing organic BHJ solar cells the morphology is the most crucial parameter finding a trade-off between an efficient photogeneration of charge carriers and the transport of the latter to the electrodes. Besides the morphology, the nature of energetic disorder of the active material blend and its influence on the dynamics are discussed extensively in this work. Thereby, the material system of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C{sub 61}butyric acid methyl ester (PC{sub 61}BM) serves mainly as a reference material system. New promising donor or acceptor materials and their potential for application in organic photovoltaics are studied in view of charge dynamics and compared with the reference system. With the need for commercialization of organic solar cells the question of the impact of environmental conditions on the PCE of the solar cells raises. In this work, organic BHJ solar cells exposed to synthetic air for finite duration are

  9. Existence of the transverse relaxation time in optically excited bulk semiconductors

    Institute of Scientific and Technical Information of China (English)

    Zhang Hai-Chao; Lin Wei-Zhu; Wang Yu-Zhu

    2006-01-01

    Two basic types of depolarization mechanisms,carrier-carrier (CC) and carrier-phonon (CP) scattering,are investigated in optically excited bulk semiconductors (3D),in which the existence of the transverse relaxation time is proven based on the vector property of the interband transition matrix elements.The dephasing rates for both CC and CP scattering are determined to be equal to one half of the total scattering-rate-integrals weighted by the factors (1-COSx),wherex are the scattering angles.Analytical expressions of the polarization dephasing due to CC scattering are established by using an uncertainty broadening approach,and analytical ones due to both the polar optical-phonon and non-polar deformation potential scattering (including inter-valley scattering) are also presented by using the sharp spectral functions in the dephasing rate calculations.These formulas,which reveal the trivial role of the Coulomb screening effect in the depolarization processes,are used to explain the experimental results at hand and provide a clear physical picture that is difficult to extract from numerical treatments.

  10. Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons

    Science.gov (United States)

    Hong, Seung Sae; Cha, Judy J.; Kong, Desheng; Cui, Yi

    2012-03-01

    A topological insulator is the state of quantum matter possessing gapless spin-locking surface states across the bulk band gap, which has created new opportunities from novel electronics to energy conversion. However, the large concentration of bulk residual carriers has been a major challenge for revealing the property of the topological surface state by electron transport measurements. Here we report the surface-state-dominant transport in antimony-doped, zinc oxide-encapsulated Bi2Se3 nanoribbons with suppressed bulk electron concentration. In the nanoribbon with sub-10-nm thickness protected by a zinc oxide layer, we position the Fermi levels of the top and bottom surfaces near the Dirac point by electrostatic gating, achieving extremely low two-dimensional carrier concentration of 2×1011 cm-2. The zinc oxide-capped, antimony-doped Bi2Se3 nanostructures provide an attractive materials platform to study fundamental physics in topological insulators, as well as future applications.

  11. Hiding secret data into a carrier image

    Directory of Open Access Journals (Sweden)

    Ovidiu COSMA

    2012-06-01

    Full Text Available The object of steganography is embedding hidden information in an appropriate multimedia carrier, e.g., image, audio, or video. There are several known methods of solving this problem, which operate either in the space domain or in the frequency domain, and are distinguished by the following characteristics: payload, robustness and strength. The payload is the amount of secret data that can be embedded in the carrier without inducing suspicious artefacts, robustness indicates the degree in which the secret data is affected by the normal processing of the carrier e.g., compression, and the strength indicate how easy the presence of hidden data can be detected by steganalysis techniques. This paper presents a new method of hiding secret data into a digital image compressed by a technique based on the Discrete Wavelet Transform (DWT [2] and the Set Partitioning In Hierarchical Trees (SPIHT subband coding algorithm [6]. The proposed method admits huge payloads and has considerable strength.

  12. Hot Carrier extraction with plasmonic broadband absorbers

    CERN Document Server

    Ng, Charlene; Dligatch, Svetlana; Roberts, Ann; Davis, Timothy J; Mulvaney, Paul; Gomez, Daniel E

    2016-01-01

    Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photo-catalysis, photovoltaics and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assembled on a multi-stack layered configuration to achieve broad-band, near-unit light absorption, which is spatially localised on the nanoparticle layer. We show that this enhanced light absorbance leads to $\\sim$ 40-fold increases in the photon-to-electron conversion efficiency by the plasmonic nanostructures. We developed a model that successfully captures the essential physics of the plasmonic hot-electron charge generation and separation in these structures. This model also allowed us to establish that efficient hot carrier extraction is limited to spectral regions where the photons possessing energies higher than the S...

  13. Development of radioisotope labeled polymeric carriers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Jeong, Jea Min; Hwang, Hyun Jeong [Ewha Womans University, Seoul (Korea)

    2000-04-01

    This research was performed with the aim of developing polymeric radioisotope or drug carriers for obtaining efficient diagnostic therapeutic efficacy. As polymers, polyethylene oxides, polylactides, polycaprolactone were chosen to prepare the devices including micelle system, microemulsion, nanospheres. In addition, anticancer drug loaded polylactide microparticulates were fabricated as a regional chemotherapeutics for the treatment of cancer. Technetium or radioactive iodine was labeled to the polymeric carriers via ligands such as DTPA and HPP, respectively. Labeling efficiency was above 90% and stable enough up to 24 hours. Moreover, injected polymer carriers demonstrated higher blood maintenance and bone uptake than Tin colloid, a control. These results suggested that radioisotope carrying polymeric particulate are promising tools for diagnosing blood vessels or bones. Besides, anticancer drug loaded particulates demonstrated appropriate maintenance of therapeutic concentration and localization. Therefore it was proposed that this therapeutic system may be potential as a cancer therapy modality. 20 refs., 24 figs.,5 tabs. (Author)

  14. Hot-carrier effects in MOS devices

    CERN Document Server

    Takeda, Eiji; Miura-Hamada, Akemi

    1995-01-01

    The exploding number of uses for ultrafast, ultrasmall integrated circuits has increased the importance of hot-carrier effects in manufacturing as well as for other technological applications. They are rapidly movingout of the research lab and into the real world.This book is derived from Dr. Takedas book in Japanese, Hot-Carrier Effects, (published in 1987 by Nikkei Business Publishers). However, the new book is much more than a translation. Takedas original work was a starting point for developing this much more complete and fundamental text on this increasingly important topic. The new work

  15. Line broadening caused by Coulomb carrier-carrier correlations and dynamics of carrier capture and emission in quantum dots

    DEFF Research Database (Denmark)

    Uskov, Alexander V; Magnúsdóttir, Ingibjörg; Tromborg, Bjarne;

    2001-01-01

    Mechanisms of pure dephasing in quantum dots due to Coulomb correlations and the dynamics of carrier capture and emission are suggested, and a phenomenological model for the dephasing is developed. It is shown that, if the rates of these capture and emission processes are sufficiently high, signi......, significant homogeneous line broadening of the order of several meV can result....

  16. Engineered semiconductor nanocrystals with enhanced carrier multiplication yields

    Science.gov (United States)

    Klimov, Victor

    2014-03-01

    Carrier multiplication (CM) is a process whereby absorption of a single photon results in multiple electron-hole pairs (excitons). This process could benefit a number of solar-energy conversion technologies, most notably photocatalysis and photovoltaics. This presentation overviews recent progress in understanding the CM process in semiconductor nanocrystals, motivated by an outstanding challenge in this field - the lack of capability to predict the CM performance of nanocrystals based on their known photophysical properties or documented parameters of parental bulk solids. Here, we present a possible solution to this problem by showing that, using biexciton Auger lifetimes and intraband relaxation rates inferred from ultrafast spectroscopic studies, we can rationalize relative changes in CM yields as a function of nanocrystal composition, size and shape. Further, guided by this model, we demonstrate a two-fold enhancement in multiexciton yields in PbSe nanorods vs. quantum dots attributed to enhanced Coulomb interactions. We also explore the control of competing intra-band cooling for increasing multiexciton production. Specifically, we design a new type of hetero-structured PbSe/CdSe quantum dots with reduced rates of intra-band relaxation and demonstrate a four-fold boost in the multiexciton yield. These studies provide useful guidelines for future efforts to achieve the ultimate, energy-conservation-defined CM efficiencies.

  17. Advanced two-way satellite frequency transfer by carrier-phase and carrier-frequency measurements

    Science.gov (United States)

    Fujieda, Miho; Gotoh, Tadahiro; Amagai, Jun

    2016-06-01

    Carrier-phase measurement is one of the ways to improve the measurement resolution of two-way satellite frequency transfer. We introduce two possible methods for carrier-phase measurement: direct carrier-phase detection identified by Two-Way Carrier-Phase (TWCP) and the use of carrier-frequency information identified by Two-Way Carrier Frequency (TWCF). We performed the former using an arbitrary waveform generator and an analog-to-digital sampler and the latter using a conventional modem. The TWCF measurement using the modem had a resolution of 10-13 and the result agreed with that obtained by GPS carrier-phase frequency transfer in a 1500 km baseline. The measurement accuracy may have been limited by the poor frequency resolution of the modem; however, the TWCF measurement was able to improve the stability of conventional two-way satellite frequency transfer. Additionally, we show that the TWCP measurement system has the potential to achieve a frequency stability of 10-17.

  18. Evolution of bulk damage initiation in DKDP

    Science.gov (United States)

    Carr, Christopher W.; McMillian, T. H.; Staggs, Mike C.; Radousky, Harry B.; Demos, Stavros G.

    2003-05-01

    We investigate the evolution of laser-induced damage initiated in the bulk of DKDP crystals using in-situ microscopy. Experimental results indicate that at peek fluences greater than 10 J/cm2, damage sites are formed with increasing number as a function of the laser fluence. Following plasma formation, cracks are observed which grow in size for tens of seconds after the termination of the laser pulse. Subsequent irradiation leads to modest increase in size only during the initial 2-5 pulses. Experimental results suggest that there is also relaxation of the stresses adjacent to a damage site for several hours after initial damage.

  19. Hubble Parameter in Bulk Viscous Cosmology

    CERN Document Server

    Tawfik, A; Wahba, M

    2009-01-01

    We discuss influences of bulk viscosity on the Early Universe, which is modeled by Friedmann-Robertson-Walker metric and Einstein field equations. We assume that the matter filling the isotropic and homogeneous background is relativistic viscous characterized by ultra-relativistic equations of state deduced from recent lattice QCD simulations. We obtain a set of complicated differential equations, for which we suggest approximate solutions for Hubble parameter $H$. We find that finite viscosity in Eckart and Israel-Stewart fluids would significantly modify our picture about the Early Universe.

  20. Active neutron multiplicity counting of bulk uranium

    International Nuclear Information System (INIS)

    This paper describes a new nondestructive assay technique being developed to assay bulk uranium containing kilogram quantities of 235U. The new technique uses neutron multiplicity analysis of data collected with a coincidence counter outfitted with AmLi neutron sources. We have calculated the expected neutron multiplicity count rate and assay precision for this technique and will report on its expected performance as a function of detector design characteristics, 235U sample mass, AmLi source strength, and source-to-sample coupling. 11 refs., 2 figs., 2 tabs

  1. The bulk composition of exo-planets

    CERN Document Server

    Gaensicke, Boris; Dufour, Patrick; Farihi, Jay; Jura, Michael; Kilic, Mukremin; Melis, Carl; Veras, Dimitri; Xu, Siyi; Zuckerman, Ben

    2015-01-01

    Priorities in exo-planet research are rapidly moving from finding planets to characterizing their physical properties. Of key importance is their chemical composition, which feeds back into our understanding of planet formation. For the foreseeable future, far-ultraviolet spectroscopy of white dwarfs accreting planetary debris remains the only way to directly and accurately measure the bulk abundances of exo-planetary bodies. The exploitation of this method is limited by the sensitivity of HST, and significant progress will require a large-aperture space telescope with a high-throughput ultraviolet spectrograph.

  2. Neutron moisture gage for bulk material

    International Nuclear Information System (INIS)

    Desing and operation of neutron moisture gage of bulk materials intended for the determination of moisture of coke, agglomerated charge, and iron ore concentrate in black metallurgy is described. The moisture gage operates both under ''measurement'' and ''calibration'' conditions, contains a fast neutron source, and two groups of slow neutron detectors. Technical and economic efficiency of the moisture gage utilization consists in the improved accuracy of moisture detection at the expense of more accurate calibration, optimum arrangement of the carriage in a hopper, and stabilization of detector temperature. The device service is also simplified

  3. Improving the bulk data transfer experience

    Energy Technology Data Exchange (ETDEWEB)

    Guok, Chin; Guok, Chin; Lee, Jason R.; Berket, Karlo

    2008-05-07

    Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path. In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation. In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

  4. Failure by fracture in bulk metal forming

    DEFF Research Database (Denmark)

    Silva, C.M.A.; Alves, Luis M.; Nielsen, Chris Valentin;

    2015-01-01

    under loading conditions different from those found in conventional tests for bulk formability based on cylindrical,tapered and flanged specimens.The new formability test consists of expanding rings of various wall thicknesses with a stepped conical punch and allows investigating the onset of failure...... by cracking under three-dimensional states of stress subjected to various magnitudes of stress triaxiality.The presentation is supported by finite element analysis and experimentation in aluminium AA2030-T4 and results show that failure by fracture under three-dimensional loading conditions can be easily...

  5. Calculated Bulk Properties of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1978-01-01

    Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains t...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...

  6. Polyester Dendrimers: Smart Carriers for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jean–d’Amour K. Twibanire

    2014-01-01

    Full Text Available Polyester dendrimers have been shown to be outstanding candidates for biomedical applications. Compared to traditional polymeric drug vehicles, these biodegradable dendrimers show excellent advantages especially as drug delivery systems because they are non-toxic. Here, advances on polyester dendrimers as smart carriers for drug delivery applications have been surveyed. Both covalent and non-covalent incorporation of drugs are discussed.

  7. Towards 100 gigabit carrier ethernet transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Zhang, Jiang; Yu, Hao;

    2010-01-01

    Ethernet as a transport technology has, up to now, lacked the features such as network layer architecture, customer separation and manageability that carriers require for wide-scale deployment. However, with the advent of PBB-TE and TMPLS, it is now possible to use Ethernet as a transport...

  8. A new lubricant carrier for metal forming

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Bay, Niels; Tang, Peter Torben;

    2009-01-01

    A lubricant carrier for metal forming processes is developed. Surfaces with pores of micrometer size for entrapping lubricant are generated by electrochemical deposition of an alloy, consisting of two immiscible metals, of which one metal subsequently is etched away leaving 5 mu m layers with a s...... extrusion at high reduction and excessive stroke comparing with conventionally lubrication using phosphate coating and soap....

  9. Polyester Dendrimers: Smart Carriers for Drug Delivery

    OpenAIRE

    Jean–d’Amour K. Twibanire; T. Bruce Grindley

    2014-01-01

    Polyester dendrimers have been shown to be outstanding candidates for biomedical applications. Compared to traditional polymeric drug vehicles, these biodegradable dendrimers show excellent advantages especially as drug delivery systems because they are non-toxic. Here, advances on polyester dendrimers as smart carriers for drug delivery applications have been surveyed. Both covalent and non-covalent incorporation of drugs are discussed.

  10. Dextran: A promising macromolecular drug carrier

    Directory of Open Access Journals (Sweden)

    Dhaneshwar Suneela

    2006-01-01

    Full Text Available Over the past three decades intensive efforts have been made to design novel systems able to deliver the drug more effectively to the target site. The ongoing intense search for novel and innovative drug delivery systems is predominantly a consequence of the well-established fact that the conventional dosage forms are not sufficiently effective in conveying the drug compound to its site of action and once in the target area, in releasing the active agent over a desired period of time. The potential use of macromolecular prodrugs as a means of achieving targeted drug delivery has attracted considerable interest in recent years. Macromolecules such as antibodies, lipoproteins, lectins, proteins, polypeptides, polysaccharides, natural as well as synthetic polymers offer potential applicabilities as high molecular weight carriers for various therapeutically active compounds. Dextrans serve as one of the most promising macromolecular carrier candidates for a wide variety of therapeutic agents due to their excellent physico-chemical properties and physiological acceptance. The present contribution attempts to review various features of the dextran carrier like its source, structural and physico-chemical characteristics, pharmacokinetic fate and its applications as macromolecular carrier with special emphasis on dextran prodrugs.

  11. Itaconic acid carrier ampholytes for isoelectric focusing.

    Science.gov (United States)

    Brenna, O

    1977-04-11

    Commercial carrier ampholytes, obtained by coupling polyethylene polyamines to acrylic acid, exhibit a conductivity minimum in the pH range 5.5-6.5 owing to the lack of appropriate pK values of the polyamine in this pH region. By replacing acrylic with itaconic acid, it has been possible to effect substantial improvements in the pH range 5.5-6.5 as itaconic acid has a pK2 value of 5.45. Upon coupling, the pK of the gramma-carboxyl group remains virtually unaltered. With itoconic acid carrier ampholytes it has been possible to improve the conductivity in the pH range 5.5-6.5 by as much as 400% compared with conventional carrier ampholytes. It is suggected that the commercial products should be supplemented with itaconic acid carrier ampholytes in order to obtain a more uniform conductivity and buffering capacity in the pH range 3-10.

  12. 7 CFR 35.4 - Carrier.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Carrier. 35.4 Section 35.4 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS EXPORT...

  13. Electrical conductivity plus probability of superconductivity in α-CuSe/klockmannite; bulk and nano-layers

    International Nuclear Information System (INIS)

    Highlights: • We calculated electrical conductivity of α-CuSe in bulk state and nano-layers (NLs). • We found a large anisotropy (nearly six orders of magnitude) in bulk conductivities. • Our studies show probability of superconductivity occurrence in α-CuSe bulk. • We considered a simple model for feasibility study of this occurrence in CuSe bulk. • We found a high anisotropy (nearly 106 orders of magnitude) in NLs conductivities. - Abstract: In this paper, a computational study is carried out on unusual electrical conductivity of α-CuSe compound in the bulk state and its nano-layers (NLs). The property is studied by using Full-potential calculations and the Boltzmann transport equation assuming a suitable temperature-dependent relaxation time for charge carriers. The dependence of electrical conductivity per temperature changes is considered from 80 up to 330 K as well as separately in low-temperature. Our results show that CuSe has a high anisotropy electrical conductivity meaning that the in-plane conductivity is very good, with high hole transport but the z-axis transport is completely different, with two types of electron and hole carriers. By considering the curves of electrical conductivity in low-temperature and again reviewing the experimental data, we predict probability of occurrence of a superconductivity phase transition in this compound in a temperature about 3 K. This possibility has been discussed by assuming a simple model. In continuation of our previous work, we calculate the values of electrical conductivity of the most stable NLs of CuSe. Our results show that the electrical conductivity of NLs in x (or y) direction is nearly 106 orders of magnitude than z direction. Therefore, the NLs have very good hole conductive in x (or y) direction but their conductivity is ultra-low in z-axis

  14. Production, Properties and Applications of Bulk Amorphous Alloys

    Institute of Scientific and Technical Information of China (English)

    Tao Zhang; Akihisa Inoue

    2000-01-01

    A review is given of recent work concerned with the production method, the characteristic properties(1) Bulk amorphous system; (2) Mechanical and magnetic properties of bulkamorphous alloys; (3)application of bulk amorphous alloys.

  15. Constructing local bulk observables in interacting AdS/CFT

    CERN Document Server

    Kabat, Daniel; Lowe, David A

    2011-01-01

    Local operators in the bulk of AdS can be represented as smeared operators in the dual CFT. We show how to construct these bulk observables by requiring that the bulk operators commute at spacelike separation. This extends our previous work by taking interactions into account. Large-N factorization plays a key role in the construction. We show diagrammatically how this procedure is related to bulk Feynman diagrams.

  16. Impact of Molecular Orientation and Packing Density on Electronic Polarization in the Bulk and at Surfaces of Organic Semiconductors.

    Science.gov (United States)

    Ryno, Sean M; Risko, Chad; Brédas, Jean-Luc

    2016-06-01

    The polarizable environment surrounding charge carriers in organic semiconductors impacts the efficiency of the charge transport process. Here, we consider two representative organic semiconductors, tetracene and rubrene, and evaluate their polarization energies in the bulk and at the organic-vacuum interface using a polarizable force field that accounts for induced-dipole and quadrupole interactions. Though both oligoacenes pack in a herringbone motif, the tetraphenyl substituents on the tetracene backbone of rubrene alter greatly the nature of the packing. The resulting change in relative orientations of neighboring molecules is found to reduce the bulk polarization energy of holes in rubrene by some 0.3 eV when compared to tetracene. The consideration of model organic-vacuum interfaces highlights the significant variation in the electrostatic environment for a charge carrier at a surface although the net change in polarization energy is small; interestingly, the environment of a charge even just one layer removed from the surface can be viewed already as representative of the bulk. Overall, it is found that in these herringbone-type layered crystals the polarization energy has a much stronger dependence on the intralayer packing density than interlayer packing density. PMID:27183361

  17. Impact of Molecular Orientation and Packing Density on Electronic Polarization in the Bulk and at Surfaces of Organic Semiconductors

    KAUST Repository

    Ryno, Sean M.

    2016-05-16

    The polarizable environment surrounding charge carriers in organic semiconductors impacts the efficiency of the charge transport process. Here, we consider two representative organic semiconductors, tetracene and rubrene, and evaluate their polarization energies in the bulk and at the organic-vacuum interface using a polarizable force field that accounts for induced-dipole and quadrupole interactions. Though both oligoacenes pack in a herringbone motif, the tetraphenyl substituents on the tetracene backbone of rubrene alter greatly the nature of the packing. The resulting change in relative orientations of neighboring molecules is found to reduce the bulk polarization energy of holes in rubrene by some 0.3 eV when compared to tetracene. The consideration of model organic-vacuum interfaces highlights the significant variation in the electrostatic environment for a charge carrier at a surface although the net change in polarization energy is small; interestingly, the environment of a charge even just one layer removed from the surface can be viewed already as representative of the bulk. Overall, it is found that in these herringbone-type layered crystals the polarization energy has a much stronger dependence on the intralayer packing density than interlayer packing density.

  18. Impact of Molecular Orientation and Packing Density on Electronic Polarization in the Bulk and at Surfaces of Organic Semiconductors.

    Science.gov (United States)

    Ryno, Sean M; Risko, Chad; Brédas, Jean-Luc

    2016-06-01

    The polarizable environment surrounding charge carriers in organic semiconductors impacts the efficiency of the charge transport process. Here, we consider two representative organic semiconductors, tetracene and rubrene, and evaluate their polarization energies in the bulk and at the organic-vacuum interface using a polarizable force field that accounts for induced-dipole and quadrupole interactions. Though both oligoacenes pack in a herringbone motif, the tetraphenyl substituents on the tetracene backbone of rubrene alter greatly the nature of the packing. The resulting change in relative orientations of neighboring molecules is found to reduce the bulk polarization energy of holes in rubrene by some 0.3 eV when compared to tetracene. The consideration of model organic-vacuum interfaces highlights the significant variation in the electrostatic environment for a charge carrier at a surface although the net change in polarization energy is small; interestingly, the environment of a charge even just one layer removed from the surface can be viewed already as representative of the bulk. Overall, it is found that in these herringbone-type layered crystals the polarization energy has a much stronger dependence on the intralayer packing density than interlayer packing density.

  19. Substantial bulk photovoltaic effect enhancement via nanolayering.

    Science.gov (United States)

    Wang, Fenggong; Young, Steve M; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M

    2016-01-21

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials' responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)(1-x)). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times due to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. This opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.

  20. Enhancing bulk superconductivity by engineering granular materials

    Science.gov (United States)

    Mayoh, James; García García, Antonio

    2014-03-01

    The quest for higher critical temperatures is one of the main driving forces in the field of superconductivity. Recent theoretical and experimental results indicate that quantum size effects in isolated nano-grains can boost superconductivity with respect to the bulk limit. Here we explore the optimal range of parameters that lead to an enhancement of the critical temperature in a large three dimensional array of these superconducting nano-grains by combining mean-field, semiclassical and percolation techniques. We identify a broad range of parameters for which the array critical temperature, TcArray, can be up to a few times greater than the non-granular bulk limit, Tc 0. This prediction, valid only for conventional superconductors, takes into account an experimentally realistic distribution of grain sizes in the array, charging effects, dissipation by quasiparticles and limitations related to the proliferation of thermal fluctuations for sufficiently small grains. For small resistances we find the transition is percolation driven. Whereas at larger resistances the transition occurs above the percolation threshold due to phase fluctuations. JM acknowledes support from an EPSRC Ph.D studentship, AMG acknowledges support from EPSRC, grant No. EP/I004637/1, FCT, grant PTDC/FIS/111348/2009 and a Marie Curie International Reintegration Grant PIRG07-GA-2010-268172.

  1. Substantial bulk photovoltaic effect enhancement via nanolayering

    Science.gov (United States)

    Wang, Fenggong; Young, Steve M.; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M.

    2016-01-01

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials' responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)1-x). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times due to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. This opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.

  2. Ideal bulk pressure of active Brownian particles

    Science.gov (United States)

    Speck, Thomas; Jack, Robert L.

    2016-06-01

    The extent to which active matter might be described by effective equilibrium concepts like temperature and pressure is currently being discussed intensely. Here, we study the simplest model, an ideal gas of noninteracting active Brownian particles. While the mechanical pressure exerted onto confining walls has been linked to correlations between particles' positions and their orientations, we show that these correlations are entirely controlled by boundary effects. We also consider a definition of local pressure, which describes interparticle forces in terms of momentum exchange between different regions of the system. We present three pieces of analytical evidence which indicate that such a local pressure exists, and we show that its bulk value differs from the mechanical pressure exerted on the walls of the system. We attribute this difference to the fact that the local pressure in the bulk does not depend on boundary effects, contrary to the mechanical pressure. We carefully examine these boundary effects using a channel geometry, and we show a virial formula for the pressure correctly predicts the mechanical pressure even in finite channels. However, this result no longer holds in more complex geometries, as exemplified for a channel that includes circular obstacles.

  3. Characterization of bulk superconductors through EBSD methods

    Science.gov (United States)

    Koblischka, M. R.; Koblischka-Veneva, A.

    2003-10-01

    The application of electron backscatter diffraction (EBSD) technique to bulk high- Tc superconductors is presented and reviewed. Due to the ceramic nature and the complex crystallographic unit cells of the perovskite-type high- Tc superconductors, the EBSD analysis is not yet as common as it deserves. We have successfully performed EBSD analysis on a variety of high- Tc compounds and samples including polycrystalline YBCO (pure and doped by alkali metals), melt-textured YBCO, thin and thick films of YBCO; the “green phase” Y 2BaCuO 5, thin film and melt-textured NdBa 2Cu 3O x and Bi-2212 single crystals and tapes. It is shown that the surface preparation of the samples is crucial due to the small information depth (up to 100 nm) of the EBSD technique. High quality Kikuchi patterns are the requirement in order to enable the automated EBSD mapping, which yields phase distributions, individual grain orientations and the misorientation angle distribution. The results can be presented in form of mappings, as charts, and as pole figures. These informations are required for a better understanding of the growth mechanism(s) of bulk high- Tc superconductors intended for applications.

  4. Substantial bulk photovoltaic effect enhancement via nanolayering.

    Science.gov (United States)

    Wang, Fenggong; Young, Steve M; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M

    2016-01-01

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials' responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)(1-x)). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times due to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. This opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition. PMID:26791545

  5. 7 CFR 58.313 - Print and bulk packaging rooms.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Print and bulk packaging rooms. 58.313 Section 58.313 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....313 Print and bulk packaging rooms. Rooms used for packaging print or bulk butter and related...

  6. 19 CFR 151.24 - Unlading facilities for bulk sugar.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a...

  7. 30 CFR 56.6802 - Bulk delivery vehicles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bulk delivery vehicles. 56.6802 Section 56.6802... § 56.6802 Bulk delivery vehicles. No welding or cutting shall be performed on a bulk delivery vehicle until the vehicle has been washed down and all explosive material has been removed. Before welding...

  8. 30 CFR 57.6802 - Bulk delivery vehicles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bulk delivery vehicles. 57.6802 Section 57.6802...-Surface and Underground § 57.6802 Bulk delivery vehicles. No welding or cutting shall be performed on a bulk delivery vehicle until the vehicle has been washed down and all explosive material has...

  9. Lower frequency of Gaucher disease carriers among Tay-Sachs disease carriers.

    Science.gov (United States)

    Peleg, L; Frisch, A; Goldman, B; Karpaty, M; Narinsky, R; Bronstein, S; Frydman, M

    1998-01-01

    The heterozygote frequency of Gaucher disease (GD) and Tay-Sachs disease (TSD) is distinctly high among Ashkenazi Jews (1:29 for TSD and 1:16 for GD). Two main theories have been suggested to explain this high occurrence: a founder effect with subsequent genetic drift, and a selective advantage of heterozygotes. We compared the frequency of the GD most common mutation (1226A-->G) among carriers of the common TSD mutation (+1277 TATC) with the frequency of this mutation in the general Ashkenazi population. The frequency of GD carriers among 308 TSD heterozygotes was 1:28 which is about half the expected (P = 0.03). These results indicate that carriers of both diseases do not possess additional evolutionary advantage over single mutation carriers. A reasonable interpretation of these findings is that one or both mutations have arisen relatively recently in different regions of Europe and have not yet reached genetic equilibrium. PMID:9781065

  10. PAPR Reduction in OFDM Systems with Large Number of Sub-Carriers by Carrier Interferometry Approaches

    Institute of Scientific and Technical Information of China (English)

    HE Jian-hui; QUAN Zi-yi; MEN Ai-dong

    2004-01-01

    High Peak-to-Average Power Ratio (PAPR) is one of the major drawbacks of Orthogonal Frequency Division Multiplexing ( OFDM) systems. This paper presents the structures of the particular bit sequences leading to the maximum PAPR (PAPRmax) in Carrier-Interferometry OFDM (CI/OFDM) and Pseudo Orthogonal Carrier-Interferometry OFDM (PO-CI/OFDM) systems for Binary Phase Shift Keying (BPSK) modulation. Furthermore, the simulation and analysis of PAPRmax and PAPR cumulative distribution in CI/OFDM and PO-CI/OFDM systems with 2048 sub-carriers are presented in this paper. The results show that the PAPR of OFDM system with large number of sub-carriers reduced evidently via CI approaches.

  11. Electron-Phonon Coupling in the Bulk of Anatase TiO2 Measured by Resonant Inelastic X-Ray Spectroscopy.

    Science.gov (United States)

    Moser, S; Fatale, S; Krüger, P; Berger, H; Bugnon, P; Magrez, A; Niwa, H; Miyawaki, J; Harada, Y; Grioni, M

    2015-08-28

    We investigate the polaronic ground state of anatase TiO2 by bulk-sensitive resonant inelastic x-ray spectroscopy (RIXS) at the Ti L3 edge. We find that the formation of the polaron cloud involves a single 95 meV phonon along the c axis, in addition to the 108 meV ab-plane mode previously identified by photoemission. The coupling strength to both modes is the same within error bars, and it is unaffected by the carrier density. These data establish RIXS as a directional bulk-sensitive probe of electron-phonon coupling in solids. PMID:26371668

  12. Carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool

    Science.gov (United States)

    Cai, Yu; Sha, Shuang

    2016-09-01

    This paper proposes a new carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool used in a cylindrical borehole environment during oil-based mud drilling processes. The new tool is an orthogonal frequency division multiplexing access-based contactless multi-measurand detection tool. The tool can measure formation resistivity in different azimuthal angles and elevational depths. It can measure many more measurands simultaneously in a specified bandwidth than the legacy frequency division multiplexing multi-measurand tool without a channel-select filter while avoiding inter-carrier interference. The paper also shows that formation resistivity is not sensitive to frequency in certain frequency bands. The average resistivity collected from N subcarriers can increase the measurement of the signal-to-noise ratio (SNR) by N times given no amplitude clipping in the current-injection electrode. If the clipping limit is taken into account, with the phase rotation of each single carrier, the amplitude peak-to-average ratio can be reduced by 3 times, and the SNR can achieve a 9/N times gain over the single-carrier system. The carrier-interleaving technique is also introduced to counter the carrier frequency offset (CFO) effect, where the CFO will cause inter-pad interference. A qualitative analysis and simulations demonstrate that block-interleaving performs better than tone-interleaving when coping with a large CFO. The theoretical analysis also suggests that increasing the subcarrier number can increase the measurement speed or enhance elevational resolution without sacrificing receiver performance. The complex orthogonal multi-pad multi-carrier resistivity logging tool, in which all subcarriers are complex signals, can provide a larger available subcarrier pool than other types of transceivers.

  13. Impact of a boron rich layer on minority carrier lifetime degradation in boron spin-on dopant diffused n-type crystalline silicon solar cells

    International Nuclear Information System (INIS)

    In the production of n-type crystalline silicon solar cells with boron diffused emitters, the formation of a boron rich layer (BRL) is a common phenomenon and is largely responsible for bulk lifetime degradation. The phenomenon of BRL formation during diffusion of boron spin-on dopant and its impact on bulk lifetime degradation are investigated in this work. The BRL formed beneath the borosilicate glass layer has thicknesses varying from 10 nm–150 nm depending on the diffusion conditions. The effective and bulk minority carrier lifetimes, measured with Al2O3 deposited layers and a quinhydron–methanol solution, show that carrier lifetime degradation is proportional to the BRL thicknesses and their surface recombination velocities. The controlled diffusion processes and different oxidation techniques used in this work can partially reduce the BRL thickness and improve carrier lifetime by more than 10%. But for BRL thicknesses higher than 50 nm, different etching techniques further lower the carrier lifetime and the degradation in the device cannot be recovered. (paper)

  14. Benchmark and gap analysis of current mask carriers vs future requirements: example of the carrier contamination

    Science.gov (United States)

    Fontaine, H.; Davenet, M.; Cheung, D.; Hoellein, I.; Richsteiger, P.; Dejaune, P.; Torsy, A.

    2007-02-01

    In the frame of the European Medea+ 2T302 MUSCLE project, an extensive mask carriers benchmark was carried out in order to evaluate whether some containers answer to the 65nm technology needs. Ten different containers, currently used or expected in the future all along the mask supply chain (blank, maskhouse and fab carriers) were selected at different steps of their life cycle (new, aged, aged & cleaned). The most critical parameters identified for analysis versus future technologies were: automation, particle contamination, chemical contamination (organic outgassing, ionic contamination), cleanability, ESD, airtightness and purgeability. Furthermore, experimental protocols corresponding to suitable methods were then developed and implemented to test each criterion. The benchmark results are presented giving a "state of the art" of mask carriers currently available and allowing a gap analysis for the tested parameters related to future needs. This approach is detailed through the particular case of carrier contamination measurements. Finally, this benchmark / gap analysis leads to propose advisable mask carrier specifications (and the test protocols associated) on various key parameters which can also be taken as guidelines for a standardization perspective for the 65nm technology. This also indicates that none of tested carriers fulfills all the specifications proposed.

  15. Bulk forming of industrial micro components in conventional metals and bulk metallic glasses

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Paldan, Nikolas Aulin; Eriksen, Rasmus Solmer;

    2007-01-01

    For production of micro components in large numbers, forging is an interesting and challenging process. The conventional metals like silver, steel and aluminum often require multi-step processes, but high productivity and increased strength justify the investment. As an alternative, bulk metallic...

  16. A route to transparent bulk metals

    KAUST Repository

    Schwingenschlögl, Udo

    2012-07-23

    Hypothetical compounds based on a sapphire host are investigated with respect to their structural as well as electronic features. The results are obtained by electronic structure calculations within density functional theory and the generalized gradient approximation. A quarter of the Al atoms in Al 2O 3 is replaced by a 4d transition metal M ion, with d 0 to d 9 electronic configuration. We perform structure optimizations for all the compounds and analyze the electronic states. Due to the sizeable band gap of the Al 2O 3 host, we can identify promising candidates for transparent bulk metals. We explain the mechanisms leading to this combination of materials properties. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Bulk semiconducting scintillator device for radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Stowe, Ashley C.; Burger, Arnold; Groza, Michael

    2016-08-30

    A bulk semiconducting scintillator device, including: a Li-containing semiconductor compound of general composition Li-III-VI.sub.2, wherein III is a Group III element and VI is a Group VI element; wherein the Li-containing semiconductor compound is used in one or more of a first mode and a second mode, wherein: in the first mode, the Li-containing semiconductor compound is coupled to an electrical circuit under bias operable for measuring electron-hole pairs in the Li-containing semiconductor compound in the presence of neutrons and the Li-containing semiconductor compound is also coupled to current detection electronics operable for detecting a corresponding current in the Li-containing semiconductor compound; and, in the second mode, the Li-containing semiconductor compound is coupled to a photodetector operable for detecting photons generated in the Li-containing semiconductor compound in the presence of the neutrons.

  18. Bulk disk resonator based ultrasensitive mass sensor

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Davis, Zachary James

    2009-01-01

    In the framework of developing an innovative label-free sensor for multiarrayed biodetection applications, we present a novel bulk resonator based mass sensor. The sensor is a polysilicon disk which shows a Q-factor of 6400 in air at 68.8 MHz, resulting in mass resolutions down in the femtogram...... range. The sensor has been characterized in terms of sensitivity both for distributed mass detection, performing six consecutive depositions of e-beam evaporated Au, and localized mass detection, depositing approximately 7.5 pg of Pt/Ga/C three times consecutively with a Focused Ion Beam system....... The sensor has an extremely high distributed mass to frequency shift sensitivity of 60104 Hzcm2/¿g and shows a localized mass to frequency sensitivity up to 4405 Hz/pg with a localized mass resolution down to 15 fg. The device has been fabricated with a new microfabrication process that uses only two...

  19. Tuneable film bulk acoustic wave resonators

    CERN Document Server

    Gevorgian, Spartak Sh; Vorobiev, Andrei K

    2013-01-01

    To handle many standards and ever increasing bandwidth requirements, large number of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumption of these systems, including cellular phones, critical issues. At present, the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance -form factor-cost issues. Even though the FBARs improve the overall performances the complexity of these systems remains high.  Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacing fixed frequency filter banks by one tuneable filter is the most desired and widely considered scenario. As an example, development of the softwa...

  20. Holographic bulk viscosity: GPR vs EO

    CERN Document Server

    Buchel, Alex; Kiritsis, Elias

    2011-01-01

    Recently Eling and Oz (EO) proposed a formula for the holographic bulk viscosity, in arXiv:1103.1657, derived from the null horizon focusing equation. This formula seems different from that obtained earlier by Gubser, Pufu and Rocha (GPR) in arXiv:0806.0407 calculated from the IR limit of the two-point function of the trace of the stress tensor. The two were shown to agree only for some simple scaling cases. We point out that the two formulae agree in two non-trivial holographic theories describing RG flows. The first is the strongly coupled N=2* gauge theory plasma. The second is the semi-phenomenological model of Improved Holographic QCD.

  1. Universe Models with Negative Bulk Viscosity

    CERN Document Server

    Brevik, Iver

    2013-01-01

    The concept of negative temperatures has occasionally been used in connection with quantum systems. A recent example of this sort is reported in the paper of S. Braun et al. [Science 339,52 (2013)], where an attractively interacting ensemble of ultracold atoms is investigated experimentally and found to correspond to a negative-temperature system since the entropy decreases with increasing energy at the high end of the energy spectrum. As the authors suggest, it would be of interest to investigate whether a suitable generalization of standard cosmological theory could be helpful, in order to elucidate the observed accelerated expansion of the universe usually explained in terms of a positive tensile stress (negative pressure). In the present note we take up this basic idea and investigate a generalization of the standard viscous cosmological theory, not by admitting negative temperatures but instead by letting the bulk viscosity take negative values. Evidently, such an approach breaks standard thermodynamics,...

  2. Forming of bulk metallic glass microcomponents

    DEFF Research Database (Denmark)

    Wert, John A.; Thomsen, Christian; Jensen, Rune Debel;

    2009-01-01

    The present article considers forward extrusion, closed-die forging and backward extrusion processes for fabrication of individual microcomponents from two bulk metallic glass (BMG) compositions: Mg60Cu30Y10 and Zr44Cu40Ag8Al8. Two types of tooling were used in the present work: relatively massive...... die sets characteristic of cold forming operations for crystalline metals and lightweight die sets adapted to the special characteristics of BMGs. In addition to demonstrating that microcomponents of several geometries can be readily fabricated from BMGs, rheological properties are combined...... with crystallization kinetics to formulate a generally applicable method that can guide selection of optimal forming parameters. Finally, the use of particulate-based lubricants for BMG forming is shown to result in individual lubricant particles becoming mechanically locked into the BMG surface. (C) 2008 Elsevier B...

  3. Vortices in superconducting bulk, films and SQUIDs

    Indian Academy of Sciences (India)

    Ernst Helmut Brandt

    2006-01-01

    The properties of the ideal periodic vortex lattice in bulk superconductors and in films of any thickness can be calculated from Ginzburg-Landau theory by an iteration method using Fourier series. The London theory yields general analytic expressions for the magnetic field and energy of arbitrary arrangements of straight or curved vortex lines. The elasticity of the vortex lattice is highly nonlocal. The magnetic response of superconductors of realistic shapes like thin and thick strips and disks or thin rectangular plates or films, containing pinned vortices, can be computed within continuum theory by solving an integral equation. A useful example is a thin square with a central hole and a radial slit, used as superconducting quantum interference device (SQUID).

  4. Contact characteristics for YBCO bulk superconductors

    Science.gov (United States)

    Yamamoto, Naoki; Sakai, Tomokazu; Sawa, Koichiro; Tomita, Masaru; Murakami, Masato

    2003-10-01

    We have studied the contact characteristics of two resin-impregnated YBCO (a composite of YBa 2Cu 3O y and Y 2BaCuO 5) bulk superconductors in mechanical contact. A switching phenomenon could be observed at a threshold current or a transfer current value in the V- I curves of the YBCO contact. The transfer current exceeded the previous value of 13.5 A at 77 K in the contact when the sample surfaces were carefully polished. The present results suggest that a pair of YBCO blocks might be applicable to the mechanical persistent current switch for superconducting magnetic energy storage and other superconducting systems run in a persistent current mode.

  5. DEPLOYMENT OF THE BULK TRITIUM SHIPPING PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, P.

    2013-10-10

    A new Bulk Tritium Shipping Package (BTSP) was designed by the Savannah River National Laboratory to be a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The BTSP was certified by the National Nuclear Safety Administration in 2011 for shipments of up to 150 grams of Tritium. Thirty packages were procured and are being delivered to various DOE sites for operational use. This paper summarizes the design features of the BTSP, as well as associated engineered material improvements. Fabrication challenges encountered during production are discussed as well as fielding requirements. Current approved tritium content forms (gas and tritium hydrides), are reviewed, as well as, a new content, tritium contaminated water on molecular sieves. Issues associated with gas generation will also be discussed.

  6. Diffusion and bulk flow in phloem loading

    DEFF Research Database (Denmark)

    Dölger, Julia; Rademaker, Hanna; Liesche, Johannes;

    2014-01-01

    %-20% to the sucrose flux into the intermediary cells, while the main part is transported by diffusion. On the other hand, the subsequent sugar translocation into the sieve elements would very likely be carried predominantly by bulk water flow through the plasmodesmata. Thus, in contrast to apoplasmic loaders, all......Plants create sugar in the mesophyll cells of their leaves by photosynthesis. This sugar, mostly sucrose, has to be loaded via the bundle sheath into the phloem vascular system (the sieve elements), where it is distributed to growing parts of the plant. We analyze the feasibility of a particular...... loading mechanism, active symplasmic loading, also called the polymer trap mechanism, where sucrose is transformed into heavier sugars, such as raffinose and stachyose, in the intermediary-type companion cells bordering the sieve elements in the minor veins of the phloem. Keeping the heavier sugars from...

  7. Combustion of bulk titanium in oxygen

    Science.gov (United States)

    Clark, A. F.; Moulder, J. C.; Runyan, C. C.

    1975-01-01

    The combustion of bulk titanium in one atmosphere oxygen is studied using laser ignition and several analytical techniques. These were high-speed color cinematography, time and space resolved spectra in the visible region, metallography (including SEM) of specimens quenched in argon gas, X-ray and chemical product analyses, and a new optical technique, the Hilbert transform method. The cinematographic application of this technique for visualizing phase objects in the combustion zone is described. The results indicate an initial vapor phase reaction immediately adjacent to the molten surface but as the oxygen uptake progresses the evaporation approaches the point of congruency and a much reduced evaporation rate. This and the accumulation of the various soluble oxides soon drive the reaction zone below the surface where gas formation causes boiling and ejection of particles. The buildup of rutile cuts off the oxygen supply and the reaction ceases.

  8. Dynamic conductivity of the bulk states of n-type HgTe/CdTe quantum well topological insulator

    International Nuclear Information System (INIS)

    We theoretically studied the frequency-dependent current response of the bulk state of topological insulator HgTe/CdTe quantum well. The optical conductivity is mainly due to the inter-band process at high frequencies. At low frequencies, intra-band process dominates with a dramatic drop to near zero before the inter-band contribution takes over. The conductivity decreases with temperature at low temperature and increases with temperature at high temperature. The transport scattering rate has an opposite frequency dependence in the low and high temperature regime. The different frequency dependence is due to the interplay of the carrier-impurity scattering and carrier population near the Fermi surface

  9. 48 CFR 1615.470 - Carrier investment of FEHB funds.

    Science.gov (United States)

    2010-10-01

    ... CONTRACTING BY NEGOTIATION Contract Pricing 1615.470 Carrier investment of FEHB funds. (a) Except for contracts based on a combination of cost and price analysis (community-rated), the carrier is required...

  10. Carrier cultures of simian foamy virus.

    Science.gov (United States)

    Clarke, J K; Samuels, J; Dermott, E; Gay, F W

    1970-05-01

    The production of cultures of HEp-2 and BHK-21 cells persistently infected with a type 1 simian foamy virus is described. After infection, HEp-2 cells showed no structural changes, whereas BHK-21 cells lost their normal spindle shape and showed mitochondrial damage, and some cells contained many lysosomes. Thin sections also showed that a few BHK-21 cells contained virus particles in low concentration, and infectious virus could be isolated from both the cells and the supernatant fluid. No virus was seen in thin sections of HEp-2 cells, although infectious virus in low titer could be recovered intermittently from lysed cells. Both carrier cultures were immune to challenge with homologous virus and antigen could be detected in over 90% of the cells even after growth for 9 weeks in the presence of virus-neutralizing serum. The distribution of antigen in carrier cultures of both cell types is described and compared with that seen in cytocidal infections. PMID:4986851

  11. Carrier synchronization and detection of polyphase signals.

    Science.gov (United States)

    Lindsey, W. C.; Simon, M. K.

    1972-01-01

    Digital communication networks used for the distribution of high-speed digital information are currently the subject of design studies for many civil and military applications. This paper presents results that are useful in such studies as well as in network planning. In particular, the paper is concerned with the problems of carrier synchronization and noisy reference detection of polyphase signals. Reconstruction of coherent references for the detection of polyphase signals is considered and analyzed for three carrier reconstruction loops, namely, Nth power (multiply-and-divide) loops, generalized Costas (I-Q) loops, and extensions of data-aided (modulation wipeoff) loops. General expressions for the error probability are developed when the reconstructed reference signals are noisy.

  12. Superconductivity in carrier-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Takahiro Muranaka, Yoshitake Kikuchi, Taku Yoshizawa, Naoki Shirakawa and Jun Akimitsu

    2008-01-01

    Full Text Available We report growth and characterization of heavily boron-doped 3C-SiC and 6H-SiC and Al-doped 3C-SiC. Both 3C-SiC:B and 6H-SiC:B reveal type-I superconductivity with a critical temperature Tc=1.5 K. On the other hand, Al-doped 3C-SiC (3C-SiC:Al shows type-II superconductivity with Tc=1.4 K. Both SiC:Al and SiC:B exhibit zero resistivity and diamagnetic susceptibility below Tc with effective hole-carrier concentration n higher than 1020 cm−3. We interpret the different superconducting behavior in carrier-doped p-type semiconductors SiC:Al, SiC:B, Si:B and C:B in terms of the different ionization energies of their acceptors.

  13. Terahertz transport dynamics of graphene charge carriers

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due

    The electronic transport dynamics of graphene charge carriers at femtosecond (10-15 s) to picosecond (10-12 s) time scales are investigated using terahertz (1012 Hz) time-domain spectroscopy (THz-TDS). The technique uses sub-picosecond pulses of electromagnetic radiation to gauge the electrodynamic...... response of thin conducting films at up to multi-terahertz frequencies. In this thesis THz-TDS is applied towards two main goals; (1) investigation of the fundamental carrier transport dynamics in graphene at femtosecond to picosecond timescales and (2) application of terahertz time-domain spectroscopy...... to rapid and non-contact electrical characterization of large-area graphene, relevant for industrial integration. We show that THz-TDS is an accurate and reliable probe of graphene sheet conductance, and that the technique provides insight into fundamental aspects of the nanoscopic nature of conduction...

  14. Screening-induced carrier transport in silicene

    International Nuclear Information System (INIS)

    Based on the Boltzmann transport equation in the MRT approximation, we present a theory to investigate low-field carrier transport in dual-gated silicene FETs by taking into account screened charged impurity scattering, which is the most likely scattering mechanism limiting the conductivity. Static RPA dielectric screening is also included in the conductivity calculation to study temperature-dependent silicene transport. It is found that both calculated conductivity and band gap not only depend strongly on carrier sheet density, but also depend strongly on effective offset density. More importantly, screening-induced metal-insulator-transition phenomena in buckled silicene can be observed theoretically, which is similar to that obtained in monolayer graphene. (paper)

  15. Experimental distribution of entanglement with separable carriers.

    Science.gov (United States)

    Fedrizzi, A; Zuppardo, M; Gillett, G G; Broome, M A; Almeida, M P; Paternostro, M; White, A G; Paterek, T

    2013-12-01

    The key requirement for quantum networking is the distribution of entanglement between nodes. Surprisingly, entanglement can be generated across a network without direct transfer-or communication-of entanglement. In contrast to information gain, which cannot exceed the communicated information, the entanglement gain is bounded by the communicated quantum discord, a more general measure of quantum correlation that includes but is not limited to entanglement. Here, we experimentally entangle two communicating parties sharing three initially separable photonic qubits by exchange of a carrier photon that is unentangled with either party at all times. We show that distributing entanglement with separable carriers is resilient to noise and in some cases becomes the only way of distributing entanglement through noisy environments.

  16. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy.

    Science.gov (United States)

    Sun, Jingya; Adhikari, Aniruddha; Shaheen, Basamat S; Yang, Haoze; Mohammed, Omar F

    2016-03-17

    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser's relatively large penetration depth and consequently these techniques record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and subpicosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample's surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystal and its powder film. We also discuss the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.

  17. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya

    2016-02-25

    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser’s relatively large penetration depth and consequently they record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and sub-picosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample’s surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystals and its powder film. We also provide the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.

  18. Enhancing Carrier Injection Using Graded Superlattice Electron Blocking Layer for UVB Light-Emitting Diodes

    KAUST Repository

    Janjua, Bilal

    2014-12-01

    We have studied enhanced carrier injection by having an electron blocking layer (EBL) based on a graded superlattice (SL) design. Here, we examine, using a selfconsistent 6 × 6 k.p method, the energy band alignment diagrams under equilibrium and forward bias conditions while also considering carrier distribution and recombination rates (Shockley-Read-Hall, Auger, and radiative recombination rates). The graded SL is based on AlxGa1-xN (larger bandgap) Al0:5Ga0:5N (smaller bandgap) SL, where x is changed from 0.8 to 0.56 in steps of 0.06. Graded SL was found to be effective in reducing electron leakage and enhancing hole injection into the active region. Due to our band engineering scheme for EBL, four orders-of-magnitude enhancement were observed in the direct recombination rate, as compared with the conventional bulk EBL consisting of Al0:8Ga0:2N. An increase in the spatial overlap of carrier wavefunction was obtained due to polarization-induced band bending in the active region. An efficient single quantum-well ultraviolet-B light-emitting diode was designed, which emits at 280 nm. This is the effective wavelength for water disinfection application, among others.

  19. Accumulated-carrier screening effect based investigation for pixellated CdZnTe radiation detector

    International Nuclear Information System (INIS)

    Using the pixellated CdZnTe detector,the radiation imaging experiment for the Rh target X-ray source was accomplished. The experimental results indicate that the response signals of the anode pixels, which distribute over the center irradiated area,are completely shut-off when the tube Jantage is 45 kV and the tube current increases to 20 μA. Moreover, the non-response pixel area expands with the increase of the tube current, and the total event count of the CdZnTe detector reduces obviously. Furthermore, the inner electric potential and electric field distributions of the pixellated CdZnTe detector were simulated based on the Poisson equation. The simulation results reveal that the accumulation of the hole carriers, which results from the extremely low drift ability of the hole carrier, leads to a relatively high space-charge-density area in the CdZnTe bulk when the irradiated photon flux increases to 5 x 105 mm-2·s-1. And thus, the induced signal screen effect of the anode pixels in the center irradiated area is mainly attributed to the distorted electric field which makes electron carriers drift toward the high potential area in the CdZnTe crystal instead of the pixel anodes. (authors)

  20. Protection switching for carrier ethernet multicast

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Wessing, Henrik; Berger, Michael Stübert

    2010-01-01

    This paper addresses network survivability for IPTV multicast transport in Carrier Ethernet networks. The impact of link failures is investigated and suggestions for intelligent multicast resilience schemes are proposed. In particular, functions of the multicast tree are integrated with the Carri...... recovery path length, recovery time, number of branch nodes and operational complexity. The integrated approach therefore shows significant potential to increase the QoE for IPTV users in case of network failures and recovery actions....

  1. Nanogel Carrier Design for Targeted Drug Delivery

    OpenAIRE

    Eckmann, D.M.; Composto, R. J.; Tsourkas, A; Muzykantov, V. R.

    2014-01-01

    Polymer-based nanogel formulations offer features attractive for drug delivery, including ease of synthesis, controllable swelling and viscoelasticity as well as drug loading and release characteristics, passive and active targeting, and the ability to formulate nanogel carriers that can respond to biological stimuli. These unique features and low toxicity make the nanogels a favorable option for vascular drug targeting. In this review, we address key chemical and biological aspects of nanoge...

  2. Software defined networking: meeting carrier grade requirements

    OpenAIRE

    Staessens, Dimitri; Sharma, Sachin; Colle, Didier; Pickavet, Mario; Demeester, Piet

    2011-01-01

    Software Defined Networking is a networking paradigm which allows network operators to manage networking elements using software running on an external server. This is accomplished by a split in the architecture between the forwarding element and the control element. Two technologies which allow this split for packet networks are ForCES and Openflow. We present energy efficiency and resilience aspects of carrier grade networks which can be met by Openflow. We implement flow restoration and ru...

  3. Atlas V Aft Bulkhead Carrier Rideshare System

    OpenAIRE

    Willcox, Maj Travis

    2012-01-01

    This paper gives the background and details of the Atlas V Aft Bulkhead Carrier to be flown on the National Recoinnassance Office Launch 36 with the Operationally Unique Technologies Satellite Auxiliary Payload. The CubeSats included are from a number of labs, universities and government entities for the purpose of technology demonstration, science experimentation and operational proof of concepts. This mission will pave the way for rideshare on NRO missions and other Atlas V launches.

  4. The solute carrier 6 family of transporters

    DEFF Research Database (Denmark)

    Bröer, Stefan; Gether, Ulrik

    2012-01-01

    The solute carrier 6 (SLC6) family of the human genome comprises transporters for neurotransmitters, amino acids, osmolytes and energy metabolites. Members of this family play critical roles in neurotransmission, cellular and whole body homeostasis. Malfunction or altered expression...... of these transporters is associated with a variety of diseases. Pharmacological inhibition of the neurotransmitter transporters in this family is an important strategy in the management of neurological and psychiatric disorders. This review provides an overview of the biochemical and pharmacological properties...

  5. Photoinduced carrier annihilation in silicon pn junction

    Science.gov (United States)

    Sameshima, Toshiyuki; Motoki, Takayuki; Yasuda, Keisuke; Nakamura, Tomohiko; Hasumi, Masahiko; Mizuno, Toshihisa

    2015-08-01

    We report analysis of the photo-induced minority carrier effective lifetime (τeff) in a p+n junction formed on the top surfaces of a n-type silicon substrate by ion implantation of boron and phosphorus atoms at the top and bottom surfaces followed by activation by microwave heating. Bias voltages were applied to the p+ boron-doped surface with n+ phosphorus-doped surface kept at 0 V. The values of τeff were lower than 1 × 10-5 s under the reverse-bias condition. On the other hand, τeff markedly increased to 1.4 × 10-4 s as the forward-bias voltage increased to 0.7 V and then it leveled off when continuous-wave 635 nm light was illuminated at 0.74 mW/cm2 on the p+ surface. The carrier annihilation velocity S\\text{p + } at the p+ surface region was numerically estimated from the experimental τeff. S\\text{p + } ranged from 4000 to 7200 cm/s under the reverse-bias condition when the carrier annihilation velocity S\\text{n + } at the n+ surface region was assumed to be a constant value of 100 cm/s. S\\text{p + } markedly decreased to 265 cm/s as the forward-bias voltage increased to 0.7 V.

  6. 14 CFR 252.3 - Smoking ban: air carriers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Smoking ban: air carriers. 252.3 Section... PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.3 Smoking ban: air carriers. Air carriers shall prohibit smoking on all scheduled passenger flights....

  7. 14 CFR 252.5 - Smoking ban: foreign air carriers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Smoking ban: foreign air carriers. 252.5... PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.5 Smoking ban: foreign air carriers. (a) Foreign air carriers shall prohibit smoking on all scheduled passenger flight segments: (1) Between...

  8. Legionella pneumophila Secretes a Mitochondrial Carrier Protein during Infection

    OpenAIRE

    Pavel Dolezal; Margareta Aili; Janette Tong; Jhih-Hang Jiang; Marobbio, Carlo M.T.; Sau Fung Lee; Ralf Schuelein; Simon Belluzzo; Eva Binova; Aurelie Mousnier; Gad Frankel; Giulia Giannuzzi; Ferdinando Palmieri; Kipros Gabriel; Thomas Naderer

    2012-01-01

    Author Summary Mitochondrial carrier proteins evolved during endosymbiosis to transport substrates across the mitochondrial inner membrane. As such the proteins are associated exclusively with eukaryotic organisms. Despite this, we identified putative mitochondrial carrier proteins in the genomes of different intracellular bacterial pathogens, including Legionella pneumophila, the causative agent of Legionnaire's disease. We named the mitochondrial carrier protein from L. pneumophila LncP and...

  9. Terahertz carrier dynamics in graphene and graphene nanostructures

    DEFF Research Database (Denmark)

    Jensen, Søren A.; Turchinovich, Dmitry; Tielrooij, Klaas Jan;

    2014-01-01

    Photoexcited charge carriers in 2D graphene and in 1D graphene nanostructures were studied with optical pump-THz probe spectroscopy. We find efficient hot-carrier multiplication in 2D graphene, and predominantly free carrier early time response in 1D nanostructures. © 2014 OSA....

  10. Joint Iterative Carrier Synchronization and Signal Detection for Dual Carrier 448 Gb/s PDM 16-QAM

    DEFF Research Database (Denmark)

    Zibar, Darko; Carvalho, Luis; Estaran Tolosa, Jose Manuel;

    2013-01-01

    Soft decision driven joint carrier synchronization and signal detection, employing expectation maximization, is experimentally demonstrated. Employing soft decisions offers an improvement of 0.5 dB compared to hard decision digital PLL based carrier synchronization and demodulation....

  11. Literature review of the passenger airline business models: Full service carrier, low-cost carrier and charter airlines

    NARCIS (Netherlands)

    Carmona Benitez, R.B.; Lodewijks, G.

    2008-01-01

    The deregulation and liberalization of the air transportation industry have developed three main passenger business models: full service carriers, low-cost carriers, and charter airlines. Deregulation removed regulated fares and routes increasing competition and yields. Airlines business models main

  12. LAMINATION OF POLYMER FILMS BY BULK SURFACE PHOTOGRAFTING PROCESS AND PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    B. Ranby; W.T. Yang; O.N. Tretinnikov; V. Tokarev; Y.H. Xu

    2001-01-01

    A new process for lamination of polymer films by "bulk surface photografting" has been developed. The chemical component of the invention is that the curing of reactive solution between two substrates is initiated by the surface free radicals produced by aromatic ketones and surface-hydrogen of substrates. Using the new approach, two or more polymer films are bonded together by a grafted polymer network which is grafted to adjacent substrate surfaces. The technique has been applied to film substrates of different polymers such as polyolefins, polyesters, and polyamides which have abstractable hydrogens at the surface. The photolaminated film composites containing carrier films and an intermediate functional film of low permeability give strong laminates with high barrier properties, e.g. for oxygen and air.

  13. Photothermal investigations of doping effects on opto-thermal properties of bulk GaSb

    International Nuclear Information System (INIS)

    GaSb is a direct gap semiconductor (0.72 ev) having good carriers motility and significant electro-optical potential in the near IR range. As substrate or active layer, GaSb can be employed in conjunction with many semiconductors such as (AlGa)Sb or In(AsSb) and has interesting hetero junction potential for detectors, lasers and quantum well structures. The aim of this work is to investigate the influence of doping on the opto-thermal properties (optical absorption, refractive index and thermal diffusivity) of doped and undoped GaSb bulk throw, the phothermal deflection and spectroscopic reflectivity. It is found that absorption below the gap and thermal diffusivity increases with doping concentration.

  14. Photothermal investigations of doping effects on opto-thermal properties of bulk GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Abroug, Sameh [Photothermal Laboratory, Nabeul (Tunisia); Saadallah, Faycel, E-mail: Faycel1@yahoo.f [Photothermal Laboratory, Nabeul (Tunisia); Yacoubi, Noureddine [Photothermal Laboratory, Nabeul (Tunisia)

    2009-09-18

    GaSb is a direct gap semiconductor (0.72 ev) having good carriers motility and significant electro-optical potential in the near IR range. As substrate or active layer, GaSb can be employed in conjunction with many semiconductors such as (AlGa)Sb or In(AsSb) and has interesting hetero junction potential for detectors, lasers and quantum well structures. The aim of this work is to investigate the influence of doping on the opto-thermal properties (optical absorption, refractive index and thermal diffusivity) of doped and undoped GaSb bulk throw, the phothermal deflection and spectroscopic reflectivity. It is found that absorption below the gap and thermal diffusivity increases with doping concentration.

  15. Bulk heterojunction perovskite-PCBM solar cells with high fill factor

    Science.gov (United States)

    Chiang, Chien-Hung; Wu, Chun-Guey

    2016-03-01

    An inverted bulk heterojunction perovskite-PCBM solar cell with a high fill factor of 0.82 and a power conversion efficiency of up to 16.0% was fabricated by a low-temperature two-step solution process. The cells exhibit no significant photocurrent hysteresis and their high short-circuit current density, fill factor and efficiency are attributed to the advantageous properties of the active layer, such as its high conductivity and the improved mobility and diffusion length of charge carriers. In particular, PCBM plays a critical role in improving the quality of the light-absorbing layer by filling pinholes and vacancies between perovskite grains, resulting in a film with large grains and fewer grain boundaries.

  16. Bulk heterojunction organic photovoltaic based on polythiophene-polyelectrolyte carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Reyes, M. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico); Lopez-Sandoval, R. [Advanced Materials Department, IPICYT, Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi 78216 (Mexico); Liu, J.; Carroll, D.L. [Center for Nanotechnology and Molecular Materials, Wake Forest University, Winston-Salem, NC (United States)

    2007-09-22

    It is shown that carbon nanotubes can be used to enhance carrier mobility for efficient removal of the charges in thin film polymer-conjugated/fullerene photovoltaic devices. The fabricated photovoltaic devices consist of poly(3-octylthiophene) (P3OT) polymer blended with undoped multiwalled carbon nanotubes (MWNTs) and carbon nanotubes doped with nitrogen (CNx-MWNTs). Nanophase formation and dispersion problems associated with the use of carbon nanotubes in polymer devices were addressed through the generation of functional groups and electrostatic attaching of the polyelectrolyte poly(dimethyldiallylamine) chloride (PDDA) in both MWNTs and CNx-MWNT systems. The resultant nanophase was highly dispersed allowing for excellent bulk heterojunction formation. Our results indicate that CNx-MWNTs enhance the efficiency of P3OT solar cells in comparison with MWNTs. (author)

  17. Health risks in international container and bulk cargo transport due to volatile toxic compounds

    DEFF Research Database (Denmark)

    Baur, Xaver; Budnik, Lygia T; Zhao, Zhiwei;

    2015-01-01

    To ensure the preservation and quality of the goods, physical (i.e. radiation) or chemical pest control is needed. The dark side of such consents may bear health risks in international transport and production sharing. In fact, between 10% and 20% of all containers arriving European harbors were...... with lethal outcome, occur not only during the fumigation, but also during freight transport (on bulk carriers and other transport vessels), as well as in the logistic lines during loading and unloading. Risk occupations include dock-workers, seafarers, inspectors, as well as the usually uninformed workers...... authorities. It is also necessary to have regular controls by the authorities on a worldwide scale, which should be followed by sanctions in case of disregarding regulations. Further, fumigated containers must have a warning sign corresponding to international recommendations and national regulations...

  18. Nonlinear Optical Properties and Ultrafast Dynamics of Undoped and Doped Bulk SiC

    Institute of Scientific and Technical Information of China (English)

    DING Jin-Liang; WANG Yao-Chuan; ZHOU Hui; CHEN Qiang; QIAN Shi-Xiong; FENG Zhe-Chuan; LU Wei-Jie

    2010-01-01

    @@ Ultrafast third-order nonlinear optical response of bulk 6H-SiC undoped and doped with different nitrogen concentrations are investigated utilizing ferntosecond Z-scan and optical Kerr effect(OKE)techniques at the wavelength of 800 nm.The Z-scan measurement shows that the third-order nonlinear optical susceptibilities of the doped samples are improved in comparison to the intrinsic sample.The 0KE results additionally reveal that the instantaneous nonlinear optical response of the sampies can be ascribed to the distortion of the electron cloud.The ultrafast transient spectroscopic measurements with the one-color and two-color pump-probe techniques demonstrate that the ultrafast recovery process in subpicosecond domain is induced by two-photon absorption process,while the slow relaxation component reflects the carrier dynamics of the excited electrons.

  19. Femtosecond spectroscopic studies of photoinduced electron transfer in MDMO-PPV:ZnO hybrid bulk heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Cecchetto, E.; De Cola, L. [Institute of Physics, University of Muenster, Mendelstrasse 7, 48149 Muenster (Germany); Slooff, H. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Zhang, H. [Van ' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam (Netherlands)

    2007-01-15

    The photophysics of charge carriers (polaron) in MDMO-PPV:ZnO hybrid bulk heterojunction is studied at 80 K by femtosecond transient absorption spectroscopy. A short-lived positive polaron is observed in the blend phase in MDMO-PPV:ZnO blend films with a weight ratio of 1:1 and 1:2. Further increase of ZnO weight ratio results in a significant quenching of the polaron absorption. The results are discussed in the concept that both pristine polymer and MDMO-PPV:ZnO blend phases coexist in the blend films. It is concluded that a polaron is photogenerated within the excitation laser pulse (<100 fs) and electron transfer efficiency is highest in blend films 1:1 and 1:2. Lack of the interfacial area and faster back electron transfer process are discussed to be responsible for the quenching of the electron transfer efficiency in blend film 1:3.

  20. Performance and applications of quench melt-growth bulk magnets

    Science.gov (United States)

    Nariki, S.; Teshima, H.; Morita, M.

    2016-03-01

    This paper describes the progress in quench melt-growth (QMG) bulk magnets, developed by the Nippon Steel & Sumitomo Metal Corporation, which consist of single crystalline RE123 phase and finely dispersed RE211 particles. QMG bulks can trap high magnetic fields. The field-trapping ability of QMG bulks is largely increased with an improvement in its J c and size, promising the realization of various applications such as flywheel energy-storage systems, ship motors, NMR/MRI spectrometers, wind-power generators and so on. Intensive research has revealed that the optimal RE element is different depending on application requirements. Gd-QMG bulk is the most promising material for several high-field engineering applications. The trapped magnetic field of Gd-QMG bulk 60 mm in diameter at 77 K is twice as large as that of Y-QMG bulk with a similar size due to its excellent J c properties. The large Gd-based QMG bulks up to 150 mm in diameter are fabricated by incorporating the RE compositional gradient method. Compact NMR/MRI spectrometers are one of the promising applications of bulk superconductors. Eu-QMG bulks are suitable for NMR magnets. NMR applications require extremely homogeneous magnetic fields. In the Eu-system, the small paramagnetic moment of a Eu ion compared to a Gd ion improves the field homogeneity in the bulk. For the application of current leads, Dy-based QMG is available by utilizing a low thermal conductivity.

  1. Structural order in additive processed bulk heterojunction organic solar cells

    Science.gov (United States)

    Rogers, James Thomas

    Considerable academic and industrial efforts have been dedicated to resolving scientific and technological issues associated with the fabrication of efficient plastic solar cells via solution deposition techniques. The most successful strategy used to generate solution processable devices implements a two component donor-acceptor type system composed of a (p-type) narrow bandgap conjugated polymer donor blended with a (n-type) fullerene acceptor. Due to the limited exciton diffusion lengths (~10 nm) inherent to these materials, efficient photoinduced charge generation requires heterojunction formation (i.e. donor/acceptor interfaces) in close proximity to the region of exciton generation. Maximal charge extraction therefore requires that donor and acceptor components form nanoscale phase separated percolating pathways to their respective electrodes. Devices exhibiting these structural characteristics are termed bulk heterojunction devices (BHJ). Although the BHJ architecture highlights the basic characteristics of functional donor-acceptor type organic solar cells, device optimization requires internal order within each phase and proper organization relative to the substrate in order to maximize charge transport efficiencies and minimize charge carrier recombination losses. The economic viability of BHJ solar cells hinges upon the minimization of processing costs; thus, commercially relevant processing techniques should generate optimal structural characteristics during film formation, eliminating the need for additional post deposition processing steps. Empirical optimization has shown that solution deposition using high boiling point additives (e.g. octanedithiol (ODT)) provides a simple and widely used fabrication method for maximizing the power conversion efficiencies of BHJ solar cells. This work will show using x-ray scattering that a small percentage of ODT (~2%) in chlorobenzene induces the nucleation of polymeric crystallites within 2 min of deposition

  2. Study of road dust magnetic phases as the main carrier of potentially harmful trace elements.

    Science.gov (United States)

    Bourliva, Anna; Papadopoulou, Lambrini; Aidona, Elina

    2016-05-15

    Mineralogical and morphological characteristics and heavy metal content of different fractions (bulk, non-magnetic fraction-NMF and magnetic fraction-MF) of road dusts from the city of Thessaloniki (Northern Greece) were investigated. Main emphasis was given on the magnetic phases extracted from these dusts. High magnetic susceptibility values were presented, whereas the MFs content of road dust samples ranged in 2.2-14.7 wt.%. Thermomagnetic analyses indicated that the dominating magnetic carrier in all road dust samples was magnetite, while the presence of hematite and iron sulphides in the investigated samples cannot be excluded. SEM/EDX analyses identified two groups of ferrimagnetic particles: spherules with various surface morphologies and textures and angular/aggregate particles with elevated heavy metal contents, especially Cr. The road dusts (bulk samples) were dominated by calcium, while the mean concentrations of trace elements decreased in the order Zn > Mn > Cu > Pb > Cr > Ni > V > Sn > As > Sb > Co > Mo > W > Cd. MFs exhibited significantly higher concentrations of trace elements compared to NMFs indicating that these potentially harmful elements (PHEs) are preferentially enriched in the MFs and highly associated with the ferrimagnetic particles. Hazard Index (HI) obtained for both adults and children through exposure to bulk dust samples were lower or close to the safe level (=1). On the contrary, the HIs for the magnetic phases indicated that both children and adults are experiencing potential health risk since HI for Cr was significantly higher than safe level. Cancer risk due to road dust exposure is low.

  3. Polymer-fullerene bulk-heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Van Duren, J.K.J.

    2004-03-08

    In 2000 polymer:fullerene bulk-heterojunction solar cells reached power conversion efficiencies of < 1%. Improving the performance, stability, and lifetime of bulk-heterojunction solar cells requires more insight in the preparation, and operation of these devices. This thesis discusses the preparation and the morphological and electrical characterization of devices made from MDMO-PPV (poly 2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene), PCBM (1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)-methanofullerene), and their mixtures. The understanding of the influence of morphology on the device performance should aid in obtaining insight in the fundamental issues of the bulk-heterojunction concept. Furthermore, new materials are introduced in an attempt to improve performance. In chapter 2, it is shown that bulk-heterojunction solar cells made from MDMO-PPV and PCBM reach power conversion efficiencies of 2.5% under simulated solar light. It is shown for the first time that replacing the orange MDMO-PPV with a low-bandgap conjugated material results in a more red-shifted spectral response of these solar cells. Additionally, in an attempt to control the nanoscale morphology of the photoactive layer, the first example of a covalently linked donor polymer with pendant fullerenes incorporated in working solar cells is reported. The results indicated that more fundamental questions concerning the operation of the device and the influence of morphology must be addressed, before a rational improvement in device performance can be expected. Chapter 3 discusses the influence of morphology on transport in disordered organic semiconductors. Morphological investigations on films of PCBM and several PPVs are combined with the analysis of charge-carrier-mobility data. The morphological disorder observed in the PCBM films is in agreement with its charge-transport properties. Imaging individual conjugated polymer chains and aggregates on cast films with scanning force

  4. Carrier Transport Mechanism in Single Crystalline Organic Semiconductor Thin Film Elucidated by Visualized Carrier Motion.

    Science.gov (United States)

    Matsubara, Kohei; Abe, Kentaro; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-04-01

    Time-resolved microscopic second harmonic generation (TRM-SHG) measurement was conducted to evaluate temperature dependence of the anisotropic carrier transport process in 6,13-Bis(triisopropylsilylethynyl) (TIPS) pentacene single crystalline domains for two orthogonal directions. Enhancement of the electric field induced SHG (EFI-SHG) signal at the electrode edge at low temperature suggests the presence of potential drop in the injection process. We directly evaluated temperature dependence of the carrier mobility by taking into account the potential drop, and concluded that the Marcus theory is appropriate to interpret the carrier transport in anisotropic TIPS pentacene thin film. TRM-SHG method is a facile and effective way to directly visualize transport process in anisotropic materials and to evaluate injection and transport processes simultaneously. PMID:27451638

  5. A CFT Perspective on Gravitational Dressing and Bulk Locality

    CERN Document Server

    Lewkowycz, Aitor; Verlinde, Herman

    2016-01-01

    We revisit the construction of local bulk operators in AdS/CFT with special focus on gravitational dressing and its consequences for bulk locality. Specializing to 2+1-dimensions, we investigate these issues via the proposed identification between bulk operators and cross-cap boundary states. We obtain explicit expressions for correlation functions of bulk fields with boundary stress tensor insertions, and find that they are free of non-local branch cuts but do have non-local poles. We recover the HKLL recipe for restoring bulk locality for interacting fields as the outcome of a natural CFT crossing condition. We show that, in a suitable gauge, the cross-cap states solve the bulk wave equation for general background geometries, and satisfy a conformal Ward identity analogous to a soft graviton theorem, Virasoro symmetry, the large N conformal bootstrap and the uniformization theorem all play a key role in our derivations.

  6. Gravitational potential wells and the cosmic bulk flow

    CERN Document Server

    Kumar, Abhinav; Feldman, Hume A; Watkins, Richard

    2015-01-01

    The bulk flow is a volume average of the peculiar velocities and a useful probe of the mass distribution on large scales. The gravitational instability model views the bulk flow as a potential flow that obeys a Maxwellian Distribution. We use two N-body simulations, the LasDamas Carmen and the Horizon Run, to calculate the bulk flows of various sized volumes in the simulation boxes. Once we have the bulk flow velocities as a function of scale, we investigate the mass and gravitational potential distribution around the volume. We found that matter densities can be asymmetrical and difficult to detect in real surveys, however, the gravitational potential and its gradient may provide better tools to investigate the underlying matter distribution. This study shows that bulk flows are indeed potential flows and thus provides information on the flow sources. We also show that bulk flow magnitudes follow a Maxwellian distribution on scales $>10\\ h^{-1}$Mpc.

  7. Gravitational potential wells and the cosmic bulk flow

    Science.gov (United States)

    Wang, Yuyu; Kumar, Abhinav; Feldman, Hume; Watkins, Richard

    2016-03-01

    The bulk flow is a volume average of the peculiar velocities and a useful probe of the mass distribution on large scales. The gravitational instability model views the bulk flow as a potential flow that obeys a Maxwellian Distribution. We use two N-body simulations, the LasDamas Carmen and the Horizon Run, to calculate the bulk flows of various sized volumes in the simulation boxes. Once we have the bulk flow velocities as a function of scale, we investigate the mass and gravitational potential distribution around the volume. We found that matter densities can be asymmetrical and difficult to detect in real surveys, however, the gravitational potential and its gradient may provide better tools to investigate the underlying matter distribution. This study shows that bulk flows are indeed potential flows and thus provides information on the flow sources. We also show that bulk flow magnitudes follow a Maxwellian distribution on scales > 10h-1 Mpc.

  8. Determination of Bulk Dimensional Variation in Castings

    Energy Technology Data Exchange (ETDEWEB)

    Dr. James F. Cuttino Dr. Edward P. Morse

    2005-04-14

    The purpose of this work is to improve the efficiency of green sand foundries so that they may continue to compete as the most cost-effective method of fabrication while meeting tightening constraints on near-net shape manufacturing. In order to achieve this objective, the study is divided into two major components. The first component concentrated on identifying which processes control surface finish on the castings and which provide potential reductions in variations. The second component identified metrological methods that effectively discern between the geometry of bulk material versus surface finish in order to more accurately determine the quality of a part. The research resulted in the determination of an empirical relationship relating pouring parameters to dimensional variation, with an R2 value of greater than 0.79. A significant difference in variations obtained from vertical vs. horizontal molding machines was also noticed. When analyzed separately, however, the resulting empirical relationships for horizontal and vertical machines had reduced R2 values, probably due to the reduced data sets. Significant parameters when considering vertical and horizontal molding machines together included surface roughness, pattern type, iron type, pouring rate, copper content, amount of Western Bentonite, and permeability.

  9. Studies of bulk heterojunction solar cells

    Science.gov (United States)

    Cossel, Raquel; McIntyre, Max; Tzolov, Marian

    We are studying bulk heterojunction solar cells that were fabricated using a mixture of PCPDTBT and PCBM­C60. The impedance data of the cells in dark responded like a simple RC circuit. The value of the dielectric constant derived from these results is consistent with the values reported in the literature for these materials. We are showing that the parallel resistance in the equivalent circuit of linear lump elements can be interpreted using the DC current­voltage measurements. The impedance spectra under light illumination indicated the existence of additional polarization. This extra feature can be described by a model that includes a series RC circuit in parallel with the equivalent circuit for a device in dark. The physical interpretation of the additional polarization is based on photo­generated charges getting trapped in wells, which have a characteristic relaxation time corresponding to the observed break frequency in the impedance spectra. We have studied the influence of the anode and cathode interface on this phenomena, either by using different interface materials, or by depositing the metal electrode while the substate is heated.

  10. Material Profile Influences in Bulk-Heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Roehling, John D.; Rochester, Christopher W.; Ro, Hyun W.; Wang, Peng; Majewski, Jaroslaw; Batenburg, Kees J.; Arslan, Ilke; Delongchamp, Dean M.; Moule, Adam J.

    2014-10-01

    he morphology in mixed bulk-heterojunction films are compared using three different quantitative measurement techniques. We compare the vertical composition changes using high-angle annular dark-field scanning transmission electron microscopy with electron tomography and neutron and x-ray reflectometry. The three measurement techniques yield qualita-tively comparable vertical concentration measurements. The presence of a metal cathode during thermal annealing is observed to alter the fullerene concentration throughout the thickness of the film for all measurements. However, the abso-lute vertical concentration of fullerene is quantitatively different for the three measurements. The origin of the quantitative measurement differences is discussed. The authors thank Luna Innovations, Inc. for donating the endohedral fullerenes used in this study and Plextronics for the P3HT. They are gratefully thank the National Science Foundation Energy for Sustainability Program, Award No. 0933435. This work benefited from the use of the Lujan Neutron Scattering Center at Los Alamos Neutron Science Center funded by the DOE Office of Basic Energy Sciences and Los Alamos National Laboratory under DOE Contract DE-AC52-06NA25396. This research was also supported in part by Laboratory Directed Research & Development program at PNNL. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830.

  11. Failure Prediction in Bulk Metal Forming Process

    Directory of Open Access Journals (Sweden)

    Ameen Topa

    2014-01-01

    Full Text Available An important concern in metal forming is whether the desired deformation can be accomplished without defects in the final product. Various ductile fracture criteria have been developed and experimentally verified for a limited number of cases of metal forming processes. These criteria are highly dependent on the geometry of the workpiece and cannot be utilized for complicated shapes without experimental verification. However, experimental work is a resource hungry process. This paper proposes the ability of finite element analysis (FEA software such as LS-DYNA to pinpoint the crack-like flaws in bulk metal forming products. Two different approaches named as arbitrary Lagrangian-Eulerian (ALE and smooth particle hydrodynamics (SPH formulations were adopted. The results of the simulations agree well with the experimental work and a comparison between the two formulations has been carried out. Both approximation methods successfully predicted the flow of workpiece material (plastic deformation. However ALE method was able to pinpoint the location of the flaws.

  12. Casimir effect in dielectrics: Bulk energy contribution

    International Nuclear Information System (INIS)

    In a recent series of papers, Schwinger discussed a process that he called the dynamical Casimir effect. The key essence of this effect is the change in zero-point energy associated with any change in a dielectric medium. (In particular, if the change in the dielectric medium is taken to be the growth or collapse of a bubble, this effect may have relevance to sonoluminescence.) The kernel of Schwinger close-quote s result is that the change in Casimir energy is proportional to the change in the volume of the dielectric, plus finite-volume corrections. Other papers have called into question this result, claiming that the volume term should actually be discarded, and that the dominant term remaining is proportional to the surface area of the dielectric. In this paper, which is an expansion of an earlier Letter on the same topic, we present a careful and critical review of the relevant analyses. We find that the Casimir energy, defined as the change in zero-point energy due to a change in the medium, has at leading order a bulk volume dependence. This is in full agreement with Schwinger close-quote s result, once the correct physical question is asked. We have nothing new to say about sonoluminescence itself. copyright 1997 The American Physical Society

  13. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  14. Bulk viscous cosmology: statefinder and entropy

    CERN Document Server

    He, X

    2006-01-01

    The statefinder diagnostic pair is adopted to differentiate viscous cosmology models and it is found that the trajectories of these viscous cosmology models on the statefinder pair $s-r$ plane are quite different from those of the corresponding non-viscous cases. Particularly for the quiessence model, the singular properties of state parameter $w=-1$ are obviously demonstrated on the statefinder diagnostic pair planes. We then discuss the entropy of the viscous / dissipative cosmology system which may be more practical to describe the present cosmic observations as the perfect fluid is just a global approximation to the complicated cosmic media in current universe evolution. When the bulk viscosity takes the form of $\\zeta=\\zeta_{1}\\dot{a}/a$($\\zeta_{1}$ is constant), the relationship between the entropy $S$ and the redshift $z$ is explicitly given out. We find that the entropy of the viscous cosmology is always increasing and consistent with the thermodynamics arrow of time for the universe evolution. With t...

  15. Thermodynamic properties of bulk and confined water

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco, E-mail: francesco.mallamace@unime.it [Dipartimento di Fisica e Scienza della Terra Università di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienza della Terra Università di Messina and CNISM, I-98168 Messina (Italy); Mallamace, Domenico [Dipartimento di Scienze dell' Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Università di Messina, I-98166 Messina (Italy); Vasi, Sebastiano; Vasi, Cirino [IPCF-CNR, I-98166 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States)

    2014-11-14

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (T{sub L} ≃ 225 K). The second, T{sup *} ∼ 315 ± 5 K, is a special locus of the isothermal compressibility K{sub T}(T, P) and the thermal expansion coefficient α{sub P}(T, P) in the P–T plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (T{sub L}) and the onset of the unfolding process (T{sup *})

  16. On methods of estimating cosmological bulk flows

    CERN Document Server

    Nusser, Adi

    2015-01-01

    We explore similarities and differences between several estimators of the cosmological bulk flow, $\\bf B$, from the observed radial peculiar velocities of galaxies. A distinction is made between two theoretical definitions of $\\bf B$ as a dipole moment of the velocity field weighted by a radial window function. One definition involves the three dimensional (3D) peculiar velocity, while the other is based on its radial component alone. Different methods attempt at inferring $\\bf B$ for either of these definitions which coincide only for a constant velocity field. We focus on the Wiener Filtering (WF, Hoffman et al. 2015) and the Constrained Minimum Variance (CMV,Feldman et al. 2010) methodologies. Both methodologies require a prior expressed in terms of the radial velocity correlation function. Hoffman et al. compute $\\bf B$ in Top-Hat windows from a WF realization of the 3D peculiar velocity field. Feldman et al. infer $\\bf B$ directly from the observed velocities for the second definition of $\\bf B$. The WF ...

  17. Recent developments of film bulk acoustic resonators

    Science.gov (United States)

    Gao, Junning; Liu, Guorong; Li, Jie; Li, Guoqiang

    2016-06-01

    Film bulk acoustic wave resonator (FBAR) experienced skyrocketing development in the past 15 years, owing to the explosive development of mobile communication. It stands out in acoustic filters mainly because of high quality factor, which enables low insertion loss and sharp roll off. Except for the massive application in wireless communication, FBARs are also promising sensors because of the high sensitivity and readily integration ability to miniaturize circuits. On the ground of summarizing FBAR’s application in wireless communication as filters and in sensors including electronic nose, bio field, and pressure sensing, this paper review the main challenges of each application faced. The number of filters installed in the mobile phone has being grown explosively, which leads to overcrowded bands and put harsh requirements on component size and power consumption control for each unit. Data flow and rate are becoming increasingly demanding as well. This paper discusses three promising technical strategies addressing these issues. Among which coupled resonator filter is given intense attention because it is able to vigorously reduce the filter size by stacking two or more resonators together, and it is a great technique to increase data flow and rate. Temperature compensation methods are discussed considering their vital influence on frequency stability. Finally, materials improvement and novel materials exploration for band width modulation, tunable band acquisition, and quality factor improvement are discussed. The authors appeal attention of the academic society to bring AlN epitaxial thin film into the FBAR fabrication and have proposed a configuration to implement this idea.

  18. Advances in Processing of Bulk Ferroelectric Materials

    Science.gov (United States)

    Galassi, Carmen

    The development of ferroelectric bulk materials is still under extensive investigation, as new and challenging issues are growing in relation to their widespread applications. Progress in understanding the fundamental aspects requires adequate technological tools. This would enable controlling and tuning the material properties as well as fully exploiting them into the scale production. Apart from the growing number of new compositions, interest in the first ferroelectrics like BaTiO3 or PZT materials is far from dropping. The need to find new lead-free materials, with as high performance as PZT ceramics, is pushing towards a full exploitation of bariumbased compositions. However, lead-based materials remain the best performing at reasonably low production costs. Therefore, the main trends are towards nano-size effects and miniaturisation, multifunctional materials, integration, and enhancement of the processing ability in powder synthesis. Also, in control of dispersion and packing, to let densification occur in milder conditions. In this chapter, after a general review of the composition and main properties of the principal ferroelectric materials, methods of synthesis are analysed with emphasis on recent results from chemical routes and cold consolidation methods based on the colloidal processing.

  19. On methods of estimating cosmological bulk flows

    Science.gov (United States)

    Nusser, Adi

    2016-01-01

    We explore similarities and differences between several estimators of the cosmological bulk flow, B, from the observed radial peculiar velocities of galaxies. A distinction is made between two theoretical definitions of B as a dipole moment of the velocity field weighted by a radial window function. One definition involves the three-dimensional (3D) peculiar velocity, while the other is based on its radial component alone. Different methods attempt at inferring B for either of these definitions which coincide only for the case of a velocity field which is constant in space. We focus on the Wiener Filtering (WF) and the Constrained Minimum Variance (CMV) methodologies. Both methodologies require a prior expressed in terms of the radial velocity correlation function. Hoffman et al. compute B in Top-Hat windows from a WF realization of the 3D peculiar velocity field. Feldman et al. infer B directly from the observed velocities for the second definition of B. The WF methodology could easily be adapted to the second definition, in which case it will be equivalent to the CMV with the exception of the imposed constraint. For a prior with vanishing correlations or very noisy data, CMV reproduces the standard Maximum Likelihood estimation for B of the entire sample independent of the radial weighting function. Therefore, this estimator is likely more susceptible to observational biases that could be present in measurements of distant galaxies. Finally, two additional estimators are proposed.

  20. Nanocomposite RE-Ba-Cu-O bulk superconductors

    OpenAIRE

    Iida, Kazumasa

    2016-01-01

    Nanocomposite oxide high-temperature bulk superconductors can be used as quasi-magnets. Thanks to the recent progress of material processing, quasi-magnet with 26 mm diameter can generate a large field of 17.6 T at 26 K. These results are highly attractive for applications, involving levitation of permanent magnets on the bulk superconductors. Indeed, several other applications such as motors and magnetic resonance microscope using bulk superconductors have been proposed and demonstrated. In ...

  1. Can local bulk effects explain the galactic dark matter?

    Energy Technology Data Exchange (ETDEWEB)

    Heydari-Fard, Malihe; Sepangi, Hamid R, E-mail: m.heydarifard@mail.sbu.ac.ir, E-mail: hr-sepangi@sbu.ac.ir [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839 (Iran, Islamic Republic of)

    2008-08-15

    We obtain the virial theorem within the context of a brane-world model without mirror symmetry or any form of junction condition. Taking a constant curvature bulk (neglecting non-local bulk effects), the local bulk effects generate a geometrical mass, contributing to the gravitational energy which may be used to explain the virial mass discrepancy in clusters of galaxies. We fix the parameters of this model in agreement with observational data.

  2. Can local bulk effects explain the galactic dark matter?

    OpenAIRE

    Heydari-Fard, Malihe; Sepangi, Hamid R.

    2008-01-01

    We obtain the virial theorem within the context of a brane-world model without mirror symmetry or any form of junction condition. Taking a constant curvature bulk (neglecting non-local bulk effects), the local bulk effects generate a geometrical mass, contributing to the gravitational energy which may be used to explain the virial mass discrepancy in clusters of galaxies. We fix the parameter of this model in agreement with observational data.

  3. Extracting the bulk viscosity of the quark–gluon plasma

    International Nuclear Information System (INIS)

    We investigate the implications of a nonzero bulk viscosity coefficient on the azimuthal momentum anisotropy of ultracentral relativistic heavy ion collisions at the Large Hadron Collider. We find that, with IP-Glasma initial conditions, a finite bulk viscosity coefficient leads to a better description of the flow harmonics in ultracentral collisions. We then extract optimal values of bulk and shear viscosity coefficients that provide the best agreement with flow harmonic coefficients data in this centrality class

  4. Investigation on properties of ultrafast switching in a bulk gallium arsenide avalanche semiconductor switch

    International Nuclear Information System (INIS)

    Properties of ultrafast switching in a bulk gallium arsenide (GaAs) avalanche semiconductor switch based on semi-insulating wafer, triggered by an optical pulse, were analyzed using physics-based numerical simulations. It has been demonstrated that when a voltage with amplitude of 5.2 kV is applied, after an exciting optical pulse with energy of 1 μJ arrival, the structure with thickness of 650 μm reaches a high conductivity state within 110 ps. Carriers are created due to photons absorption, and electrons and holes drift to anode and cathode terminals, respectively. Static ionizing domains appear both at anode and cathode terminals, and create impact-generated carriers which contribute to the formation of electron-hole plasma along entire channel. When the electric field in plasma region increases above the critical value (∼4 kV/cm) at which the electrons drift velocity peaks, a domain comes into being. An increase in carrier concentration due to avalanche multiplication in the domains reduces the domain width and results in the formation of an additional domain as soon as the field outside the domains increases above ∼4 kV/cm. The formation and evolution of multiple powerfully avalanching domains observed in the simulations are the physical reasons of ultrafast switching. The switch exhibits delayed breakdown with the characteristics affected by biased electric field, current density, and optical pulse energy. The dependence of threshold energy of the exciting optical pulse on the biased electric field is discussed

  5. The role of spin exchange in charge transfer in low-bandgap polymer: Fullerene bulk heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Krinichnyi, V. I., E-mail: kivirus@gmail.com; Yudanova, E. I.; Denisov, N. N. [Kinetics and Catalysis, Institute of Problems of Chemical Physics, Chernogolovka 142432 (Russian Federation)

    2014-07-28

    Formation, relaxation and dynamics of polarons and methanofullerene anion radicals photoinitiated in poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′, 3′-benzothiadiazole)]:-[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCDTBT:PC{sub 61}BM) bulk heterojunctions were studied mainly by light-induced EPR (LEPR) spectroscopy in wide photon energy and temperature ranges. Some polarons are pinned by spin traps whose number and depth are governed by the composite morphology and photon energy. The proximity of the photon energy and the polymer bandgap reduces the number of such traps, inhibits recombination of mobile charge carriers, and facilitates their mobility in polymer network. Spin relaxation and charge carrier dynamics were studied by the steady-state saturation method at wide range of temperature and photon energy. These processes were shown to be governed by spin exchange as well as by the photon energy. Charge transfer in the composite is governed by the polaron scattering on the lattice phonons of crystalline domains embedded into amorphous polymer matrix and its activation hopping between polymer layers. The energy barrier required for polaron interchain hopping exceeds that of its intrachain diffusion. Anisotropy of polaron dynamics in the PCDTBT:PC61BM composite is less than that of poly(3-alkylthiophenes)-based systems that evidences for better ordering of the former. Lorentzian shape of LEPR lines of both charge carriers, lower concentration of spin traps as well as behaviours of the main magnetic resonance parameters were explained by layer ordered morphology of polymer matrix.

  6. Carbon-neutral fuels and energy carriers

    CERN Document Server

    Muradov, Nazim Z

    2011-01-01

    Concerns over an unstable energy supply and the adverse environmental impact of carbonaceous fuels have triggered considerable efforts worldwide to find carbon-free or low-carbon alternatives to conventional fossil fuels. Carbon-Neutral Fuels and Energy Carriers emphasizes the vital role of carbon-neutral energy sources, transportation fuels, and associated technologies for establishing a sustainable energy future. Each chapter draws on the insight of world-renowned experts in such diverse fields as photochemistry and electrochemistry, solar and nuclear energy, biofuels and synthetic fuels, ca

  7. Car Carrier 5.800 TPM

    OpenAIRE

    López de Rojas, Carmen

    2012-01-01

    Tipo de Buque: Car Carrier. Capacidad de carga: carga 1: 3000 coches sin trailers. Carga 2: Carga combinada para 1500 ml de trailers y coches en el resto de las cubiertas del buque no ocupadas por los trailers. Peso muerto 5800 TPM. Capacidad de conductores: 100 personas en camarotes dobles. Sociedad de clasificación: Det Norske Veritas. Reglamentos: Solas, Marpol, Convenio de líneas de carga. Velocidad: 19 nudos al 85% MCR en pruebas. Autonomía: 4500 millas al 80% MCR y 15% al margen de mar....

  8. Bulk flow scaling for turbulent channel and pipe flows

    CERN Document Server

    Chen, Xi; She, Zhen-Su

    2016-01-01

    We report a theory deriving bulk flow scaling for canonical wall-bounded flows. The theory accounts for the symmetries of boundary geometry (flat plate channel versus circular pipe) by a variational calculation for a large-scale energy length, which characterizes its bulk flow scaling by a simple exponent, i.e. $m=4$ for channel and 5 for pipe. The predicted mean velocity shows excellent agreement with several dozen sets of quality empirical data for a wide range of the Reynolds number (Re), with a universal bulk flow constant $\\kappa\\approx0.45$. Predictions for dissipation and turbulent transport in the bulk flow are also given, awaiting data verification.

  9. Locality, bulk equations of motion and the conformal bootstrap

    CERN Document Server

    Kabat, Daniel

    2016-01-01

    We develop an approach to construct local bulk operators in a CFT to order 1/N^2. Since 4-point functions are not fixed by conformal invariance we use the OPE to categorize possible forms for a bulk operator. Using previous results on 3-point functions we construct a local bulk operator in each OPE channel. We then impose the condition that the bulk operators constructed in different channels agree, and hence give rise to a well-defined bulk operator. We refer to this condition as the "bulk bootstrap." We argue and explicitly show in some examples that the bulk bootstrap leads to some of the same results as the regular conformal bootstrap. In fact the bulk bootstrap provides an easier way to determine some CFT data, since it does not require knowing the form of the conformal blocks. This analysis clarifies previous results on the relation between bulk locality and the bootstrap for theories with a 1/N expansion, and it identifies a simple and direct way in which OPE coefficients and anomalous dimensions deter...

  10. 76 FR 5424 - Motor Carrier Safety Advisory Committee; Request for Nominations

    Science.gov (United States)

    2011-01-31

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee; Request for Nominations AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Request for Nominations to the Motor Carrier Safety Advisory Committee (MCSAC). SUMMARY: The FMCSA solicits nominations...

  11. Diffusion of oxygen in bulk GaN crystals at high temperature and at high pressure

    Science.gov (United States)

    Sadovyi, B.; Nikolenko, A.; Weyher, J. L.; Grzegory, I.; Dziecielewski, I.; Sarzynski, M.; Strelchuk, V.; Tsykaniuk, B.; Belyaev, O.; Petrusha, I.; Turkevich, V.; Kapustianyk, V.; Albrecht, M.; Porowski, S.

    2016-09-01

    Experimental studies of diffusion of oxygen in bulk wurtzite-type GaN crystals grown by Halide Vapor Phase Epitaxy (HVPE) are reported. Oxygen concentration profiles were studied in as-grown GaN crystals and also after annealing of crystals at temperatures up to 3400 K and pressures up to 9 GPa. Investigated crystals contained large conical defects i.e. pinholes of significantly higher oxygen concentration (NO=(2-4)×1019 cm-3) than that in the bulk matrix (NOGaN samples. Confocal micro-Raman spectroscopy was applied to measure the profiles of free electron concentration, which directly corresponds to the concentration of oxygen impurity. Lateral scanning across the interfaces between pinholes and matrix in the as-grown HVPE GaN crystals showed sharp step-like carrier concentration profiles. Annealing at high temperature and high pressure resulted in the diffusion blurring of the profiles. Analysis of obtained data allowed for the first time for estimation of oxygen diffusion coefficients DO(T, P). The obtained values of DO(T, P) are anomalously small similarly to the values obtained by Harafuji et al. by molecular dynamic calculations for self-diffusion of nitrogen. Whereas oxygen and nitrogen are on the same sublattice it could explain the similarity of their diffusion coefficients.

  12. Forecasting spot prices in bulk shipping using multivariate and univariate models

    Directory of Open Access Journals (Sweden)

    N.D. Geomelos

    2014-12-01

    Full Text Available This paper employs an applied econometric study concerning forecasting spot prices in bulk shipping in both markets of tankers and bulk carriers in a disaggregated level. This research is essential, as spot market is one of the most volatile markets and there is a great uncertainty about the future development of spot prices. This uncertainty could be reduced by using estimates of ex-post and ex-ante forecasts. Econometric analysis focuses in the comparison of different econometric models from two important categories of econometrics: (1 multivariate models (VAR and VECM and (2 univariate time series models (ARIMA, GARCH and E-GARCH in order to derive the best predicting model for each ship type. Also, forecasts can be modified to yield an improved performance of forecasting accuracy via the theory of combining methods. Ex-post and ex-ante forecasts are estimated on the basis of best predicting model’s performance. Results show that the combining methodology can reduce even more the forecasting errors. The results of empirical analysis could also be useful from the specialization, identification, estimation, and evaluation of previous econometric models’ point of view. Also, ex-ante forecasts, which are taking into consideration the present economic crisis, can be used for the formation of efficient economic policy from decision-makers of shipping industry reducing even more spot markets’ risk.

  13. Xerophilic mycopopulations of teas in bulk

    Directory of Open Access Journals (Sweden)

    Škrinjar Marija M.

    2011-01-01

    Full Text Available d.o.o., Novi Sad AU Krunić Vesna J. AF EKOLd.o.o., Novi Sad KW teas % mould contamination % thermal treatment KR nema Other the water, tea is the most popular beverage in the world today. They are used for ages, in the beginning as refreshing drinks, and later more for their healing properties. Teas have been demonstrated to show antioxidative, anti-carcinogenic, and anti-microbial properties. Considering that the teas, during the production, are not treated with any temperature, there is high risk for contamination with different type of microorganisms, especially with moulds. Moulds are ubiquitously distributed in nature and their spores can be found in the atmosphere even at high altitudes and under favorable conditions of temperature and humidity, moulds grow on many commodities including cereals, oil seeds, nuts, herbs and spices. Most of them are potential producers of mycotoxins which present a real hazard to human health. The aim of this work was to investigate total mould count and to identify moulds isolated from teas in bulk, than from teas treated with hot, sterile, distilled water and from the tea filtrates. Tested teas were peppermint, sage, yarrow, black tea, bearberry, lemon balm, mixture of teas from Zlatibor. In teas in balk was observed high contamination with different kinds of moulds (1.84-4.55 cfu/g, such as Aspergillus awamori, A. lovaniensis, A niger, A. phoenicus, A. repens, A. restrictus, A. sydowii, A. versicolor, Eurotium amstelodami, E. chevalieri, E. herbariorum, Penicillium chrysogenum, and Scopulariopsis brevicaulis. The most frequent were species from Aspergillus and Eurotium genera. Thermal treatment with hot, sterile, distilled water reduced the number of fungal colonies. Aspergillus awamori was the most resistant and appeared in six samples of filtrates of tea, Aspergillus niger in one sample and Penicillium chrysogenum in one sample.

  14. Cavitation instability in bulk metallic glasses

    Science.gov (United States)

    Dai, L. H.; Huang, X.; Ling, Z.

    2015-09-01

    Recent experiments have shown that fracture surfaces of bulk metallic glasses (BMGs) usually exhibit an intriguing nanoscale corrugation like fractographic feature mediated by nanoscale void formation. We attribute the onset of this nanoscale corrugation to TTZs (tension transformation zones) mediated cavitation. In our recent study, the spall experiments of Zr-based BMG using a single-stage light gas gun were performed. To uncover the mechanisms of the spallation damage nucleation and evolution, the samples were designed to be subjected to dynamic tensile loadings of identical amplitude but with different durations by making use of the multi-stress pulse and the double-flyer techniques. It is clearly revealed that the macroscopic spall fracture in BMGs originates from the nucleation, growth and coalescence of micro-voids. Then, a microvoid nucleation model of BMGs based on free volume theory is proposed, which indicates that the nucleation of microvoids at the early stage of spallation in BMGs is resulted from diffusion and coalescence of free volume. Furthermore, a theoretical model of void growth in BMGs undergoing remote dynamic hydrostatic tension is developed. The critical condition of cavitation instability is obtained. It is found that dynamic void growth in BMGs can be well controlled by a dimensionless inertial number characterizing the competition between intrinsic and extrinsic time scales. To unveil the atomic-level mechanism of cavitation, a systematic molecular dynamics (MD) simulation of spallation behaviour of a binary metallic glass with different impact velocities was performed. It is found that micro-void nucleation is determined TTZs while the growth is controlled by shear transformation zones (STZs) at atomic scale.

  15. Cavitation instability in bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    Dai L.H.

    2015-01-01

    Full Text Available Recent experiments have shown that fracture surfaces of bulk metallic glasses (BMGs usually exhibit an intriguing nanoscale corrugation like fractographic feature mediated by nanoscale void formation. We attribute the onset of this nanoscale corrugation to TTZs (tension transformation zones mediated cavitation. In our recent study, the spall experiments of Zr-based BMG using a single-stage light gas gun were performed. To uncover the mechanisms of the spallation damage nucleation and evolution, the samples were designed to be subjected to dynamic tensile loadings of identical amplitude but with different durations by making use of the multi-stress pulse and the double-flyer techniques. It is clearly revealed that the macroscopic spall fracture in BMGs originates from the nucleation, growth and coalescence of micro-voids. Then, a microvoid nucleation model of BMGs based on free volume theory is proposed, which indicates that the nucleation of microvoids at the early stage of spallation in BMGs is resulted from diffusion and coalescence of free volume. Furthermore, a theoretical model of void growth in BMGs undergoing remote dynamic hydrostatic tension is developed. The critical condition of cavitation instability is obtained. It is found that dynamic void growth in BMGs can be well controlled by a dimensionless inertial number characterizing the competition between intrinsic and extrinsic time scales. To unveil the atomic-level mechanism of cavitation, a systematic molecular dynamics (MD simulation of spallation behaviour of a binary metallic glass with different impact velocities was performed. It is found that micro-void nucleation is determined TTZs while the growth is controlled by shear transformation zones (STZs at atomic scale.

  16. Hall and Seebeck measurements estimate the thickness of a (buried) carrier system: Identifying interface electrons in In-doped SnO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Papadogianni, Alexandra; Bierwagen, Oliver [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin (Germany); White, Mark E.; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Galazka, Zbigniew [Leibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, D-12489 Berlin (Germany)

    2015-12-21

    We propose a simple method based on the combination of Hall and Seebeck measurements to estimate the thickness of a carrier system within a semiconductor film. As an example, this method can distinguish “bulk” carriers, with homogeneous depth distribution, from “sheet” carriers, that are accumulated within a thin layer. The thickness of the carrier system is calculated as the ratio of the integral sheet carrier concentration, extracted from Hall measurements, to the volume carrier concentration, derived from the measured Seebeck coefficient of the same sample. For rutile SnO{sub 2}, the necessary relation of Seebeck coefficient to volume electron concentration in the range of 3 × 10{sup 17} to 3 × 10{sup 20 }cm{sup −3} has been experimentally obtained from a set of single crystalline thin films doped with varying Sb-doping concentrations and unintentionally doped bulk samples, and is given as a “calibration curve.” Using this calibration curve, our method demonstrates the presence of interface electrons in homogeneously deep-acceptor (In) doped SnO{sub 2} films on sapphire substrates.

  17. Theory of Carrier Phase Ambiguity Resolution

    Institute of Scientific and Technical Information of China (English)

    P. J. G. Teunissen

    2003-01-01

    Carrier phase ambiguity resolution is the key to high precision Global Navigation Satellite System(GNSS) positioning and navigation. It applies to a great variety of current and future models of GPS, modernized GPS and Galileo. A proper handling of carrier phase ambiguity resolution requires a proper understanding of the underlying theory of integer inference. In this contribution a brief review is given of the probabilistic theory of integer ambiguity estimation. We describe the concept of ambiguity pull-in regions, introduce the class of admissible integer estimators, determine their probability mass functions and show how their variability solution. The theory is worked out in more detail for integer least-squares and integer bootstrapping. It is shown that the integer least-squares principle maximizes the probability of correct integer estimation. Sharp and easy-to-compute bounds are given for both the ambiguity success rate and the baseline's probability of concentration. Finally the probability density function of the ambiguity residuals is determined. This allows one for the first time to formulate rigorous tests for the integerness of the parameters.

  18. Localized charge carriers in graphene nanodevices

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, D., E-mail: dominikb@phys.ethz.ch; Varlet, A.; Simonet, P.; Eich, M.; Overweg, H. C.; Ihn, T.; Ensslin, K. [Solid State Physics Laboratory, ETH Zurich, 8093 Zurich (Switzerland)

    2015-09-15

    Graphene—two-dimensional carbon—is a material with unique mechanical, optical, chemical, and electronic properties. Its use in a wide range of applications was therefore suggested. From an electronic point of view, nanostructured graphene is of great interest due to the potential opening of a band gap, applications in quantum devices, and investigations of physical phenomena. Narrow graphene stripes called “nanoribbons” show clearly different electronical transport properties than micron-sized graphene devices. The conductivity is generally reduced and around the charge neutrality point, the conductance is nearly completely suppressed. While various mechanisms can lead to this observed suppression of conductance, disordered edges resulting in localized charge carriers are likely the main cause in a large number of experiments. Localized charge carriers manifest themselves in transport experiments by the appearance of Coulomb blockade diamonds. This review focuses on the mechanisms responsible for this charge localization, on interpreting the transport details, and on discussing the consequences for physics and applications. Effects such as multiple coupled sites of localized charge, cotunneling processes, and excited states are discussed. Also, different geometries of quantum devices are compared. Finally, an outlook is provided, where open questions are addressed.

  19. Influence of carrier on the performance of dry powder inhalers.

    Science.gov (United States)

    Saint-Lorant, G; Leterme, P; Gayot, A; Flament, M P

    2007-04-01

    The aim of this work is to study carriers which can become alternatives to monohydrate lactose in dry powder inhalers and to consider particle parameters that influence adhesion between drug and carrier in dry powder inhalers. Different forms of mannitol, lactose and maltitol were mixed with either terbutaline sulphate or formoterol fumarate. The blends were submitted to different adhesion tests where drug detachment from the carrier was obtained either through mechanical vibration or by aspiration. Parameters like particle shape, roughness, amorphous content and cristalline form may affect interactions between drug and carrier. In our case, crystallized forms of the carrier offered lower adhesion but better release of the active ingredient than spray-dried forms. The crystallized mannitol produced maximal fine particle dose. The blends of the mannitols and the two active ingredients gave different results. The two techniques used to assess the adhesion of drugs to carrier particles provide complementary information about drug/carrier interactions and detachment. The mechanical sieving allows to assess blend stability and the air-jet sieving makes it possible to determine how easily the drug separates from carrier. For the drugs tested, the results of fine particle doses are in agreement with the Alpine air-jet sieve results. The tests used are helpful for the choice of a new carrier in the field of the development of new carriers for dry powder inhalers. PMID:17113733

  20. 47 CFR 69.105 - Carrier common line for non-price cap local exchange carriers.

    Science.gov (United States)

    2010-10-01

    ... residential and single-line business lines multiplied by the difference between the residential and single-line business End User Common Line rate cap and the lesser of $6.50 or the non-price cap local exchange... 47 Telecommunication 3 2010-10-01 2010-10-01 false Carrier common line for non-price cap...

  1. Graphene, a material for high temperature devices; intrinsic carrier density, carrier drift velocity, and lattice energy

    CERN Document Server

    Yin, Yan; Wang, Li; Jin, Kuijuan; Wang, Wenzhong

    2016-01-01

    Heat has always been a killing matter for traditional semiconductor machines. The underlining physical reason is that the intrinsic carrier density of a device made from a traditional semiconductor material increases very fast with a rising temperature. Once reaching a temperature, the density surpasses the chemical doping or gating effect, any p-n junction or transistor made from the semiconductor will fail to function. Here, we measure the intrinsic Fermi level (|E_F|=2.93k_B*T) or intrinsic carrier density (n_in=3.87*10^6 cm^-2 K^-2*T^2), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400 K. Our results show intrinsic carrier density of graphene is an order of magnitude less sensitive to temperature than those of Si or Ge, and reveal the great potentials of graphene as a material for high temperature devices. We also observe a linear decline of saturation drift velocity with increasing temperature, and identify the temperature coefficients of ...

  2. Diagnosis of the anaerobic reject water effects on WWTP operational characteristics as a precursor of bulking and foaming.

    Science.gov (United States)

    Erdirençelebi, Dilek; Küçükhemek, Murat

    2015-01-01

    This study investigates the effects observed on operational parameters in a large and full-scale wastewater treatment plant subjected to anaerobic reject water (ARW) diversion off the main line for a 3-month period and further monitoring for a 2-year period. The plant's secondary unit consists of a two-stage plug-flow-modified Bardenpho process receiving wastewater from both municipal and industrial origins. As a result, ARW was found to have a direct effect on bulking in secondary clarifiers and foaming in anaerobic digesters (AD) despite its relatively small flow rate. During the cut-off period a highly stable sludge volume index at 80 mL g(-1) level was obtained in the secondary clarifiers, effluent suspended solids concentration was reduced and continuous feeding to AD was recovered. Sludge density increased in the thickeners during hot season. Secondary clarifiers showed good and stable settleability despite low dissolved oxygen, food/microorganism ratio and high sludge retention time and ammonium levels in the biological unit. The bulking and foaming effect was presented on the plant's internal flow balance. ARW needs serious consideration for elimination by appropriate technologies because of its high potential as a multi-dimensional pollutant source, not only as a carrier of nutrients but also as a possible carrier of filamentous bacteria, which might promote chronic seeding and retention in the system. PMID:25746650

  3. T-Duality Simplifies Bulk-Boundary Correspondence

    Science.gov (United States)

    Mathai, Varghese; Thiang, Guo Chuan

    2016-07-01

    Recently, we introduced T-duality in the study of topological insulators. In this paper, we study the bulk-boundary correspondence for three phenomena in condensed matter physics, namely, the quantum Hall effect, the Chern insulator, and time reversal invariant topological insulators. In all of these cases, we show that T-duality trivializes the bulk-boundary correspondence.

  4. 7 CFR 58.211 - Packaging room for bulk products.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Packaging room for bulk products. 58.211 Section 58... Service 1 Rooms and Compartments § 58.211 Packaging room for bulk products. A separate room or area shall... dust within the packaging room and where needed, a dust collector shall be provided and...

  5. Advanced and new developments in bulk metal forming

    DEFF Research Database (Denmark)

    Bay, Niels; Wanheim, Tarras; Ravn, Bjarne Gottlieb;

    2000-01-01

    Increasing demands to manufacturing industry of faster, better and cheaper production has intensified the research and development of bulk metal forming. The present paper gives examples on European industrial research on secondary bulk metal forming processes. The R&D follows three lines of appr...

  6. Import and Export of Bulk Pharmaceuticals in 2006

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ According to customs statistics, the total import and export value of bulk pharmaceuticals (excluding chemical raw materials and bulk pesticides) in China was US$10.346 billion in 2006. The export value was US$7.482 billion - an increase of 22% over the 2005.

  7. Calculation of structurally related properties of bulk and surface Si

    International Nuclear Information System (INIS)

    The self-consistent pseudopotential method is applied to study the bulk and surface structurally related properties of Si. Equilibrium configurations are determined by minimizing the total energy of the system; the calculated bulk properties and the surface relaxation of Si are found to be in good agreement with experiment. The surface energy and the surface reconstruction of Si are briefly discussed

  8. Synthesizing Bulk Density for Soils with Abundant Rock Fragments

    Science.gov (United States)

    Vincent, K. R.; Chadwick, O. A.

    1994-01-01

    Bulk density is a fundamental soil property that is difficult to determine for gravelly to extremely gravelly soils because results vary significantly with sample volume. For such coarse soils, the representative volume (for whole-soil bulk density) should be large, but guidelines for selecting an appropriate sample volume do not exist.

  9. 27 CFR 24.301 - Bulk still wine record.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk still wine record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.301 Bulk still wine record. A proprietor who produces or receives still wine in bond, (including wine intended for use as distilling material or...

  10. 77 FR 12293 - PCBs Bulk Product v. Remediation Waste

    Science.gov (United States)

    2012-02-29

    ... AGENCY PCBs Bulk Product v. Remediation Waste AGENCY: Environmental Protection Agency (EPA). ACTION... remediation waste. The proposed reinterpretation is ] in response to questions EPA received about the... regarding PCB bulk product and PCB remediation waste under regulations promulgated at 40 CFR part 761....

  11. Stability of bulk metallic glass structure

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D.B.

    2003-06-18

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub (80-x)}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  12. Renormalization group approach to causal bulk viscous cosmological models

    International Nuclear Information System (INIS)

    The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, the causal evolution equation of the bulk viscous pressure and the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale-invariant fixed point, thereby obtaining the long-time behaviour of the scale factor

  13. Carbon nanotubes grown on bulk materials and methods for fabrication

    Science.gov (United States)

    Menchhofer, Paul A.; Montgomery, Frederick C.; Baker, Frederick S.

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  14. Bulk viscosity of spin-one color superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sa' d, Basil A.

    2009-08-27

    The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window. (orig.)

  15. Temperature dependence of bulk viscosity in water using acoustic spectroscopy

    CERN Document Server

    Holmes, M J; Povey, M J W

    2010-01-01

    Despite its fundamental role in the dynamics of compressible fluids, bulk viscosity has received little experimental attention and there remains a paucity of measured data. Acoustic spectroscopy provides a robust and accurate approach to measuring this parameter. Working from the Navier-Stokes model of a compressible fluid one can show that the bulk viscosity makes a significant and measurable contribution to the frequency-squared acoustic attenuation. Here we employ this methodology to determine the bulk viscosity of Millipore water over a temperature range of 7 to 50 degrees Celsius. The measured attenuation spectra are consistent with the theoretical predictions, while the bulk viscosity of water is found to be approximately three times larger than its shear counterpart, reinforcing its significance in acoustic propagation. Moreover, our results demonstrate that this technique can be readily and generally applied to fluids to accurately determine their temperature dependent bulk viscosities.

  16. Charge-carrier relaxation dynamics in highly ordered poly( p -phenylene vinylene): Effects of carrier bimolecular recombination and trapping

    Science.gov (United States)

    Soci, Cesare; Moses, Daniel; Xu, Qing-Hua; Heeger, Alan J.

    2005-12-01

    We have studied the charge-carrier relaxation dynamics in highly ordered poly( p -phenylene vinylene) over a broad time range using fast (t>100ps) transient photoconductivity measurements. The carrier density was also monitored (t>100fs) by means of photoinduced absorption probed at the infrared active vibrational modes. We find that promptly upon charge-carrier photogeneration, the initial polaron dynamics is governed by bimolecular recombination, while later in the subnanosecond time regime carrier trapping gives rise to an exponential decay of the photocurrent. The more sensitive transient photocurrent measurements indicate that in the low excitation regime, when the density of photocarriers is comparable to that of the trapping states (˜1016cm-3) , carrier hopping between traps along with transport via extended states determines the carrier relaxation, a mechanism that is manifested by a long-lived photocurrent “tail.” This photocurrent tail is reduced by lowering the temperature and/or by increasing the excitation density. Based on these data, we develop a comprehensive kinetic model that takes into account the bipolar charge transport, the free-carrier bimolecular recombination, the carrier trapping, and the carrier recombination involving free and trapped carriers.

  17. Photoconductivity of CdTe Nanocrystal-Based Thin Films. Te2- Ligands Lead To Charge Carrier Diffusion Lengths Over 2 Micrometers

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, Ryan W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Callahan, Rebecca [National Renewable Energy Lab. (NREL), Golden, CO (United States); Reid, Obadiah G. [Univ. of Colorado, Boulder, CO (United States); Dolzhnikov, Dmitriy S. [Univ. of Chicago, IL (United States); Talapin, Dmitri V. [Univ. of Chicago, IL (United States); Rumbles, Garry [National Renewable Energy Lab. (NREL), Golden, CO (United States); Luther, Joseph M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kopidakis, Nikos [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-16

    We report on photoconductivity of films of CdTe nanocrystals (NCs) using time-resolved microwave photoconductivity (TRMC). Spherical and tetrapodal CdTe NCs with tunable size-dependent properties are studied as a function of surface ligand (including inorganic molecular chalcogenide species) and annealing temperature. Relatively high carrier mobility is measured for films of sintered tetrapod NCs (4 cm2/(V s)). Our TRMC findings show that Te2- capped CdTe NCs show a marked improvement in carrier mobility (11 cm2/(V s)), indicating that NC surface termination can be altered to play a crucial role in charge-carrier mobility even after the NC solids are sintered into bulk films.

  18. Influence of Blend Ratio and Processing Additive on Free Carrier Yield and Mobility in PTB7:PC71BM Photovoltaic Solar Cells

    Science.gov (United States)

    2016-01-01

    Charge separation and extraction dynamics were investigated in high-performance bulk heterojunction solar cells made from the polymer PTB7 and the soluble fullerene PC71BM on a broad time scale from subpicosecond to microseconds using ultrafast optical probing of carrier drift and the integral-mode photocurrent measurements. We show that the short circuit current is determined by the separation of charge pairs into free carriers, which is strongly influenced by blend composition. This separation is found to be efficient in fullerene-rich blends where a high electron mobility of >0.1 cm2 V–1 s–1 is observed in the first 10 ps after excitation. Morphology optimization using the solvent additive 1,8-diiodooctane (DIO) doubles the charge pair separation efficiency and the short-circuit current. Carrier extraction at low internal electric field is slightly faster from the cells prepared with DIO, which can reduce recombination losses and enhance a fill factor. PMID:27293495

  19. Metal-insulator transition in SrTiO(3-x) thin films induced by frozen-out carriers.

    Science.gov (United States)

    Liu, Z Q; Leusink, D P; Wang, X; Lü, W M; Gopinadhan, K; Annadi, A; Zhao, Y L; Huang, X H; Zeng, S W; Huang, Z; Srivastava, A; Dhar, S; Venkatesan, T; Ariando

    2011-09-30

    We report optical, electrical and magnetotransport properties of oxygen deficient SrTiO(3) (SrTiO(3-x)) thin films fabricated by pulsed laser deposition technique. The oxygen vacancies (O(vac)) in the thin film are expected to be uniform. By comparing its electrical properties to those of bulk SrTiO(3-x), it was found that O(vac) in bulk SrTiO(3-x) is far from uniform over the whole material. The metal-insulator transition (MIT) observed in the SrTiO(3-x) film was found to be induced by the carrier freeze-out effect. The low temperature frozen state can be reexcited by Joule heating, electric and intriguingly magnetic field. PMID:22112172

  20. DYNAMIC RESPONSE ANALYSIS OF CARRIER-BASED AIRCRAFT DURING LANDING

    Institute of Scientific and Technical Information of China (English)

    段萍萍; 聂宏; 魏小辉

    2013-01-01

    In view of the complexity of landing on the deck of aircraft carrier ,a systematic model ,composed of six-degree-of-freedom mathematic model of carrier-based aircraft ,four-degree-of-freedom model of landing gears and six-degree-of-freedom mathematic model of carrier , is established in the Matlab-Simulink environment , with damping function of landing gears and dynamic characteristics of tires being considered .The model ,where the car-rier movement is introduced ,is applicable for any abnormal landing condition .Moreover ,the equations of motion and relevant parameter are also derived .The dynamic response of aircraft is calculated via the variable step-size Runge-Kuta algorithm .The effect of attitude angles of aircraft and carrier movement during the process of landing is illustrated in details .The analytical results can provide some reference for carrier-based aircraft design and main-tenance .

  1. Characteristics of participants in a gestational carrier program.

    Science.gov (United States)

    Braverman, A M; Corson, S L

    1992-08-01

    Genetic parents and gestational carriers in our gestational carrier program were evaluated by psychodiagnostic interview and by the Minnesota Multiphasic Personality Interview-2 (MMPI-2), a widely used objective psychological test, to identify psychopathology and describe personality characteristics. Overall, participants exhibited no overt psychopathology. Personality differences were found between gestational carriers and genetic mothers and genetic fathers and mothers. Clinical interviews revealed that gestational carriers tended to be the dominant partner in the relationship, were motivated by a wish to help an infertile couple, enjoyed being pregnant, showed narcissistic needs, and expressed a wish for secondary financial gain. The majority of gestational carriers stated that they had considered becoming a traditional surrogate but felt they could not surrender a child that was genetically theirs. These results indicate that there is not any predisposing psychopathology which attracts participants to the gestational carrier program.

  2. On the effects of blending, physicochemical properties, and their interactions on the performance of carrier-based dry powders for inhalation - A review.

    Science.gov (United States)

    Kaialy, Waseem

    2016-09-01

    Blending drug and carrier powders to produce homogeneous drug-carrier adhesive mixtures is a key step in the production of dry powder inhaler (DPI) formulations. Although the blending conditions can result in different conclusions or probably change the outcome of a study entirely if being selected differently, there is a scarcity of data on the influence of blending processes on the physicochemical properties of bulk powder formulations and the follow-on effects on DPI performance. This paper provides an overview of the interactions between variables related to blending conditions (e.g. blending equipment, time, speed and sequence as well as environmental humidity) and powder physicochemical properties (e.g. size distribution, shape distribution, density, anomeric composition, electrostatic charge, surface, and bulk properties), and their effects on the performance of adhesive mixtures for inhalation in terms of drug content homogeneity, drug-carrier adhesion, and drug aerosolisation behaviour. The relevance of carrier payload, batch size and segregation was also discussed. Challenges and future directions were identified. This review therefore contributes towards a better understanding of the blending process, powder physicochemical properties, and their interlinked effects on the fundamental understanding of adhesive mixtures for inhalation. The knowledge gained is essential to ensure optimum blending and thereby controlled functionality of DPIs. PMID:27291646

  3. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Nicola H. Perry

    2016-10-01

    Full Text Available Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic, and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER, Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance.

  4. A Silicon Micromachined Gyroscope Driven by the Rotating Carrier Self

    Institute of Scientific and Technical Information of China (English)

    Fuxue Zhang; Xu Mao; Yu Liu; Nan Zhang; Wei Zhang

    2006-01-01

    This paper reported a silicon micromachined gyroscope which is driven by the rotating carrier's angular velocity, the silicon was manufactured by anisotropy etching. The design, fabrication and packing of the sensing element were introduced in the paper. The imitation experimentation and performance test have certificated that the principle of the gyroscope is correct and the gyroscope can be used to sense yawing or pitching angular velocity of the rotating carrier, and the angular velocity of the rotating carrier itself.

  5. Carrier Statistics and Quantum Capacitance Models of Graphene Nanoscroll

    Directory of Open Access Journals (Sweden)

    M. Khaledian

    2014-01-01

    schematic perfect scroll-like Archimedes spiral. The DOS model was derived at first, while it was later applied to compute the carrier concentration and quantum capacitance model. Furthermore, the carrier concentration and quantum capacitance were modeled for both degenerate and nondegenerate regimes, along with examining the effect of structural parameters and chirality number on the density of state and carrier concentration. Latterly, the temperature effect on the quantum capacitance was studied too.

  6. Exploring Quaternized Hydroxyethylcellulose as Potential Gene Carriers

    Institute of Scientific and Technical Information of China (English)

    丁菲; 尤俊; 翁小成; 周金平; 章晓联; 周翔; 张俐娜

    2012-01-01

    Cationic polysaccharides have been receiving more attentions and used as nonviral gene delivery vectors. In this paper, quaternized hydroxyethylcellulose (QHEC) derivatives were studied as gene carriers for their efficient DNA binding abilities. All QHECs could form stable QHEC/DNA complexes and resist the degradation of DNase I. And the dynamic light scatter (DLS) results showed that all QHEC/DNA complexes could form compact particles. These QHEC/DNA complexes exhibited effective transfeetion abilities in comparison to the naked DNA. The cytotox- icities of QHEC and QHEC/DNA complexes were also evaluated in four cell lines which were relatively low com- pared with 25 kDa bPEI. All results indicated that these quaternized hydroxyethylcelluloses could be used as poten- tial gene delivery vectors.

  7. Carbon phosphide monolayers with superior carrier mobility

    Science.gov (United States)

    Wang, Gaoxue; Pandey, Ravindra; Karna, Shashi P.

    2016-04-01

    Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics.Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great

  8. Microemulsions as carriers for therapeutic molecules.

    Science.gov (United States)

    Mehta, Surinder K; Kaur, Gurpreet

    2010-01-01

    The thrust for finding newer drug delivery systems for exiting therapeutic molecules has opened a wide window for colloidal systems. Due to the presence of different domains of variable polarity in the microemulsion systems, they show a huge potential to be used as drug delivery vehicles for a variety of drugs. The use of microemulsion as drug delivery vehicles through a number of routes has engaged a large number of research groups in this area. Microemulsion media finds several applications ranging from drug delivery to drug nanoparticle templating due to its ability to enhance solubility, stability and bioavailability. This review on patent articles recounts the patent literature dealing with different kind of microemulsion carriers used via different routes, solubility and permeability enhancement and its use as a template for nanoparticle synthesis. PMID:19807681

  9. Hot carrier injection degradation under dynamic stress

    Institute of Scientific and Technical Information of China (English)

    Ma Xiao-Hua; Cao Yan-Rong; Hao Yue; Zhang Yue

    2011-01-01

    In this paper, we have studied hot carrier injection (HCI) under alternant stress. Under different stress modes, different degradations are obtained from the experiment results. The different alternate stresses can reduce or enhance the HC effect, which mainly depends on the latter condition of the stress cycle. In the stress mode A (DC stress with electron injection), the degradation keeps increasing. In the stress modes B (DC stress and then stress with the smallest gate injection) and C (DC stress and then stress with hole injection under Vg=0V and Vd = 1.8 V), recovery appears in the second stress period. And in the stress mode D (DC stress and then stress with hole injection under Vg = -1.8 V and Vd = 1.8 V), as the traps filled in by holes can be smaller or greater than the generated interface states, the continued degradation or recovery in different stress periods can be obtained.

  10. Blind Estimation of Multiple Carrier Frequency Offsets

    CERN Document Server

    Yu, Yuanning; Poor, H Vincent; Koivunen, Visa

    2007-01-01

    Multiple carrier-frequency offsets (CFO) arise in a distributed antenna system, where data are transmitted simultaneously from multiple antennas. In such systems the received signal contains multiple CFOs due to mismatch between the local oscillators of transmitters and receiver. This results in a time-varying rotation of the data constellation, which needs to be compensated for at the receiver before symbol recovery. This paper proposes a new approach for blind CFO estimation and symbol recovery. The received base-band signal is over-sampled, and its polyphase components are used to formulate a virtual Multiple-Input Multiple-Output (MIMO) problem. By applying blind MIMO system estimation techniques, the system response is estimated and used to subsequently transform the multiple CFOs estimation problem into many independent single CFO estimation problems. Furthermore, an initial estimate of the CFO is obtained from the phase of the MIMO system response. The Cramer-Rao Lower bound is also derived, and the la...

  11. Take advantage of your insurance carrier

    Energy Technology Data Exchange (ETDEWEB)

    Carlow, S.M.

    1990-02-01

    The primary objective of the developer of an independent energy facility is to make a profit through the sale of electricity and steam. The most effective way to achieve this objective is to design, build and operate a facility in a way that maximizes its availability and efficiency without increasing expenses. A property carrier has a range of insurance products and engineering services designed not only to transfer risk but to increase availability and efficiency and reduce the cost of operating and maintaining a facility. The independent energy producer can benefit by taking full advantage of traditional and specialty insurance products as well as engineering services that are available today. There is a whole range of insurance products that apply during the various stages of pre-construction, construction, testing and commercial operation, and these are described.

  12. Carrier Aggregation for LTE-Advanced

    DEFF Research Database (Denmark)

    Pedersen, Klaus Ingemann; Frederiksen, Frank; Rosa, Claudio;

    2011-01-01

    aggregated. This paper presents a summary of the supported CA scenarios as well as an overview of the CA functionality for LTE-Advanced with special emphasis on the basic concept, control mechanisms, and performance aspects. The discussion includes definitions of the new terms primary cell (PCell) and......Carrier aggregation (CA) is one of the key features for LTE-Advanced. By means of CA, users gain access to a total bandwidth of up to 100 MHz in order to meet the IMT-Advanced requirements. The system bandwidth may be contiguous, or composed of several non-contiguous bandwidth chunks, which are...... secondary cell (SCell), mechanisms for activation and deactivation of CCs, and the new cross-CC scheduling functionality for improved control channel optimizations. We also demonstrate how CA can be used as an enabler for simple yet effective frequency domain interference management schemes. In particular...

  13. Quasiequilibrium nonlinearities in Faraday and Kerr rotation from spin-polarized carriers in GaAs

    Science.gov (United States)

    Joshua, Arjun; Venkataraman, V.

    2010-01-01

    Semiconductor Bloch equations (SBEs), which microscopically describe optical properties in terms of the dynamics of a Coulomb interacting, spin-unpolarized electron-hole plasma, can be solved in two limits: the coherent and the quasiequilibrium regimes. Recently, Nemec et al. [1] reported circularly polarized pump-probe absorption spectra in the quasiequilibrium regime for carrier spin-polarized bulk GaAs at room temperature, which lacked a suitable microscopic theoretical understanding. We have very recently explained their results by solving the spin-SBEs in the quasiequilibrium regime (spin-Bethe-Salpeter equation), and accounted for spin-dependent mechanisms of optical nonlinearity [2]. Here, we extend our theory to the microscopic calculation of Kerr and Faraday rotation in the quasiequilibrium regime, for which there are no experimental or theoretical results available.

  14. A Systems View of the Differences between APOE ε4 Carriers and Non-carriers in Alzheimer's Disease.

    Science.gov (United States)

    Jiang, Shan; Tang, Ling; Zhao, Na; Yang, Wanling; Qiu, Yu; Chen, Hong-Zhuan

    2016-01-01

    APOE ε4 is the strongest genetic risk factor for late-onset Alzheimer's disease (AD) and accounts for 50-65% of late-onset AD. Late-onset AD patients carrying or not carrying APOE ε4 manifest many clinico-pathological distinctions. Thus, we applied a weighted gene co-expression network analysis to identify specific co-expression modules in AD based on APOE ε4 stratification. Two specific modules were identified in AD APOE ε4 carriers and one module was identified in non-carriers. The hub genes of one module of AD APOE ε4 carriers were ISOC1, ENO3, GDF10, GNB3, XPO4, ACLY and MATN2. The other module of AD APOE ε4 carriers consisted of 10 hub genes including ANO3, ARPP21, HPCA, RASD2, PCP4 and ADORA2A. The module of AD APOE ε4 non-carriers consisted of 16 hub genes including DUSP5, TNFRSF18, ZNF331, DNAJB5 and RIN1. The module of AD APOE ε4 carriers including ISOC1 and ENO3 and the module of non-carriers contained the most highly connected hub gene clusters. mRNA expression of the genes in the cluster of the ISOC1 and ENO3 module of carriers was shown to be correlated in a time-dependent manner under APOE ε4 treatment but not under APOE ε3 treatment. In contrast, mRNA expression of the genes in the cluster of non-carriers' module was correlated under APOE ε3 treatment but not under APOE ε4 treatment. The modules of carriers demonstrated genetic bases and were mainly enriched in hereditary disorders and neurological diseases, energy metabolism-associated signaling and G protein-coupled receptor-associated pathways. The module including ISOC1 and ENO3 harbored two conserved promoter motifs in its hub gene cluster that could be regulated by common transcription factors and miRNAs. The module of non-carriers was mainly enriched in neurological, immunological and cardiovascular diseases and was correlated with Parkinson's disease. These data demonstrate that AD in APOE ε4 carriers involves more genetic factors and particular biological processes, whereas AD

  15. Fertility preservation in BRCA mutation carriers.

    Science.gov (United States)

    Revelli, Alberto; Salvagno, Francesca; Delle Piane, Luisa; Casano, Simona; Evangelista, Francesca; Pittatore, Giulia; Razzano, Alessandra; Marchino, Gian L; Gennarelli, Gianluca; Benedetto, Chiara

    2016-10-01

    According to enhanced long-term survival rates of these patients, interest in fertility preservation for young women facing gonadotoxic therapies is increasing. Women who carry a mutation in the BRCA1 or BRCA2 gene have a specifically increased lifetime risk of developing breast and tubo-ovarian cancer. Moreover, they are at high risk of undergoing premature infertility due to the medical interventions that are often performed in order to reduce cancer risk or treat an already existing malignancy. Fertility issues are relevant for healthy BRCA mutation carriers, whose family-planning decisions are often influenced by the need of prophylactic bilateral salpingo-oophorectomy at young age. In BRCA mutation carriers who have a breast cancer at young age, the oncostatic treatment is associated with a significant ovarian toxicity linked to chemotherapy as well as to the long lasting hormonotherapy and to the need of delaying pregnancy for several years. Prompt counselling about different fertility preservation options should be offered to all young girls and women at high risk of ovarian insufficiency and infertility. Validated techniques to preserve fertility include oocyte and embryo cryopreservation, while experimental techniques include ovarian suppression with GnRH-analogs during chemotherapy and ovarian tissue cryopreservation. The choice of the best strategy depends on age, type of chemotherapy, partner status, cancer type, time available for fertility preservation intervention and the risk of ovarian metastasis. All available options should be offered and can be performed alone or in combination. A crucial point is to avoid a significant delay to cancer treatment. PMID:26997146

  16. Carrier-Density-Dependent Lattice Stability in InSb

    International Nuclear Information System (INIS)

    The ultrafast decay of the x-ray diffraction intensity following laser excitation of an InSb crystal has been utilized to observe carrier dependent changes in the potential energy surface. For the first time, an abrupt carrier dependent onset for potential energy surface softening and the appearance of accelerated atomic disordering for a very high average carrier density have been observed. Inertial dynamics dominate the early stages of crystal disordering for a wide range of carrier densities between the onset of crystal softening and the appearance of accelerated atomic disordering

  17. Obstacle avoidance and path planning for carrier aircraft launching

    Directory of Open Access Journals (Sweden)

    Wu Yu

    2015-06-01

    Full Text Available Launching safety and efficiency are important indexes to measure the fighting capacity of carrier. The study on path planning for taxi of carrier aircraft launching under actual deck environment is of great significance. In actual deck scheduling, manual command is applied to taxi of carrier aircraft, which has negative effects on the safety of staff and carrier aircraft launching. In consideration of both the safety and efficiency of carrier aircraft launching, the key elements of the problem are abstracted based on the analysis of deck environment, carrier aircraft maneuver performance and task requirements. According to the problem description, the mathematical model is established including various constraints. The carrier aircraft and the obstacles are reasonably simplified as circle and polygons respectively. What’s more, the proposed collision detection model reduces the calculations. Aimed at the features of model, the theory of model predictive control (MPC is applied to the path search. Then a dynamic weight heuristic function is designed and a dynamic multistep optimization algorithm is proposed. Taking the Nimitz-class aircraft carrier as an example, the paths from parking place to catapult are planned, which indicate the rationality of the model and the effectiveness of the algorithm by comparing the planning results under different simulation environments. The main contribution of research is the establishment of obstacle avoidance and path planning model. In addition, it provides the solution of model and technological foundations for comprehensive command and real-time decision-making of the carrier aircraft.

  18. Joint Iterative Carrier Synchronization and Signal Detection Employing Expectation Maximization

    DEFF Research Database (Denmark)

    Zibar, Darko; de Carvalho, Luis Henrique Hecker; Estaran Tolosa, Jose Manuel;

    2014-01-01

    In this paper, joint estimation of carrier frequency, phase, signal means and noise variance, in a maximum likelihood sense, is performed iteratively by employing expectation maximization. The parameter estimation is soft decision driven and allows joint carrier synchronization and data detection...... and nonlinear phase noise, compared to digital phase-locked loop (PLL) followed by hard decisions. Additionally, soft decision driven joint carrier synchronization and detection offers an improvement of 0.5 dB in terms of input power compared to hard decision digital PLL based carrier synchronization...

  19. Trapping of the Enoyl-Acyl Carrier Protein Reductase-Acyl Carrier Protein Interaction.

    Science.gov (United States)

    Tallorin, Lorillee; Finzel, Kara; Nguyen, Quynh G; Beld, Joris; La Clair, James J; Burkart, Michael D

    2016-03-30

    An ideal target for metabolic engineering, fatty acid biosynthesis remains poorly understood on a molecular level. These carrier protein-dependent pathways require fundamental protein-protein interactions to guide reactivity and processivity, and their control has become one of the major hurdles in successfully adapting these biological machines. Our laboratory has developed methods to prepare acyl carrier proteins (ACPs) loaded with substrate mimetics and cross-linkers to visualize and trap interactions with partner enzymes, and we continue to expand the tools for studying these pathways. We now describe application of the slow-onset, tight-binding inhibitor triclosan to explore the interactions between the type II fatty acid ACP from Escherichia coli, AcpP, and its corresponding enoyl-ACP reductase, FabI. We show that the AcpP-triclosan complex demonstrates nM binding, inhibits in vitro activity, and can be used to isolate FabI in complex proteomes. PMID:26938266

  20. A Systems View of the Differences between APOE ε4 Carriers and Non-carriers in Alzheimer’s Disease

    Science.gov (United States)

    Jiang, Shan; Tang, Ling; Zhao, Na; Yang, Wanling; Qiu, Yu; Chen, Hong-Zhuan

    2016-01-01

    APOE ε4 is the strongest genetic risk factor for late-onset Alzheimer’s disease (AD) and accounts for 50–65% of late-onset AD. Late-onset AD patients carrying or not carrying APOE ε4 manifest many clinico-pathological distinctions. Thus, we applied a weighted gene co-expression network analysis to identify specific co-expression modules in AD based on APOE ε4 stratification. Two specific modules were identified in AD APOE ε4 carriers and one module was identified in non-carriers. The hub genes of one module of AD APOE ε4 carriers were ISOC1, ENO3, GDF10, GNB3, XPO4, ACLY and MATN2. The other module of AD APOE ε4 carriers consisted of 10 hub genes including ANO3, ARPP21, HPCA, RASD2, PCP4 and ADORA2A. The module of AD APOE ε4 non-carriers consisted of 16 hub genes including DUSP5, TNFRSF18, ZNF331, DNAJB5 and RIN1. The module of AD APOE ε4 carriers including ISOC1 and ENO3 and the module of non-carriers contained the most highly connected hub gene clusters. mRNA expression of the genes in the cluster of the ISOC1 and ENO3 module of carriers was shown to be correlated in a time-dependent manner under APOE ε4 treatment but not under APOE ε3 treatment. In contrast, mRNA expression of the genes in the cluster of non-carriers’ module was correlated under APOE ε3 treatment but not under APOE ε4 treatment. The modules of carriers demonstrated genetic bases and were mainly enriched in hereditary disorders and neurological diseases, energy metabolism-associated signaling and G protein-coupled receptor-associated pathways. The module including ISOC1 and ENO3 harbored two conserved promoter motifs in its hub gene cluster that could be regulated by common transcription factors and miRNAs. The module of non-carriers was mainly enriched in neurological, immunological and cardiovascular diseases and was correlated with Parkinson’s disease. These data demonstrate that AD in APOE ε4 carriers involves more genetic factors and particular biological processes

  1. CARRIER PREPARATION BUILDING MATERIALS HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    E.F. Loros

    2000-06-28

    The Carrier Preparation Building Materials Handling System receives rail and truck shipping casks from the Carrier/Cask Transport System, and inspects and prepares the shipping casks for return to the Carrier/Cask Transport System. Carrier preparation operations for carriers/casks received at the surface repository include performing a radiation survey of the carrier and cask, removing/retracting the personnel barrier, measuring the cask temperature, removing/retracting the impact limiters, removing the cask tie-downs (if any), and installing the cask trunnions (if any). The shipping operations for carriers/casks leaving the surface repository include removing the cask trunnions (if any), installing the cask tie-downs (if any), installing the impact limiters, performing a radiation survey of the cask, and installing the personnel barrier. There are four parallel carrier/cask preparation lines installed in the Carrier Preparation Building with two preparation bays in each line, each of which can accommodate carrier/cask shipping and receiving. The lines are operated concurrently to handle the waste shipping throughputs and to allow system maintenance operations. One remotely operated overhead bridge crane and one remotely operated manipulator is provided for each pair of carrier/cask preparation lines servicing four preparation bays. Remotely operated support equipment includes a manipulator and tooling and fixtures for removing and installing personnel barriers, impact limiters, cask trunnions, and cask tie-downs. Remote handling equipment is designed to facilitate maintenance, dose reduction, and replacement of interchangeable components where appropriate. Semi-automatic, manual, and backup control methods support normal, abnormal, and recovery operations. Laydown areas and equipment are included as required for transportation system components (e.g., personnel barriers and impact limiters), fixtures, and tooling to support abnormal and recovery operations. The

  2. Optimization and Performance Analysis of Bulk-Driven Differential Amplifier

    Directory of Open Access Journals (Sweden)

    Antarpreet kaur

    2014-04-01

    Full Text Available In recent years, there has been an increasing demand for high-speed digital circuits at low power consumption. This paper presents a design of input stage of Operational Amplifier i.e cascode differential amplifier using a standard 65nm CMOS Technology.A comparison betweem gate-driven, bulk-driven and cascode bulk driven bulk-driven differential amplifier is described. The Results demonstrate that CMMR is 83.98 dB, 3-dB Bandwidth is 1.04 MHz. The circuit dissipate power of 28uWunder single supply of 1.0V.

  3. Engineering nanostructural routes for enhancing thermoelectric performance: bulk to nanoscale

    Directory of Open Access Journals (Sweden)

    Rajeshkumar eMohanraman

    2015-11-01

    Full Text Available Thermoelectricity is a very important physical property, especially its significance in heat-electricity conversion. If thermoelectric devices can be effectively applied to the recovery of the renewable energies, such as waste heat and solar energy, the energy shortage and global warming issues may be greatly relieved. This review focusses recent developments on the thermoelectric performance of a low-dimensional material, bulk nanostructured materials, conventional bulk materials etc. Particular emphasis is given on, how the nanostructure in nanostructured composites, confinement effects in one-dimensional nanowires and doping effects in conventional bulk composites plays an important role in ZT enhancement.

  4. Bulk sound velocity of porous materials at high pressures

    Institute of Scientific and Technical Information of China (English)

    耿华运; 吴强; 谭华; 蔡灵仓; 经福谦

    2002-01-01

    A correction of Walsh's method for bulk sound velocity calculation for shocked porous materials is accomplishedbased on the Wu-Jing thermodynamic equation of state. The corrected bulk velocities for solid and porous sampleswith low porosities are in good agreement with the corresponding experimental data published previously. On the basisof this corrected equation, the influence of thermoelectrons on the bulk velocity of shocked materials is discussed indetail at pressures of 50, 70 and 200 GPa. Some interesting phenomena are revealed, which seem to be the uniquefeatures of a dynamic-pressure-loading process and could not be found in static experiments.

  5. Alternative technology of nanoparticles consolidation in the bulk material

    Directory of Open Access Journals (Sweden)

    VOLKOV Georgiy Michailovich

    2016-02-01

    Full Text Available Theoretical bases and technological principles of single-stages nanoparticles conso-lidation into bulk material were offered. The theory was implemented on the model system of carbon-carbon in the process of high-temperature pyrolysis of hydrocar-bons. The bulk carbon nanomaterial with unique technical properties was produced. That made it possible to create engineering products which technical characteristics are higher than the existing level in the world. The proposed theory can be adapted to other gas-phase, liquid phase and secondary crystallization processes to create bulk nanomaterials of another chemical composition with no less unique properties.

  6. Bulk Local States and Crosscaps in Holographic CFT

    CERN Document Server

    Nakayama, Yu

    2016-01-01

    In a weakly coupled gravity theory in the anti-de Sitter space, local states in the bulk are linear superpositions of Ishibashi states for a crosscap in the dual conformal field theory. The superposition structure can be constrained either by the microscopic causality in the bulk gravity or the bootstrap condition in the boundary conformal field theory. We show, contrary to some expectation, that these two conditions are not compatible to each other in the weak gravity regime. We also present an evidence to show that bulk local states in three dimensions are not organized by the Virasoro symmetry.

  7. Unipolar memristive switching in bulk positive temperature coefficient ceramic thermistor

    Science.gov (United States)

    Wu, Hongya; Wang, Caihui; Fu, Hua; Zhou, Ji; Zheng, Shuzhi

    2016-01-01

    A memristive switching phenomena was investigated in macroscale bulk positive temperature coefficient (PTC) thermosensitive ceramics. (BaxSr1-x)TiO3, which is a well-known PTC thermistor, was taken as an example to analyze the memristive behavior of those macroscale bulk ceramics. Hysteretic current-voltage (I-V) characteristics, which are the features of memristor were obtained. The origin of the effect is attributed to the PTC thermosensitive characteristic of the bulk ceramics, and a switching mechanism driven by competing field-driven heat generation and heat dissipation was proposed.

  8. Spontaneous localization of bulk fields: the six-dimensional case

    International Nuclear Information System (INIS)

    We study N=2 supersymmetric gauge theories with d=6 bulk and d=4 brane fields charged under a U(1) gauge symmetry. Radiatively induced Fayet-Iliopoulos terms lead to an instability of the bulk fields. We compute the profile of the bulk zero modes and observe the phenomenon of spontaneous localization towards the position of the branes. While this mechanism is quite similar to the d=5 case, the mass spectrum of the excited Kaluza-Klein modes shows a crucial difference

  9. Negative Effects of Sludge Bulking in Membrane Bio-Reactor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; HUANG Zhi; REN Nanqi; MENG Qingjuan

    2006-01-01

    Sludge bulking property of membrane bio-reactor was investigated in this study through contrast research. When the sludge bulking appeared, the removal efficiency of COD in membrane bio-reactor increased slightly through the function of filamentous bacteria. However, the negative effects of the higher net water-head differential pressures, the high block rate of membrane pore and the great quantity of filamentous bacteria at the external surface presented at the same time. Thus, plenty of methods should be performed to control sludge bulking once it happened in membrane bio-reactor.

  10. Theoretical evaluation of bulk viscosity: Expression for relaxation time

    Science.gov (United States)

    Hossein Mohammad Zaheri, Ali; Srivastava, Sunita; Tankeshwar, K.

    2007-10-01

    A theoretical calculation of bulk viscosity has been carried out by deriving an expression for the relaxation time which appears in the formula for bulk viscosity derived by Okumura and Yonezawa. The expression involved a pair distribution function and interaction potential. Numerical results have been obtained over a wide range of densities and temperatures for Lennard-Jones fluids. It is found that our results provide a good description of bulk viscosity as has been judged by comparing the results with nonequilibrium molecular dynamics results. In addition, our results demonstrate the importance of the multiparticle correlation function.

  11. Eco Issues in Bulk Materials Handling Technologies in Ports

    Directory of Open Access Journals (Sweden)

    Nenad Zrnić

    2011-09-01

    Full Text Available This paper deals with eco issues in bulk materials handling in ports. Solid, free-flowing materials are said to be in bulk. Bulk materials handling is very difficult, because it incorporates all the features of liquids, gasses and mass solids. Energy efficiency, dust emissions in nearby environment, dust explosions, jamming, noise, handling of hazardous materials and protection of materials from contamination are issues that will be considered in this paper. Here are also presented possible solutions for some of these issues

  12. Engineering Nanostructural Routes for Enhancing Thermoelectric Performance: Bulk to Nanoscale

    Science.gov (United States)

    Mohanraman, Rajeshkumar; Lan, Tian-Wey; Hsiung, Te-Chih; Amada, Dedi; Lee, Ping-Chung; Ou, Min-Nan; Chen, Yang-Yuan

    2015-01-01

    Thermoelectricity is a very important phenomenon, especially its significance in heat-electricity conversion. If thermoelectric devices can be effectively applied to the recovery of the renewable energies, such as waste heat and solar energy, the energy shortage, and global warming issues may be greatly relieved. This review focusses recent developments on the thermoelectric performance of a low-dimensional material, bulk nanostructured materials, conventional bulk materials etc. Particular emphasis is given on, how the nanostructure in nanostructured composites, confinement effects in one-dimensional nanowires and doping effects in conventional bulk composites plays an important role in ZT enhancement. PMID:26913280

  13. Heterogeneous nucleation promotes carrier transport in solution-processed organic field-effect transistors

    KAUST Repository

    Li, Ruipeng

    2012-09-04

    A new way to investigate and control the growth of solution-cast thin films is presented. The combination of in situ quartz crystal microbalance measurements with dissipation capabilities (QCM-D) and in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) in an environmental chamber provides unique quantitative insights into the time-evolution of the concentration of the solution, the onset of nucleation, and the mode of growth of the organic semiconductor under varied drying conditions. It is demonstrated that careful control over the kinetics of solution drying enhances carrier transport significantly by promoting phase transformation predominantly via heterogeneous nucleation and sustained surface growth of a highly lamellar structure at the solid-liquid interface at the expense of homogeneous nucleation. A new way to investigate and control the growth of drop-cast thin films is presented. The solution-processing of small-molecule thin films of TIPS-pentacene is investigated using time-resolved techniques to reveal the mechanisms of nucleation and growth leading to solid film formation. By tuning the drying speed of the solution, the balance between surface and bulk growth modes is altered, thereby controlling the lamellar formation and tuning the carrier mobility in organic field-effect transistors Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Charge trapping and carrier transport mechanism in silicon-rich silicon oxynitride

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhenrui [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico)]. E-mail: yinaoep@yahoo.mx; Aceves, Mariano [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico); Carrillo, Jesus [CIDS, BUAP, Puebla, Pue. (Mexico); Lopez-Estopier, Rosa [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico)

    2006-12-05

    The charge-trapping and carrier transport properties of silicon-rich silicon oxynitride (SRO:N) were studied. The SRO:N films were deposited by low pressure chemical vapor deposition. Infrared (IR) and transmission electron microscopic (TEM) measurements were performed to characterize their structural properties. Capacitance versus voltage and current versus voltage measurements (I-V) were used to study the charge-trapping and carrier transport mechanism. IR and TEM measurements revealed the existence of Si nanodots in SRO:N films. I-V measurements revealed that there are two conduction regimes divided by a threshold voltage V {sub T}. When the applied voltage is smaller than V {sub T}, the current is dominated by the charge transfer between the SRO:N and substrate; and in this regime only dynamic charging/discharging of the SRO:N layer is observed. When the voltage is larger than V {sub T}, the current increases rapidly and is dominated by the Poole-Frenkel mechanism; and in this regime, large permanent trapped charge density is obtained. Nitrogen incorporation significantly reduced the silicon nanodots or defects near the SRO:N/Si interface. However, a significant increase of the density of silicon nanodot in the bulk of the SRO:N layer is obtained.

  15. Charge Carrier Transport and Photogeneration in P3HT:PCBM Photovoltaic Blends

    KAUST Repository

    Laquai, Frederic

    2015-05-03

    This article reviews the charge transport and photogeneration in bulk-heterojunction solar cells made from blend films of regioregular poly(3-hexylthiophene) (RR-P3HT) and methano­fullerene (PCBM). The charge transport, specifically the hole mobility in the RR-P3HT phase of the polymer:fullerene photovoltaic blend, is dramatically affected by thermal annealing. The hole mobility increases more than three orders of magnitude and reaches a value of up to 2 × 10−4 cm2 V−1 s−1 after the thermal annealing process as a result of an improved semi-crystallinity of the film. This significant increase of the hole mobility balances the electron and hole mobilities in a photovoltaic blend in turn reducing space-charge formation, and this is the most important factor for the strong enhancement of the photovoltaic efficiency compared to an as cast, that is, non-annealed device. In fact, the balanced charge carrier mobility in RR-P3HT:PCBM blends in combination with a field- and temperature-independent charge carrier generation and greatly reduced non-geminate recombination explains the large quantum efficiencies mea­sured in P3HT:PCBM photovoltaic devices.

  16. Control of polythiophene film microstructure and charge carrier dynamics through crystallization temperature

    KAUST Repository

    Marsh, Hilary S.

    2014-03-22

    The microstructure of neat conjugated polymers is crucial in determining the ultimate morphology and photovoltaic performance of polymer/fullerene blends, yet until recently, little work has focused on controlling the former. Here, we demonstrate that both the long-range order along the (100)-direction and the lamellar crystal thickness along the (001)-direction in neat poly(3-hexylthiophene) (P3HT) and poly[(3,3″-didecyl[2,2′:5′, 2″-terthiophene]-5,5″-diyl)] (PTTT-10) thin films can be manipulated by varying crystallization temperature. Changes in crystalline domain size impact the yield and dynamics of photogenerated charge carriers. Time-resolved microwave conductivity measurements show that neat polymer films composed of larger crystalline domains have longer photoconductance lifetimes and charge carrier yield decreases with increasing crystallite size for P3HT. Our results suggest that the classical polymer science description of temperature-dependent crystallization of polymers from solution can be used to understand thin-film formation in neat conjugated polymers, and hence, should be considered when discussing the structural evolution of organic bulk heterojunctions. © 2014 Wiley Periodicals, Inc.

  17. Carrier-carrier and carrier-phonon scattering in the low-density and low-temperature regime for resonantly pumped semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Lorke, M.; Jahnke, F. [Institute for Theoretical Physics, University of Bremen (Germany); Gartner, P. [Institute for Theoretical Physics, University of Bremen (Germany); National Institute for Materials Physics, POB MG-7, Bucharest-Magurele (Romania); Seebeck, J.

    2009-02-15

    We study carrier relaxation due to Coulomb scattering and interaction with LO-phonons in semiconductor quantum dots at low temperatures. Scattering for different relaxation process are evaluated for various carrier distributions that correspond to stages of the typical relaxation kinetics after optical excitation with a weak pulse, generating on average less than one electron per quantum dot. Even when the spacing of the quantum dot energy levels does not match the LO-phonon energy, we.nd that carrier-LO-phonon scattering, in addition to electronelectron and electron-hole interaction, provides efficient carrier relaxation. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. 14 CFR 255.5 - Contracts with participating carriers.

    Science.gov (United States)

    2010-01-01

    ... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS AIRLINE COMPUTER RESERVATIONS SYSTEMS § 255.5 Contracts with participating carriers. (a) No system may require a carrier to maintain any particular level of participation or buy any enhancements in its system on the basis of participation levels or enhancements selected...

  19. 27 CFR 26.117 - Action by carrier.

    Science.gov (United States)

    2010-04-01

    ... OF THE TREASURY LIQUORS LIQUORS AND ARTICLES FROM PUERTO RICO AND THE VIRGIN ISLANDS Taxpayment of Liquors and Articles in Puerto Rico Procedure at Port of Arrival § 26.117 Action by carrier. The carrier of the merchandise specified on the Form 487B shall, at the time of unlading at the port of...

  20. Heat to electricity conversion by cold carrier emissive energy harvesters

    International Nuclear Information System (INIS)

    This paper suggests a method to convert heat to electricity by the use of devices called cold carrier emissive energy harvesters (cold carrier EEHs). The working principle of such converters is explained and theoretical power densities and efficiencies are calculated for ideal devices. Cold carrier EEHs are based on the same device structure as hot carrier solar cells, but works in an opposite way. Whereas a hot carrier solar cell receives net radiation from the sun and converts some of this radiative heat flow into electricity, a cold carrier EEH sustains a net outflux of radiation to the surroundings while converting some of the energy supplied to it into electricity. It is shown that the most basic type of cold carrier EEHs have the same theoretical efficiency as the ideal emissive energy harvesters described earlier by Byrnes et al. In the present work, it is also shown that if the emission from the cold carrier EEH originates from electron transitions across an energy gap where a difference in the chemical potential of the electrons above and below the energy gap is sustained, power densities slightly higher than those given by Byrnes et al. can be achieved

  1. Characterization of the "Escherichia Coli" Acyl Carrier Protein Phosphodiesterase

    Science.gov (United States)

    Thomas, Jacob

    2009-01-01

    Acyl carrier protein (ACP) is a small essential protein that functions as a carrier of the acyl intermediates of fatty acid synthesis. ACP requires the posttranslational attachment of a 4'phosphopantetheine functional group, derived from CoA, in order to perform its metabolic function. A Mn[superscript 2+] dependent enzymatic activity that removes…

  2. Tracking Ultrafast Carrier Dynamics in Single Semiconductor Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Taylor A.J.

    2013-03-01

    Full Text Available An understanding of non-equilibrium carrier dynamics in silicon (Si nanowires (NWs and NW heterostructures is very important due to their many nanophotonic and nanoelectronics applications. Here, we describe the first measurements of ultrafast carrier dynamics and diffusion in single heterostructured Si nanowires, obtained using ultrafast optical microscopy. By isolating individual nanowires, we avoid complications resulting from the broad size and alignment distribution in nanowire ensembles, allowing us to directly probe ultrafast carrier dynamics in these quasi-one-dimensional systems. Spatially-resolved pump-probe spectroscopy demonstrates the influence of surface-mediated mechanisms on carrier dynamics in a single NW, while polarization-resolved femtosecond pump-probe spectroscopy reveals a clear anisotropy in carrier lifetimes measured parallel and perpendicular to the NW axis, due to density-dependent Auger recombination. Furthermore, separating the pump and probe spots along the NW axis enabled us to track space and time dependent carrier diffusion in radial and axial NW heterostructures. These results enable us to reveal the influence of radial and axial interfaces on carrier dynamics and charge transport in these quasi-one-dimensional nanosystems, which can then be used to tailor carrier relaxation in a single nanowire heterostructure for a given application.

  3. Quality of service modeling and analysis for carrier ethernet

    NARCIS (Netherlands)

    Malhotra, R.

    2008-01-01

    Today, Ethernet is moving into the mainstream evolving into a carrier grade technology. Termed as Carrier Ethernet it is expected to overcome most of the shortcomings of native Ethernet. It is envisioned to carry services end-to-end serving corporate data networking and broadband access demands as w

  4. Carriers of foot-and-mouth disease virus: a review

    NARCIS (Netherlands)

    Moonen, P.; Schrijver, R.

    2000-01-01

    This review describes current knowledge about persistent foot-and-mouth disease virus (FMDV) infections, the available methods to detect carrier animals, the properties of persisting virus, the immunological mechanisms, and the risk of transmission. In particular, knowledge about the carrier state,

  5. Modeling of carrier dynamics in quantum-well electroabsorption modulators

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Mørk, Jesper

    2002-01-01

    various design parameters have on the device properties, in particular how they affect the carrier dynamics and the corresponding field dynamics. A number of different types of results are presented. We calculate absorption spectra and steady-state field screening due to carrier pile-up at the separate...

  6. Cardiac involvement in carriers of Duchenne and Becker muscular dystrophy

    NARCIS (Netherlands)

    Hoogerwaard, EM; van der Wouw, PA; Wilde, AAM; Bakker, E; Ippel, PF; Oosterwijk, JC; Majoor-Krakauer, DF; van Essen, AJ; Leschot, NJ; de Visser, M

    1999-01-01

    A cross-sectional study in a cohort of DNA proven carriers of Duchenne (DMD) and Becker (BMD) muscular dystrophy was undertaken with the following objectives: (1) to estimate the frequency of electrocardiographic (ECG) and echocardiographic abnormalities; (2) to establish the proportion of carriers

  7. Spread Spectrum Modulation by Using Asymmetric-Carrier Random PWM

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Lungeanu, Florin; Sera, Dezso;

    2012-01-01

    This paper presents a new fixed carrier frequency random PWM method, where a new type of carrier wave is proposed for modulation. Based on simulations and experimental measurements, it is shown that the spread effect of the discrete components from the motor current spectra and acoustic spectra...

  8. Heat to electricity conversion by cold carrier emissive energy harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, Rune [Department of Engineering Sciences, University of Agder, Jon Lilletuns vei 9, 4879 Grimstad (Norway)

    2015-12-07

    This paper suggests a method to convert heat to electricity by the use of devices called cold carrier emissive energy harvesters (cold carrier EEHs). The working principle of such converters is explained and theoretical power densities and efficiencies are calculated for ideal devices. Cold carrier EEHs are based on the same device structure as hot carrier solar cells, but works in an opposite way. Whereas a hot carrier solar cell receives net radiation from the sun and converts some of this radiative heat flow into electricity, a cold carrier EEH sustains a net outflux of radiation to the surroundings while converting some of the energy supplied to it into electricity. It is shown that the most basic type of cold carrier EEHs have the same theoretical efficiency as the ideal emissive energy harvesters described earlier by Byrnes et al. In the present work, it is also shown that if the emission from the cold carrier EEH originates from electron transitions across an energy gap where a difference in the chemical potential of the electrons above and below the energy gap is sustained, power densities slightly higher than those given by Byrnes et al. can be achieved.

  9. 5 CFR 890.505 - Recurring premium payments to carriers.

    Science.gov (United States)

    2010-01-01

    ... § 890.505 Recurring premium payments to carriers. The procedures for payment of premiums, contingency reserve, and interest distribution to FEHB Program carriers shall be those contained in 48 CFR subpart... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Recurring premium payments to...

  10. AQUASOMES: A NOVEL CARRIER FOR DRUG DELIVERY

    Directory of Open Access Journals (Sweden)

    Vishal Sutariya

    2012-03-01

    Full Text Available Nanobiopharmaceutics involves delivery of biopharmaceutical product through different biomaterials like multifunctional nanoparticles, quantum dots, aquasomes, superparamagnetic iron oxide crystals, and liposomes dendrimers. Nanotechnology has emerged fields of biomedical research in the last few decades the presents context is an attempt to present the brief information about nanobiotechnological applications. Aquasomes are nanoparticulate carrier system but instead of being simple nanoparticles these arse three layered self assembled structures, comprised of a solid phase nanocrystalline core coated with oligomeric film to which biochemically active molecules are adsorbed with or without modification. Aquasomes are spherical 60–300 nm particles used for drug and antigen delivery. Aquasomes discovery comprises a principle from microbiology, food chemistry, biophysics and many discoveries including solid phase synthesis, supramolecular chemistry, molecular shape change and self assembly. Three types of core materials are mainly used for producing aquasomes: tin oxide, nanocrystalline carbon ceramics (diamonds and brushite (calcium phosphate dihydrate. Calcium phosphate is the core of interest, owing to its natural presence in the body. The brushite is unstable and converts to hydroxyapatite upon prolong storage. Hydroxyapatite seems, therefore, a better core for the preparation of aquasomes. It is widely used for the preparation of implants for drug delivery. The solid core provides the structural stability, while the carbohydrate coating protects against dehydration and stabilizes the biochemically active molecules. This property of maintaining the conformational integrity of bioactive molecules has led to the proposal that aquasomes have potential as a carrier system for delivery of peptide, protein, hormones, antigens and genes to specific sites. Aquasome deliver their content through specific targeting, molecular sheiling and slow

  11. Bulk modification of PDMS microchips by an amphiphilic copolymer.

    Science.gov (United States)

    Xiao, Yan; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A simple and rapid bulk-modification method based on adding an amphiphilic copolymer during the fabrication process was employed to modify PDMS microchips. Poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) was used as the additive substance. Compared to the native PDMS microchips, both the contact angle and the EOF of the bulk-modified PDMS microchips decreased. The effects of the additive loading and the pH on the EOF were investigated in detail. The bulk-modified PDMS microchips exhibited reproducible and stable EOF behavior. The application of the bulk-modified PDMS microchips was also studied and the results indicated that they could be successfully used to separate amino acids and to suppress protein adsorption.

  12. Bulk metallic glass for low noise fluxgate Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The team of Prime Photonics, Virginia Tech, and Utron Kinetics propose to demonstrate a method for fabrication of a bulk, amorphous, cobalt-rich material that...

  13. Diagnosis of mediastinal bulk disease in Hodgkin patients

    International Nuclear Information System (INIS)

    The radiographic determination of mediastinal bulk in Hodgkin disease is confusing, with numerous methods having been proposed. The authors have evaluated with chest radiography and thoracic CT 76 patients with mediastinal Hodgkin disease. Seventy-four (97%) had bulk disease as determined by at least one method. Patients were categorized according to clinical stage and symptoms, the pattern of nodal involvement, the presence of extension (E disease), and response to treatment; a subset of 37 patients was isolated. These individuals had radiographically and clinically more severe disease that responded less favorably to treatment.The average mediastinal mass diameter in these patients was 11.0 cm, the thoracic ratio 36.6%, and the tumor area 138 cm2. However, no method currently used to define bulk disease would consistently define all of these 37 patients with a poorer prognosis and outcome. The radiographic diagnosis of mediastinal bulk disease in patients with newly diagnosed Hodgkin disease should be done with caution

  14. Control over magnetic properties in bulk hybrid materials

    Science.gov (United States)

    Urban, Christian; Quesada, Adrian; Saerbeck, Thomas; Rubia, Miguel Angel De La; Garcia, Miguel Angel; Fernandez, Jose Francisco; Schuller, Ivan K.; UCSD Collaboration; Instituto de Ceramica, Madrid Collaboration; Institut Laue-Langevin, Grenoble Collaboration

    We present control of coercivity and remanent magnetization of a bulk ferromagnetic material embedded in bulk vanadium sesquioxide (V2O3) by using a standard bulk synthesis procedure. The method generalizes the use of structural phase transitions of one material to control structural and magnetic properties of another. A structural phase transition (SPT) in the V2O3 host material causes magnetic properties of Ni to change as function of temperature. The remanent magnetization and the coercivity are reversibly controlled by the SPT without additional external magnetic fields. The reversible tuning shown here opens the pathway for controlling the properties of a vast variety of magnetic hybrid bulk systems. This Work is supported by the Office of Basic Energy Science, U.S. Department of Energy, BES-DMS funded by the Department of Energy's Office of Basic Energy Science, DMR under grant DE FG02 87ER-45332.

  15. 27 CFR 19.588 - Construction of bulk conveyances.

    Science.gov (United States)

    2010-04-01

    ... compartment) shall be so arranged that it can be completely drained. (3) Each tank car or tank truck shall... device, for carrying required marks or brands shall be provided on each bulk conveyance. (6)...

  16. Bulk metallic glasses: A new class of engineering materials

    Indian Academy of Sciences (India)

    Joysurya Basu; S Ranganathan

    2003-06-01

    Bulk glass-forming alloys have emerged over the past fifteen years with attractive properties and technological promise. A number of alloy systems based on lanthanum, magnesium, zirconium, palladium, iron, cobalt and nickel have been discovered. Glass-forming ability depends on various factors like enthalpy of mixing, atomic size and multicomponent alloying. A number of processes is available to synthesise bulk metallic glasses. The crystallisation behaviour and mechanical properties of these alloys pose interesting scientific questions. Upon crystallisation many of these glasses transform to bulk nanocrystals and nanoquasicrystals. A detailed study of the structure and the crystallisation behaviour of glasses has enabled the elucidation of the possible atomic configuration in liquid alloys. Their crystallisation behaviour can be exploited to synthesise novel nanocomposite microstructures and their mechanical properties can be enhanced. A broad overview of the present status of the science and technology of bulk metallic glasses and their potential technological uses is presented.

  17. Charge carrier coherence and Hall effect in organic semiconductors

    Science.gov (United States)

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  18. Imaging ballistic carrier trajectories in graphene using scanning gate microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Sei; Masubuchi, Satoru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Dou, Ziwei; Wang, Shu-Wei; Smith, Charles G.; Connolly, Malcolm R., E-mail: mrc61@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Machida, Tomoki, E-mail: tmachida@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)

    2015-12-14

    We use scanning gate microscopy to map out the trajectories of ballistic carriers in high-mobility graphene encapsulated by hexagonal boron nitride and subject to a weak magnetic field. We employ a magnetic focusing geometry to image carriers that emerge ballistically from an injector, follow a cyclotron path due to the Lorentz force from an applied magnetic field, and land on an adjacent collector probe. The local electric field generated by the scanning tip in the vicinity of the carriers deflects their trajectories, modifying the proportion of carriers focused into the collector. By measuring the voltage at the collector while scanning the tip, we are able to obtain images with arcs that are consistent with the expected cyclotron motion. We also demonstrate that the tip can be used to redirect misaligned carriers back to the collector.

  19. Experimental and ab initio ultrafast carrier dynamics in plasmonic nanoparticles

    CERN Document Server

    Brown, Ana M; Narang, Prineha; Schwartzberg, Adam M; Goddard, William A; Atwater, Harry A

    2016-01-01

    Ultrafast pump-probe measurements of plasmonic nanostructures probe the non-equilibrium behavior of excited carriers, which involves several competing effects obscured in typical empirical analyses. Here we present pump-probe measurements of plasmonic nanoparticles along with a complete theoretical description based on first-principles calculations of carrier dynamics and optical response, free of any fitting parameters. We account for detailed electronic-structure effects in the density of states, excited carrier distributions, electron-phonon coupling, and dielectric functions which allow us to avoid effective electron temperature approximations. Using this calculation method, we obtain excellent quantitative agreement with spectral and temporal features in transient-absorption measurements. In both our experiments and calculations, we identify the two major contributions of the initial response with distinct signatures: short-lived highly non-thermal excited carriers and longer-lived thermalizing carriers.

  20. Bombarding Cancer: Biolistic Delivery of therapeutics using Porous Si Carriers

    Science.gov (United States)

    Zilony, Neta; Tzur-Balter, Adi; Segal, Ester; Shefi, Orit

    2013-08-01

    A new paradigm for an effective delivery of therapeutics into cancer cells is presented. Degradable porous silicon carriers, which are tailored to carry and release a model anti-cancer drug, are biolistically bombarded into in-vitro cancerous targets. We demonstrate the ability to launch these highly porous microparticles by a pneumatic capillary gene gun, which is conventionally used to deliver cargos by heavy metal carriers. By optimizing the gun parameters e.g., the accelerating gas pressure, we have successfully delivered the porous carriers, to reach deep targets and to cross a skin barrier in a highly spatial resolution. Our study reveals significant cytotoxicity towards the target human breast carcinoma cells following the delivery of drug-loaded carriers, while administrating empty particles results in no effect on cell viability. The unique combination of biolistics with the temporal control of payload release from porous carriers presents a powerful and non-conventional platform for designing new therapeutic strategies.

  1. Nonequilibrium carrier dynamics in transition metal dichalcogenide semiconductors

    Science.gov (United States)

    Steinhoff, A.; Florian, M.; Rösner, M.; Lorke, M.; Wehling, T. O.; Gies, C.; Jahnke, F.

    2016-09-01

    When exploring new materials for their potential in (opto)electronic device applications, it is important to understand the role of various carrier interaction and scattering processes. In atomically thin transition metal dichalcogenide semiconductors, the Coulomb interaction is known to be much stronger than in quantum wells of conventional semiconductors like GaAs, as witnessed by the 50 times larger exciton binding energy. The question arises, whether this directly translates into equivalently faster carrier-carrier Coulomb scattering of excited carriers. Here we show that a combination of ab initio band-structure and many-body theory predicts Coulomb-mediated carrier relaxation on a sub-100 fs time scale for a wide range of excitation densities, which is less than an order of magnitude faster than in quantum wells.

  2. Carrier-dependent temporal processing in an auditory interneuron.

    Science.gov (United States)

    Sabourin, Patrick; Gottlieb, Heather; Pollack, Gerald S

    2008-05-01

    Signal processing in the auditory interneuron Omega Neuron 1 (ON1) of the cricket Teleogryllus oceanicus was compared at high- and low-carrier frequencies in three different experimental paradigms. First, integration time, which corresponds to the time it takes for a neuron to reach threshold when stimulated at the minimum effective intensity, was found to be significantly shorter at high-carrier frequency than at low-carrier frequency. Second, phase locking to sinusoidally amplitude modulated signals was more efficient at high frequency, especially at high modulation rates and low modulation depths. Finally, we examined the efficiency with which ON1 detects gaps in a constant tone. As reflected by the decrease in firing rate in the vicinity of the gap, ON1 is better at detecting gaps at low-carrier frequency. Following a gap, firing rate increases beyond the pre-gap level. This "rebound" phenomenon is similar for low- and high-carrier frequencies.

  3. Magnetic forces associated with bursty bulk flows in Earth's magnetotail

    OpenAIRE

    Karlsson, Tomas; Hamrin, Maria; Nilsson, Hans; Kullen, Anita; Pitkänen, Timo

    2015-01-01

    We present the first direct measurements of magnetic forces acting on bursty bulk flow plasma in the magnetotail. The magnetic forces are determined using Cluster multispacecraft measurements. We analyze 67 bursty bulk flow (BBF) events and show that the curvature part of the magnetic force is consistently positive, acting to accelerate the plasma toward Earth between approximately 10 and 20 R-E geocentrical distances, while the magnetic field pressure gradient increasingly brakes the plasma ...

  4. Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

    2009-09-01

    Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

  5. Bulk-Boundary Duality, Gauge Invariance, and Quantum Error Correction

    CERN Document Server

    Mintun, Eric; Rosenhaus, Vladimir

    2015-01-01

    Recently, Almheiri, Dong, and Harlow have argued that the localization of bulk information in a boundary dual should be understood in terms of quantum error correction. We show that this structure appears naturally when the gauge invariance of the boundary theory is incorporated. This provides a new understanding of the non-uniqueness of the bulk fields (precursors). It suggests a close connection between gauge invariance and the emergence of spacetime.

  6. Unit-of-Use Versus Traditional Bulk Packaging

    OpenAIRE

    Tiffany So; Albert Wertheimer, Ph.D., MBA

    2012-01-01

    Background: The choice between unit-of-use versus traditional bulk packaging in the US has long been a continuous debate for drug manufacturers and pharmacies in order to have the most efficient and safest practices. Understanding the benefits of using unit-of-use packaging over bulk packaging by US drug manufacturers in terms of workflow efficiency, economical costs and medication safety in the pharmacy is sometimes challenging.Methods: A time-saving study comparing the time saved using unit...

  7. The Economics of Bulk Water Transport in Southern California

    OpenAIRE

    Andrew Hodges; Kristiana Hansen; Donald McLeod

    2014-01-01

    Municipalities often face increasing demand for limited water supplies with few available alternative sources. Under some circumstances, bulk water transport may offer a viable alternative. This case study documents a hypothetical transfer between a water utility district in northern California and urban communities located on the coast of central and southern California. We compare bulk water transport costs to those of constructing a new desalination facility, which is the current plan of ...

  8. Long-Lived Hot Carriers in III-V Nanowires.

    Science.gov (United States)

    Tedeschi, D; De Luca, M; Fonseka, H A; Gao, Q; Mura, F; Tan, H H; Rubini, S; Martelli, F; Jagadish, C; Capizzi, M; Polimeni, A

    2016-05-11

    Heat management mechanisms play a pivotal role in driving the design of nanowire (NW)-based devices. In particular, the rate at which charge carriers cool down after an external excitation is crucial for the efficiency of solar cells, lasers, and high-speed transistors. Here, we investigate the thermalization properties of photogenerated carriers by continuous-wave (cw) photoluminescence (PL) in InP and GaAs NWs. A quantitative analysis of the PL spectra recorded up to 310 K shows that carriers can thermalize at a temperature much higher than that of the lattice. We find that the mismatch between carrier and lattice temperature, ΔT, increases exponentially with lattice temperature and depends inversely on the NW diameter. ΔT is instead independent of other NW characteristics, such as crystal structure (wurtzite vs zincblende), chemical composition (InP vs GaAs), shape (tapered vs columnar NWs), and growth method (vapor-liquid-solid vs selective-area growth). Remarkably, carrier temperatures as high as 500 K are reached at the lattice temperature of 310 K in NWs with ∼70 nm diameter. While a population of nonequilibrium carriers, usually referred to as "hot carriers", is routinely generated by high-power laser pulses and detected by ultrafast spectroscopy, it is quite remarkable that it can be observed in cw PL measurements, when a steady-state population of carriers is established. Time-resolved PL measurements show that even in the thinnest NWs carriers have enough time (∼1 ns) after photoexcitation to interact with phonons and thus to release their excess energy. Nevertheless, the inability of carriers to reach a full thermal equilibrium with the lattice points to inhibited phonon emission primarily caused by the large surface-to-volume ratio of small diameter NWs. PMID:27104870

  9. Electromigration of carrier-free radionuclides. 13

    International Nuclear Information System (INIS)

    Using a special type of on line electromigration measurements of γ-emitting radionuclides in homogeneous aqueous electrolytes free of supporting materials the electromigration behaviour of the carrier-free 241Am-Am(III) in inert electrolytes, μ = 0.1 (ClO4-), T = 298.1(1) K, was studied. Basing on experimental dependencies of the overall ion mobilities of 241Am-Am(III) on pH between pH 5.5 and 12.9 the stoichiometric hydrolysis constants pβ3 = 28.8(9) and pK1 = 6.9(2) were obtained. For K4 a limitation of pK4 > 13.9(3) was possible, because no formation of anionic hydrolysis products in solutions pH 241Am-Am(III) degrees in the range pH 5.5 - 3 from +6.85(15) up to +5.50(15) · 10-4 cm2s-1V-1. Dependencies of this effect on overall ionic strength, inert electrolyte anion, and temperature of the electrolytes were studied in detail both in acidic and neutral solutions. (author)

  10. European retrievable carrier Eureca servicing by Hermes

    Science.gov (United States)

    Kerstein, L.; Dettmer, J.; Rath, W.

    1987-09-01

    It has been demonstrated that HERMES with a cargo bay configuration as depicted in figure 1 (5 m length, 3 m diam.) with Handling and Positioning Aid (HPA) and HERMES Robotic Arm (HERA) is capable to service a small platform like EURECA, which is an NSTS quarter payload. Only 1/3 of the HERMES cargo bay volume and payload mass is required for the accommodation of the payload Orbital Replaceable Units. By implementing two additional hydrazine tanks refuelling can be avoided for a two-years EURECA mission. The overall servicing configuration is described as follows: The European Retrievable Carrier EURECA-B is mechanically attached through its -y-side sill trunnion to the HERMES berthing port. The HERMES cargo bay doors with radiators are opened and oriented to earth. The HERMES Robotic Arm is equipped with a Module Service Tool (MST) ready for Orbital Replaceable Unit (ORU) exchange. The HERMES berthing port is located at the rear side of the cargo bay in order to achieve best visibility, clearance and accessibility of the HERMES Robotic Arm operation within the cargo bay and the EURECA payload area. The EURECA solar arrays and antennas remain deployed. During the servicing operation, power will be provided by the fully deployed solar arrays. In order to minimize the plume impingement effect, the solar array edge is directed to the HERMES wing.

  11. POLYURETHANE COMPOSITES AS DRUG CARRIERS:: RELEASE PATTERNS

    Directory of Open Access Journals (Sweden)

    M. V. Grigoreva

    2013-10-01

    Full Text Available Biodegradable polyurethanes attract interest of those developing composite materials for biomedical applications. One of their features is their ability to serve as carriers, or matrixes, for medicines and other bioactive compounds to produce a therapeutic effect in body through targeted and/or prolonged delivery of these compounds in the process of their controlled release from matrix. The review presents polyurethane composites as matrices for a number of drugs. The relation between structure of the composites and their degradability both in vitro and in vivo and the dependence of drug release kinetics on physicochemical properties of polyurethane matrix are highlighted. The release of drugs (cefazolin, naltrexone and piroxicam from the composites based on cross-linked polyurethanes (synthesized from laprols, Mw between 1,500 and 2,000 Da and toluylene diisocyanate demonstrated more or less the same pattern (about 10 days in vitro and three to five days in vivo. In contrast, the composites with dioxydine based on a linear polyurethanes (synthesized from oligotetramethilene glycol, Mw 1,000 Da, diphenylmethane-4,4’-diisocyanate and 1,4-butanediol retained their antimicrobial activity at least 30 days. They also showed a significantly higher breaking strength as compared to that of the composites based on cross-linked polyurethanes.

  12. Drug Carrier for Photodynamic Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Tilahun Ayane Debele

    2015-09-01

    Full Text Available Photodynamic therapy (PDT is a non-invasive combinatorial therapeutic modality using light, photosensitizer (PS, and oxygen used for the treatment of cancer and other diseases. When PSs in cells are exposed to specific wavelengths of light, they are transformed from the singlet ground state (S0 to an excited singlet state (S1–Sn, followed by intersystem crossing to an excited triplet state (T1. The energy transferred from T1 to biological substrates and molecular oxygen, via type I and II reactions, generates reactive oxygen species, (1O2, H2O2, O2*, HO*, which causes cellular damage that leads to tumor cell death through necrosis or apoptosis. The solubility, selectivity, and targeting of photosensitizers are important factors that must be considered in PDT. Nano-formulating PSs with organic and inorganic nanoparticles poses as potential strategy to satisfy the requirements of an ideal PDT system. In this review, we summarize several organic and inorganic PS carriers that have been studied to enhance the efficacy of photodynamic therapy against cancer.

  13. Low Exciton-Phonon Coupling, High Charge Carrier Mobilities, and Multiexciton Properties in Two-Dimensional Lead, Silver, Cadmium, and Copper Chalcogenide Nanostructures.

    Science.gov (United States)

    Ding, Yuchen; Singh, Vivek; Goodman, Samuel M; Nagpal, Prashant

    2014-12-18

    The development of two-dimensional (2D) nanomaterials has revealed novel physical properties, like high carrier mobilities and the tunable coupling of charge carriers with phonons, which can enable wide-ranging applications in optoelectronic and thermoelectric devices. While mechanical exfoliation of graphene and some transition metal dichalcogenides (e.g., MoS2, WSe2) has enabled their fabrication as 2D semiconductors and integration into devices, lack of similar syntheses for other 2D semiconductor materials has hindered further progress. Here, we report measurements of fundamental charge carrier interactions and optoelectronic properties of 2D nanomaterials made from two-monolayers-thick PbX, CdX, Cu2X, and Ag2X (X = S, Se) using colloidal syntheses. Extremely low coupling of charge carriers with phonons (2-6-fold lower than bulk and other low-dimensional semiconductors), high carrier mobilities (0.2-1.2 cm(2) V(-1) s(-1), without dielectric screening), observation of infrared surface plasmons in ultrathin 2D semiconductor nanostructures, strong quantum-confinement, and other multiexcitonic properties (different phonon coupling and photon-to-charge collection efficiencies for band-edge and higher-energy excitons) can pave the way for efficient solution-processed devices made from these 2D nanostructured semiconductors. PMID:26273976

  14. Cosmic no hair for braneworlds with a bulk dilaton field

    Science.gov (United States)

    Lidsey, James E.; Seery, David

    2005-11-01

    Braneworld cosmology supported by a bulk scalar field with an exponential potential is developed. A general class of separable backgrounds for both single and two-brane systems is derived, where the bulk metric components are given by products of world volume and bulk coordinates and the world-volumes represent any anisotropic and inhomogeneous solution to an effective four-dimensional Brans-Dicke theory of gravity. We deduce a cosmic no hair theorem for all ever-expanding, spatially homogeneous Bianchi world volumes and find that the spatially flat and isotropic inflationary scaling solution represents a late-time attractor when the bulk potential is sufficiently flat. The dependence of this result on the separable nature of the bulk metric is investigated by applying the techniques of Hamilton-Jacobi theory to five-dimensional Einstein gravity. We employ the spatial gradient expansion method to determine the asymptotic form of the bulk metric up to third-order in spatial gradients. It is found that the condition for the separable form of the metric to represent the attractor of the system is precisely the same as that for the four-dimensional world-volume to isotropize. We also derive the fourth-order contribution to the Hamilton-Jacobi generating functional. Finally, we conclude by placing our results within the context of the holographic approach to braneworld cosmology.

  15. Waveform control pulse magnetization for HTS bulk magnet

    Science.gov (United States)

    Ida, Tetsuya; Shigeuchi, Koji; Okuda, Sayo; Watasaki, Masahiro; Izumi, Mitsuru

    2016-03-01

    For the past 10 years, we have studied high-temperature superconducting (HTS) bulk magnets for use in electromagnetic rotating machines. If the magnetic field effectively magnetizes the HTS bulk, then the size of the motor and generator can be reduced without a reduction in output. We showed that the melt-textured Gd-Ba-Cu-O HTS bulk effectively traps a high magnetic field using waveform control pulse magnetization (WCPM). WCPM makes it possible to generate any pulsed magnetic field waveform by appropriately changing the duty ratio of the pulse width modulation. By chopping so that the pulsed magnetic field has a period of about 1ms, the WCPM technology enables active control of the rise time and suppresses magnetic flux motion that decreases magnetization efficiency. This method is also useful for any HTS bulk magnet, and the high magnetic flux density is trapped in the HTS bulk by a single pulse magnetic field. We developed a magnetizer that has a feedback system from the penetrated magnetic flux density to realize WCPM. In this research, using only a single pulse magnetic field of WCPM method at 77K, an HTS bulk with a 45mm diameter and 19mm thickness trapped a maximum magnetic field of 1.63T, which is more than 90% of the trapped magnetic flux density by FC magnetization. This result suggests that the pulse magnetizing method can replace the conventional field-cooled method and promote the practical use of HTS magnets for electromagnetic power applications.

  16. Bulk flow of halos in $\\Lambda$CDM simulation

    CERN Document Server

    Li, Ming; Gao, Liang; Jing, Yipeng; Yang, Xiaohu; Chi, Xuebin; Feng, Longlong; Kang, Xi; Lin, Weipeng; Shang, Guihua; Wang, Long; Zhao, Donghai; Zhang, Pengjie

    2012-01-01

    Analysis of the Pangu N-body simulation validates that bulk flow of halos follows Maxwellian distribution of which variance is consistent with prediction of linear perturbation theory of structure formation. We propose that consistency between observed bulk velocity and theories shall be examined at the effective scale as radius of spherical top-hat window function yielding the same smoothed velocity variance in linear theory as the sample window does. Then we compared some recently estimated bulk flows from observational samples with prediction of the $\\Lambda$CDM model we used, some results deviate the expectation at level of $\\sim 3\\sigma$ but the tension is not as severe as previously claimed. We disclose that bulk flow is weakly correlated with dipole of internal mass distribution, alignment angle between mass dipole and bulk flow has broad distribution but is peaked at $\\sim 30-50^\\circ$, meanwhile bulk flow shows little dependence on mass of halos used for estimation. In the simulation of box size $1h^...

  17. Development of conjugate shear bands during bulk simple shearing

    Science.gov (United States)

    Harris, L. B.; Cobbold, P. R.

    In rocks possessing a strong planar fabric, shear bands of constant shear sense and oriented at an oblique angle to the foliation are considered by many authors to be characteristic of a non-coaxial bulk deformation history, whereas conjugate shear bands are considered to indicate coaxial shortening. However, in two areas where bulk deformation history appears to be non-coaxial (Cap Corse, Corsica and Ile de Groix, Brittany), conjugate shear bands are observed. In order to investigate this problem, experiments were performed by bulk simple shearing using Plasticine as a rock analogue. When slip between layers of the model is permitted, shear bands of normal-fault geometry form with both the same and opposite shear sense as the bulk simple shearing at approximately the same angle with the layering (40°) irrespective of layer orientation in the undeformed state (for initial orientations of 50, 30 and 15°). Shear bands are initially formed within individual layers and may propagate across layer interfaces when further movement along these is inhibited. The existence of conjugate shear bands in Corsica and Ile de Groix is therefore not incompatible with a model of bulk simple shearing for these two regions. In field studies, one should perhaps exercise care in using shear bands to determine the kind of motion or the sense of bulk shearing.

  18. Exploring the BTZ bulk with boundary conformal blocks

    CERN Document Server

    da Cunha, Bruno Carneiro

    2016-01-01

    We point out a simple relation between the bulk field at an arbitrary radial position and the boundary OPE, by placing some old work by Ferrara, Gatto, Grillo and Parisi in the AdS/CFT context. This gives us, in principle, a prescription for extracting the classical bulk field from the boundary conformal block, and also clarifies why the latter is computed by a geodesic Witten diagram. We apply this prescription to the BTZ black hole - viewed as a pure state created by the insertion of a heavy operator in the boundary CFT_2 - and use it to relate a classical field in the bulk to a heavy-light Virasoro conformal block in the boundary. In particular, we obtain a relation between the radial bulk position and the conformal ratios in the boundary CFT. We use this to show that the singular points of the radial bulk equation occur when the dual boundary operators approach each other and that the associated bulk monodromies map to monodromies of the (appropriately transformed) conformal block, thus providing a CFT in...

  19. Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes

    International Nuclear Information System (INIS)

    Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantages of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED

  20. Multi-carrier Equalization by Restoration of RedundancY (MERRY) for Adaptive Channel Shortening in Multi-carrier Systems

    OpenAIRE

    Samir Abd Elghafar; Salaheldin M. Diab; Sallam, Bassiouny M.; Moawad I. Dessouky; El-Sayed M. El-Rabaie; Fathi E. Abd El-Samie

    2013-01-01

    This paper proposes a new blind adaptive channel shortening approach for multi-carrier systems. Theperformance of the discrete Fourier transform-DMT (DFT-DMT) system is investigated with the proposedDST-DMT system over the standard carrier serving area (CSA) loop1. Enhanced bit rates demonstratedand less complexity also involved by the simulationof the DST-DMT system.