WorldWideScience

Sample records for bulk amorphous alloy

  1. Iron - based bulk amorphous alloys

    Directory of Open Access Journals (Sweden)

    R. Babilas

    2010-07-01

    Full Text Available Purpose: The paper presents a structure characterization, thermal and soft magnetic properties analysis of Fe-based bulk amorphous materials in as-cast state and after crystallization process. In addition, the paper gives some brief review about achieving, formation and structure of bulk metallic glasses as a special group of amorphous materials.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4 metallic glass in form of ribbons and rods. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The thermal properties of the glassy samples were measured using differential thermal analysis (DTA and differential scanning calorimetry (DSC. The magnetic properties contained initial and maximum magnetic permeability, coercive force and magnetic after-effects measurements were determined by the Maxwell-Wien bridge and VSM methods.Findings: The X-ray diffraction and transmission electron microscopy investigations revealed that the studied as-cast bulk metallic glasses in form of ribbons and rods were amorphous. Two stage crystallization process was observed for studied bulk amorphous alloy. The differences of crystallization temperature between ribbons and rods with chosen thickness are probably caused by different amorphous structures as a result of the different cooling rates in casting process. The SEM images showed that studied fractures could be classified as mixed fractures with indicated two zones contained “river” and “smooth” areas. The changing of chosen soft magnetic properties (μr, Bs, Hc obtained for samples with different thickness is a result of the non-homogenous amorphous structure of tested metallic glasses. The annealing process in temperature range from 373 to 773 K causes structural relaxation of tested amorphous materials, which leads to changes in their physical properties. The qualitative

  2. Production, Properties and Applications of Bulk Amorphous Alloys

    Institute of Scientific and Technical Information of China (English)

    Tao Zhang; Akihisa Inoue

    2000-01-01

    A review is given of recent work concerned with the production method, the characteristic properties(1) Bulk amorphous system; (2) Mechanical and magnetic properties of bulkamorphous alloys; (3)application of bulk amorphous alloys.

  3. Superconducting State Parameters of Bulk Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Aditya M. Vora

    2012-12-01

    Full Text Available Well recognized empty core (EMC pseudopotential of Ashcroft is used to investigate the superconducting state parameters viz; electron-phonon coupling strength λ, Coulomb pseudopotential μ*, transition temperature TC, isotope effect exponent α and effective interaction strength NOV of some (Ni33Zr671 – xVx (x = 0, 0.05, 0.1, 0.15 bulk amorphous alloys. We have incorporated five different types of local field correction functions, proposed by Hartree (H, Taylor (T, Ichimaru-Utsumi (IU, Farid et al. (F and Sarkar et al. (S to show the effect of exchange and correlation on the aforesaid properties. Very strong influence of the various exchange and correlation functions is concluded from the present study. The TC obtained from Sarkar et al. (S local field correction function are found an excellent agreement with available theoretical data. Quadratic TC equation has been proposed, which provide successfully the TC values of bulk amorphous alloys under consideration. Also, the present results are found in qualitative agreement with other such earlier reported data, which confirms the superconducting phase in the s bulk amorphous alloys.

  4. Bulk amorphous metallic alloys: Synthesis by fluxing techniques and properties

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi; Shen, Tongde; Schwarz, R.B.

    1997-05-01

    Bulk amorphous alloys having dimensions of at least 1 cm diameter have been prepared in the Pd-Ni-P, Pd-Cu-P, Pd-Cu-Ni-P, and Pd-Ni-Fe-P systems using a fluxing and water quenching technique. The compositions for bulk glass formation have been determined in these systems. For these bulk metallic glasses, the difference between the crystallization temperature T{sub x}, and the glass transition temperature T{sub g}, {Delta}T = T{sub x} - T{sub g}, ranges from 60 to 1 10 K. These large values of {Delta}T open the possibility for the fabrication of amorphous near net-shape components using techniques such as injection molding. The thermal, elastic, and magnetic properties of these alloys have been studied, and we have found that bulk amorphous Pd{sub 40}Ni{sub 22.5}Fe{sub 17.5}P{sub 20} has spin glass behavior for temperatures below 30 K. 65 refs., 14 figs., 3 tabs.

  5. Formation and crystallization of bulk Pd82Si18 amorphous alloys

    Institute of Scientific and Technical Information of China (English)

    蒲建; 王敬丰; 肖建中; 崔昆

    2003-01-01

    Bulk amorphous Pd82Si18 alloy with the largest diameter of 8 mm was prepared by water quenching the molten alloy with flux medium in a quartz tube. The calculation result indicates that the bulk Pd82Si18 amorphous alloys have a low critical cooling rate (Rc) of 4.589 K/s or less. The experimental results show that purifying melt may improve glass forming ability(GFA) of undercooled melt, while liquid phase separation (LPS) of undercooled melt will decrease its GFA. There are some differences in crystallization experiments between bulk metallic glass and amorphous ribbons of Pd82Si18 alloys. These include the numbers of exothermic peak, glass transition temperature Tg, crystallization temperature Tx, region of undercooling liquid (ΔT=Tx-Tg) respectively. The links of cooling rates of melt and crystallization of Pd82Si18 amorphous alloys are explored.

  6. Oxygen Behavior in Bulk Amorphous Zr-base Alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Bulk Zr55Al10Ni5Cu30 metallic glass plates with a dimension of 85 mm×35mm×4 mm and a complicated plate werefabricated by injecting casting method using spongy zirconium and industrial purity aluminum, nickel and copper asraw materials. It was shown that the holding time of liquid metals at elevated temperatures had a great influence onthe oxygen content of the plates due to the contamination resulting from the atmosphere. Increasing holding timeresulted in the increase of oxygen content in the injected alloy. The glass transition temperatures of the bulk metallicglass plates are higher than that reported in the literature and crystallization temperature is lower for the one withhigher oxygen content at the same heating rate. The extension of the undercooled liquid region △Tx reaching about87 K is 3 K higher than that previously reported and 26 K higher than that with oxygen content of 0.076 wt pct forthe one with oxygen content as high as 0.065 wt pct. Therefore the oxygen content of the alloy has a significantinfluence on the glass forming ability and thermal stability of bulk metal glass. It is suggested that direct correlationbetween high glass forming ability and large △Tx is only valid for a well-defined Iow oxygen concentration or has tobe reconsidered by incorporating oxygen as an additional alloying element.

  7. Tensile and compression properties of Zr-based bulk amorphous alloy at different temperatures

    Institute of Scientific and Technical Information of China (English)

    WANG; Xu; LOU; Decheng; GAO; Zhanjun; LIU; Lei; LIANG; Hong

    2005-01-01

    Mechanical properties of the Zr41Ti14Cu12.5Ni10Be22.5 bulk amorphous alloy at different temperatures were investigated. The compression test was carried out on a Gleebe-3200 machine at 345 and 375℃, respectively, in the supercooled liquid region. It is shown that decreasing the compressive rate and increasing temperature have a similar influence trend on the compressive behavior of the bulk amorphous alloy. Room and low temperature tensile strengths were tested on the Instron materials testing system. At low temperature, the tensile strength decreased with decreasing of the testing temperature.Hardness measurement indicated that below the glass transition temperature, the hardness decreased with increasing of the annealing temperature and duration time. It,however, increased when the annealing treatment was performed above the glass transition temperature.

  8. Formation and crystallization kinetics of Nd-Fe-B-based bulk amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Ge, Hongliang; Zhang, Pengyue; Li, Dongyun; Wang, Zisheng [China Jiliang University, Magnetism Key Laboratory of Zhejiang Province, Hangzhou (China)

    2014-06-15

    In order to improve the glass-forming ability (GFA) of Nd-Fe-B ternary alloys to obtain fully amorphous bulk Nd-Fe-B-based alloy, the effects of Mo and Y doping on GFA of the alloys were investigated. It was found that the substitution of Mo for Fe and Y for Nd enhanced the GFA of the Nd-Y-Fe-Mo-B alloys. It was also revealed that the GFA of the samples was optimized by 4 at.% Mo doping and increased with theYcontent. The fully amorphous structures were all formed in the Nd{sub 6-x}Y{sub x}Fe{sub 68}Mo{sub 4}B{sub 22} (x =1-5) alloy rods with 1.5 mm-diameter. After subsequent crystallization, the devitrified Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} alloy rod exhibited a uniform distribution of grains with a coercivity of 364.1 kA/m. The crystallization behavior of Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} BMG was investigated in isothermal situation. The Avrami exponent n determined by JAM plot is lower than 2.5, implying that the crystallization is mainly governed by a growth of particles with decreasing nucleation rate. (orig.)

  9. Survey of BGFA Criteria for the Cu-Based Bulk Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    D. Janovszky

    2011-01-01

    Full Text Available To verify the effect of composition on the bulk glass forming ability (BGFA of Cu-based alloys, properties have been collected from the literature (~100 papers, more than 200 alloys. Surveying the BGFA criteria published so far, it has been found that the atomic mismatch condition of Egami-Waseda is fulfilled for all the Cu-based BGFAs, the value being above 0,3. The Zhang Bangwei criterion could be applied for the binary Cu-based alloys. The Miracle and Senkov criteria do not necessarily apply for Cu based bulk amorphous alloys. The critical thickness versus =/(+ plot of Lu and Liu extrapolates to =0.36, somewhat higher than the 0.33 value found in other BGFA alloys. The Park and Kim parameter correlates rather poorly with the critical thickness for Cu based alloys. The Cheney and Vecchino parameter is a good indicator to find the best glass former if it is possible to calculate the exact liquids projection. In 2009 Xiu-lin and Pan defined a new parameter which correlates a bit better with the critical thickness. Based on this survey it is still very difficult to find one parameter in order to characterize the real GFA without an unrealized mechanism of crystallization.

  10. Correlation between Structures of Bulk Amorphous Zr-Ti-Ni-Cu-Be Alloy in Different States

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The structures of the bulk amorphous Zr41Ti14Cu12.5Ni10.0Be22.5 alloy have been analyzed in solid, supercooled liquid and liquid with X-ray diffraction. The first coordination sphere radii and the first coordination numbers are 0.312 nm, 11.2 in solid state, 0.301 nm, 10.932 in supercooled liquid region and 0.305 nm, 11.296 in liquid state. The structures are the same in different states. But it shows some tendency to crystallizing that the first coordination sphere radius and the first coordination number drop in supercooled liquid region.

  11. Kinetics of glass transition and crystallization in multicomponent bulk amorphous alloys

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Differential scanning calorimeter (DSC) is used to investigate apparent activation energy of glass transition and crystallization of Zr-based bulk amorphous alloys by Kissinger equation under non-isothermal condition. It is shown that the glass transition behavior as well as crystallization reaction depends on the heating rate and has a characteristic of kinetic effects. After being isothermally annealed near glass transition temperature, the apparent activation energy of glass transition increases and the apparent activation energy of crystallization reaction decreases. However, the kinetic effects are independent of the pre-annealing.

  12. Glass-forming ability analysis of selected Fe-based bulk amorphous alloys

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2010-09-01

    Full Text Available Purpose: The paper mainly aims to present the structure and thermal stability of selected Fe-based bulk metallic glasses: Fe72B20Si4Nb4 and Fe43Co14Ni14B20Si5Nb4.Design/methodology/approach: The investigated samples were cast in form of the rods by the pressure die casting method. The structure analysis of the studied materials in as-cast state was carried out using XRD and TEM methods. The thermal stability associated with glass transition temperature (Tg, onset (Tx and peak (Tp crystallization temperature was examined by differential scanning calorimetry (DSC. Several parameters have been used to determine the glass-forming ability of studied alloys. The parameters of GFA included reduced glass transition temperature (Trg, supercooled liquid region (ΔTx, the stability (S and (Kgl parameter.Findings: The XRD and TEM investigations revealed that the studied as-cast metallic glasses were fully amorphous. Changes of the onset and peak crystallization temperature and the glass transition temperature as a function of glassy samples thickness were stated. The good glass-forming ability (GFA enabled casting of the Fe72B20Si4Nb4 and Fe43Co14Ni14B20Si5Nb4 glassy rods.Practical implications: The obtained examination results confirm the utility of applied investigation methods in the thermal stability analysis of examined bulk amorphous alloys. It is evident that parameters Trg, ΔTx, Kgl, S could be used to determine glass-forming ability of studied bulk metallic glasses.Originality/value: The success of fabrication of studied Fe-based bulk metallic glasses in form of rods with diameter up to 3 mm is important for the future progress in research of this group of materials.

  13. Kinetic Characteristic of Hydrogenation Zr-Ti-Cu-Ni-Be Bulk Amorphous Alloys

    Institute of Scientific and Technical Information of China (English)

    Delin PENG; Jun SHEN; Jianfei SUN; Yuyong CHEN

    2004-01-01

    The relationship between the hydrogen content and the microhardness and the charging period, the effect of hydrogen on the activation energy, the kinetics of glass transition and crystallization of Zr-Ti-Cu-Ni-Be bulk amorphous alloy were studied by differential scanning calorimetry (DSC) and the Kissinger equation. It shows that both of the hydrogen content and the microhardness are related to the charging period, and that the glass transition and crystallization behavior are associated with the heating rate, and possess the kinetic effect. Hydrogen increases the glass transition temperature and the crystallization temperature, decreasing the enthalpies in the different stages of crystallization.Hydrogen increases the activation energies of the glass transition and the crystallization and changes the kinetic effect. The dependent extent between the glass transition, the crystallization and heating rate decreases after hydrogen charging.

  14. Cyclic Fatigue Fracture of Zr55Al10Ni5Cu30 Bulk Amorphous Alloy with Quenched-in Crystallites

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The effects of quenched-in crystallites on the fracture of bulk amorphous alloys under cyclic loading condition wereinvestigated in this paper. For the fully amorphous alloy and specimen with fine crystallites the fatigue crack initiationoccurred on the surface. For the specimen with larger crystallites the crack originated from a big broken crystallitenear the surface. The average striation spacing on amorphous area is much larger than that on the crystallite.Crack initiation occurred at the crystallites is due to that the brittle crystallites broke easily under cyclic deformationcondition. The fine crystallites seemed to be protruded from the amorphous matrix and some bulges appeared onthe surface of specimen with fine crystallites under cyclic loading.

  15. Influence of Si on glass forming ability and properties of the bulk amorphous alloy Mg60Cu30Y10

    International Nuclear Information System (INIS)

    Research highlights: → The partial substitution of Cu by the right amount of Si increases the glass forming ability of the bulk amorphous alloy Mg60Cu30Y10. → The serrations size of Mg60Cu30-xY10Six is dependent on the content of Si. → The creep displacement of Mg60Cu30-xY10Six alloys decrease with increasing Si content. → The elastic modulus and nano-hardness of Mg60Cu30-xY10Six are dependent on the Si content. - Abstract: We studied the influence of partially replacing Cu by Si in the bulk amorphous alloy Mg30Cu30Y10. Glass forming ability (GFA), examined using X-ray diffraction and a differential scanning calorimeter, was increased at 1% Si, but decreased for larger Si concentrations. Nano-indentation measured nano-hardness, elastic modulus and load-displacement curves. The elastic modulus and nano-hardness increased with increasing Si content to a maximum at 2.5%. The load-displacement curves during nano-indentation revealed displacement serrations. These increased with decreasing loading rates, decreased with increasing Si content. The load-displacement curves also indicated that these bulk amorphous alloys exhibited primary creep at room temperature just like other high strength alloys. The creep displacement decreased with increasing Si content.

  16. Influence of pulsing current on the glass transition and crystallizing kinetics of a Zr base bulk amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    WU Wenfei; YAO Kefu; ZHAO Zhankui

    2004-01-01

    Based on the thermal analysis, the influence of pulsing current on the glass transition and crystallizing kinetics of Zr41.3Ti14.2Cu12.8Ni10.3Be21.4 bulk amorphous alloy has been studied. The obtained results show that after the Zr41.3Ti14.2Cu12.8Ni10.3Be21.4 bulk amorphous alloy was pretreated by high-density pulsing current at low temperature, its glass transition temperature Tg, the initial crystallizing temperature Tx and the corresponding exothermic peak of crystallization Tpi were reduced. But the temperature range of supercooled liquid ΔT=Tx-Tg is almost the same. The calculated results with Kissinger equation show that the activation energy of glass transition of the alloy pretreated is reduced significantly, while the activation energy of crystallization is basically unchanged. The influence of pulsing current on the glass transition and crystallization of the Zr41.3Ti14.2Cu12.8Ni10.3Be21.4 bulk amorphous alloy is believed to be related with the structure relaxation of the glass caused by the current.

  17. Structures of bulk amorphous Zr41Ti14Ni10Cu12.5Be22.5 alloy in amorphous, crystalline, supercooled liquid and liquid states

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The amorphous and crystal structures of Zr41Ti14Ni10Cu12.5Be22.5 alloy have been analyzed with X-ray diffractometer. The structures of bulk amorphous Zr41Ti14Ni10Cu12.5B22.5 alloy in solid, supercooled liquid and liquid states are almost of the same structure. The RDFs (Radius Distribution Function), the first coordination number, the first coordination radius, the correlation radius and atom number of the cluster were calculated for bulk amorphous Zr41Ti14Ni10Cu12.5B22.5 alloy in different states. The first coordination sphere radii and the first coordination numbers are 0.312nm, 11.2 in solid state, 0.301nm, 10.932 in supercooled liquid region and 0.305nm, 11.296 in liquid state. The crystal structure of Zr41Ti14Ni10Cu12.5B22.5 alloy is consisted of several intermetallic compounds which are CuZr2, Be2Zr, etc. The reason of formation glass for this alloy is that there is a larger resistance for atoms to rearrange and form intermetallic compounds in a long range order.

  18. Influence of Kinetic and Thermodynamic Factors on the Glass-Forming Ability of Zirconium-Based Bulk Amorphous Alloys

    OpenAIRE

    Mukherjee, S.; Schroers, J.; Johnson, W. L.; Rhim, W. K.

    2005-01-01

    The time-temperature-transformation curves for three zirconium-based bulk amorphous alloys are measured to identify the primary factors influencing their glass-forming ability. The melt viscosity is found to have the most pronounced influence on the glass-forming ability compared to other thermodynamic factors. Surprisingly, it is found that the better glass former has a lower crystal-melt interfacial tension. This contradictory finding is explained by the icosahedral short-range order of the...

  19. Preparation of Plate Fe60Co8Zr10Mo5W2B15 Bulk Amorphous Alloy and Its Fracture Toughness

    Institute of Scientific and Technical Information of China (English)

    XIAO Huaxing; CHEN Guang

    2005-01-01

    With processes of arc melting, inductive melting and copper mold suction casting, a plate Fe-based bulk amorphous alloy Fe60Co8Zr10Mo5W2B15 with a thickness of 1mm was prepared. The surfaces and fractures of the cast bulk amorphous alloy were agleam and with typical metallic luster. The glass transition temperature(Tg), supercooled liquid region(△Tx)and reduced glass transition temperature(T rg)of the prepared Fe-based amorphous alloy are 884 K,63 K, and 0.611 respectively. The fracture toughness of the cast bulk amorphous alloy is at the level of 1.6 MPa·m1/2.

  20. Preparation and Properties of Mg-Cu-Y-Al bulk Amorphous Alloys

    DEFF Research Database (Denmark)

    Pryds, Nini; Eldrup, Morten Mostgaard; Ohnuma, M.;

    2000-01-01

    gap at the crystal-mould interface during crystallisation. The maximum amorphous layer thickness decreases from similar to3 mm to zero when the Al content increases in the range from 0 to about y = 10%. The evolution of the microstructure of the initially amorphous phase was examined by x...... temperatures in specimens containing a few percent Al. The alloy with no Al crystallises apparently without the formation of nanoparticles. The critical cooling rate for the formation of an amorphous Mg(60)CU(30)Y(10) specimen was determined experimentally by a combination of DSC data and temperature vs, time...... measurements to be 60-150 K/s, in agreement with estimates from the literature. The Vickers hardness (Hv) of the amorphous material for y = 2% is higher (similar to 360 kg/mm(2)) than for y = 0 (similar to 290 kg/mm(2)). On crystallisation the hardness of the latter material increases to the 400 kg/mm(2) level...

  1. Cu-based bulk amorphous alloy with larger glass-forming ability and supercooled liquid region

    Energy Technology Data Exchange (ETDEWEB)

    Fu, H.M. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); School of Engineering, University of Queensland, St. Lucia, Qld 4072 (Australia)], E-mail: waterdrophmfu@hotmail.com; Zhang, H.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, H. [Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Qld 4350 (Australia); Hu, Z.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2008-06-30

    The glassy rod with a maximum sample thickness of 11 mm and larger supercooled liquid region of 108 K was successfully fabricated when substituting Cu with minor amount of Ag in the Cu-Zr-Al-Gd alloy system. The value of {gamma} reaches a maximum of 0.418 for the Cu{sub 45.5}Zr{sub 45}Al{sub 7}Gd{sub 2}Ag{sub 0.5} bulk metallic glass (BMG) alloy. The high glass-forming ability (GFA) and larger supercooled liquid region are discussed from atomic size, negative mixing heat among constituent elements and thermodynamics.

  2. Thermal stability of Zr55Al10Ni5Cu30 bulk amorphous alloy during continuous heating and isothermal annealing

    Institute of Scientific and Technical Information of China (English)

    高玉来; 沈军; 孙剑飞; 王刚; 邢大伟; 周彼德

    2003-01-01

    The crystallization behavior of Zr55Al10Ni5Cu30 (mole fraction, %) bulk amorphous alloy during continuous heating and isothermal annealing was investigated. The results show that there exists a first order exponential decay relation between the characteristic temperatures and the heating rates during continuous heating process. The activation energy for glass transition Eg and that for crystallization Ep and Ex during continuous heating were evaluated by Kissinger plots. In addition, there is a second order exponential decay relation between the annealing temperature and the corresponding crystallization time during isothermal annealing. The isothermal activation energy obtained by Arrhenius equation increases as crystallization proceeds, indicating the sufficient stability of the residual amorphous structure after initial crystallization.

  3. Corrosion resistant amorphous alloys

    International Nuclear Information System (INIS)

    A review of publication data on corrosion resistance of amorphous alloys and the methods of amorphization of surface layers of massive materials (laser treatment, iron implantation, detonation-gas spraying, cathode and ion sputtering, electrodeposition) was made. A study was made on corrosion properties of Fe66Cr11B10Si4 alloy in cast state and after laser irradiation, rendering the surface amorphous as well as the samples of Arenco iron and steel 20 with ion-plasma coatings of Fe-Cr-Ni-Ti alloy. It was established that amorphous coatings posses much higher corrosion resistance as compared to crystalline alloys on the same base

  4. Bulk amorphous Al{sub 75}V{sub 12.5}Fe{sub 12.5−x}Cu{sub x} alloys fabricated by consolidation of mechanically alloyed amorphous powders

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bo; Wang, Xinfu; Li, Xianyu; Wang, Dan; Qin, Yong; Han, Fusheng, E-mail: fshan@issp.ac.cn

    2014-02-15

    Highlights: • Al{sub 75}V{sub 12.5}Fe{sub 12.5−x}Cu{sub x} (x = 0, 6.25, and 12.5 at%) amorphous powders were synthesized by MA. • Bulk Al{sub 75}V{sub 12.5}Fe{sub 12.5} amorphous alloy is obtained by means of hydraulic pressing. • The Vickers microhardness of bulk sample is in the range of 821-927 HV. -- Abstract: Hydraulic press was used to produce bulk amorphous Al{sub 75}V{sub 12.5}Fe{sub 12.5−x}Cu{sub x} (x = 0, 6.25, and 12.5) (at.%) alloy by consolidation of mechanically alloyed amorphous powder. The as-milled powders and bulk alloy were examined by X-ray diffraction, transmission electron microscopy and differential scanning calorimetry. The glass-forming ability was evaluated in accordance with the milling time. The results show that the glass-forming ability of the mechanical-alloyed Al{sub 75}V{sub 12.5}Fe{sub 12.5−x}Cu{sub x} powders decreases with the increase of x. The onset crystallization temperatures (T{sub x}{sup onset}) of the three powders are 749 K, 771 K and 712 K, respectively. The results also indicate that the quality of consolidation is very good and the product’s Vickers microhardness is relatively high (821–927 HV)

  5. Effects of Mo additions on the glass-forming ability and magnetic properties of bulk amorphous Fe-C-Si-B-P-Mo alloys

    Institute of Scientific and Technical Information of China (English)

    YI; Seonghoon

    2010-01-01

    Glass formation, mechanical and magnetic properties of the Fe76-xC7.0Si3.3B5.0P8.7Mox (x=0, 1 at.%, 3 at.% and 5 at.%) alloys prepared using an industrial Fe-P master alloy have been studied. With the substitution of Mo for Fe, glass-forming ability (GFA) was significantly enhanced and fully amorphous rods with a diameter of up to 5 mm were produced in the alloy with 3% Mo. The Mo-containing amorphous alloys also exhibited high fracture strength of 3635–3881 MPa and excellent magnetic properties including a high saturation magnetization of 1.10–1.41 T, a high Curie temperature and a low coercive force. The unique combination of high GFA, high fracture strength and excellent magnetic properties make the newly developed bulk metallic glasses viable for practical engineering applications.

  6. Deformation of Zr41 Ti14 CU12.5 Ni10 Be22.5 bulk amorphous alloy under isobaric pressure in super-cooled liquid region

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ke-qin; LU Qi-zhu

    2005-01-01

    The curve of crystallization transition during continuous heating for the Zr41Ti14Cu12.5Ni10Be22.5 bulk amorphous alloy was measured by means of dilatation(Fully automatic transformation recording/measuring instrument) and X-ray diffraction(XRD) method. The deformation behavior of the alloy at various heating rates in the supercooled liquid region was studied. The results show that the glass transition temperature of the alloy increases slightly and the supercooled liquid region(SLR) increases significantly with increasing heating rate. The deformation amount under isobaric pressure of 1 N for the alloy in the SLR increases with increasing heating rate. As the heating rate of the alloy increases from 5 to 100 ℃/min, the amount of deformation of the alloy increases from 8.3% to 45%.

  7. Crystalline Behavior and Magnetic Properties of Nd60Fe30-xAl10Cox(x=0,5,10) Bulk Amorphous Alloys

    Institute of Scientific and Technical Information of China (English)

    徐晖; 谭晓华; 董远达

    2003-01-01

    Crystalline behavior and magnetic properties of Nd60Fe30-xAl10Cox (x=0,5,10) bulk amorphous alloys were investigated by differential scanning calorimeter (DSC), X-ray diffraction (XRD) and the vibrating sample magnetometer (VSM). Neither glass transition nor supercooled liquid region before crystallization was observed for the as-cast Nd60Fe30-xAl10Cox (x=0,5,10) bulk amorphous alloys. The glass forming ability can be improved significantly by the addition of Co. The as-cast Nd60Fe30-xAl10Cox (x=0,5,10) alloys show hard magnetic behavior. With the addition of Co content, intrinsic coercivity (iHc) increases while the saturation magnetization(σs) and remanence (σr) decrease. The Curie temperature for the as-cast Nd60Fe30-xAl10Cox alloys increases from 451 K for x=0 to 468 K for x=10. Some precipitation of crystalline phases does not affect the hard magnetic properties of Nd60Fe30-xAl10Cox (x=0,5,10) alloys, while the hard magnetic behavior disappears quickly after the alloys being completely crystallized.

  8. Study of oxidation behaviour of Zr-based bulk amorphous alloy Zr65Cu17.5Ni10Al7.5 by thermogravimetric analyser

    Indian Academy of Sciences (India)

    A Dhawan; K Raetzke; F Faupel; S K Sharma

    2001-06-01

    The oxidation behaviour of Zr-based bulk amorphous alloy Zr65Cu17.5Ni10Al7.5 has been studied in air environment at various temperatures in the temperature range 591–684 K using a thermogravimetric analyser (TGA). The oxidation kinetics of the alloy in the amorphous phase obeys the parabolic rate law for oxidation in the temperature range 591–664 K. The values of the activation energy and pre-factor as calculated from the Arrhenius temperature dependence of the rate constants have been found to be 1.80 eV and 2.12 × 109 g cm–2.sec–1/2, respectively.

  9. Crystallization Kinetics of Fe76.5- x C6.0Si3.3B5.5P8.7Cu x ( x = 0, 0.5, and 1 at. pct) Bulk Amorphous Alloy

    Science.gov (United States)

    Jung, Hyo Yun; Stoica, Mihai; Yi, Seonghoon; Kim, Do Hyang; Eckert, Jürgen

    2015-06-01

    The influence of Cu on crystallization kinetics of Fe76.5- x C6.0Si3.3B5.5P8.7Cu x ( x = 0, 0.5, and 1 at. pct) bulk amorphous alloys was investigated by isothermal and isochronal differential scanning calorimetry combined with X-ray diffraction. The thermal analysis revealed that the crystallization of the amorphous matrix proceeds through at least two exothermic events. The Cu-free glassy alloy forms by primary crystallization the metastable Fe23C6 phase, while upon 0.5 at. pct Cu addition the primary crystallized phase is α-Fe. The activation energy for crystallization, calculated using both Kissinger and Ozawa methods, decreases from about 500 kJ/mol to about 330 kJ/mol. Further increase of Cu addition to 1 at. pct promotes the concomitant crystallization of several phases, as α-Fe, FeB, Fe3C, and Fe2P. In order to understand the crystallization behavior of the alloys as a function of Cu content, the Avrami exponent n, evaluated from the Johnson-Mehl-Avrami equation, was in details analyzed. The current study reveals that the minor Cu addition plays a crucial role at the initial stage of the crystallization. Among the studied alloys, the glassy samples with 0.5 at. pct Cu addition have the optimum compositional condition for the single α-Fe formation with a high nucleation rate.

  10. Mechanical alloying of Cu/Al plates and preparation of bulk amorphous/nanocrystalline composite by thermoplastic deformation%搅拌摩擦法制备Cu-Al非晶/纳米晶复合材料

    Institute of Scientific and Technical Information of China (English)

    徐红霞; 段辉平; 宋洪海

    2013-01-01

    利用搅拌摩擦技术,使叠放在一起的Cu、Al板材发生强烈的热塑性变形.对搅拌区产物的显微结构分析表明:Cu、Al板材被搅拌破碎并充分混合在一起,Cu、Al元素发生扩散并实现合金化;在搅拌区中有许多尺寸> 1μm的非晶相和非晶/纳米晶复合相,非晶相的基体中含有平均尺寸约为5nm的纳米晶.热塑性变形技术不仅可用于块体金属材料的机械合金化,也可用于制备块体非晶/纳米晶复合材料.%Strong thermoplastic deformation of overlapped Cu and Al plates had been realized by stir friction processing. Transmission electron microscopy investigation on the microstructure of the stirred zone demonstrate that the Cu and Al plates are torn into shreds and well-mixed in the stirred zone. The inter-diffusion between Cu and Al shreds happens, resulting in the mechanical alloying of Cu/Al plates. There are many amorphous phases with size of more than 1 micron and amorphous/nanocrystalline composite phases in the deformation zone. The average size of the nanocrystallines surrounded by amorphous phases, is about 5 nanometers. Experimental results strongly suggest that the thermoplastic deformation technique can not only be used to do mechanical alloying for bulk metallic materials but also to fabricate bulk amorphous/crystalline materials.

  11. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  12. Preparation of hydrogenated amorphous silicon tin alloys

    OpenAIRE

    Vergnat, M.; Marchal, G.; Piecuch, M.

    1987-01-01

    This paper describes a new method to obtain hydrogenated amorphous semiconductor alloys. The method is reactive co-evaporation. Silicon tin hydrogenated alloys are prepared under atomic hydrogen atmosphere. We discuss the influence of various parameters of preparation (hydrogen pressure, tungsten tube temperature, substrate temperature, annealing...) on electrical properties of samples.

  13. Crystallization of amorphous Zr-Be alloys

    Science.gov (United States)

    Golovkova, E. A.; Surkov, A. V.; Syrykh, G. F.

    2015-02-01

    The thermal stability and structure of binary amorphous Zr100 - x Be x alloys have been studied using differential scanning calorimetry and neutron diffraction over a wide concentration range (30 ≤ x ≤ 65). The amorphous alloys have been prepared by rapid quenching from melt. The studied amorphous system involves the composition range around the eutectic composition with boundary phases α-Zr and ZrBe2. It has been found that the crystallization of alloys with low beryllium contents ("hypoeutectic" alloys with x ≤ 40) proceeds in two stages. Neutron diffraction has demonstrated that, at the first stage, α-Zr crystallizes and the remaining amorphous phase is enriched to the eutectic composition; at the second stage, the alloy crystallizes in the α-Zr and ZrBe2 phases. At higher beryllium contents ("hypereutectic" alloys), one phase transition of the amorphous phase to a mixture of the α-Zr and ZrBe2 phases has been observed. The concentration dependences of the crystallization temperature and activation energy have been revealed.

  14. Thermal Expansion Characteristics and Thermal Conductivity of FeCo-based Bulk Amorphous Alloys%铁钴基块体非晶合金的热膨胀特性和热导率

    Institute of Scientific and Technical Information of China (English)

    陈庆军; 王健; 沈军; 周贤良; 华小珍; 董应虎

    2016-01-01

    采用真空非自耗电弧炉制备出Fe24+xCo24-xCr15Mo14C15B6Y2(x=0,2,4,6,8,at%)块体非晶合金,利用热膨胀测试仪和激光闪射热导率测试仪测量合金的热膨胀系数和热导率并与差示扫描量热曲线和高温XRD图谱进行对比,研究不同Co含量块体非晶合金的线性热膨胀行为随温度的变化规律和Co元素含量、不同组织对铁钻基块体合金热导率的影响.结果表明,随着Co含量减小,不同Co含量铁钴基非晶合金均出现规律相似的两次晶化过程,并且二次晶化起始温度依次提高.当x=0时,在875℃附近热膨胀系数出现第3个极大值点;25℃时Fe24+xCo24-xCr15Mo14C15B6Y2 (x=0,2,4,6,8)铁钴基非晶合金热导率在7.12~7.35 W/(m·K)范围内,在700℃温度退火处理的Fe24+xCo24-xCr15Mo14C15B6Y2 (x=0,2,4,6,8)铁钴基非晶合金的热导率值为7.5~9.46 W/(m·K),然而920℃退火处理后,热导率变化比较显著并出现先升高后下降的趋势.%Fe24+xCo24-xCr15Mo14C15B6Y2(x=0,2,4,6,8,at%) bulk amorphous alloys were prepared by a non-consumable arc-melting furnace.The thermal expansion coefficient and thermal conductivity of the amorphous alloy were tested by thermal expansion test instrument and laser indeed thermal conductivity tester,respectively,and the results were compared with the differential scanning calorimetry (DSC) curves and XRD patterns.Linear thermal expansion behavior with the temperature change of FeCo-based amorphous alloys with different Co contents and the effect of different Co element contents and different organizations on thermal conductivity of FeCo-base amorphous alloy were investigated.The results show that with the decrease of Co content,FeCo-base amorphous alloys have two crystallization processes,and the initial and the secondary crystallization temperature increase in turn.Thermal expansion coefficient of Fe24Co24Cr15Mo14C15B6Y2 has the third maximum point around 875 ℃.At 25 ℃,thermal conductivity of the Fe

  15. Ductile Fe-based amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Kyu; Lee, Kwang-Bok [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Jae-Chul, E-mail: jclee001@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Fe-based amorphous alloy with a strength and fracture strain of 4.7 GPa and 8.0% was synthesized. Black-Right-Pointing-Pointer Addition of a minute amount of V promoted the phase separation of the constituent elements. Black-Right-Pointing-Pointer Phase separation lowered alloys' packing density and alleviated the degree of strain localization. - Abstract: Experiments demonstrated that the addition of a minute amount of V to Fe{sub 52}Co{sub (20-x)}B{sub 20}Si{sub 4}Nb{sub 4}V{sub x} amorphous alloy induces atomic-scale phase separation, which dramatically enhances the plasticity. Especially, Fe{sub 52}Co{sub 17.5}B{sub 20}Si{sub 4}Nb{sub 4}V{sub 2.5} amorphous alloy exhibited a strength of 4.7 GPa and a fracture strain of 8.0%, which is the largest strain reported for Fe-based amorphous alloys. In this study, the structural origin of the enhanced plasticity is explored by examining the role played by the phase separating element on the packing density and strain localization.

  16. Effect of Minor Alloying on Crystallization Behavior and Thermal Properties of Zr64.5Ni15.5Al11.5Cu8.5 Bulk Amorphous Alloy

    Institute of Scientific and Technical Information of China (English)

    Muhammad Iqbal; Javed Iqbal Akhter; Haifeng Zhang; Zhuangqi Hu

    2011-01-01

    Minor alloying plays an important role in the synthesis and improvement of thermal stability of bulk metallic glasses (BMGs). The present study was conducted to investigate the effect of minor additions of Y, Ti and Nb on the crystallization behavior and the thermal properties of Zr64.5Ni15.5Al11.5Cu8.5 alloy. Thermal parameters and the activation energies for crystallization were calculated for four (Zr0.645Ni0.155Al0.115-Cu0.085)100-xMx (M=Y, Ti and Nb, while x=0, 2 at.%) alloys. The present alloys have wide supercooled liquid region of ≥87K. Maximum activation energy was found to be greater than 300 k J/mol for the base alloy. Four crystalline phases were identified in the samples annealed at 823 K for 20 min. Reduced glass transition temperature (Trg) and other thermal parameters such as γ, δ and /β were improved by Y and Ti addition. Nb addition resists crystallization below annealing temperature 713 K, however, its effect on thermal properties is not very promising.

  17. Crystallization of Fe78Si9B13 Bulk Crystaline/Amorphous (c/a) Composite

    Institute of Scientific and Technical Information of China (English)

    JIN Shifeng; WANG Weimin; NIU Yuchao; ZHANG Jiteng; LI Guihua; BIAN Xiufang

    2008-01-01

    A metallic crystalline/amorphous (c/a) bulk composite was prepared by the slow cooling method after remelting the amorphous Fe78Si9B13 ribbon. By X-ray diffraction (XRD),differential scanning calorimetry (DSC) and scanning electron microscope (SEM), the composite consists of the primary dendrite a-Fe (without Si) as well as the amorphous matrix. After being anneal at 800 K, the uniform spheroid particles are formed in the c/a composite, which does not form in the amorphous ribbon under the various annealing process. Energy dispersive analysis of X-rays (EDAX), SEM and XRD were applied to give more detailed information. The formation and evolution of the particle may stimulate the possible application of the Fe-matrix amorphous alloy.

  18. Amorphous Formation in an Undercooled Binary Ni-Si Alloy under Slow Cooling Rate

    Institute of Scientific and Technical Information of China (English)

    Yiping Lu; Gencang Yang; Xiong Li; Yaohe Zhou

    2009-01-01

    High undercooling up to 392 K was achieved in eutectic Ni70.2Si29.8 alloy melt by using glass fluxing combined with cyclic superheating.A small quantity of amorphous phase was obtained in bulk eutectic Ni70.2Si29.8 alloy when undercooling exceeds 240 K under slow cooling conditions (about 1 K/s).The amorphous phase was confirmed by high-resolution transmission electron microscopy and differential scanning calorimetry.

  19. Design of multi materials combining crystalline and amorphous metallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Volland, A.; Ragani, J.; Liu, Y.; Gravier, S.; Suery, M. [Grenoble University/CNRS, SIMAP Laboratory, Grenoble INP/UJF, 38402 Saint-Martin d' Heres (France); Blandin, J.J., E-mail: jean-jacques.blandin@simap.grenoble-inp.fr [Grenoble University/CNRS, SIMAP Laboratory, Grenoble INP/UJF, 38402 Saint-Martin d' Heres (France)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Elaboration of multi materials associating metallic glasses and conventional crystalline alloys by co-deformation performed at temperatures close to the glass transition temperature of the metallic glasses. Black-Right-Pointing-Pointer Elaboration of filamentary metal matrix composites with a core in metallic glass by co extrusion. Black-Right-Pointing-Pointer Sandwich structures produced by co-pressing. Black-Right-Pointing-Pointer Detection of atomic diffusion from the glass to the crystalline alloys during the processes. Black-Right-Pointing-Pointer Good interfaces between the metallic glasses and the crystalline alloys, as confirmed by mechanical characterisation. - Abstract: Multi materials, associating zirconium based bulk metallic glasses and crystalline metallic alloys like magnesium alloys or copper are elaborated by co-deformation processing performed in the supercooled liquid regions (SLR) of the bulk metallic glasses. Two processes are investigated: co-extrusion and co-pressing. In the first case, filamentary composites with various designs can be produced whereas in the second case sandwich structures are obtained. The experimental window (temperature, time) in which processing can be carried out is directly related to the crystallisation resistance of the glass which requires getting information about the crystallisation conditions in the selected metallic glasses. Thermoforming windows are identified for the studied BMGs by thermal analysis and compression tests in their SLR. The mechanical properties of the produced multi materials are investigated thanks to specifically developed mechanical devices and the interfaces between the amorphous and the crystalline alloys are characterised.

  20. Structure and magnetic properties of Fe-based amorphous alloys

    Directory of Open Access Journals (Sweden)

    K. Błoch

    2013-12-01

    Full Text Available Purpose: This paper presents studies relating to the structure, magnetic properties and thermal stability of the following bulk amorphous alloys: Fe61Co10Ti3-xY6+xB20 (where x = 0 or 1 Design/methodology/approach: The investigated samples were prepared in the form of rods by using the suction-casting method. The material structures were investigated using X-ray diffractometry and Mössbauer spectroscopy. The thermal stability was determined on the basis of Differential Scanning Calorimetry (DSC plots The magnetic properties were studied using a completely automated set up for measuring susceptibility and its disaccommodation. Findings: It was found that both alloys were amorphous in the as-cast state. The DSC curve obtained for Fe61Co10Ti2Y7B20 alloy exhibited one exothermic peak, while for the Fe61Co10Ti3Y6B20 sample, two peaks were distinguishable, corresponding to the crystallization of the sample. The bifurcation of the maximum on the DSC curve for the Fe61Co10Ti3Y6B20 sample may also testify to the presence of the primary crystallizing phase (FeCo23B6 [1,2]. Data obtained from the analysis of the magnetic susceptibility disaccommodation curves clearly show that in the Fe61Co10Ti3Y6B20 alloy there is less free volumes than in the second of the investigated alloys, this results in a lesser range of relaxation time. Moreover, Fe61Co10Ti3Y6B20 alloy exhibits the better time and thermal stability of magnetic properties In both of the studied alloys, at low frequencies, the total losses were comparable with those observed in classical silicon-iron alloys. Practical implications: A Ferrometer was used for the determination of core losses. Originality/value: The paper presents some researches of the Fe-based bulk amorphous alloys obtained by the suction-casting method.

  1. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  2. Fabrication of Ti-based composites based on bulk amorphous alloys by spark plasma sintering and crystallization of amorphous phase%放电等离子烧结-非晶晶化法合成钛基块状非晶复合材料

    Institute of Scientific and Technical Information of China (English)

    李元元; 杨超; 李小强; 陈友

    2011-01-01

    In order to circumvent low plasticity of bulk amorphous alloys (BAAs), a material forming method by coupling spark plasma sintering with crystallization of amorphous phase, fabricating composites based on BAAs (CBBAAs) with excellent mechanical property was reviewed systematically. By appropriate annealing of sintered BAAs prepared from spark plasma sintering in the supercooled liquid region of a mechanically alloyed amorphous powder, crystallized ductile β-Ti phase with controllable grain size, phase morphology and distribution can precipitate from the amorphous phase, and therefore, CBBAAs with a matrix of amorphous phase or crystallized β-Ti phase were obtained. The effect of different additions or substitute elements on the particle size, thermal property and microstructure of TiNbCuNiAl amorphous powder, and the influence of different sintering parameters on the microstructure and mechanical property of fabricated CBBAAs were investigated. The theoretical bases of fabricating crystallized phase-containing CBBAAs, and nucleation and growth mechanism of crystalline phase during the crystallization process were elucidated. The facture mechanism of fabricated CBBAAs under stress was explained based on a proposed "Developed hard-soft model". The results provide a promising method for fabricating large-sized crystallized phase-containing bulk composites with excellent mechanical property by powder metallurgy.%鉴于块状非晶合金(BAAs)的低塑性特征,回顾了利用放电等离子烧结-非晶晶化法制备高性能块状材料的成形技术,即先机械合金化制备钛基多组元非晶合金粉末,然后利用放电等离子烧结在粉末的过冷液相区固结非晶粉末,再利用非晶晶化法使烧结的非晶块体在随后的烧结和热处理过程中晶化析出-Ti延性相,控制延性相的形貌、尺度和分布,合成以非晶相或β-Ti晶化相为基体的钛基块状非晶复合材料(CBBAAs),研究不同添加或替换组元对TiNb

  3. Amorphous Alloy Surpasses Steel and Titanium

    Science.gov (United States)

    2004-01-01

    In the same way that the inventions of steel in the 1800s and plastic in the 1900s sparked revolutions for industry, a new class of amorphous alloys is poised to redefine materials science as we know it in the 21st century. Welcome to the 3rd Revolution, otherwise known as the era of Liquidmetal(R) alloys, where metals behave similar to plastics but possess more than twice the strength of high performance titanium. Liquidmetal alloys were conceived in 1992, as a result of a project funded by the California Institute of Technology (CalTech), NASA, and the U.S. Department of Energy, to study the fundamentals of metallic alloys in an undercooled liquid state, for the development of new aerospace materials. Furthermore, NASA's Marshall Space Flight Center contributed to the development of the alloys by subjecting the materials to testing in its Electrostatic Levitator, a special instrument that is capable of suspending an object in midair so that researchers can heat and cool it in a containerless environment free from contaminants that could otherwise spoil the experiment.

  4. Composition Range of Amorphous Mg-Ni-Y Alloys

    Institute of Scientific and Technical Information of China (English)

    陈红梅; 钟夏平; 欧阳义芳

    2003-01-01

    Based on the thermodynamic point of view, a method for predication of the composition range of amorphous ternary alloys was proposed. The composition range of amorphous ternary alloys is determined by the comparison of the excess free energy of the amorphous alloy and the free energy of competing crystalline states. The free energy is extrapolated from the data of three binary alloys by using Toop′s model. The method was applied to predict the composition range of amorphous Mg-Ni-Y alloys. The theoretical results are in good agreement with the available experimental results. It indicates that the present method can be used to predict the composition range for amorphous ternary alloys.

  5. Short range ordering and microstructure property relationship in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shariq, A.

    2006-07-01

    A novel algorithm, ''Next Neighbourhood Evaluation (NNE)'', is enunciated during the course of this work, to elucidate the next neighbourhood atomic vicinity from the data, analysed using tomographic atom probe (TAP) that allows specifying atom positions and chemical identities of the next neighbouring atoms for multicomponent amorphous materials in real space. The NNE of the Pd{sub 55}Cu{sub 23}P{sub 22} bulk amorphous alloy reveals that the Pd atoms have the highest probability to be the next neighbours to each other. Moreover, P-P correlation corroborates earlier investigations with scattering techniques that P is not a direct next neighbour to another P atom. Analogous investigations on the Fe{sub 40}Ni{sub 40}B{sub 20} metallic glass ribbons, in the as quenched state and for a state heat treated at 350 C for 1 hour insinuate a pronounced elemental inhomogeneity for the annealed state, though, it also depicts glimpse of a slight inhomogeneity for B distribution even for the as quenched sample. Moreover, a comprehensive microstructural investigation has been carried out on the Zr{sub 53}Co{sub 23.5}Al{sub 23.5} glassy system. TEM and TAP investigations evince that the as cast bulk samples constitutes a composite structure of an amorphous phase and crystalline phase(s). The crystallization is essentially triggered at the mould walls due to heterogeneous nucleation. The three dimensional atomic reconstruction maps of the volume analysed by TAP reveal a complex stereological interconnected network of two phases. The phase that is rich in Zr and Al concentration is depleted in Co concentration while the phase that is rich in Co concentration is depleted both in Zr and Al. Zr{sub 53}Co{sub 23.5}Al{sub 23.5} glassy splat samples exhibit a single exothermic crystallization peak contrary to the as cast bulk sample with a different T{sub g} temperature. A single homogeneous amorphous phase revealed by TEM investigations depicts that the faster cooling

  6. Parametrized dielectric functions of amorphous GeSn alloys

    Science.gov (United States)

    D'Costa, Vijay Richard; Wang, Wei; Schmidt, Daniel; Yeo, Yee-Chia

    2015-09-01

    We obtained the complex dielectric function of amorphous Ge1-xSnx (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge0.75Sn0.25 and Ge0.50Sn0.50 alloys from literature. The compositional dependence of band gap energy Eg and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  7. Magnetic properties of the suction-cast bulk amorphous alloy: (Fe{sub 0.61}Co{sub 0.10}Zr{sub 0.025}Hf{sub 0.025}Ti{sub 0.02}W{sub 0.02}B{sub 0.20}){sub 96}Y{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Błoch, K., E-mail: bloch@wip.pcz.pl

    2015-09-15

    This paper presents the results of studies into the structural and magnetic properties of the bulk amorphous alloy: (Fe{sub 0.61}Co{sub 0.10}Zr{sub 0.025}Hf{sub 0.025}Ti{sub 0.02}W{sub 0.02}B{sub 0.20}){sub 96}Y{sub 4}, fabricated in the form of rods of length: 20 mm, and diameters: 1 mm and 2 mm. The samples were produced using the suction-casting method. The amorphicity of the investigated alloy, in the as-quenched state, was verified using X-ray diffractometry and Mössbauer spectroscopy. Studies of the magnetic susceptibility disaccommodation and the approach to magnetic saturation facilitated the conclusion that the investigated alloy, obtained in the form of rods of 2 mm diameter, can be characterized by a higher packing density of atoms; this was further confirmed by the results of Mössbauer spectroscopy. - Highlights: • Samples were obtained using using the suction-casting method. • The samples were manufactured in the shape of rods of diameters 1 mm and 2 mm. • The amorphous structure was confirmed using XRD and Mössbauer spectroscopy. • Magnetic properties were analyzed in terms of contents of structural defects. • Time stability of magnetic properties was studied by disaccommodation phenomenon.

  8. Unexpected magnetic behavior in amorphous Co90Sc10 alloy

    International Nuclear Information System (INIS)

    An amorphous alloy Co90Sc10 has been prepared by rapid quenching from the melt. The results of magnetization measurements show that this alloy has the highest Curie temperature reported for any amorphous transition metal based alloys. Furthermore, for a Co based amorphous alloy, the magnetic moment is remarkably high. Moreover, the alloy exhibits soft magnetic properties. Based on the findings, amorphous Co90Sc10 appears to be an attractive candidate for applications as a soft magnetic material. The temperature dependence of the reduced magnetization can be described by the Bloch power law. The results show that the B coefficient of the amorphous Co90Sc10 alloy, which is a measure of the rigidity of spin waves, exhibits the lowest value observed until now for any amorphous alloy and is comparable to crystalline alloys. It is found that the Sc atoms in the Co90Sc10 alloy lead to an increase of the itinerant spin moment of Co atoms, and, in contrast to this behaviour, to a decrease of the local 3d-electrons of Co

  9. Unexpected magnetic behavior in amorphous Co90Sc10 alloy

    Science.gov (United States)

    Ghafari, M.; Sakurai, Y.; Peng, G.; Fang, Y. N.; Feng, T.; Hahn, H.; Gleiter, H.; Itou, M.; Kamali, S.

    2015-09-01

    An amorphous alloy Co90Sc10 has been prepared by rapid quenching from the melt. The results of magnetization measurements show that this alloy has the highest Curie temperature reported for any amorphous transition metal based alloys. Furthermore, for a Co based amorphous alloy, the magnetic moment is remarkably high. Moreover, the alloy exhibits soft magnetic properties. Based on the findings, amorphous Co90Sc10 appears to be an attractive candidate for applications as a soft magnetic material. The temperature dependence of the reduced magnetization can be described by the Bloch power law. The results show that the B coefficient of the amorphous Co90Sc10 alloy, which is a measure of the rigidity of spin waves, exhibits the lowest value observed until now for any amorphous alloy and is comparable to crystalline alloys. It is found that the Sc atoms in the Co90Sc10 alloy lead to an increase of the itinerant spin moment of Co atoms, and, in contrast to this behaviour, to a decrease of the local 3d-electrons of Co.

  10. Formation and Corrosion Resistance of Amorphous Ti Base Alloys

    OpenAIRE

    Naka, M.; Okada, T.; T. Matsui

    1996-01-01

    Corrosion resistant amorphous Ti-B and Ti-Si alloys were prepared on various substrates by RF sputtering. The alloying of B content of 8 at% or more stabilizes the amorphous structure. The corrosion properties of Ti alloys were evaluated by measuring the polarization curves in 1N HCl. Although the addition of B to crystalline bulky Ti shifts the corrosion potentials of Ti to the less nobles of -0.5 V(SCE) or less, that of B to amorphous sputtered Ti moves the corrosion potentials to the noble...

  11. Ion bombardment of Fe-based amorphous metallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Miglierini, Marcel, E-mail: marcel.miglierini@stuba.sk [Slovak University of Technology, Department of Nuclear Physics and Technology (Slovakia); Lancok, Adriana [AS CR, v. v. i., Institute of Physics (Czech Republic); Pavlovic, Marius [Slovak University of Technology, Department of Nuclear Physics and Technology (Slovakia)

    2009-02-15

    Fe{sub 74}Cu{sub 1}Nb{sub 3}Si{sub 16}B{sub 6} amorphous metallic alloy is investigated after ion irradiation by 110 keV N{sup +} and 593 MeV Au ions. The depth-profiles of the radiation damage were calculated by the SRIM2008 code. Applicability of transmission and conversion electron Moessbauer effect measurements to distinguish between the bulk and surface radiation damage is demonstrated by using different irradiation conditions. The investigated alloy is characterized by ferromagnetic interactions. The implantation does not depict appreciable changes of the samples' surfaces. Changes in chemical short-range order (SRO) are revealed in N{sup +} irradiated alloys. Heavy Au ions caused pronounced effects in the position of the net magnetization though no impact on SRO was observed. After annealing, structural relaxation and annealing-out of the irradiation-induced stresses caused the rotation of the net magnetization back to its original position.

  12. Devitrification of rapidly quenched Al–Cu–Ti amorphous alloys

    Indian Academy of Sciences (India)

    D K Misra; R S Tiwari; O N Srivastava

    2003-08-01

    X-ray diffraction, transmission electron microscopy and differential scanning calorimetry were carried out to study the transformation from amorphous to icosahedral/crystalline phases in the rapidly quenched Al50Cu45Ti5 and Al45Cu45Ti10 alloys. In the present investigation, we have studied the formation and stability of amorphous phase in Al50Cu45Ti5 and Al45Cu45Ti10 rapidly quenched alloys. The DSC curve shows a broad complex type of exothermic overlapping peaks (288–550°C) for Al50Cu45Ti5 and a well defined peak around 373°C for Al45Cu45Ti10 alloy. In the case of Al50Cu45Ti5 alloy amorphous to icosahedral phase transformation has been observed after annealing at 280°C for 73 h. Large dendritic growth of icosahedral phase along with -Al phase has been found. Annealing of Al50Cu45Ti5 alloy at 400°C for 8 h results in formation of Al3Ti type phase. Al45Cu45Ti10 amorphous alloy is more stable in comparison to Al50Cu45Ti5 alloy and after annealing at 400°C for 8 h it also transforms to Al3Ti type phase. However, this alloy does not show amorphous to icosahedral phase transformation.

  13. Electroless Deposition of Fe-Mo-W-B Amorphous Alloys

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The preparation, formation mechanism, surface appearance and structure of electroless plating Fe-Mo-W-B amorphous alloys were systematically studied. The deposition rates of the deposits in different bath composition as plated were measured. The formation mechanism of the deposits was discussed. The parameter for amorphous structures formation was suggested for the deposits.

  14. Creep of FINEMET alloy at amorphous to nanocrystalline transition

    NARCIS (Netherlands)

    Csach, K.; Miškuf, J.; Juríková, A.; Ocelík, V.

    2009-01-01

    The application of FINEMET-type materials with specific magnetic properties prepared by the crystallization of amorphous alloys is often limited by their brittleness. The structure of these materials consists of nanosized Fe-based grains surrounded with amorphous phase. Then the final macroscopic me

  15. Features of exoelectron emission in amorphous metallic alloys

    CERN Document Server

    Veksler, A S; Morozov, I L; Semenov, A L

    2001-01-01

    The peculiarities of the photothermostimulated exoelectron emission in amorphous metallic alloys of the Fe sub 6 sub 4 Co sub 2 sub 1 B sub 1 sub 5 composition are studied. It is established that the temperature dependences of the exoelectron emission spectrum adequately reflect the two-stage character of the amorphous alloy transition into the crystalline state. The exoelectron emission spectrum is sensitive to the variations in the modes of the studied sample thermal treatment. The thermal treatment of the amorphous metallic alloy leads to growth in the intensity of the exoelectrons yield. The highest growth in the intensify of the exoelectron emission was observed in the alloys at the initial stage of their crystallization

  16. Advances in chemical synthesis and application of metal-metalloid amorphous alloy nanoparticulate catalysts

    Institute of Scientific and Technical Information of China (English)

    WU Zhijie; LI Wei; ZHANG Minghui; TAO Keyi

    2007-01-01

    This paper reviews the advances in the chemical synthesis and application of metal-metalloid amorphous alloy nanoparticles consisting of transition metal (M) and metalloid elements (B,P).After a brief introduction on the history of amorphous alloy catalysts,the paper focuses on the properties and characterization of amorphous alloy catalysts,and recent developments in the solution-phase synthesis of amorphous alloy nanoparticles.This paper further outlines the applications of amorphous alloys,with special emphasis on the problems and strategies for the application of amorphous alloy nanoparticles in catalytic reactions.

  17. Stability of electrodeposited amorphous Ni-Fe-P alloys

    Institute of Scientific and Technical Information of China (English)

    GAO Cheng-hui

    2006-01-01

    The stability of the electrodeposited amorphous Ni-Fe-P alloys was studied by DTA, DSC, XRD and improved four-ball wear tester in order to clear its applied scope. The results show that the element content has influence on the stability of amorphous Ni-Fe-P alloy, in which the crystallization temperature increases with Fe content, and the increase of P content delays the appearance of stable crystallization phases and recrystallization. There exist 6 exothermal reactions during heating the amorphous Ni69Fe8P23alloy continuously. The activation energies of exothermal reactions at 248, 303,322, 350, 376 and 442 ℃ are 131.5, 111.6, 237.8,253.6 and 238.5 kJ/mol, respectively. The amorphous Ni60Fe22P18 alloy crystallizes when the heating temperature is beyond 250 ℃.The stable crystallization phases consist ofNi (Fe) and Ni3P-type compounds Ni3P, Fe3P, (Fe,Ni)3P. The pressure and fraction have influence on the stability of amorphous alloy. Rubbing above the critical pressure crystallization will take place on the fractional surface. The crystallization phases due to pressure and fraction are different from those due to heating. It is the crystallization that increases the wear resistance of Ni-Fe-P coating under higher pressure.

  18. Parametrized dielectric functions of amorphous GeSn alloys

    Energy Technology Data Exchange (ETDEWEB)

    D' Costa, Vijay Richard, E-mail: elevrd@nus.edu.sg; Wang, Wei; Yeo, Yee-Chia, E-mail: eleyeoyc@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Schmidt, Daniel [Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603 (Singapore)

    2015-09-28

    We obtained the complex dielectric function of amorphous Ge{sub 1−x}Sn{sub x} (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge{sub 0.75}Sn{sub 0.25} and Ge{sub 0.50}Sn{sub 0.50} alloys from literature. The compositional dependence of band gap energy E{sub g} and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  19. Properties of electrodeposited amorphous Fe-Ni-W alloy deposits

    Institute of Scientific and Technical Information of China (English)

    HE Feng-jiao; WANG Miao; LU Xin

    2006-01-01

    A new technique of electroplating amorphous Fe-Ni-W alloy deposits was proposed. The structure and morphology of Fe-Ni-W alloy deposit were detected by XRD and SEM. The friction and wear behavior of Fe-Ni-W alloy deposit were studied and compared with that of chromium deposit. The corrosion properties against 5% sodium chloride, 5% sulfuric acid and 5% sodium hydroxide were also discussed. The experimental results indicate that Fe-Ni-W alloy deposits have superior properties against wear than hard chromium deposits under dry sliding condition. Under oil sliding condition, except their better wear resistance, the deposits can protect their counterparts against wear. The deposits plated on brass and AISI 1045 steel show good behavior against corrosion of 5% sodium chloride, 5% sulfuric acid and 5% sodium hydroxide. The bath of electroplating amorphous Fe-Ni-W alloy deposits is environmentally friendly and would find widely use in industry.

  20. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, K

    2013-09-30

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys

  1. A comparative study of the structure and crystallization of bulk metallic amorphous rod Pr60Ni30Al10 and melt-spun metallic amorphous ribbon Al87Ni10Pr3

    Institute of Scientific and Technical Information of China (English)

    Meng Qing-Ge; Li Jian-Guo; Zhou Jian-Kun

    2006-01-01

    Pr-based bulk metallic amorphous (BM1 rods (Pr60Ni30Al10) and Al-based amorphous ribbons (Al87Ni10Pr3)have been prepared by using copper mould casting and single roller melt-spun techniques, respectively. Thermal parameters deduced from differential scanning calorimeter (DS3 indicate that the glass-forming ability (GF1 of Pr60Nia0Al10 BMA rod is far higher than that of Al87Ni10Pr3 ribbon. A comparative study about the differences in structure between the two kinds of glass-forming alloys, superheated viscosity and crystallization are also made. Compared with the amorphous alloy Al87Ni10Pr3, the BMA alloy Pr60Ni30Al10 shows high thermal stability and large viscosity, small diffusivity at the same superheated temperatures. The results of x-Ray diffraction (XRD) and transmission electron microscope (TEM) show the pronounced difference in structure between the two amorphous alloys.Together with crystallization results, the main structure compositions of the amorphous samples are confirmed. It seems that the higher the GFA, the more topological type clusters in the Pr-Ni-Al amorphous alloys, the GFAs of the present glass-forming alloys are closely related to their structures.

  2. Electroplating process of amorphous Fe-Ni-Cr alloy

    Institute of Scientific and Technical Information of China (English)

    何湘柱; 夏畅斌; 王红军; 龚竹清; 蒋汉瀛

    2001-01-01

    A novel process of electroplating amorphous Fe-Cr-Ni alloy in chloride aqueous solution with Fe( Ⅱ ), Ni ( lⅡ ) and Cr( Ⅲ ) was reported. Couple plasma atomic emission spectrometry (ICP-AES), X-ray diffractometry(XRD),scanning electronic microscopy(SEM), microhardness test and rapid heating-cooling method were adopted to detect the properties of the amorphous Fe-Ni-Cr deposit, such as composition, crystalline structure, micrograph, hardness, and adherence between deposit and substrate. The effects of the operating parameters on the electrodeposit of the amorphous FeNi-Cr alloy were discussed in detail. The results show that a 8.7 μm thick mirror-like amorphous Fe-Ni-Cr alloy deposit,with Vicker's hardness of 530 and composition of 45%~55% Fe, 33%~37% Ni, 9%~23% Cr was obtained by electroplating for 20 min at room temperature( 10 30 C ), cathode current 10~16 A/dm2, pH = 1.0~3.0. The XRD pat terns show that there only appears a broad hump around 2θ of 41 °~47 °for the amorphous Fe-Ni-Cr alloy deposit, while the SEM micrographs show that the deposit contains only a few fine cracks but no pinholes.

  3. Effect of Co on the microstructure, magnetic properties and thermal stability of bulk Fe{sub 73-x}Co{sub x}Nb{sub 5}Y{sub 3}B{sub 19} (where x = 0 or 10) amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nabialek, Marcin G., E-mail: nmarcell@wp.pl [Institute of Physics, Czestochowa University of Technology, 19 Armii Krajowej Av., 42-200 Czestochowa (Poland); Szota, Michal [Institute of Materials Engineering, Czestochowa University of Technology, 19 Armii Krajowej Av., 42-200 Czestochowa (Poland); Dospial, Marcin J. [Institute of Physics, Czestochowa University of Technology, 19 Armii Krajowej Av., 42-200 Czestochowa (Poland)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer The paper presents the results of structure, thermal stability and magnetic properties of Fe{sub 73-x}Co{sub x}Nb{sub 5}Y{sub 3}B{sub 19} (where x = 0 or 10) bulk amorphous alloys in the as-cast state in the form of plates with a thickness of 0.5 mm and an area of 100 mm{sup 2}. Black-Right-Pointing-Pointer Results of this study indicate that despite the negative effect of exchange of Fe onto Co, what results in decrease of the saturation of magnetization, Curie temperature and thermal stability, it is clear that such a slight deterioration of these parameters is compensated with a significant reduction of the coercivity field values. Black-Right-Pointing-Pointer What testify that amorphous alloys with the addition of Co can be successfully used as magnetic cores in modern medium power transformers. - Abstract: The paper presents the results of structure, thermal stability and magnetic properties of bulk Fe{sub 73-x}Co{sub x}Nb{sub 5}Y{sub 3}B{sub 19} (where x = 0 or 10) amorphous alloys in the as-cast state, in the form of 0.5 mm thick plates with an area of 100 mm{sup 2}. The amorphous structure of the investigated alloys was confirmed by studies of Moessbauer effect and X-ray diffractometry. On the basis of measurements performed using a vibrating sample magnetometer (VSM), it was found that substituting 10% of Fe with Co in Fe{sub 73-x}Co{sub x}Nb{sub 5}Y{sub 3}B{sub 19} alloy, had only a small effect on the value of saturation magnetization ({mu}{sub 0}M{sub S}), and was of the same importance in terms of the values of the coercivity field (H{sub C}) and the Curie temperature (T{sub C}). The magnetization for both samples increases in high magnetic fields due to rotation of magnetic moments near the structural defects called quasidislocalised dipoles, near the area known as the approach to ferromagnetic saturation. For field values with a linear relationship ({mu}{sub 0}H){sup -1} of the reduced saturation magnetization

  4. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength

    Institute of Scientific and Technical Information of China (English)

    ZHUO Long-Chao; PANG Shu-Jie; WANG Hui; ZHANG Tao

    2009-01-01

    Based on a new approach for designing glassy alloy compositions,bulk Al-based alloys with good glass-forming ability (GFA) are synthesized.The cast Al86Si0.5Ni4.06Co2.94 Y6Sc0.5 rod with a diameter of 1 mm shows almost fully amorphous structure besides about 5% fcc-Al nucleated in the center of the rod.The bulk alloy with high Al concentration exhibits an ultrahigh yield strength of 1.18 Gpa and maximum strength of 1.27 Gpa as well as an obvious plastic strain of about 2.4% during compressive deformation.This light Al-based alloy with good GFA and mechanical properties is promising as a new high specific strength material with good deformability.

  5. Bulk Formation of Metallic Glasses and Amorphous Silicon from the Melt

    Science.gov (United States)

    Spaepen, F.

    1985-01-01

    By using metallic glass compositions with a high relative glass transition temperature, such as Pd40Ni40P20, homogeneous nucleation also becomes negligible. Large (5g) masses of this alloys were obtained using a molten B2O3 flux. Presently, bulk glass formation in iron based glasses is being investigated. It is expected that if an undercooling of about 250K can be achieved in a Ge or Si melt, formation of the amorphous semiconductor phase (rather than the crystal) may be kinetically favored. The volumetric behavior of undercooled liquid Ga droplet dispersion is investigated by dilatometry. A theoretical model (both analytical and numerical) was developed for transient nucleation in glass forming melts. The model, originally designed for isothermal conditions, was extended to continuous quenching. It is being applied to glass formation in various metallic and oxide systems. A further refinement will be the inclusion of diffusion controlled interfacial rearrangements governing the growth of the crystal embryos.

  6. Crystallization kinetics of bulk Cu_(58.1)Zr_(35.9)Al)6 alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-xu; ZHU Chun-lei; QUAN Shi-guang; LI Yan-hui; WANG Ying-min; WANG Qing; DONG Chuang

    2009-01-01

    The crystallization kinetics of the bulk amorphous Cu_(58.1)Zr_(35.9)Al_6 alloy was examined by differential scanning calorimetry under continuous heating and isothermal annealing.During continuous heating,the activation energy of crystallization was determined to be 383 kJ/mol by Kissinger method.However,on the isothermal annealing,the activation energy was determined to be 459.2 kJ/mol by the Arrhenius method,which was much larger than that obtained from the Kissinger method.The different temperatures at which crystallization occurs are responsible for the discrepancy in the activation energy.The average Avrami exponent of about 3.5 implies that the crystallization process of the bulk amorphous Cu_(58.1)Zr_(35.9)Al_6 alloy is diffusion-controlled with a nucleation rate decreasing with time.

  7. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy

    International Nuclear Information System (INIS)

    The mechanical properties and crystallization behavior of new Fe-Ni-Cr-Si-B-based bulk glassy alloys were investigated. The suitability of the continuous roll casting method for the production of bulk metallic glass (BMG) sheets in such alloy systems was also examined. BMG samples (Fe-Ni-Cr-Si-B, Fe-Ni-Zr-Cr-Si-B, Fe-Ni-Zr-Cr-W-Si-B) in amorphous strip, cylindrical, and sheet forms were prepared through melt spinning, copper mold casting, and twin roll strip casting, respectively. Fe-Ni-Cr-Si-B alloy exhibited compressive strength of up to 2.93 GPa and plastic strain of about 1.51%. On the other hand, the Fe-Ni-Zr-Cr-Si-B, composite-type bulk sample with diameter of 2.0 mm showed remarkable compressive plastic strain of about 4.03%. The addition of zirconium was found to enhance the homogeneous precipitation of nanocrystalline less than 7 nm and to develop a hybrid-composite microstructure with increasing sample thickness. Twin roll strip casting was successfully applied to the fabrication of sheets in Fe-Ni-Cr-Si-B-based BMGs. The combined characteristics of high mechanical properties and ease of microstructure control proved to be promising in terms of the future progress of structural bulk amorphous alloys

  8. Integral bypass diodes in an amorphous silicon alloy photovoltaic module

    Science.gov (United States)

    Hanak, J. J.; Flaisher, H.

    1991-01-01

    Thin-film, tandem-junction, amorphous silicon (a-Si) photovoltaic modules were constructed in which a part of the a-Si alloy cell material is used to form bypass protection diodes. This integral design circumvents the need for incorporating external, conventional diodes, thus simplifying the manufacturing process and reducing module weight.

  9. On the origin of bulk glass forming ability in Cu-Hf, Zr alloys

    Science.gov (United States)

    Ristić, Ramir; Zadro, Krešo; Pajić, Damir; Figueroa, Ignacio A.; Babić, Emil

    2016-04-01

    Understanding the formation of bulk metallic glasses (BMG) in metallic systems and finding a reliable criterion for selection of BMG compositions are among the most important issues in condensed-matter physics and material science. Using the results of magnetic susceptibility measurements performed on both amorphous and crystallized Cu-Hf alloys (30-70 at% Cu) we find a correlation between the difference in magnetic susceptibilities of corresponding glassy and crystalline alloys and the variation in the glass forming ability (GFA) in these alloys. Since the same correlation can be inferred from data for the properties associated with the electronic structure of Cu-Zr alloys, it seems quite general and may apply to other glassy alloys based on early and late transition metals. This correlation is plausible from the free-energy considerations and provides a simple way to select the compositions with high GFA.

  10. Structural models for amorphous transition metal binary alloys

    International Nuclear Information System (INIS)

    A dense random packing of 445 hard spheres with two different diameters in a concentration ratio of 3 : 1 was hand-built to simulate the structure of amorphous transition metal-metalloid alloys. By introducing appropriate pair potentials of the Lennard-Jones type, the structure is dynamically relaxed by minimizing the total energy. The radial distribution functions (RDF) for amorphous Fe0.75P0.25, Ni0.75P0.25, Co0.75P0.25 are obtained and compared with the experimental data. The calculated RDF's are resolved into their partial components. The results indicate that such dynamically constructed models are capable of accounting for some subtle features in the RDF of amorphous transition metal-metalloid alloys

  11. Neutron scattering studies of amorphous Invar alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Baca, J.A.

    1989-01-01

    This paper reviews recent inelastic neutron scattering experiments performed to study the spin dynamics of two amorphous Invar systems: Fe/sub 100-x/B/sub x/ and Fe/sub 90-x/Ni/sub x/Zr/sub 10/. As in crystalline Invar Fe/sub 65/Ni/sub 35/ and Fe/sub 3/Pt, the excitation of conventional long-wavelength spin waves in these amorphous systems cannot account for the relatively rapid change of their magnetization with temperature. These results are discussed in terms of additional low-lying excitations which apparently have a density of states similar to the spin waves.

  12. Amorphous coatings deposited on aluminum alloy by plasma electrolytic oxidation

    Institute of Scientific and Technical Information of China (English)

    GUAN Yong-jun; XIA Yuan

    2005-01-01

    Amorphous [Al-Si-O] coatings were deposited on aluminum alloy by plasma electrolytic oxidation (PEO). The process parameters, composition, micrograph, and mechanical property of PEO amorphous coatings were investigated. It is found that the growth rate of PEO coatings reaches 4.44 μm/min if the current density is 0.9 mA/mm2. XRD results show that the PEO coatings are amorphous in the current density range of 0.3 - 0.9mA/mm2. EDS results show that the coatings are composed of O, Si and Al elements. SEM results show that the coatings are porous. Nano indentation results show that the hardness of the coatings is about 3 - 4 times of that of the substrate, while the elastic modulus is about the same with the substrate. Furthermore, a formation mechanism of amorphous PEO coatings was proposed.

  13. Cast bulk glassy alloys:fabrication,alloy development and properties

    Institute of Scientific and Technical Information of China (English)

    Qingsheng Zhang; Chunling Qin; Akihisa Inoue

    2010-01-01

    Metallic glasses represent an interesting group of materials as they possess outstanding physical, chemical and mechanical properties compared to their crystalline counterparts. Currently, with well designed compositions it is possible to cast liquid alloys into the glassy state at low critical cooling rates from 100 K·s-1 to 1 K·s-1 and in large critical sample sizes up to several centimeters, which significantly enhances the promise for possible applications as advanced engineering materials. This paper reviews the development of(ZrCu)-based bulk metallic glasses with large sizes by copper mold casting and their unique properties. Additionally, the ex-situ and in-situ second phases reinforced BMG composites with large plasticity are also presented.

  14. Simulation study for atomic size and alloying effects during forming processes of amorphous alloys

    Institute of Scientific and Technical Information of China (English)

    ZHENG Caixing; LIU Rangsu; PENG Ping; ZHOU Qunyi

    2004-01-01

    A molecular dynamics (MD) simulation study has been performed for the solidification processes of two binary liquid alloys Ag6Cu4 and CuNi by adopting the quantum Sutton-Chen many-body potentials. By analyzing bond-types, it is demonstrated that at the cooling rate of 2×1012K/s, the CuNi forms fcc crystal structures, while the Ag6Cu4 forms amorphous structures. The original reason is that the atomic radius ratio (1.13) of the CuAg is bigger than that (1.025) of the CuNi. This shows that the atomic size difference is indeed the main factor for forming amorphous alloys. Moreover, for Ag60Cu40,corresponding to the deep eutectic point in the phase diagram, it forms amorphous structure easily. This confirms that as to the forming tendency and stability of amorphous alloys, the alloying effect plays a key role. In addition, having analyzed the transformation of microstructures by using the bond-type index and cluster-type index methods, not only the key role of the icosahedral configuration to the formation and stability of amorphous alloys can be explained, but also the solidification processes of liquid metals and the characteristics of amorphous structures can be further understood.

  15. TEM study of amorphous alloys produced by ion implantation

    International Nuclear Information System (INIS)

    Ion implantation is a technique for introducing foreign elements into surface layers of solids. Ions, as a suitably accelerated beam, penetrate the surface, slow down by collisions with target atoms to produce a doped layer. This non-equilibrium technique can provide a wide range of alloys without the restrictions imposed by equilibrium phase diagrams. This paper reports on the production of some amorphous transition metal-metalloid alloys by implantation. Thinned foils of Ni, Fe and stainless steel were implanted at room temperature with Dy+ and P+ ions at doses between 1013 - 1017 ions/cm2 at energies of 20 and 40 keV respectively. Transmission electron microscopy and selected area diffraction analysis were used to investigate the implanted specimens. Radial diffracted intensity measurements confirmed the presence of an amorphous implanted layer. The peak positions of the maxima are in good agreement with data for similar alloys produced by conventional techniques. Only certain ion/target combinations produce these amorphous layers. Implantations at doses lower than those needed for amorphization often result in formation of new crystalline phases such as an h.c.p. phase in nickel and a b.c.c. phase in stainless steel. (Auth.)

  16. Glow discharge amorphous silicon tin alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, A H; Sanchez, A; Williamson, D L; von Roedern, B; Madan, A

    1984-06-01

    We present basic density of states, photoresponse, and transport measurements made on low bandgap a-SiSn:H alloys produced by RF glow discharge deposition of SiH/sub 4/, H/sub 2/ and Sn(CH/sub 3/)/sub 4/. Although we demonstrate major changes in the local bonding structure and the density of states, the normalized photoresponse still remains poor. We provide evidence that two types of defect levels are produced with Sn alloying, and that the resultant density of states increase explains not only the n- to p-type conductivity transition reported earlier, but also the photoresponse behavior. We also report that a-SiSn:H can be doped with P. From our device analysis we suggest that in order to improve the alloy performance significantly, the density of states should be decreased to levels comparable to or lower than those presently obtained in a-Si:H.

  17. Bulk eutectic Cu–Ag alloys with abundant twin boundaries

    International Nuclear Information System (INIS)

    Abundant growth twin boundaries are found and characterized in two bulk eutectic Cu–Ag alloys that can be obtained conveniently. The statistical electron backscattering diffraction results show that both hetero-twin and cube-on-cube orientation relationships coexist in the eutectic Cu–Ag alloy. The tensile strength of the eutectic alloy increases with a decrease in the layer thickness of the Cu/Ag phase. This study provides a potential way to produce bulk eutectic Cu–Ag alloy with abundant twin boundaries that offers a combination of high strength and high ductility.

  18. Developments in the Ni-Nb-Zr amorphous alloy membranes

    Science.gov (United States)

    Sarker, S.; Chandra, D.; Hirscher, M.; Dolan, M.; Isheim, D.; Wermer, J.; Viano, D.; Baricco, M.; Udovic, T. J.; Grant, D.; Palumbo, O.; Paolone, A.; Cantelli, R.

    2016-03-01

    Most of the global H2 production is derived from hydrocarbon-based fuels, and efficient H2/CO2 separation is necessary to deliver a high-purity H2 product. Hydrogen-selective alloy membranes are emerging as a viable alternative to traditional pressure swing adsorption processes as a means for H2/CO2 separation. These membranes can be formed from a wide range of alloys, and those based on Pd are the closest to commercial deployment. The high cost of Pd (USD ~31,000 kg-1) is driving the development of less-expensive alternatives, including inexpensive amorphous (Ni60Nb40)100- x Zr x alloys. Amorphous alloy membranes can be fabricated directly from the molten state into continuous ribbons via melt spinning and depending on the composition can exhibit relatively high hydrogen permeability between 473 and 673 K. Here we review recent developments in these low-cost membrane materials, especially with respect to permeation behavior, electrical transport properties, and understanding of local atomic order. To further understand the nature of these solids, atom probe tomography has been performed, revealing amorphous Nb-rich and Zr-rich clusters embedded in majority Ni matrix whose compositions deviated from the nominal overall composition of the membrane.

  19. Hard rhenium–boron–cobalt amorphous alloys with a wide supercooled liquid region

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianfeng, E-mail: jfwang316@zzu.edu.cn [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhu, Shijie; Wang, Liguo; Guan, Shaokang [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Li, Ran; Zhang, Tao [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2015-10-01

    Novel Re–B–Co amorphous alloys with compositions of Re{sub 65−x}B{sub 35}Co{sub x} (at%, x=25, 30, 35, 40, 45, and 50) were fabricated by single-roller melt spinning. These alloys were found to exhibit a clear glass transition phenomenon. The width of supercooled liquid region (ΔT{sub x}) is in the range of 52–71 K. Such a large ΔT{sub x} allows us to produce amorphous alloy bulks by thermoplastic forming. The Vickers hardness is up to 19.10 GPa for the Re{sub 40}B{sub 35}Co{sub 25} alloy, which is close to that reported for some hard covalent crystals. Thus, the present alloys with a combination of large ΔT{sub x} and high hardness are expected to be used as a new type of structural materials. Furthermore, the relationships of hardness with glass transition temperature and Young's modulus were also discussed.

  20. Properties of amorphous FeCoB alloy particles (abstract)

    DEFF Research Database (Denmark)

    Charles, S. W.; Wells, S.; Meagher, A.;

    1988-01-01

    Amorphous and crystalline alloy particles (0.05–0.5 nm) of FexCoyBz in which the ratio x:y ranges from 0 to 1 have been prepared by the borohydride reduction of iron and cobalt salts in aqueous solution. The structure of the particles has been studied using Mössbauer spectroscopy and x....... 1). It has been shown that the fraction of boron in the alloys (10–35 at. %) is dependent upon the rate of addition of salts to borohydride and the concentration of cobalt present; this in turn influences the crystallinity and magnetic properties . Journal of Applied Physics is copyrighted...

  1. Ultralight amorphous silicon alloy photovoltaic modules for space applications

    Science.gov (United States)

    Hanak, J. J.; Chen, Englade; Fulton, C.; Myatt, A.; Woodyard, J. R.

    1987-01-01

    Ultralight and ultrathin, flexible, rollup monolithic PV modules have been developed consisting of multijunction, amorphous silicon alloys for either terrestrial or aerospace applications. The rate of progress in increasing conversion efficiency of stable multijunction and multigap PV cells indicates that arrays of these modules can be available for NASA's high power systems in the 1990's. Because of the extremely light module weight and the highly automated process of manufacture, the monolithic a-Si alloy arrays are expected to be strongly competitive with other systems for use in NASA's space station or in other large aerospace applications.

  2. Effect of Iodine Additive on Thermostability of Bulk Amorphous Sulfur Prepared by Rapid Compression

    Institute of Scientific and Technical Information of China (English)

    LIN Sheng-Xiong; LIU Xiu-Ru; SHAO Chun-Guang; SHEN Ru; HONG Shi-Ming

    2011-01-01

    @@ Bulk amorphous sulfur(a-S) with 1 mol% of phosphorus, selenium and iodine additives and bulk amorphous pure sulfur samples were prepared by rapidly compressing the melts to 2GPa within 20 ms.The results of x-ray diffraction, differential scanning calorimetry and insitu wide angle x-ray scattering of the recovered samples are presented and discussed.In the iodine doping case, obvious inhibiting effects on the crystallization and the melting process under high temperatures occurred, as well as on the structure relaxation of a-S at room temperature,suggesting that the thermal stability of amorphous sulfur is remarkably improved by the introduction of iodine additives.

  3. Fabrication of bulk glassy Zr41Ti14Ni8Cu12.5Be22.5Fe2 alloy by water quenching

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A glassy Zr41Ti14Ni8Cu12.5Be22.5Fe2 rod with a diameter of 9 mm was successfully produced by water quenching.The effects of iron addition on thermal stability and hardness of Zr41Ti14Ni8Cu12.5Be22.5Fe2 bulk amorphous alloy were investigated by XR D,DSC and microhardness test.It is found that the full annealing would enhance the strength of the alloy significantly.The cause of the increase in hardness was analyzed and the formation mechanisms of the bulk amorphous alloy are discussed.

  4. Crystallization of amorphous Hf100-xCux alloys

    International Nuclear Information System (INIS)

    The crystallization of Hf100-xCux (x=33, 44, 50, 59) amorphous alloys was studied by the TDPAC technique. The different stages in the transformation towards equilibrium were investigated through the evolution of the quadrupole perturbation after thermal annealings. The crystallization kinetics of Hf67Cu33 and Hf56Cu44 was analyzed using the Johnson-Mehl-Avrami equation. General trends in the crystallization behavior are discussed. (orig.)

  5. Processing and characterization of amorphous magnesium based alloy for application in biomedical implants

    Directory of Open Access Journals (Sweden)

    Telma Blanco Matias

    2014-07-01

    Full Text Available Magnesium-based bulk metallic glasses are attractive due to their single-phase, chemically homogeneous alloy system and the absence of second-phase, which could impair the mechanical properties and corrosion resistance. However, one of the unsolved problems for the manufacturability and the applications of bulk metallic glasses is that their glass-forming ability is very sensitive to the preparation techniques and impurity of components since oxygen in the environment would markedly deteriorate the glass-forming ability. Therefore, the aim of this study was to establish proper processing conditions to obtain a magnesium-based amorphous ternary alloy and its characterization. The final composition was prepared using two binary master alloys by melting in an induction furnace. Carbon steel crucible was used in argon atmosphere with and without addition of SF6 gas in order to minimize the oxygen contamination. The microstructure, amorphous nature, thermal properties and chemical analysis of samples were investigated by scanning electron microscopy (SEM, X-ray diffraction (XRD, differential scanning calorimetry (DSC and inductively coupled plasma emission spectrometry, respectively. The oxygen content of the as-cast samples was chemically analyzed by using carrier gas hot extraction (O/N Analyzer TC-436/LECO and was kept bellow 25 ppm (without SF6 and 10 ppm (with SF6. Bulk samples were produced by rapid cooling in a cooper mold until 1.5 mm thickness, with amorphous structures being observed up to 2.5 mm.

  6. Formation of nano-porous GeOx by de-alloying of an Al–Ge–Mn amorphous alloy

    International Nuclear Information System (INIS)

    The present study shows that nanometer-scale amorphous phase separation occurs by spinodal decomposition of the undercooled liquid in a melt-spun Al60Ge30Mn10 alloy, although there is no atomic pair with positive enthalpy of mixing. By adopting a proper de-alloying process, an interconnected nano-porous germanium oxide with an amorphous structure is successfully synthesized. The present study shows that nano-porous amorphous germanium oxide can be easily obtained by de-alloying of Al-based amorphous alloys with nm-scale composition fluctuation

  7. Study of local structure in hyper-eutectic Zr-Cu-Al bulk glassy alloys by positron annihilation techniques

    Science.gov (United States)

    Ishiyama, T.; Ishii, K.; Yokoyama, Y.; Konno, T. J.; Iwase, A.; Hori, F.

    2016-01-01

    The Zr-Cu-Al bulk glassy (BG) alloy, which has amorphous structure, possesses various properties such as high strength and toughness with compositional dependence. In the present study, density, positron annihilation lifetime and coincidence Doppler Broadening measurement have been performed for various compositional hyper-eutectic Zr-Cu-Al BG alloys. The density of hyper-eutectic Zr-Cu-Al BG alloys increases with decreasing of Zr fraction. In contrast, positron lifetime for all compositional alloys is almost constant about 165 psec. In addition, the CDB ratio profile is almost the same for hyper-eutectic alloys. This unchanging trend of CDB ratio profile is quite different from that of hypo-eutectic BG alloys. These results reveal that different internal structure exists in hyper and hypo-eutectic BG alloys.

  8. Surface-Activated Amorphous Alloy Fuel Electrodes for Methanol Fuel Cell

    OpenAIRE

    Kawashima, Asahi; Hashimoto, Koji

    1983-01-01

    Amorphous alloy electrodes for electrochemical oxidation of methanol and its derivatives were obtained by the surface activation treatment consisting of electrodeposition of zinc on as-quenched amorphous alloy substrates, heating at 200-300℃ for 30 min, and subsequently leaching of zinc in an alkaline solution. The surface activation treatment provided a new method for the preparation of a large surface area on the amorphous alloys. The best result for oxidation of methanol, sodium formate an...

  9. Structural Defects In The FeCoYB Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Błoch K.

    2015-09-01

    Full Text Available The aim of this work was to determine the nature of the structural defects that have a major influence on the magnetisation process within the investigated alloys. The structure of the alloys in the as-quenched state was investigated by means of X-ray diffractometry. It was confirmed that the samples were amorphous. The magnetisation was measured within magnetic fields ranging from 0 to 2T using a vibrating sample magnetometer (VSM. The investigation of the ‘magnetisation in the area close to ferromagnetic saturation’ showed that, for this class of alloys, the magnetisation process in strong magnetic fields is connected with the following two influences: 1 Firstly, the rotation of the magnetic moments in the vicinity of the defects, which are the sources of the short-range stresses, and, 2 The dumping of the thermally-induced spin waves by the magnetic field. In the case of the Fe63Co10Y7B20 alloy, the magnetisation process is connected with both point and linear defects, whereas for the Fe64Co10Y6B20 alloy, only with linear defects. This suggests that the size of the defects, determining the character of the magnetisation in the vicinity of ferromagnetic saturation, depends on the atomic packing density. On the basis of analysis of the magnetisation curves, the spin wave stiffness parameter (Dsp was calculated.

  10. Minor alloying behavior in bulk metallic glasses and high-entropy alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effect of minor alloying on several bulk metallic glasses and high-entropy al-loys was studied. It was found that minor Nb addition can optimize the interface structure between the W fiber and the Zr-based bulk metallic glass in the compos-ites,and improve the mechanical properties. Minor Y addition can destabilize the crystalline phases by inducing lattice distortion as a result to improve the glass-forming ability,and the lattice distortion energy is closely related to the effi-ciency of space filling of the competing crystalline phases. A long-period ordered structure can precipitate in the Mg-based bulk metallic glass by yttrium alloying. For the high-entropy alloys,solid solution can be formed by alloying,and its me-chanical properties can be comparable to most of the bulk metallic glasses.

  11. Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors

    CERN Document Server

    Idzikowski, Bogdan; Miglierini, Marcel

    2005-01-01

    Metallic (magnetic and non-magnetic) nanocrystalline materials have been known for over ten years but only recent developments in the research into those complex alloys and their metastable amorphous precursors have created a need to summarize the most important accomplishments in the field. This book is a collection of articles on various aspects of metallic nanocrystalline materials, and an attempt to address this above need. The main focus of the papers is put on the new issues that emerge in the studies of nanocrystalline materials, and, in particular, on (i) new compositions of the alloys, (ii) properties of conventional nanocrystalline materials, (iii) modeling and simulations, (iv) preparation methods, (v) experimental techniques of measurements, and (vi) different modern applications. Interesting phenomena of the physics of nanocrystalline materials are a consequence of the effects induced by the nanocrystalline structure. They include interface physics, the influence of the grain boundaries, the aver...

  12. Comparison of Crevice Corrosion of Fe-Based Amorphous Metal and Crystalline Ni-Cr-Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shan, X; Ha, H; Payer, J H

    2008-07-24

    The crevice corrosion behaviors of an Fe-based bulk metallic glass alloy (SAM1651) and a Ni-Cr-Mo crystalline alloy (C-22) were studied in 4M NaCl at 100 C with cyclic potentiodynamic polarization and constant potential tests. The corrosion damage morphologies, corrosion products and the compositions of corroded surfaces of these two alloys were studied with optical 3D reconstruction, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Auger Electron Spectroscopy (AES). It was found that the Fe-based bulk metallic glass (amorphous alloy) SAM1651 had a more positive breakdown potential and repassivation potential than crystalline alloy C-22 in cyclic potentiodynamic polarization tests and required a more positive oxidizing potential to initiate crevice corrosion in constant potential test. Once crevice corrosion initiated, the corrosion propagation of C-22 was more localized near the crevice border compared to SAM1651, and SAM1651 repassivated more readily than C-22. The EDS results indicated that the corrosion products of both alloys contained high amount of O and were enriched in Mo and Cr. The AES results indicated that a Cr-rich oxide passive film was formed on the surfaces of both alloys, and both alloys were corroded congruently.

  13. Influence Intensive Plastic Deformation on Phase Formation Process in Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    V.I. Lysov

    2016-06-01

    Full Text Available The influence of intensive plastic deformation on structure and properties of amorphous alloys were investigated experimentally. Using highly sensitive dilatometer techniques shown that intensive plastic deformation of amorphous alloys leads to increased of thermal stability interval that can be explained by a shift of the phase equilibria in heterogeneous system: amorphous matrix - frozen crystallization centers. Thus there is a dissolution frozen crystallization centers present in the original sample that confirmed by electron researches.

  14. Formation and thermal stability of amorphous Ni-Mo-P alloys

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi; MA Jun; FANG Yong-kui; DUAN Ji-guo

    2004-01-01

    The experimental researches on the chemical deposition of Ni-Mo-P amorphous alloys were carried out by adding Na2 MoO4 into acidic solutions. The optimum technology conditions were obtained by orthogonal design experiments. The structures and the relationship between compositions and their thermal stability were studied by energy spectrum (EC), scanning electron micrograph and X-ray diffraction spectrum. Compared with Ni-P amorphous alloys, the Ni-Mo-P amorphous alloys have high crystallization temperature and thermal stability, and the hardness reaches its peak when the annealing temperature is 500 ℃. With the increase of the heat treatment temperature, the surface morphology of the alloys changes.

  15. Unexpected magnetic behavior in amorphous Co{sub 90}Sc{sub 10} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, M., E-mail: mohammad.ghafari@kit.edu, E-mail: skamali@utsi.edu; Gleiter, H. [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Sakurai, Y.; Itou, M. [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo, Sayo, Hyogo (Japan); Peng, G.; Fang, Y. N.; Feng, T. [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China); Hahn, H. [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); KIT-TUD Joint Research Laboratory Nanomaterials, Institute of Materials Science, Technische Universität Darmstadt (TUD), Jovanka-Bontschits-Str. 2, 64287 Darmstadt (Germany); Kamali, S., E-mail: mohammad.ghafari@kit.edu, E-mail: skamali@utsi.edu [Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, Tennessee 37388 (United States)

    2015-09-28

    An amorphous alloy Co{sub 90}Sc{sub 10} has been prepared by rapid quenching from the melt. The results of magnetization measurements show that this alloy has the highest Curie temperature reported for any amorphous transition metal based alloys. Furthermore, for a Co based amorphous alloy, the magnetic moment is remarkably high. Moreover, the alloy exhibits soft magnetic properties. Based on the findings, amorphous Co{sub 90}Sc{sub 10} appears to be an attractive candidate for applications as a soft magnetic material. The temperature dependence of the reduced magnetization can be described by the Bloch power law. The results show that the B coefficient of the amorphous Co{sub 90}Sc{sub 10} alloy, which is a measure of the rigidity of spin waves, exhibits the lowest value observed until now for any amorphous alloy and is comparable to crystalline alloys. It is found that the Sc atoms in the Co{sub 90}Sc{sub 10} alloy lead to an increase of the itinerant spin moment of Co atoms, and, in contrast to this behaviour, to a decrease of the local 3d-electrons of Co.

  16. Sample-Size Effects on the Compression Behavior of a Ni-BASED Amorphous Alloy

    Science.gov (United States)

    Liang, Weizhong; Zhao, Guogang; Wu, Linzhi; Yu, Hongjun; Li, Ming; Zhang, Lin

    Ni42Cu5Ti20Zr21.5Al8Si3.5 bulk metallic glasses rods with diameters of 1 mm and 3 mm, were prepared by arc melting of composing elements in a Ti-gettered argon atmosphere. The compressive deformation and fracture behavior of the amorphous alloy samples with different size were investigated by testing machine and scanning electron microscope. The compressive stress-strain curves of 1 mm and 3 mm samples exhibited 4.5% and 0% plastic strain, while the compressive fracture strength for 1 mm and 3 mm rod is 4691 MPa and 2631 MPa, respectively. The compressive fracture surface of different size sample consisted of shear zone and non-shear one. Typical vein patterns with some melting drops can be seen on the shear region of 1 mm rod, while fish-bone shape patterns can be observed on 3 mm specimen surface. Some interesting different spacing periodic ripples existed on the non-shear zone of 1 and 3 mm rods. On the side surface of 1 mm sample, high density of shear bands was observed. The skip of shear bands can be seen on 1 mm sample surface. The mechanisms of the effect of sample size on fracture strength and plasticity of the Ni-based amorphous alloy are discussed.

  17. Low-Temperature Annealing Induced Amorphization in Nanocrystalline NiW Alloy Films

    Directory of Open Access Journals (Sweden)

    Z. Q. Chen

    2013-01-01

    Full Text Available Annealing induced amorphization in sputtered glass-forming thin films was generally observed in the supercooled liquid region. Based on X-ray diffraction and transmission electron microscope (TEM analysis, however, here, we demonstrate that nearly full amorphization could occur in nanocrystalline (NC sputtered NiW alloy films annealed at relatively low temperature. Whilst the supersaturation of W content caused by the formation of Ni4W phase played a crucial role in the amorphization process of NiW alloy films annealed at 473 K for 30 min, nearly full amorphization occurred upon further annealing of the film for 60 min. The redistribution of free volume from amorphous regions into crystalline regions was proposed as the possible mechanism underlying the nearly full amorphization observed in NiW alloys.

  18. Effect of pre-annealing on thermal stability of amorphous Zr-Cu-Ni alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Yan; HUI Xidong; WANG Huanrong

    2003-01-01

    The influence of pre-annealing on thermal stability of the amorphous Zr70Cu20Ni10 alloy was reported by employing the differential scanning calorimetry (DSC) and high-resolution transmission electron microscopy (HRTEM) techniques. It has been observed that the supercooled liquid region decreases with increasing the annealing time under isothermal conditions, indicating that the thermal stability of the amorphous Zr70Cu20Ni10 alloy decreases gradually. HRTEM observations reveal that there exist some ordered atomic clusters in the amorphous matrix at the relaxation stage. These ordered atomic clusters can be regarded as precursors for the precipitation of the crystalline phases in the subsequent crystallization process. The reasons resulting in the decrease in thermal stability of the amorphous Zr70Cu20Ni10 alloy with annealing time are discussed through the Gaussian decomposition for the radial distribution function of the amorphous Zr70Cu20Nii0 alloy.

  19. Radiation Resistance Studies of Amorphous Silicon Alloy Photovoltaic Materials

    Science.gov (United States)

    Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys was investigated. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below lE14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  20. The preparation of well-dispersed Ni-B amorphous alloy nanoparticles at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wen Ming [Department of Chemistry, Tongji University, Shanghai 200092 (China)], E-mail: m_wen@mail.tongji.edu.cn; Li Lujiang; Liu Qiuyan; Qi Haiquan [Department of Chemistry, Tongji University, Shanghai 200092 (China); Zhang Tao [Department of Materials Science and Engineering, Beijing University of Aeronaut and Astronaut, Beijing 100083 (China)

    2008-05-08

    The air-stable well-dispersed Ni-B amorphous alloy nanoparticles in the similar size of 5 nm with narrow deviation were prepared by a chemical solution alloying process at room temperature in a positive microemulsion system. The proposed interface reaction mechanism, element analysis and thermal stability as well as the magnetic behavior of Ni-B amorphous alloy nanoparticles were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), infrared spectroscopy (IR), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM). All the results showed that as synthesized Ni-B amorphous alloy nanoparticles are air-stable in room temperature and coated by macromolecular compound oleic acid. The magnetic property of the as synthesized Ni-B amorphous alloy was discussed based on the obtained results.

  1. Bulk undercooling, nucleation, and macrosegregation of Pb-Sn alloys

    Science.gov (United States)

    Degroh, H. C., III; Laxmanan, V.

    1988-01-01

    Preliminary ground-based studies on the undercooling behavior of large samples (23 g) of lead-tin alloys are presented. Evidence of gravity-related segregation effects is found, and a possible area for future microgravity experimentation is thus identified. Detailed descriptions of the experimental procedure used to achieve bulk undercoolings of between 0.5 and 34 K, depending on composition, are given. The bulk undercoolings obtained in this study are comparable with those found in small droplets. The large size of the present samples enabled the observation of sedimentation and other macrosegregation processes.

  2. Fabrication of nanoporous silver by de-alloying Cu-Zr-Ag amorphous alloys

    Science.gov (United States)

    Wang, Hui; Xiao, Shang-gang; Zhang, Tao

    2016-07-01

    Nanoporous silver (NPS) with a ligament size ranging from 15 to 40 nm was fabricated by de-alloying (Cu50Zr50)100- x Ag x ( x = 10at%, 20at%, 30at%, and 40at%) amorphous ribbons in a mixed aqueous solution of hydrofluoric (HF) acid and nitric acid under free corrosion conditions. Nanoporous silver ligaments and pore sizes were able to be fine-tuned through tailoring the chemical composition, corrosion conditions, and de-alloying time. The ligament size increases with an increase in Ag content and de-alloying time, but decreases with an increase in HF concentration. This phenomenon may be attributed to the dissolution of Zr/Cu and the diffusion, aggregation, nucleation, and recrystallization of Ag, leading to an oriented attachment of adjacent nanocrystals as revealed by TEM analysis.

  3. Fabrication of nanoporous silver by de-alloying CuZrAg amorphous alloys

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Shang-gang Xiao; Tao Zhang

    2016-01-01

    Nanoporous silver (NPS) with a ligament size ranging from 15 to 40 nm was fabricated by de-alloying (Cu50Zr50)100-xAgx (x = 10at%, 20at%, 30at%, and 40at%) amorphous ribbons in a mixed aqueous solution of hydrofluoric (HF) acid and nitric acid under free cor-rosion conditions. Nanoporous silver ligaments and pore sizes were able to be fine-tuned through tailoring the chemical composition, corro-sion conditions, and de-alloying time. The ligament size increases with an increase in Ag content and de-alloying time, but decreases with an increase in HF concentration. This phenomenon may be attributed to the dissolution of Zr/Cu and the diffusion, aggregation, nucleation, and recrystallization of Ag, leading to an oriented attachment of adjacent nanocrystals as revealed by TEM analysis.

  4. Effect of radiation on bulk swelling of plutonium alloys

    International Nuclear Information System (INIS)

    Several studies show that plutonium alloys present bulk swelling. More precisely, length (as measured by dilatometry) and lattice parameter (as measured by X-ray diffraction) increase with time and seems to reach saturation after a few months for the microscopic scale. This bulk swelling can be correlated to self-induced radiation due to the decay of the different plutonium isotopes (238Pu, 239Pu, 241Pu and 242Pu) which also induce helium that tends to forms clusters, then bubbles. Many experimental and theoretical results have already been published on this topic. The goal of this paper is to review some of the results and to propose a strategy for both experiments and modelling to try to answer some of the remaining questions regarding swelling and more generally self-irradiation defects in plutonium alloys

  5. Medium-Range Order Structure and Fragility of Superheated Melts of Amorphous CuHf Alloys

    Institute of Scientific and Technical Information of China (English)

    BIAN Xiu-Fang; SUN Bao-An; HU Li-Na

    2006-01-01

    @@ The structural factors of amorphous CuHf alloys at different temperatures are determined by using a high temperature x-ray diffractometer. It is found that not only the short-range order structure but also the medium-range order structure exists in amorphous CuHf alloys. The dynamic viscosities of CuHf alloy melts are measured by a torsional oscillation viscometer. The fragility of superheated melts of CuHf alloys is calculated based on the viscosity data. The experimental results show that the glass-forming ability of the CuHf alloys is closely related to the fragility of their superheated melt. The relationship between the medium-range order structures and the fragility of superheated melts has also been established in amorphous CuHf alloys. In contrast to the fragility of supercooled liquids, the fragility of superheated liquids promises a better approach to reflecting the dynamics of glass forming liquids.

  6. Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores

    Science.gov (United States)

    Xu, Hu-ping; Wang, Ru-wu; Wei, Ding; Zeng, Chun

    2015-07-01

    The crystallization kinetics of FeSiCr amorphous alloy, characterized by the crystallization activation energy, Avrami exponent and frequency factor, was studied by non-isothermal differential scanning calorimetric (DSC) measurements. The crystallization activation energy and frequency factor of amorphous alloy calculated from Augis-Bennett model were 476 kJ/mol and 5.5×1018 s-1, respectively. The Avrami exponent n was calculated to be 2.2 from the Johnson-Mehl-Avrami (JMA) equation. Toroid-shaped Fe-base amorphous powder cores were prepared from the commercial FeSiCr amorphous alloy powder and subsequent cold pressing using binder and insulation. The characteristics of FeSiCr amorphous alloy powder and the effects of compaction pressure and insulation content on the magnetic properties, i.e., effective permeability μe, quality factor Q and DC-bias properties of FeSiCr amorphous alloy powder cores, were investigated. The FeSiCr amorphous alloy powder cores exhibit a high value of quality factor and a stable permeability in the frequency range up to 1 MHz, showing superior DC-bias properties with a "percent permeability" of more than 82% at H=100 Oe.

  7. STUDY ON MAXIMUM HYDROGEN CAPACITY FOR Zr-Ni AMORPHOUS ALLOY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To design the amorphous hydrogen storage alloy efficiently, the maximum hydrogen capacities for Zr-Ni amorphous alloy were calculated. Based on the Rhomb Unit Structure Model(RUSM) for amorphous alloy and the experimental result that hydrogen atoms exist in 3Zr1Ni and 4Zr tetrahedron interstices in Zr-Ni amorphous alloy, the numbers of 3Zr-1Ni and 4Zr tetrahedron interstices in a RUSM were calculated which correspond to the hydrogen capacity. The two extremum Zr distribution states were calculated, such as highly heterogeneous Zr distribution and homogeneous Zr distribution. The calculated curves of hydrogen capacity with different Zr contents at two states indicate that the hydrogen capacity increases with increasing Zr content and reaches its maximum when Zr is 75%. The theoretical maximum hydrogen capacity for Zr-Ni amorphous alloy is 2.0(H/M). Meanwhile, the hydrogen capacity of heterogeneous Zr distribution alloy is higher than that of homogenous one at the same Zr content. The experimental results prove the calculated results reasonable, and accordingly, the experimental results that the distribution of Zr atom in amorphous alloy occur heterogeneous after a few hydrogen absorption-desorption cycles can be explained.

  8. Spectroscopic and mechanical studies on the Fe-based amorphous alloy 2605SA1

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A.; Garcia S, I. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Contreras V, J. A.; Garcia S, F. [Universidad Autonoma del Estado de Mexico, Facultad de Ciencias, El Cerrillo Piedras Blancas, Toluca, Estado de Mexico (Mexico); Nava, N., E-mail: agustin.cabral@inin.gob.m [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, 07730 Mexico D. F. (Mexico)

    2010-07-01

    The Vickers micro-hardness of this alloy was unusually dependent on the heat treatment from 300 to 634 K, inferring important micro-structural changes and the presence of amorphous grains before its phase transition. Once the alloy is crystallized, the micro-hardness is characteristic of a brittle alloy, the main problem of these alloys. Within the amorphous state, other properties like free-volume, magnetic states and Fe-Fe distances were followed by Positron annihilation lifetime spectroscopy and Moessbauer spectroscopy, respectively, to analyze those micro-structural changes, thermally induced, which are of paramount interest to understand their brittleness problem. (Author)

  9. ( Cu50Zr42Al8)96Y4块状非晶的变温晶化行为%Effects of Temperature on Crystallization Behavior of Bulk( Cu50Zr42Al8 ) 96Y4Amorphous Alloy

    Institute of Scientific and Technical Information of China (English)

    屠鹏; 寇生中

    2011-01-01

    研究(Cu50Zr42Al8)96 Y4大块非晶合金在连续升温过程中的晶化行为.结果表明,随升温速度的加快,玻璃转变温度Tg、晶化起始温度Tx、晶化峰值温度Tp都向高温区移动,过冷温度区△Tx扩大到了72.5K.运用Kissinger法分别计算出玻璃转变激活能Eg为512.34kJ/mol、晶化起始激活能Ex为372.44 kJ/mol、晶化峰的激活能Ep1和Ep1为404.52kJ/mol、404.75kJ/mol.运用FWO法计算出了晶化阶段激活能Ex,发现当晶化量小于50%时,随晶化量的增大,阶段激活能变化不大;当晶化量大于50%时,随晶化量的增大,阶段激活能呈逐渐减小的趋势.%Crystallization behavior of bulk ( Cu50 Zr42 Al8 ) 96 Y4 amorphous alloy during continuous temperature increment was described. With increasing of the temperature , The results indicate that the glass transformation temperature ( Tg ) , crystallization initial temperature ( Tz) and crystallization peak temperature ( Tp ) tend to high temperature zone , and under-cooled temperature zone △TX is enlarged to 72.5 K. The glass transformation activation energy Eg, crystallization initial activation energy Ex and crystallization peak activation energy Ep are calculated by theKissinger formula which is 512. 34 kj/mol, 372.44 kJ/mol, 404. 52 kJ/mol and 404. 75 kJ/mol respectively. In addition, crystallization phase activation energy Ex is calculated by the FWO equation. The research found that there is no notable change in the crystallization phase activation energy is increased with the increasing of crystallization degree when crystallization degree is lower than 50% ; on the contrary, when crystallization degree is higher than 50% , the crystallization phase activation energy is decreased with the increasing of crystallization degree.

  10. High pressure magnetic behaviour of amorphous Ysub(x)Nisub(1-x) alloys

    International Nuclear Information System (INIS)

    High pressure magnetization and Curie temperature measurements have been performed on several amorphous Ysub(x)Nisub(1-x) alloys. The results seem to indicate that ferromagnetism disappears in a rather inhomogeneous way

  11. Pressure effects on Al89La6Ni5 amorphous alloy crystallization

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Jiang, Jianzhong; Zhou, T. J.;

    2000-01-01

    The pressure effect on the crystallization of the Al89La6Ni5 amorphous alloy has been investigated by in situ high-pressure and high-temperature x-ray powder diffraction using synchrotron radiation. The amorphous alloy crystallizes in two steps in the pressure range studied (0-4 GPa). The first...... process, corresponding to simultaneous precipitation of fcc-Al crystals and the metastable bcc-(AlNi)(11)La-3-like phase, is governed by a eutectic reaction. The second process corresponds to the transformation of a residual amorphous alloy into fcc-Al, Al11La3, Al3Ni, and as yet unidentified phase......(s). The applied pressure strongly affects the crystallization processes of the amorphous alloy. Both temperatures first decrease with pressure in the pressure range of 0-1 GPa and then increase with pressure up to 4 GPa. The results are discussed with reference to competing processes between the thermodynamic...

  12. Welding of cobalt-based amorphous alloys with Nd: YAG laser

    International Nuclear Information System (INIS)

    The paper describes the results concerning the investigation of the welding of cobalt-based amorphous alloys with Nd:YAG laser. Five alloys with different chemical structure and dimensions in shape of amorphous metal foils were welded. The quality of the welded joints were tested by using a microstructure analysis with an optical microscope and SEM, when the metal graphic structure, the chemical structure and the microhardness of the welded joints were tested as well. (Author)

  13. Calorimetric studies of non-isothermal crystallization in amorphous CuTi100– alloys

    Indian Academy of Sciences (India)

    N Mehta; K Singh; N S Saxena

    2011-12-01

    The present paper reports the composition dependence of pre-exponential factor and activation energy of non-isothermal crystallization in amorphous alloys of CuTi100– system using differential scanning calorimeter (DSC) technique. The applicability of Meyer–Neldel relation between the pre-exponential factor and activation energy of non-isothermal crystallization for amorphous alloys of Cu–Ti system was verified.

  14. Amorphization and magnetic properties of Fe62Nb38 mechanically alloyed powders

    Institute of Scientific and Technical Information of China (English)

    QIN Hongwei; HU Jifan; YANG Fuming

    2004-01-01

    The amorphization and magnetic properties of Fe62Nb38 mechanically alloyed powders were investigated. In the initial mechanical alloying processes, the lattice structure of pure Fe is destroyed due to the cold-welding and fracturing, accompanying the reduction of ferromagnetic properties. The Ms value of Fe62Nb38 powders with ball-milling time t = 6 h is only 48.1 A.m2/kg. With prolongating of mechanical alloying processes, a solid state amorphization reaction (SSAR) takes place and the Fe-Nb ferromagnetic amorphous phase is formed. With the milling time increasing from 6 to 18 h, the satura tion magnetization of Fe62NB38 powders increases with enhancement of the proportion of ferromagnetic amorphous phase in from dilute model. However, the Curie temperature of the Fe62Nb38 amorphous phase is only 206°C, which is much smaller than that of the pure Fe. This implies that the exchange interaction between Fe atoms in amorphous alloyed Fe62Nb38 becomes weak due to the Nb dilution. Investigation shows that the variation of magnetic properties of milled powders is one of important tools for describing the amorphization by mechanical alloying.

  15. Structure and Soft Magnetic Properties of the Amorphous Alloys: Fe61Co10Ti3-xY6+xB20 (x = 0, 1

    Directory of Open Access Journals (Sweden)

    Błoch K.

    2016-03-01

    Full Text Available This paper presents studies relating to the structure, soft magnetic properties and thermal stability of the following bulk amorphous alloys: Fe61Co10Ti3-xY6+xB20 (x = 0, 1. On the basis of the performed X-ray diffraction studies and Mössbauer spectroscopy, it was found that investigated samples were amorphous in the as-cast state. The DSC curve obtained for Fe61Co10Ti2Y7B20 alloy exhibited one exothermic peak, while for the Fe61Co10Ti3Y6B20 sample, two peaks were distinguishable. The change in the chemical structure of the investigated alloys has a major effect on their soft magnetic properties; especially on coercivity and saturation magnetization. On the basis of the magnetization curves analysis, the spin wave stiffness parameter Dsp were determined for the investigated alloys.

  16. A novel approach to quantify nitrogen distribution in nanocrystalline-amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Amini, R. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Blvd., 7134851154, Shiraz (Iran, Islamic Republic of); Department of Materials Science and Engineering, Shiraz University of Technology, Modarres Blvd., 3619995161, Shiraz (Iran, Islamic Republic of); Salahinejad, E., E-mail: erfan.salahinejad@gmail.com [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Blvd., 7134851154, Shiraz (Iran, Islamic Republic of); Hadianfard, M.J.; Bajestani, E. Askari [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Blvd., 7134851154, Shiraz (Iran, Islamic Republic of); Sharifzadeh, M. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2011-02-03

    Research highlights: > A novel method is introduced to determine nitrogen distribution in nanocrystalline-amorphous alloys, based on X-ray diffraction, thermogravimetry, and differential scanning calorimetery. > The technique determines the contribution of crystal interstitial sites, crystalline defects, and amorphous phase to nitrogen incorporation. > In Fe-18Cr-8Mn-2.5N alloy synthesized by mechanical alloying, about 4, 21 and 75 percent of nitrogen is distributed among the crystal interstitial sites, defects, and amorphous phase, respectively. - Abstract: A method is introduced to estimate nitrogen partitioning in the structure of nanocrystalline-amorphous alloys, based on X-ray diffraction, thermogravimetry, and differential scanning calorimetery. The technique quantitatively determines the contribution of crystal interstitial sites, crystalline defects, and amorphous phase to nitrogen incorporation. Typically, the method shows that in Fe-18Cr-8Mn-2.5N alloy synthesized by mechanical alloying, about 4, 21 and 75 percent of nitrogen is distributed among the crystal interstitial sites, defects, and amorphous phase, respectively.

  17. Electonic properties of hydrogenated amorphous silicon-germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bullot, J.; Galin, M.; Gauthier, M. (Universite de Paris-Sud, Orsay (France)); Bourdon, B. (CIT-Alcatel Transmission, Marcoussis (France))

    1983-06-01

    The electronic properties of some binary hydrogenated amorphous silicon-germanium alloys a-Sisub(x)Gesub(1-x):H in the silicon rich region (x > 0.6) are investigated. Experimental evidence is presented of photo-induced effects similar to those described in Si:H (Staebler-Wronski effect). The electronic properties are then studied from the dual point of view of the germanium content dependence and of the photo and thermal histories of the films. The dark conductivity changes between the annealed state and the light-soaked state are interpreted in terms of the variation of the temperature coefficient of the Fermi level. The photoconductivity efficiency is shown to remain close to that of a-Si:H for 1 > x >= 0.9 and to strongly decrease when the germanium content is further increased: the photoresponse of the Sisub(0.62)Gesub(0.38) alloy is 10/sup 4/ times smaller than that of a-Si:H. This deterioration of the photoconductive properties is explained in terms of the increase of the density of gap states following Ge substitution. This conclusion is based on the study of the width of the exponential absorption edge and on the results of photoconductivity time response studies. The latter data are interpreted by means of the model of Rose of trapping and recombination kinetics and it is found that for x approximately 0.6 the density of states at 0.4-0.5 eV below the mobility edge is 7 x 10/sup 17/ eV/sup -1/ cm/sup -3/ as compared to 2.4 x 10/sup 16/ eV/sup -1/ cm/sup -3/ for x = 0.97.

  18. Transformers with amorphous alloy nucleus in distribution system; Transformadores com nucleo de liga amorfa em sistemas de distribuicao

    Energy Technology Data Exchange (ETDEWEB)

    Luciano, Benedito Antonio; Freire, Raimundo Carlos Silverio [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Bezerra, Reno Barroso [Industria de Transformadores Itaipu, Campinas, SP (Brazil); Inacio, Renato Cucatu [Companhia de Energia Eletrica do Estado do Tocantins (CELTINS), TO (Brazil)

    2010-01-15

    This paper compares the performance of amorphous alloy nucleus with oriented grain silicon steel alloy, related to losses, energy efficiency and energy quality. Besides, are highlighted the process obtention of the amorphous alloys and the electric, magnetic and mechanicals, magneto thermal treatment, effect of oxidation properties, and etc. (author)

  19. Enhancement of the Thermal Stability and Mechanical Hardness of Zr-Al-Co Amorphous Alloys by Ag Addition

    Science.gov (United States)

    Wang, Yongyong; Dong, Xiao; Song, Xiaohui; Wang, Jinfeng; Li, Gong; Liu, Riping

    2016-05-01

    The thermal and mechanical properties of Zr57Al15Co28- X Ag X ( X = 0 and 8) amorphous alloys were investigated using differential scanning calorimetry, in situ high-pressure angle dispersive X-ray diffraction measurements with synchrotron radiation, and nanoindentation. Results show that Ag doping improves effective activation energy, nanohardness, elastic modulus, and bulk modulus. Ag addition enhances topological and chemical short-range orderings, which can improve local packing efficiency and restrain long-range atom diffusion. This approach has implications for the design of the microstructure- and property-controllable functional materials for various applications.

  20. Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hu-ping [School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063 (China); Wang, Ru-wu, E-mail: ruwuwang@hotmail.com [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China); College of Materials Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081 (China); Wei, Ding [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Zeng, Chun [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China)

    2015-07-01

    The crystallization kinetics of FeSiCr amorphous alloy, characterized by the crystallization activation energy, Avrami exponent and frequency factor, was studied by non-isothermal differential scanning calorimetric (DSC) measurements. The crystallization activation energy and frequency factor of amorphous alloy calculated from Augis–Bennett model were 476 kJ/mol and 5.5×10{sup 18} s{sup −1}, respectively. The Avrami exponent n was calculated to be 2.2 from the Johnson–Mehl–Avrami (JMA) equation. Toroid-shaped Fe-base amorphous powder cores were prepared from the commercial FeSiCr amorphous alloy powder and subsequent cold pressing using binder and insulation. The characteristics of FeSiCr amorphous alloy powder and the effects of compaction pressure and insulation content on the magnetic properties, i.e., effective permeability μ{sub e}, quality factor Q and DC-bias properties of FeSiCr amorphous alloy powder cores, were investigated. The FeSiCr amorphous alloy powder cores exhibit a high value of quality factor and a stable permeability in the frequency range up to 1 MHz, showing superior DC-bias properties with a “percent permeability” of more than 82% at H=100 Oe. - Highlights: • The crystallization kinetics of FeSiCr amorphous alloy was investigated. • The FeSiCr powder cores exhibit a high value of Q and a stable permeability. • The FeSiCr powder cores exhibit superior DC-bias properties.

  1. Deployable aerospace PV array based on amorphous silicon alloys

    Science.gov (United States)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-01-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  2. Anisotropic phase separation in amorphous Fe--Ge alloys

    International Nuclear Information System (INIS)

    Magnetron sputtered amorphous FexGe100-x films have been examined with anomalous small-angle x-ray scattering (ASAXS) in an attempt to characterize composition fluctuations which have been previously reported in this system. Films grown under various deposition conditions have been studied, with the scattering vector both in and oblique to the plane of the films, to search for anisotropy. By manipulating the deposited power flux and rates of growth, films which have the same composition can be grown to different states of phase separation. The total correlation functions have been calculated from the oblique scattering experiments. The anisotropy can be successfully modeled as a close-packing of oriented prolate ellipsoidal particles, with the elongated axis along the direction of film growth. A method for using these measurements to determine the compositions of the phase-separating species has been developed and utilized. The results indicate phase separation into a-Ge and a-FeGe2 for the a-FexGe100-x (x<33) alloy

  3. Structural studies of the phase separation of amorphous FexGe100-x alloys

    Science.gov (United States)

    Lorentz, Robert D.; Bienenstock, Arthur; Morrison, Timothy I.

    1994-02-01

    Small-angle x-ray scattering and x-ray-absorption near-edge spectroscopy (XANES) experiments have been performed on amorphous FexGe100-x alloys over the composition range 0Janot for the related FexSn100-x system. This phase separation explains the Mossbauer observation of ``magnetic'' and ``nonmagnetic'' Fe atoms in these alloys.

  4. On amorphization and nanocomposite formation in Al–Ni–Ti system by mechanical alloying

    Indian Academy of Sciences (India)

    K Das; G K Dey; B S Murty; S K Pabi

    2005-11-01

    Amorphous structure generated by mechanical alloying (MA) is often used as a precursor for generating nanocomposites through controlled devitrification. The amorphous forming composition range of ternary Al–Ni–Ti system was calculated using the extended Miedema's semi-empirical model. Eleven compositions of this system showing a wide range of negative enthalpy of mixing (− mix) and amorphization (− amor) of the constituent elements were selected for synthesis by MA. The Al88Ni6Ti6 alloy with relatively small negative mix (−0.4 kJ/mol) and amor (−14.8 kJ/mol) became completely amorphous after 120 h of milling, which is possibly the first report of complete amorphization of an Al-based rare earth element free Al–TM–TM system (TM = transition metal) by MA. The alloys of other compositions selected had much more negative mix and amor; but they yielded either nanocomposites of partial amorphous and crystalline structure or no amorphous phase at all in the as-milled condition, evidencing a high degree of stability of the intermetallic phases under the MA environment. Hence, the negative mix and amor are not so reliable for predicting the amorphization in the present system by MA.

  5. Formation mechanism of amorphous Ni-Fe-P alloys by electrodeposition

    Institute of Scientific and Technical Information of China (English)

    GAO Cheng-hui

    2005-01-01

    The formation mechanism of the amorphous Ni-Fe-P coating was studied by analysis of the forming thermodynamics, dynamics, and crystallography of the amorphous alloy. The results show that, in the initial stage of deposition a thin "crystal epitaxial growth" layer first forms, and then transforms to amorphous gradually. The cross section in Ni-Fe-P coatings by electrolytic etching exhibits a banded structure of alternate dark and light bands. It is proposed that the banded structure is caused by a change in the P content with thickness,which is due to alternated depletion and enrichment of [OH-] in the diffusion layer resulting from the generation and evolution of hydrogen gas. The amorphous Ni-Fe-P coating will be formed in proper composition, high nucleation rate and strongly hindered growth of the crystal nucleus. Amorphous Ni-Fe-P alloys form as islands, and grow up by layer.

  6. Amorphous TM1−xBx alloy particles prepared by chemical reduction (invited)

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, Steen

    1991-01-01

    Amorphous transition-metal boron (TM-B) alloy particles can be prepared by chemical reduction of TM ions by borohydride in aqueous solutions. ln the last few years systematic studies of the parameters which control the composition, and, in turn, many of the properties of the alloy particles, have...... been performed and are reviewed in the present paper. The most important preparation parameters which influence the composition are the concentration of the borohydride solution and the pH of the TM salt solution. By controlling these parameters it is possible to prepare amorphous alloy samples...

  7. Friction and wear behavior of electrodeposited amorphous Fe-Co-W alloy deposits

    Institute of Scientific and Technical Information of China (English)

    何凤姣; 雷惊天; 陆欣; 黄宇宁

    2004-01-01

    The microstructures, friction and wear behavior under dry sliding condition of electrodeposited amorphous Fe-Co-W alloy deposits heat treated at different temperatures were studied. A comparative study of hard chrome deposit under the same testing condition was also made. The experimental results show that the hardness and wear resistance of amorphous Fe-Co-W alloy deposits are improved with the increasing of heat treatment temperature, and reach the maximum value at 800 ℃, then decrease above 800 ℃. Under 40 N load, the wear resistance properties of the alloy deposits heat treated at 800 ℃ are superior to those of hard chrome deposit. The main wear mechanisms of amorphous Fe-Co-W alloy deposits heat treated below 600 ℃ are peeling, plastic and flowing deformation; when the deposits are heat treated above 700 ℃, they are plastic and flowing deformation. While the main wear mechanisms of hard chrome are abrasive wear, fatigue and peeling.

  8. Correlation Between Superheated Liquid Fragility And Onset Temperature Of Crystallization For Al-Based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Guo J.

    2015-06-01

    Full Text Available Amorphous alloys or metallic glasses have attracted significant interest in the materials science and engineering communities due to their unique physical, mechanical, and chemical properties. The viscous flow of amorphous alloys exhibiting high strain rate sensitivity and homogeneous deformation is considered to be an important characteristic in thermoplastic forming processes performed within the supercooled liquid region because it allows superplastic-like deformation behavior. Here, the correlation between the superheated liquid fragility, and the onset temperature of crystallization for Al-based alloys, is investigated. The activation energy for viscous flow of the liquid is also investigated. There is a negative correlation between the parameter of superheated liquid fragility and the onset temperature of crystallization in the same Al-based alloy system. The activation energy decreases as the onset temperature of crystallization increases. This indicates that the stability of a superheated liquid can affect the thermal stability of the amorphous alloy. It also means that a liquid with a large superheated liquid fragility, when rapidly solidified, forms an amorphous alloy with a low thermal stability.

  9. Synthesis of amorphous Ti-Al alloys by mechanical alloying of elemental powders

    Institute of Scientific and Technical Information of China (English)

    张俊红; 黄伯云; 贺跃辉; 周科朝; 刘咏

    2002-01-01

    Blended elemental powders with the nominal compositions (mole fraction, %) of Ti54Al46, Ti52Al48 and Ti50Al50 were mechanically alloyed in a planetary ball milling system for up to 100h.The structure evolution in these powders was characterized by scanning electron microscope, X-ray diffraction and differential thermal a nalysis techniques. It was found that elemental powders were progressively trans formed into nanocrystalline Ti(Al) supersaturated solid solution, then into amor phous phase. With increasing Al content, the formation of a fully Ti(Al) supersa turated solid solution and amorphous phase were accelerated, which are attributed to the fine grain size. And the grain size condition for formation of amorpho us phase in this system is ≤16 nm.

  10. Phase separation and crystallization process of amorphous Fe78B12Si9Ni1 alloy

    International Nuclear Information System (INIS)

    The influence of the melt heat treatment on the structure and crystallization process of the rapidly quenched amorphous Fe78B12Si9Ni1 alloys have been investigated by means of x-ray diffraction, DSC and TEM. Amorphous phase separation has been observed in the alloys quenched after the preliminary high temperature heat treatment of the liquid alloy (heating above 1400°C). Comparative analysis of the pair distribution functions demonstrates that this phase separation accompanied by a changes in the local atomic arrangement. It has been found that crystallization process at heating is strongly dependent on the initial amorphous phase structure - homogeneous or phase separated. In the last case crystallization goes through the formation of a new metastable hexagonal phase [a=12.2849(9) Ǻ, c=7.6657(8) Ǻ]. At the same time the activation energy for crystallization (Ea) reduces from 555 to 475 kJ mole−1

  11. Crystallization kinetics of amorphous Zr65Cu25Al10 alloy

    Institute of Scientific and Technical Information of China (English)

    王焕荣; 石志强; 王艳; 滕新营; 叶以富; 闵光辉; 张均艳

    2002-01-01

    Crystallization behavior of amorphous Zr65Cu25Al10 alloy under isothermal annealing condition was investigated by DSC and XRD. It is found that two exothermic peaks appear in the DSC curve of amorphous Zr65Cu25Al10 alloy, indicating that the crystallization proceeds through double-stage mode. The crystallization process of amorphous Zr65Cu25Al10 alloy under isothermal annealing condition is mainly controlled by nucleation and one-dimensional growth with the crystallized volume fraction smaller than 70%. With the crystallized volume fraction ranging from 70% to 90%, crystallization process is mainly dominated by the growth of three-dimensional pre-existing quench-in nuclei. And when the crystallized volume fraction reaches above 90%, transient nucleation becomes the master of the crystallization process.

  12. Crystallization of the Amorphous Zr70Cu20Ni10 Alloy

    Institute of Scientific and Technical Information of China (English)

    王焕荣; 刘玉先; 萧莉美; 惠希东

    2002-01-01

    Crystallization behaviour of the amorphous Zr70Cu20Ni10 alloy within the supercooled liquid region has been investigated by means of differential scanning calorimetry (DSC) and transmission electron microscopy (TEM).It is found that the relationship between the incubation time, which is necessary for the amorphous Zr70 Cu20Ni10 alloy to nucleate and grow, and the annealing temperature obeys an exponential function. A similar relationship can also be observed between the peak time corresponding to the minimum of the exothermic reaction in the DSC scan and the annealing temperature. TEM observations confirm that the first exothermic peak in the DSC trace of amorphous Zr70Cu20Ni10 alloy mainly corresponds to the precipitation of the Zr2Cu phase, while the second peak mainly corresponds to the precipitation of the nanoscale Zr2Ni phase.

  13. Relaxation process of Fe(CuNb)SiB amorphous alloys investigated by dynamical calorimetry

    OpenAIRE

    Zhu, J.; Clavaguera-Mora, M. T.; Clavaguera, N.

    1997-01-01

    Differential scanning calorimetry and dynamic differential scanning calorimetry were used to analyze the relaxation process of Fe(CuNb)SiB amorphous alloys. The Curie temperature(TC) evolution of the amorphous phase during relaxation as a function of heating rate, time and pre-annealing temperature were measured. Two distinct relaxation processes are observed, consequent with topological and chemical short range order changes.

  14. Relaxation process of Fe(CuNb)SiB amorphous alloys investigated by dynamical calorimetry

    International Nuclear Information System (INIS)

    Differential scanning calorimetry and dynamic differential scanning calorimetry were used to analyze the relaxation process of Fe(CuNb)SiB amorphous alloys. The Curie temperature (TC) evolution of the amorphous phase during relaxation as a function of heating rate, time and pre-annealing temperature were measured. Two distinct relaxation processes are observed, consequent with topological and chemical short range order changes. copyright 1997 American Institute of Physics

  15. Compression behavior and equation of state of Ni77P23 amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    LI Gong; GAO YunPeng; SUN YiNan; MA MingZhen; LIU Jing; LIU RiPing

    2007-01-01

    The compression behavior of Ni77P23 amorphous alloy is investigated at room temperature in a diamond-anvil cell instrument using in-situ high pressure energy dispersive X-ray diffraction with a synchrotron radiation source. The equation of state is determined by fitting the experimental data according to Birch-Murnaghan equation: -△V/V0=0.08606P-3.2×10-4P2+5.7×10-6P3. It is found that the structure of Ni77P23 amorphous alloy is stable under pressures up to 30.5 Gpa.

  16. Compression Behaviour of Ni77P23 Amorphous Alloy up to 30.5 GPa

    Institute of Scientific and Technical Information of China (English)

    LI Gong; ZHANG Xin-Yu; SUN Yi-Nan; QIAN Yu-Qing; LIU Jing; LIU Ri-Ping

    2005-01-01

    @@ The compression behaviour of Ni77P23 amorphous alloy is investigated at room temperature in a diamond-anvil cell instrument using in-situ high pressure energy dispersive x-ray diffraction with a synchrotron radiation source.The equation of state is determined by fitting the experimental data according to the Birch-Murnaghan equation.It is found that the structure of Ni77P23 amorphous alloy is stable under pressures up to 30.5GPa. Within the pressure range from zero to the experimental one, the pressure-induced structural relaxation is reversible.

  17. Effect of Cerium on Chemical Short-Range Order of Al-Fe-Ce Amorphous Alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The chemical short-range order of Al-Fe-Ce amorphous alloy was studied by means of X-ray diffraction(XRD) and differential scanning calorimetry(DSC). It is found that the prepeak position in X-ray diffraction intensity curve shifts to higher angles as the content of Fe increases, but it shifts to smaller angles as the content of Ce increases. The crystallization character of the amorphous alloy changes with the variation of the content of Fe and Ce. Ce can improve the interaction between atoms and the capacity of compound formation, so it is favorable to Al-based glass formability.

  18. Evidence of eutectic crystallization and transient nucleation in Al89La6Ni5 amorphous alloy

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Jiang, Jianzhong; Lin, Z. G.;

    2001-01-01

    The phase evolution with the temperature and time in the process of crystallization of Al89La6Ni5 amorphous alloy has been investigated by in situ high-temperature and high-pressure x-ray powder diffraction using synchrotron radiation. Two crystalline phases, fcc-Al and a metastable bcc-(AlNi)(11......)La-3-like phase, were identified after the first crystallization reaction, revealing a eutectic reaction instead of a primary reaction suggested in the literature. Time-dependent nucleation in the amorphous alloy is detected and the experimental data can be fitted by both the Zeldovich...

  19. Ferromagnetic Fe-based Amorphous Alloy with High Glass-forming Ability

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A ferromagnetic amorphous Fe73Al4Ge2Nb1P10C6B4 alloy with highglass-forming ability was synthesized by melt spinning. The supercooled liquid region before crystallization reaches about 65.7 K. The crystallized structure consists of α-Fe, Fe3B, FeB, Fe3P and Fe3C phases. The Febased amorphous alloy exhibits good magnetic properties with a high saturation magnetization and a low saturated magnetostriction. The crystallization leads to an obvious decrease in the soft magnetic properties.

  20. Formation Range, Mechanical Properties and Thermal Stability of Superconducting Zr-Si Amorphous Alloys

    OpenAIRE

    Inoue, Akihisa; Takahashi, Yoshimi; MASUMOTO, Tsuyoshi

    1980-01-01

    New type of refractory metal-metalloid amorphous alloys containing less than 20 at% Si have been found in binary Zr-Si system by a modified melt-spinning technique for high melting point alloys. Specimens are in the form of continuous ribbons of 1-2 mm width and 0.02-0.03 mm thickness. The silicon content in the amorphous range is limited to the range 12 to 24 at%. The Vickers hardness increases from 395 to 495 DPN with increasing silicon content and the tensile strength is of the order of 14...

  1. Surface and bulk crystallization of amorphous solid water films: Confirmation of "top-down" crystallization

    Science.gov (United States)

    Yuan, Chunqing; Smith, R. Scott; Kay, Bruce D.

    2016-10-01

    The crystallization kinetics of nanoscale amorphous solid water (ASW) films are investigated using temperature-programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS). TPD measurements are used to probe surface crystallization and RAIRS measurements are used to probe bulk crystallization. Isothermal TPD results show that surface crystallization is independent of the film thickness (from 100 to 1000 ML). Conversely, the RAIRS measurements show that the bulk crystallization time increases linearly with increasing film thickness. These results suggest that nucleation and crystallization begin at the ASW/vacuum interface and then the crystallization growth front propagates linearly into the bulk. This mechanism was confirmed by selective placement of an isotopic layer (5% D2O in H2O) at various positions in an ASW (H2O) film. In this case, the closer the isotopic layer was to the vacuum interface, the earlier the isotopic layer crystallized. These experiments provide direct evidence to confirm that ASW crystallization in vacuum proceeds by a "top-down" crystallization mechanism.

  2. Mechanical behavior of a bulk nanostructured iron alloy

    Science.gov (United States)

    Carsley, J. E.; Fisher, A.; Milligan, W. W.; Aifantis, E. C.

    1998-09-01

    Bulk, fully dense materials were prepared from Fe-10Cu with grain diameters between 45 nm and 1.7 µm. The materials were prepared by ball milling of powders in a glove box, followed by hot isostatic pressing (hipping) or powder forging. Larger grain sizes were obtained by thermal treatment of the consolidated powders. The bulk materials were relatively clean, with oxygen levels below 1500 wpm and other contaminants less than 0.1 at. pct. The mechanical behavior of these materials was unique. At temperatures from 77 to 470 K, the first and only mechanism of plastic deformation was intense shear banding, which was accompanied by a perfectly plastic stress-strain response (absence of strain hardening). There was a large tension-compression asymmetry in the strength, and the shear bands did not occur on the plane of maximum shear stress or the plane of zero extension. This behavior, while unusual for metals, has been observed in amorphous polymers and metallic glasses. On the other hand, the fine-grained Fe-10Cu materials behaved like coarse-grained iron in some respects, particularly by obeying the Hall-Petch equation with constants reasonably close to those of pure iron and by exhibiting low-temperature mechanical behavior which was very similar to that of steels. Transmission electron microscopy (TEM) studies found highly elongated grains within shear bands, indicating that shear banding occurred by a dislocation-based mechanism, at least at grain sizes above 100 nm. Similarities and differences between the fine-grained Fe-10Cu and metals, polymers, metallic glasses, radiation-damaged metals, and quench-damaged metals are discussed.

  3. Magnetic and mechanical properties in FeXSiB (X = Cu, Zr, Co) amorphous alloys

    OpenAIRE

    P. Kwapuliński; Rasek, J.; Z. Stokłosa; G. Badura; B. Kostrubiec; Haneczok, G.

    2008-01-01

    Purpose: The idea of the paper is to study the influence of different alloying additions (Cu, Zr, Nb) on structuralrelaxation, crystallization, and improvement of soft magnetic properties in amorphous alloys of the type FeXSiBobtained by melt spinning technique.Design/methodology/approach: Magnetic and electric characteristics of the as quenched and successivelyannealed samples were determined at room temperature. Experiments were carried out by applying magneticpermeability measurements (Max...

  4. Phase formation, liquid structure, and physical properties of amorphous and quasicrystal-forming alloys

    Science.gov (United States)

    Wessels, Victor Medgar

    2009-12-01

    Since the discovery of quasicrystals in 1985 and the development of commercially viable bulk metallic glasses (BMGs) in the mid 1990's a great deal of attention has been given to the characterization of new alloys with desirable properties, such as larger amorphous casting thickness, higher mechanical strength, or hydrogen storage capacity. Here, the results of a number of investigations into the structures and properties of some noncrystalline solid alloys will be presented and analyzed. Beamline electrostatic levitation (BESL), a method for determining supercooled liquid structure and phase formation in-situ, was used. Using BESL, the development of structural and chemical inhomogeneity was observed in supercooled liquid Cu46Zr 54 (a BMG when cast) with an onset at 845 +/- 5°C, providing experimental support for structural changes determined from molecular dynamics (MD) simulations of these liquids. Differing segregation of Hf and Zr atoms was observed in solidified Ti45Zr(38-x)HfxNi 17 using scanning electron microscopy (SEM), and correlated to a previously observed, sharp boundary in phase formation near x = 19 that was further investigated using BESL. In addition to the BESL studies, results will be presented and discussed on changes in microstructure and devitrification mechanisms with the addition of Ag in Mg65Cu(25-x)AgxGd 10 BMGs, interesting for their light weight and resistance to oxygen during casting, using transmission electron microscopy (TEM), SEM, and differential scanning calorimetry (DSC). Previous, preliminary results on the hydrogen storage capacity of icosahedral quasicrystal Ti45Zr38Ni 17 were re-examined, using an improved apparatus and analysis method developed as part of this work, and the previous results found to be in error.

  5. Magnetocaloric response of amorphous and nanocrystalline Cr-containing Vitroperm-type alloys

    Science.gov (United States)

    Moreno-Ramírez, L. M.; Blázquez, J. S.; Franco, V.; Conde, A.; Marsilius, M.; Budinsky, V.; Herzer, G.

    2016-07-01

    The broad compositional range in which transition metal (TM) based amorphous alloys can be obtained, yields an easily tunable magnetocaloric effect (MCE) in a wide temperature range. In some TM-based alloys, anomalous behaviors are reported, as a non-monotonous trend with magnetic moment (e.g. FeZrB alloys). Moreover, in certain Cr-containing Vitroperm alloys anomalously high values of the magnetic entropy change were published. In this work, a systematic study on MCE response of Cr-containing amorphous alloys of composition Fe74-xCrxCu1Nb3Si15.5B6.5 (with x=2, 8, 10, 12, 13, 14 and 20) has been performed in a broad Curie temperature range from 100 K to 550 K. Curie temperature and magnetic entropy change peak of the amorphous alloys decrease with the increase of Cr content at rates of -25.6 K/at% Cr and -54 mJ kg-1 K-1/at% Cr, respectively, following a linear trend with the magnetic moment in both cases. The presence of nanocrystalline phases has been considered as a possible cause in order to explain the anomalies. The samples were nanocrystallized in different stages, however, the magnetocaloric response decreases as crystallization progresses due to the large separation of the Curie temperatures of the two phases.

  6. Homogeneous Plastic Flow of Fully Amorphous and Partially Crystallized Zr41.2Ti13.8Cu12.5Ni10Be22.5 Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    Q.WANG; J.J. Blandin; M. Suery; B. Van de Moortéle; J.M. Pelletier

    2003-01-01

    The homogeneous plastic flow of fully amorphous and partially crystallized Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass (Vit1) has been investigated by compression tests at high temperatures in supercooled liquid region. Experimental results show that at sufficiently low strain rates, the supercooled liquid of the fully amorphous alloy reveals Newtonian flow with a linear relationship between the flow stress and strain rate. As the strain rate is increased, a transition from linear Newtonian to nonlinear flow is detected, which can be explained by the transition state theory.Over the entire strain rate interval investigated, however, only nonlinear flow is present in the partially crystallized alloy, and the flow stress for each strain rate is much higher. It is found that the strain rate-stress relationship for the partially crystallized alloy at the given temperature of 646 K also obeys the sinh law derived from the transition state theory, similar to that of the initial homogeneous amorphous alloy. Thus, it is proposed that the flow behavior of the nanocrystalline/amorphous composite at 646 K is mainly controlled by the viscous flow of the remaining supercooled liquid.

  7. Ideal solution behaviour of glassy Cu–Ti, Zr, Hf alloys and properties of amorphous copper

    Energy Technology Data Exchange (ETDEWEB)

    Ristić, R. [Department of Physics, University of Osijek, Trg Ljudevita Gaja 6, HR-3100 Osijek (Croatia); Cooper, J.R. [Department of Physics, Cavendish Laboratory, J.J. Thomson Avenue, CB3 0HE Cambridge (United Kingdom); Zadro, K.; Pajić, D. [Department of Physics, Faculty of Science, Bijenička cesta 32, HR-10002 Zagreb (Croatia); Ivkov, J. [Institute of Physics, Bijenička cesta 46, HR-10002 Zagreb (Croatia); Babić, E. [Department of Physics, Faculty of Science, Bijenička cesta 32, HR-10002 Zagreb (Croatia)

    2015-02-05

    Highlights: • Ideal solution behaviour (ISB) is established in all Cu–Ti, Zr, Hf glassy alloys. • ISB enables reliable estimates for various properties of amorphous Cu. • ISB also impacts glass forming ability in these and probably other similar alloys. - Abstract: A comprehensive study of selected properties of amorphous (a) Cu–TE alloys (TE = Ti, Zr and Hf) has been performed. Data for average atomic volumes of a-Cu–Hf, Ti alloys combined with literature data show that ideal solution behaviour (Vegard’s law) extends over the whole glass forming range (GFR) in all a-Cu–TE alloys. This enables one to obtain an insight into some properties and probable atomic arrangements for both, a-TEs (Ristić et al., 2010) and a-Cu by extrapolation of the data for alloys. Indeed the atomic volumes and other properties studied for all a-Cu–TE alloys extrapolate to the same values for a-Cu. Depending on the property, these values are either close to those of crystalline (c) Cu, or are close to those for liquid (L) Cu. In particular, the electronic transport properties of a-Cu seem close to those of L-Cu, whereas the static properties, such as the density of states, and Young’s modulus, converge to those of c-Cu. The possible impact of these results on our understanding of a-Cu–TE alloys, including glass forming ability, is discussed.

  8. A New Physical Metallurgy Phenomenon-the Shock Wave Nanocrystallization of Amorphous Alloys

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Some results of amorphous alloy nanocrystallization by shock wave are presented. Compared with the well knownannealing crystallization, these results seem novel and are very difficult to be explained by the diffusion theory, such asnucleation and growth mechanism in the solid state phase transitions. The shock wave crystallization of amorphousalloy is a new metallurgical phenomenon with possibilities for improving the crystallization theory in physics.

  9. Electro-oxidation of ethylene glycol on nanoporous Ti-Cu amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen Cuijie [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhu Shengli, E-mail: slzhu@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Yang Xianjin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Pi Lele; Cui Zhenduo [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2011-11-30

    Highlights: > Nanoporous Ti-Cu amorphous alloy exhibits apparent EG electrocatalytic ability EG electro-oxidation occurs more easily in alkaline medium than in acid medium. > In acid medium, heat treatment plays an enhancing role towards EG oxidation. > In alkaline medium, heat treatment has opposite effect below and above 0.1 V. - Abstract: This work describes ethylene glycol (EG) electro-oxidation over nanoporous structure catalyst prepared by dealloying Ti-Cu amorphous alloy. Scanning electron microscopy (SEM) was used to characterize nanoporous catalysts. Electrocatalytic performances in acid and alkaline mediums were measured by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The results showed that nanoporous Ti-Cu amorphous alloy exhibited apparent electrocatalytic ability in terms of higher oxidation current in CV and CA curves comparing to raw Ti-Cu amorphous alloy. Electro-oxidation of EG took place more easily in alkaline medium than that in acid medium. In acid medium, heat treatment improved the electrocatalytic activity of nanoporous catalyst. In alkaline medium, heat treatment played an enhancing role below 0.1 V and a depressing role above 0.1 V. Possible electro-oxidation mechanism of EG was also discussed.

  10. Crystallization behavior of amorphous Zr70Cu20Ni10 alloy annealed at 380℃

    Institute of Scientific and Technical Information of China (English)

    王焕荣; 叶以富; 闵光辉; 张均艳; 滕新营; 石志强

    2002-01-01

    Crystallization behavior of amorphous Zr70Cu20Ni10 alloy isothermally annealed at 380℃ was first investigated by employing the differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). It has been found that an exothermic peak appears in the DSC trace when the annealing time is about 17~18min, indicating a certain phase transformation occurs in the matrix of amorphous Zr70Cu20Ni10 alloy. Meanwhile, isothermal annealing experiments for amorphous Zr70Cu20Ni10 alloy ranging from 360℃ to 400℃ with a temperature interval of 10℃ were also carried out, from which no exothermic reaction can be observed except for the case of 380℃. This behavior indicates that the phase transformation during isothermal annealing of amorphous Zr70Cu20Ni10 alloy is strongly temperature- and time-dependent. Further investigations are required to reveal the nature of such phenomenon.

  11. Chemical vapor deposition of amorphous ruthenium-phosphorus alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Shin Jinhong [Texas Materials Institute, University of Texas at Austin, Austin, TX 78750 (United States); Waheed, Abdul [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States); Winkenwerder, Wyatt A. [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Kim, Hyun-Woo [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Agapiou, Kyriacos [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States); Jones, Richard A. [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States); Hwang, Gyeong S. [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Ekerdt, John G. [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States)]. E-mail: ekerdt@che.utexas.edu

    2007-05-07

    Chemical vapor deposition growth of amorphous ruthenium-phosphorus films on SiO{sub 2} containing {approx} 15% phosphorus is reported. cis-Ruthenium(II)dihydridotetrakis-(trimethylphosphine), cis-RuH{sub 2}(PMe{sub 3}){sub 4} (Me = CH{sub 3}) was used at growth temperatures ranging from 525 to 575 K. Both Ru and P are zero-valent. The films are metastable, becoming increasingly more polycrystalline upon annealing to 775 and 975 K. Surface studies illustrate that demethylation is quite efficient near 560 K. Precursor adsorption at 135 K or 210 K and heating reveal the precursor undergoes a complex decomposition process in which the hydride and trimethylphosphine ligands are lost at temperatures as low at 280 K. Phosphorus and its manner of incorporation appear responsible for the amorphous-like character. Molecular dynamics simulations are presented to suggest the local structure in the films and the causes for phosphorus stabilizing the amorphous phase.

  12. Molecular dynamics simulation of amorphous segregation inAg-Rh alloys

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jingxiang; BIAN Xiufang

    2003-01-01

    Molecular dynamics simulation was carried out to investigate the liquid and amorphous microstructures of binary Agx-Rh(100-x) (x = 25, 50, 75 in atom fraction) alloys. Segregation feature of homogeneous interatomic binding of Ag-Rh liquid was found and probed, which can be retained into amorphous solids upon rapid cooling. Homogeneous binding may occur when the difference in the elemental atomic sizes is less than 10%. The icosahedra in liquid before the formation of amorphous state exist in a stable state and the network formed by 1551-clusters in molten alloys would inhibit the crystallization and diffusion of atoms. A higher degree of 155 1-clusters will be favorable to form metallic glasses.

  13. Formation and structure of V-Zr amorphous alloy thin films

    KAUST Repository

    King, Daniel J M

    2015-01-01

    Although the equilibrium phase diagram predicts that alloys in the central part of the V-Zr system should consist of V2Zr Laves phase with partial segregation of one element, it is known that under non-equilibrium conditions these materials can form amorphous structures. Here we examine the structures and stabilities of thin film V-Zr alloys deposited at room temperature by magnetron sputtering. The films were characterized by X-ray diffraction, transmission electron microscopy and computational methods. Atomic-scale modelling was used to investigate the enthalpies of formation of the various competing structures. The calculations confirmed that an amorphous solid solution would be significantly more stable than a random body-centred solid solution of the elements, in agreement with the experimental results. In addition, the modelling effort provided insight into the probable atomic configurations of the amorphous structures allowing predictions of the average distance to the first and second nearest neighbours in the system.

  14. High critical current densities in bulk MgB{sub 2} fabricated using amorphous boron

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, Miryala; Kenta, Nozaki; Murakami, Masato [Superconducting Materials Laboratory, Department of Materials Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548 (Japan); Koblischka, Michael R. [Institute of Experimental Physics, Saarland University, P.O. Box 151150, 66041 Saarbruecken (Germany)

    2015-10-15

    We prepared bulk MgB{sub 2} from high-purity commercial powders of Mg metal (99.9% purity) and amorphous B (99% purity) powders using a single-step solid state reaction at 775 C for varying sintering duration from 1 to 10 h in pure argon atmosphere. X-ray diffraction analysis showed that all the samples were single phase MgB{sub 2}. The magnetization measurements confirmed a sharp superconducting transition with T{sub c,onset} at around 38.2-38.8 K. The critical current density (J{sub c}) values for the MgB{sub 2} samples produced at 1 h sintering time is the highest one in all processed materials here. Scanning electron microscopy analyses indicated that the sintering time has a crucial influence on the grain size. As a result, the highest J{sub c} value of 270 kA cm{sup -2} at 20 K and self-field was achieved in the sample produced at 775 C for 1 h. Our results clearly demonstrate that the optimization of the sintering conditions is essential to improve the bulk MgB{sub 2} performance. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Annealing temperature effect on microstructure, magnetic and microwave properties of Fe-based amorphous alloy powders

    International Nuclear Information System (INIS)

    Fe74Ni3Si13Cr6W4 amorphous alloy powders were annealed at different temperature (T) for 1.5 h to fabricate the corresponding amorphous and nanocrystalline powders. The influences of T on the crystalline structure, morphology, magnetic and microwave electromagnetic properties of the resultant samples were investigated via X-ray diffraction, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer. The results show that the powder samples obtained at T of 650 °C or more are composed of lots of ultra-fine α-Fe(Si) grains embedded in an amorphous matrix. When T increases from 350 to 750 °C, the saturated magnetization and coercivity of the as-annealed powder samples both increase monotonously whereas the relative real permittivity shows a minimal value and the relative real permeability shows a maximal value at T of 650 °C. Thus the powder samples annealed at 650 °C show optimal reflection loss under −10 dB in the whole C-band. These results here suggest that the annealing heat treatment of Fe-based amorphous alloy is an effective approach to fabricate high performance microwave absorber with reasonable permittivity and large permeability simultaneously via adjusting T. - Highlights: ► The annealing temperature effect of Fe-based amorphous alloy was studied. ► Fe-based amorphous and nanocrystalline alloy has a good absorbing property in C-band. ► There exists a correspondence between microwave properties and microstructure.

  16. Annealing temperature effect on microstructure, magnetic and microwave properties of Fe-based amorphous alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    He Jinghua; Wang Wei; Wang Aimin [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Guan Jianguo, E-mail: guanjg@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2012-09-15

    Fe{sub 74}Ni{sub 3}Si{sub 13}Cr{sub 6}W{sub 4} amorphous alloy powders were annealed at different temperature (T) for 1.5 h to fabricate the corresponding amorphous and nanocrystalline powders. The influences of T on the crystalline structure, morphology, magnetic and microwave electromagnetic properties of the resultant samples were investigated via X-ray diffraction, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer. The results show that the powder samples obtained at T of 650 Degree-Sign C or more are composed of lots of ultra-fine {alpha}-Fe(Si) grains embedded in an amorphous matrix. When T increases from 350 to 750 Degree-Sign C, the saturated magnetization and coercivity of the as-annealed powder samples both increase monotonously whereas the relative real permittivity shows a minimal value and the relative real permeability shows a maximal value at T of 650 Degree-Sign C. Thus the powder samples annealed at 650 Degree-Sign C show optimal reflection loss under -10 dB in the whole C-band. These results here suggest that the annealing heat treatment of Fe-based amorphous alloy is an effective approach to fabricate high performance microwave absorber with reasonable permittivity and large permeability simultaneously via adjusting T. - Highlights: Black-Right-Pointing-Pointer The annealing temperature effect of Fe-based amorphous alloy was studied. Black-Right-Pointing-Pointer Fe-based amorphous and nanocrystalline alloy has a good absorbing property in C-band. Black-Right-Pointing-Pointer There exists a correspondence between microwave properties and microstructure.

  17. Wear mechanism of electrodeposited amorphous Ni-Fe-P alloys

    Institute of Scientific and Technical Information of China (English)

    高诚辉; 赵源

    2004-01-01

    The wear mechanism of amorphous Ni-Fe-P coating was discussed. The wear resistance of the amor phous Ni-Fe-P coatings was tested on a Timken wear apparatus, and the wear track of the amorphous Ni-Fe-P coat ings as-deposited and heated at various temperatures was observed by SEM. The results show that the wear resistthe coating will change with the heating temperature increasing from pitting+plowing at 200 ℃ to pitting at 400 ℃,and to plowing at 600 ℃. The pits on the worn surface of the amorphous Ni-Fe-P coating result from the tribo-fatigue fracture. The cracks of spalling initiate at pits and propagate at certain angle with the sliding direction on sur face, and then extend into sub-surface along the poor P layers or the interface between layers. Finally under repeated action of the stress in the rubbing process the cracks meet and the debris forms. The generation of the pits and spal-ling is related with the internal stress, brittleness and layer structure of the amorphous Ni-Fe-P coating.

  18. Amorphization of Ni61 Nb39 Alloy by Laser Surface Treatment

    Institute of Scientific and Technical Information of China (English)

    Zhong-xiang LU; Ran LI; Yan LI; Tao ZHANG

    2016-01-01

    The surface of Ni61 Nb39 crystalline ingot was treated by laser surface melting with different processing parame-ters.A fully amorphous layer with a thickness of approximately 10 μm could be produced on the top surface under optimal parameters.An amorphous-crystalline composite layer with the depth from 10 to 50 μm,consisting of amor-phous matrix and intermetallic phases of Ni3 Nb and Ni6 Nb7 ,could be formed.The micro-hardness (about 831 HV) of the treated surface was remarkably improved by nearly 100% compared with the value of the crystalline substrate caused by the formation of the fully amorphous structure.A finite volume simulation was adopted to evaluate the temperature distribution in the laser-affected zone of Ni6 1 Nb3 9 alloys and to reveal the mechanism of glass formation in the laser-affected zone.

  19. Amorphous structure in a laser clad Ni-Cr-Al coating on Al-Si alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A mixing microstructure containing Ni-based amorphous structures was observed by TEM in the laser cladzones. As the uniformity of chemical composition and temperature is poor in the laser cladding, the amorphous structurewith some Ni3Al crystals coexists in the cladding. The microhardness of the mixing amorphous structure is HV 600 ~800, which is lower than that of crystal phases in the coating. Differential thermal analysis (DTA) shows that Ni-basedamorphous structure exhibits a higher initial crystallizing temperature (about 588 ℃ ), which is slightly higher than that ofthe eutectic temperature of Al-Si alloy. The wear test results indicate that there are some amorphous structures in the laserclad coating, which reduces the peeling of the granular phases from matrix, and improves the wear resistance

  20. Mg amorphous alloys for biodegradable implants; Ligas amorfas de magnesio utilizadas em implantes consumiveis

    Energy Technology Data Exchange (ETDEWEB)

    Danez, G.P., E-mail: gabidanez@hotmail.co [Universidade Federal de Sao Carlos (PPG-CEMUFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Koga, G.Y.; Tonucci, S.; Bolfarini, C.; Kiminami, C.S.; Botta Filho, W.J. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    The use of implants made from amorphous alloys magnesium-based with additions of zinc and calcium are promising. Properties such as biocompatibility, low density, high mechanical strength, low modulus (as compared to alloys such as stainless steel and titanium), corrosion resistance and wear resistance make it attractive for use in implants. Moreover, the by-products of corrosion and wear are not toxic and may contribute to fixation. Aiming to understand the tendency of this amorphous ternary (Mg-Zn-Ca) and expand the information about this system, this work involved the use of the topological criterion of instability ({lambda}) and the criterion of electronegativity ({Delta}e) to the choice of compositions. The alloys were processed into wedge-shaped and analyzed structurally and in X-ray diffraction and scanning electron microscopy. (author)

  1. Model calculations of thermodynamic functions of crystallization of Co-B amorphous alloys

    International Nuclear Information System (INIS)

    A model of perfectly associated solution is used for the approximation of the properties of metal melts. The calculation programs are prepared for modelling thermodynamic properties of solutions on the basis of the model of perfectly associated solution, which programs can enable optimizational calculation relying on the results of several series of experiments. Co-B liquid alloys are modelled using all available in the literature experimental data. Estimated values ΔcrH = 10 kJ/mol; ΔcrS = -2 J/(K mol); ΔcrG = -9 kJ/mol are obtained for the crystallization of amorphous Co0.815B0.185 alloy. The calculated value of amorphous alloy crystallization enthalpy is compared with the literature data. 17 refs., 1 tab

  2. In Situ Nanocrystallization-Induced Hardening of Amorphous Alloy Matrix Composites Consolidated by Spark Plasma Sintering

    Science.gov (United States)

    Singh, Ashish; Paul, Tanaji; Katakam, Shravana; Dahotre, Narendra B.; Harimkar, Sandip P.

    2016-07-01

    In situ nanocrystallization of amorphous alloys has recently emerged as a suitable technique for forming nanocomposites with improved mechanical properties. In this paper, we report on the spark plasma sintering (SPS) of Fe-based amorphous alloys with in situ-formed nanocrystals of (Fe,Cr)23(C,B)6. The SPS was performed with a range of sintering temperatures (570-800°C) in and above the supercooled liquid region of the alloy. Significant enhancement in relative density was observed with increasing sintering temperature due to particle deformation and improved interparticle contacts. The formation of nanocrystalline particles and enhanced densification resulted in an increase in the hardness of the nanocomposites from about 1150-1375 VHN.

  3. Nanoporous nickel-copper-phosphorus amorphous alloy film for methanol electro-oxidation in alkaline medium

    International Nuclear Information System (INIS)

    Highlights: • Novel Ni-Cu-P amorphous alloy with nanoporous structure was fabricated by LSV etching. • Lower onset oxidation potential of methanol at NP-NiCuP than both S-NiCuP and NP-NiCu. • Superior activity and stability for methanol oxidation at the NP-NiCuP electrode. • Long lifetime of the NP-NiCuP electrode. - Abstract: Nanoporous Ni-Cu-P amorphous alloy (NP-NiCuP) and nanoporous Ni-Cu crystalline alloy (NP-NiCu) are prepared by the linear sweep voltammetry (LSV) etching of copper from the electroless Ni-Cu-P and Ni-Cu alloy coatings, respectively. The results of X-ray diffraction (XRD) analysis show that the nanoporous Ni-Cu-P alloy is amorphous structure. The scanning electron microscopy (SEM) analysis demonstrates the NP-NiCuP shows a 3-D bi-continuous porous structure with the pore size of 150–200 nm and the ligament size of around 100 nm. Electrochemical performances are measured by cyclic voltammetry (CV) and chronoamperometry (CA). The results prove that the NP-NiCuP electrode exhibits higher the proton diffusion coefficient (D0) of Ni(OH)2 and surface coverage (Γ*) of the redox species than those on smooth electroless Ni-Cu-P amorphous alloy (S-NiCuP) and NP-NiCu electrodes in alkaline solution obviously. Moreover, electro-oxidation of methanol suggests that the NP-NiCuP electrode holds higher anodic current density and lower onset potential than the S-NiCuP and NP-NiCu electrodes. Finally, the NP-NiCuP electrode has stable redox behavior and superior catalytic stability for methanol oxidation

  4. Soft magnetic and microstructural investigation in Fe-based amorphous alloy

    International Nuclear Information System (INIS)

    Highlights: • Samples were obtained using the injection-casting method. • The samples were manufactured in the shape of plates of the thickness 0.5 mm. • The amorphous and nanocrystalline structure was confirmed using XRD, SEM, TEM, CT. • Magnetic properties were analysed in terms of contents of the spin waves stiffness parameter b. - Abstract: In this paper, the results of investigations concerning Fe61Co10Y8W1B20 alloy are presented. The alloy samples were produced, using an injection-casting method, in the form of plates of approximate thickness 0.5 mm. Analysis of the results facilitates the description of structural transformations which occurred within the amorphous material as a result of isothermal annealing, the latter having been carried out under specified conditions. This thermal treatment led to the creation within the amorphous matrix of evenly distributed nanometric sized crystalline grains. The structure and microstructure of the samples in the as-quenched and nanocrystalline states were analysed by means of: X-ray diffractometry (XRD), scanning and transmission electron microscopy (SEM and TEM) and computer tomography (CT). The influence of the structural changes on the magnetic properties was studied using a vibrating sample magnetometer (VSM). Detailed analysis of the microstructure was performed on the ferromagnetic alloy samples with amorphous and nanocrystalline structure; this, in connection with the magnetic studies, facilitated full description of the influence of changes in the microstructure, and imperfections created during the production process, on the magnetic properties

  5. Effects of TM on stability of structure corresponding to prepeak of amorphous Al90TM5Ce5 Alloys

    Institute of Scientific and Technical Information of China (English)

    赵芳; 吴佑实

    2002-01-01

    X-ray diffraction and DSC were used to investigate the crystallization process of amorphous Al90Fe5Ce5 and Al90Ni5Ce5 alloys, and the stability of the structure corresponding to the prepeak. Both these amorphous alloys are crystallized by two stages. The stability of the structure corresponding to the prepeak has a large difference. The structure corresponding to the prepeak for amorphous Al90Fe5Ce5 alloy is more stable than the amorphous matrix. However, it is not stable for amorphous Al90Ni5Ce5 alloys during the first crystallization stage. The prepeak position of amorphous Al90Ni5Ce5 alloys is very close to that of amorphous Al90Fe5Ce5 alloys. It is estimated that the prepeak is also due to diffraction peak broadening caused by very fine quasi-crystalline structure and the structural unit is an icosahedral quasi-crystalline structure with Ni as the central atom. The large difference of the stability of the structure corresponding to the prepeak is likely caused by different stability of the quasi-crystalline structure.

  6. Developments in the Ni-Nb-Zr amorphous alloy membranes. A review

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, S.; Chandra, D. [University of Nevada, Materials Science and Engineering, Reno, NV (United States); Hirscher, M. [Max-Planck-Institut fuer Intelligente Systeme, Stuttgart (Germany); Dolan, M.; Viano, D. [CSIRO, QCAT, Energy, Pullenvale, QLD (Australia); Isheim, D. [Northwestern University, Materials Science and Engineering, Evanston, IL (United States); Wermer, J. [Los Alamos National Laboratory, Los Alamos, NM (United States); Baricco, M. [University of Turin, Department of Chemistry and NIS, Turin (Italy); Udovic, T.J. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Grant, D. [University of Nottingham, Nottingham (United Kingdom); Palumbo, O.; Paolone, A. [CNR-ISC, U.O.S. La Sapienza, Rome (Italy); Cantelli, R. [University of Rome, La Sapienza, Roma (Italy)

    2016-03-15

    Most of the global H{sub 2} production is derived from hydrocarbon-based fuels, and efficient H{sub 2}/CO{sub 2} separation is necessary to deliver a high-purity H{sub 2} product. Hydrogen-selective alloy membranes are emerging as a viable alternative to traditional pressure swing adsorption processes as a means for H{sub 2}/CO{sub 2} separation. These membranes can be formed from a wide range of alloys, and those based on Pd are the closest to commercial deployment. The high cost of Pd (USD ∝31,000 kg{sup -1}) is driving the development of less-expensive alternatives, including inexpensive amorphous (Ni{sub 60}Nb{sub 40}){sub 100-x} Zr{sub x} alloys. Amorphous alloy membranes can be fabricated directly from the molten state into continuous ribbons via melt spinning and depending on the composition can exhibit relatively high hydrogen permeability between 473 and 673 K. Here we review recent developments in these low-cost membrane materials, especially with respect to permeation behavior, electrical transport properties, and understanding of local atomic order. To further understand the nature of these solids, atom probe tomography has been performed, revealing amorphous Nb-rich and Zr-rich clusters embedded in majority Ni matrix whose compositions deviated from the nominal overall composition of the membrane. (orig.)

  7. Corrosion-Resistant Amorphous Alloy Ribbons for Electromagnetic Filtration of Iron Rusts from Water

    OpenAIRE

    Kawashima, Asahi; Asami, Katsuhiko; Sato, Takeaki; Hashimoto, Koji

    1985-01-01

    An attempt was made to use corrosion-resistant amorphous Fe-9Cr-13P-7C alloy ribbons as an electromagnetic filter material for trapping various iron rusts suspended in water at 40℃. The ferrimagnetic Fe_3O_4 rust was trapped with the 100% efficiency and paramagnetic rusts such as α-Fe_2O_3, α-FeOOH and amorphous ferric oxyhydroxide were trapped with certain efficiencies at the magnetic field strength of 0.5-10 kOe. The regeneration of the filter by back-washing was easy. The trapping capacity...

  8. Spontaneously Passivating Amorphous Fe-Cr-Mo-Metalloid Alloys in 6 N HCl at Room Temperature and 80℃

    OpenAIRE

    Kobayashi, Ken-ichi; Hashimoto, Koji; MASUMOTO, Tsuyoshi

    1980-01-01

    Amorphous iron-base alloys capable of passivating spontaneously in 6 N HCl at 80℃ were prepared by rapid quenching of molten alloys. The corrosion resistance and passivating ability of the alloys increased with increasing chromium and molybdenum contents. The critical concentrations of chromium and molybdenum in the alloys necessary for spontaneous passivation in 6 N HCl at room temperature and 80℃ were established. These concentrations were greatly affected by coexisting metalloids. The pass...

  9. Invar behavior of NANOPERM-type amorphous Fe–(Pt)–Zr–Nb–Cu–B alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gondro, J.; Świerczek, J., E-mail: swiercz@wip.pcz.pl; Rzącki, J.; Ciurzyńska, W.; Olszewski, J.; Zbroszczyk, J.; Błoch, K.; Osyra, M.; Łukiewska, A.

    2013-09-15

    Transmission Mössbauer spectra of amorphous Fe{sub 86}Zr{sub 7}Nb{sub 1}Cu{sub 1}B{sub 5}, Fe{sub 81}Zr{sub 7}Nb{sub 1}Cu{sub 1}B{sub 10} and Fe{sub 81}Pt{sub 5}Zr{sub 7}Nb{sub 1}Cu{sub 1}B{sub 5} alloys in the as-quenched state and subjected to the accumulative annealing for 15 min in the temperature range from 573 K up to 750 K are presented. After these heat treatments the alloys remain in the amorphous state. The accumulative annealing for 15 min at 573 K and then 600 K of the Fe{sub 86}Zr{sub 7}Nb{sub 1}Cu{sub 1}B{sub 5} and Fe{sub 81}Zr{sub 7}Nb{sub 1}Cu{sub 1}B{sub 10} alloys causes the narrowing of the transmission Mössbauer spectra as compared to the as-quenched state and the decrease of the average hyperfine field induction which is connected with the invar effect. For similar behavior in Fe{sub 81}Pt{sub 5}Zr{sub 7}Nb{sub 1}Cu{sub 1}B{sub 5} alloy the accumulative annealing up to 700 K is needed. With further increase of the annealing temperature up to 750 K the broadening of the Mössbauer spectra and the increase of the average hyperfine field induction occur. The lowest value of the average hyperfine field induction of amorphous samples is accompanied by the lowest value of the Curie temperature. The investigated amorphous alloys do not reach the magnetic saturation up to the magnetizing field of 2 T and the coefficient in Holstein–Primakoff term is about one order in magnitude larger than in other classical FeCo-based amorphous alloys due to the non-collinear magnetic structure. The Mössbauer spectra and hysteresis loops of the amorphous Fe{sub 86}Zr{sub 7}Nb{sub 1}Cu{sub 1}B{sub 5} alloy in the as-quenched state and after the accumulative annealing at 573+620 K for 15 min are sensitive to the tensile stresses subjected to the sample. Such behavior is ascribed to the invar anomalies. - Highlights: • Complex magnetic transformations found in the amorphous Fe{sub 86}Zr{sub 7}Nb{sub 1}Cu{sub 1}B{sub 5}, Fe{sub 81}Zr{sub 7}Nb{sub 1}Cu{sub 1}B

  10. ATOM PROBE FIM STUDY OF AN AMORPHOUS Pd-Si ALLOY

    OpenAIRE

    Yamamoto, M.; Yao, H; Nenno, S.; Ohnaka, I.; Fukusako, T.

    1987-01-01

    The amorphous structure of Pd84Si16 alloy wire obtained by inrotating-liquid spinning method from the liquid state, has been studied, in an atomic scale, by atom-probe field-ion microscopy. In the as-solidified specimen of Pd84Si16 alloy, whose electron diffraction pattern shows single halo ring, compositional fluctuation is found to exist in the range of 8 to 24 at% Si. The fluctuation is of the period of a few tenth nanometer, and it does not have long-range periodicity. We have discussed t...

  11. Accurate electrical resistance measurement of the crystallization kinetics of amorphous alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An accurate four-line ac electrical resistance measurement (ERM)apparatus was developed. By using the ERM the crystallization kinetics of amorphous Ni80P20, FeZr2, Fe86B14 alloys were investigated. The experimental results show that the ERM can identify the early stage of crystallization in amorphous alloys. The ERM detects a crystallization temperature range obviously wider than the DSC does, indicating that the ERM is more sensitive to the structure evolution in crystallization. For the eutectic or polymorphic crystallization, three distinct processes can be identified from the measured resistance variation: (i) crystal nucleation, (ii) subsequent growth of crystal nuclei, and (iii) coarsening of the crystallites. In the early stage of the primary crystallization, the ERM results reflect the nucleation information as well.

  12. Simulation and experimental analysis of nanoindentation and mechanical properties of amorphous NiAl alloys.

    Science.gov (United States)

    Wang, Chih-Hao; Fang, Te-Hua; Cheng, Po-Chien; Chiang, Chia-Chin; Chao, Kuan-Chi

    2015-06-01

    This paper used numerical and experimental methods to investigate the mechanical properties of amorphous NiAl alloys during the nanoindentation process. A simulation was performed using the many-body tight-binding potential method. Temperature, plastic deformation, elastic recovery, and hardness were evaluated. The experimental method was based on nanoindentation measurements, allowing a precise prediction of Young's modulus and hardness values for comparison with the simulation results. The indentation simulation results showed a significant increase of NiAl hardness and elastic recovery with increasing Ni content. Furthermore, the results showed that hardness and Young's modulus increase with increasing Ni content. The simulation results are in good agreement with the experimental results. Adhesion test of amorphous NiAl alloys at room temperature is also described in this study. PMID:26037150

  13. Structure of amorphous Ag/Ge/S alloys: experimentally constrained density functional study

    Science.gov (United States)

    Akola, J.; Beuneu, B.; Jones, R. O.; Jóvári, P.; Kaban, I.; Kolář, J.; Voleská, I.; Wágner, T.

    2015-12-01

    Density functional/molecular dynamics simulations have been performed to determine structural and other properties of amorphous Ag/Ge/S and Ge/S alloys. In the former, the calculations have been combined with experimental data (x-ray and neutron diffraction, extended x-ray absorption fine structure). Ag/Ge/As alloys have high ionic conductivity and are among the most promising candidates for future memristor technology. We find excellent agreement between the experimental results and large-scale (500 atoms) simulations in Ag/Ge/S, and we compare and contrast the structures of Ge/S and Ag/Ge/S. The calculated electronic structures, vibrational densities of states, ionic mobilities, and cavity distributions of the amorphous materials are discussed and compared with data on crystalline phases where available. The high mobility of Ag in solid state electrolyte applications is related to the presence of cavities and can occur via jumps to a neighbouring vacant site.

  14. Magnetic Properties Of Amorphous And Nanocrystalline FeNiZrCuB Alloys

    International Nuclear Information System (INIS)

    The coercive fields Hc, saturation magnetizations Js and magnetostrictions λs of the amorphous Fe86-xNixZr7Cu1B6 alloys different contents of Ni(0-86 at.%) were investigated at room temperature. Thermomagnetic analyses by means of initial AC permeability and resistivity at the amorphous and nanocrystalline states of the investigated alloys were performed up to 5500 C. It was found that additions of Ni up to x = 33 at.% cause an increase of Hc, Js, λs. Additions of Ni (x = 0 - 43) cause drastic increase of the Curie temperature from 71 deg C for x 0at.% to 373 deg C for x = 43at.% of Ni. Higher concentration of Ni causes a decrease of Hc, Js, λs and Tc. (Authors)

  15. Evidence of eutectic crystallization and transient nucleation in Al89La6Ni5 amorphous alloy

    International Nuclear Information System (INIS)

    The phase evolution with the temperature and time in the process of crystallization of Al89La6Ni5 amorphous alloy has been investigated by in situ high-temperature and high-pressure x-ray powder diffraction using synchrotron radiation. Two crystalline phases, fcc-Al and a metastable bcc-(AlNi)11La3-like phase, were identified after the first crystallization reaction, revealing a eutectic reaction instead of a primary reaction suggested in the literature. Time-dependent nucleation in the amorphous alloy is detected and the experimental data can be fitted by both the Zeldovich's and Kashchiev's transient nucleation models with transient nucleation times of 220 and 120 min, respectively. Copyright 2001 American Institute of Physics

  16. Nanocrystallization of Al80Ni6Y8Co4Cu2 amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    边赞; 孙玉峰; 何国; 陈国良

    2001-01-01

    Nanoscale α(Al) phase with a size of 15  nm was precipitated from Al80Ni6Y8Co4Cu2 amorphous ribbons after annealing. The microhardness increases with increasing the crystallization volume fraction of nanoscale α(Al) phase. The combination effect of alloy strengthening and dispersion strengthening is main reason for the increase of microhardness. The formation of intermetallic compound (Al3Ni) with a small volume fraction leads to the decrease of microhardness resulting from the depletion of the solute elements in the residual amorphous matrix and the weakening of alloy strengthening. With increasing the volume fraction of intermetallic compound, microhardness increases again due to dispersion strengthening of nanoscale intermetallic compound.

  17. Hydrogen diffusion in Zr35Ni55V10 amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiao-ying; WAHG Fang

    2007-01-01

    Hydrogen diffusion in Zr35Ni55V10 amorphous alloy was measured by chronopotentiometry. The results show that at lower molar ratio of hydrogen (x<0.06, x=n(H)/n(M)), the diffusivity of hydrogen increases rapidly with increasing the molar ratio of hydrogen. However, when x(H)>0.1, the diffusivity of hydrogen decreases slightly with increasing the molar ratio of hydrogen, which is similar to the change in crystalline alloy. It is proposed that hydrogen atoms mainly occupy the sites corresponding to tetrahedra with 4 Zr atoms at lower molar ratio of hydrogen. When the molar ratio of hydrogen is higher, the additional hydrogen atoms are in sites with higher energy and these sites in amorphous state are similar to these in crystalline states.

  18. Mossbauer studies of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy

    DEFF Research Database (Denmark)

    Jiang, Jianzhong

    1996-01-01

    This paper reports a Mossbauer study of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy between 10 and 673 K. The Curie temperature Tc is found to be 620-+ 1 K. The temperature dependence of the reduced average hyperfine field can be explained on the basis of Handrich's model of amorphous ferromagnetism...

  19. Crystallization kinetics of an amorphous Co77Si11.5B11.5 alloy

    OpenAIRE

    R. Nowosielski; A. Zajdel; S. Lesz; B. Kostrubiec; Z. Stokłosa

    2006-01-01

    Purpose: This paper describes crystallization kinetics and changes magnetic properties involved by process of crystallization Co-Si-B amorphous alloy.Design/methodology/approach: The following experimental techniques were used: X-ray diffraction (XRD), electrical resistivity in situ measurements (four-point probe) static and dynamic measurements of magnetic properties (magnetic balance, fluxmeter, Maxwell-Wien bridge).Findings: In this work has been performed influence of thermal annealing on...

  20. A Novel Ultrafine Ru-B Amorphous Alloy Catalyst for Glucose Hydrogenation to Sorbitol

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An ultrafine Ru-B amorphous alloy catalyst was prepared by chemical reduction with KBH4 in aqueous solution, which exhibited perfect selectivity to sorbitol (~100%) and very high activity during the liquid phase glucose hydrogenation, much higher than the corresponding crystallized Ru-B, the pure Ru powder, and Raney Ni catalysts. The correlation of the catalytic activity to both the structural and surface electronic characteristics was discussed briefly.

  1. Amorphous Alloy Membranes Prepared by Melt-Spin methods for Long-Term use in Hydrogen Separation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Dhanesh; Kim, Sang-Mun; Adibhatla, Anasuya; Dolan, Michael; Paglieri, Steve; Flanagan, Ted; Chien, Wen-Ming; Talekar, Anjali; Wermer, Joseph

    2013-02-28

    Amorphous Ni-based alloy membranes show great promise as inexpensive, hydrogenselective membrane materials. In this study, we developed membranes based on nonprecious Ni-Nb-Zr alloys by adjusting the alloying content and using additives. Several studies on crystallization of the amorphous ribbons, in-situ x-ray diffraction, SEM and TEM, hydrogen permeation, hydrogen solubility, hydrogen deuterium exchange, and electrochemical studies were conducted. An important part of the study was to completely eliminate Palladium coatings of the NiNbZr alloys by hydrogen heattreatment. The amorphous alloy (Ni0.6Nb0.4)80Zr20 membrane appears to be the best with high hydrogen permeability and good thermal stability.

  2. Microstructure and properties of hydrophobic films derived from Fe-W amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    Song Wang; Yun-han Ling; Jun Zhang; Jian-jun Wang; Gui-ying Xu

    2014-01-01

    Amorphous metals are totally different from crystalline metals in regard to atom arrangement. Amorphous metals do not have grain boundaries and weak spots that crystalline materials contain, making them more resistant to wear and corrosion. In this study, amorphous Fe-W alloy films were first prepared by an electroplating method and were then made hydrophobic by modification with a water repellent (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. Hierarchical micro-nano structures can be obtained by slightly oxidizing the as-deposited alloy, accompanied by phase transformation from amorphous to crystalline during heat treatment. The mi-cro-nano structures can trap air to form an extremely thin cushion of air between the water and the film, which is critical to producing hydrophobicity in the film. Results show that the average values of capacitance, roughness factor, and impedance for specific surface areas of a 600°C heat-treated sample are greater than those of a sample treated at 500°C. Importantly, the coating can be fabricated on various metal substrates to act as a corrosion retardant.

  3. First principles simulation of amorphous silicon bulk, interfaces, and nanowires for photovoltaics

    OpenAIRE

    Belayneh, Merid Legesse

    2015-01-01

    Amorphous silicon has become the material of choice for many technologies, with major applications in large area electronics: displays, image sensing and thin film photovoltaic cells. This technology development has occurred because amorphous silicon is a thin film semiconductor that can be deposited on large, low cost substrates using low temperature. In this thesis, classical molecular dynamics and first principles DFT calculations have been performed to generate structural models of amorph...

  4. Bulk, surface properties and water uptake mechanisms of salt/acid amorphous composite systems

    OpenAIRE

    Bianco, Stefano; Tewes, Frederic; Tajber, Lidia; Caron, Vincent; Corrigan, Owen,; Healy, Anne Marie

    2013-01-01

    International audience; Developing amorphous pharmaceuticals can be desirable due to advantageous biopharmaceutical properties. Low glass transition temperature (Tg) amorphous drugs can be protected from crystallisation by mixing with high Tg excipients, such as polymers, or with salt forms. However, both polymers and salts can enhance the water uptake. The aim of this study was to formulate physico-chemically stable amorphous materials, by co-processing different proportions of sulfathiazole...

  5. New Approaches to the Computer Simulation of Amorphous Alloys: A Review

    Directory of Open Access Journals (Sweden)

    Fernando Alvarez-Ramirez

    2011-04-01

    Full Text Available In this work we review our new methods to computer generate amorphous atomic topologies of several binary alloys: SiH, SiN, CN; binary systems based on group IV elements like SiC; the GeSe2 chalcogenide; aluminum-based systems: AlN and AlSi, and the CuZr amorphous alloy. We use an ab initio approach based on density functionals and computationally thermally-randomized periodically-continued cells with at least 108 atoms. The computational thermal process to generate the amorphous alloys is the undermelt-quench approach, or one of its variants, that consists in linearly heating the samples to just below their melting (or liquidus temperatures, and then linearly cooling them afterwards. These processes are carried out from initial crystalline conditions using short and long time steps. We find that a step four-times the default time step is adequate for most of the simulations. Radial distribution functions (partial and total are calculated and compared whenever possible with experimental results, and the agreement is very good. For some materials we report studies of the effect of the topological disorder on their electronic and vibrational densities of states and on their optical properties.

  6. Structural features and the microscopic dynamics of the three-component Zr47Cu46Al7 system: Equilibrium melt, supercooled melt, and amorphous alloy

    Science.gov (United States)

    Khusnutdinoff, R. M.; Mokshin, A. V.; Klumov, B. A.; Ryltsev, R. E.; Chtchelkatchev, N. M.

    2016-08-01

    The structural and dynamic properties of the three-component Zr47Cu46Al7 system are subjected to a molecular dynamics simulation in the temperature range T = 250-3000 K at a pressure p = 1.0 bar. The temperature dependences of the Wendt-Abraham parameter and the translation order parameter are used to determine the glass transition temperature in the Zr47Cu46Al7 system, which is found to be T c ≈ 750 K. It is found that the bulk amorphous Zr47Cu46Al7 alloy contains localized regions with an ordered atomic structures. Cluster analysis of configuration simulation data reveals the existence of quasi-icosahedral clusters in amorphous metallic Zr-Cu-Al alloys. The spectral densities of time radial distribution functions of the longitudinal ( C˜ L( k, ω)) and transverse ( C˜ T ( k, ω)) fluxes are calculated in a wide wavenumber range in order to study the mechanisms of formation of atomic collective excitations in the Zr47Cu46Al7 system. It was found that a linear combination of three Gaussian functions is sufficient to reproduce the ( C˜ L ( k, ω)) spectra, whereas at least four Gaussian contributions are necessary to exactly describe the ( C˜ T ( k, ω)) spectra of the supercooled melt and the amorphous metallic alloy. It is shown that the collective atomic excitations in the equilibrium melt at T = 3000 K and in the amorphous metallic alloy at T = 250 K are characterized by two dispersion acoustic-like branches related with longitudinal and transverse polarizations.

  7. Glass Forming Ability and Magnetic Property of Fe74Al4Sn2(PSiB)20 Amorphous Alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei-fei; ZHOU Shao-xiong

    2004-01-01

    Amorphous ribbons of Fe74Al4Sn2(PSiB)20 alloy have been synthesized by melt spinning and axial design method. The thermal properties of the amorphous ribbons have been measured by differential scanning calorimeter (DSC). The DSC results show that the Fe74Al4Sn2P12Si4B4 amorphous alloy has relatively wider supercooled liquid region with a temperature interval of 40.38 K (ΔTx=Tx-Tg). The alloys with a higher phosphorous content in the metalloid element composition triangle of Fe74Al4Sn2(PSiB)20 have high glass forming ability. The amorphous alloys also show good magnetic properties in which Fe74Al4Sn2P6.67Si6.67B6.67 alloy has a large maximum permeability (μm), Fe78Al4Sn2P3Si3B10 alloy exhibits a high square ratio (Br/B10) and Fe74Al4Sn2P4Si12B4 shows a low core loss (P0.5/1.3T). High glass forming ability and good magnetic properties make Fe74Al4Sn2(PSiB)20 amorphous alloys valuable in future research.

  8. Oxidation behaviour of bulk W-Cr-Ti alloys prepared by mechanical alloying and HIPing

    Energy Technology Data Exchange (ETDEWEB)

    García-Rosales, C., E-mail: cgrosales@ceit.es [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); López-Ruiz, P.; Alvarez-Martín, S.; Calvo, A.; Ordás, N. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Koch, F.; Brinkmann, J. [Max-Planck-Institut für Plasmaphysik (IPP), EURATOM Association, D-85748 Garching (Germany)

    2014-10-15

    Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten when used as first wall armour of future fusion reactors, due to the formation of a protective oxide scale, preventing the formation of volatile and radioactive WO{sub 3} in case of a loss of coolant accident with simultaneous air ingress. In this work results of isothermal oxidations tests at 800 and 1000 °C on bulk alloy WCr12Ti2.5 performed by thermogravimetric analysis (TGA) and by exposure to flowing air in a furnace are presented. In both cases a thin, dense Cr{sub 2}O{sub 3} layer is found at the outer surface, below which a Cr{sub 2}WO{sub 6} scale and Ti{sub 2}CrO{sub 5} layers alternating with WO{sub 3} are formed. The Cr{sub 2}O{sub 3}, Cr{sub 2}WO{sub 6} and Ti{sub 2}CrO{sub 5} scales act as protective barriers against fast inward O{sup 2−} diffusion. The oxidation kinetics seems to be linear for the furnace exposure tests while for the TGA tests at 800 °C the kinetics is first parabolic, transforming into linear after an initial phase. The linear oxidation rates are 2–3 orders of magnitude lower than for pure W.

  9. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Energy Technology Data Exchange (ETDEWEB)

    Lollobrigida, V. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Torino (Italy); Borgatti, F. [CNR, Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), I-40129 Bologna (Italy); Torelli, P.; Panaccione, G. [CNR, Istituto Officina dei Materiali (IOM), Lab. TASC, I-34149 Trieste (Italy); Tortora, L. [Laboratorio di Analisi di Superficie, Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Ingegneria Meccanica, Università Tor Vergata, I-00133 Rome (Italy); Stefani, G.; Offi, F. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy)

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  10. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    International Nuclear Information System (INIS)

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  11. Thermal stability and mechanical properties of Gd-Co-Al bulk glass alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The glass forming ability of Gd-Co-Al ternary alloy systems with a composition ranging from 50% to 70% (molar fraction)for Gd and from 5% to 40% (molar fraction) for Al were investigated by copper mold casting and Gd60Co25Al15 bulk glass alloy cylinders with the maximum diameter of 5 mm were obtained. The reduced glass transformation temperature (Tg/Tm) and the distance of supercooling region △Tx are 0.616 and 45 K, respectively for this Gd-Co-Al alloy. The compressive fracture strength (σf) and elastic modulus (E) of Gd-Co-Al glassy alloys are 1 170-1 380 MPa and 59-70 GPa, respectively. The Gd-Al-Co bulk glassy alloys with high glass forming ability and good mechanical properties are promising for the future development as a new type function materials.

  12. Skeletal Amorphous Nickel Based Alloy Catalysts and Magnetically Stabilized Bed Hydrogenation Technology

    Institute of Scientific and Technical Information of China (English)

    Min Enze

    2004-01-01

    Looking toward 21 century, smaller, cleaner and more energy-efficient technology will be an important trend in the development of chemical industry. In light of the new process requirements,a number of technology breakthroughs have occurred. One of these discoveries, the magnetically stabilized bed (MSB), has been proven a powerful process for intensification. Since its initial research in the late 1980's at Research Institute of Petroleum Processing (RIPP), the MSB technology and related catalytic material have matured rapidly through an intensive research and engineering program, primarily focused on its scaling-up.In this paper, we report the discovery of a novel skeletal amorphous nickel-based alloy and its use in magnetically stabilized bed (MSB). Amorphous alloys are new kinds of catalytic materials with short-range order but long-range disorder structure. In comparison with Raney Ni, the skeletal amorphous nickel-based alloy has an increasingly higher activity in the hydrogenation of reactive groups and compounds including nitro, nitrile, olefin, acetylene, aromatics, etc. Up to now, the amorphous nickel based alloy catalysts, SRNA series catalyst, one with high Ni ratio have been commercially manufactured more than four year. The new SRNA catalyst has been successfully implemented for hydrogenation applications in slurry reactor at Balin Petrochemical, SINOPEC.SRNA catalyst with further improvement in catalytic activity and stability raise its relative stability to 2~4 times of that of conventional catalyst. In the course of the long-cycle operation of SRNA-4 the excellent catalyst activity and stability can bring about such advantage as low reaction temperature, good selectivity and low catalyst resumption.Magnetically stabilized bed (MSB), a fluidized bed of magnetizable particles by applying a spatially uniform and time-invariant magnetic field oriented axially relative to the fluidizing fluid flow, had many advantages such as the low pressure drop and

  13. Study of Critical Behavior in Amorphous Fe85Sn5Zr10 Alloy Ribbon

    Science.gov (United States)

    Han, L. A.; Hua, X. H.; Zhu, H. Z.; Yang, J.; Yang, H. P.; Yan, Z. X.; Zhang, T.

    2016-10-01

    We have investigated the critical behavior in amorphous Fe85Sn5Zr10 alloy ribbon prepared using a single-roller melt-spinning method. This alloy shows a second-order magnetic transition from paramagnetic to ferromagnetic (FM) state at the Curie temperature T C (˜306 K). To obtain more information on the features of the magnetic transition, a detailed critical exponent study was carried out using isothermal magnetization M (H, T) data in the vicinity of the T C. Modified Arrott plot, Kouvel-Fisher plot, Widom's scaling relation and critical isotherm analysis techniques were used to investigate the critical behavior of this alloy system around its phase transition point. The values of critical exponents determined using the above methods are self-consistent. The estimated critical exponents are fairly close to the theoretical prediction of the three-dimensional (3D) Heisenberg model, implying that short-range FM interactions dominate the critical behavior in amorphous Fe85Sn5Zr10 alloy ribbon.

  14. Preparation and characterisation of electrodeposited amorphous Sn-Co-Fe ternary alloys

    International Nuclear Information System (INIS)

    Electrochemical deposition was investigated as a process to obtain alloys of Sn-Co-Fe, which to date have not been reported in the literature. A constant current technique was used to electrochemically deposit tin-cobalt-iron alloys from a gluconate electrolyte. The gluconate system was chosen as an electrolyte, which could potentially provide an environmentally safe process. The effect of plating parameters such as current density, deposition time, temperature and pH are discussed. Results are reported for current density and plating time using an electrolyte temperature of 20-60 deg. C and pH of 7.0 in relation to phase composition, crystal structure and magnetic anisotropy of the deposited alloys. Investigations were conducted using 57Fe conversion electron Moessbauer spectroscopy (CEMS), 119Sn CEMS, transmission Moessbauer Spectroscopy and XRD. The 57Fe and 119Sn CEMS spectra and XRD showed that the dominant phase in the deposits was amorphous Sn-Co-Fe. The relative area of the 2nd and 5th lines of the sextets representing the magnetic iron containing phases was found to decrease continuously with increasing current density while at the same time no significant changes in the magnetic anisotropy was found with plating time. Magnetically split 119Sn spectra reflecting a transferred hyperfine field were also observed. A range of good quality amorphous Sn-Co-Fe ternary alloys was obtained over a range of operating conditions from an environmentally acceptable gluconate electrolyte

  15. Spatial-Temporal Oscillations of Relaxation and Pre-Turbulent Type in Ideal Confined Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    I.B. Krasnyuk

    2013-10-01

    Full Text Available The conditions for oscillating distributions at surface-induced crystallization of a quasi-binary volcanic melt, as a superposition of two travelling waves, are found. It is shown that change in the cooling conditions on the surfaces of flat walls which confine the melt leads to the change in the surface structure, i.e. surface amorphous-crystal waves penetrating the amorphous melt and initiating different types of pulse oscillations in the bulk in turn. For ideal melts, when bulk perturbations can be neglected, the solution tends to an asymptotically periodic piecewise-constant function. In the case of non-ideal melts, competition between surface and volume fluctuations arises and solution tends to an asymptotically quasi-periodic function.

  16. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass

    International Nuclear Information System (INIS)

    Transparent low-emissivity (low-e) coatings comprising dielectrics of amorphous diamond-like carbon (DLC) and Ag-alloy films are investigated. All films have been prepared by dc magnetron sputtering. An index of refraction of the DLC film deposited in a gas mixture of Ar/H2 (4%) shows n = 1.80 + 0.047i at 500 nm wavelength. A multilayer stack of DLC (70 nm thick)/Ag87.5Cu12.5-alloy (10 nm)/DLC (140 nm)/Ag87.5Cu12.5-alloy (10 nm)/DLC (70 nm) has revealed clear interference spectra with spectra selectivity. This coating performs low emittance less than 0.1 for black body radiation at 297 K, exhibiting a transparent heat mirror property embedded in DLC films

  17. Control and optimization of baths for electrodeposition of Co-Mo-B amorphous alloys

    Directory of Open Access Journals (Sweden)

    S. Prasad

    2000-12-01

    Full Text Available Optimization and control of an electrodeposition process for depositing boron-containing amorphous metallic layer of cobalt-molybdenum alloy onto a cathode from an electrolytic bath having cobalt sulfate, sodium molybdate, boron phosphate, sodium citrate, 1-dodecylsulfate-Na, ammonium sulfate and ammonia or sulfuric acid for pH adjustments has been studied. Detailed studies on bath composition, pH, temperature, mechanical agitation and cathode current density have led to optimum conditions for obtaining satisfactory alloy deposits. These alloys were found to have interesting properties such as high hardness, corrosion resistance, wear resistance and also sufficient ductility. A voltammetric method for automatic monitoring and control of the process has been proposed.

  18. The corrosion resistance and neutron-absorbing properties of coatings based on amorphous alloys

    Science.gov (United States)

    Sevryukov, O. N.; Polyansky, A. A.

    2016-04-01

    The object of the present study was the corrosion-resistant amorphizing alloys with an increased content of boron for cladding the surface of metals, rapidly quenched alloys without boron for protective coatings on a high-boron cladding layer, as well as steel samples with a protective coating with a high content of boron and without boron. The aim of the work is to investigate the corrosion resistance of a coating in water at the temperature of 40 °C in conditions of an open access of oxygen for 1000 h, as well as the features of the microstructure of clad samples before and after the corrosion tests. New data on the corrosion resistance of Cr18Ni10Ti steel samples with a protective layer from a rapidly quenched alloy Ni-19Cr-10Si (in wt.%) on a high-boron coating have been obtained.

  19. Critical behavior of electrical resistivity in amorphous Fe–Zr alloys

    Indian Academy of Sciences (India)

    A Perumal

    2001-04-01

    Electrical resistivity (ρ) of the amorphous (a-)Fe100-Zr ( = 8.5, 9.5 and 10) alloys has been measured in the temperature range 77 to 300 K, which embraces the second-order magnetic phase transition at the Curie temperature point . Analysis of the resistivity data particularly in the critical region reveals that these systems have a much wider range of critical region compared to other crystalline ferromagnetic materials. The value of and specific heat critical exponent, has the same values as those determined from our earlier magnetic measurements. The value of for all the present investigated alloys are in close agreement with the values predicted for three-dimensional (3D) Heisenberg ferromagnet systems, which gives contradiction to the earlier results on similar alloys. It is observed from the analysis that the presence of quenched disorder does not have any influence on critical behavior.

  20. Soft magnetic and microstructural investigation in Fe-based amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nabiałek, Marcin, E-mail: nmarcell@wp.pl

    2015-09-05

    Highlights: • Samples were obtained using the injection-casting method. • The samples were manufactured in the shape of plates of the thickness 0.5 mm. • The amorphous and nanocrystalline structure was confirmed using XRD, SEM, TEM, CT. • Magnetic properties were analysed in terms of contents of the spin waves stiffness parameter b. - Abstract: In this paper, the results of investigations concerning Fe{sub 61}Co{sub 10}Y{sub 8}W{sub 1}B{sub 20} alloy are presented. The alloy samples were produced, using an injection-casting method, in the form of plates of approximate thickness 0.5 mm. Analysis of the results facilitates the description of structural transformations which occurred within the amorphous material as a result of isothermal annealing, the latter having been carried out under specified conditions. This thermal treatment led to the creation within the amorphous matrix of evenly distributed nanometric sized crystalline grains. The structure and microstructure of the samples in the as-quenched and nanocrystalline states were analysed by means of: X-ray diffractometry (XRD), scanning and transmission electron microscopy (SEM and TEM) and computer tomography (CT). The influence of the structural changes on the magnetic properties was studied using a vibrating sample magnetometer (VSM). Detailed analysis of the microstructure was performed on the ferromagnetic alloy samples with amorphous and nanocrystalline structure; this, in connection with the magnetic studies, facilitated full description of the influence of changes in the microstructure, and imperfections created during the production process, on the magnetic properties.

  1. Amorphous Structures in Laser Cladding of ZL111 Aluminum Alloy:Semi-quantitative Study by Differential Thermal Analysis (DTA)

    Institute of Scientific and Technical Information of China (English)

    LI Xianqin; CHENG Zhaogu; XIA Jin'an; XU Guoliang; LIANG Gongying

    2000-01-01

    This paper deals with amorphous structures in the laser cladding. ZL111 alloy is the substrate and Ni-Cr-Al alloy is sprayed on the substrate as the coating material. The coating is clad by a 5 kW transverse flow CO2 laser. The observation of SEM and TEM reveal that in the laser cladding there are amorphous structures of two different morphologies: one is space curved flake-like, and exists in the white web-like structures; the other is fir leaf-like, and exists in the grain-like structures. Differential thermal analysis (DTA) is used to semi-quantitatively determine the content of the amorphous structures. A relation is obtained between the content of amorphous structures and the dimensionless laser cladding parameter C. We also show the changes of the amorphous structures after annealing.

  2. Crystallization Kinetics of Pr8Fe86-xZrxB6 Amorphous Alloys

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Crystallization kinetics of Pr8Fe86-xZrxB6 (x=0, 1, 2) amorphous alloys was studied by DTA and XRD methods. The experimental results showed that the crystalline phases of Pr8Fe86B6 alloy are composed of α-Fe phase, Pr2Fe23B3 and Pr2Fe14B, when crystallization temperature is below 900 ℃. The activation energy of α-Fe phase remains relatively constant about 306.09 kJ/mol, as the crystalline fraction of α-Fe phase is below 8 %. At the beginning of crystallization, the activation energy of Pr2Fe23B3 and Pr2Fe14B phases are 510.85 kJ/mol and 725.97 kJ/mol, respectively, and then the activation energy of three phases declines with increasing the crystalline fraction. The crystallization behavior of α-Fe and Pr2Fe14B essentially results in the formation of a α-Fe/Pr2Fe14B composite microstructure with a coarse grain size in annealed Pr8Fe86B6 alloy, which is attributed to a difficult nucleation and an easy growth for both the α-Fe and Pr2Fe14B in the alloy. Zr can be used to change the crystallization behavior of the α-Fe phase in Pr-Fe-B amorphous alloy, which is helpful to the formation of the α-Fe/Pr2Fe14B nanocomposite microstructure with a fine grain size for the α-Fe phase in the alloy.

  3. Triphenylamine-based amorphous polymers for bulk-heterojunction photovoltaic cells

    International Nuclear Information System (INIS)

    In this paper, the recent research progress on triphenylamine (TPA)-based donor-acceptor (D-A) amorphous polymers including our developed polymers is reviewed. TPA has three-dimensional branched structures and can provide D-A polymers containing D and A units in the main chain or side chain. The use of TPA-based amorphous polymers in the fabrication of organic photovoltaics (OPVs) offers great advantages over the use of a polycrystalline film in terms of high reproducibility of the OPV performance. The amorphous polymer design using TPA, therefore, indicates a promising direction for the development of new donor materials in OPVs

  4. SHORT-RANGE ORDER IN AMORPHOUS Co-Sn ALLOYS THROUGH NMR AND MÖSSBAUER SPECTROSCOPIES

    OpenAIRE

    Nabli, H; Piecuch, M.; Durand, J.; Marchal, G.

    1985-01-01

    The hyperfine field distribution on 59Co obtained by NMR in ferromagnetic amorphous Co-Sn alloys is related to the distribution of Sn environment around the Co resonant nuclei. The mean values of the quadrupole splitting and of the isomershift for tin in paramagnetic Co-Sn alloys, as obtained by 119Sn Mössbauer spectroscopy, suggest that the tin atoms in these alloys are located at the center of trigonal prisms of cobalt atoms.

  5. Ion-implantation-induced amorphization of InxGa1-xP alloys as functions of stoichiometry and temperature

    Science.gov (United States)

    Hussain, Z. S.; Wendler, E.; Wesch, W.; Schnohr, C. S.; Ridgway, M. C.

    2016-05-01

    Rutherford Backscattering Spectrometry/Channeling and Extended X-ray Absorption Fine Structure measurements have been combined to investigate the amorphization of InxGa1-xP alloys at 15 and 300 K for selected stoichiometries representative of the entire stoichiometric range. The amorphization kinetics differs considerably for the two temperatures: at 15 K, the amorphization kinetics of InxGa1-xP is intermediate between the two binary extremes while at 300 K, InxGa1-xP is more easily amorphized than both InP and GaP. Direct impact and stimulated amorphization both contribute to the amorphization process at 15 K. Dynamic annealing via thermally induced Frenkel pair recombination reduces the influence of direct impact amorphization at 300 K such that the stimulated amorphization is dominant. At this temperature, stimulated amorphization in ternary InxGa1-xP alloys is supported by the structural disorder inherent from the bimodal bond length distribution.

  6. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction

    Science.gov (United States)

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-08-01

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon.

  7. Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

    2009-09-01

    Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

  8. Bulk, surface properties and water uptake mechanisms of salt/acid amorphous composite systems.

    Science.gov (United States)

    Bianco, Stefano; Tewes, Frederic; Tajber, Lidia; Caron, Vincent; Corrigan, Owen I; Healy, Anne Marie

    2013-11-01

    Developing amorphous pharmaceuticals can be desirable due to advantageous biopharmaceutical properties. Low glass transition temperature (Tg) amorphous drugs can be protected from crystallisation by mixing with high Tg excipients, such as polymers, or with salt forms. However, both polymers and salts can enhance the water uptake. The aim of this study was to formulate physico-chemically stable amorphous materials, by co-processing different proportions of sulfathiazole and its sodium salt to produce an optimum ratio, characterised by the best physical stability and lowest hygroscopicity. Both sulfathiazole and salt amorphised upon spray drying. At room temperature, sulfathiazole crystallised within 1h at salt deliquesced when exposed to ambient humidity conditions. In the case of composite systems, FTIR spectroscopy, thermal and surface analysis suggested interactions with an acid:salt stoichiometry of 1:2. Increasing proportions of salt raised the Tg, enhancing the storage stability, however this was opposed by an enhanced hygroscopicity. The water uptake mechanism within the different amorphous systems, analysed by fitting the water sorption isotherms with the Young and Nelson equation, was dependent on the ratio employed, with the salt and the acid facilitating absorption and adsorption, respectively. Tuning the properties of amorphous salt/acid composites by optimising the ratio appears potentially promising to improve the physical stability of amorphous formulations. PMID:23948137

  9. Crystallization kinetics of an amorphous Co77Si11.5B11.5 alloy

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2006-04-01

    Full Text Available Purpose: This paper describes crystallization kinetics and changes magnetic properties involved by process of crystallization Co-Si-B amorphous alloy.Design/methodology/approach: The following experimental techniques were used: X-ray diffraction (XRD, electrical resistivity in situ measurements (four-point probe static and dynamic measurements of magnetic properties (magnetic balance, fluxmeter, Maxwell-Wien bridge.Findings: In this work has been performed influence of thermal annealing on crystallization kinetics and magnetic properties amorphous Co77Si11.5B11.5 alloy.Practical implications: The attractive properties of Co-Si-B alloy are of special interest for basic research on the materials as well as for their potential applications, like magnetic sensors. The Co soft magnetic material is used in noise filters, saturable reactors, miniature inductance elements for abating spike noise, mains transformers, choke coils, zero-phase current transformers, and magnetic heads etc., i.e., devices which are expected to exhibit high levels of permeability at high frequencies.Originality/value: It has been shown that thermal annealing at temperature close to the crystallization temperature leads to a significant increase of the initial magnetic permeability.

  10. Relaxation of bending stresses and the reversibility of residual stresses in amorphous soft magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kekalo, I. B.; Mogil’nikov, P. S., E-mail: pavel-mog@mail.ru [National University of Science and Technology MISiS (Russian Federation)

    2015-06-15

    The reversibility of residual bending stresses is revealed in ribbon samples of cobalt- and iron-based amorphous alloys Co{sub 69}Fe{sub 3.7}Cr{sub 3.8}Si{sub 12.5}B{sub 11} and Fe{sub 57}Co{sub 31}Si{sub 2.9}B{sub 9.1}: the ribbons that are free of applied stresses and bent under the action of residual stresses become completely or incompletely straight upon annealing at the initial temperatures. The influence of annealing on the relaxation of bending stresses is studied. Preliminary annealing is found to sharply decrease the relaxation rate of bending stresses, and the initial stage of fast relaxation of these stresses is absent. Complete straightening of preliminarily annealed ribbons is shown to occur at significantly higher temperatures than that of the initial ribbons. Incomplete straightening of the ribbons is explained by the fact that bending stresses relaxation at high annealing temperatures proceeds due to both reversible anelastic deformation and viscous flow, which is a fully irreversible process. Incomplete reversibility is also caused by irreversible processes, such as the release of excess free volume and clustering (detected by small-angle X-ray scattering). The revealed differences in the relaxation processes that occur in the cobalt- and iron-based amorphous alloys are discussed in terms of different atomic diffusion mobilities in these alloys.

  11. The formation and crystallization for amorphous AlFeZr{sub 4} prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hongmei, E-mail: chenhm@gxu.edu.c [Key Laboratory of New Processing Technology for Nonferrous Metals and Materials of Ministry of Education, Department of Physics, Guangxi University, Nanning 530004 (China); Ouyang Yifang [Key Laboratory of New Processing Technology for Nonferrous Metals and Materials of Ministry of Education, Department of Physics, Guangxi University, Nanning 530004 (China); Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Guo Debo [Key Laboratory of New Processing Technology for Nonferrous Metals and Materials of Ministry of Education, Department of Physics, Guangxi University, Nanning 530004 (China); Liao Shuzhi [Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081 (China); Zhong Xiaping [Key Laboratory of New Processing Technology for Nonferrous Metals and Materials of Ministry of Education, Department of Physics, Guangxi University, Nanning 530004 (China); Du Yong; Liu Yong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2010-04-15

    Amorphous AlFeZr{sub 4} alloy has been prepared from elemental mixture powders by mechanical alloying. The microstructure, thermal stability and morphology of as-milled mixture powders were analyzed by XRD and DTA respectively. Two sequential exothermal peaks exist during the procedure of crystallization. The effective activation energies for crystallization were evaluated according to Kissinger's plot. The crystallization products of as-milled powders annealed at temperature over the crystallization temperature were studied, and the structural characteristic analysis of annealed sample was performed in an X-ray diffractometer. The crystallized phases are composed of FeZr{sub 2}, AlZr{sub 2} and AlFeZr intermetallic compounds. The formation enthalpies for FeZr{sub 2}, AlZr{sub 2} and AlFeZr are calculated from first-principles and Miedema's theory. Based on the calculated formation enthalpies, the products of crystallization for amorphous AlFeZr{sub 4} alloy are explained from thermodynamic point of view.

  12. Second amorphous-to-crystalline phase transformation in Cu60Ti20Zr20 bulk metallic glass

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Zhang, P.N.;

    2007-01-01

    The second amorphous-to-crystalline phase transformation in Cu60Ti20Zr20 bulk metallic glass was investigated by differential scanning calorimetry and x-ray diffractometry. The difference of the Gibbs free energies between the amorphous phase and the crystalline products during the transformation...... is estimated to be about 2.46 kJ mol(-1) at 753 K, much smaller than the 61 kJ mol(-1) obtained assuming that it is a polymorphic transformation. It was revealed that the phase transformation occurs through a eutectic crystallization of Cu51Zr14 and Cu2TiZr14 having an effective activation energy of the order...... of 400 kJ mol(-1). The average Avrami exponent n is about 2.0, indicating that the crystallization is diffusion controlled....

  13. A Combinatorial Approach to the Investigation of Metal Systems that Form Both Bulk Metallic Glasses and High Entropy Alloys

    Science.gov (United States)

    Welk, Brian A.; Gibson, Mark A.; Fraser, Hamish L.

    2016-03-01

    In this work, compositionally graded specimens were deposited using the laser engineered net-shaping (LENS™) additive manufacturing technique to study the glass-forming ability of two bulk metallic glass (BMG) and high entropy alloy (HEA) composite systems. The first graded specimen varied from Zr57Ti5Al10Cu20Ni8 (BMG) to CoCrFeNiCu0.5 (HEA) and the second graded specimen varied from TiZrCuNb (BMG) to (TiZrCuNb)65Ni35 (HEA). After deposition, laser surface melting experiments were performed parallel to the gradient to remelt and rapidly solidify the specimen. Scanning electron microscopy and energy dispersive x-ray spectroscopy were used to determine the morphology and composition variations in the as-deposited and laser surface melted phases. Selected area diffraction of the melt pool regions confirmed an almost fully amorphous region in the first gradient and an amorphous matrix/crystalline dendrite composite structure in the second gradient.

  14. Boundary Engineering for the Thermoelectric Performance of Bulk Alloys Based on Bismuth Telluride.

    Science.gov (United States)

    Mun, Hyeona; Choi, Soon-Mok; Lee, Kyu Hyoung; Kim, Sung Wng

    2015-07-20

    Thermoelectrics, which transports heat for refrigeration or converts heat into electricity directly, is a key technology for renewable energy harvesting and solid-state refrigeration. Despite its importance, the widespread use of thermoelectric devices is constrained because of the low efficiency of thermoelectric bulk alloys. However, boundary engineering has been demonstrated as one of the most effective ways to enhance the thermoelectric performance of conventional thermoelectric materials such as Bi2 Te3 , PbTe, and SiGe alloys because their thermal and electronic transport properties can be manipulated separately by this approach. We review our recent progress on the enhancement of the thermoelectric figure of merit through boundary engineering together with the processing technologies for boundary engineering developed most recently using Bi2 Te3 -based bulk alloys. A brief discussion of the principles and current status of boundary-engineered bulk alloys for the enhancement of the thermoelectric figure of merit is presented. We focus mainly on (1) the reduction of the thermal conductivity by grain boundary engineering and (2) the reduction of thermal conductivity without deterioration of the electrical conductivity by phase boundary engineering. We also discuss the next potential approach using two boundary engineering strategies for a breakthrough in the area of bulk thermoelectric alloys.

  15. Amorphous Hydrogenated Carbon-Nitrogen Alloy Thin Films for Solar Cell Application

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-Bin; DING Zheng-Ming; PANG Qian-Jun; CUI Rong-Qiang

    2001-01-01

    Amorphous hydrogenated carbon-nitrogen alloy (a-CNx :H) thin films have been deposited on silicon substratesby improved dc magnetron sputtering from a graphite target in nitrogen and hydrogen gas discharging. Thefilms are investigated by using Raman spectroscopy, x-ray photoelectron spectroscopy, spectral ellipsometer and electron spin resonance techniques. The optimized process condition for solar cell application is discussed. Thephotovoltaic property of a-CNx:H/silicon heterojunctions can be improved by the adjustment of the pressureratio of hydrogen to nitrogen and unbalanced magnetic field intensity. Open-circuit voltage and short-circuitcurrent reach 300mV and 5.52 Ma/cm2, respectively.

  16. STUDY ON THE SHOCK WAVE CRYSTALLIZATION OF AMORPHOUS ALLOYS BY DSC

    Institute of Scientific and Technical Information of China (English)

    H.Y. Zhao; H. Wang; Q.J. Liu; J.D. Kan; Z.Q. Liu

    2002-01-01

    Shock wave and annealing crystallization of amorphous alloys FeSiB, FeMoSiB andFeCuNbSiB were studied by isothermal and non-isothermal DSC technique. It wasfound that the shock wave crystallization is very perfect, the fraction crystallized isvery close to 100%, though the period of crystallization is very short, only about10-4-10-6 s. Their produced phases differ from the parent phase in structure andcomposition. The high velocity of the transformation is very difficult to explain by thediffusion theory of solid state phase transition.

  17. Magnetically stabilized bed reactor for selective hydrogenation of olefins in reformate with amorphous nickel alloy catalyst

    Institute of Scientific and Technical Information of China (English)

    Xuhong; Mu; Enze; Min

    2007-01-01

    A magnetically stabilized bed (MSB) reactor for selective hydrogenation of olefins in reformate was developed by combining the advantages of MSB and amorphous nickel alloy catalyst. The effects of operating conditions, such as temperature, pressure, liquid space velocity, hydrogen-to-oil ratio, and magnetic field intensity on the reaction were studied. A mathematical model of MSB reactor for hydrogenation of olefins in reformate was established. A reforming flow scheme with a post-hydrogenation MSB reactor was proposed. Finally, MSB hydrogenation was compared with clay treatment and conventional post-hydrogenation.

  18. Silicon nanocrystals on amorphous silicon carbide alloy thin films: Control of film properties and nanocrystals growth

    Energy Technology Data Exchange (ETDEWEB)

    Barbe, Jeremy, E-mail: jeremy.barbe@hotmail.com [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, 31062 Toulouse (France); Xie, Ling; Leifer, Klaus [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 Uppsala (Sweden); Faucherand, Pascal; Morin, Christine; Rapisarda, Dario; De Vito, Eric [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Makasheva, Kremena; Despax, Bernard [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, 31062 Toulouse (France); CNRS, LAPLACE, F-31062 Toulouse (France); Perraud, Simon [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2012-11-01

    The present study demonstrates the growth of silicon nanocrystals on amorphous silicon carbide alloy thin films. Amorphous silicon carbide films [a-Si{sub 1-x}C{sub x}:H (with x < 0.3)] were obtained by plasma enhanced chemical vapor deposition from a mixture of silane and methane diluted in hydrogen. The effect of varying the precursor gas-flow ratio on the film properties was investigated. In particular, a wide optical band gap (2.3 eV) was reached by using a high methane-to-silane flow ratio during the deposition of the a-Si{sub 1-x}C{sub x}:H layer. The effect of short-time annealing at 700 Degree-Sign C on the composition and properties of the layer was studied by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. It was observed that the silicon-to-carbon ratio in the layer remains unchanged after short-time annealing, but the reorganization of the film due to a large dehydrogenation leads to a higher density of SiC bonds. Moreover, the film remains amorphous after the performed short-time annealing. In a second part, it was shown that a high density (1 Multiplication-Sign 10{sup 12} cm{sup -2}) of silicon nanocrystals can be grown by low pressure chemical vapor deposition on a-Si{sub 0.8}C{sub 0.2} surfaces at 700 Degree-Sign C, from silane diluted in hydrogen. The influence of growth time and silane partial pressure on nanocrystals size and density was studied. It was also found that amorphous silicon carbide surfaces enhance silicon nanocrystal nucleation with respect to SiO{sub 2}, due to the differences in surface chemical properties. - Highlights: Black-Right-Pointing-Pointer Silicon nanocrystals (Si-NC) growth on amorphous silicon carbide alloy thin films Black-Right-Pointing-Pointer Plasma deposited amorphous silicon carbide films with well-controlled properties Black-Right-Pointing-Pointer Study on the thermal effect of 700 Degree-Sign C short-time annealing on the layer properties Black-Right-Pointing-Pointer Low pressure

  19. Performance of single wire earth return transformers with amorphous alloy core in a rural electric energy distribution system

    Directory of Open Access Journals (Sweden)

    Benedito Antonio Luciano

    2012-10-01

    Full Text Available In this paper are presented some considerations about the performance of single wire earth return amorphous alloy core transformers in comparison with conventional silicon steel sheets cores transformers used in rural electric energy distribution network. It has been recognized that amorphous metal core transformers improve electrical power distribution efficiency by reducing transformer core losses. This reduction is due to some electromagnetic properties of the amorphous alloys such as: high magnetic permeability, high resistivity, and low coercivity. Experimental results obtained with some single-phase, 60 Hz, 5 kVA amorphous core transformers installed in a rural area electric distribution system in Northern Brazil have been confirming their superior performance in comparison to identical nominal rated transformers built with conventional silicon steel cores, particularly with regard to the excitation power and to the no-load losses.

  20. Effect of high pressure on microstructure of crystallizing amorphous Nd9Fe85B6 alloy

    Institute of Scientific and Technical Information of China (English)

    WU Wei; LI Hui; XIE Yanwu; ZHANG Xiangyi

    2008-01-01

    The effect of high pressure on the microstructure of annealed amorphous NdgFegsB6 alloy was studied. It was found that applica- tion of high pressure made the microstructure of the crystallized alloy much more homogeneous. The average grain size of the Nd2Fe14B phase decreased with the increase of pressure, whereas, the size of the α-Fe first increased when a pressure of 1 Gpa was applied and then decreased with further increase of pressure. Pressure-induced (410) texture of the Nd2Fe14B phase was also observed. The present study sug-gested an effective route for controlling the microstructure in a nanoscale solid.

  1. Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying

    DEFF Research Database (Denmark)

    Canulescu, Stela; Rechendorff, K.; Borca, C. N.;

    2014-01-01

    The band structure of pure and Ti-alloyed anodic aluminum oxide has been examined as a function of Ti concentration varying from 2 to 20 at. %. The band gap energy of Ti-alloyed anodic Al oxide decreases with increasing Ti concentration. X-ray absorption spectroscopy reveals that Ti atoms...... are not located in a TiO2 unit in the oxide layer, but rather in a mixed Ti-Al oxide layer. The optical band gap energy of the anodic oxide layers was determined by vacuum ultraviolet spectroscopy in the energy range from 4.1 to 9.2 eV (300–135 nm). The results indicate that amorphous anodic Al2O3 has a direct...

  2. Fabrication of Fe-based bulk metallic glasses with plastic deformation and nanocrystalline alloys with Bs of 1.9 tesla by using structural heterogeneity

    International Nuclear Information System (INIS)

    An Fe-Metalloids-based Fe76Si9B10P5 (at%) bulk metallic glass (BMG) exhibits unusual combination of high saturation magnetic flux density (Bs) of 1.51 T due to high Fe content as well as high glass-forming ability leading to a glassy rod with a diameter of 2.5 mm despite not-containing any glass-forming metal elements. A small amount of Cu-added (Fe76Si9.4B8.4P6)99.9Cu0.1 BMG exhibits a yielding strength of 3.25 GPa and a large plastic deformation of about 4% in compression. The unusual deformation behavior with distinguishable highly dense multiple shear bands on the fracture surface could be due to the existence of a large number of α-Fe like clusters, less than 10 nm in diameter, embedded in a glassy matrix. The melt-spun Fe83.3-84.3Si4B8P3-4Cu0.7 alloys also have heterogeneous amorphous structures including a large amount of α-Fe clusters, 2-3 nm in diameter, due to the unusual effect of the simultaneous addition of the proper amounts of P and Cu. The hetero-amorphous alloys exhibit higher Bs of about 1.67 T than the representative amorphous and the nanocrystalline alloys, and the low coercivity (Hc) of 5-10 A/m. A homogeneous nanocrystalline structure composed of small α-Fe grains with a size of about 10 nm can be realized by crystallizing the hetero-amorphous alloys. The nanocrystalline alloys show extremely high Bs of 1.88-1.94 T almost comparable to the commercial Fe-3.5mass%Si crystalline soft magnetic alloys, and low Hc of 7-10 A/m due to the simultaneous realization of the homogeneous nanocrystalline structure and small magnetostriction of 2-3 x 10-6. In addition, these alloys have a great advantage of lower material cost for engineering and industry, and thus should make a contribution to energy saving, and conservation of earth resources and environment. (author)

  3. Atomic structure and crystallization processes of amorphous (Co,Ni)–P metallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Modin, Evgeny B., E-mail: modin.eb@dvfu.ru [Far Eastern Federal University, Shukhanova 8, Vladivostok 690950 (Russian Federation); Pustovalov, Evgeny V.; Fedorets, Aleksander N.; Dubinets, Aleksander V.; Grudin, Boris N.; Plotnikov, Vladimir S. [Far Eastern Federal University, Shukhanova 8, Vladivostok 690950 (Russian Federation); Grabchikov, Sergey S. [Scientific and Practical Centre of Material Science, Belarus National Academy of Sciences, P. Brovki 19, Minsk 220072 (Belarus)

    2015-08-25

    Highlights: • The CoP–CoNiP amorphous alloys were studied by the Cs-corrected high resolution transmission electron microscopy. • In situ heating experiments showed that crystallization starts at 200–250 °C on the network frame and cell boundaries. • Crystal growth occurs at the free surface, then the remaining material in the volume is crystallized. • Adding nickel to the CoP alloy leads to higher thermal stability. • At the beginning of crystallization there are high diffusion coefficients, 1.2–2.4 ∗ 10{sup −18} m{sup 2}/s at 250 °C. - Abstract: This work concerns the in situ investigation of the atomic structure of (Co,Ni)–P alloys during relaxation and crystallization by high resolution transmission electron microscopy. The CoP–CoNiP alloys, in the initial state, have a hierarchical network-like disordered structure. Crystallization starts at 200–250 °C on the network frame and cell boundaries. In the early stages, crystal growth occurs at the free surface, then the remaining material in the volume is crystallized. The diffusion coefficient at the start of crystallization is 1.2–2.4 × 10{sup −18} m{sup 2}/s at 250 °C and we assume that the high diffusion speed is due to surface diffusion.

  4. Effect of the nanocrystallization of amorphous soft magnetic Fe-P-Nb alloys on corrosion resistance in a damp SO2-polluted atmosphere

    Science.gov (United States)

    Vavilova, V. V.; Zabolotnyi, V. T.; Korneev, V. P.; Anosova, M. O.; Baldokhin, Yu. V.

    2014-09-01

    The effect of the nanocrystallization of amorphous soft magnetic Fe-P-Nb alloys on their electrochemical behavior in a damp SO2-polluted industrial atmosphere is studied. It is shown that their electro-chemical characteristics shit toward positive values when the phosphorus content in the Fe-P-Nb alloys increases and when they undergo nanocrystallization from an amorphous state.

  5. First-principles study of amorphous Ga4Sb6Te3 phase-change alloys

    Science.gov (United States)

    Bouzid, Assil; Gabardi, Silvia; Massobrio, Carlo; Boero, Mauro; Bernasconi, Marco

    2015-05-01

    First-principles molecular dynamics simulations within the density functional theory framework were performed to generate amorphous models of the Ga4Sb6Te3 phase change alloy by quenching from the melt. We find that Ga-Sb and Ga-Te are the most abundant bonds with only a minor amount of Sb-Te bonds participating to the alloy network. Ga and four-coordinated Sb atoms present a tetrahedral-like geometry, whereas three-coordinated Sb atoms are in a pyramidal configuration. The tetrahedral-like geometries are similar to those of the crystalline phase of the two binary compounds GaTe and GaSb. A sizable fraction of Sb-Sb bonds is also present, indicating a partial nanoscale segregation of Sb. Despite the fact that the composition Ga4Sb6Te3 lies on the pseudobinary Ga Sb -Sb2Te3 tie line, the amorphous network can be seen as a mixture of the two binary compounds GaTe and GaSb with intertwined elemental Sb.

  6. Room-temperature amorphous alloy field-effect transistor exhibiting particle and wave electronic transport

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, M., E-mail: fukuhara@niche.tohoku.ac.jp [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan); Kawarada, H. [Research and Development Center, Waseda University, Tokyo 162-0041 (Japan)

    2015-02-28

    The realization of room-temperature macroscopic field effect transistors (FETs) will lead to new epoch-making possibilities for electronic applications. The I{sub d}-V{sub g} characteristics of the millimeter-sized aluminum-oxide amorphous alloy (Ni{sub 0.36}Nb{sub 0.24}Zr{sub 0.40}){sub 90}H{sub 10} FETs were measured at a gate-drain bias voltage of 0–60 μV in nonmagnetic conditions and under a magnetic fields at room temperature. Application of dc voltages to the gate electrode resulted in the transistor exhibiting one-electron Coulomb oscillation with a period of 0.28 mV, Fabry-Perot interference with a period of 2.35 μV under nonmagnetic conditions, and a Fano effect with a period of 0.26 mV for Vg and 0.2 T under a magnetic field. The realization of a low-energy controllable device made from millimeter-sized Ni-Nb-Zr-H amorphous alloy throws new light on cluster electronics.

  7. Room-temperature amorphous alloy field-effect transistor exhibiting particle and wave electronic transport

    International Nuclear Information System (INIS)

    The realization of room-temperature macroscopic field effect transistors (FETs) will lead to new epoch-making possibilities for electronic applications. The Id-Vg characteristics of the millimeter-sized aluminum-oxide amorphous alloy (Ni0.36Nb0.24Zr0.40)90H10 FETs were measured at a gate-drain bias voltage of 0–60 μV in nonmagnetic conditions and under a magnetic fields at room temperature. Application of dc voltages to the gate electrode resulted in the transistor exhibiting one-electron Coulomb oscillation with a period of 0.28 mV, Fabry-Perot interference with a period of 2.35 μV under nonmagnetic conditions, and a Fano effect with a period of 0.26 mV for Vg and 0.2 T under a magnetic field. The realization of a low-energy controllable device made from millimeter-sized Ni-Nb-Zr-H amorphous alloy throws new light on cluster electronics

  8. Nanocrystals and amorphous matrix phase studies of Finemet-like alloys containing Ge

    Energy Technology Data Exchange (ETDEWEB)

    Moya, J.A., E-mail: jmoya.fi.uba@gmail.co [IESIING, Facultad de Ingenieria e Informatica, UCASAL, A4402FYP Salta (Argentina); Lab. Solidos Amorfos, Facultad de Ingenieria, INTECIN, UBA-CONICET (Argentina); CONICET (Argentina)

    2010-07-15

    Two simple models were developed in order to determine the chemical composition of both nanocrystals and intergranular amorphous phases in nanocrystallized Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1} containing Ge using data from X-ray diffraction and Moessbauer spectroscopy techniques. Saturation magnetization of the amorphous intergranular matrix (M{sub s}{sup am}) was calculated considering the contribution of the alpha-Fe(Si,Ge) nanocrystals and saturation magnetization of the alloys. The behavior of M{sub s}{sup am} with the iron content of the matrix was obtained and discussed. The exchange stiffness constant for the nanograins and for the amorphous phases was determined. The increment in the coercive field (H{sub c}) with increasing Ge content was evaluated using two theoretical models for the random magnetocrystalline anisotropy constant (). Results show that the magnetic hardening observed could not be attributed to an increase in but mainly to an important increment of the magnetostriction constant of the alpha-Fe(Si,Ge) nanocrystals (lambda{sub s}{sup cr}). Values for lambda{sub s}{sup cr} are proposed.

  9. Amorphous structure and properties in laser-clad Ni-Cr-Al coating on Al-Si alloy

    Science.gov (United States)

    Liang, Gongying; Wong, T. T.; Su, J. Y.; Woo, C. H.

    1999-09-01

    A Ni-Cr-Al coating was clad by a 5 kW CO2 laser with different laser power on Al-Si alloy. Using transmission electron microscopy, a mixing microstructure containing Ni- based amorphous structures was observed in the laser clad zones. As the uniformity of chemical composition and temperature is poor in the laser cladding, the amorphous structure with some Ni3Al crystals coexisted in the cladding. According to the morphologies of Ni-based amorphous structures, the amorphous structure existed not only in the net-like boundaries surrounding the granular structure but also in the granular structure. The microhardness of the mixture amorphous structure is between HV 600 - 800, which is lower than that of crystal phases in the coating. A differential thermal analysis showed that Ni- based amorphous structure exhibits a higher initial crystallizing temperature (about 588 degree(s)C), which is slightly higher than that of the eutectic temperature of Al- Si alloy. The wear experimental results showed that some amorphous structure exist in the laser cladding can reduce the peeling of the granular phases from matrix, and improve the its wear resistance.

  10. Prediction of Failure Due to Thermal Aging, Corrosion and Environmental Fracture in Amorphous and Titanium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C

    2003-04-15

    DARPA is exploring a number of advanced materials for military applications, including amorphous metals and titanium-based alloys. Equipment made from these materials can undergo degradation due to thermal aging, uniform corrosion, pitting, crevice corrosion, denting, stress corrosion cracking, corrosion fatigue, hydrogen induced cracking and microbial influenced corrosion. Amorphous alloys have exceptional resistance to corrosion, due in part to the absence of grain boundaries, but can undergo crystallization and other phase instabilities during heating and welding. Titanium alloys are extremely corrosion resistant due to the formation of a tenacious passive film of titanium oxide, but is prone to hydrogen absorption in crevices, and hydrogen induced cracking after hydrogen absorption. Accurate predictions of equipment reliability, necessary for strategic planning, requires integrated models that account for all relevant modes of attack, and that can make probabilistic predictions. Once developed, model parameters must be determined experimentally, and the validity of models must be established through careful laboratory and field tests. Such validation testing requires state-of-the-art surface analytical techniques, as well as electrochemical and fracture mechanics tests. The interaction between those processes that perturb the local environment on a surface and those that alter metallurgical condition must be integrated in predictive models. The material and environment come together to drive various modes of corrosive attack (Figure 1). Models must be supported through comprehensive materials testing capabilities. Such capabilities are available at LLNL and include: the Long Term Corrosion Test Facility (LTCTF) where large numbers of standard samples can be exposed to realistic test media at several temperature levels; a reverse DC machine that can be used to monitor the propagation of stress corrosion cracking (SCC) in situ; and banks of potentiostats with

  11. Kinetics of crystallization of a Fe-based multicomponent amorphous alloy

    Indian Academy of Sciences (India)

    Arun Pratap; T Lilly Shanker Rao; Kinnary Patel; Mukesh Chawda

    2009-10-01

    The Fe-based multicomponent amorphous alloys (also referred to as metallic glasses) are known to exhibit soft magnetic properties and, it makes them important for many technological applications. However, metallic glasses are in a thermodynamically metastable state and in case of high temperature operating conditions, the thermally activated crystallization would be detrimental to their magnetic properties. The study of crystallization kinetics of metallic glasses gives useful insight about its thermal stability. In the present work, crystallization study of Fe67Co18B14Si1 (2605CO) metallic glass has been carried out using differential scanning calorimetry (DSC) technique. Mössbauer study has also been undertaken to know the phases formed during the crystallization process. The alloy shows two-stage crystallization. The activation energy has been derived using the Kissinger method. It is found to be equal to 220 kJ/mol and 349 kJ/mol for the first and second crystallization peaks, respectively. The Mössbauer study indicates the formation of -(Fe, Co) and (Fe, Co)3B phases in the alloy.

  12. Ballistic impact properties of mixed multi-layered amorphous surface alloyed materials fabricated by high-energy electron-beam irradiation

    International Nuclear Information System (INIS)

    The objective of this study is to investigate ballistic impact properties of multi-layered amorphous surface alloyed materials fabricated by high-energy electron-beam irradiation. The mixture of Zr-based amorphous alloy powders and LiF+MgF2 flux powders was deposited on a Ti alloy substrate, and then electron beam was irradiated on this powder mixture to fabricate an one-layered surface alloyed material. On top of this layer, the powder mixture was deposited again and then irradiated with electron beam whose beam current was decreased to fabricate the multi-layered surface alloyed material. In the mixed multi-layered surface alloyed materials fabricated with LM1 alloy powders and LM2 or LM10 alloy powders, the surface region consisted of amorphous phases, together with a small amount of crystalline particles, whereas the center region was complicatedly composed of amorphous phases, crystallized phases, and dendritic β phases. Since the surface region mostly composed of amorphous matrix was quite hard, the alloyed materials sufficiently blocked the travel of a projectile. When cracks formed at the surface region propagated into the center region, the formation of many cracks or debris was accelerated, which could beneficially work for absorbing the ballistic impact energy, thereby leading to the higher ballistic impact properties than the surface alloyed materials fabricated with LM1 or LM2 alloy powders

  13. In vitro metal ion release and biocompatibility of amorphous Mg67Zn28Ca5 alloy with/without gelatin coating

    International Nuclear Information System (INIS)

    Amorphous zinc-rich Mg–Zn–Ca alloys have exhibited good tissue compatibility and low hydrogen evolution in vivo. However, suboptimal cell–surface interaction on magnesium alloy surface observed in vitro could lead to reduced integration with host tissue for regenerative purpose. This study aims to improve cell–surface interaction of amorphous Mg67Zn28Ca5 alloy by coating a gelatin layer by electrospinning. Coated/uncoated alloys were immersed and extracted for 3 days under different CO2. The immersion results showed that pH and metal ion release in the alloy extracts were affected by gelatin coating and CO2, suggesting their roles in alloy biocorrosion and a mechanism has been proposed for the alloy–CO2 system with/without coating. Cytotoxicity results are evident that gelatin-coated alloy with 2-day crosslinking not only exhibited no indirect cytotoxicity, but also supported attachment of L929 and MG63 cell lines around/on the alloy with high viability. Therefore, amorphous Mg67Zn28Ca5 alloy coated with gelatin by electrospinning technique provides a useful method to improve alloy biocompatibility. - Highlights: • Electrospinning is a new method to coat amorphous Mg67Zn28Ca5 alloy with gelatin. • Gelatin-coated alloy has differential effect on pH and ion release at various CO2. • L929 cell proliferation correlates with Mg2+ level in alloy extracts. • Biomimetic gelatin coating significantly improves cell–surface interaction

  14. Effect of replacing RE and TM on magnetic properties and thermal stability of some Al–Ni-based amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Uporov, S.A., E-mail: segga@bk.ru [Institute of Metallurgy UB RAS, Ekaterinburg (Russian Federation); Uporova, N.S. [Ural State Pedagogical University, Ekaterinburg (Russian Federation); Bykov, V.A.; Kulikova, T.V.; Pryanichnikov, S.V. [Institute of Metallurgy UB RAS, Ekaterinburg (Russian Federation)

    2014-02-15

    Highlights: ► X-ray diffraction analysis of the quenched Al–Ni-based alloys revealed a clear prepeak. ► The amorphous alloys demonstrate the superparamagnetic behavior. ► The variation of the RE and TM caused the radical changes of thermal properties. -- Abstract: Amorphous ribbons Al{sub 86}Ni{sub 8}Ho{sub 6}, Al{sub 86}Ni{sub 8}Gd{sub 6} and Al{sub 86}Ni{sub 6}Co{sub 2}Gd{sub 4}Y{sub 2} were prepared by quenching from 1580–1600 K using spinning technique at a wheel speed of 32 m/s. X-ray diffraction (XRD) analysis of the quenched alloys revealed a clear prepeak located below the main amorphous peak. The specimens crystallize in three stages but glass transition temperature was not found. The crystalinity was calculated by both XRD and differential scanning calorimetry (DSC) methods for all samples. Magnetic properties of ribbons were investigated in wide ranges of temperature (T = 4–900 K) and magnetic field (up to 30 kOe) by Faraday method and vibration sample magnetometry (VSM). The amorphous alloys investigated have no magnetic ordering at low temperatures down to T = 4 K but demonstrate the superparamagnetic behavior. The magnetic properties are discussed in the frames of conception of existence the superparamagnetic clusters with ferrimagnetic ordering.

  15. Synthesis and characterization of Mg-based amorphous alloys and their use for decolorization of Azo dyes

    International Nuclear Information System (INIS)

    Mg-based alloys are light weight and have wide range of applications in the automotive industry. These alloys are widely used because of their very attractive physical and mechanical properties and corrosion resistance. The properties and applications can be further improved by changing the nature of materials from crystalline to amorphous. In this study, melt spun ribbons (MSRs) of Mg70Zn25Ca5 Mg68Zn27Ca5 alloys were prepared by melt spinning technique by using 3-4N pure metals. Characterization of the samples was done by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and energy dispersive x-ray analyzer (EDAX). Microstructural investigations were conducted by using scanning electron microscopy (SEM), atomic force microscopy (AFM) as well as optical and stereo scan microscopy techniques. DSC results showed multistage crystallization. Activation energy was found to be 225 kJ/mol by Kissinger method indicating good thermal stability against crystallization. XRD, DSC, SEM and EDS (energy dispersive spectroscopy) results are agreed very well. In order to study decolorization, the MSRs of Mg70Zn25Ca5 Mg68Zn27Ca5 alloys were treated repeatedly with various azo dyes at room temperature. In order to compare the results, MSRs of amorphous Zr- and Ni-based metallic glasses were also treated. Reaction of MSRs with azo dyes results in their decolorization in a few hours. Decolorization of azo dyes takes place by introducing amorphous MSRs which results in breaking the -N=N- bonds that exist in dye contents. It is concluded that Mg-based alloys are useful for paint and dye industries and will be beneficial to control water pollution. Comparison of results showed that Mg-based alloys are more efficient than Zr- and Ni-based amorphous alloys for decolorization of azo dyes

  16. Short-range order in ab initio computer generated amorphous and liquid Cu–Zr alloys: A new approach

    Energy Technology Data Exchange (ETDEWEB)

    Galván-Colín, Jonathan, E-mail: jgcolin@ciencias.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México, D.F. 04510, México (Mexico); Valladares, Ariel A., E-mail: valladar@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México, D.F. 04510, México (Mexico); Valladares, Renela M.; Valladares, Alexander [Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, México, D.F. 04510, México (Mexico)

    2015-10-15

    Using ab initio molecular dynamics and a new approach based on the undermelt-quench method we generated amorphous and liquid samples of Cu{sub x}Zr{sub 100−x} (x=64, 50, 36) alloys. We characterized the topology of our resulting structures by means of the pair distribution function and the bond-angle distribution; a coordination number distribution was also calculated. Our results for both amorphous and liquids agree well with experiment. Dependence of short-range order with the concentration is reported. We found that icosahedron-like geometry plays a major role whenever the alloys are Cu-rich or Zr-rich disregarding if the samples are amorphous or liquid. The validation of these results, in turn would let us calculate other properties so far disregarded in the literature.

  17. Coupling between bulk ordering and surface segregation: from alloy surfaces to surface alloys

    International Nuclear Information System (INIS)

    -The knowledge of the alloy surfaces is of prime interest to understand their catalytic properties. On the one hand, the determination of the stability of the surface alloys depends very strongly on the behaviours of the AcB1-c alloy surfaces. On the other hand, the knowledge of the kinetics of the formation-dissolution of surface alloys can allow to understand the equilibrium segregation isotherm. We have then studied the relation between the equilibrium surface segregation in an alloy AcB1-c and the kinetics of dissolution of a few metallic layers of A/B and the inverse deposit. We have used an energetic model derived from the electronic structure (T.I.B.M.) allowing us to study the surface segregation both in the disordered state and in the ordered one. The kinetics of dissolution were studied using the kinetic version of this model (K.T.I.B.M.) consistent with the equilibrium model. To illustrate our study, we have chosen the Cu-Pd system, a model for the formation of surface alloys and for which a great number of studies, both experimental and theoretical, are in progress. We then have shown for the (111) surface of this system that the surface alloys obtained during the dissolution are related to the alloy surfaces observed for the equilibrium segregation. The Cu-Pd system is characteristic of systems which have a weak segregation energy. Then, we have performed an equivalent study for a system with a strong segregation energy. Our choice was directly put on the Pt-Sn system. The surface behaviour, both in equilibrium and during the kinetics of dissolution, is very different from the Cu-Pd case. In particular, we have found pure 2-D surface alloys. Finally, a quenched molecular dynamics study has allowed us to determine the relative stability of various possible surface superstructures. (author)

  18. Bulk amorphous powder cores with low core loss by spark-plasma sintering Fe{sub 76}Si{sub 9.6}B{sub 8.4}P{sub 6} amorphous powder with small amounts of SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue [School of Material and Metallurgy, University of Science and Technology Liaoning (USTL), 185 Qianshan Zhong Road, Anshan, Liaoning 114051 (China); Lu, Gonghao, E-mail: ghlu@ustl.edu.cn [School of Chemical Engineering, University of Science and Technology Liaoning (USTL), 185 Qianshan Zhong Road, Anshan, Liaoning 114051 (China); Zhang, Zhiqiang [School of Chemical Engineering, University of Science and Technology Liaoning (USTL), 185 Qianshan Zhong Road, Anshan, Liaoning 114051 (China); Ju, Dongying [School of Material and Metallurgy, University of Science and Technology Liaoning (USTL), 185 Qianshan Zhong Road, Anshan, Liaoning 114051 (China); Makino, Akihiro [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-10-25

    Fe{sub 76}Si{sub 9.6}B{sub 8.4}P{sub 6} amorphous powder was produced by gas atomization. Next, bulk amorphous powder discs were prepared by pressing a mixture of Fe{sub 76}Si{sub 9.6}B{sub 8.4}P{sub 6} amorphous powder and a small amount of SiO{sub 2} powder using the spark plasma sintering technique. The resulting bulk amorphous powder cores were obtained from the compacted discs using an electrical spark erosion machine. The powder core with 5 mass% SiO{sub 2} shows both high saturation magnetization of 1.41 T and good soft magnetic properties, 23 A/m for coercive force and 117 for effective permeability at 1 kHz. The core also exhibits much lower core loss than silicon steels or the powder core without SiO{sub 2}, only 71 W/kg at a maximum magnetic induction of 0.2 T with a frequency of 10 kHz. The low core loss is due to a SiO{sub 2} insulator layer forming on the surface of the alloy powder that can effectively reduce the eddy current and consequently reduce the core loss. - Highlights: • An amorphous powder core is prepared by using spark-plasma sintering technique • The core shows good soft magnetic properties and much lower core loss. • The saturation magnetization is 1.41 T and the coercive force is 23 A/m. • The effective permeability at 1 kHz is 117. • The core loss at 10 kHz and maximum induction of 0.2 T is only 71 W/kg.

  19. Local order dynamics: its application to the study of atomic mobility, of point defects in crystalline alloys, and of structural relaxation in amorphous alloys

    International Nuclear Information System (INIS)

    This research thesis addressed the study of the atomic mobility mechanism and of the atom movement dynamics in the case of crystalline alloys and of amorphous alloys. The first part is based on a previous study performed on an α-Cu70-Zn30 crystalline alloy, and addresses the case of an α-Au70-Ni30 alloy. The specificity of this case relies in the fact that the considered solid solution is metastable and susceptible to de-mixing in the considered temperature range. This case of off-equilibrium crystalline alloy is at the crossroad between steady crystalline alloys and metallic glasses which are studied in the second part. The third part addresses the irradiation of metallic amorphous alloys by fast particles (neutrons or electrons). The author tried to characterise atomic defects induced by irradiation and to compare them with pre-existing ones. He studied how these defects may change atomic mobility, and, more generally, to which extent the impact of energetic particles could modify local order status

  20. Structure of amorphous silicon alloy films: Annual subcontract report, January 15, 1988--January 14, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Norberg, R.E.; Fedders, P.A.

    1989-06-01

    The principal objective of this research program has been to improve the understanding at the microscopic level of amorphous silicon-germanium-alloy films deposited under various conditions to assist researchers to produce higher quality films. The method has been a joint theoretical and experimental approach to the correlation of NMR, ESR, and other characterizations, especially relating to rearrangements of hydrogen. Deuteron magnetic resonance reveals the presence of (and changes in) tightly bonded hydrogen (deuterium), weakly bonded hydrogen, molecular hydrogen, and rotating silyl groups. Microvoids are investigated via observation of para D/sub 2/ for which /Delta/M/sub J/ transitions are frozen out. Solid echoes reveal HD and ortho D/sub 2/ trapped as singles in the semiconductor matrix. Theoretical calculations show dangling bonds to be more likely than floating bonds. 23 refs., 11 figs.

  1. Computer experiments on radiation strength and radiation enhanced segregation of Al–Si amorphous alloys

    International Nuclear Information System (INIS)

    Computer experiments of irradiated Al–Si alloys were performed to clarify the mechanism of radiation enhanced segregation. The atomic configurations of pure Al, Al–5 at%Si and Al–10 at%Si with amorphous structure after the irradiation of high energy beam were calculated by the molecular dynamics method. We estimated the threshold energies to create voids in pure Al, Al–5 at%Si and Al–10 at%Si as 0.23, 0.25 and 0.25 keV/nm, respectively. This fact means that addition of Si to Al enhances strength against void formation by beam irradiation. We also confirmed that addition of Si to Al gave strong effect on radiation enhanced segregation. The degree of enhancement depended on the degree of dispersion of Si atoms in Al matrix because the Si atoms enhances clustering of the Al atoms surrounding them. (author)

  2. A thermodynamic approach towards glass-forming ability of amorphous metallic alloys

    Indian Academy of Sciences (India)

    Sonal R Prajapati; Supriya Kasyap; Arun Pratap

    2015-12-01

    A quantitative measure of the stability of a glass as compared to its corresponding crystalline state can be obtained by calculating the thermodynamic parameters, such as the Gibbs free energy difference (), entropy difference () and the enthalpy difference () between the super-cooled liquid and the corresponding crystalline phase. is known as the driving force of crystallization. The driving force of crystallization () provides very important information about the glass-forming ability (GFA) of metallic glasses (MGs). Lesser the driving force of crystallization more is the GFA. The varies linearly with the critical size (). According to Battezzati and Garonne the parameter ( = (1−(/))/(1−( / ))) in the expression for should be a constant (i.e., 0.8), but its uniqueness is not observed for all MGs. The thermal stability of various alloy compositions is studied by their undercooled liquid region ( = − ). Large implies greater stability against crystallization of the amorphous structure. Other GFA parameters are also calculated and correlated with critical size ().

  3. Electronic structure and sign reversal of the Hall coefficient in amorphous CuZr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Manh, D.N.; Pavuna, D.; Cyrot-Lackmann, F.; Mayou, D.; Pasturel, A.

    1986-04-15

    We present calculated densities of states (DOS) for Cu/sub x/Zr/sub 1-x/ amorphous alloys across the compositional range. We find that for x<80 at. % Cu there is no ordering and the Fermi level E/sub F/ is dominated by the Zr 4d subband, while above 80 at. % Cu the local order increases and the DOS at E/sub F/ abruptly decreases and is dominated by the s states. These changes in DOS and the fact that the energy derivative of the self-energy changes its sign (implying a change of sign of the Fermi velocity) gives further insight into the experimentally observed sign reversal of the Hall coefficient which occurs for 80< or =x< or =85 at. % Cu.

  4. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    International Nuclear Information System (INIS)

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 (micro)m with a Peclet number of ∼0.2, JH and TMK deviate from each other. This

  5. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kalay, Yunus Eren [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 {micro}m with a Peclet number of ~0.2, JH and TMK deviate from

  6. Synthesis and Electro-Magneto-Mechanical Properties of Graphene Aerogels Functionalized with Co-Fe-P Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Guang-Ping Zheng

    2016-07-01

    Full Text Available Graphene aerogels (GAs are functionalized with Fe-Co-P alloy using an electro-deposition method. The Fe-Co-P alloy coated on the graphene nanosheets is found to possess an amorphous structure and a nanoporous architecture of GAs. The electro-mechanical properties of GAs are significantly affected by the Fe-Co-P nanoparticles embedded inside GAs. The electro-mechanical responses of GA/Fe-Co-P nanoporous hybrid structures are sensitive to an applied magnetic field, demonstrating that they are promising for electro-magneto-mechanical applications. The light-weight, high-strength and nanoporous GAs functionalized with Fe-Co-P amorphous alloys are desirable sensors, actuators, and nano-electro-mechanical systems that could be controlled or manipulated by mechanical, electric and magnetic fields.

  7. Low-field magnetic properties of amorphous and nanocystalline FeCrCuNbSiB alloys

    International Nuclear Information System (INIS)

    The AC susceptibility dependence on magnetic field, time and temperature of amorphous as well as nanocrystalline Fe73.5-xCrxCu1Nb3Si13.5B9 (x=0-4) alloys was studied. Micromagnetic model is used for calculating the activation energy spectra (AES) of the magnetic after-effect (MAE). It was observed that addition of Cr to the amorphous FeCrCuNbSiB alloys highly decreases the amplitude of the MAE so that no MAE is observed for Cr content higher than 2 at%. After annealing at 550 deg. C, the initial susceptibility increases as a result of magnetic softening during nanocrystallization and the MAE vanishes. The nanocrystalline state was characterized by the high magnetic as well as structural stability. Moreover, addition of 1 at% Cr makes the initial susceptibility of the nanocrytalline sample higher than in the FINEMET alloy

  8. First-principles study of the structural and dynamic properties of the liquid and amorphous Li-Si alloys.

    Science.gov (United States)

    Chiang, Han-Hsin; Lu, Jian-Ming; Kuo, Chin-Lung

    2016-01-21

    We have performed density functional theory calculations and ab initio molecular dynamics to investigate the structures and dynamic properties of the liquid and amorphous LixSi alloys over a range of composition from x = 1.0 - 4.8. Our results show that Si atoms can form a variety of covalently bonded polyanions with diverse local bonding structures in the liquid alloys. Like in c-LiSi, Si atoms can form a continuous bond network in liquid Li1.0Si at 1050 K, while it gradually disintegrates into many smaller Si polyanions as the Li content increases in the alloys. The average sizes of Si polyanions in these liquid alloys were found to be relatively larger than those in their crystalline counterparts, which can even persist in the highly lithiated Li4.81Si alloy at 1500 K. Our results also show that amorphous LixSi alloys have similar local bonding structures but a largely increased short-range order as compared to their liquid counterparts. The differences between the average coordination number of each atomic pair in amorphous solids and that in the liquids are less than 1.1. Furthermore, our calculations reveal that Li and Si atoms can exhibit very distinct dynamic behaviors in the liquids and their diffusivities appear to be largely dependent on the chemical composition of the alloys. The diffusivity of Li was found to increase with the Li content in the alloys primarily because of the reduced interactions between Li and Si atoms, while the Si diffusivity also increases due to the gradual disintegration of the strongly interconnected Si bond network. The diffusivity of Li in amorphous LixSi was predicted to lie in the range between 10(-7) and 10(-9) cm(2)/s at 300 K, which is more than 20-fold larger than that of Si over the composition range considered. Our calculations further show that the diffusivities of both Li and Si can increase by two orders of magnitude as x increases from 1.0 to 3.57 in amorphous LixSi, indicating a more profound dependence on the

  9. First-principles study of the structural and dynamic properties of the liquid and amorphous Li–Si alloys

    International Nuclear Information System (INIS)

    We have performed density functional theory calculations and ab initio molecular dynamics to investigate the structures and dynamic properties of the liquid and amorphous LixSi alloys over a range of composition from x = 1.0 − 4.8. Our results show that Si atoms can form a variety of covalently bonded polyanions with diverse local bonding structures in the liquid alloys. Like in c-LiSi, Si atoms can form a continuous bond network in liquid Li1.0Si at 1050 K, while it gradually disintegrates into many smaller Si polyanions as the Li content increases in the alloys. The average sizes of Si polyanions in these liquid alloys were found to be relatively larger than those in their crystalline counterparts, which can even persist in the highly lithiated Li4.81Si alloy at 1500 K. Our results also show that amorphous LixSi alloys have similar local bonding structures but a largely increased short-range order as compared to their liquid counterparts. The differences between the average coordination number of each atomic pair in amorphous solids and that in the liquids are less than 1.1. Furthermore, our calculations reveal that Li and Si atoms can exhibit very distinct dynamic behaviors in the liquids and their diffusivities appear to be largely dependent on the chemical composition of the alloys. The diffusivity of Li was found to increase with the Li content in the alloys primarily because of the reduced interactions between Li and Si atoms, while the Si diffusivity also increases due to the gradual disintegration of the strongly interconnected Si bond network. The diffusivity of Li in amorphous LixSi was predicted to lie in the range between 10−7 and 10−9 cm2/s at 300 K, which is more than 20-fold larger than that of Si over the composition range considered. Our calculations further show that the diffusivities of both Li and Si can increase by two orders of magnitude as x increases from 1.0 to 3.57 in amorphous LixSi, indicating a more profound dependence on the

  10. First-principles study of the structural and dynamic properties of the liquid and amorphous Li–Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Han-Hsin; Kuo, Chin-Lung, E-mail: chinlung@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Lu, Jian-Ming [National Center for High-Performance Computing, Tainan 74147, Taiwan (China)

    2016-01-21

    We have performed density functional theory calculations and ab initio molecular dynamics to investigate the structures and dynamic properties of the liquid and amorphous Li{sub x}Si alloys over a range of composition from x = 1.0 − 4.8. Our results show that Si atoms can form a variety of covalently bonded polyanions with diverse local bonding structures in the liquid alloys. Like in c-LiSi, Si atoms can form a continuous bond network in liquid Li{sub 1.0}Si at 1050 K, while it gradually disintegrates into many smaller Si polyanions as the Li content increases in the alloys. The average sizes of Si polyanions in these liquid alloys were found to be relatively larger than those in their crystalline counterparts, which can even persist in the highly lithiated Li{sub 4.81}Si alloy at 1500 K. Our results also show that amorphous Li{sub x}Si alloys have similar local bonding structures but a largely increased short-range order as compared to their liquid counterparts. The differences between the average coordination number of each atomic pair in amorphous solids and that in the liquids are less than 1.1. Furthermore, our calculations reveal that Li and Si atoms can exhibit very distinct dynamic behaviors in the liquids and their diffusivities appear to be largely dependent on the chemical composition of the alloys. The diffusivity of Li was found to increase with the Li content in the alloys primarily because of the reduced interactions between Li and Si atoms, while the Si diffusivity also increases due to the gradual disintegration of the strongly interconnected Si bond network. The diffusivity of Li in amorphous Li{sub x}Si was predicted to lie in the range between 10{sup −7} and 10{sup −9} cm{sup 2}/s at 300 K, which is more than 20-fold larger than that of Si over the composition range considered. Our calculations further show that the diffusivities of both Li and Si can increase by two orders of magnitude as x increases from 1.0 to 3.57 in amorphous Li

  11. Search for novel amorphous alloys with high crystallization temperature by combinatorial arc plasma deposition

    International Nuclear Information System (INIS)

    This paper describes a combinatorial search for novel amorphous alloys with high crystallization temperatures (Tx) using combinatorial arc plasma deposition (CAPD). The CAPD technique can deposit 1089 (33 x 33) thin film samples with different compositions on a substrate at one time. These 1089 samples on the substrate are individually referred to as CAPD samples and collectively referred to as a thin film library. Thin film libraries of Ir-Zr-Fe, Ir-Zr-Al, Mo-Zr-Al, Mo-Zr-Si, Ru-Zr-Fe and Ru-Zr-Si were deposited by CAPD. The compositions and phases of the CAPD samples were measured by energy dispersive X-ray fluorescence spectrometry and X-ray diffractometry, respectively. The results revealed that each library included amorphous CAPD samples. Since it is impossible to measure the Tx, fracture strength, fracture strain and Young's modulus of the CAPD samples by conventional measurement methods, larger samples having the same compositions as the amorphous CAPD samples were fabricated by a sputtering system. Since all CAPD samples of Ir-Zr-Fe and Ir-Zr-Al were too brittle, their corresponding sputter-deposited samples were not prepared. Sputter-deposited Mo-Zr-Al, Mo-Zr-Si, Ru-Zr-Fe and Ru-Zr-Si samples with ∼50 at.% Mo- or Ru-content were fabricated, and Tx and mechanical properties of these sputter-deposited samples were evaluated. All the sputter-deposited samples of Mo-Zr-Al and Mo-Zr-Si showed high Tx exceeding 973 K and as well as brittle characteristics. Ru50Zr35Fe10 samples showed high Tx exceeding 1273 K and a low fracture strength of 0.26 GPa. Samples of Ru51Zr5Si44 showed a high Tx of 923 K and a high fracture strength of 1.25 GPa

  12. Amorphous Nickel Based Alloy Catalysts and Magnetically Stabilized Bed Hydrogenation Technology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Amorphous nickel based alloy catalysts (denoted as the SRNA series catalysts) were prepared viarapid quenching method followed by alkali leaching and other activation procedures. The physicochemicalcharacterizations show that nickel, the active component in these catalysts, exists in the amorphous state, andthe catalyst particles possess many nanosized voids leading to large surface area (the highest is 145m2/g). Theevaluation results in some model reactions show that the SRNA series catalysts have 2 to 4 times higheractivity and selectivity than conventional Raney Ni catalyst for the hydrogenation of compounds with unsatur-ated functional groups. At present, the SRNA series catalysts have been successfully used in hydrogenation ofglucose, hydrogenation of pharmaceutical intermediates and purification of caprolactam. In order to use thesecatalysts efficiently, a magnetically stabilized bed (MSB) technology has been developed by combining theferromagnetic property of the catalyst with the good mass transfer characteristics of MSB. The demonstrationunit of MSB hydrogenation technology has been set up and has kept running for 2800 hours. The results showthat, after running 2800 hours, the catalyst still retained good activity; meanwhile, the hydrogenation effi-ciency had been improved 10 times in comparison with the traditional CSTR process.

  13. Amorphous Nickel Based Alloy Catalysts and Magnetically Stabilized Bed Hydrogenation Technology

    Institute of Scientific and Technical Information of China (English)

    MuXuhong; ZongBaoning; 等

    2002-01-01

    Amorphous nickel based alloy catalysts(denoted as the SRNA series catalysts)were prepared via rapid quenching method followed by alkali leaching and other activation procedures.The physicochemical characterizations show that nickel,the active component in these catalysts,exists in the amorphous state,and the catalyst particles possess many nanosized voids leading to large surface area(the highest is 145m2/g).The evaluation results in some model reactions show that the SRNA series catalysts have 2 to 4 times higher activity and selectivity than conventional Raney Ni catalyst for the hydrogenation of compounds with unsatur-ated functional groups.At present,the SRNA series catalysts have been successfully used in hydrogenation of glucose,hydrogenation of pharmaceutical intermediates and purification of caprolactam.In order to use these catalysts efficiently,a magnetically stabilized bed(MSB) technology has been developed by combining the ferromagnetic property of the catalyst with the good mass transfer characteristics of MSB.The demonstration unit of MSB hydrogenation technology has been set up and has kept running for 2800 hours.The results show that,after running 2800 hours,the catalyst still retained good activity; meanwhile,the hydrogenation effi-ciency had been improved 10 times in comparison with the traditional CSTR process.

  14. Amorphous Nickel Based Alloy Catalysts and Magnetically Stabilized Bed Hydrogenation Technology

    Institute of Scientific and Technical Information of China (English)

    Mu Xuhong; Zong Baoning; Meng Xiangkun; Min Enze

    2002-01-01

    Amorphous nickel based alloy catalysts (denoted as the SRNAseries catalysts) were prepared viarapid quenching method followed by alkali leaching and other activation procedures. The physicochemicalcharacterizations show that nickel, the active component in these catalysts, exists in the amorphous state, andthe catalyst particles possess many nanosized voids leading to large surface area (the highest is 145m2/g). Theevaluation results in some model reactions show that the SRNA series catalysts have 2 to 4 times higheractivity and selectivity than conventional Raney Ni catalyst for the hydrogenation of compounds with unsatur-ated functional groups. At present, the SRNA series catalysts have been successfully used in hydrogenation ofglucose, hydrogenation of pharmaceutical intermediates and purification of caprolactam. In order to use thesecatalysts efficiently, a magnetically stabilized bed (MSB) technology has been developed by combining theferromagnetic property of the catalyst with the good mass transfer characteristics of MSB. The demonstrationunit of MSB hydrogenation technology has been set up and has kept running for 2800 hours. The results showthat, after running 2800 hours, the catalyst still retained good activity; meanwhile, the hydrogenation effi-ciency had been improved 10 times in comparison with the traditional CSTR process.

  15. Combustion Synthesis of Large Bulk Nanostructured Ni65Al21Cr14 Alloy

    Directory of Open Access Journals (Sweden)

    Jiqiang Ma

    2011-01-01

    Full Text Available A large bulk nanostructured Ni65Al21Cr14 alloy with dimensions of Φ 100 mm × 6 mm was produced by combustion synthesis technique followed with rapid solidification. The Ni65Al21Cr14 alloy was composed of γ′-Ni3Al/γ-Ni(Al, Cr eutectic matrix and γ-Ni(Al, Cr dendrite. The eutectic matrix consisted of 80–150 nm cuboidal γ′-Ni3Al and 2–5 nm γ-Ni(Al, Cr boundary. The dentrite was comprised of high-density growth twins with about 3–20 nm in width. The nanostructured Ni65Al21Cr14 alloy exhibited simultaneously high fracture strength of 2200 MPa and good ductility of 26% in compression test.

  16. Soft-ferromagnetic bulk glassy alloys with large magnetostriction and high glass-forming ability

    Directory of Open Access Journals (Sweden)

    Jiawei Li

    2011-12-01

    Full Text Available The effect of Dy addition on the glass-forming ability (GFA, magnetostriction as well as soft-magnetic properties and fracture strength in FeDyBSiNb glassy alloys was investigated. In addition to the increase of supercooled liquid region from 55 to 100 K, the addition of Dy is effective in approaching alloy to an eutectic point and increasing the saturation magnetostrction (λs. Accordingly, bulk glassy alloy (BGA rods with diameters up to 4 mm were produced, which exhibit a large λs as high as 65×10-6. Besides, the BGA system exhibits superhigh fracture strength of 4000 MPa, combined with good soft-magnetic properties.

  17. The effect of minor addition of insoluble elements on transformation kinetics in amorphous Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.; Perepezko, J.H., E-mail: perepezk@engr.wisc.edu

    2015-09-15

    Highlights: • By doping Pb or In in AlYFe alloys, the primary crystallization of Al is promoted. • The catalytic effect is based on the good wetting behavior between Al and Pb. • Pb promotes crystallization by providing heterogeneous nucleation sites. • Through doping 0.5–2 at.% of In, T{sub x} decreases by 35–47 °C. • The coherent interface shows a good contacting behavior between Al and In. - Abstract: Nanocrystalline metallic materials based on partial devitrification of amorphous aluminum alloys show an attractive combination of high strength and low density. A key feature concerning the improved mechanical properties is the high number density of Al nanocrystals (10{sup 22}–10{sup 23} m{sup −3}) that precipitate within the amorphous precursor structure upon low temperature annealing. For Al{sub 87}Y{sub 7}Fe{sub 5}Pb, the melt-spun ribbons consisted of an amorphous matrix with a dispersion of Pb nanoparticles (10 nm diameter). HRTEM images of the Pb–Al interface revealed a good wetting behavior between the Al and the Pb nanoparticles. Isothermal annealing for Al{sub 87}Y{sub 7}Fe{sub 5}Pb showed no transient stage even though the crystallization onset, T{sub x}, was at a much lower temperature (247 °C) compared with Al{sub 88}Y{sub 7}Fe{sub 5} (267 °C). For Al{sub (88−x)}Y{sub 7}Fe{sub 5}In{sub x} (x = 0.5, 1.0, 1.5, 2.0), the DSC results indicated that T{sub x} continuously decreased from 232 °C to 220 °C as the indium level increases from 0.5 at.% to 2.0 at.%. Under STEM, the image showed a coherent interface between Al and In particles. In the analysis of the transformation kinetics, the addition of minor elements can effectively promote additional nucleation of Al nanocrystals by providing heterogeneous nucleation sites. These developments offer new opportunities for the control of nanoscale microstructures.

  18. Kinetic study of the crystallization process of the α-Fe phase in the amorphous Fe81B13Si4C2 alloy

    Directory of Open Access Journals (Sweden)

    Bojan Ž. Janković

    2014-04-01

    Full Text Available The kinetic study of the crystallization process of the α-Fe phase from the amorphous Fe81B13Si4C2 alloy was investigated by DSC and XRD techniques. The kinetic parameters (lnA, Ea of the investigated process were determined using the Kissinger and isoconversional (model-free methods. It was established that the α-Fe crystallization process can be described by the JMA (Johnson-Mehl-Avrami kinetic equation. In accordance with the XRD analysis and the calculated crystallization parameters (n = 4; m = 3, it was concluded that the crystallization stages of the considered process can be described by the bulk nucleation and the three-dimensional (3D growth of nuclei.  

  19. Amorphous Fe-B alloys in B-Fe-Ag multilayers studied by magnetization and Mössbauer measurements

    DEFF Research Database (Denmark)

    Kiss, L. F.; Balogh, J.; Bujdoso, L.;

    2011-01-01

    no such effect is observed above this value. The Mössbauer measurements indicate a complete amorphization of the thin Fe layers in each sample, as a result of intermixing with the B layers. The variation of the magnetic properties is explained by the variation of the average B concentration of the......Bulk and local magnetic properties were studied in [1 nm B + 1 nm 57Fe + x nm Ag]5, x = 1, 2, 4, 5 and 10, multilayer samples. Although Ag does not mix with either of the other two elements the magnetic properties of the multilayers are strongly influenced by the Ag thickness below x = 5, whereas...... amorphous Fe–B layers, which depends on the thickness of the Ag barrier layers. The magnetization measurements indicate ferromagnetic behaviour of the ultra-thin amorphous layers with the presence of less than 10% superparamagnetic moments for x = 5 and 10. The average B concentration of the amorphous Fe...

  20. Effect of Co content on structure and magnetic behaviors of high induction Fe-based amorphous alloys

    Science.gov (United States)

    Roy, Rajat K.; Panda, Ashis K.; Mitra, Amitava

    2016-11-01

    The replacement of Fe with Co is investigated in the (Fe1-xCox)79Si8.5B8.5Nb3Cu1 (x=0, 0.05, 0.2, 0.35, 0.5) amorphous alloys. The alloys are synthesized in the forms of ribbons by single roller melt spinning technique, and the structural and magnetic properties of annealed ribbons are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM), B-H curve tracer, respectively. All as-cast alloys are structurally amorphous, however, their magnetic properties are varying with Co addition. The Co addition within 5-20 at% results in moderate thermal stability, saturation induction, Curie temperature and lowest coercivity, while 35 at% Co causes highest saturation induction, coercivity, Curie temperature and lowest thermal stability. On devitrification, the magnetic properties change with the generation of α-FeCo nanocrystallites and (FeCo)23B6, Fe2B phases during primary and secondary crystallization stages, respectively. A small amount Co is advantageous for maintaining finer nanocrystallites in amorphous matrix even after annealing at 600 °C, leading to high saturation magnetization (>1.5 T) and low coercivity (~35 A/m). The improved magnetic properties at elevated temperatures indicate these alloys have a potential for high frequency transformer core applications.

  1. Magnetic characterisation of large grain, bulk Y–Ba–Cu–O superconductor–soft ferromagnetic alloy hybrid structures

    OpenAIRE

    Philippe, Matthieu; Fagnard, Jean-François; Kirsch, Sébastien; Xu, Zhihan; Dennis, Anthony; Shi, Yunhua; Cardwell, David A.; Vanderheyden, Benoît; Vanderbemden, Philippe

    2014-01-01

    Large grain, bulk Y–Ba–Cu–O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surfa...

  2. Mechanically driven nanocrystallization of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy induced by high-energy ball milling

    International Nuclear Information System (INIS)

    The mechanically driven nanocrystallization of amorphous Finemet alloy caused by high-energy ball milling was investigated by XRD, DSC and TEM techniques. A structural relaxation occurred in the amorphous Finemet alloy after milling for 0.5-2 h. Further milling for more than 3.5 h, uniformly and randomly distributed nanocrystalline α-Fe with grain size from ∝2 nm to ∝5 nm formed. The kinetics of the mechanical nanocrystallization of amorphous Finemet alloy was described by JMA model with the Avrami exponent n=1.55, which indicates a zero-nucleation rate and grain growth in all shapes from very small dimensions. In addition, the mechanical crystallization of amorphous Finemet alloys is mainly due to the severe deformation and local temperature rise during ball milling. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Study on Interface Structure and Bond Properties between Cemented Carbide and Tool Steel Blazing with amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    Bao Ming-dong; Xu Jin-fu; Xu Xue-bo; Zou Gui-sheng; Huang Geng-hua

    2004-01-01

    Cemented Carbide YG11C and Tool Steel Crl2MoV was blazed with Ni-base amorphous alloys, QG-1011,MBF-20 and MBF-75, using dynamics thermodynamics analogue testing machine Gleeble 1500D. The effects of brazing temperature, holding time and holding pressure on micro-structure and bond strength were investigated. Results showed that YG11C and Cr12MoV were all wetted well by these three Ni-base alloys, and the bond strength was as high as 220MPa,320MPa, 320MPa respectively. When the blazing temperature was at the point over the melting point 60-70℃ of Ni-base alloy, the holding time was about 2-10min, the suitable pressure was benefit for improving the brazing quality.Microanalysis showed Co in cemented carbide diffused into liquid brazing alloy and formed the Fe-Co solid .solution.

  4. Comparative anomalous small-angle X-ray scattering study of hotwire and plasma grown amorphous silicon-germanium alloys

    OpenAIRE

    Goerigk, G.; Williamson, D. L.

    2001-01-01

    The nanostructure of hydrogenated amorphous silicon-germanium alloys, a-Si1-xGex:H, prepared by the hotwire deposition technique (x=0.06-0.79) and by the plasma enhanced chemical vapor deposition technique (x=0 and 0.50) was analyzed by anomalous small-angle x-ray scattering experiments. For all alloys with x >0 the Ge component was found to be inhomogeneously distributed with correlation lengths of about 1 nm. A systematic increase of the separated scattering was found due to the increasing ...

  5. Preparation and Cycling Performance of Iron or Iron Oxide Containing Amorphous Al-Li Alloys as Electrodes

    Directory of Open Access Journals (Sweden)

    Franziska Thoss

    2014-12-01

    Full Text Available Crystalline phase transitions cause volume changes, which entails a fast destroying of the electrode. Non-crystalline states may avoid this circumstance. Herein we present structural and electrochemical investigations of pre-lithiated, amorphous Al39Li43Fe13Si5-powders, to be used as electrode material for Li-ion batteries. Powders of master alloys with the compositions Al39Li43Fe13Si5 and Al39Li43Fe13Si5 + 5 mass-% FeO were prepared via ball milling and achieved amorphous/nanocrystalline states after 56 and 21.6 h, respectively. In contrast to their Li-free amorphous pendant Al78Fe13Si9, both powders showed specific capacities of about 400 and 700 Ah/kgAl, respectively, after the third cycle.

  6. Structural relaxation and crystallization in the Fe-Cr-Si-B and Fe-Cu-Cr-Si-B amorphous alloys

    International Nuclear Information System (INIS)

    Structural relaxation, crystallization and optimisation processes in soft magnetic amorphous alloys based on iron are examined by applying different experimental techniques: X-ray diffraction analysis, high-resolution electron microscopy, measurements of magnetic and electric properties (permeability, after-effect resistivity). The presented results are discussed in terms of annealing out of microvoids, formation of nanocrystalline phase and changes of effective magnetostriction constant. (author)

  7. A study of the diffusion mechanism in glasses: a theoretical and experimental study of tracers diffusion in amorphous metallic alloys

    International Nuclear Information System (INIS)

    The principal aims of this work are a better understanding of the experimental situation in amorphous metallic alloys and a tentative explanation of the role of collective mechanisms in matter transport. Self- and solute-diffusion of Hf, Au and Cu tracers in amorphous Ni Zr alloy have been studied. We study by SIMS analysis the broadening of the concentration profile with temperature and pressure, in thin amorphous layers which were prepared by sputtering and properly relaxed. The diffusion coefficient variation with temperature shows an Arrhenius behaviour for all of our tracers. The activation energy amount to 1.55 eV for Cu, 1.65 eV for Au and 1.78 eV for Hf and corresponds to nearly one half of the corresponding energy in crystalline zirconium. The diffusion coefficients variation with hydrostatic pressure yields an activation volume equal to one half of an average atomic volume of our matrix for medium and large sized tracers Au, Hf and a smaller activation volume for Cu. The second part of our work consists of numerical simulations of atomic displacements in a generic glass by two complementary methods. In a Lennard-Jones alloy with size effect, we observe by molecular dynamics (MD) some correlated displacements which consist of substitution cycles or chains. The associated energy of these collective events represents nearly 15 pc of that found in crystalline Lennard- Jones. The systematic exploration of energy surface in space configuration made with activation-relaxation technique ART yields energy distributions of stable and saddles positions and opens the way to an evaluation of diffusion coefficients. The events found by ART are qualitatively close to MD ones, but the averaged activation energy associated with these events represents only 10 pc of the crystalline one. This clearly points towards the limit of Lennard-Jones potential, which is not enough representative of actual glasses. This is the reason why an interaction model closer to amorphous

  8. Amorphous ribbons consolidation of Cu{sub 46}Zr{sub 42}Al{sub 7}Y{sub 5} alloy by hot extrusion; Consolidacao de fitas amorfas da liga The Cu{sub 46}Zr{sub 42}Al{sub 7}Y{sub 5} alloy with amorphous structure shows a temperature rangepor extrusao a quente

    Energy Technology Data Exchange (ETDEWEB)

    Melle, A.K.; Bolfarini, C.; Botta Filho, W.J.; Kiminami, C.S. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais; Peres, M.M., E-mail: anakarla13_8@hotmail.co [Universidade Federal de Itajuba (UNIFEI), Itabira, MG (Brazil)

    2010-07-01

    The Cu{sub 46}Zr{sub 42}Al{sub 7}Y{sub 5} alloy with amorphous structure shows a temperature range between the glass transition temperature (Tg) and the crystallization temperature (Tx) of Tx-Tg={Delta}T{sub x}= 100K. At this temperature range, the metal behavior is of a supercooled liquid with viscosity {approx_equal} 10{sup 6} N.s/m{sup 2}. The aim of this work is to contribute on the development of a processing route to produce bulk metallic glass. Amorphous ribbons was produced by rapid quenching using 'melt spinning' process, the ribbons were fragmented in small pieces, compacted at room temperature and consolidated by hot extrusion under extrusion temperatures on the {Delta}T{sub x}, ram speed of 1mm/min and extrusion ratio of 3:1. The extruded samples were characterized by X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The results showed that extrusion temperature was fundamental to promote a full or partial consolidation of the amorphous ribbons, but causing the formation of some voids and inducing some regions to crystallization that showing the high sensibility to fit the extrusion temperature.(author)

  9. Microstructures of the silicon carbide nanowires obtained by annealing the mechanically-alloyed amorphous powders

    International Nuclear Information System (INIS)

    Silicon, graphite and boron nitride powders were mechanically alloyed for 40 h in argon. The as-milled powders were annealed at 1700 °C in nitrogen for 30 min. The annealed powders are covered by a thick layer of gray–green SiC nanowires, which are 300 nm to 1000 nm in diameter and several hundred microns in length. Trace iron in the raw powders acts as a catalyst, promoting the V–L–S process. It follows that the actual substances contributing to the growth of the SiC nanowires may be silicon, graphite and the metal impurities in the raw powders. The results from HRTEM and XRD reveal that the products contain both straight α/β-SiC nanowires and nodular α/β-SiC nanochains. It is interestingly found that 6H–SiC coexists with 3C–SiC in one nodular nanowire. This novel structure may introduce periodic potential field along the longitudinal direction of the nanowires, and may find applications in the highly integrated optoelectronic devices. - Graphical abstract: Display Omitted - Highlights: • SiC nanowires were prepared by annealing the mechanically alloyed amorphous powders. • SiC nanowires are 300 nm to 1000 nm in diameter and several hundred microns in length. • The products contain both straight α/β-SiC nanowires and nodular α/β-SiC nanochains. • Trace Fe in the raw powders acts as a catalyst, promoting the V–L–S process. • 6H–SiC coexists with 3C–SiC in one nodular SiC nanowire

  10. Microstructures of the silicon carbide nanowires obtained by annealing the mechanically-alloyed amorphous powders

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei, E-mail: zhangpengfei1984@163.com; Li, Xinli

    2015-07-15

    Silicon, graphite and boron nitride powders were mechanically alloyed for 40 h in argon. The as-milled powders were annealed at 1700 °C in nitrogen for 30 min. The annealed powders are covered by a thick layer of gray–green SiC nanowires, which are 300 nm to 1000 nm in diameter and several hundred microns in length. Trace iron in the raw powders acts as a catalyst, promoting the V–L–S process. It follows that the actual substances contributing to the growth of the SiC nanowires may be silicon, graphite and the metal impurities in the raw powders. The results from HRTEM and XRD reveal that the products contain both straight α/β-SiC nanowires and nodular α/β-SiC nanochains. It is interestingly found that 6H–SiC coexists with 3C–SiC in one nodular nanowire. This novel structure may introduce periodic potential field along the longitudinal direction of the nanowires, and may find applications in the highly integrated optoelectronic devices. - Graphical abstract: Display Omitted - Highlights: • SiC nanowires were prepared by annealing the mechanically alloyed amorphous powders. • SiC nanowires are 300 nm to 1000 nm in diameter and several hundred microns in length. • The products contain both straight α/β-SiC nanowires and nodular α/β-SiC nanochains. • Trace Fe in the raw powders acts as a catalyst, promoting the V–L–S process. • 6H–SiC coexists with 3C–SiC in one nodular SiC nanowire.

  11. Electrical and Magneto-Resistivity Measurements on Amorphous Copper-Titanium Alloys at Low Temperatures

    Science.gov (United States)

    Fan, Renyong

    1992-01-01

    The anomalous transport properties of highly disordered metallic glasses, which require corrections to the classical Boltzmann theory, are due to quantum interference effects of the scattered electron waves. These corrections provide new contributions to the resistivity: "weak localization" and "electron-electron interaction". To study these quantum interference effects, we have made the highest-precision measurements, so far, of the resistances of the amorphous rm Cu_{50}Ti_{50 } and rm Cu_{60}Ti _{40} ribbons at much lower temperatures than before (15mK 0.15K. In contrast, at the lowest temperatures, the magnetoresistances were dominated by weak localization with Zeeman splitting and Maki-Thompson superconducting fluctuations. For higher magnetic fields and lowest temperatures (B/T > 1 T/K), we find discrepancies between our data and the theoretical calculations. We found that most of the parameters of the theoretical fits to the data were similar for both rm Cu_{50}Ti_{50} and rm Cu_{60}Ti_ {40} alloys. The two important exceptions were the inelastic and spin-orbit lifetimes: their zero -field values were about an order of magnitude smaller than those from the magnetoresistances. Also the inelastic lifetimes tend to saturate for T<0.1K in non-zero magnetic fields. Finally, we were also able to estimate the expected superconducting transition temperatures of both rm Cu_{50}Ti_{50} and rm Cu_{60}Ti _{40} alloys: less than 15mK and 5mK, respectively. Our novel technique can, in principle, be used to make high precision resistance measurements down to 15mK on any ribbon or film-like high resistivity metal.

  12. Ab initio molecular dynamics simulation of the atom packing and density of Al-Ni amorphous alloys

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Al-Ni alloys have better glass forming ability (GFA) than other Al-based alloys. However, the relationship among the atomic arrangement, glass transition, packing density and composition hasn’t been systematically studied. In this paper the ab initio molecular dynamics simulation (AIMD) was performed on the atom packing and density of AlxNi100-x (x=80, 83, 85, 86, 87 and 90) alloys. The pair correlation function and Voronoi tessellation indicated that there are obvious topological and chemical short-range orders in these alloys. The topological structure consists of Al-centered icosahedra like and Ni-centered tri-capped trigonal prism (TTP) like polyhedra. There is strong chemical short-range ordering between Al and Ni atoms indicated by the bond-length of Al-Ni pair shorter than the sum of the radii of Al and Ni atoms, which increases with the increasing of Ni content. It is shown that the densities of amorphous alloys don’t agree with the linear law with a peak at x=85. Based on the features of the structure and density, it is concluded that Al-Ni alloys at x=84–86 have high GFA, which can be extended to multi-component Al-based alloys.

  13. Molecular dynamic study of Shock wave response of bulk amorphous polyvinyl chloride: effect of chain length and force field

    Science.gov (United States)

    Neogi, Anupam; Mitra, Nilanjan

    2015-06-01

    Atomistic molecular dynamics in conjunction with multi-scale shock technique is utilized to investigate shock wave response of bulk amorphous polyvinyl chloride. Dependence of chain length on physical and mechanical behaviour of polymeric material at ambient condition of temperature and pressure are well known but unknown for extreme conditions. Non-reactive force fields PCFF, COMPASS and PCFF+ were used to determine applicability of the force field for the study of the material subjected to shock loads. Several samples of PVC with various chain lengths were subjected to a range of shock compression from 1.5-10.0 km/s. Even though dependence of chain length was observed for lower shock strengths but was not for intense shock loads. The principle Hugoniot points, calculated by applying hydrostatic Rankine-Hugoniot equations and as well as multi-scale shock technique, were compared against LASL experimental shock data, demonstrating superior performance of PCFF+ force-field over PCFF and COMPASS. Shock induced melting characteristic and vibrational spectroscopic study were conducted and compared with experimental data to observe differences in response with relation to different force fields, chain length of the material for different shock intensities.

  14. PHB, crystalline and amorphous magnesium alloys: Promising candidates for bioresorbable osteosynthesis implants?

    Energy Technology Data Exchange (ETDEWEB)

    Celarek, Anna [Institute for Building Construction and Technology E-206-4, Vienna University of Technology, Karlsplatz 13, 1040 Vienna (Austria); Kraus, Tanja [Department of Paediatric Orthopaedics, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz (Austria); Tschegg, Elmar K., E-mail: elmar.tschegg@tuwien.ac.at [Institute for Building Construction and Technology E-206-4, Vienna University of Technology, Karlsplatz 13, 1040 Vienna (Austria); Fischerauer, Stefan F. [Department of Paediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz (Austria); Stanzl-Tschegg, Stefanie [Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter Jordan Str. 82, 1190 Vienna (Austria); Uggowitzer, Peter J. [Department of Materials, Laboratory for Metal Physics and Technology, ETH Zurich, 8093 Zurich (Switzerland); Weinberg, Annelie M. [Department of Paediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz (Austria)

    2012-08-01

    In this study various biodegradable materials were tested for their suitability for use in osteosynthesis implants, in particular as elastically stable intramedullary nails for fracture treatment in paediatric orthopaedics. The materials investigated comprise polyhydroxybutyrate (PHB), which belongs to the polyester family and is produced by microorganisms, with additions of ZrO{sub 2} and a bone graft substitute; two crystalline magnesium alloys with significantly different degradation rates ZX50 (MgZnCa, fast) and WZ21 (MgYZnCa, slow); and MgZnCa bulk metallic glasses (BMG). Push-out tests were conducted after various implantation times in rat femur meta-diaphysis to evaluate the shear forces between the implant material and the bone. The most promising materials are WZ21 and BMG, which exhibit high shear forces and push-out energies. The degradation rate of ZX50 is too fast and thus the alloy does not maintain its mechanical stability long enough during the fracture-healing period. PHB exhibits insufficient mechanical properties: it degrades very slowly and the respective low shear forces and push-out energy levels are unsatisfactory. - Highlights: Black-Right-Pointing-Pointer In-vivo (rat model) investigation of biodegradable materials suitable for ESIN. Black-Right-Pointing-Pointer Materials: polymer PHB, crystalline Mg ZX50 and Mg WZ21, MgZnCa bulk metallic glasses. Black-Right-Pointing-Pointer Evaluated interface shear strength, push-out energies, stiffness, histology. Black-Right-Pointing-Pointer Mg WZ21 suitable, other materials only after alterations.

  15. Nanowear of a Zr Based Bulk Metallic Glass/Nanocrystalline Alloy

    Institute of Scientific and Technical Information of China (English)

    LIANGSong; HEJian-ying; CHUWu-yang; LIJin-xu; SUNDong-bai; QIAOLi-jie

    2004-01-01

    The hardness, elastic modulus, nano-scratch resistance and wear depth for a bulk metallic glass of Zr57NbsCu15.4 Ni12.6Al10 and its partial crystallization alloys have been measured by using nanoindentation method. The results showed that partial crystallization did not influence the reduced elastic modulus but increased the hardness, and then increased the scratch coefficient. The scratch coefficient increased linearly with increasing the hardness H but decreases when H>6.2GPa. Partial crystallization decreased evidently the wear depth, and when the load was large the wear depth decreased with increasing the hardness.

  16. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells.

    Science.gov (United States)

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2015-06-30

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  17. Reduction of Vibration Noise for Amorphous Metal Alloy Core Distribution Transformer

    Institute of Scientific and Technical Information of China (English)

    Liu Daosheng刘道生; Du Boxue杜伯学; Zhang Jiangong张建功; Xu Qiuyuan徐秋元; Qi Zhihai祁治海; Guo Ying郭英

    2015-01-01

    To understand the vibration noise behaviors of amorphous metal alloy core distribution transformer (AMACDT), a 10 kVA prototype was tested under no-load and short-circuit conditions, respectively. The vibration characteristics were described when rated voltage was applied to the secondary side, and the primary side was con-nected with different load resistances. The largest amplitude positions on the upper bracket and tank surfaces were recorded by vibration sensors arranged on the surface. A data-acquisition platform was set up for signal measure-ment. The vibration amplitude related to frequency was discussed, and experimental results indicated that the posi-tion with the largest amplitude accrued in the middle of the upper bracket and tank surface, at phases a and c, re-spectively. The experimental results suggest that magnetostrictive and electrodynamic forces play a major role in exciting the vibration noise. At the same time, some rib-reinforcements were welded on the upper bracket and tank surfaces to lessen the vibration energy, which reduced the noise.

  18. Electrical properties and degradation behavior of hydrogenated amorphous Si alloys for solar cells

    Science.gov (United States)

    Krühler, W.; Kusian, W.; Karg, F.; Pfleiderer, H.

    1986-12-01

    The electrical properties and the degradation behavior of hydrogenated amorphous silicon alloys (a-Si1- x A x : H, with A=C, Ge, B, P) in designs of pin, pip, nin, and MOS structures are investigated by measuring the dark and light I(V) characteristics and the spectral response as well as the space-charge-limited current (SCLC), the time of flight (TOF) of carriers and the field effect (FE). These investigations give an overview of our recent work combined with new results emphasizing the physics of the a-Si:H pin solar cells. We discuss the stabilizing influence on the degradation behavior achieved by profiling the i layers of the pin solar cells with P and B. Two kinds of pin solar cells, namely glass/SnO2/p(C)in/metal and glass/metal/pin/ITO, are investigated and an explanation of their different spectral response behavior is given. SCLC measurements lead to the conclusion that trapping is also involved in the degradation mechanism, as is recombination. TOF experiments on a-Si1- x Ge x : H pin diodes indicate that the incorporation of Ge widens the tail-state distribution below the conduction band. FE measurements showed densities of gap states of about 5×l016cm-3eV-1.

  19. Evolution of amorphous and nanocrystalline phases in mechanically alloyed Mg{sub 1.9}M{sub 0.1}Ni (M=Ti,Zr,V)

    Energy Technology Data Exchange (ETDEWEB)

    Solsona, P.; Doppiu, S.; Spassov, T.; Surinach, S.; Baro, M.D

    2004-11-03

    The evolution of amorphous and nanocrystalline phases in mechanically alloyed Mg{sub 1.9}M{sub 0.1}Ni (M=Ti,Zr,V) was studied under different milling conditions by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. It was found that the presence of air (oxygen and nitrogen) accelerates the nanocrystallization reaction, but has no influence on the amorphous phase formation during ball milling. The mechanochemical work necessary to obtain a certain degree of amorphization or nanocrystallization in the Mg{sub 2}Ni-based alloys was determined and it was found to control the end product of milling.

  20. In vitro metal ion release and biocompatibility of amorphous Mg{sub 67}Zn{sub 28}Ca{sub 5} alloy with/without gelatin coating

    Energy Technology Data Exchange (ETDEWEB)

    Chan, W.Y., E-mail: chan.wing.yue@sgh.com.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University (Singapore); Department of Plastic, Reconstructive and Aesthetic Surgery, Singapore General Hospital (Singapore); Chian, K.S.; Tan, M.J. [School of Mechanical and Aerospace Engineering, Nanyang Technological University (Singapore)

    2013-12-01

    Amorphous zinc-rich Mg–Zn–Ca alloys have exhibited good tissue compatibility and low hydrogen evolution in vivo. However, suboptimal cell–surface interaction on magnesium alloy surface observed in vitro could lead to reduced integration with host tissue for regenerative purpose. This study aims to improve cell–surface interaction of amorphous Mg{sub 67}Zn{sub 28}Ca{sub 5} alloy by coating a gelatin layer by electrospinning. Coated/uncoated alloys were immersed and extracted for 3 days under different CO{sub 2}. The immersion results showed that pH and metal ion release in the alloy extracts were affected by gelatin coating and CO{sub 2}, suggesting their roles in alloy biocorrosion and a mechanism has been proposed for the alloy–CO{sub 2} system with/without coating. Cytotoxicity results are evident that gelatin-coated alloy with 2-day crosslinking not only exhibited no indirect cytotoxicity, but also supported attachment of L929 and MG63 cell lines around/on the alloy with high viability. Therefore, amorphous Mg{sub 67}Zn{sub 28}Ca{sub 5} alloy coated with gelatin by electrospinning technique provides a useful method to improve alloy biocompatibility. - Highlights: • Electrospinning is a new method to coat amorphous Mg{sub 67}Zn{sub 28}Ca{sub 5} alloy with gelatin. • Gelatin-coated alloy has differential effect on pH and ion release at various CO{sub 2}. • L929 cell proliferation correlates with Mg{sup 2+} level in alloy extracts. • Biomimetic gelatin coating significantly improves cell–surface interaction.

  1. Efficient inverted bulk-heterojunction solar cells from low-temperature processing of amorphous ZnO buffer layers

    KAUST Repository

    Jagadamma, Lethy Krishnan

    2014-01-01

    In this report, we demonstrate that solution-processed amorphous zinc oxide (a-ZnO) interlayers prepared at low temperatures (∼100 °C) can yield inverted bulk-heterojunction (BHJ) solar cells that are as efficient as nanoparticle-based ZnO requiring comparably more complex synthesis or polycrystalline ZnO films prepared at substantially higher temperatures (150-400 °C). Low-temperature, facile solution-processing approaches are required in the fabrication of BHJ solar cells on flexible plastic substrates, such as PET. Here, we achieve efficient inverted solar cells with a-ZnO buffer layers by carefully examining the correlations between the thin film morphology and the figures of merit of optimized BHJ devices with various polymer donors and PCBM as the fullerene acceptor. We find that the most effective a-ZnO morphology consists of a compact, thin layer with continuous substrate coverage. In parallel, we emphasize the detrimental effect of forming rippled surface morphologies of a-ZnO, an observation which contrasts with results obtained in polycrystalline ZnO thin films, where rippled morphologies have been reported to improve efficiency. After optimizing the a-ZnO morphology at low processing temperature for inverted P3HT:PCBM devices, achieving a power conversion efficiency (PCE) of ca. 4.1%, we demonstrate inverted solar cells with low bandgap polymer donors on glass/flexible PET substrates: PTB7:PC71BM (PCE: 6.5% (glass)/5.6% (PET)) and PBDTTPD:PC71BM (PCE: 6.7% (glass)/5.9% (PET)). Finally, we show that a-ZnO based inverted P3HT:PCBM BHJ solar cells maintain ca. 90-95% of their initial PCE even after a full year without encapsulation in a nitrogen dry box, thus demonstrating excellent shelf stability. The insight we have gained into the importance of surface morphology in amorphous zinc oxide buffer layers should help in the development of other low-temperature solution-processed metal oxide interlayers for efficient flexible solar cells. This journal is

  2. Crystallization of the Al-Ni-Sm amorphous alloys; Cristalizacao de ligas amorfas no sistema Al-Ni-Sm

    Energy Technology Data Exchange (ETDEWEB)

    Danez, G.P., E-mail: gabidanez@hotmail.co [Universidade Federal de Sao Carlos (PPG-CEMUFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Aliaga, L.C.R.; Kiminami, C.S.; Bolfarini, C.; Botta, W.J. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    Aluminum based amorphous alloys have received special attention due to unique properties such as high mechanical strength, corrosion, ductility and toughness as well as wear resistance. On the other hand, these properties can be improved by controlled crystallization of Al matrix with grain size ranged between 5 to 50 nanometers. The goal of this work was to study the thermal crystallization behavior of Al-Ni-Sm alloys. Compositions with the same topological instability ({lambda} = 0.1) were selected. Alloys were prepared in arc-melting furnace and ribbons were processed by melt-spinning technique. Samples ribbons were submitted to heating in order to induce crystallization, and its structure analyzed by x-ray diffraction. The difference in crystallization behavior is discussed in function of the topological instability due to the variation of the proportion of the transition metal to the rare-earth. (author)

  3. Vibrational, optical and structural studies of an amorphous Se{sub 0.90}S{sub 0.10} alloy produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Machado, K D; Sanchez, D F; Maciel, G A [Departamento de Fisica, Centro Politecnico, Universidade Federal do Parana, 81531-990, Curitiba, PR (Brazil); Brunatto, S F [Departamento de Engenharia Mecanica, Centro Politecnico, Universidade Federal do Parana, 81531-990, Curitiba, PR (Brazil); Mangrich, A S [Departamento de Quimica, Centro Politecnico, Universidade Federal do Parana, 81531-990, Curitiba, PR (Brazil); Stolf, S F [Centro de Engenharia e Ciencias Exatas, UNIOESTE, 85903-000, Toledo, PR (Brazil)], E-mail: kleber@fisica.ufpr.br

    2009-05-13

    The local atomic order of an amorphous Se{sub 0.90}S{sub 0.10} alloy produced by mechanical alloying was studied by x-ray diffraction and extended x-ray absorption fine structure (EXAFS) data obtained at three temperatures, T = 300, 200 and 30 K. From the cumulant analysis of the EXAFS data, structural properties such as average interatomic distances, average coordination numbers, Debye-Waller factors and anharmonicity, given by the third cumulant, were obtained. The results found indicate that there is alloying at an atomic level, and Se-S pairs are more disordered and distorted than Se-Se ones due to the milling process.

  4. Amorphization of mixed Ni and Zr powders with Ni-rich compositions by mechanical alloying. Mechanical alloying ni yoru Ni oyobi Zr kongo funmatsu (Ni-rich sosei ryoiki) no hishoshitsuka

    Energy Technology Data Exchange (ETDEWEB)

    Asahi, N.; Habu, T.; Yoshii, T.; Haruyama, O. (Science University of Tokyo, Tokyo (Japan). Faculty of Scinece and Technology)

    1991-01-25

    Amorphous Ni {sub x} Zr {sub 100 {minus} x} alloy powders (x=75, 80, 85, and 90) were synthesized from pure crystalline powders of Ni and Zr through a mechanical alloying method by high-energy ball milling in an argon atmosphere. The alloying and amorphization process was investigated using X-ray diffractometer and differential scanning calorimeter. Consequently, the X-ray scattering vector of the broad amorphous peak for the mechanically alloyed Ni-Zr amorphous powders were identical with those of liquid quenched amorphous alloys of the same compositions, except for x=90. In the initial stage of mechanical alloying, Ni powders were observed to diffuse preferentially into Zr powders. The crystallization temperature and the crystallization enthalpy of the Ni-Zr amorphous powders as a function of Ni composition were also investigated. The crystallization enthalpy in the Ni {sub 90} Zr {sub 10} composition powders provided a much lower value than that of the other Ni-Zr compositions powders. 11 refs., 7 figs.

  5. Complete Composition Tunability of Cu(Ni)-Ti-Zr Alloys for Bulk Metallic Glass Formation

    Institute of Scientific and Technical Information of China (English)

    Ze-xiu Zhang; Chun-li Dai; Jian Xu

    2009-01-01

    In the Cu-Zr-Ti ternary system, a new composition zone of bulk metallic glasses (BMGs) formation was discovered, locating at the 55-57 at. Pct Cu, 30-31 at. Pct Ti and 13-14 at. Pct Zr, and near Cu-Ti binary subsystem rather than the Cu-Zr binary. For these alloys, BMG rods of 2 mm in diameter can be fabricated by using copper mould casting. It is expected that these BMG-forming alloys correlate with (L→CuTi+Cu2TiZr+Cu61Zr14) eutectic reaction that the undercooled melt undergoes during solidification. Adopting "3D pinpointing ap-proach", compositional dependence of glass-forming ability (GFA) in Cu(Ni)-Ti-Zr pseudo ternary system was revisited. Optimized BMG-forming composition is located at Cu50.4Ni5.6Ti31Zr13, with a critical diameter of 6 mm for complete BMG formation. Its GFA is significantly superior to Vit 101 (Cu47Ni8Ti34Zr11) previously developed by Caltech group. The effect that the GFA of the ternary base alloy was improved by substitution of Ni for Cu is attributed to a role of retarding the crystallization of Cu51Zr14 intermetallics.

  6. Co-based soft magnetic bulk glassy alloys optimized for glass-forming ability and plasticity

    Indian Academy of Sciences (India)

    LI LI; HUAIJUN SUN; YUNZHANG FANG; JIANLONG ZHENG

    2016-06-01

    Co-based bulk glassy alloys (BGAs) have become more and more important because of their nearly zero magnetostriction and high giant magneto-impedance effect. Here, we report the improvement of glass-formingability (GFA), soft-magnetic properties and plasticity by a small addition of Mo atoms in CoFeBSiNbMo BGAs.(Co$_{0.6}$Fe$_{0.4}$)$_{69}$B$_{20.8}$Si$_{5.2}$Nb$_{5−x}$Mo$_{x}$ ferromagnetic BGA cylindrical glassy rods were fabricated successfully with adiameter of 5 mm by conventional copper mould casting method. It reveals that the substitution of a small amount of Mo for Nb makes the composition to approach a eutectic point and effectively enhances the GFA of alloy. Inaddition to high GFA and superhigh strength, the compressive test shows that the Mo addition can improve the plasticity for the obtained BGAs. The combination of high GFA, excellent soft-magnetic properties and good plasticitydemonstrated in our alloys is promising for the future applications as functional materials.

  7. Preparation and Characterization of Mg1-xB2 Bulk Samples and Cu/Nb Sheathed Wires with Low Grade Amorphous Boron Powder

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Alexiou, Aikaterini; Rubesova, Katerina;

    2014-01-01

    MgB2 bulk and wire samples were prepared using cheap, low grade amorphous boron powders. Based on chemical analysis performed on the starting reagents, three nominal stoichiometries were studied. It was found that the structural and superconducting properties of the bulk samples were not affected...... by the composition, but that residual Mg was left in the wires for the nominal MgB2 composition. In contrast, slightly Mg-deficient compositions were free from residual Mg and exhibited higher critical current densities. The MgB2 phase formation kinetics was not influenced by the variations in the nominal powder...

  8. A study of the diffusion mechanisms in amorphous metallic alloys: diffusion and diffusion under high pressure in an amorphous NiZr alloy; Contribution a l`etude des mecanismes de transport dans les materiaux metalliques amorphes: diffusion et diffusion sous pression dans NiZr amorphe

    Energy Technology Data Exchange (ETDEWEB)

    Grandjean, A.

    1996-03-01

    The aim of this work is a better understanding of the diffusion mechanism in amorphous metallic alloys. Then interdiffusion and hafnium diffusion in amorphous NiZr alloy have been studied. Samples used are made by sputtering co-deposition under vacuum and are well relaxed before the diffusion measurements. The time evolution of resistivity during annealing due to the decay of a composition modulated film has been measured and from this change in resistivity interdiffusion coefficients have been determined. Dependence of Hf diffusion on temperature and pressure has been studied using (SIMS). In this two cases, the diffusion process obeys an Arrhenius law and gives an activation energy of 1.33 eV for interdiffusion, and 0.76 eV for Hf diffusion. An effect of pressure on Hf diffusion has been found leading to an activation volume of 8.5 angstrom{sup 3}. Thanks to these results, two approaches of the diffusion mechanisms in these systems have been proposed. The first comes from a comparison with the diffusion mechanisms in crystalline metals, that is to say by point defects. The second is an hypothesis of collective motions in these non crystalline alloys. (author).

  9. Influence of annealing on microstructure and magnetic properties of cobalt-based amorphous/nanocrystalline powders synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Taghvaei, Amir Hossein, E-mail: Amirtaghvaei@gmail.com [Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Bednarčik, Jozef [Photon Science DESY, Notkestraße 85, 22603 Hamburg (Germany); Eckert, Jürgen [IFW Dresden, Institute for Complex Materials, Helmholtzstr. 20, 01069 Dresden (Germany); TU Dresden, Institute of Materials Science, 01062 Dresden (Germany)

    2015-05-25

    Highlights: • Structural relaxation in mechanically alloyed Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} powders was studied. • Isochronal annealing notably changes the short-range order of the amorphous phase. • The medium-range correlations experienced volume shrinkage upon annealing. • Annealing decreased the coercivity and saturation magnetization of the powders. - Abstract: The effects of isochronal annealing on microstructure and magnetic properties of Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} powders with a large content of amorphous phase produced by mechanical alloying have been investigated. The differential scanning calorimetry (DSC) results indicate that the synthesized powders exhibit a huge exothermic reaction before the crystallization temperature corresponding to structural relaxation of amorphous phase. Furthermore, the structural evolution of the powders upon isochronal heating has been investigated by in-situ X-ray diffraction (XRD) using high energy synchrotron radiation. The occurrence of an irreversible structural relaxation is confirmed by significant changes in position of the first and second diffuse maxima of the total structure factor S(Q) upon isochronal heating–cooling cycles. Moreover, analysis of the reduced pair distribution functions (PDFs) yields a volume shrinkage of about 1.5% after annealing due to annihilation of the excess free volume generated upon milling. The isochronal annealing significantly affects the magnetic properties of the powders through decreasing the saturation magnetization and coercivity. The correlation between structural relaxation and magnetic properties of the powders is discussed.

  10. Magnetic properties and loss separation in Fe76−xAgxNb2Si13B9 amorphous alloys

    International Nuclear Information System (INIS)

    Highlights: • Soft magnetic properties can be optimized by applying a suitable heat treatment. • Low field magnetic permeability of the optimized samples increases about 10 times. • Total magnetic loss of the optimized samples decreases at least 10 times. • Plasticity is much higher than that reported for similar nanocrystalline alloys. • Observed effects are attributed to formation of the relaxed amorphous phase. - Abstract: Some selected properties (magnetic, plastic, elastic) in amorphous Fe76−xAgxNb2Si13B9 (x = 0.5, 0.75, 1.0) alloys, obtained by melt spinning technique, are presented and discussed in detail. It was shown that a suitable heat treatment of the as quenched samples (i.e. the optimization annealing) leads to a significant improvement of soft magnetic properties (permeability increases at least 10 times). The observed effect is attributed to formation of the so-called relaxed amorphous phase free of iron nanograins. Special attention is paid for loss separation into different components: hysteresis loss, eddy-current loss and residual loss. The latter effect can be attributed to diffusion of free volume and practically disappear after the optimization annealing

  11. Mössbauer investigations of amorphous Fe(80-x B20Nbx (x=0,4,6,10 alloys

    Directory of Open Access Journals (Sweden)

    R. Babilas

    2012-02-01

    Full Text Available Purpose: The paper presents a structural and magnetic characterization of selected Fe-based metallic glasses in as-cast state.Design/methodology/approach: The studies were performed on Fe(80-xB20Nbx metallic glasses in form of ribbons with Nb addition of 0, 4, 6, 10 at.%. The amorphous structure of tested samples was examined by X-ray diffraction (XRD and Mössbauer spectroscopy methods. The Mössbauer spectroscopy was also applied to comparison of structure in studied amorphous samples with different chemical composition. The thermal properties associated with solidus temperature of master alloys were measured using the differential thermal analysis (DTA. The soft magnetic properties examination of tested materials contained relative magnetic permeability.Findings: The XRD and Mössbauer spectroscopy investigations revealed that the studied alloys in as-cast state were amorphous. The solidus temperature assumed as the onset temperature of the melting peak on the DTA curve reached a value of 1405, 1394, 1392 and 1389 K for Fe80B20, Fe76B20Nb4, Fe74B20Nb6 and Fe70B20Nb10 alloy, adequately. The Mössbauer spectra presented broadened six line patterns characteristic to the structural disorder of amorphous ferromagnetic materials. The changing of the average hyperfine magnetic field with niobium addition is connected with structural changing. A high concentration of Nb atoms with high atomic radius can acting as diffusion barrier what lead to formation of regions rich in iron or boron atoms. The niobium addition in Fe(80-xB20Nbx alloy improves soft magnetic properties in as-cast state. Practical implications: The Mössbauer spectroscopy is very useful method in studying the structural environment of Fe atoms on a nearest-neighbor length scale allowing the analysis of iron-containing phases.Originality/value: The obtained examination results confirm the utility of investigation methods in analysis of microstructure of ferromagnetic glassy alloys.

  12. Development of radiation detectors based on hydrogenated amorphous silicon and its alloys

    International Nuclear Information System (INIS)

    Hydrogenated amorphous silicon and related materials have been applied to radiation detectors, utilizing their good radiation resistance and the feasibility of making deposits over a large area at low cost. Effects of deposition parameters on various material properties of a-Si:H have been studied to produce a material satisfying the requirements for specific detection application. Thick(-∼50 μm), device quality a-Si:H p-i-n diodes for direct detection of minimum ionizing particles have been prepared with low internal stress by a combination of low temperature growth, He-dilution of silane, and post annealing. The structure of the new film contained voids and tiny crystalline inclusions and was different from the one observed in conventional a-Si:H. Deposition on patterned substrates was attempted as an alternative to controlling deposition parameters to minimize substrate bending and delamination of thick a-Si:H films. Growth on an inversed-pyramid pattern reduced the substrate bending by a factor of 3∼4 for the same thickness film. Thin (0.1 ∼ 0.2 μm) films of a-Si:H and a-SiC:H have been applied to microstrip gas chambers to control gain instabilities due to charges on the substrate. Light sensitivity of the a-Si:H sheet resistance was minimized and the surface resistivity was successfully' controlled in the range of 1012 ∼ 1017 Ω/□ by carbon alloying and boron doping. Performance of the detectors with boron-doped a-Si:C:H layers was comparable to that of electronic-conducting glass. Hydrogen dilution of silane has been explored to improve electrical transport properties of a-Si:H material for high speed photo-detectors and TFT applications

  13. Influence of production method on the magnetic parameters and structure of Fe{sub 61}Co{sub 10}Y{sub 8}Nb{sub 1}B{sub 20} amorphous alloys in the as-quenched state

    Energy Technology Data Exchange (ETDEWEB)

    Pietrusiewicz, Paweł, E-mail: pietrusiewicz@wip.pcz.pl [Czestochowa University of Technology, Faculty of Materials Processing Technology and Applied Physics, Institute of Physics, 19 Armii Krajowej Av., 42-200 Czestochowa (Poland); Nabiałek, Marcin; Dośpiał, Marcin; Gruszka, Konrad; Błoch, Katarzyna [Czestochowa University of Technology, Faculty of Materials Processing Technology and Applied Physics, Institute of Physics, 19 Armii Krajowej Av., 42-200 Czestochowa (Poland); Gondro, Joanna; Brągiel, Piotr [Jan Dlugosz University in Czestochowa, The Faculty of Mathematics and Natural Sciences, Institute of Physics, Armii Krajowej 13/15, 42-200 Czestochowa (Poland); Szota, Michał; Stradomski, Zbigniew [Czestochowa University of Technology, Faculty of Materials Processing Technology and Applied Physics, Materials Engineering Institute, 19 Armii Krajowej Av., 42-200 Czestochowa (Poland)

    2014-12-05

    Highlights: • The paper presents the influence of rapid quenching method on structure and magnetic properties. • Classical and bulk Fe-based amorphous alloy in the as-cast state. • Samples were obtained by the use of three casting methods i.e. suction, injection and melt-spinning. • XRD and Mössbauer effect studies were used to confirm amorphous structure of samples. • The reduction of saturation of magnetization in BMGs was resulting from higher packing density of atoms. - Abstract: In this paper, the influence of production method on the basic magnetic properties and structure of amorphous alloys, in the forms of ribbons and plates, was investigated. The samples used in the investigations were obtained by three different production methods: ultrafast cooling of the liquid alloy on a rotating copper wheel (the melt-spinning method), and the injection or suction of the molten alloy into a water-cooled copper die injection- and suction-casting, respectively. The structure of the resulting samples of Fe{sub 61}Co{sub 10}Y{sub 8}Nb{sub 1}B{sub 20} alloy was investigated by means of X-ray diffractometry, Mössbauer spectroscopy and scanning electron microscopy. The results of the microstructural investigations confirmed that the obtained samples were amorphous and without crystalline precipitations. The images from the scanning electron microscope were typical for amorphous materials. Magnetic measurements were performed using a vibrating sample magnetometer (VSM) using magnetic fields of up to 2 T. The highest value of the saturation magnetization was achieved for the sample which was in the form of a ribbon. The values of this parameter for the samples which were in the form of plates were similar to each other, regardless of the production method. The values of the coercivity showed much greater differences, depending on the production method. The smallest value of coercivity was found for the sample in plate-form obtained by injection-casting; this is

  14. Formation of amorphous Fe 50Si 50 alloy by diffusion reaction

    Science.gov (United States)

    Yan, Zhihua; Wang, Wenkui; Li, Jingfeng; Wang, Yuming

    1989-02-01

    The solid state reaction in the multilayer film with alternative polycrystalline Fe and amorphous Si layers has been studied with X-ray diffraction. Amorphous Fe 50Si 50 phase was formed after annealing isothermally at 300°C, which is explained in view of the consideration that an amorphous phase can be more favorable to form than a supersaturated solution in thermodynamics as well as than an equilibrium compound FeSi in kenetics.

  15. Non-equilibrium transformation path for bulk undercooled hypereutectic Fe-B alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W. [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Liu, F., E-mail: liufeng@nwpu.edu.c [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Wang, H.F.; Chen, Z.; Yang, G.C.; Zhou, Y.H. [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2010-02-18

    Assuming phenomenological thermal flow balance and solute conservation, the non-equilibrium transformation path has been studied for recalescence of bulk undercooled hypereutectic Fe-B alloy. Taking advantage of the defined stoichiometry for primarily formed intermetallic Fe{sub 2}B, a convenient and accurate tracking of the average liquid concentration during recalescence can be performed. Applying thermodynamic calculations for liquid/solid Gibbs energy difference, the predictions of the post-recalescence temperature T{sub R} and the as-formed solid fraction in recalescence are shown to be in good agreement with the experimental results. On this basis, a transformation path accompanied by the evolution of temperature and concentration in the residual liquid has been constructed. This clearly shows a transition from non-equilibrium to near-equilibrium process upon recalescence.

  16. Uniaxial tension effect on geometrical parameters of surface relief of amorphous alloy Fe77Ni1Si9B13

    International Nuclear Information System (INIS)

    The uniaxial tension effect on the topography of the Fe77Ni1Si9B13 amorphous alloy surface is studied within the wide range of loads (0-3 GPA) by the method of scanning tunnel microscopy. The change in the defects distributions by vertical and lateral dimensions, in particular, the increase in the number of the large-scale defects and also increase in the surface fractal dimensionality, by the load growth is determined. The supposition on the diffusion mechanism of the relief formation and also on the role of the observed effects in originating the seats of destruction on the surface is expressed

  17. Formation of amorphous Ti alloy layers by excimer laser mixing of Ti on AISI 304 stainless-steel surfaces

    Science.gov (United States)

    Jervis, T. R.; Nastasi, M.; Zocco, T. G.; Martin, J. A.

    1988-07-01

    We used excimer laser radiation at 308 nm to mix thin layers of Ti into AISI 304 stainless steel. Different numbers of shots at a fluence about twice the threshold for melting varied the amount of mixing. When mixing is sufficiently complete, an amorphous surface layer is formed with Ti substituting for Fe on a one-to-one basis in the alloy. The laser mixing process, unlike Ti ion implantation, does not result in high incorporation of C in the processed layer, although some C from surface and interface contamination is incorporated into the surface layer.

  18. Effect of small additions of Cu and Cr on crystallization of Fe80B9Si11 amorphous alloy

    International Nuclear Information System (INIS)

    By means of differential thermal and X-ray structure analyses, as well as, by measurement of microstrength one studied the effect of small additions of chromium and copper on the peculiarities of crystallization of Fe80B9Si11 amorphous alloy (Fe79Cr1B9Si11 and Fe79Cu1B9Si11). Chromium was determined to stabilize Fe3B nonequilibrium phase the formation of which resulted in eutectic type of crystallization at early stages while copper was determined to enable formation of α-Fe and Fe2B equilibrium phases and primary crystallization with precipitation of α-Fe primary crystals

  19. Synthesis of bulk nanostructured aluminum alloy component through vacuum plasma spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Laha, T. [Mechanical and Materials Engineering, Florida International University, 10555 West Flagler Street, EC 3464, Miami, FL 33174 (United States); Agarwal, A. [Mechanical and Materials Engineering, Florida International University, 10555 West Flagler Street, EC 3464, Miami, FL 33174 (United States)]. E-mail: agarwala@fiu.edu; McKechnie, T. [Plasma Processes Inc., Huntsville, AL 35811 (United States); Rea, K. [Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Seal, S. [Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States)

    2005-12-15

    The benefits of large-size engineering components with nanocrystalline structure (providing improved strength) are yet to be realized due to processing difficulties and associated grain growth problems. In this work, a free-standing bulk nanocrystalline structure of hypereutectic aluminum alloy (Al-21wt.%Si) has been fabricated through the vacuum plasma spray (VPS) forming technique using micron-size powder feedstock. Optical microscopy, scanning electron microscopy and transmission electron microscopy have been used to investigate the evolution of multi-scale microstructure as the result of rapid solidification in VPS forming process. The characterization implies the presence of nanosized eutectic Al-Si grains (25-100 nm) with uniformly distributed ultrafine primary silicon particles of submicron size. The effect of microstructural evolution on mechanical properties has been studied by tensile testing and microhardness measurement. A considerable improvement in ultimate tensile strength and hardness of the sprayed deposit has been observed in comparison with conventionally cast hypereutectic Al-17wt.%Si alloys.

  20. Upper critical fields and superconducting transition temperatures of some zirconium-base amorphous transition-metal alloys

    Science.gov (United States)

    Karkut, M. G.; Hake, R. R.

    1983-08-01

    Superconducting upper critical fields Hc2(T), transition temperatures Tc and normal-state electrical resistivities ρn have been measured in the amorphous transition-metal alloy series Zr1-xCox, Zr1-xNix, (Zr1-xTix)0.78Ni0.22, and (Zr1-xNbx)0.78Ni0.22. Structural integrity of these melt-spun alloys is indicated by x-ray, density, bend-ductility, normal-state electrical resistivity, superconducting transition width, and mixed-state flux-pinning measurements. The specimens display Tc=2.1-3.8 K, ρn=159-190 μΩ cm, and |(dHc2dT)Tc|=28-36 kG/K. These imply electron mean free paths l~2-6 Å, zero-temperature Ginzburg-Landau coherence distances ξG0~50-70 Å, penetration depths λG0~(7-10)×103 Å, and extremely high dirtiness parameters ξ0l~300-1300. All alloys display Hc2(T) curves with negative curvature and (with two exceptions) fair agreement with the standard dirty-limit theory of Werthamer, Helfand, Hohenberg, and Maki (WHHM) for physically reasonable values of spin-orbit-coupling induced, electron-spin-flip scattering time τso. This is in contrast to the anomalously elevated Hc2(T) behavior which is nearly linear in T that is observed by some, and the unphysically low-τso fits to WHHM theory obtained by others, for various amorphous alloys. Current ideas that such anomalies may be due to alloy inhomogeneity are supported by present results on two specimens for which relatively low-τso fits of Hc2(T) to WHHM theory are coupled with superconductive evidence for inhomogeneity: relatively broad transitions at Tc and Hc2 current-density-dependent transitions at Hc2 and (in one specimen) a J-dependent, high-H (>Hc2), resistive "beak effect." In the Zr1-xCox and Zr1-xNix series, Tc decreases linearly with x (and with unfilled-shell average electron-to-atom ratio in the range 5.05previous results for these systems and contrary to the Tc vs behavior of both amorphous and crystalline transition-metal alloys formed between near neighbors in the Periodic Table. Upper

  1. Atomic Diffusion in Amorphous Alloy Melts%非晶合金熔体的原子扩散

    Institute of Scientific and Technical Information of China (English)

    胡金亮; 朱纯傲; 耿永亮; 张博

    2014-01-01

    Diffusion in amorphous alloy melts is an important kinetic parameter to describe the properties in melts.Dif-ferent from the normal alloy melts,the diffusion behavior of amorphous alloy melts tend to have their own unique proper-ties,such as representing a typical slow diffusivity and a complex temperature dependent.But the researches on atomic diffusion are still at a preliminary stage whether in domestic or international study due to technical and theoretical difficul-ties.This paper mainly introduced some measurement techniques of the diffusion coefficient,including our self-designed sliding cell method,which combined the merits of the traditional long capillary method and the shear cell method,and ruled out the undesired atomic diffuse occuring in heating process.It’s concerned as an effective way to measure the diffu-sion coefficient.In addition,based on the diffusion results and models of the amorphous alloy melts,the diffusion research in amorphous alloy melts were summarized and discussed.As some good models to describe the diffusion behavior of the simple liquids,Arrhenius relationship,VFT function,Tn relationship,Darken equation and S-E relationship show a lot of limitations in amorphous alloy melts.At the same time,although MCT theory can predict the dynamics of glass forming liquids,which were confirmed by experiments and simulations,it also have some issues that are difficult to overcome.%非晶合金熔体的扩散是描述非晶合金熔体动力学行为的重要参数,不同于一般的金属熔体,非晶合金熔体的扩散行为具有自己独特的性质,如表现出典型的慢扩散和复杂的温度依赖关系等。由于技术、理论上的原因,目前无论是国内还是国际上,对非晶合金熔体扩散的研究尚处于不成熟的阶段。主要介绍了扩散系数的几种比较可行的测量方法,其中包括最近本课题组在传统长管法和切单元法基础上开发的滑动剪切技术,该技术能

  2. Crystallization of Fe{sub 83}B{sub 17} amorphous alloy by electric pulses produced by a capacitor discharge

    Energy Technology Data Exchange (ETDEWEB)

    Georgarakis, Konstantinos [WPI-AIMR Tohoku University, Sendai (Japan); Institut Polytechnique de Grenoble (INPG), Science et Ingenierie des Materiaux et Procedes (SIMAP-CNRS), Saint-Martin-d' Heres (France); Dudina, Dina V. [Siberian Branch of Russian Academy of Sciences, Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Mali, Vyacheslav I.; Anisimov, Alexander G. [Siberian Branch of Russian Academy of Sciences, Lavrentyev Institute of Hydrodynamics, Novosibirsk (Russian Federation); Bulina, Natalia V. [Siberian Branch of Russian Academy of Sciences, Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk (Russian Federation); Moreira Jorge, Alberto Jr. [Institut Polytechnique de Grenoble (INPG), Science et Ingenierie des Materiaux et Procedes (SIMAP-CNRS), Saint-Martin-d' Heres (France); Federal University of Sao Carlos, Department of Materials Science and Engineering, Sao Carlos, SP (Brazil); Yavari, Alain R. [Institut Polytechnique de Grenoble (INPG), Science et Ingenierie des Materiaux et Procedes (SIMAP-CNRS), Saint-Martin-d' Heres (France)

    2015-09-15

    Heating of conductive materials by electric current is used in many technological processes. Application of electric pulses to metallic glasses induces their fast crystallization, which is an interesting and complex phenomenon. In this work, crystallization of the Fe{sub 83}B{sub 17} amorphous alloy induced by pulses of electric current produced has been studied using X-ray diffraction and transmission electron microscopy. Ribbons of the alloy were directly subjected to single pulses of electric current 250 μs long formed by a capacitor discharge. As the value of ∫I{sup 2}dt was increased from 0.33 to 2.00 A{sup 2} s, different crystallization stages could be observed. The crystallization began through the formation of the nuclei of α-Fe. At high values of ∫I{sup 2}dt, α-Fe and tetragonal and orthorhombic Fe{sub 3}B and Fe{sub 23}B{sub 6} were detected in the crystallized ribbons with crystallites of about 50 nm. Thermal annealing of the ribbons at 600 C for 2 min resulted in the formation of α-Fe and tetragonal Fe{sub 3}B. It was concluded that pulses of electric current produced by a capacitor discharge induced transformation of the Fe{sub 83}B{sub 17} amorphous phase into metastable crystalline products. (orig.)

  3. Magnetic and Distribution of Magnetic Moments in Amorphous Fe89.7 P10.3 Alloy Nanowire Arrays

    International Nuclear Information System (INIS)

    Binary amorphous Fe89.7P10.3 alloy nanowire arrays in diameter of about 40nm and length of about 3 μm have been fabricated in an anodic aluminium oxide template by electrodeposition. Magnetic properties of the samples are investigated by mean of vibrating sample magnetometer, transmission Mössbauer spectroscopy and conversion electron Mössbauer spectroscopy at room temperature. It is found that the nanowire arrays have obvious perpendicular magnetic anisotropy and are ferromagnetic at room temperature, with its Mössbauer spectra consisting of six broad lines. The average angles between the Fe magnetic moment and the wire axis are about 14° inside and 28° at the end of the amorphous Fe89.7P10.3 alloy nanowire arrays, respectively. The magnetic behaviour is decided by the shape anisotropy and the dipolar interaction between wires. In addition, the magnetic moments distribution is theoretically demonstrated by using the symmetric fanning mechanism of the spheres chain model

  4. Magnetic and Distribution of Magnetic Moments in Amorphous Fe89.7P10.3Alloy Nanowire Arrays

    Institute of Scientific and Technical Information of China (English)

    SHI Hui-Gang; XUE De-Sheng

    2008-01-01

    Binary amorphous Fe89.7P10.3 alloy nanowire arrays in diameter of about 40nm and length of about 3μm have been fabricated in an anodic aluminium oxide template by electrodeposition.Magnetic properties of the samples are investigated by mean of vibrating sample magnetometer,transmission M(o)ssbauer spectroscopy and conversion electron M(o)ssbauer spectroscopy at room temperature.It is found that the nanowire arrays have obvious perpendicular magnetic anisotropy,and are ferromagnetic at room temperature,with its M(o)ssbauer spectra consisting of six broad lines.The average anglas between the Fe magnetic moment and the wire axis are about 14°inside and 28°at the end of the amorphous Fe89.7P10.3 alloy nanowire arrays,respectively.The magnetic behaviour is decided by the shape anisotropy and the dipolar interaction between wires.In addition,the magnetic moments distribution is theoretically demonstrated by using the symmetric fanning mechanism of the spheres chain model.

  5. STRUCTURAL INTERACTIONS OF HYDROGEN WITH BULK AMORPHOUS MICROSTRUCTURES IN METALLIC SYSTEMS UNDERSTANDING THE ROLE OF PARTIAL CRYSTALLINITY ON PERMEATION AND EMBRITTLEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Kyle; Fox, Elise; Korinko, Paul; Adams, Thad

    2010-05-10

    The development of metallic glasses in bulk form has led to a resurgence of interest into the utilization of these materials for a variety of applications. A potentially exciting application for these bulk metallic glass (BMG) materials is their use as composite membranes to replace high cost Pd/Pd-alloy membranes for enhanced gas separation processes. One of the major drawbacks to the industrial use of Pd/Pd-alloy membranes is that during cycling above and below a critical temperature an irreversible change takes place in the palladium lattice structure which can result in significant damage to the membrane. Furthermore, the cost associated with Pd-based membranes is a potential detractor for their continued use and BMG alloys offer a potentially attractive alternative. Several BMG alloys have been shown to possess high permeation rates, comparable to those measured for pure Pd metal. In addition, high strength and toughness when either in-situ or ex-situ second phase dispersoids are present. Both of these properties, high permeation and high strength/toughness, potentially make these materials attractive for gas separation membranes that could resist hydrogen 'embrittlement'. However, a fundamental understanding of the relationship between partially crystalline 'structure'/devitrification and permeation/embrittlement in these BMG materials is required in order to determine the operating window for separation membranes and provide additional input to the material synthesis community for improved alloy design. This project aims to fill the knowledge gap regarding the impact of crystallization on the permeation properties of metallic glass materials. The objectives of this study are to (i) determine the crystallization behavior in different gas environments of Fe and Zr based commercially available bulk metallic glass and (ii) quantify the effects of partial crystallinity on the hydrogen permeation properties of these metallic glass membranes.

  6. Effect of irradiation temperature on crystallization of {alpha}-Fe induced by He irradiations in Fe{sub 80}B{sub 20} amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    San-noo, Toshimasa; Toriyama, Tamotsu; Wakabayashi, Hidehiko; Iijima, Hiroshi [Musashi Inst. of Tech., Tokyo (Japan); Hayashi, Nobuyuki; Sakamoto, Isao

    1997-03-01

    Since amorphous alloys are generally highly resistant to irradiation and their critical radiation dose is an order of magnitude higher for Fe-B amorphous alloy than Mo-methods, these alloys are expected to become applicable as for fusion reactor materials. The authors investigated {alpha}-Fe crystallization in an amorphous alloy, Fe{sub 80}B{sub 20} using internal conversion electron Moessbauer spectroscopy. The amount of {alpha}-Fe component was found to increase by raising the He-irradiation dose. The target part was modified to enable He ion radiation at a lower temperature (below 400 K) by cooling with Peltier element. Fe{sub 80}B{sub 20} amorphous alloy was cooled to keep the temperature at 300 K and exposed to 40 keV He ion at 1-3 x 10{sup 8} ions/cm{sup 2}. The amount of {alpha}-Fe crystal in each sample was determined. The crystal formation was not observed for He ion radiation below 2 x 10{sup 18} ions/cm{sup 2}, but that at 3 x 10{sup 8} ions/ cm{sup 2} produced a new phase ({delta} +0.40 mm/sec, {Delta} = 0.89 mm/sec). The decrease in the radiation temperature from 430 to 300 K resulted to extremely repress the production of {alpha}-Fe crystal, suggesting that the crystallization induced by He-radiation cascade is highly depending on the radiation temperature. (M.N.)

  7. The effect of mechanical milling on the soft magnetic properties of amorphous FINEMET alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gheiratmand, T., E-mail: t.gheiratmand@yahoo.com [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., P.O. Box 11155-9466, Tehran (Iran, Islamic Republic of); Hosseini, H.R. Madaah; Davami, P. [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., P.O. Box 11155-9466, Tehran (Iran, Islamic Republic of); Gjoka, M. [Institute of Nanoscience and Nanotechnology, National Center for Scientific Research, DEMOKRITOS, Agia Paraskevi, 15310 Athens (Greece); Song, M. [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2015-05-01

    The effect of milling time on the magnetic properties of FINEMET amorphous ribbons has been investigated using X-ray diffraction, Mössbauer spectroscopy, thermo-magnetic measurements, transmission electron microscopy and SQUID magnetometery. Ribbons were melt-spun at a wheel speed of 38 ms{sup -1} and then mechanically milled for different periods up to 45 min. The results showed that the partially crystallization of the amorphous powder occurs during milling. TEM observations confirmed the formation of small volume fraction of the crystalline phase with ~9 nm crystallite size in the amorphous matrix for the ribbon milled for 45 min. Thermo-magnetic measurements indicated the enhancement of the Curie temperature of amorphous phase during milling which is due to the annihilation of free volumes and microstructural ordering. The Hopkinson effect led to the monotonic increase of magnetization with respect to the temperature before reaching the Curie temperature of the milled samples. Moreover; the magnetization increased with the formation of the Fe(Si) phase while the coercivity decreased. Mössbauer spectroscopy and thermo-magnetic measurements revealed the existence of 13% Fe in crystalline phase. The composition of crystalline phase was determined as Fe–16.5Si. Hyperfine field values increased with milling time, suggesting the ordering of the structure and enhancement of the number of Fe–Fe atomic pairs in the crystalline phase comparing to the primary amorphous ribbon. - Highlights: • Effect of crystallization of amorphous FINEMET during milling has been investigated. • Milling of amorphous ribbons for 45 min caused the formation of nano crystals. • Annihilation of free volumes increased the Curie temperature of amorphous phase. • Hyperfine field values increased with milling time suggesting ordering of the structure. • Hopkinson effect led to the monotonic increase in magnetization before T{sub c}.

  8. Mechanical spectroscopy study on the Cu{sub 54}Zr{sub 40}Al{sub 6} amorphous matrix alloy at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Marques, P.W.B., E-mail: paulowilmar@df.ufscar.br [Departamento de Física, Universidade Federal de São Carlos, CP-676, São Carlos, SP (Brazil); Chaves, J.M.; Silva, P.S.; Florêncio, O. [Departamento de Física, Universidade Federal de São Carlos, CP-676, São Carlos, SP (Brazil); Moreno-Gobbi, A. [Instituto de Física, Facultad de Ciencias (UDELAR), Iguá 4225, CEP 11400 Montevideo (Uruguay); Aliaga, L.C.R.; Botta, W.J. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, CP-676, São Carlos, SP (Brazil)

    2015-02-05

    Highlights: • Cu{sub 54}Zr{sub 40}Al{sub 6} alloy was characterized by mechanical spectroscopy at low temperature. • Flexural and ultrasonic methods showed peaks associated to rearrangement of clusters. • The peaks less stable were associated with annihilation of Zr or Cu clusters. • MHz range can be favors the formation of Cu an Al-centered icosahedral structures. • TEM images show an increase in the size and number of crystal in amorphous matrix. - Abstract: A mechanical spectroscopy study of Cu{sub 54}Zr{sub 40}Al{sub 6} bulk metallic glasses composites was carried out in the kHz and MHz frequency ranges, by means of flexural and ultrasonic methods, respectively, in the temperature interval 150–300 K. In internal friction and attenuation curves at low temperature were observed peaks which were associated with distortions in the configuration of atomic clusters, which absorbed different quantities of energy due to short and medium order rearrangements. Changes within the clusters or atomic jumps between clusters occurring in the specimen induced the onset of polyamorphic peaks, since electronic interactions and bonding changed abruptly.

  9. Effects of Nb and Si on densities of valence electrons in bulk and defects of Fe3Al alloys

    Institute of Scientific and Technical Information of China (English)

    邓文; 钟夏平; 黄宇阳; 熊良钺; 王淑荷; 郭建亭; 龙期威

    1999-01-01

    Positron lifetime measurements have been performed in binary Fe3Al and Fe3Al doping with Nb or Si alloys. The densities of valence electrons of the bulk and microdefects in all tested samples have been calculated by using the positron lifetime parameters. Density of valence electron is low in the bulk of Fe3Al alloy. It indicates that, the 3d electrons in a Fe atom have strong-localized properties and tend to form covalent bonds with Al atoms, and the bonding nature in Fe3Al is a mixture of metallic and covalent bonds. The density of valence electron is very low in the defects of Fe3Al grain boundary, which makes the bonding cohesion in grain boundary quite weak. The addition of Si to Fe3Al gives rise to the decrease of the densities of valence electrons in the bulk and the grain boundary thus the metallic bonding cohesion. This makes the alloy more brittle. The addition of Nb to Fe3Al results in the decrease of the ordering energy of the alloy and increases the density of valence electron and th

  10. Interaction of the surfaces of ribbons of amorphous magnetically soft alloys with vapor at various stages of heat treatment

    Science.gov (United States)

    Skulkina, N. A.; Ivanov, O. A.; Pavlova, I. O.; Minina, O. A.

    2015-10-01

    The effect of heat treatment in air atmosphere combined with water vapor on the distribution of magnetization and on magnetic characteristics has been studied based on the example of a rapidly quenched amorphous magnetically soft Fe77Ni1Si9B13 alloy, which possesses a positive saturation magnetostriction. The interaction of the surface of a ribbon made of the alloy with vapor was implemented at various stages of heat treatment, such as heating, cooling, and isothermal holding. The results of the study have confirmed an important contribution of the stresses induced by hydrogen and oxygen atoms, which are incorporated into the surface of the ribbon, to the formation of the magnetic characteristics of the alloy. The heat treatment of the surface of the ribbon with vapor at various stages together with varying rate of cooling substantially enhance the maximum magnetic permeability at an optimum duration of isothermal holding. This is primarily due to a decrease in the relative volume of orthogonal-magnetization domains because of an additional rise in predominantly plane tensile stresses induced by hydrogen and oxygen atoms which are incorporated into the surface of the ribbon.

  11. Preparation and Characterization of Amorphous Layer on Aluminum Alloy Formed by Plasma Electrolytic Deposition (PED)

    Institute of Scientific and Technical Information of China (English)

    GUAN Yong-jun; XIA Yuan

    2004-01-01

    In this investigation, protective layers were formed on aluminum substrate by Plasma Electrolytic Deposition (PED) using sodium silicate solution. The relation between the thickness of the layer and process time were studied. XRD,SEM, EDS were used to study the layer's structure, composition and micrograph. The results show that the deposited layers are amorphous and contain mainly oxygen, silicon, and aluminum. The possible formation mechanism of amorphous [Al-Si-O] layer was proposed: During discharge periods, Al2O3 phase of the passive film and SiO32-near the substrate surface are sintered into xSiO2(1-x)Al2O3 and then transformed into amorphous [Al-Si-O] phase.

  12. Intrinsic complexity of the melt-quenched amorphous Ge2Sb2Te5 memory alloy

    Science.gov (United States)

    Krbal, M.; Kolobov, A. V.; Fons, P.; Tominaga, J.; Elliott, S. R.; Hegedus, J.; Uruga, T.

    2011-02-01

    Through the use of first-principles Ge K-edge XANES simulations we demonstrate that the structure of melt-quenched amorphous Ge-Sb-Te is intrinsically complex and is a mixture of Ge(3):Te(3) and Ge(4):Te(2) configurations in comparable concentrations, in contrast to the as-deposited amorphous phase that is dominated by the Ge(4):Te(2) configurations. The reasons for Ge-Te polyvalency are discussed and it is argued that both configurations are compatible with the Mott 8-N rule and the definition of an ideal amorphous solid. The near-perfect Te-Te distance match between the two major configurations accounts for the high cyclability of phase-change materials. Stable compositions in the Ge-Sb-Te system are suggested.

  13. Numerical simulation of the bulk forming processes for 1345 aluminum alloy billets

    Directory of Open Access Journals (Sweden)

    Fakhreddine. KHEROUF

    2015-08-01

    Full Text Available This paper presents an improved numerical simulation of bulk metal forming processes. It takes into the account the advanced formalism of large displacements and large deformations. Also, the interface workpiece formalism in considered. Metallographic studies are conducted to determine the evolution of the micro hardness as a function of annealing time and that to characterize accurately the plastic range of aluminum alloy for a range of plasticity 120%. The obtained results of metallographic studies are used to simulate a hot upsetting under the friction law of the plastic wave. Several simulations of forging operations of an axisymmetric billet by a rigid axisymmetric conical tool are performed with ABAQUS/standard computer code and that for preheated billets from 20 °C to 500 °C. The numerical study of the evolution of the normal stress at the interface has shown that the latter is independent of the tool roughness for a temperature close to 500 °C. The numerical study also allowed us to define the three areas of forging whatever cold; warm and hot forging. The effects of friction coefficient on the metal flow and contact pressure are numerically explored.

  14. Microstructural observations of the crystallization of amorphous Fe-Si-B based magnetic alloys

    International Nuclear Information System (INIS)

    The effect of Cu and Nb alloying additions on the crystallization of Fe-Si-B based alloys were studied. DSC, XRD, TEM, EELS and VSM techniques were used to study the thermal properties, phase formation during primary crystallization, morphological transitions and magnetic properties. The additions of individual Cu or Nb alloying additions changed the crystallization temperature as well as the activation energy for primary crystallization. The phases formed during primary crystallization for the Fe77.5Si13.5B9, Fe76.5Si13.5B9Cu1 and Fe74.5Si13.5B9Nb3Cu1 alloys are the same, however the morphologies are significantly different. Alloying additions of 3 at.% Nb induced a change in the crystallization mechanism and the type of phases formed. The combined additions of Cu and Nb resulted in the formation of nanocrystals. B atoms were found to be rejected around dendrites formed during primary crystallization of the Fe77.5Si13.5B9 alloy. The highest saturation magnetization and the lowest coercivity is obtained in the Fe77.5Si13.5B9 and Fe74.5Si13.5B9Nb3Cu1 alloy respectively after annealing at 550 deg. C for 1 h

  15. Mechanisms of the formation of magnetic characteristics of a cobalt-based amorphous magnetically soft alloy under heat treatment in air

    Science.gov (United States)

    Skulkina, N. A.; Ivanov, O. A.; Stepanova, E. A.; Shubina, L. N.; Kuznetsov, P. A.; Mazeeva, A. K.

    2015-12-01

    Physical causes of the formation of magnetic characteristics of cobalt-based alloys with a near to zero saturation magnetostriction under heat treatment in air have been studied using the Co-Fe-Ni-Cr-Si-B amorphous magnetically soft alloy as an example. The results of the study have shown the possibility of using the vapor treatment of surfaces of ribbons made of amorphous magnetically soft alloys to determine the sign of magnetostriction. The dependence of the sign of magnetostriction on the structural state of a ribbon, which is produced by the heat treatment, has been experimentally found. It has been established that physical causes of the formation of magnetic characteristics of the cobalt-based alloys are the same as those for iron-based alloys. Changes in the magnetic characteristics after annealing result from the relaxation of quenchinginduced internal stresses, as well as from the effect of stresses induced by hydrogen and oxygen atoms incorporated into the surface of the ribbon in the course of its interaction with water vapor in air and by the formation of an amorphous-crystalline surface layer.

  16. Nanocrystallization in Co67Cr7Fe4Si8B14 Amorphous Alloy Ribbons

    Directory of Open Access Journals (Sweden)

    Zahra Jamili-Shirvan

    2013-12-01

    Full Text Available The nanocrystallization of Co67Fe4Cr7Si8B14 amorphous ribbons which prepared by planar flow melt spinning process (PFMS was investigated. Crystallization of the ribbons was studied by differential thermal analysis (DTA, X-ray diffraction (XRD and transmission electron microscopy (TEM. The DTA result of amorphous ribbon at heating rate of 10˚C/min showedoccurrence of phase transitions in two stages. The ribbons were isothermally annealed for 30 minutes in argon atmosphere at different temperatures between 300 and 650ºC with 25ºC steps. The magnetic properties of annealed samples were measured using a vibrating sample magnetometer (VSM. The VSM results revealed that optimum soft magnetic properties occurred at 400ºC. XRD patterns showed that the samples isothermally annealed up to 450ºC were amorphous, while TEM results at 400ºC indicated 7-8 nm mean size nanocrytallites in amorphous matrix and size of the nanocrystallites increased by increasing temperature. Also by X-ray diffraction pattern, precipitation of different phases at higher temperatures confirmed.

  17. Effect of annealing on atomic ordering of amorphous ZrTaTiNbSi alloy

    Science.gov (United States)

    Yang, Tsung-Han; Huang, Rong-Tang; Wu, Cheng-An; Chen, Fu-Rong; Gan, Jon-Yiew; Yeh, Jien-Wei; Narayan, Jagdish

    2009-12-01

    In this letter, we have reported on initial stages of atomic ordering in ZrTaTiNbSi amorphous films during annealing. The atomic ordering and structure evolution were studied in Zr17Ta16Ti19Nb22Si26 amorphous films as a function of annealing temperature in the temperature range from 473 to 1173 K. Up to annealing temperature of 1173 K, the films retained amorphous structure, but the degree of disorder is increased with the increase in temperature. The formation of Si-M covalent bonds, which contributed to the local atomic arrangement, occurred in the initial stages of ordering. The bonding reactions between Si and other metal species explain the anomalous structural changes which were observed in x-ray diffraction and transmission electron microscopy. We discuss the stages of phase transformation for amorphous films as a function of annealing temperature. From these results, we propose that annealing leads to formation of random Si-M4 tetrahedron, and two observed rings, a first and second in the electron diffraction patterns compared to M-M and Si-M bond length, respectively.

  18. Morphology and magnetic behavior of cobalt rich amorphous/nanocrystalline (Co-Ni)70Ti10B20 alloyed powders

    Science.gov (United States)

    Raanaei, Hossein; Mohammad-Hosseini, Vahid

    2016-09-01

    The effect of milling time on microstructural and magnetic behavior of mechanically alloyed Co49Ni21Ti10B20 is investigated by using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, differential scanning calorimetry and vibrating sample magnetometer. It is shown, with increasing milling time, the crystallite size decreases and finally reaches to a low value after 190 h of milling time. The increase in microstrain is also observed during the milling process. The results indicate the coexistence between amorphous and nanocrystalline phases after 190 h of milling time. Moreover, the lowest magnetic coercivity of about 39 Oe at the final milling stage is observed. The results of annealed sample reveal structural ordering of constituent elements.

  19. Hydrogenation of furfuryl alcohol to tetrahydrofurfuryl alcohol on NiB/SiO2 amorphous alloy catalyst

    Institute of Scientific and Technical Information of China (English)

    SONG Yun; LI Wei; ZHANG Minghui; TAO Keyi

    2007-01-01

    NiB/SiO2 amorphous alloy catalyst was prepared by power electroless plating method and characterized by induction coupled plasma (ICP),Brunauer-Emmett-Teller method (BET),transmission electron microscope (TEM)and X-ray diffraction (XRD) techniques.The catalytic performance of NiB/SiO2 was investigated for the hydrogenation of furfuryl alcohol (FA) to tetrahydrofurfuryl alcohol (THFA).The effects of operational conditions,such as reaction temperature,pressure,and stirring rate were carefully studied.The proper conditions were determined as the following:pressure 2.0 MPa,temperature 120℃ and stirring rate 550 r/min.A typical result with FA conversion of 99%and THFA selectivity of 100% was obtained under such conditions,which was close to that over Raney Ni.

  20. Fabrication of MEMS-based Micro-fluxgate Sensor with Runway-shaped Co-based Amorphous Alloy Core

    Science.gov (United States)

    Wu, Shaobin; Chen, Shi; Ouyang, Jun; Zuo, Chao; Yu, Lei; Yang, Xiaofei

    2011-01-01

    High-precision magnetic micro-sensor is an interdisciplinary subject of magnetic field measurement techniques and micro-electromechanical systems (MEMS) technology. A micro-fluxgate magnetic sensor based MEMS technology was designed and fabricated in this paper. This device is a micro-magnetic sensor with a symmetric construction, closed magnetic circuits and differential form. A 25μm thick Fluxgate core of runway model, made by Co-based amorphous alloy, was etched by laser and pasted on the substrate accurately. Excitation coil and sensing coil of 3D solenoid structure were prepared by RF magnetron sputtering and UV-lithography. The minimum line width of the coil is 50 μm. The experimental result shows that micro-fluxgate devices with the size of 5.7mm×7.1mm×60μm had a stable structure.

  1. A tunable amorphous p-type ternary oxide system: The highly mismatched alloy of copper tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Isherwood, Patrick J. M., E-mail: P.J.M.Isherwood@lboro.ac.uk; Walls, John M. [CREST, School of Electronic, Electrical and Systems Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Butler, Keith T.; Walsh, Aron [Centre for Sustainable Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2015-09-14

    The approach of combining two mismatched materials to form an amorphous alloy was used to synthesise ternary oxides of CuO and SnO{sub 2}. These materials were analysed across a range of compositions, and the electronic structure was modelled using density functional theory. In contrast to the gradual reduction in optical band gap, the films show a sharp reduction in both transparency and electrical resistivity with copper contents greater than 50%. Simulations indicate that this change is caused by a transition from a dominant Sn 5s to Cu 3d contribution to the upper valence band. A corresponding decrease in energetic disorder results in increased charge percolation pathways: a “compositional mobility edge.” Contributions from Cu(II) sub band-gap states are responsible for the reduction in optical transparency.

  2. L-S mass transfer in G-L-S countercurrent magnetically stabilized bed with amorphous alloy SRNA-4 catalyst

    Institute of Scientific and Technical Information of China (English)

    Wei; Li; Baoning; Zong; Xiaofang; Li; Xiangkun; Meng; Jinli; Zhang

    2007-01-01

    Liquid-solid (L-S) mass transfer coefficients (Ks) were characterized in a gas-liquid-solid (G-L-S) three-phase countercurrent magnetically stabilized bed (MSB) using amorphous alloy SRNA-4 as the solid phase. Effects of superficial liquid velocity, superficial gas velocity, magnetic field strength, liquid viscosity and surface tension were investigated. Experimental results indicated that the external magnetic field increased Ks in three-phase MSB, as compared to those in conventional G-L-S fluidized beds; that Ks increased with magnetic field strength, superficial gas and liquid velocities and decreased with liquid viscosity and surface tension; and that Ks showed uniform axial and radial distributions except for small increases close to the wall. Dimensionless correlations were established to estimate Ks of the G-L-S countercurrent MSB using SRNA-4catalyst, with an average error of 3.6%.

  3. Effects of Microalloying on Glass Forming Ability and Thermodynamic Fragility of Cu-Pr-Based Amorphous Alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of microalloying of Ti and B on the glass formation of Cu60Pr30Ni10Al10-2xTixBx(x=0, 0.05%(atom fraction)) amorphous alloys was investigated using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). XRD analysis showed that microalloying with 0.05% Ti and 0.05% B improved the glass forming ability (GFA). The smaller difference in the Gibbs free energy between the liquid and crystalline states at the glass transition temperature (ΔGl-x (Tg)) and the smaller thermodynamic fragility index (ΔSf/Tm, where ΔSf is the entropy of fusion, and Tm is the melting temperature) after microalloying correlated with the higher GFA.

  4. PREPARATION AND MAGNETIC-PROPERTIES OF AMORPHOUS FE1-XBX (15-LESS-THAN-OR-EQUAL-TO X LESS-THAN-40 ATMOSPHERIC PERCENT) ALLOY PARTICLES

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, S.

    1992-01-01

    Amorphous Fe1-xBx alloy particles have been prepared in aqueous solutions by reduction of Fe2+ ions to the metallic state by the use of NaBH4. It is demonstrated, that by changing the pH of the aqueous metal ion solution the amount of boron incorporated in the alloy particles can be varied between...... 15 and 28 at.%. Fe-57 Mossbauer spectra have been obtained at 10, 80 and 295 K. The hyperfine parameters for amorphous particles have been found to be similar to those found for ribbons and films prepared by the liquid-quench and sputtering techniques, respectively, though with a tendency...... for the magnetic hyperfine fields for the chemically prepared and sputter prepared alloys to deviate slightly from those for melt-spun samples. The magnetic hyperfine fields decrease linearly as a function of T3/2....

  5. Effect of temperature and magnetic fields on the structural state of the Fe-Zr-B amorphous alloy below crystallization temperature

    Directory of Open Access Journals (Sweden)

    Fedotova N.L.

    2011-05-01

    Full Text Available Amorphous materials give the possibility to observe the phase and structural transformations in sufficiently narrow temperature intervals with the retention of their unchanged chemical composition. The present report is concerned with the results of the study of structure evolution and its dependence on magnetic field upon heating in the Fe-Zr-B amorphous alloy by the method of the photometric analysis of structural images (PHASI. The PHASI method makes it possible to establish the effect of external temperature and magnetic fields on the brightness spectra of the reflection from the surface of the object under study and the distribution of the zones, in which these changes are localized. The established temperature dependence of the energy characteristics of the reflection brightness spectrum in arbitrary units indicates the complex structural transformations caused by heating of the alloy under study. Also it is shown that the magnetic field produces residual structural changes in the alloy in comparison with its initial state

  6. Density and glass forming ability in amorphous atomic alloys: The role of the particle softness

    Science.gov (United States)

    Douglass, Ian; Hudson, Toby; Harrowell, Peter

    2016-04-01

    A key property of glass forming alloys, the anomalously small volume difference with respect to the crystal, is shown to arise as a direct consequence of the soft repulsive potentials between metals. This feature of the inter-atomic potential is demonstrated to be responsible for a significant component of the glass forming ability of alloys due to the decrease in the enthalpy of fusion and the associated depression of the freezing point.

  7. Effects of B upon glass forming ability of Al{sub 87}Y{sub 8}Ni{sub 5} amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shih-Fan [Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan, ROC (China); Chen, Jhewn-Kuang, E-mail: jkchen@ntut.edu.tw [Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan, ROC (China); Lin, Shing-Liang [Taiwan Ductile Iron Factory Co. Ltd., Hsinchu 303, Taiwan, ROC (China); Lin, Yu-Lom [Katec R and D Corp., Taipei 104, Taiwan, ROC (China)

    2013-07-15

    Highlights: •15 at.% boron added to Al{sub 87}Y{sub 8}Ni{sub 5} alloy demonstrates glass transition in contrast to its non-boron opponent. •A large 24.6 K ΔT{sub x} (T{sub x}−T{sub g}) liquid supercooling range indicates (Al{sub 87}Y{sub 8}Ni{sub 5}){sub 85}B{sub 15} a possible ductile Al-based amorphous alloy. •Boron is effective in improving thermal stability of Al{sub 87}Y{sub 8}Ni{sub 5} amorphous alloy by increasing the activation energy for crystallization by 43%. •The hardness in crystallization of the boron-containing alloy could achieve as high as 595 Hv. •Boron could affect the short-range and medium-range symmetry which delays the nucleation and crystallization kinetics. -- Abstract: In this study, 15 at.% of boron is added to increase the thermal stability and amorphous forming ability of Al{sub 87}Y{sub 8}Ni{sub 5} alloy ribbons by single roller melt-spinning process. Thermal properties including crystallization activation energy and the Avrami exponent of crystallization are investigated using non-isothermal and isothermal analyses. Only the (Al{sub 87}Y{sub 8}Ni{sub 5}){sub 85}B{sub 15} amorphous alloy ribbon demonstrates a glass transition temperature (T{sub g}) at 529 K, and its ΔT{sub x} (=T{sub x} − T{sub g}) value is 24.6 K. Crystallization kinetic study show that the 15 at.% of boron increases the activation energy for crystallization from 159 to 228 kJ/mol. The Avrami exponent n value of Al{sub 87}Y{sub 8}Ni{sub 5} amorphous alloy is 1.5 ∼ 2.1 indicating a decreasing nucleation rate with crystallization time, whereas the n value of (Al{sub 87}Y{sub 8}Ni{sub 5}){sub 85}B{sub 15} amorphous alloy ribbon is 2.3 ∼ 3.1 or the nucleation rate increases with time. The addition of boron could affect the crystal symmetry in atomic clusters and thus the phase separation behavior in the amorphous alloy. Boron is shown to delay the nucleation of boron-containing Al nano-crystals in crystallization. The maximum hardness is obtained for

  8. The influence of structural changes on electrical and magnetic characteristics of amorphous powder of the nixmoy alloy

    Directory of Open Access Journals (Sweden)

    Ribić-Zelenović Lenka

    2006-01-01

    Full Text Available Nickel and molybdenum alloy powder was electrodeposited on a titanium cathode from a NiSO4⋅7H2O and (NH46 Mo7O24⋅4H2O ammonium solution. The desired chemical composition, structure, size and shape of particles in the powder samples were achieved by an appropriate choice of electrolysis parameters (current density, composition and temperature of the solution, cathode material and electrolysis duration. Metal coatings form in the current density range 15 mA cm-2alloy decreases with the increase of the current density of deposition. Smaller sized particles form at higher current density. X-ray analysis, differential scanning calorimetric and measurements of the temperature dependence of electric resistance and magnetic permeability of the powder samples were all used to establish a predominantly amorphous structure of the powder samples formed at the current density of j≥70mA cm-2. The crystalline particle content in the powder samples increases with the decrease of the current density of deposition. Powder heating causes structural changes. The process of thermal stabilization of nickel and molybdenum amorphous powders takes place in the temperature interval from 463K to 573K and causes a decrease in electrical resistance and increase in magnetic permeability. The crystallization temperature depends on the value of current density of powder electrodeposition. Powder formed at j=180 mA cm-2 begins to crystallize at 573K, while the powder deposited at j=50 mA cm-2 begins to crystallize at 673K. Crystallization of the powder causes a decrease in electric resistivity and magnetic

  9. Deconvolution of ferromagnetic resonance in devitrification process of Co-based amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Montiel, H. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico UP. O. Box 70-360, Coyoacan, C.P. 04510 (Mexico)]. E-mail: herlinda_m@yahoo.com; Alvarez, G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico UP. O. Box 70-360, Coyoacan, C.P. 04510 (Mexico); Departamento de ciencia de los Materiales U.P. Adolfo L. Mateos Edif. 9, Av. Instituto Politecnico Nacional S/N, 07738 DF (Mexico); Betancourt, I. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico UP. O. Box 70-360, Coyoacan, C.P. 04510 (Mexico); Zamorano, R. [Escuela de Fisica y Matematicas, IPN U.P. Adolfo L. Mateos Edif. 9, Av. Instituto Politecnico Nacional S/N, 07738 DF (Mexico); Valenzuela, R. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico UP. O. Box 70-360, Coyoacan, C.P. 04510 (Mexico)

    2006-10-01

    Ferromagnetic resonance (FMR) measurements were carried out on soft magnetic amorphous ribbons of composition Co{sub 66}Fe{sub 4}B{sub 12}Si{sub 13}Nb{sub 4}Cu prepared by melt spinning. In the as-cast sample, a simple FMR spectrum was apparent. For treatment times of 5-20 min a complex resonant absorption at lower fields was detected; deconvolution calculations were carried out on the FMR spectra and it was possible to separate two contributions. These results can be interpreted as the combination of two different magnetic phases, corresponding to the amorphous matrix and nanocrystallites. The parameters of resonant absorptions can be associated with the evolution of nanocrystallization during the annealing.

  10. Co-catalytic effect of Rh and Ru for the ethanol electro-oxidation in amorphous microparticulated alloys

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Tamara C.; Pierna, Angel R.; Barroso, Javier [Dpto. de Ingenieria Quimica y del Medio Ambiente, Universidad del Pais Vasco, San Sebastian (Spain)

    2011-11-15

    The ethanol electro-oxidation on platinum catalyst in acid media leads to the formation of acetaldehyde and acetic acid as main products. Another problem is the poisoning of the electro-catalyst surface with CO formed during the fuel oxidation reaction. To increase the performance of Direct Ethanol Fuel Cells (DEFCs) it is necessary to develop new electrode materials or modification of the existing Pt catalysts. This work presents the electrochemical response to ethanol and CO oxidation of different compositional amorphous alloys obtained by ball milling technique, used as electrodes. Alloys with Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Rh{sub 0.4} and Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Rh{sub 0.2}Ru{sub 0.2} composi-tions were studied. The current density towards ethanol oxidation decreases with the presence of ruthenium; however, this electrode shows the best tolerance to CO, with lower surface coverage (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Crystallization process in rapidly solidified Al-Nd-Ni amorphous alloy prepared by melt spinning

    Institute of Scientific and Technical Information of China (English)

    肖于德; 黎文献; 马正青

    2004-01-01

    Rapidly solidified ribbons of Al90 Nd7 Ni3 metallic glasses were prepared by using melt spinning. Crystal lization process of the totally amorphous ribbons was investigated by differential scanning calorimetry and X-ray diffraction analysis, under continuous heating regime. The results show that, under continuous heating regime, the metallic glass devitrifies via two main stages: primary crystallization, resulting in two-phase mixture of α(Al) plus residual amorphous phase, and secondary crystallization, corresponding to some inter-metallic phases appearing,successively including Al11 Nd3, Al3 Ni, and some unknown phases, in the Al amorphous/crystal matrix. Four peaks appear on the continuous heating DSC curves. Their peak temperatures are respectively 470.8, 570.8, 585.6, and731.6 K at infinitesimal heating rate, and their activation energies of the respective phase transformation are 183.0,294.7, 232.5 and 269.1 kJ/mol. The values of Avrami exponent of the four reactions decrease with increasing relative transformation degree. At the earlier stage of phase transformation, the values of n are larger than 4, and at the later stage the values of n become close to some value from 0.5 to 2.0.

  12. Fe基合金薄带的ALDGMI效应%LDGMI effect on amorphous Fe-based alloy ribbons

    Institute of Scientific and Technical Information of China (English)

    张建强; 卢振华

    2012-01-01

    采用单辊快淬法制备的Fe648Co7.2Nb4Si4.8B19.2非晶合金薄带(Fe基合金薄带),在潮湿的大气环境中进行直流焦耳热退火,利用阻抗仪检测了Fe基合金薄带的纵向驱动巨磁阻抗(LDGMI)效应,研究了驱动频率f与LDGMI效应之间的关系,发现存在临界频率fc =80MHz,且当f<fc时LDGMI曲线呈对称性;当f>fc时出现非对称纵向驱动巨磁阻抗效应(ALDGMI).分析认为,出现ALDGMI效应的原因可能是由于薄带表面氧化层与中心非晶软磁层之间的磁交换耦合作用所致.%Amorphous Fe64.8Co7.2Nb4Si4,8Big.2 alloy ribbons(Fe-based alloy ribbons) are prepared by single roller melt-spinning technique. The longitudinal driven gaint magneto-impedance (LDGMI) effect of the Fe-based alloy ribbons which annealed by Joule-heating in the atmosphere of humid air have been investigated by impedance-analyzer. The relationship between ac driven frequencies / and LDGMI effect is discussed and it is proved that has a critical frequency (fc = 80 MHz), the symmetric GMI behavior appears in frequency region(f- fc). The analysis shows that the AGMI effect may be responsible for the magnetic exchange coupling between surface oxide layer and inner amorphous layer.

  13. Temperature affecting the magnetic properties of the Co79−xFe3Cr3Si15Bx amorphous alloy

    International Nuclear Information System (INIS)

    The paper studies the effect the temperature has on the magnetic properties of the Co79−xFe3Cr3Si15Bx amorphous alloy with different boron content. Magnetic saturation induction Bs and Curie temperature TC decrease as the boron content increases. Within the range of relatively high temperatures, magnetic saturation induction Bs = μ0Ms is related to the temperature by Bs(T) ∼ (TC − T)0.38. In the Co79−xFe3Cr3Si15Bx amorphous alloys with the Curie temperature of lower than 180 °C the initial permeability of 200,000 and the coercive force of 0.1 A/m were obtained. The high initial permeability of the amorphous alloy is attributed to the absence of the crystalline, magnetoelastic and induced magnetic anisotropy in this alloy. Low Curie temperature near which the permeability appreciably increases (Hopkinson effect) is another approach to the ideal magnetic softness

  14. Anomalous small-angle X-ray scattering of nanoporous two-phase atomistic models for amorphous silicon–germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chehaidar, A., E-mail: Abdallah.Chehaidar@fss.rnu.tn

    2015-09-15

    The present work deals with a detailed analysis of the anomalous small-angle X-ray scattering in amorphous silicon–germanium alloy using the simulation technique. We envisage the nanoporous two-phase alloy model consisting in a mixture of Ge-rich and Ge-poor domains and voids at the nanoscale. By substituting Ge atoms for Si atoms in nanoporous amorphous silicon network, compositionally heterogeneous alloys are generated with various composition-contrasts between the two phases. After relaxing the as-generated structure, we compute its radial distribution function, and then we deduce by the Fourier transform technique its anomalous X-ray scattering pattern. Using a smoothing procedure, the computed X-ray scattering patterns are corrected for the termination errors due to the finite size of the model, allowing so a rigorous quantitative analysis of the anomalous small-angle scattering. Our simulation shows that, as expected, the anomalous small-angle X-ray scattering technique is a tool of choice for characterizing compositional heterogeneities coexisting with structural inhomogeneities in an amorphous alloy. Furthermore, the sizes of the compositional nanoheterogeneities, as measured by anomalous small-angle X-ray scattering technique, are X-ray energy independent. A quantitative analysis of the separated reduced anomalous small-angle X-ray scattering, as defined in this work, provided a good estimate of their size.

  15. Electric and magnetic properties of Al86Ni8R6 (R=Sm, Gd, Ho) alloys in liquid and amorphous states

    Science.gov (United States)

    Sidorov, V.; Svec, P.; Svec, P.; Janickovic, D.; Mikhailov, V.; Sidorova, E.; Son, L.

    2016-06-01

    Electrical resistivity and magnetic susceptibility of Al86Ni8Sm6, Al86Ni8Gd6 and Al86Ni8Ho6 alloys are studied in a wide temperature range including amorphous, crystalline and liquid states. The negative value of resistivity temperature coefficient in amorphous ribbons is explained by the structural separation starting much before the beginning of their crystallization. The effective magnetic moments per Gd and Ho atoms are found to be essentially lower than for R3+ ions. The results are discussed in supposition of directed bonds between rare earth and aluminum atoms.

  16. Evidence for weak localization effects on the critical magnetic field for the amorphous alloys V/sub 1-//sub x/Si/sub x/

    Energy Technology Data Exchange (ETDEWEB)

    Ousset, J.C.; Rakoto, H.; Broto, J.M.; Dupuis, V.; Durand, J.; Marchal, G.; Pavuna, D.

    1987-04-01

    In this paper we present measurements of the temperature dependence of the upper critical field H/sub c//sub 2/ and of the magnetoresistance for V/sub 1-//sub x/Si/sub x/ superconducting amorphous alloys. Negative deviations from the classical variation of H/sub c//sub 2/ in a dirty superconductor are observed related to a positive magnetoresistance due to weak localization in amorphous systems with finite spin-orbit coupling. These deviations can be qualitatively explained through the model recently developed by Coffey et al.

  17. Manufacture of Bulk Amorphous Crystal and Micro-Crystal for Pr60Cu(20-x)Ni10Al10Fex and Characteristics of Its Magnetic Apparatus

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Bulk amorphous crystal and microcrystal for Pr60Cu(20-x)Ni10Al10Fex (x=0, 8, 15, 20) with the diameter of Φ 2~6 mm were manufactured by electric arc smelting, high frequency heating and copper mold upper suction casting, and its structure was analyzed by X-ray diffract meter. It showed soft magnetic characteristic gradually when Fe content in it was up to 8%. The material was applied to magnetic-electric sensor as key component, output signal of which was measured with the change of Fe content. It shows that the signal changes from weak to strong with the increase of Fe content and presents the largest peak value when Fe is replaced by Cu completely.

  18. Effect of composition on Curie temperature, magnetic moment, and high-field susceptibility of amorphous Fe90-xMxZr10 (M=V, Cr, Mn, Co, Ni, Cu, Si, and B) alloys

    International Nuclear Information System (INIS)

    Magnetization measurements for amorphous Fe90-xMxZr10 (M=V, Cr, Mn, Co, Ni, Cu, Si, and B) alloys prepared by single-roller spin quenching have been made by an extracting sample magnetometer in magnetic fields up to 65 kOe and at temperatures ranging from 1.5 to 300 K. Preliminary results show that the magnetic properties of these amorphous alloys strongly depend upon the M concentration and display a similarity to those of the parent Fe-Zr base; compared with amorphous Fe-M-B alloys with the same concentration, all the samples are characterized by a large high-field susceptibility, a small magnetic moment, and a low Curie temperature, which, for low M concentration, are particularly sensitive to applied fields. The noncollinear spin structures that characterize Fe-rich Fe-Zr--based amorphous alloys have been proposed to explain the observed results

  19. Magnetic characterisation of large grain, bulk Y-Ba-Cu-O superconductor-soft ferromagnetic alloy hybrid structures

    Science.gov (United States)

    Philippe, M. P.; Fagnard, J.-F.; Kirsch, S.; Xu, Z.; Dennis, A. R.; Shi, Y.-H.; Cardwell, D. A.; Vanderheyden, B.; Vanderbemden, P.

    2014-07-01

    Large grain, bulk Y-Ba-Cu-O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell’s algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the superconductor alone below this saturation level, and especially when the applied field is removed. The results of the study show further that the beneficial effects on the trapped field are enhanced when the ferromagnet covers the entire surface of the superconductor for different ferromagnetic components of various shapes and fixed volume.

  20. The temperature dependence of the magnetoelastic characteristics of cores for force sensors utilizing Fe70Ni8Si10B12 amorphous alloy

    Indian Academy of Sciences (India)

    Roman Szewczyk; Adam Bieńkowski; Jacek Salach

    2008-09-01

    This paper presents the results of investigation on the influence of temperature on magnetoelastic characteristics of the two ring-shaped cores, made of Fe70Ni8Si10B12 amorphous alloy. The cores were annealed for 1 h at 350 and 400° C, respectively. The compressive force was applied perpendicular to the direction of the magnetizing field in the sample. Special cylindrical backing enables application of the uniform compressive stress to the wound ring sample. A resistive furnace heated the experimental set-up. Results presented in the paper indicate a significant influence of the temperature on the magnetoelastic characteristics of Fe70Ni8Si10B12 amorphous alloy. Information about the magnetoelastic characteristics of this material may be useful in the magnetoelastic sensor development. Also this will create new possibilities in the development of physical model of magnetoelastic effect.

  1. The difference between the crystallization processes induced by mechanical milling and annealing under normal and high pressure in amorphous Fe-N alloy

    CERN Document Server

    LiuLi; Guo Xing Yuan; Zhao Xu Dong; Yao Bin; Su Wen Hui

    2002-01-01

    An amorphous Fe-N alloy was prepared by ball milling a mixture of Fe and h-BN. Its crystallization processes induced by mechanical milling (MM) and annealing under normal and high pressure were studied. The crystallization product of the amorphous Fe-N alloy induced by MM and annealing at temperatures between 690 and 800 K under pressures of 3-4 GPa is epsilon-Fe sub x N, while the thermal crystallization product under normal pressure is gamma'-Fe sub 4 N. The difference between the crystallization products produced by mechanical and thermal crystallization is attributed to the effects of local pressure and local temperature produced by ball collisions.

  2. Effect of rare-earth elements on nanophase evolution, crystallization behaviour and mechanical properties in Al–Ni–R (R = La/Mischmetal) amorphous alloys

    Indian Academy of Sciences (India)

    K L Sahoo; Amitava Mitra; Sukomal Ghosh

    2005-10-01

    The crystallization behaviour and evolution of nanoparticles in amorphous Al–Ni–Mischmetal (Mm) and Al–Ni–La alloys during heat treatment have been studied. Rapidly solidified ribbons were obtained by induction melting and ejecting the melt onto a rotating Cu wheel in an Ar atmosphere. The crystallization behaviour of the melt-spun ribbons was investigated using differential scanning calorimetry and X-ray diffractometry (XRD). XRD studies confirmed that all the ribbons were fully amorphous. Al–Ni–Mm systems showed a three-stage crystallization process whereas Al–Ni–La system, in general, showed a two-stage crystallization process on annealing. Crystallization kinetics was analysed by Kissinger and Johnson–Mehl–Avrami approaches. In Al–Ni–La alloys, the crystallization pathways depend on the La concentration. Microhardness of all the ribbons was examined at different temperatures and correlated with the corresponding evolution of phases.

  3. Atomic packing and diffusion in Fe85Si2B9P4 amorphous alloy analyzed by ab initio molecular dynamics simulation

    International Nuclear Information System (INIS)

    In the work reported in this paper, ab initio molecular dynamics simulation was performed on Fe85Si2B9P4 amorphous alloy. Preferred atomic environment of the elements was analyzed with Voronoi polyhedrons. It showed that B and P atoms prefer less neighbors compared with Fe and Si, making them structurally incompatible with Fe rich structure and repulsive to the formation of α-Fe. However, due to the low bonding energy of B and P caused by low coordination number, the diffusion rates of them were considerably large, resulting in the requirement of fast annealing for achieving optimum nano-crystallization for its soft magnetic property. The simulation work also indicates that diffusion rate in amorphous alloy is largely determined by bonding energy rather than atomic size

  4. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    International Nuclear Information System (INIS)

    We investigated the effects of top gate voltage (VTG) and temperature (in the range of 25 to 70 oC) on dual-gate (DG) back-channel-etched (BCE) amorphous-indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs) characteristics. The increment of VTG from -20V to +20V, decreases the threshold voltage (VTH) from 19.6V to 3.8V and increases the electron density to 8.8 x 1018cm−3. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on VTG. At VTG of 20V, the mobility decreases from 19.1 to 15.4 cm2/V ⋅ s with increasing temperature, showing a metallic conduction. On the other hand, at VTG of - 20V, the mobility increases from 6.4 to 7.5cm2/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate

  5. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    Directory of Open Access Journals (Sweden)

    Minkyu Chun

    2015-05-01

    Full Text Available We investigated the effects of top gate voltage (VTG and temperature (in the range of 25 to 70 oC on dual-gate (DG back-channel-etched (BCE amorphous-indium-gallium-zinc-oxide (a-IGZO thin film transistors (TFTs characteristics. The increment of VTG from -20V to +20V, decreases the threshold voltage (VTH from 19.6V to 3.8V and increases the electron density to 8.8 x 1018cm−3. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on VTG. At VTG of 20V, the mobility decreases from 19.1 to 15.4 cm2/V ⋅ s with increasing temperature, showing a metallic conduction. On the other hand, at VTG of - 20V, the mobility increases from 6.4 to 7.5cm2/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate.

  6. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Minkyu; Chowdhury, Md Delwar Hossain; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center and Department of Information Display, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-05-15

    We investigated the effects of top gate voltage (V{sub TG}) and temperature (in the range of 25 to 70 {sup o}C) on dual-gate (DG) back-channel-etched (BCE) amorphous-indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs) characteristics. The increment of V{sub TG} from -20V to +20V, decreases the threshold voltage (V{sub TH}) from 19.6V to 3.8V and increases the electron density to 8.8 x 10{sup 18}cm{sup −3}. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on V{sub TG}. At V{sub TG} of 20V, the mobility decreases from 19.1 to 15.4 cm{sup 2}/V ⋅ s with increasing temperature, showing a metallic conduction. On the other hand, at V{sub TG} of - 20V, the mobility increases from 6.4 to 7.5cm{sup 2}/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate.

  7. Molecular field analysis for melt-spun amorphous Fe sub 1 sub 0 sub 0 sub - sub x Gd sub x alloys (18<=60)

    CERN Document Server

    Yano, K

    2000-01-01

    The magnetic properties for the melt-spun amorphous Fe sub 1 sub 0 sub 0 sub - sub x Gd sub x alloys were analyzed using the molecular field theory (MFT). A concentration dependence of three exchange interaction constants was derived over a wide concentration range (18=T sub c sub o sub m sub p. Curvature of the Arrott plot in Gd-rich region was qualitatively simulated.

  8. 冷却速率对(Zr56 Co28 Al 16)98 Y2非晶合金显微结构和力学性能的影响%Effects of Cooling Rate on Microstructure and Mechanical Properties of Amorphous Alloy(Zr56Co28Al16)98Y2

    Institute of Scientific and Technical Information of China (English)

    李锐阳; 袁子洲; 康健; 张香云; 徐骏

    2016-01-01

    以纯金属为原料,采用磁悬浮熔炼-铜模吸铸法制备了直径不同(即冷却速率不同)的块状(Zr56 Co28 Al16)98 Y2非晶合金,同时采用冷却速率更高的甩带法制备了同成分的条带状非晶合金,研究了冷却速率对该合金显微结构和力学性能的影响。结果表明:随着冷却速率降低,块状非晶合金的塑性降低,硬度增大,非晶合金中冻结的自由体积减小,非晶合金基体内逐渐有纳米晶析出,但这并没有提高合金的塑性;自由体积更多的合金具有更高的塑性。%Taking pure metal as raw materials,bulk amorphous alloy (Zr56 Co28 Al16 )98 Y2 with different diameters (different cooling rates )was fabricated by magnetic floating melting and water-cooling copper mold techniques,and amorphous ribbon with same composition was fabricated by melt spinning method with high cooling rate.The effects of cooling rate on microstructure and mechanical properties were studied.The results indicate that with the decrease of cooling rate,plasticity of bulk amorphous alloy decreased,while its hardness increased,and the free volume in amorphous alloy decreased.In addition,there were nanocrystals embedded in the amorphous matrix. The plasticity,however,was not enhanced by the absence precipitation of nanocrystals.The more free-volume would result in a better plasticity of the amorphous alloy.

  9. Influence of the microstructure on the corrosion behavior of magnetron sputter-quenched amorphous metallic alloys

    Science.gov (United States)

    Thakoor, A. P.; Khanna, S. K.; Williams, R. M.; Landel, R. F.

    1983-01-01

    The microstructure and corrosion behavior of magnetron sputter deposited amorphous metallic films of (Mo6ORu40)82B18 under varying sputtering atmospheres have been investigated. The microstructural details and topology of the films have been studied by scanning electron microscopy and correlated with the deposition conditions. By reducing the pressure of pure argon gas, the characteristic features of rough surface and columnar growth full of vertical voids can be converted into a mirror-smooth finish with very dense deposits. Films deposited in the presence of O2 or N2 exhibit columnar structure with vertical voids. Film deposited in pure argon at low pressure show remarkably high corrosion resistance due to the formation of a uniform passive surface layer. The influence of the microstructure and surface texture on the corrosion behavior is discussed.

  10. Tailoring of magnetic anisotropy in amorphous and nanocrystalline soft magnetic alloys using swift heavy ions

    International Nuclear Information System (INIS)

    Amorphous films of Fe0.85N0.15 and Fe73.9Cu0.9Nb3.1Si 13.2B8.9 have been prepared by using ion-beam sputtering. Magneto-optic Kerr effect (MOKE) and Moessbauer measurement shows that the FeN film has a perpendicular magnetic anisotropy while the finemet film has a uniaxial in-plane anisotropy. The anisotropy in as-deposited state may be attributed to some quenched-in stresses present in the film during deposition. Films have been irradiated with Ag and Au ions of different energies. In both the films, irradiation results in gradual removal of anisotropy and a decrease in coercivity, which may be attributed to relaxation of internal stresses. This demonstrates that swift heavy ions can be used for controlled modification of magnetic properties of thin films

  11. Nanocrystallization behaviour of a ternary amorphous alloy during isothermal annealing: a Monte Carlo simulation

    Institute of Scientific and Technical Information of China (English)

    Jin Shi-Feng; Wang Wei-Min; Zhou Jian-Kun; Guo Hong-Xuan; J.F. Webb; Bian Xiu-Fang

    2005-01-01

    The nanocrystallization behaviour of Zr70Cu20Ni10 metallic glass during isothermal annealing is studied by employing a Monte Carlo simulation incorporating with a modified Ising model and a Q-state Potts model. Based on the simulated microstructure and differential scanning calorimetry curves, we find that the low crystal-amorphous interface energy of Ni plays an important role in the nanocrystallization of primary Zr2Ni. It is found that when T < TImax (where TImax is the temperature with maximum nucleation rate), the increase of temperature results in a larger growth rate and a much finer microstructure for the primary Zr2Ni, which accords with the microstructure evolution in "flash annealing". Finally, the Zr2Ni/Zr2Cu interface energy σG contributes to the pinning effect of the primary nano-sized Zr2Ni grains in the later formed normal Zr2Cu grains.

  12. Synthesis and photocatlytic performance of nano-sized TiO{sub 2} materials prepared by dealloying Ti–Cu–Pd amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jing [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhu, Shengli, E-mail: slzhu@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Xu, Wence; Cui, Zhenduo [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Yang, Xianjin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2015-05-15

    Highlights: • TiO{sub 2} nanospindles were synthesized by dealloying Ti–Cu–Pd amorphous alloy. • Pd significantly enhanced the exposure of high-energy (0 0 1) facet of TiO{sub 2}. • TiO{sub 2} with high-energy (0 0 1) facet showed good photocatalytic activity. - Abstract: TiO{sub 2} nanospindles with exposed (0 0 1) facet were synthesized through a simple dealloying reaction. The rutile photocatalysts were characterized by X-ray diffraction, scanning electron microscope and transmission electron microscope, inductively coupled plasma optical emission spectrometry and ultraviolet–visible spectrophotometer. A Rhodamine B dye (RhB) was used to detect the photocatalytic activity of TiO{sub 2} under full light irradiation. The presence of Pd in the original amorphous alloy reduced the surface free energy of TiO{sub 2}, stabilized the (0 0 1) facet. The Pd8-TiO{sub 2} sample exhibited the largest crystal size along the direction which is perpendicular to the (0 0 1) facet. The photocatalytic degradation rate of RhB was improved due to the Pd addition in the original amorphous alloy. This indicated that the exposure of (0 0 1) facets could enhance the activity of TiO{sub 2} photocatalyst. In addition, the presence of isolated Pd atoms on the surface of TiO{sub 2} would be another probable reason for the improvement of photocatalytic activity.

  13. Phase separation and crystallization process of amorphous Fe{sub 78}B{sub 12}Si{sub 9}Ni{sub 1} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mukhgalin, V. V.; Lad’yanov, V. I. [Department of Structural-Phase Transformations, Physical Technical Institute, Ural Branch of the Russian Academy of Sciences, Kirov street 132, Izhevsk (Russian Federation)

    2015-08-17

    The influence of the melt heat treatment on the structure and crystallization process of the rapidly quenched amorphous Fe{sub 78}B{sub 12}Si{sub 9}Ni{sub 1} alloys have been investigated by means of x-ray diffraction, DSC and TEM. Amorphous phase separation has been observed in the alloys quenched after the preliminary high temperature heat treatment of the liquid alloy (heating above 1400°C). Comparative analysis of the pair distribution functions demonstrates that this phase separation accompanied by a changes in the local atomic arrangement. It has been found that crystallization process at heating is strongly dependent on the initial amorphous phase structure - homogeneous or phase separated. In the last case crystallization goes through the formation of a new metastable hexagonal phase [a=12.2849(9) Ǻ, c=7.6657(8) Ǻ]. At the same time the activation energy for crystallization (Ea) reduces from 555 to 475 kJ mole{sup −1}.

  14. Correlation between isothermal expansion and functional properties change of the Fe81B13Si4C2 amorphous alloy

    Directory of Open Access Journals (Sweden)

    Kalezić-Glišović A.

    2009-01-01

    Full Text Available The structural changes effect on functional properties of ribbon shaped samples of the Fe81B13Si4C2 amorphous alloy during annealing process was investigated in this paper. Differential scanning calorimetry method has shown that this alloy crystallizes in one stage, in temperature range from room temperature up to 700°C. Structural relaxation process was investigated by sensitive dilatation method in nonisothermal and isothermal conditions. It has been shown that structural relaxation process occurs in two stages by measuring thermal expansion at constant temperatures of t1=420°C, t2 = 440°C and t3 = 460°C. The first stage is characterized by linear logarithmic dependence of thermal expansion upon time at constant temperature. The second stage of structural relaxation process is characterized by linear dependence of isothermal expansion upon the square root of process time. These results imply that the first stage of structural relaxation process is a rapid kinetic process, while the second stage of structural relaxation process is a slow diffusion process. The rate constants k11 = 2,27⋅10- 3 s-1, k12 = 2,79⋅10-3 s-1, k13 = 3,6⋅10-3 s-1, k21 = 0,67⋅10-4 s-1, k22 = 3,72⋅10-4 s-1, k23 = 21,53⋅10-4 s-1 and activation energies E1 = 48,64 kJ/mol and E2 = 366, 23 kJ/mol were determined for both stages of structural relaxation process. The distinct correlation between structural relaxation process and magnetic susceptibility relative change was determined by thermomagnetic measurements. It has been shown that magnetic susceptibility can be increased by up to 80%, by convenient annealings after structural relaxation process, at magnetic field intensity of 8 kA/m.

  15. Hydrogen Storage Characteristics of Nanocrystalline and Amorphous Nd-Mg-Ni-Based NdMg12-Type Alloys Synthesized via Mechanical Milling

    Science.gov (United States)

    Zhang, Yanghuan; Shang, Hongwei; Hou, Zhonghui; Yuan, Zeming; Yang, Tai; Qi, Yan

    2016-09-01

    In this study, Mg was partially substituted by Ni with the intent of improving the hydrogen storage kinetics performance of NdMg12-type alloy. Mechanical milling technology was adopted to fabricate the nanocrystalline and amorphous NdMg11Ni + x wt pct Ni (x = 100, 200) alloys. The effects of Ni content and milling duration on the microstructures and hydrogen storage kinetics of as-milled alloys have been systematically investigated. The structures were characterized by XRD and HRTEM. The electrochemical hydrogen storage properties were tested by an automatic galvanostatic system. Moreover, the gaseous hydrogen storage properties were investigated by Sievert apparatus and a differential scanning calorimeter connected with a H2 detector. Hydrogen desorption activation energy of alloy hydrides was estimated by using Arrhenius and Kissinger methods. The results reveal that the increase of Ni content dramatically ameliorates the gaseous and electrochemical hydrogen storage kinetics performance of the as-milled alloys. Furthermore, high rate discharge ability (HRD) reach the maximum value with the variation of milling time. The maximum HRDs of the NdMg11Ni + x wt pct Ni (x = 100, 200) alloys are 80.24 and 85.17 pct. The improved gaseous hydrogen storage kinetics of alloys via increasing Ni content and milling time can be attributed to a decrease in the hydrogen desorption activation energy.

  16. Cu clustering stage before the crystallization in Fe-Si-B-Nb-Cu amorphous alloys

    DEFF Research Database (Denmark)

    Ohnuma, M.; Hono, K.; Onodera, H.;

    1999-01-01

    -enriched clusters. The average diameter and interparticle distance of the Cu-enriched clusters have also been estimated by SANS. An exothermic reaction is observed above the Curie Temperature in the DSC curves of the Fe-Si-B-Nb-Cu alloys. The onset temperature of the exothermic reaction is shifted to lower...... crystallization reaction. The number of the clusters estimated by 3DAP is large enough to provide heterogeneous nucleation sites to all bcc/D0(3) Fe-Si crystals which appear at higher temperatures. This fact indicates that the distribution of nanocrystalline Fe-Si is strongly affected by that of the Cu...

  17. Impact of Ion Irradiation upon Structure and Magnetic Properties of NANOPERM-Type Amorphous and Nanocrystalline Alloys

    Directory of Open Access Journals (Sweden)

    Marcel Miglierini

    2015-01-01

    Full Text Available Structural modifications and their impact upon magnetic properties are studied in amorphous and nanocrystalline NANOPERM-type 57Fe75Mo8Cu1B16 alloy. They are introduced by irradiation with 130 keV N+ ions to the total fluencies of up to 2.5 × 1017 ions/cm2 under different cooling conditions. Increased temperature during the irradiation triggers formation of nanocrystallites of bcc-Fe in those subsurface regions that are affected by bombarding ions. No crystallization occurs when good thermal contact between the irradiated sample and a sample holder is assured. Instead, structural rearrangement which favours development of magnetically active regions was determined by the local probe methods of Mössbauer spectrometry. Dipole magnetic interactions dominate in subsurface regions on that side of the ribbons which was exposed to ion irradiation. Nevertheless, structural modifications demonstrate themselves also via macroscopic magnetic parameters such as temperature dependence of magnetization, Curie temperature, and hysteresis loops. Impact of only the temperature itself to the observed effects is assessed by the help of samples that were subjected just to heat treatment, that is, without ion irradiation.

  18. Interaction of the surface of ribbons of amorphous soft-magnetic alloys with vapor during isothermal holding upon heat treatment

    Science.gov (United States)

    Skulkina, N. A.; Ivanov, O. A.; Pavlova, I. O.; Minina, O. A.

    2015-11-01

    The effect of in-air heat treatment in combination with water vapor on the magnetization distribution and magnetic properties has been investigated based on the example of ribbons of amorphous soft-magnetic alloys Fe77Ni1Si9B13 and Fe81B13Si4C2 with positive magnetostriction. The results of the investigation showed the temperature lag of the dependence of the maximum magnetic permeability and of relative volume of domains with orthogonal magnetization on the isothermal-holding temperature. This effect can be associated with the inhibition of processes of surface crystallization by hydrogen and oxygen atoms introduced into the ribbon surface. Distinctive features of the heat treatment with and without vapor on the magnetization distribution in the ribbon plane that are explained within the theory of directed ordering with allowance for the processes of crystallization at the cooling stage have been found. This demonstrates the importance of the contribution of diffusion processes at this stage of treatment to the formation of the level of magnetic properties. It has been shown that the interaction of the ribbon surface with water vapor is not physical adsorption. Interaction with atmospheric gases is carried out by dispersion forces and exerts an influence on the magnetization distribution in the ribbon plane and maximum magnetic permeability.

  19. Development of plastic elongation in nanocrystalline and amorphous Ni–W dual phase alloys by brushing technique

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, S., E-mail: 00sm.uk0806@gmail.com; Adachi, H., E-mail: adachi@eng.u-hyogo.ac.jp; Yamasaki, T., E-mail: yamasaki@eng.u-hyogo.ac.jp

    2015-09-15

    Highlights: • A novel agitation technique called the brushing technique is proposed. • A homogeneous material can be obtained with the brushing technique. • The brushed material exhibits large plastic elongation with work hardening. - Abstract: A novel agitation technique, referred to as the “brushing technique” is proposed to treat the surface of a Ni–W alloy film during electrodeposition. This technique was developed to directly remove hydrogen bubbles on the film surface and to apply Ni ions to the interfacial layer with the substrate. The intrinsic mechanical properties of the Ni–W electrodeposits are then evaluated with respect to application. High resolution transmission electron microscopy observations revealed that both treated and untreated films have nanocrystallites of approximately 5 nm in diameter and an amorphous phase. There was a compositional difference of about. 1.4 at% W between the face side and the reverse side of the film that was not subjected to the brushing technique, whereas this difference was absent in the film subjected to the brushing technique. In addition, the brushing technique reduced the surface roughness of the film and decreased the number of defects. As a result, a large plastic strain of about. 2.9% was observed with work hardening under tensile testing.

  20. Structural and magnetic changes in FeNbCuSiB amorphous alloys during the crystallization process

    International Nuclear Information System (INIS)

    Calorimetric and magnetic measurements, x-ray powder diffraction and Moessbauer spectroscopy have been used to study the magnetic and structural changes occurring after each of the two steps of crystallization that take place in FeNbCuSiB-type alloys. Two samples with different boron and silicon concentrations, Fe73.5Nb3Cu1Si22.5-xBx (x=6, 9), have been studied. They give a somewhat different composition of the crystalline phases appearing after crystallization processes. The most noticeable phenomenon is the observed increase of about 50 K in the Curie temperature of the FeSi crystalline phase between the end of the first crystallization process and the end of the second one, although the composition of this phase remains unchanged. This result is discussed in terms of crystal boundary effects. Also, the Curie temperature of the remaining amorphous phase, in the crystallized samples, is greater than the expected one, due to the coupling with magnetic phases with higher Curie points and inhomogeneities in such a phase. (author)

  1. Thermal activation analysis of the structural and phase transformations in the Zr-Cu-Nb amorphous alloy

    Directory of Open Access Journals (Sweden)

    Fedotova N.L.

    2011-05-01

    Full Text Available In the present work, the procedure of the estimation of the thermal activation parameters from the data of dilatometric measurements and the results of its application to the Zr-Cu-Nb amorphous alloy discussed. The determination of the thermal activation parameters of the processes occurring in materials under known temperature-force conditions can be useful for the identification of the structural mechanisms of phase transformations and the evolution of defect structure. We used the data of dilatometric measurements for evaluating the effective activation energy. This method exhibits some advantages over the conventional one due to the design features of dilatometers. First, it ensures the precise measurement of strains; second, the assigned temperature regime is very precisely maintained both at the stage of heating and upon isothermal holding; third, it ensures a high-speed continuous record of the experimental data. The developed method of evaluating the effective activation energy from the results of dilatometric experiments provides statistically reliable results. The data of the photometric analysis of structure images are in accordance with the results of dilatometric experiments

  2. Atomic simulation of mechanical behavior of Mg in a super-lattice of nanocrystalline Mg and amorphous Mg-Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Song, H. Y., E-mail: gsfshy@sohu.com [School of Aeronautics, Northwestern Polytechnical University, Xi' an 710072 (China); College of Material Science and Engineering, Xi' an Shiyou University, Xi' an 710065 (China); An, M. R.; Li, Y. L., E-mail: liyulong@nwpu.edu.cn; Deng, Q. [School of Aeronautics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-12-07

    The mechanical properties of a super-lattice architecture composed of nanocrystalline Mg and Mg-Al amorphous alloy are investigated using molecular dynamics simulation. The results indicate that deformation mechanism of nanocrystalline Mg is obviously affected by the amorphous boundary spacing and temperature. The strength of the material increases with the decrease of amorphous boundary spacing, presenting a Hall-Petch effect at both 10 K and 300 K. A stress platform and following stiffness softening, as well as a linear strengthening in the plastic stage, are observed when the amorphous boundary spacing below 8.792 nm at 10 K. The implying reason may be that the amorphous boundary acts as the dislocations emission and absorption source. However, the second stress peak is not observed for the models at 300 K. Instead, the flow stress in plastic stage is a nearly constant value. The simulation demonstrates the emergence of the new grain, accompanied by the deformation twins and stacking faults associated with the plastic behaviors at 300 K. The general conclusions derived from this work may provide a guideline for the design of high-performance hexagonal close-packed metals.

  3. Strain Rate Induced Amorphization in Metallic Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Y.; Cagin, T.; Goddard, W.A. III [Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States); Ikeda, H.; Samwer, K.; Johnson, W.L. [Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, California 91125 (United States)

    1999-04-01

    Using molecular dynamics simulations with a many-body force field, we studied the deformation of single crystal Ni and NiCu random alloy nanowires subjected to uniform strain rates but kept at 300thinspthinspK. For all strain rates, the Ni nanowire is elastic up to 7.5{percent} strain with a yield stress of 5.5thinspthinspGPa, far above that of bulk Ni. At high strain rates, we find that for both systems the crystalline phase transforms continuously to an amorphous phase, exhibiting a dramatic change in atomic short-range order and a near vanishing of the tetragonal shear elastic constant perpendicular to the tensile direction. This amorphization which occurs directly from the homogeneous, elastically deformed system with no chemical or structural inhomogeneities exhibits a new mode of amorphization. {copyright} {ital 1999} {ital The American Physical Society}

  4. An overview of uncooled infrared sensors technology based on amorphous silicon and silicon germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Roberto; Mireles, Jose Jr. [Technology and Engineering Institute, Ciudad Juarez University UACJ, Av. Del Charro 450N, 32310 Chihuahua (Mexico); Moreno, Mario; Torres, Alfonso; Kosarev, Andrey [National Institute for Astrophysics Optics and Electronics INAOE, Luis E. Erro 1, PO Box 51 and 216, 7200 Puebla (Mexico); Heredia, Aurelio [Universidad Popular Autonoma del Estado de Puebla, 21 sur 1103 Col. Santiago, 72160 Puebla (Mexico)

    2010-04-15

    At the present time there are commercially available large un-cooled micro-bolometer arrays (as large as 1024 x 768 pixels) for a variety of thermal imaging applications. Different thermo-sensing materials have been employed as thermo sensing elements as Vanadium Oxide (VO{sub x}), metals, and amorphous and polycrystalline semiconductors. Those materials present good characteristics but also have some disadvantages. As a consequence none of the commercially available arrays contain optimum pixels with an optimum thermo-sensing material. This paper reviews the development of the un-cooled bolometer technology and the research achievements on this area, with special attention on the key factors that would lead to improve the pixels performance characteristics. The work considers the R and D of microbolometer arrays and the integration with MEMS and IC technologies. A comparative study with the state of the art and data reported in literature is presented. Finally, further directions of uncooled bolometer based in thin films materials are also discussed in this paper. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Magnetic characterisation of large grain, bulk Y–Ba–Cu–O superconductor–soft ferromagnetic alloy hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, M.P., E-mail: M.Philippe@ulg.ac.be [SUPRATECS and Department of Electrical Engineering and Computer Science (B28), University of Liège, 4000 Liège (Belgium); Fagnard, J.-F.; Kirsch, S. [SUPRATECS and Department of Electrical Engineering and Computer Science (B28), University of Liège, 4000 Liège (Belgium); Xu, Z.; Dennis, A.R.; Shi, Y.-H.; Cardwell, D.A. [Bulk Superconductivity Group, Engineering Department, University of Cambridge, Cambridge CB2 1PZ (United Kingdom); Vanderheyden, B.; Vanderbemden, P. [SUPRATECS and Department of Electrical Engineering and Computer Science (B28), University of Liège, 4000 Liège (Belgium)

    2014-07-15

    Highlights: • Large grain, bulk YBaCuO superconductor (SC) combined with ferromagnetic elements. • The flux lines curve outwards through the ferromagnet in the remanent state. • The trapped field in the SC is enhanced by the presence of the ferromagnet. • The effects of the SC and the ferromagnet add when the ferromagnet is saturated. - Abstract: Large grain, bulk Y–Ba–Cu–O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell’s algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the

  6. PREPARATION AND ACTIVATION OF RAPIDLY SOLIDIFIED Ni-Zr-Al AMORPHOUS ALLOY FOR CATALYTIC PURPOSE%快速凝固Ni-Zr-Al非晶态催化合金的制备与活化处理

    Institute of Scientific and Technical Information of China (English)

    张国胜; 张海峰; 沈宁福

    1999-01-01

    @@ As new catalytic materials, amorphous alloys have attracted much attention since 1980s. Rapid solidification is one of the main techniques to prepare amorphous alloys.However, as-cast rapidly solidified alloys usually can not be directly used as the catalyst for their poor surface area, oxide film on their surface, etc. Therefore, activation pretreatment must be carried out. Recently, leaching aluminum has been attempted to activate rapidly solidified amorphous catalytic alloys containing aluminum. In order to carry out such an activation pretreatment, the Al-rich amorphous precursor alloys must be obtained first, in which the content of active component must be sufficiently high so that the catalytic activity of the activated catalyst can be attained. On the other hand, the chemical composition of the precursor must approach eutectic point or contribute to the range of low liquidus temperature so that the glass transition can be easily achieved according to the solidification theory[1]. So far Al-based alloys which meet the dual confinement have not been found yet. For Ni-Al and Cu-Al systems,only the microcrystalline alloys can be obtained through rapid solidification[2,3].In the present study, glass formation was achieved by introducing promotion elements in Ni-Al system precursor alloys.

  7. High thermal shock resistance of the hot rolled and swaged bulk W-ZrC alloys

    Science.gov (United States)

    Xie, Z. M.; Liu, R.; Miao, S.; Yang, X. D.; Zhang, T.; Fang, Q. F.; Wang, X. P.; Liu, C. S.; Lian, Y. Y.; Liu, X.; Luo, G. N.

    2016-02-01

    The thermal shock (single shot) resistance and mechanical properties of the W-0.5wt% ZrC (WZC) alloys manufactured by ordinary sintering followed by swaging or rolling process were investigated. No cracks or surface melting were detected on the surface of the rolled WZC alloy plates after thermal shock at a power density of 0.66 GW/m2 for 5 ms, while primary intergranular cracks appear on the surface of the swaged WZC samples after thermal shock at a power density of 0.44 GW/m2 for 5 ms. Three point bending tests indicate that the rolled WZC alloy has a flexural strength of ˜2.4 GPa and a total strain of 1.8% at room temperature, which are 100% and 260% higher than those of the swaged WZC, respectively. The fracture energy density of the rolled WZC alloy is 3.23 × 107 J/m3, about 10 times higher than that of the swaged WZC (2.9 × 106 J/m3). The high thermal shock resistance of the rolled WZC alloys can be ascribed to their extraordinary ductility and plasticity.

  8. Protective properties and structure of amorphous alumosilicophosphate coatings for niobium alloys

    International Nuclear Information System (INIS)

    Results of thermal tests of niobium alloy samples with a protective coating in gas media with different content of oxygen are presented. Microhardness of the metal under the coating and of the coating as such prior to and after thermal testing was studied. Near the contact areas of the metal and coating were studied using electron microscopy, X-ray diffraction microprobe and X-ray phase analyses. Information on the structure, elementary and phase compositions of the near the contact areas was obtained. The processes occurring during formation and subsequent long-term annealing of the coating, which give rise to structural changes in the coating providing its adhesion to substrate and high protective efficiency, were interpreted

  9. Preparation of Zr50Al15−Ni10Cu25Y amorphous powders by mechanical alloying and thermodynamic calculation

    Indian Academy of Sciences (India)

    Woyun Long; Anxian Lu; Jing Li

    2013-12-01

    Amorphous Zr50Al15−Ni10Cu25Y powders were fabricated by mechanical alloying at a low rotation speed from commercial pure element powders. The beneficial effect of Al partially substituted by Y in Zr50Al15Ni10Cu25 on glass-forming ability was investigated. The as-milled powders were characterized by X-ray diffraction and transmission electron microscopy. The results show that partial substitution of Al by Y can improve the glass-forming ability of Zr50Al15Ni10Cu25 alloy. Thermodynamic calculation of equivalent free energy shows that Zr50Al13.8Ni10Cu25Y1.2 alloy has the highest glass-forming ability, which is in good agreement with the report of orthogonal experiments.

  10. Characteristics of bulk liquid undercooling and crystallization behaviors of jet electrodeposition Ni–W–P alloy

    Indian Academy of Sciences (India)

    J K Yu; Y H Wang; G Z Xing; Q Qiao; B Liu; Z J Chu; C L Li; F You

    2015-02-01

    The undercooling of Ni–W– P ternary alloy coating melt was investigated by in situ differential scanning calorimeter (DSC) with the flux processing technique. The results showed that the highest undercooling of Ni–W–P ternary alloy with 359 K was obtained as the thermal treatment temperature of themelt being 1679 K and the cooling rate being 50 K min-1. When cooling rate is fixed, the change of undercooling depends on the melt processing temperature, and the undercooling will increase rapidly at the first stage. The effects of thermal treatment temperature and cooling rates on the undercooling were discussed.

  11. Surface and bulk characterization of molten In and In-Sn alloys

    OpenAIRE

    Ricci E; Novakovic R.; Montanari R.; Giuranno D.; Gauzzi F.; Varone A.

    2011-01-01

    In this work a double contribution to the characterization of molten In and In-Sn alloys considered as main components of an important class of lead free solder materials is shown: the study of the influence of oxygen on the capillary phenomena and the XRD investigation of the structure of liquid in a range of temperatures around that of liquidus. The surface tension behaviour of In-Sn binary alloys at different compositions, in terms of effective oxygen pressure, were compared with the...

  12. Electrochemical characteristics of nanocrystalline and amorphous Mg-Y-Ni-based Mg{sub 2}Ni-Type alloys prepared by mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanghuan [Inner Mongolia Univ. of Science and Technology, Baotou (China). Key Lab. of Integrated Exploitation of Baiyun Obo Multi-Metal Resources; Central Iron and Steel Research Institute, Beijing (China). Dept. of Functional Material Research; Yuan, Zeming; Yang, Tai; Qi, Yan [Central Iron and Steel Research Institute, Beijing (China). Dept. of Functional Material Research; Hou, Zhonghui [Inner Mongolia Univ. of Science and Technology, Baotou (China). Key Lab. of Integrated Exploitation of Baiyun Obo Multi-Metal Resources

    2015-04-15

    Nanocrystalline and amorphous Mg{sub 2}Ni-type Mg{sub 20-x}Y{sub x}Ni{sub 10} (x = 0, 1, 2, 3 and 4) electrode alloys were prepared by mechanical milling. The structures of the as-cast and milled alloys were determined by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The electrochemical hydrogen storage performances of the alloys were tested by an automatic galvanostatic system. The electrochemical impedance spectra, Tafel polarization curves and potential-step curves were plotted by an electrochemical workstation. The results indicate that a nanocrystalline structure can successfully be obtained through mechanical milling. The substitution of Y for Mg facilitates glass forming and leads to an obvious change in the phase composition. The substitution of Y for Mg dramatically improves the cycle stability of the as-milled alloys, while the mechanical milling more or less impairs the cycle stability of the alloys. The discharge capacity of the alloys first augments and then declines with increasing Y content and milling time. Furthermore, the high rate discharge ability, charge transfer rate, limiting current density and diffusion coefficient of hydrogen atomic all decrease with Y content and milling time increasing.

  13. Is Cu60Ti10Zr30 a bulk glass-forming alloy?

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Saida, J.; Kato, H.;

    2003-01-01

    and high-resolution transmission electron microscopy. Surprisingly, we found that the alloy in both geometries contains cubic nanometer-sized crystals of about 5-7 nm in diameter with a lattice parameter of 0.45 nm for ribbons and 7-15 nm in diameter with a lattice parameter of 0.42 nm for rods...

  14. Surface and bulk characterization of molten In and In-Sn alloys

    Directory of Open Access Journals (Sweden)

    Ricci E.

    2011-05-01

    Full Text Available In this work a double contribution to the characterization of molten In and In-Sn alloys considered as main components of an important class of lead free solder materials is shown: the study of the influence of oxygen on the capillary phenomena and the XRD investigation of the structure of liquid in a range of temperatures around that of liquidus. The surface tension behaviour of In-Sn binary alloys at different compositions, in terms of effective oxygen pressure, were compared with the data of pure In and the theoretical predictions, revealing that the lower oxidizability of indium was shown to control indium–tin alloys with a tin content up to about 80 at% , due to the presence of the most volatile oxide In2O. From the XRD spectra the radial distribution functions (RDF have been determined for each alloys. Experiments of High Temperature X-ray diffraction (HT-XRD showed that atomic clustering forms in the melt immediately before the appearing of the first solid. The structure of clusters is correlated to that of solid.

  15. Formation and investigation of the structure and mechanical properties of bulk metallic glassy composite (Ti-Zr)-(Cu-Ni-Co) alloys with the addition of Boron

    Energy Technology Data Exchange (ETDEWEB)

    Zadorozhnyy, V.Yu., E-mail: vuz@wpi-aimr.tohoku.ac.jp [WPI Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Inoue, A.; Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2012-12-15

    (Ti-Zr)-(Cu-Ni-Co) bulk metallic alloys containing 1000 mass ppm of boron were investigated in the present work. Taking compositional formula (Ti-Zr){sub 49.5+x}(Cu-Ni){sub 49.5-x}Co{sub 1} as a basis, we increased the content of Ti and Zr elements and decreased the content of Cu and Ni with the purpose of production of crystal-glassy composites. Such a kind of approach may allow combination of high strength of glassy alloys and good plasticity of crystalline alloys in these composite materials. According to this approach a large number of the alloys of different composition and different diameters were prepared and investigated. Some of the prepared bulk glassy-crystal composite samples showes rather good properties: the compressive strength of 1800-2500 MPa and compressive plasticity up to 13.5%.

  16. Mechanical properties and structure of zirconia-mullite ceramics prepared by in-situ controlled crystallization of Si-Al-Zr-O amorphous bulk

    Institute of Scientific and Technical Information of China (English)

    LIANG Shu-quan; ZHONG Jie; TAN Xiao-ping; TANG Yan

    2008-01-01

    Zirconia-mullite nano-composite ceramics were fabricated by in-situ controlled crystallization of Si-Al-Zr-O amorphous bulk, which were first treated at 900-1 000 ℃ for nucleation, then treated at higher temperature for crystallization to obtain ultra-fine zirconia-mullite composite ceramics. The effects of treating temperature and ZrO2 addition on mechanical properties and microstructure were analyzed. A unique structure in which there are a lot of near equiaxed t-ZrO2 grains and fine yield-cracks has been developed in the samples with 15% zirconia addition treated at 1 150 ℃. This specific microstructure is much more effective in toughening ceramics matrix and results in the best mechanical properties. The flexural strength and fracture toughness are 520 MPa and 5.13 MPa·m1/2, respectively. Either higher zirconia addition or higher crystallization temperature will produce large size rod-like ZrO2 and mullite grains, which are of negative effect on mechanical properties of this new composite ceramics.

  17. Magnetism and half-metallicity in bulk Ti{sub 2}CoSn Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadian, F., E-mail: farzad.ahmadian@gmail.com

    2013-11-05

    Highlights: •The Ti{sub 2}CoSn Heusler alloy has HM nature at the equilibrium volume. •The minority spin and spin-flip gaps are equal to 0.87 eV and 0.47 eV, respectively. •The M{sub tot} of Ti{sub 2}CoSn was obtained 3μ{sub B} which is in agreement with Slater–Pauling rule. •The Ti{sub 2}CoSn Heusler alloy maintains the HM nature between 5.68 and 7.02 Å. •The InSb and CdTe are suitable substrates for growing the Ti{sub 2}CoSn Heusler alloy. -- Abstract: Electronic structure calculations based on density functional (DFT) theory within the generalized gradient approximation (GGA) for the Ti{sub 2}CoSn Heusler compound have been performed using the self-consistent full-potential linearized augmented plane wave (FPLAPW) method. The Ti{sub 2}CoSn Heusler alloy was predicted to be a complete half-metal. The total magnetic moment of Ti{sub 2}CoSn was obtained 3μ{sub B} per formula unit for the equilibrium lattice parameter which is in agreement with Slater–Pauling rule M{sub tot} = Z{sub tot}−18. The minority spin and spin-flip gaps were calculated equal to 0.87 eV and 0.47 eV, respectively. The spin–orbit interaction has a negligible contribution to the half-metallic and magnetic properties of Ti{sub 2}CoSb alloy. In addition, the band structure and density of states (DOSs) were studied and the origin of minority band gap was also discussed. The Ti{sub 2}CoSn Heusler alloy maintains the half-metallic characteristic for lattice constants between 5.68 and 7.02 Å leading to be an interesting material in the field of spintronics.

  18. Corrosion behaviour of amorphous Ti48Cu52, Ti50Cu50 and Ti60Ni40 alloys investigated by potentiodynamic polarization method

    Indian Academy of Sciences (India)

    A Dhawan; S Roychowdhury; P K De; S K Sharma

    2003-10-01

    Potentiodynamic polarization studies were carried out on virgin specimens of amorphous alloys Ti48Cu52, Ti50Cu50 and Ti60Ni40 in 0.5 M HNO3, 0.5 M H2SO4 and 0.5 M NaOH aqueous media at room temperature. The value of the corrosion current density (corr) was maximum for Ti48Cu52 alloy in all the three aqueous media as compared to the remaining two alloys. The value of corr for the alloy Ti48Cu52 was maximum (corr = 2.6 × 10-5 A/cm2) in 0.5 M H2SO4 and minimum (corr = 3.5 × 10-6 A/cm2) in 0.5 M NaOH aqueous solutions. In contrast, the alloy Ti60Ni40 exhibited the least corrosion current density in 0.5 M HNO3 (corr = 4.0 × 10-7 A/cm2) and in 0.5 M NaOH (corr = 5.5 × 10-7 A/cm2) aqueous media as compared to those for Ti–Cu alloys, while its value in 0.5 M H2SO4 was comparable to that for Ti50Cu50. It is suggested that the alloy Ti60Ni40 is more corrosion resistant than the alloys Ti48Cu52 and Ti50Cu50 in all the three aqueous media.

  19. Flow and Fracture of Bulk Metallic Glass Alloys and their Composites

    Energy Technology Data Exchange (ETDEWEB)

    Flores, K M; Suh, D; Howell, R; Asoka-Kumar, P; Dauskardt, R H

    2001-06-20

    The fracture and plastic deformation mechanisms of a Zr-Ti-Ni-Cu-Be bulk metallic glass and a composite utilizing a crystalline reinforcement phase are reviewed. The relationship between stress state, free volume and shear band formation are discussed. Positron annihilation techniques were used to confirm the predicted increase in free volume after plastic straining. Strain localization and failure were examined for a wide range of stress states. Finally, methods for toughening metallic glasses are considered. Significant increases in toughness are demonstrated for a composite bulk metallic glass containing a ductile second phase which stabilizes shear band formation and distributes plastic deformation.

  20. Changes in cluster magnetism and suppression of local superconductivity in amorphous FeCrB alloy irradiated by Ar+ ions

    Science.gov (United States)

    Okunev, V. D.; Samoilenko, Z. A.; Szymczak, H.; Szewczyk, A.; Szymczak, R.; Lewandowski, S. J.; Aleshkevych, P.; Malinowski, A.; Gierłowski, P.; Więckowski, J.; Wolny-Marszałek, M.; Jeżabek, M.; Varyukhin, V. N.; Antoshina, I. A.

    2016-02-01

    We show that cluster magnetism in ferromagnetic amorphous Fe67Cr18B15 alloy is related to the presence of large, D=150-250 Å, α-(Fe Cr) clusters responsible for basic changes in cluster magnetism, small, D=30-100 Å, α-(Fe, Cr) and Fe3B clusters and subcluster atomic α-(Fe, Cr, B) groupings, D=10-20 Å, in disordered intercluster medium. For initial sample and irradiated one (Φ=1.5×1018 ions/cm2) superconductivity exists in the cluster shells of metallic α-(Fe, Cr) phase where ferromagnetism of iron is counterbalanced by antiferromagnetism of chromium. At Φ=3×1018 ions/cm2, the internal stresses intensify and the process of iron and chromium phase separation, favorable for mesoscopic superconductivity, changes for inverse one promoting more homogeneous distribution of iron and chromium in the clusters as well as gigantic (twice as much) increase in density of the samples. As a result, in the cluster shells ferromagnetism is restored leading to the increase in magnetization of the sample and suppression of local superconductivity. For initial samples, the temperature dependence of resistivity ρ(T)~T2 is determined by the electron scattering on quantum defects. In strongly inhomogeneous samples, after irradiation by fluence Φ=1.5×1018 ions/cm2, the transition to a dependence ρ(T)~T1/2 is caused by the effects of weak localization. In more homogeneous samples, at Φ=3×1018 ions/cm2, a return to the dependence ρ(T)~T2 is observed.

  1. Theoretical investigation of the electronic structures and magnetic properties of the bulk and surface (001) of the quaternary Heusler alloy NiCoMnGa

    Energy Technology Data Exchange (ETDEWEB)

    Al-zyadi, Jabbar M. Khalaf, E-mail: Jabbar_alzyadi@yahoo.com [Department of Physics, College of Education, University of Basrah, Basrah 6100 (Iraq); Gao, G.Y. [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Yao, Kai-Lun [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); International Center of Materials Physics, Chinese Academy of sciences, Shenyang 110015 (China)

    2015-03-15

    In this paper, we study the electronic structures, magnetic properties, and half-metallicity of the bulk and (001) surface of Heusler alloy NiCoMnGa. Our first-principles calculations exhibit that, within the generalized gradient approximation (GGA) of the electronic exchange–correlation functional, the quaternary Heusler alloy NiCoMnGa is a half-metallic ferromagnet at the equilibrium lattice constant of 5.795 Ǻ with a total spin magnetic moment of 5 μ{sub B} per formula unit. The calculated total atomic magnetic moment follows the Slater–Pauling rule. At the same equilibrium lattice constant, the half-metallicity confirmed in the bulk NiCoMnGa, is destroyed at both MnGa- and NiCo-terminated (001) surfaces and subsurfaces. Based on the magnetic property calculations, the magnetic moments of Co, Mn, and Ga atoms at the NiCo- and MnGa-terminated surfaces increase with respect to the corresponding bulk values while the atomic magnetic moment of Ni at the NiCo-terminated surface decreases. - Highlights: • The bulk NiCoMnGa quaternary-Heusler alloy is found to be a half-metallic ferromagnet. • Surface studies show that the half-metallicity of bulk NiCoMnGa is destroyed. • The magnetic moments are increased (decreased) at the (001) surface. • The quaternary-Heusler alloy follows a Slater–Pauling behavior.

  2. Effect of amorphous Mg{sub 50}Ni{sub 50} on hydriding and dehydriding behavior of Mg{sub 2}Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D., E-mail: danny.guzman@uda.cl [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama y Centro Regional de Investigacion y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapo (Chile); Ordonez, S. [Departamento de Ingenieria Metalurgica, Facultad de Ingenieria, Universidad de Santiago de Chile, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Fernandez, J.F.; Sanchez, C. [Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco 28049, Madrid (Spain); Serafini, D. [Departamento de Fisica, Facultad de Ciencias, Universidad de Santiago de Chile and Center for Interdisciplinary Research in Materials, CIMAT, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Rojas, P.A. [Escuela de Ingenieria Mecanica, Facultad de Ingenieria, Av. Los Carrera 01567, Quilpue, Pontificia Universidad Catolica de Valparaiso, PUCV (Chile); Aguilar, C. [Departamento de Ingenieria Metalurgica y Materiales, Universidad Tecnica Federico Santa Maria, Av. Espana 1680, Valparaiso (Chile); Tapia, P. [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama, Av. Copayapu 485, Copiapo (Chile)

    2011-04-15

    Composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50} was prepared by mechanical milling starting with nanocrystalline Mg{sub 2}Ni and amorphous Mg{sub 50}Ni{sub 50} powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg{sub 50}Ni{sub 50} improved the hydriding and dehydriding kinetics of Mg{sub 2}Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: {yields} First study of the hydriding behavior of composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50}. {yields} Microstructural characterization of composite material using XRD and SEM was obtained. {yields} An improved effect of Mg{sub 50}Ni{sub 50} on the Mg{sub 2}Ni hydriding behavior was verified. {yields} The apparent activation energy for the hydrogen desorption of composite was obtained.

  3. Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Highlights: ► We prepare a perfect dense and smooth amorphous nitride high entropy film. ► The formation mechanism has been discussed based on thermodynamic theory. ► The hardness and Young’s modulus of the film can reach to 12 and 166 GPa. ► We discuss the effects of N2 flow ratios. - Abstract: The multicomponent amorphous nitride films of FeCoNiCuVZrAl high-entropy alloy were deposited by direct current magnetron sputtering in the mixture atmosphere of Ar and N2. The systematical investigations demonstrate that the chemical composition, microstructure, and mechanical properties of the amorphous films intimately rely on the concentration of N2 in the atmosphere mixture. When N2 flow ratio increases from 0% to 50%, the thickness of the films decreases, whereas the roughness firstly decreases and then increases. At the N2 flow ratio of 30%, a perfect dense and smooth amorphous nitride film could be achieved. While the hardness and Young’s modulus of the film reach the maximum values of 12 and 166 GPa, respectively

  4. Study on glass-forming ability and hydrogen storage properties of amorphous Mg60Ni30La10−xCox (x = 0, 4) alloys

    International Nuclear Information System (INIS)

    Mg60Ni30La10−xCox (x = 0, 4) amorphous alloys were prepared by rapid solidification, using a melt-spinning technique. X-ray diffraction and differential scanning calorimetry analysis were employed to measure their microstructure, thermal stability and glass-forming ability, and hydrogen storage properties were studied by means of PCTPro2000. Based on differential scanning calorimetry results, their glass-forming ability and thermal stability were investigated by Kissinger method, Lasocka curves and atomic cluster model, respectively. The results indicate that glass-forming ability, thermal properties and hydrogen storage properties in the Mg-rich corner of Mg–Ni–La–Co system alloys were enhanced by Co substitution for La. It can be found that the smaller activation energy (ΔΕ) and frequency factor (υ0), the bigger value of B (glass transition point in Lasocka curves), and higher glass-forming ability of Mg–Ni–La–Co alloys would be followed. In addition, atomic structure parameter (λ), deduced from atomic cluster model is valuable in the design of Mg–Ni–La–Co system alloys with good glass-forming ability. With an increase of Co content from 0 to 4, the hydrogen desorption capacity within 4000 s rises from 2.25 to 2.85 wt.% at 573 K. - Highlights: • Amorphous Mg60Ni30La10−xCox (x = 0 and 4) alloys were produced by melt spinning. • The GFA and hydrogen storage properties were enhanced by Co substitution for La. • With an increase of Co content, the hydrogen desorption capacity rises at 573 K

  5. Synthesis, characterization and understanding of the mechanisms of electroplating of nanocrystalline–amorphous nickel–tungsten alloys using in situ electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Majid; Guinel, Maxime J-F., E-mail: maxime.guinel@upr.edu

    2013-10-15

    Highlights: •Nanocrystalline–amorphous Ni–W alloys were electro co-deposited. •A better understanding of the co-deposition mechanisms was achieved. •The in situ EIS results were modeled and simulated to an equivalent circuit. •The deposited films were characterized using SEM, XRD and HRTEM. -- Abstract: In this study, a series of Nickel (Ni)–Tungsten (W) alloys were electrodeposited onto copper (Cu) substrates using electroplating baths and tri-sodium citrate (Na{sub 3}C{sub 6}H{sub 5}O{sub 7}) as the complex agent. The electro co-deposition of Ni–W alloys was carried out by varying several important experimental parameters: the tungstate ion [WO{sub 4}]{sup 2-} concentration, the bath temperature and the speed of stirring. Potentio-dynamic polarization and in-situ electrochemical impedance spectroscopy (EIS) techniques were used as electroplating methods to study the processes. The phases present in the films were identified using powder X-ray diffraction (XRD) and electron diffraction (ED). The films were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and their elemental compositions determined using X-ray energy dispersive spectrometry (XEDS). The electrodeposited films were found to be a mixture of amorphous and nanocrystalline Ni–W. This study has allowed us to reach a better understanding of the complex mechanisms and effective parameters of co-deposition of Ni and W using citrate ions complex baths.

  6. Hot-press sintering of MA Fe-based nanocrystalline/amorphous soft magnetic powder

    Institute of Scientific and Technical Information of China (English)

    卢斌; 易丹青; 严彪; 殷俊林; 刘会群; 吴标理; 陈小丽

    2004-01-01

    Microstructures and magnetic properties of Fe84 Nb7 B9, Fe80 Ti8 B12 and Fe32 Ni36 (Nb/Ⅴ) 7 Si8 B17 powders and their bulk alloys prepared by mechanical alloying(MA) method and hot-press sintering were studied. The results show that: 1) After MA for 20 h, nanocrystalline bcc single phase supersaturated solid solution forms in Fe84-Nb7 B9 and Fe8o Ti8 B12 alloys, amorphous structure forms in Fe32 Ni36 Nb7 Si8 B17 alloy, duplex microstructure composed of nanocrystalline γ-(FeNi) supersaturated solid solution and trace content of Fe2B phase forms in Fe32 Ni36-V7 Si8 B17 alloy. 2) The decomposition process of supersaturated solid solution phases in Fe84 Nb7 B9 and Fe80 Ti8 B12alloys happens at 710 -780 ℃, crystallization reaction in Fe32 Ni36 Nb7 Si8 B17 alloy happens at 530 ℃ (the temperature of peak value) and residual amorphous crystallized further happens at 760 ℃ (the temperature of peak value), phase decomposition process of supersaturated solid solution at 780 ℃ (the temperature of peak value) and crystallization reaction at 431 ℃ (the temperature of peak value) happens in Fe32 Ni36 V7Si8B17 alloy. 3) under 900 ℃, 30 MPa,0.5 h hot-press sintering conditions, bulk alloys with high relative density(94.7%- 95.8%) can be obtained. Except that the grain size of Fe84 Nb7B9 bulk alloy is large, superfine grains (grain size 50 - 200 nm) are obtained in other alloys. Except that single phase microstructure is obtained in Fe80 Ti8B12 bulk alloy, multi-phase microstructures are obtained in other alloys. 4) The magnetic properties of Fe80 Ti8 B12 bulk alloy(Bs = 1.74 T, Hc = 4.35 kA/m) are significantly superior to those of other bulk alloys, which is related to the different phases of nanocrystalline or amorphous powder formed during hot-press sintering process and grain size.

  7. The study of structural relaxation kinetics in amorphous alloy Fe73.5Nb3Cu1Si13.5B9 using Curie temperature measurements

    International Nuclear Information System (INIS)

    The structural relaxation and the initial stage of crystallization of rapidly quenched finemet-type Fe73.5Nb3Cu1Si13.5B9 alloy were studied using both continuous heating and isothermal differential scanning calorimetry (DSC). It is found that Curie temperature of amorphous phase TcA increases with the annealing temperature, as well as with an increase in the heat treatment duration. The crystallization process starts at 460 deg. C. The microstructural evolution and the redistribution of elements were investigated by DSC, thermomagnetic analysis, Moessbauer spectroscopy and X-ray diffraction methods. The pre-crystallization process results in the changes of hyperfine interactions in the amorphous phase, which are caused by clustering during the relaxation process

  8. Structure transformation and elements redistribution at heating of Fe73.5Nb3Cu1Si13.5B9 amorphous alloy

    International Nuclear Information System (INIS)

    The evolution of structure and elements redistribution in rapidly quenched Finemet-type Fe73.5Nb3Cu1Si13.5B9 alloy at heat treatments were investigated by differential scanning calorimetry (DSC), thermomagnetic analysis, Moessbauer spectroscopy (MS), and X-ray diffraction methods. The effect of the structural relaxation on the Curie point of amorphous phase (TcA) has been studied using DSC and magnetic measurements. Using both heating and isothermal DSC scanning modes, we found that TcA value increases with the treatment temperature, as well as with the increase of the treatment duration. MS analysis shows that the pre-crystallization process results in the changes of fine structure of amorphous phase spectra, which are caused by the components redistribution during the relaxation process, resulting in the Cu-rich clusters formation and subsequence appearance of nanocrystals

  9. Investigation of microstructure of bulk Ni 2MnGa alloy by means of electron backscatter diffraction analysis

    Science.gov (United States)

    Koblischka-Veneva, A.; Gachot, C.; Leibenguth, P.; Mücklich, F.

    2007-09-01

    The microstructure of bulk samples of the shape memory alloy Ni 2MnGa is evaluated by means of electron backscatter diffraction (EBSD). The crystallographic orientation of individual grains can be determined with a high spatial resolution using an automated recording of Kikuchi patterns. The obtained data are presented in form of image quality (IQ) and orientation maps, pole figures and orientation distribution functions. Local EBSD maps and pole figures reveal details about the orientation of the twin structure. The twin structure is clearly resolved within the EBSD mappings; the matrix is oriented in [1 0 0] direction and there is a 90° misorientation to the neighboring twin. Furthermore, pole figures obtained by EBSD are compared to those determined by means of X-ray texture analysis. Therefore, the EBSD measurements give information not accessible to the X-ray pole figure analysis.

  10. Amorphization, Crystallization, and Magnetic Properties of Melt-Spun SmCo7−x(Cr3C2x Alloys

    Directory of Open Access Journals (Sweden)

    Liya Li

    2011-01-01

    Full Text Available Effects of Cr3C2 content and wheel surface speed on the amorphous formation ability and magnetic properties have been investigated for melt-spun SmCo7−x(Cr3C2x (x=0.10-0.25 alloys. Ribbon melt-spun at lower wheel speed (30 m/s has composite structure composed of mostly SmCo7, a small amount of Sm2Co17, and residual amorphous phases. The grain size of SmCo7 phase decreases with the increase of Cr3C2 content x. When melt spinning at 40 m/s, SmCo7−x(Cr3C2x alloys can be obtained in the amorphous state for 0.15≤x≤0.25 with intrinsic coercive Hci of the order of 40–70 Oe. DSC analysis reveals that SmCo7 phase first precipitates from the amorphous matrix at 650∘C, followed by the crystallization of Sm2Co17 phase at 770∘C. Optimal coercivity Hci of 7.98 kOe and remanent magnetization Mr of 55.05 emu/g have been realized in SmCo6.8(Cr3C20.20 magnet subjected to melt spinning at 40 m/s and annealing at 650∘C for 5 min. The domain structure of the annealed ribbon is composed of interaction domains typically 100–400 nm in size, which indicates the presence of a strong exchange coupling between the grains.

  11. Effect of ball milling time on nanocrystalline powders and bulk ultrafine-grained Mg-3Al-Zn alloy

    Directory of Open Access Journals (Sweden)

    Feng Jie

    2015-01-01

    Full Text Available Bulk ultrafine-grained Mg-3Al-Zn alloy has been made of elemental powders by mechanical milling, vacuum hot pressing and warm extrusion sequentially. As the only variable, ball milling time was 20 h, 40 h, 60 h and 80 h, respectively. Microstructural studies and mechanical strength were characterized by SEM, XRD, TEM and tensile tests. At 60 h, the particle size of the milled powders decreased to 10 μm. With extension of time, the grain sizes of nanocrystalline powders were 41, 39.5, 38.5 and 38 nm. Under the same hot pressing and extrusion conditions, the grain sizes of extruded materials were 600, 565, 555 and 550 nm, respectively. The results of tensile tests showed that increasing milling time under 60 h improved the strength of the extruded alloys, however, reduced the ductility due to lower relative density and more defects. This also indicated that better ductility with high strength should be obtained if densification process was further improved. Meanwhile, the high ultimate strength of 419 MPa results from oxide dispersion strengthening and dislocation strengthening besides grain refinement strengthening.

  12. The Magnetization Reversal Processes Of Bulk (Nd, Y-(Fe, Co-B Alloy In The As-Quenched State

    Directory of Open Access Journals (Sweden)

    Dośpiał M.

    2015-09-01

    Full Text Available The magnetization reversal processes of bulk Fe64Co5Nd6Y6B19 alloy in the as-quenched state have been investigated. From the analysis of the initial magnetization curve and differential susceptibility versus an internal magnetic field it was deduced, that the main mechanism of magnetization reversal process is the pinning of domain walls at the grain’s boundaries of the Nd2Fe14B phase. Basing on the dependence of the reversible magnetization component as a function of magnetic field it was found that reversible rotation of a magnetic moment vector and motion of domain walls in multi-domain grains result in high initial values of the reversible component. The presence of at least two maxima on differential susceptibility of irreversible magnetization component in function of magnetic field imply existence of few pinning sites of domain walls in Fe64Co5Nd6Y6B19 alloy. The dominant interactions between particles have been determined on the basis of the Wohlfarth dependence. Such a behavior of Wohlfarth’s plot implies that the dominant interaction between grains becomes short range exchange interactions.

  13. Effect of ZnCdTe-Alloyed Nanocrystals on Polymer–Fullerene Bulk Heterojunction Solar Cells

    OpenAIRE

    Wang Yan; Hou Yanbing; Tang Aiwei; Feng Zhihui; Feng Bin; Li Yan; Teng Feng

    2009-01-01

    Abstract The photovoltaic properties of solar cell based on the blends of poly[2-methoxy-5-(2-ethylhexoxy-1,4-phenylenevinylene) (MEH-PPV), fullerene (C60), and ZnCdTe-alloyed nanocrystals were investigated. Comparing the spectral response of photocurrent of the MEH-PPV:C60(+ZnCdTe) nanocomposite device with that of the devices based on MEH-PPV:C60and pristine MEH-PPV, one can find that the nanocomposite device exhibits an enhanced photocurrent. In comparing the composite devices with differe...

  14. The effect of synthesis parameters on transport properties of nanostructured bulk thermoelectric p-type silicon germanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zamanipour, Zahra; Shi, Xinghua; Dehkordi, Arash M.; Krasinski, Jerzy S.; Vashaee, Daryoosh [Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States)

    2012-10-15

    Nanostructured silicon germanium thermoelectric materials prepared by mechanical alloying and sintering method have recently shown large enhancement in figure-of-merit, ZT. The fabrication of these structures often involves many parameters whose understanding and precise control is required to attain large ZT. In order to find the optimum parameters for further enhancing the ZT of this material, we have grown and studied both experimentally and theoretically different nanostructured p-type SiGe alloys. The effect of various parameters of milling process and sintering conditions on the thermoelectric properties of the grown samples were studied. The electrical and thermal properties were calculated using Boltzmann transport equation and were compared with the data of nanostructured and crystalline SiGe. It was found that the thermal conductivity not only depends on the average crystallite size in the bulk material, but also it is a strong function of alloying, porosity, and doping concentration. The Seebeck coefficient showed weak dependency on average crystallite size. The electrical conductivity changed strongly with synthesis parameters. Therefore, depending on the synthesis parameters the figure-of-merit reduced or increased by {proportional_to}60% compared with that of the crystalline SiGe. The model calculation showed that the lattice part of thermal conductivity in the nanostructured sample makes {proportional_to}80% of the total thermal conductivity. In addition, the model calculation showed that while the room temperature hole mean free path (MFP) in the nanostructured sample is dominated by the crystallite boundary scattering, at high temperature the MFP is dominated by acoustic phonon scattering. Therefore, the thermal conductivity can be further reduced by smaller crystallite size without significantly affecting the electrical conductivity in order to further enhance ZT. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. A preliminary study of the preparation and characterization of shielding fabric coated by electrical deposition of amorphous Ni–Fe–P alloy

    Energy Technology Data Exchange (ETDEWEB)

    An, Zhentao; Zhang, Xiaoyi, E-mail: zxyzl66@163.com; Li, Haiguang

    2015-02-05

    Highlights: • The manufacturing process of electrical deposition amorphous Ni–Fe–P alloy on copper-coated PET fabric was determined. • The EMI SE is more than 60 dB in the wide frequency range. • This kind of material is easy to mass production, and will have a great application prospect. - Abstract: A flexible shielding fabric with dense uniform coating was prepared after electrical deposition of amorphous Ni–Fe–P alloy on copper-coated polyethylene terephthalate (PET) fabric. The manufacturing process was studied using orthogonal test with 8 factors and 3 levels. The effects of coating composition and the SE were discussed by pH value. The morphology, composition, and structure of coating were analyzed by SEM, EDS, and XRD characterizations. The electromagnetic interference (EMI) shielding effectiveness (SE) was also tested. The results indicate that the processing conditions of electrical deposition amorphous Ni–Fe–P alloy coated fabric are: 140 g/L NiSO{sub 4}⋅6H{sub 2}O, 100 g/L FeSO{sub 4}⋅7H{sub 2}O, 10 g/L NaH{sub 2}PO{sub 2}⋅H{sub 2}O, 24 g/L C{sub 6}H{sub 8}O{sub 6}, 36 g/L C{sub 6}H{sub 8}O{sub 7}⋅H{sub 2}O, 20 g/L H{sub 3}PO{sub 3}, 65 °C, pH = 1.5, and current density = 13 A/dm{sup 2}. The resulting fabric possesses dense, smooth, and uniform coating, which consists of amorphous Ni–Fe–P alloy with 17.04% P (weight percent). The EMI SE of this coated fabric achieves 59.3–70.2 dB, in a broad frequency range between 300 kHz and 1.5 GHz.

  16. Interactions between high temperature deformation and crystallization in zirconium based bulk metallic glasses

    OpenAIRE

    Gravier, Sébastien; Blandin, Jean-Jacques; Donnadieu, Patricia

    2008-01-01

    Abstract High temperature deformation of a ZrTiCuNiBe bulk metallic glass (BMG) is investigated by compression tests in the supercooled liquid region. When temperature is decreased or strain rate is increased, the amorphous alloy exhibits the usual Newtonian ? non Newtonian behavior transition. Owing to appropriate heat treatments, partially crystallized alloys are produced, the associated microstructures are characterized and the volume fractions of crystal are measured. The inter...

  17. Effect of bending stresses on the high-frequency magnetic properties and their time stability in a cobalt-based amorphous alloy with an extremely low magnetostriction

    Science.gov (United States)

    Kekalo, I. B.; Mogil'nikov, P. S.

    2015-12-01

    An unusual effect of the stresses of bending (toroidal sample diameter D) on the hysteretic magnetic properties ( H c , μ5) of an amorphous Co69Fe3.7Cr3.8Si12B11 alloy with an extremely low magnetostriction (|λ s | ≤ 10-7) is revealed. These properties are measured in a dynamic regime at a magnetic-field frequency f = 0.1-20 kHz. The coercive force of the alloy H c weakly depends on D at low frequencies ( f fact that magnetization reversal via the displacement of rigid domain walls is predominant at low frequencies and during static measurements and magnetization reversal via the displacement of flexible domain walls is predominant at high frequencies.

  18. Hydrogen storage kinetics of nanocrystalline and amorphous NdMg{sub 12}-type alloy-Ni composites synthesized by mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanghuan; Cui, Songsong; Cai, Ying [Inner Mongolia University of Science and Technology, Baotou (China). Lab. of Integrated Exploitation of Baiyun Obo Multi-Metal Resources; Song, Xiping [Univ. of Science and Technology, Beijing (China). State Key Lab. for Advanced Metals and Materials; Zhang, Peilong; Zhu, Yongguo [Whole Win (Beijing) Materials Sci. and Tech. Co., Ltd., Beijing (China)

    2016-07-15

    Nanocrystalline and amorphous NdMg{sub 11}Ni + x wt.% Ni (x = 100, 200) composites were synthesized by mechanical milling, and their gaseous and electrochemical hydrogen storage kinetic performances were systematically investigated. Hydrogen absorption and desorption properties were investigated by means of a Sievert apparatus and a differential scanning calorimeter connected with an H{sub 2} detector. Electrochemical hydrogen storage kinetics of the as-milled alloys were tested by an automatic galvanostatic system. Results show that increasing Ni content significantly improves gaseous and electrochemical hydrogen storage kinetics. The improved gaseous hydrogen storage kinetics of the alloys are ascribed to the decrease in hydrogen desorption activation energy caused by increasing Ni content and milling time.

  19. A physical model of the effect of irreversible changes in structure and properties of amorphous alloys caused by low-temperature treatment

    International Nuclear Information System (INIS)

    A low temperature ΔT-effect physical model for amorphous metallic alloys (AMA) is developed. Using Ni-P, Fe-Co-Si-B, Co-Ni-Fe-Si-B, Fe-Si-B, Fe-Ni-Si-B, Fe-Cu-Nb-Si-B alloys the studies are carried out which results support basic concepts of the theory, namely: a motive force for atom drift, resulting in irreversible changes of a short-range order, is at the heart of longitudinal oscillations of AMA ribbon initiate the process of changing the initial short-range order. Variations of topological and short-range orders are responsible for a decrease in yield strength and Young modulus, a Curie point shift, an increase of saturation magnetization at an insignificant drop of coercive force or a significant drop of coercive force at a slight increase of saturation magnetization

  20. Structural changes in amorphous metals from high-strain plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Harpreet Singh [Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States); Grewal, Harpreet Singh [School of Mechanical, Materials and Energy Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 (India); Mridha, Sanghita [Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States); Singh, Harpreet [School of Mechanical, Materials and Energy Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 (India); Mukherjee, Sundeep, E-mail: sundeep.mukherjee@unt.edu [Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States)

    2014-11-03

    Structural changes in a bulk metallic glass subjected to high-strain plastic deformation was investigated. A zirconium-based bulk metallic glass was friction stir processed at different tool rotational speeds. The alloy retained its fully amorphous structure at lower speed. At higher tool rotational speed there was partial nano-crystallization with nearly three times increase in surface hardness. Changes in the glass transition temperature, relaxation and crystallization enthalpies were analyzed to explain the physics of high-strain deformation in amorphous metals.

  1. Crystallization kinetics of Fe-B based amorphous alloys studied in-situ using X-rays diffraction and differential scanning calorimetry

    Directory of Open Access Journals (Sweden)

    Santos D.R. dos

    2001-01-01

    Full Text Available The crystallization processes for the amorphous metallic alloys Fe74B17Si2Ni4Mo3 and Fe86B6Zr7Cu1 (at. % were investigated using X-rays diffraction measurements performed in-situ during Joule-heating, with simultaneous monitoring of the electrical resistance. We determined the main structural transitions and crystalline phases formed during heating, and correlated these results to the observed resistance variations. As the annealing current is increased, the resistance shows an initial decrease due to stress relaxation, followed by a drop to a minimum value due to massive nucleation and growth of alpha-Fe nanocrystals. Further annealing causes the formation of small fractions of Fe-B, B2Zr or ZrO2, while the resistance increases due to temperature enhancement. In situ XRD measurements allowed the identification of metastable phases, as the gamma-Fe phase which occurs at high temperatures. The exothermal peaks observed in the differential scanning calorimetry (DSC for each alloy corroborate the results. We also have performed DSC measurements with several heating rates, which allowed the determination of the Avrami exponent and crystallization activation energy for each alloy. The obtained activation energies (362 and 301 kJ/mol for Fe-B-Zr-Cu; 323 kJ/mol for Fe-B-Si-Ni-Mo are comparable to reported values for amorphous iron alloys, while the Avrami exponent values (n = 1.0 or n = 1.2 are consistent with diffusion controlled crystallization processes with nucleation rates close to zero.

  2. Study on Surface and Bulk Properties of Ce-5 % Lanthanum Alloy

    Institute of Scientific and Technical Information of China (English)

    Luo Lizhu; Wang Xiaolin; Fu Xiaoguo; Zhang Yanzhi; Zhao Zhengping; Liu Chunrong

    2004-01-01

    The surface and bulk properties of Ce-5% La were studied with X-ray photoelectron spectroscopy (XPS)and X-ray diffraction (XRD), respectively.The XRD analysis shows that cerium in bulk is in γ-phase, and its lattice parameter is 0.516 nm.And we also find Ce2O3 in the bulk from the XRD figure but no existence of metal lanthanum because of its small quantity.The XPS analysis shows that there are always oxides existing in the surface.The O1s peak always exists at the binding energy of 530.3 eV, which may be attributed to Ce2O3 and La2O3, but no evidence was found for the existence of CeO2.It is concluded that there is a thick layer of Ce2O3 on the sample surface.And the Ce3d peak show multi-split in the figure, in which there are two peaks in each region, 3d5/2 and 3d3/2, and the binding energy of these peaks are 882.86, 887.70 eV for 3d5/2, and 901.44, 905.93 eV for 3d3/2.The special phenomena can be attributed to the changes of 4f electronic configuration, and the cerium in the sample exhibits properties similar to Ce2O3.But the influence of the addition of lanthanum to cerium is not visible, and further investigations are expected.

  3. Molecular dynamics study of the ternary Cu50Ti25Zr25 bulk glass forming alloy

    Directory of Open Access Journals (Sweden)

    Celtek M.

    2011-05-01

    Full Text Available The structure and thermodynamic properties of a ternary Cu50Ti25Zr25 metallic glass forming alloy in solid-liquid to glass phases were studied using molecular dynamics (MD method based on tight-binding (TB potentials. An atomic description of the melting, glass formation and crystallization process has been analyzed using different heating and cooling rates. The computed Glass Forming Ability (GFA parameters are in good agreement with experimental data. The structure analysis of the Cu50Ti25Zr25 based on molecular dynamics simulation will be also presented and compared with available MD results. We have also discussed the crystallization transition with two different interatomic potentials used in this work

  4. Fe-based bulk metallic glasses prepared by centrifugal casting method

    Directory of Open Access Journals (Sweden)

    R. Babilas

    2011-10-01

    Full Text Available Purpose: The work presents a casting method, structure characterization and analysis of chosen properties of Fe-based bulk metallic glasses in as-cast state.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4, Fe36Co36B19Si5Nb4, Fe43Co14Ni14B20Si5Nb4 metallic glasses in form of rings. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The crystallization behaviour of the studied alloys was examined by differential thermal analysis (DTA. The soft magnetic property examinations of tested materials contained initial magnetic permeability and measurements of magnetic permeability relaxation.Findings: The XRD and TEM investigations revealed that the studied as-cast bulk glassy samples in forms of ring were amorphous for all tested alloys. The SEM images showed that fractures of studied rings indicated two structurally different zones, which contained “river” patterns and “smooth” areas. The samples of studied alloys presented two stage crystallization process, which was observed for all tested rings with different thickness. The changes of crystallization temperatures versus the thickness of the glassy samples were stated. The magnetic permeability relaxation, which is directly proportional to the microvoids concentration in amorphous structure decreased with increase of sample thickness. These results could be assumed as the change of amorphous structure in function of thickness.Practical implications: The centrifugal casting method is very simple, useful and effective method to produce bulk amorphous materials in the form of rings or tubes.Originality/value: The preparation of bulk metallic glasses in the form of rings for three different Fe-based alloy systems is very important for the future progress in research and practical applications of iron-based bulk amorphous materials.

  5. Electrochemical hydrogen storage characteristics of nanocrystalline and amorphous Mg{sub 20}Ni{sub 10-x}Co{sub x}(x=0-4) alloys prepared by melt spinning

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang-huan [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); School of Material, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Ren, Hui-ping; Li, Bao-wei; Pang, Zai-guang [School of Material, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Guo, Shi-hai; Wang, Xin-lin [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China)

    2009-10-15

    Nanocrystalline and amorphous Mg{sub 2}Ni-type alloys with nominal compositions of Mg{sub 20}Ni{sub 10-x}Co{sub x} (x = 0, 1, 2, 3, 4) were synthesized by melt-spinning technique. The microstructures of the as-cast and spun alloys were characterized by XRD, SEM and HRTEM. The electrochemical hydrogen storage characteristics of the as-cast and spun alloys were measured. The obtained results show that the substitution of Co for Ni does not change the major phase of Mg{sub 2}Ni, but it leads to the formation of secondary phase MgCo{sub 2} and Mg. No amorphous phase forms in the as-spun alloy (x = 0), whereas the as-spun alloy (x = 4) holds a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni significantly heightens the glass forming ability of the Mg{sub 2}Ni-type alloy. The substitution of Co for Ni and melt spinning significantly improve the electrochemical hydrogen storage performances of the alloys. When Co content x increases from 0 to 4, the maximum discharge capacity of the as-cast alloy increases from 30.3 to 113.3 mAh/g, and from 135.5 to 402.5 mAh/g for as-spun (30 m/s) alloy. The capacity retaining rate of the as-cast alloy after 20 cycles rises from 36.71 to 37.04%, and from 27.06 to 83.35% for as-spun (30 m/s) alloy, respectively. (author)

  6. Mechanical Testing of Iron based Bulk Metallic Glasses and Their Suitability for Force Sensors

    Directory of Open Access Journals (Sweden)

    Erenc-Sędziak T.

    2013-01-01

    Full Text Available Thermal, mechanical and magnetic properties of (Fe-Co-(Zr/Si-Nb-B alloys in the form of rapidly quenched rods of 1.2 mm in diameter were studied. The as-cast alloys with Zr were crystalline, and the alloys with Si were amorphous. Microhardness measured at 50 g load is from 500 to 2000 HV (the less cobalt, the higher, and the compressive strength reaches nearly 4000 MPa for Si doped alloys and 2000 MPa for Zr doped ones. This substantial difference may be attributed to partial crystallinity of the latter alloys. The magnetic hysteresis loops of fully amorphous rods measured under compression, exhibited a clear dependence of permeability vs. stress, proving that iron-based bulk metallic glasses may be promising materials for magnetoelastic force sensors.

  7. Effect of External Electric Field on Phase Selection and Stability of Amorphous( Nd0.1Fe0.9 )3 B Alloy

    Institute of Scientific and Technical Information of China (English)

    李山东; 唐建成; 袁钻如; 顾本喜; 都有为

    2004-01-01

    The effect of an external electric field on the crystallization behavior of amorphous(Nd0.1Fe0.9)3B alloy was investigated. The crystallization product of Nd2Fe23B3 phase was obtained for this amorphous alloy annealed at 923 K for 300 s in the presence of an external electric field of 300 kV·m-1(50 Hz); while the crystallization products are Nd1.1Fe4B4, α-Fe, and Fe3B phases under the same annealing condition except for free-electric field. On the other hand, the samples were annealed at 1023 K, which is higher than the decomposition temperature of metastable Nd2Fe23B3 phase, for 600 s. In the case of the presence of an external electric field, the metastable Nd2Fe23B3 phase, as a main phase, is still stayed in the sample. This fact suggests that the external electric field enhances the stabilization of the metastable Nd2Fe23B3 phase. The effect of the external electric field on the phase selection and stabilization was explained in terms of the specific conductance difference between the crystallization products.

  8. Structure and magnetic properties of amorphous and nanocrystalline Fe40Co40Cu0.5Zr9Al2Si4B4.5 alloys

    International Nuclear Information System (INIS)

    Crystallisation behaviour and magnetic properties of as-spun and annealed Fe40Co40Cu0.5Zr9Al2Si4B4.5 alloy have been studied. The annealing was performed at 873 K for 15 min. XRD and TEM studies shows the formation of nanocrystalline α-(Fe,Co)(SiAl) particles with 7.5±2 nm in diameter dispersed in an amorphous matrix. The Curie temperature of the as-spun amorphous ribbon is 736 K. Saturation magnetisation of the annealed sample decreases at a rate of 0.5 emu/g/K in the measured temperature range of 300-1000 K. Excellent room temperature AC magnetic properties are achieved for the nanocrystalline sample. The low value of the imaginary part of the permeability and the high cut-off frequency (20 kHz) suggest that the eddy current contribution in the annealed materials is low. The coercivity of the annealed sample remains almost constant at 95 A/m up to the frequency of 20 kHz. High saturation magnetisation, high Curie temperature and excellent soft magnetic properties in the nanocrystalline state suggests that Fe40Co40Cu0.5Zr9Al2Si4B4.5 alloy is a strong candidate for high temperature magnetic application

  9. Magnetic properties of amorphous Fe73.5Cu1Mo3Si12.5Al1B9 alloy

    International Nuclear Information System (INIS)

    The FINEMET type Fe73.5Cu1Mo3Si12.5Al1B9 (numbers indicate at.%) alloy has been synthesized using single wheel melt spinning technique. The samples have been thermally annealed at about 40 K less than the crystallization temperature for various durations. The samples show increase in Curie temperature of the amorphous phase with annealing. To get a better insight into their magnetic behaviour we have done spin wave analysis on the as-spun and thermally annealed samples and extracted the spin wave stiffness constant and mean square range of exchange interaction. Low temperature thermomagnetic measurements from 10 to 300 K were performed with an applied field of 0.5 T. The data were fitted using the Bloch equation. The value of the C/B ratio and the mean square range of exchange interaction were found to be characteristic of amorphous ferromagnets. The variation of spin wave stiffness constant is correlated to the changes in Curie temperature and the nature of the exchange interaction existing in this alloy is determined

  10. Corrosion behavior of bulk metallic glasses in different aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The corrosion behavior of as-cast fully amorphous, structural relaxed amorphous and crystallized Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk metallic glasses (BMGs) in NaCl, HCl and NaOH solutions was investigated by electrochemical polarization and immersion methods. X-ray photoelectron spectroscopy measurements was used to analyze the changes of the elements on the alloy surface before and after immersion in various solutions. The corrosion resistance of the Fe65.5Cr4Mo4Ga4P12C5B5.5 BMG was better than its structural relaxation/crystallization counterparts and common alloys (such as stainless steel, carbonized steel, and steel) in the selected aqueous solutions. The high corrosion resistance of this alloy in corrosive solutions leads to the formation of Fe-, Cr- and Mo-enriched protective thin surface films.

  11. Influence of germanium nano-inclusions on the thermoelectric power factor of bulk bismuth telluride alloy

    Energy Technology Data Exchange (ETDEWEB)

    Satyala, Nikhil; Zamanipour, Zahra; Norouzzadeh, Payam; Krasinski, Jerzy S.; Vashaee, Daryoosh, E-mail: daryoosh.vashaee@okstate.edu [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, Oklahoma 74106 (United States); Tahmasbi Rad, Armin [School of Material Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, Oklahoma 74106 (United States); Tayebi, Lobat, E-mail: daryoosh.vashaee@okstate.edu [School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078 (United States)

    2014-05-28

    Nanocomposite thermoelectric compound of bismuth telluride (Bi{sub 2}Te{sub 3}) with 5 at. % germanium nano-inclusions was prepared via mechanically alloying and sintering techniques. The influence of Ge nano-inclusions and long duration annealing on the thermoelectric properties of nanostructured Bi{sub 2}Te{sub 3} were investigated. It was found that annealing has significant effect on the carrier concentration, Seebeck coefficient, and the power factor of the thermoelectric compound. The systematic heat treatment also reduced the density of donor type defects thereby decreasing the electron concentration. While the as-pressed nanocomposite materials showed n-type properties, it was observed that with the increase of annealing time, the nanocomposite gradually transformed to an abundantly hole-dominated (p-type) sample. The long duration annealing (∼500 h) resulted in a significantly enhanced electrical conductivity pertaining to the augmentation in the density and the structural properties of the sample. Therefore, a simultaneous enhancement in both electrical and Seebeck coefficient characteristics resulted in a remarkable increase in the thermoelectric power factor.

  12. Microstructural characterization of rapidly solidified Cu{sub 50}Zr{sub 40}Ni{sub 5}Ti{sub 5} amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kursun, Celal, E-mail: celalkursun@ksu.edu.tr [Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100 (Turkey); Gögebakan, Musa [Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100 (Turkey); Gencer, Yucel [Department of Materials Science and Engineering, Gebze Institute of Technology, Gebze, 41400 Kocaeli (Turkey)

    2015-09-15

    The amorphous Cu{sub 50}Zr{sub 40}Ni{sub 5}Ti{sub 5} alloy was produced by melt-spinning at wheel speeds of 35, 38 and 41 m s{sup −1}. The resulting melt-spun ribbons were characterised using X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDX), differential scanning calorimetry (DSC) and Vickers microhardness (HV) tester. The XRD and SEM results revealed that the rapidly solidified ribbons have a fully amorphous structure. After partial or fully crystallisation of Cu{sub 50}Zr{sub 40}Ni{sub 5}Ti{sub 5} ribbons upon annealing, the microstructure had uneven and irregularly shaped features with the existence of Cu{sub 10}Zr{sub 7}, Cu{sub 8}Zr{sub 3}, CuZr and FCC-Cu phases while as quenched ribbons had featureless microstructure. The SEM-EDX analysis confirmed compositional homogeneity of the Cu{sub 50}Zr{sub 40}Ni{sub 5}Ti{sub 5} alloy ribbon. According to DSC results, the amorphous ribbons exhibited distinct glass transition temperature (T{sub g}) and wide supercooled liquid region (ΔT{sub x} = T{sub x} − T{sub g}) before crystallization. Accordingly, T{sub g} and ΔT{sub x} are around 409–414 °C and 37–54 °C, respectively. The microhardness of the as-quenched ribbons was about 522 HV while it decreased with increasing annealing temperature and had a value of 463 HV for 725 °C.

  13. Phase transformations of Fe73.5Cu1Nb3Si15.5B7 amorphous alloy upon thermal treatment

    International Nuclear Information System (INIS)

    The structural transformations of Fe73.5Cu1Nb3Si15.5B7 amorphous alloy under non-isothermal as well as isothermal conditions were studied. Differential scanning calorimetry (DSC) showed that slow heating rates induce a series of stepwise structural transformations consisting of endothermic peaks and more pronounced exothermic peaks in the broad temperature range from 350 to 970 K. Over this range the system changed from an as-deposited amorphous alloy of higher excess free energy to an annealed sample exhibiting lower excess of free energy. X-ray diffraction (XRD) analysis found that primary crystallization started with formation of a face-centred Fe3Si phase in an amorphous matrix. At higher temperatures (between 780 and 920 K) we detected, in addition to the Fe3Si phase, which reached an almost constant value of 85 wt%, three new phases, FeCu4, Fe16Nb6Si7 and Fe2B. Further annealing above 923 K led to, with Si initially migrating from the Fe-Si phase to the Nb-rich grain boundaries, formation of two new phases, Fe5Si3 and Nb5Si3. The Fe content in the cubic Fe-Si phase was estimated by means of a change in lattice parameter. Below 923 K the size of crystallites for the major Fe3Si phase was less than 10 nm. It was shown that further heating induced rapid crystallite growth, reaching a size greater than 500 nm at 1123 K.

  14. Crystalline Precipitate in a Bulk Glass Forming Zr-Based Alloy and Its Effect on Mechanical Properties

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Cylindrical and sheet samples of bulk metallic glass with a nominal composition of Zr52.5Ni14.6Al10Cu17.9Ti5 (at. pct) were prepared by melt injection casting. The crystalline precipitates formed during the casting were studied by metallographic observations and selected-area electron diffractions. The effect of crystalline precipitates on the mechanical properties were investigated by tensile and compressive tests at room temperature. Oxygen contents and the sample sizes (or cooling rates) strongly affect the formation of the crystalline precipitates. Overheating the alloy melt up to 200 K above its melting temperature can effectively prevent the formation of the crystalline precipitates to get fully glass samples with diameters up to 2 mm for cylinders and thickness up to 1 mm for sheets even the oxygen content is as higher as 0.08 wt pct.With increasing the sample sizes, the crystalline precipitates increase in volume fraction and size. The formation of the precipitates experienced two stages, i.e., initially nucleation and isotropic growth, and then anisotropic growth, finally forming faceted morphologies. Fully glassy Zr52.5Ni14.6Al10Cu17.9Ti5 alloy exhibits excellent tensile and compressive properties at room temperature. The presence of crystalline precipitates significantly decreases the tensile and compressive properties. With increasing the crystalline precipitates, the area of vein patterns on the fracture surface decreases, but the fracture steps increase, and the fracture mode changes from ductile to brittle resulting from the larger stress concentration caused by the larger sizes and faceted shapes of the crystalline precipitates.

  15. Preparation of a bulk Fe{sub 83}B{sub 17} soft magnetic alloy by undercooling and copper-mold casting methods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Changlin, E-mail: ycl@nwpu.edu.cn; Sheng, Gang; Chen, Guiyun; Liu, Feng

    2013-11-15

    Bulk Fe{sub 83}B{sub 17} eutectic alloy rods with diameters up to 3 mm were prepared by undercooling solidification combined with Cu-mold casting. The results showed that the rapid solidification led to an increase in the nucleation rate, an inhibition of the grain growth and a competition between a stable Fe{sub 2}B phase and a metastable Fe{sub 3}B phase. Then, pure nano-lamellar eutectic microstructures and the metastable Fe{sub 3}B phase were successfully obtained in as-solidified alloys, which resulted in improved soft magnetic properties. - Highlights: • Pure nano-lamellar eutectic structure was directly formed in the bulk Fe-B alloys. • The metastable Fe{sub 3}B phase was directly formed in the bulk Fe-B alloys. • Undercooling solidification combined with Cu-mold casting was applied. • The information on bcc Fe, Fe{sub 2}B and Fe{sub 3}B-magnetism relationship was provided. • Nano-lamellar eutectic structures enhance the soft magnetic properties.

  16. Development and structural characterization of exchange-spring-like nanomagnets in (Fe,Co)-Pt bulk nanocrystalline alloys

    Science.gov (United States)

    Crisan, O.; Crisan, A. D.; Mercioniu, I.; Nicula, R.; Vasiliu, F.

    2016-03-01

    FePt-based alloys are currently under scrutiny for their possible use as materials for perpendicular magnetic recording. Another possible application is in the field of permanent magnets without rare-earths, magnets that may operate at higher temperatures than the classic Nd-Fe-B magnets. Within this study, FeCoPt alloys prepared by rapid solidification from the melt are structurally and magnetically characterized. In the as-cast FeCoPt ribbons, a three-phase structure comprising well-ordered CoFePt and CoPt L10 phases embedded in a disordered fcc FePt matrix was evidenced by XRD, HREM and SAED. Extended transmission electron microscopy analysis demonstrates the incipient formation of ordered L10 phases. X-ray diffraction was used to characterize the phase structure and to obtain the structural parameters of interest for L10 ordering. In the as-cast state, the co-existence of hard magnetic CoFePt and CoPt L10 tetragonal phases with the soft fcc FePt phase is obtained within a refined microstructure made of alternatively disposed grains (grain sizes from 1 to 7 nm). Following a thermal treatment of 1 h at 670 °C, the soft magnetic fcc matrix phase transforms to tetragonal L10 phases (disorder-order transition). The resulting CoPt and CoFePt L10 phases have grains of around 5-20 nm in size. In the as-cast state, magnetic measurements show a quite large remanence (0.75 T), close to the value of the parent L10 FePt phase. Coercive fields of about 200 kA/m at 5 K were obtained, comparable with those reported for some FePt-based bulk alloys. Upon annealing both remanence and coercivity are increased and values of up to 254 kA/m at 300 K are obtained. The polycrystalline structure of the annealed FeCoPt samples, as well as the formation of multiple c-axis domains in different CoPt and CoFePt regions (which leads to a reduction of the magneto-crystalline anisotropy) may account for the observed coercive fields that are lower than in the case of very thin FeCoPt films. A

  17. Titanium and zirconium based wrought alloys and bulk metallic glasses for fluoride ion containing 11.5 M HNO3 medium

    International Nuclear Information System (INIS)

    Aqueous reprocessing of plutonium-rich mixed oxide fuels require fluoride as a catalyst in boiling nitric acid for an effective dissolution of the spent fuel. The corrosion behavior of the candidate dissolver materials zircaloy-4 (Zr-4) and commercial pure titanium (CP-Ti grade 2) in boiling 11.5 M HNO3 + 0.05 M NaF has been established. High corrosion rates were obtained for Zr- 4 and CP-Ti in nitric acid containing fluoride ions. Complexing the fluoride ions either with Al(NO3)3 or ZrO(NO3)2 aided in decreasing the corrosion rates of Zr-4 and CP-Ti. High corrosion resistance is claimed as one of the principal property of the amorphous alloy when compared to the crystalline alloy. Thus Ni60Nb40 and Ni60Nb30Ta10 amorphous ribbons were prepared and exposed in boiling 11.5 M HNO3 and 11.5 M HNO3 + 0.05 M NaF. In nitric acid these alloys did not show any sign of corrosion attack. XPS analysis confirmed that the passivity was due to the formation passive films of thickness ≈3 nm enriched with Nb2O5 and of ≈1.5 nm enriched with both Nb2O5 and Ta2O5 on the respective surfaces of the ribbons. In boiling 11.5 M HNO3 + 0.05 M NaF, severe corrosion attack was observed on Ni60Nb40 ribbon, due to the instability of the oxide/metal interface. The Ni60Nb30Ta10 amorphous ribbon exhibited corrosion resistance of at least an order of magnitude higher than that for Ni60Nb40 ribbon

  18. Atomic-scale simulation study of some bulk and interfacial properties of iron aluminium ordered alloys

    International Nuclear Information System (INIS)

    A semi-empirical potential was designed for B2 and DO3 iron aluminides and used to study point defects and grain boundaries in these compounds. At low temperature, departure from B2 stoichiometry is accommodated with antisite defects; when T increases, iron vacancies appear and defects have a trend to form clusters, the structure of which is very sensitive to this departure. Our calculations, relying on T = 0 K formation energies, predict the nature of major defects, but lead to underestimated quantitative results, which may point out the essential role of atomic vibrations. In the stoichiometric B2 compound, the diffusion of both species is induced by four-jump cycles involving iron vacancies. Although the agreement between our calculated activation energies and other experiments is good, the calculated diffusion coefficients are below the experimental ones. Here again, this discrepancy may be put down to the overlooking of phonon contributions. The second application concerns the atomic structures of the [001] (310) symmetric tilt grain boundary in the B2 and DO3 compounds. At low temperature, in the stoichiometric B2 compound, we obtain an iron-rich single stable structure (pseudo-symmetric), whose structure is strongly influenced by the bulk composition (with intergranular segregation of the major element). In the stoichiometric DO3 compound, many energetically equivalent structures exist, all being systematically aluminium-rich. The study of the B2 grain boundary structure at high temperature shows a phase transition favouring a symmetric structure. Its high excess energy at low temperature emphasizes the influence of atomic vibrations in the interfacial properties of B2 Fe-Al compounds. (author)

  19. Near-forward Raman scattering by bulk and surface phonon-polaritons in the model percolation-type ZnBeSe alloy

    OpenAIRE

    Hussein, Rami Hajj; Pagès, Olivier; Firszt, Franciszek; Paszkowicz, Wojtek; Maillard, Alain

    2013-01-01

    We study the bulk and surface phonon-polaritons of the Zn0.67Be0.33Se zincblende alloy by near-forward Raman scattering. The short (Be-Se) bond exhibits a distinct percolation doublet in the conventional backscattering Raman spectra, corresponding to a three-mode behavior in total [1(Zn-Se),2(Be-Se)] for Zn0.67Be0.33Se. This offers an opportunity to achieve a refined understanding of the phonon-polariton modes of a zincblende alloy beyond the current two-mode approximation, corresponding to a...

  20. Bulk Shear-Wave Transduction Experiments Using Magnetostrictive Transducers with a Thin Fe-Co Alloy Patch

    International Nuclear Information System (INIS)

    Recently, the results of many studies have clarified the successful performance of magnetostrictive transducers in which a ferromagnetic patch is used for the transduction of guided shear waves; this is because a thin ferromagnetic patch with strong magnetostriction is very useful for generating and detecting shear wave. This investigation deals with bulk shear wave transduction by means of magnetostriction; on the other hand, the existing studies have been focused on guided shear waves. A modular transducer was developed: this transducer comprised a coil, magnets, and a thin ferromagnetic patch that was made of Fe-Co alloy. Some experiments were conducted to verify the performance of the developed transducer. Radiation directivity pattern of the developed transducer was obtained, and a test to detect the damage on a side drill hole of a steel block specimen was carried out. From the results of these tests, the good performance of the transducer for nondestructive testing was verified on the basis of the signal-to-noise ratio and narrow beam directivity

  1. Molecular level assessment of thermal transport and thermoelectricity in materials: From bulk alloys to nanostructures

    Science.gov (United States)

    Kinaci, Alper

    The ability to manipulate material response to dynamical processes depends on the extent of understanding of transport properties and their variation with chemical and structural features in materials. In this perspective, current work focuses on the thermal and electronic transport behavior of technologically important bulk and nanomaterials. Strontium titanate is a potential thermoelectric material due to its large Seebeck coefficient. Here, first principles electronic band structure and Boltzmann transport calculations are employed in studying the thermoelectric properties of this material in doped and deformed states. The calculations verified that excessive carrier concentrations are needed for this material to be used in thermoelectric applications. Carbon- and boron nitride-based nanomaterials also offer new opportunities in many applications from thermoelectrics to fast heat removers. For these materials, molecular dynamics calculations are used to evaluate lattice thermal transport. To do this, first, an energy moment term is reformulated for periodic boundary conditions and tested to calculate thermal conductivity from Einstein relation in various systems. The influences of the structural details (size, dimensionality) and defects (vacancies, Stone-Wales defects, edge roughness, isotopic disorder) on the thermal conductivity of C and BN nanostructures are explored. It is observed that single vacancies scatter phonons stronger than other type of defects due to unsatisfied bonds in their structure. In pristine states, BN nanostructures have 4-6 times lower thermal conductivity compared to C counterparts. The reason of this observation is investigated on the basis of phonon group velocities, life times and heat capacities. The calculations show that both phonon group velocities and life times are smaller in BN systems. Quantum corrections are also discussed for these classical simulations. The chemical and structural diversity that could be attained by

  2. Electrochemical hydrogen storage performances of the nanocrystalline and amorphous (Mg24Ni10Cu2)100-xNdx (x=0-20) alloys applied to Ni-MH battery

    Institute of Scientific and Technical Information of China (English)

    张羊换; 王海涛; 杨泰; 翟亭亭; 张国芳; 赵栋梁

    2013-01-01

    Melt spinning technology was used to prepare the Mg2Ni-type (Mg24Ni10Cu2)100-xNdx (x=0, 5, 10, 15, 20) alloys in order to obtain a nanocrystalline and amorphous structure. The effects of Nd content and spinning rate on the structures and electrochemical hydrogen storage performances of the alloys were investigated. The structure characterizations of X-ray diffraction (XRD), transmis-sion electron microscopy (TEM) and scanning electron microscopy (SEM) linked with energy dispersive spectroscopy (EDS) re-vealed that the as-spun Nd-free alloy displayed an entire nanocrystalline structure, whereas the as-spun Nd-added alloys held a nanocrystalline and amorphous structure and the degree of amorphization visibly increased with the rising of Nd content and spinning rate, suggesting that the addition of Nd facilitated the glass forming of the Mg2Ni-type alloy. The electrochemical measurements in-dicated that the addition of Nd and melt spinning improved the electrochemical hydrogen storage performances of the alloys signifi-cantly. The discharge capacities of the as-cast and spun alloys exhibited maximum values when Nd content was x=10, which were 86.4, 200.5, 266.3, 402.5 and 452.8 mAh/g corresponding to the spinning rate of 0 (As-cast was defined as the spinning rate of 0 m/s), 10, 20, 30 and 40 m/s, respectively. The cycle stability (S20, the capacity maintain rate at 20th cycle) of the as-cast alloy always rose with the increasing of Nd content, and those of the as-spun alloys exhibited the maximum values for Nd content x=10, which were 77.9%, 83.4%89.2%and 89.7%, corresponding to the spinning rate of 10, 20, 30 and 40 m/s, respectively.

  3. Thermal treatment of the amorphous base alloy Fe 2605SA1, analysis of its defects and microhardness; Tratamiento termico de la aleacion amorfa base Fe 2605SA1, analisis de sus defectos y microdureza

    Energy Technology Data Exchange (ETDEWEB)

    Contreras V, J.A.; Cabral P, A.; Garcia Santibanez S, F.; Ramirez, J.; Lopez M, J.; Villaverde L, A.; Montoya E, A.; Merino, F.J. [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico. El Cerillo Piedras Blancas, 50000 Toluca, Estado de Mexico (Mexico)

    2007-07-01

    By means of the use of the positron lifetime technique those characteristics of the present crystalline defects in an amorphous base alloy Fe (SA1) are determined, when this is subjected to thermal treatments from 293 K until 808 K. Also, some results about the microhardness and electric resistivity are presented. (Author)

  4. Preparation and Characterization of Amorphous Layer on Aluminum Alloy Formed by Plasma Electrolytic Deposition (PED)

    Institute of Scientific and Technical Information of China (English)

    GUANYong-jun; XIAYuan

    2004-01-01

    In this investigation, protective layers were formed on aluminum substrate by Plasma Electrolytic Deposition (PED) using sodium silicate solution. The relation between the thickness of the layer and process time were studied. XRD, SEM, EDS were used to study the layer's structure, composition and micrograph. The results show that the deposited layers are amorphous and contain mainly oxygen, silicon, and aluminum. The possible formation mechanism of amorphous[Al-Si-O] layer was proposed: During discharge periods, Al2O3 phase of the passive film and SiO32- near the substrate surface are sintered into xSiO2(1-x)Al2O3 and then transformed into amorphous [Al-Si-O] phase.

  5. Variation of the electronic densities of states as a function of impurity concentration in amorphous bismuth alloys

    Science.gov (United States)

    Mata-Pinzon, Zaahel; Valladares, Ariel Alberto; Valladares, Alexander; Valladares, Renela Maria

    2014-03-01

    The properties of materials are strongly related to their atomic topology, especially when we compare properties related to the ordered and disordered phases. Using Density Functional Theory methods on 64-atom supercells we obtain the structure and calculate the electronic density of states (eDOS) as a function of the concentration of lead, thallium or antimony in an amorphous bismuth supercell. This is done to investigate how the eDOS affects the superconducting transition temperature (Tc), taking into account the measurements made by Shier and Ginsberg[2] on contaminated amorphous bismuth thin films. Supported by CONACYT and DGAPA (UNAM).

  6. Formation and Compression Behavior of Two-Phase Bulk Metallic Glasses with a Minor Addition of Aluminum

    Institute of Scientific and Technical Information of China (English)

    ZONG Hai-Tao; MA Ming-Zhen; ZHANG Xin-Yu; QI Li; LI Gong; JING Qin; LIU Ri-Ping

    2011-01-01

    A remarkable enhancement in room-temperature compressive deformability is realized by the minor-addition of 1.5 at. % Al in ZrTi-based bulk metallic glass.Two amorphous phases are observed by transmission electron microscopy in the Al-containing alloys and this explains the improvement of compression deformability. The studies suggest that phase separation might occur in glass forming alloys with a negative enthalpy of mixing.

  7. Low temperature diffusion process using rare earth-Cu eutectic alloys for hot-deformed Nd-Fe-B bulk magnets

    Energy Technology Data Exchange (ETDEWEB)

    Akiya, T., E-mail: akiya.takahiro@nims.go.jp; Sepehri-Amin, H.; Ohkubo, T. [Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Liu, J.; Hono, K. [Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8577 (Japan); Hioki, K.; Hattori, A. [Daido Steel Co., LTD, Nagoya 457-8545 (Japan)

    2014-05-07

    The low temperature grain boundary diffusion process using RE{sub 70}Cu{sub 30} (RE = Pr, Nd) eutectic alloy powders was applied to sintered and hot-deformed Nd-Fe-B bulk magnets. Although only marginal coercivity increase was observed in sintered magnets, a substantial enhancement in coercivity was observed when the process was applied to hot-deformed anisotropic bulk magnets. Using Pr{sub 70}Cu{sub 30} eutectic alloy as a diffusion source, the coercivity was enhanced from 1.65 T to 2.56 T. The hot-deformed sample expanded along c-axis direction only after the diffusion process as RE rich intergranular layers parallel to the broad surface of the Nd{sub 2}Fe{sub 14}B are thickened in the c-axis direction.

  8. Low temperature diffusion process using rare earth-Cu eutectic alloys for hot-deformed Nd-Fe-B bulk magnets

    International Nuclear Information System (INIS)

    The low temperature grain boundary diffusion process using RE70Cu30 (RE = Pr, Nd) eutectic alloy powders was applied to sintered and hot-deformed Nd-Fe-B bulk magnets. Although only marginal coercivity increase was observed in sintered magnets, a substantial enhancement in coercivity was observed when the process was applied to hot-deformed anisotropic bulk magnets. Using Pr70Cu30 eutectic alloy as a diffusion source, the coercivity was enhanced from 1.65 T to 2.56 T. The hot-deformed sample expanded along c-axis direction only after the diffusion process as RE rich intergranular layers parallel to the broad surface of the Nd2Fe14B are thickened in the c-axis direction

  9. Appearance of perfect amorphous linear bulk polyethylene under applied electric field and the analysis by radial distribution function and direct tunneling effect.

    Science.gov (United States)

    Zhang, Rong; Bin, Yuezhen; Yang, Wenxiao; Fan, Shaoyan; Matsuo, Masaru

    2014-02-27

    Without melting flow, linear ultrahigh molecular weight polyethylene (UHMWPE) provided X-ray intensity curve from only amorphous halo at 129.0 °C (surface temperature, Ts arisen by Joule heat) lower than the conventionally known melting point 145.5 °C on applying electric field to UHMWPE-nickel-coated carbon fiber (NiCF) composite. Such surprising phenomenon was analyzed by simultaneous measurements of X-ray intensity, electric current, and Ts as a function of time. The calculated radial distribution function revealed the amorphous structure with disordered chain arrangement. The appearance of such amorphous phase was arisen by the phenomenon that the transferring electrons between overlapped adjacent NiCFs by tunneling effect struck together with X-ray photons and some of the transferring electron flown out from the gap to UHMWPE matrix collided against carbon atoms of UHMWPE. The impact by the collision caused disordering chain arrangement in crystal grains. PMID:24479438

  10. Effect of cobalt on the corrosion behaviour of amorphous Fe-Co- Cr-B-Si alloys in dilute mineral acids

    Directory of Open Access Journals (Sweden)

    Solomon, N.

    2010-10-01

    Full Text Available The aim of this paper was to investigate the effect of increasing cobalt content on the corrosion resistance of the Fe- Co-Cr-B-Si alloys in dilute mineral acids. The corrosion rates in 0.5N HCl, 1N HCl and 1N H2SO4 significantly decrease with an increase in cobalt content. The alloys with a larger amount of cobalt can passivate spontaneously. The high corrosion resistance of the Fe-Co-Cr-B-Si alloys is also due to the formation of chromium -enriched passive film. Generally, the corrosion resistance of chromium –bearing alloy is improved by alloying with various metalloids but it is lowered by addition of boron and silicon. The corrosion behaviour of the amorphous Fe75-xCoxCr1B7Si17 alloys obtained by the melt-spinning technique was studied using gravimetric method. The best results were obtained with Fe65Co10Cr1B7Si17 alloy. The studied amorphous alloy ribbons exhibit not only excellent physical properties which are useful for many electric and magnetic applications: magnetic sensors, power transformers, high frequency transformers, etc., but also a very good corrosion resistance which extend their application domain.Este trabajo presenta los resultados de la investigación sobre la resistencia a la corrosión de un nuevo sistema de aleaciones amorfas, p. ej., Fe-Co-Cr-B-Si. El comportamiento de la corrosión de aleaciones amorfas así como el de cualquier otra aleación cristalina puede ser determinado, en ambas, por factores internos (la estructura y composición de la aleación y por factores externos (tipo medio agresivo, concentración y coeficiente pH. La falta de cristalinidad y de defectos específicos al estado de cristalinidad -limitaciones de grano, dislocaciones y segregaciones- aseguran una alta resistencia a la corrosión a las aleaciones amorfas, en lugar de ser termodinámicamente metaestables La investigación se desarrolló a través del método gravimétrico en muestras de aleación amorfa Fe75-xCoxCr1B7Si17 obtenidos por

  11. Stability of metastable phase and soft magnetic properties of bulk Fe-B nano-eutectic alloy prepared by undercooling solidification combined with CU-mold chilling

    Science.gov (United States)

    Yang, Changlin; Zhang, Jun; Huang, Huili; Song, Qijiao; Liu, Feng

    2015-11-01

    Bulk Fe83B17 nano-eutectic alloys were prepared by undercooling solidification combined with Cu-mold chilling method. Stable phase Fe2B and metastable phase Fe3B were found to coexist in the as-solidified microstructure. The soft magnetic properties were improved significantly by the nano-lamellar eutectic and the metastable phase and, were increased further by annealing at 1173 K for 1.5 h after which the metastable phase was decomposed completely.

  12. Noncontact measurement of high-temperature surface tension and viscosity of bulk metallic glass-forming alloys using the drop oscillation technique

    OpenAIRE

    Mukherjee, S.; Johnson, W. L.; Rhim, W. K.

    2005-01-01

    High-temperature surface tension and viscosities for five bulk metallic glass-forming alloys with widely different glass-forming abilities are measured. The measurements are carried out in a high-vacuum electrostatic levitator using the drop oscillation technique. The surface tension follows proportional mathematical addition of pure components' surface tension except when some of the constituent elements have much lower surface tension. In such cases, there is surface segregation of the low ...

  13. Study of dynamic properties for NaK binary liquid alloy using first principle and theoretical predictions of isothermal bulk modulus using elastic constants

    International Nuclear Information System (INIS)

    Study of atomic motions in the binary liquid alloys have been studied in terms of dynamical variables like velocity auto correlation, power spectrum and mean square displacement. Elastic constants and isothermal bulk modulus have been calculated to see the effeectiveness of ab-initio pseudopotentials which has been used in this paper. This appraoch is free from the fitting parameters and results obtained using this appraoch have been found very close to the average values

  14. Study of dynamic properties for NaK binary liquid alloy using first principle and theoretical predictions of isothermal bulk modulus using elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Anil, E-mail: anil-t2001@yahoo.com; Kashyap, Rajinder [Department of Physics, Govt. P. G. College Solan-173212, Himachal Pradesh (India); Sharma, Nalini; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University Shimla-171005, Himachal Pradesh (India)

    2014-04-24

    Study of atomic motions in the binary liquid alloys have been studied in terms of dynamical variables like velocity auto correlation, power spectrum and mean square displacement. Elastic constants and isothermal bulk modulus have been calculated to see the effeectiveness of ab-initio pseudopotentials which has been used in this paper. This appraoch is free from the fitting parameters and results obtained using this appraoch have been found very close to the average values.

  15. Liquid -to-glass transition in bulk glass-forming Cu55-xZr45Agx alloys using molecular dynamic simulations

    Directory of Open Access Journals (Sweden)

    Celtek M.

    2011-05-01

    Full Text Available We report results from molecular dynamics (MD studies concerning the microscopic structure of the ternary, bulk metallic glass-forming Cu55-x Zr45Agx (x=0,10,20 alloys using tight-binding potentials. Understanding of the nature of Glass Forming Ability (GFA of studied alloys, GFA parameters, glass transition temperature (T-g, melting temperature (T-m, reduced glass transition temperature (T-g/T-m, the supercooled liquid region and other parameters were simulated and compared with experiments. The computed pair distribution functions reproduce well experimental x-ray data of Inoue and co-workers. Structure analysis of the Cu-Zr-Ag alloy based on MD simulation will be also presented

  16. Thermomagnetic transitions and coercivity mechanism in bulk composite Nd{sub 60}Fe{sub 30}Al{sub 10} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Zempoalteca, R. [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Mexico D.F. 04510 (Mexico); Betancourt, I. [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Mexico D.F. 04510 (Mexico)], E-mail: israelb@correo.unam.mx; Valenzuela, R. [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Mexico D.F. 04510 (Mexico)

    2009-10-15

    The thermomagnetic behaviour (within the temperature range 553-300 K) for the bulk composite Nd{sub 60}Fe{sub 30}Al{sub 10} alloy is described in terms of a transition from paramagnetic to superferromagnetic state at T=553 K, followed by a ferromagnetic ordering for T<473 K. For the superferromagnetic regime, the alloy thermomagnetic response was associated to a homogeneous distribution of magnetic clusters with mean magnetic moment and size of 1072 {mu}{sub B} and 2.5 nm, respectively. For T<473 K, a pinning model of domain walls described properly the alloy coercivity dependence with temperature, from which the domain wall width and the magnetic anisotropy constant were estimated as being of {approx}8 nm and {approx}10{sup 5} J/m{sup 3}, typical values of hard magnetic phases. Results are supported by microstructural and magnetic domain observations.

  17. Investigation of the Stability and 1.0 MeV Proton Radiation Resistance of Commercially Produced Hydrogenated Amorphous Silicon Alloy Solar Cells

    Science.gov (United States)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys is reported. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below 1E14 sq cm fluences above 1E14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed In dark I-V measurements. The current mechanism were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  18. 非晶态Cr-C合金镀层制备及其耐腐蚀性%Preparation and Corrosion Resistance of Amorphous Cr-C Alloy Coating

    Institute of Scientific and Technical Information of China (English)

    杨毕学; 揭晓华; 李国亮

    2012-01-01

    以酒石酸为添加剂,采用电沉积法制备了非晶态Cr-C合金镀层。用X射线衍射、扫描电子显微镜及能谱仪对镀层结构、形貌及成分进行表征,并对镀层进行电化学耐腐蚀性测试。结果表明,当酒石酸加入量为40g/L时,镀层的x射线衍射图出现非晶态的特征峰,镀层表面平整、致密,无裂纹和针孔,与普通晶态Cr镀层相比,非晶态Cr-C合金镀层具有更优良的耐腐蚀性能。%Amorphous Cr-C alloy coating was prepared by electrodepositing in tartaric acid additive bath. The microstructure, composition and surface morphology of the coating were detected by ?(ray diffraction, SEM and EDS, also the microhardness, electrochemical corrosion resistance of the coating were tested. The results showed that a broad diffraction peak appeared on the Xray diffraction pattern, the coating had a smooth and dense surface without pinhole and crack when the dosage of tartaric acid was 40 g/L. Compared with conventional crystalline Cr coating, amorphous Cr-C alloy coating had better corrosion resistance.

  19. Study on Preparation of Amorphous Cr-C Alloy Coating%非晶态Cr-C合金镀层的制备研究

    Institute of Scientific and Technical Information of China (English)

    杨毕学; 揭晓华; 卢国辉

    2011-01-01

    A new formula used to prepare amorphous CrC alloy coating by electrodepositing was studied with optimization study on tartaric acid additive. The microstructore and surface morphology of the coating was detected by X-my diffraction and SEM. The microhardness and adhesion of the coating was tested. The results show that a broad diffraction peaks appeares on the X-ray diffraction pattern and the coating has a smooth, dense surface without pinhole and crack, and has maximum microhardness and binding force when the dosage of tartaric acid is 40 g/L. The main reasons to result in generation of amorphous Cr-C alloy coating are that alien atoms mixed into Cr layer and the active point on the layer surface are adsorbed by tartaric acid in the process of electrodeposition.%通过对添加剂酒石酸的优化研究,研究电沉积制备非晶态Cr-C合金镀层的新配方.用X射线衍射和扫描电子显微镜对镀层结构和形貌进行表征,并对镀层硬度及结合力进行测试.结果表明,当酒石酸加入量为40g/L时,镀层的X射线衍射图出现非晶态的宽化峰,镀层的硬度和结合力最高,表面平整、致密,无裂纹和针孔,异类原子的加入和酒石酸对表面活性点的吸附作用是形成非晶态结构的主要原因.

  20. 非晶态铁基合金退火样品的偏移回线%DISPLACED HYSTERESIS LOOPS IN ANNEALED Fe-BASED AMORPHOUS ALLOYS

    Institute of Scientific and Technical Information of China (English)

    李印峰; 李笃行; 等

    2001-01-01

    报道了非晶态铁基合金(Fe65.9Cr11.6Si7.5 B15和Fe60Co5.9Cr11.6Si7.5B15)退火样品的回线 偏 移现象. 研究了偏移回线与测量磁场Hm,温度T和时间t的关系. 基于退火产生的 硬磁颗粒与剩余非晶软磁母体之间的静磁相互作用机制,利用等效的单向各向异性模型可以很好地分析和解释实验结果.%We report the displaced hysteresis loops in the annealed amorphous alloys Fe 65.9Cr11.6Si7.5B15 and Fe60Co5.9Cr11.6Si 7.5B15. The effects of measuring field Hm, temperature T and time t on the displacement HD have been studied. On the basis of t he magnetostatic interaction between the hard particle resulting from the anneal i ng and the residual amorphous soft matrix, the experiments could be well explain ed by the unidirectional anisotropy model.

  1. Compressive fracture characteristics of Zr-based bulk metallic glass

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The compressive fracture characteristics of Zr-based bulk metallic glass under uniaxial compression tests are studied.The zigzag rheological behavior is observed in the compression stress-strain curves of amorphous alloys.At room temperature the uniaxial compression fracture takes place along the plane which is at a 45-degree angle to the direction of the compressive stress.The microstructure of a typical fracture pattern is the vein network.A unique,finger-like vein pattern is found to exist at the fracture surface of Zr-based bulk metallic glass.

  2. On the mechanically induced crystallization of FCC phases by mechanical milling in ZrAlNiCu bulk metallic glasses

    International Nuclear Information System (INIS)

    In the present study, amorphous-nanocrystalline phase transformation induced by mechanical milling of full monolithic bulk metallic glasses (based on Zr65Al7.5Ni10Cu17.5 and Zr58Al16Ni11Cu15 alloys) has been investigated using X-ray diffraction as well as transmission electron microscopy. Nanocrystals having an FCC structure and a grain size of several 10 nm precipitate in the early stages of the milling process and remain stable for long milling duration. The structure changes induced by milling give a new insight on the preparation of amorphous-related alloys when using the method of mechanical milling.

  3. Novel Fe-based amorphous magnetic powder cores with ultra-low core losses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Amorphous magnetic alloy powders were prepared from bulk metallic glasses Fe74Cr2Mo2Sn2P10Si4B4C2 with supercooled liq-uid region of 32 K by water atomization.Amorphous magnetic powder core precursor was produced from a mixture of the amorphous alloy powder with addition of insulation and bonding materials by mold compacting at room temperature.After annealing the core precursor,the amorphous magnetic core exhibits superior magnetic properties as compared with molypermalloy powder core.The initial permeability up to 1 MHz was about 80,the flux density at 300 Oe was 1.06 T and the core loss at 100 kHz for Bm=0.1 T was only 329 kW/m3.The ultra-low core loss is attributed to the combination of relatively high resistivity and the amorphous structure of the Fe-based amorphous powder.Besides the outstanding magnetic properties,the Fe-based amorphous magnetic powder core had a much lower cost which renders the powder cores a potential candidate for a variety of industrial applications.

  4. Effect of Cr addition on the glass-forming ability, magnetic properties, and corrosion resistance in FeMoGaPCBSi bulk glassy alloys

    International Nuclear Information System (INIS)

    The effect of Cr addition on the glass-forming ability (GFA), the magnetic properties, and corrosion resistance in Fe-Mo-Ga-P-C-B-Si glassy alloys was investigated. In addition to a slight increase of supercooled liquid region from 50 to 55 K, the substitution of a small amount of Fe with Cr was found to be effective for approaching alloy to a eutectic point, resulting in an increase in GFA. By copper mold casting, bulk glassy alloy rods with diameters up to 3 mm were produced. These glassy alloys exhibit a rather high saturation magnetization of 0.84-1.11 T with good soft-magnetic properties, i.e., low coercive force of 2.3-2.9 A/m, and high effective permeability of 13 360-15 960 at 1 kHz under a field of 1 A/m. The passive current density of the glassy alloy rod in 3 mass % NaCl solution decreased significantly from 1x102 to 3x10-1 A/m2 with an increase in Cr content, indicating that the addition of Cr is effective in enhancing the corrosion resistance

  5. Microstructural and Microhardness Variation of Amorphous Fe78Si9B13 Alloy during Bend Stress Relaxation

    Institute of Scientific and Technical Information of China (English)

    Xifeng LI; Kaifeng ZHANG; Changli WANG; Wenbo HAN; Guofeng WANG

    2007-01-01

    The amorphous Fe78Si9B13 ribbons were bend stress relaxed at various temperature well below the crystallization temperature (Tx) for different time. The effect of pre-annealing on the subsequent bend stress relaxation was examined. The variation of the microstructure and microhardness during bend stress relaxation process was studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and Vickers microhardness test,respectively. Curvature radius of the amorphous Fe78Si9B13 ribbons decreased with increase bend stress relaxation temperature and time. The microhardness of the stress relaxed specimens increased with time at 300℃ due to the forming of nanocrystals during bend stress relaxation. The pre-annealing reduced the decrease rate of the curvature radius of stress relaxed specimens.

  6. GMI field sensitivity near a zero external field in Co-based amorphous alloy ribbons: experiments and model

    International Nuclear Information System (INIS)

    The giant magnetoimpedance (GMI) effect in Co66Fe4Ni1Si15B14 amorphous ribbons was investigated, and the obvious blunt peaks of GMI curves were observed in a weak external magnetic field (0∼3 Oe). The shape of the blunt peaks could be changed by different treatments, such as changing the aspect ratio of the ribbons, premagnetization before magnetoimpedance measurement, and rapid heat-treatment, and the GMI sensitivity is improved. Based on the experimental results, a model in view of magnetostrictive energy is proposed to analyze the bluntness of the peak of the GMI curve and the process of transverse permeability varying with the external field near zero-field in the Co-based amorphous ribbons, and all the experimental results have good agreement with our model. (paper)

  7. Effect of rare earth additions on magnetic properties of Fe{sub 82}Nb{sub 2}B{sub 14}RE{sub 2} (RE = Y, Gd, Tb and Dy) amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chrobak, A., E-mail: artur.chrobak@us.edu.pl [Institute of Physics, Silesian University, 4 Uniwersytecka, 40-007 Katowice (Poland); Nosenko, V. [G.V. Kurdyumov Institute for Physics of Metals, NAS of Ukraine, Vernadsky ave. 36, 03142 Kyiv (Ukraine); Haneczok, G. [University of Silesia, Institute of Materials Science, 12 Bankowa, 40-007 Katowice (Poland); Boichyshyn, L.; Kotur, B. [Ivan Franko National University of Lviv, Kyryla and Mefodia St. 6, 79005 Lviv (Ukraine); Bajorek, A. [Institute of Physics, Silesian University, 4 Uniwersytecka, 40-007 Katowice (Poland); Zivotsky, O.; Hendrych, A. [Technical University of Ostrava, Institute of Physics, 17. listopadu 15, 708 33 Ostrava-Poruba (Czech Republic)

    2011-10-17

    Highlights: {yields} We studied magnetic properties of Fe{sub 82}Nb{sub 2}B{sub 14}RE{sub 2} (RE=Y,Gd,Tb,Dy) amorphous alloys. {yields} In a comparison with Fe{sub 82}Nb{sub 2}B{sub 14}Y{sub 2} alloy the rare earth editions cause an increase of the Curie temperature and a decrease of magnetic moment per magnetic atom. {yields} Doping of Tb and Dy lead to a strong decrease of magnetic permeability and a formation of low dimensional finger-print magnetic domains. - Abstract: In the present paper the influence of RE alloying additions (Y, Gd, Tb and Dy) on magnetic properties (Curie temperatures, low temperature magnetization, zero field cooling-field cooling curves, domain structure, room temperature magnetostriction and magnetic permeability) of amorphous alloys of type Fe{sub 82}Nb{sub 2}B{sub 14}RE{sub 2} are carefully examined. It was shown that substituting of yttrium atoms by magnetic elements, i.e. Gd, Tb and Dy leads to (i) an increase of the Curie temperature of amorphous phase from 416 K (for Fe{sub 82}Nb{sub 2}B{sub 14}Y{sub 2}) to 450 K (for Fe{sub 82}Nb{sub 2}B{sub 14}Gd{sub 2}) and (ii) a decrease of magnetization in saturation (magnetic field 7 T) which can be explained by antiferromagnetic Fe-RE coupling resulting in a decrease of magnetic moment calculated per magnetic atom from 2.00 {mu}{sub B} for the Fe{sub 82}Nb{sub 2}B{sub 14}Y{sub 2} alloy (Fe in amorphous phase) to 1.51 {mu}{sub B} for the Fe{sub 82}Nb{sub 2}B{sub 14}Tb{sub 2} alloy. It was concluded that Tb and Dy alloying additions introduce a local magnetic anisotropy responsible for significant decrease of initial magnetic permeability (about 5 times in relation to Fe{sub 82}Nb{sub 2}B{sub 14}Y{sub 2} or Fe{sub 82}Nb{sub 2}B{sub 14}Gd{sub 2} alloy), increase of magnetic irreversibility effect measured at 2 K (about 10 times in relation to the same alloys) and appearing of the finger-print magnetic domain regions (not observed for the Fe{sub 82}Nb{sub 2}B{sub 14}Y{sub 2} and Fe{sub 82}Nb

  8. First-principles-aided design of a new Ni-base superalloy: Influence of transition metal alloying elements on grain boundary and bulk cohesion

    International Nuclear Information System (INIS)

    A new approach to the design of Ni-base polycrystalline superalloys is proposed. In this approach, we assume that the creep–rupture characteristics of a superalloy are mostly determined by the strength of interatomic bonding at grain boundaries (GBs) and in the bulk of γ matrix. The ideal work of separation, Wsep, of a GB is used as a fundamental thermodynamic quantity that controls the mechanical strength of an interface, whereas the partial cohesive energy, χ, of an alloy component serves to characterize its contribution into the strength of the bulk. Using the Σ5 (2 1 0)[1 0 0] symmetric tilt GB as a representative high-angle GB in Ni, we calculate Wsep,χ, and GB segregation energies, Eseg, for the complete set of 4d and 5d transition metal impurities, to which we add B (a typical microalloying addition), S and Bi (notoriously known as harmful impurities in Ni-base superalloys). The purpose of the analysis is to identify the elements that demonstrate a high tendency to segregate to GBs, have positive (preferably high) partial cohesive energies in the bulk, and have positive impact on Wsep of GBs. We refer to these elements as low-alloying additions. Our study reveals Zr, Hf, Nb, Ta and B as the most promising low-alloying additions. Our next step is to introduce the elements found in the first step into a new powder metallurgy (P/M) Ni-base superalloy. The results of the subsequent testing confirm that the newly created P/M superalloy indeed demonstrates superior mechanical properties at high temperatures compared to the existing Russian P/M alloy EP741NP

  9. Physics of amorphous metals

    CERN Document Server

    Kovalenko, Nikolai P; Krey, Uwe

    2008-01-01

    The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling

  10. Optimisation of soft magnetic properties in Fe-Cu-X-Si{sub 13}B{sub 9} (X=Cr, Mo, Zr) amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kwapulinski, P.; Rasek, J.; Stoklosa, Z.; Haneczok, G. E-mail: haneczok@us.edu.pl

    2001-09-01

    In the present paper a group of Fe-Cu-X-Si{sub 13}B{sub 9} (X=Cr, Mo, Zr) amorphous alloys has been examined by applying different experimental techniques--magnetic permeability, magnetic after-effect, coercive force and electrical resistivity measurements. It has been shown that their soft magnetic properties can be optimised by 1-h thermal annealing at the temperature close to the crystallisation temperature. This leads to an increase of permeability and a decrease of coercive force, thermal instability (magnetic after-effect intensity) and electrical resistivity of the material. The optimisation effect is discussed in terms of different processes--(i) a formation of a nanocrystalline phase with the grain size much smaller than the ferromagnetic exchange length, (ii) an annealing out of microvoids formed during the fabrication process and also (iii) a decrease of the effective magnetostriction constant. The temperature of optimisation annealing treatment is always higher than the Curie temperatures of the materials and varies approximately linearly with the atomic radius of the alloying additions.

  11. Optimisation of soft magnetic properties in Fe-Cu-X-Si13B9 (X=Cr, Mo, Zr) amorphous alloys

    International Nuclear Information System (INIS)

    In the present paper a group of Fe-Cu-X-Si13B9 (X=Cr, Mo, Zr) amorphous alloys has been examined by applying different experimental techniques--magnetic permeability, magnetic after-effect, coercive force and electrical resistivity measurements. It has been shown that their soft magnetic properties can be optimised by 1-h thermal annealing at the temperature close to the crystallisation temperature. This leads to an increase of permeability and a decrease of coercive force, thermal instability (magnetic after-effect intensity) and electrical resistivity of the material. The optimisation effect is discussed in terms of different processes--(i) a formation of a nanocrystalline phase with the grain size much smaller than the ferromagnetic exchange length, (ii) an annealing out of microvoids formed during the fabrication process and also (iii) a decrease of the effective magnetostriction constant. The temperature of optimisation annealing treatment is always higher than the Curie temperatures of the materials and varies approximately linearly with the atomic radius of the alloying additions

  12. Study of magnetization in compacted amorphous and nanocrystalline alloy Fe73.5Cu1Nb3Si13.5B9

    International Nuclear Information System (INIS)

    The bulk amorphous FINEMET was prepared from ribbon and powder by shock wave compaction. The magnetization of compacts was measured up to 550 C. The Curie and crystallization temperature was 350 C and 495 C respectively. From the magnetization curves of as-compacted and annealed samples measured at room temperature in the external magnetic field up to 1.8T, the effective anisotropy and the law of approach to saturation was derived. The deviation from saturation was ascribed to the stress related structural defects in ribbon compacts with prevailing effect of the point-like defects. In the powder compacts the deviation was caused by the intrinsic magnetostatic fluctuations due to spatial inhomogeneity

  13. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2015-07-01

    Full Text Available A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5 that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved. Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015  How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 192-200. (doi:10.9767/bcrec.10.2.8284.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8284.192-200  

  14. Evolution of thermoelectric performance for (Bi,Sb)2Te3 alloys from cutting waste powders to bulks with high figure of merit

    Science.gov (United States)

    Fan, Xi‧an; Cai, Xin zhi; Han, Xue wu; Zhang, Cheng cheng; Rong, Zhen zhou; Yang, Fan; Li, Guang qiang

    2016-01-01

    Bi2Te3 based cutting waste powders from cutting wafers were firstly selected as raw materials to prepare p-type Bi2Te3 based thermoelectric (TE) materials. Through washing, reducing, composition correction, smelting and resistance pressing sintering (RPS) process, p-type (Bi,Sb)2Te3 alloy bulks with different nominal stoichiometries were successfully obtained. The evolution of microstructure and TE performance for (Bi,Sb)2Te3 alloys were investigated in detail. All evidences confirmed that most of contaminants from line cutting process such as cutting fluid and oxides of Bi, Sb or Te could be removed by washing, reducing and smelting process used in this work. The carrier content and corresponding TE properties could be adjusted effectively by appropriate composition correction treatment. At lastly, a bulk with a nominal stoichiometry of Bi0.44Sb1.56Te3 was obtained and its' dimensionless figure of merit (ZT) was about 1.16 at 90 °C. The ZT values of Bi0.36Sb1.64Te3 and Bi0.4Sb1.6Te3 alloy bulks could also reach 0.98 and 1.08, respectively. Different from the conventional recycling technology such as hydrometallurgy extraction methods, the separation and extraction of beneficial elements such as Bi, Sb and Te did not need to be performed and the Bi2Te3 based bulks with high TE properties could be directly obtained from the cutting waste powders. In addition, the recycling technology introduced here was green and more suitable for practical industrial application. It can improve material utilization and lower raw material costs of manufacturers.

  15. Review on Formation Mechanism and Ability About Amorphous Alloys%非晶合金的形成机理及其形成能力的研究

    Institute of Scientific and Technical Information of China (English)

    张科; 马光; 贾志华; 孙晓亮; 李银娥; 李进

    2012-01-01

    概述了现有非晶合金的种类,并从合金的热力学、动力学和结构3个方面阐述了合金的非晶形成机理,同时全面总结和探讨了表征合金非晶形成能力的各种参数,主要包括Inoue经验规律、△H(熔化焓)、△S(熔化熵)、过冷液体温度区间△Tx(△Tx=Tx=Tg)、约化玻璃转变温度Trg(Trg=Tg/Tm)、粘度(η)、αβ1/3、临界冷却速度(Rc)、非晶晶化开始温度(Tx)与合金开始熔化温度(Tm)之比(Tx/Tm)、合金开始熔化温度(Tm)与玻璃转变温度(Tg)或非晶晶化开始温度(Tx)之差△Tm(△Tm=Tm-Tg或△Tm=Tm-Tx)、电子浓度e/a、原子尺寸、重力等.%The type of the existing amorphous alloys are summarized. The forming mechanisms of amorphous alloys have been investigated from the structure, thermodynamics and kinetics of the alloys. And the characterization parameters of glass forming ability have been summarized and investigated. They include the Inoue's empirical laws, melting enthalpy (△H) , entropy of fusion (△S) , supercooled liquid temperature interval(Atx) , reduced glass transition temperature(Trg), viscosity(η) , αβ1/3 , critical cooling rate (Rc), the ratio(Tx/Tm) between the crystallization starting temperature(Tx) and melting initiation temperature(Tm), the difference(△Xm = Tm — Tg or △Tm = Tm - Tx ) between melting initiation temperature(Tm) and glass transition temperature(Tg) or crystallization starting tempera-ture(Tx), electron concentration(e/α) , atomic size, gravity,etc.

  16. Corelation between the crystallisation process and change in thermoelectromotive force for the amorphous alloy Fe89.8Ni1.5Si5.2B3C0.5

    Directory of Open Access Journals (Sweden)

    Maričić Aleksa M.

    2003-01-01

    Full Text Available Thermal and kinetic analyses of the structural changes for the amorphous alloy Fe89.8Ni1.5Si5.2B3C0.5, during the processes of non-isothermal heating and isothermal annealing, have been performed. The crystallisation process has been investigated using the method of differential scanning calorimetry (DSC. It is determined that this alloy crystalizes through three different stages. Changes in the electronic structure of the amorphous tape, for the temperature range 20 to 700ºC have been studied. This was achieved by measuring the thermoelectromotive force (TEMS, of the thermo pair made of two tapes with same chemical structure of the alloy FeNiSiBC, but different atomic structure: one is in the crystal state (CL and the other is in the amorphous state (AM. Analysis of the temperature dependence of the electromotive force has shown the following: the investigated alloy is thermically stable up to 450ºC and changes in the atomic structure as well as equalising of the free electron density in both parts of the thermo pair AM-CL, take place in the temperature range from 450 to 550ºC. Kinetic parameters of the process were determined by measuring time dependence of the TEMS in isothermic conditions at the temperatures 450, 480 and 510ºC.

  17. Influence of Al addition on the thermal stability and mechanical properties of Fe76.5-xCu1Si13.5b9Alx amorphous alloys

    OpenAIRE

    Sun Y.Y.; Song M

    2012-01-01

    This paper fabricated Fe76.5-xCu1Si13.5B9Alx (x=0,1,2,3,5,7 at.%) amorphous ribbons using singleroller melt-spinning method. The effect of Al content on the thermal stability and mechanical properties was investigated. The results indicated that Al addition have little effect on the amorphous formation ability of the alloys. On the other hand, increasing the Al content can substantially increase Tx2, which corresponds to the crystallization of Fe borides. Nanoindentation tests indicated...

  18. Structure and magnetic properties of Fe36Co36B19Si5Nb4 bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2008-10-01

    Full Text Available Purpose: The work presents a microstructure characterization, thermal stability and soft magnetic properties analysis of Fe-based bulk metallic glasses.Design/methodology/approach: The studies were performed on bulk amorphous ribbons and rods. The amorphous structure of tested materials was examined by X-ray diffraction (XRD and transmission electron microscopy (TEM methods. The thermal properties associated with crystallization temperature of the glassy samples were measured using differential thermal analysis (DTA and differential scanning calorimetry (DSC. The magnetic properties were determined by the Maxwell-Wien bridge and VSM methods.Findings: The X-ray diffraction and transmission electron microscopy investigations have revealed that the studied as-cast bulk metallic glasses were amorphous. Based from the XRD analysis and TEM investigations of the Fe36Co36B19Si5Nb4 rod samples, it was believed that the tested alloy can be fabricated into a bulk glassy rod with the diameter of up to 4 mm. A two stage crystallization process was observed for studied bulk amorphous alloy. The changes of Curie temperatures, crystallization temperatures and magnetic properties as a function of glassy ribbons thickness (time of solidification were stated. The investigated magnetic properties allow to classify the studied metallic glasses as soft magnetic materials.Practical implications: The studied bulk metallic glasses are suitable materials for many electrical application in different elements of magnetic circuits and for manufacturing of sensors and precise current transformers.Originality/value: The obtained examination results confirm the utility of applied investigation methods in the microstructure, thermal and soft magnetic properties analysis of examined bulk amorphous alloys.

  19. Atomic simulation on evolution of nano-crystallizaion in amorphous metals

    Institute of Scientific and Technical Information of China (English)

    WANG Yu; WANG Xiu-xi; WANG Hai-long

    2006-01-01

    The deformation-induced nano-crystallization behavior of amorphous pure Ni was investigated by using a molecular dynamics simulation. The microevolution mechanism of the nano-crystallization,the crystallization process in the multicomponent amorphous Ni-Pd alloys and the temperature effect on the nano-crystallization behavior in amorphous metals were studied. The results show that the small nano-crystalline grain will nucleate and grow during the compression deformation. The deformation induces the growth of the ordered clusters in the amorphous metals and the nano-crystalline grain grows under the shearing combination and shearing deposition. The nano-crystalline grain will nucleate in a lower strain under a higher temperature. The combining severe plastic deformation with thermal annealing treatments presents a new opportunity for developing bulk nano-crystalline materials with controlled microstructures.

  20. In-plane/out-of-plane disorder influence on the magnetic anisotropy of Fe1-yMnyPt-L10 bulk alloy

    Science.gov (United States)

    Cuadrado, R.; Liu, Kai; Klemmer, Timothy J.; Chantrell, R. W.

    2016-03-01

    The random substitution of a non-magnetic species instead of Fe atoms in FePt-L10 bulk alloy will permit to tune the magnetic anisotropy energy of this material. We have performed by means of first principles calculations a study of Fe1-yMnyPt-L10 (y = 0.0, 0.08, 0.12, 0.17, 0.22, and 0.25) bulk alloy for a fixed Pt concentration when the Mn species have ferro-/antiferromagnetic (FM,AFM) alignment at the same(different) atomic plane(s). This substitution will promote several in-plane lattice values for a fixed amount of Mn. Charge hybridization will change compared to the FePt-L10 bulk due to this lattice variation leading to a site resolved magnetic moment modification. We demonstrate that this translates into a total magnetic anisotropy reduction for the AFM phase and an enhancement for the FM alignment. Several geometric configurations were taken into account for a fixed Mn concentration because of different possible Mn positions in the simulation cell.

  1. Evaluation of mechanical properties of partially amorphous and nanocrystalline Al{sub 50}Ti{sub 40}Si{sub 10} composites prepared by mechanical alloying and hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D., E-mail: droy2k6@gmail.com [Mechanical and Manufacturing Engineering Department, University of Manitoba, Winnipeg, Canada R3T 2N2 (Canada); Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907 (United States); Metallurgical and Materials Engineering Department, Indian Institute of Technology, Kharagpur 721302 (India); Metallurgical and Materials Engineering Department, NIFFT, Ranchi 834003 (India); Polish Academy of Sciences, Institute of High Pressure Physics (UNIPRESS), Sokolowska 29/37, Warszawa 01-142 (Poland); Mitra, R. [Metallurgical and Materials Engineering Department, Indian Institute of Technology, Kharagpur 721302 (India); Ojo, O.A. [Mechanical and Manufacturing Engineering Department, University of Manitoba, Winnipeg, Canada R3T 2N2 (Canada); Singh, S.S. [Metallurgical and Materials Engineering Department, Indian Institute of Technology, Kharagpur 721302 (India); Kolesnikov, D.; Lojkowski, W. [Polish Academy of Sciences, Institute of High Pressure Physics (UNIPRESS), Sokolowska 29/37, Warszawa 01-142 (Poland); Scattergood, R.O.; Koch, C.C. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907 (United States); Manna, I. [Central Glass and Ceramic Research Institute, Jadavpur, Kolkata 700032 (India)

    2012-10-15

    Graphical abstract: - Abstract: Mechanically alloyed in situ nano Al{sub 3}Ti dispersed Al{sub 50}Ti{sub 40}Si{sub 10} amorphous matrix alloy powder was consolidated by hot isostatic pressing in the temperature range of 300-600 Degree-Sign C with a pressure of 1.2 GPa and holed at this temperature for 10 min. Microstructural and phase evolution studies of the mechanically alloyed powder and sintered compacts were conducted by X-ray diffraction and transmission electron microscopy. Alloy sintered at 500 Degree-Sign C recorded an excellent combination of high hardness (8.61 GPa), compressive strength (1212 MPa) and Young's modulus (149 GPa). Furthermore, these results have been compared with that of earlier studies based on conventional sintering (CCS), and high pressure sintering (HPS).

  2. Fabrication of ternary Ca-Mg-Zn bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2013-02-01

    Full Text Available Purpose: The paper describes the preparation, structure and thermal properties of ternary Ca-Mg-Zn bulk metallic glass in form of as-cast rods.Design/methodology/approach: The investigations on the ternary Ca-Mg-Zn glassy rods were conducted by using X-ray diffraction (XRD, scanning electron microscopy (SEM which energy dispersive X-ray analysis (EDS.Findings: The X-ray diffraction investigations have revealed that the studied as-cast rod was amorphous. The fractures of studied alloy could be classified as mixed fracture with indicated “river” and “smooth” fractures. Both type of the fracture surfaces consist of weakly formed “river” and “shell” patterns and “smooth” regions. The “river” patterns are characteristic for metallic glassy alloys.Practical implications: The studied Ca-based bulk metallic glasses is a relatively new group of material. Ca-based bulk metallic glasses are applied for many applications in different elements. Ca-based bulk metallic glasses have many unique properties such as low density (~2.0 g/cm3, low Youn g’s modulus ( ~20 to 30 GPa. The elastic modulus of Ca-b ased BMGs is comparable to that of hum an bone s, and Ca, Mg, and Zn are biocompatible. These features make the Ca-Mg-Zn–based alloys attractive for use in biomedical applications.Originality/value: Fabrication of amorphous alloy in the form of rod ternary Ca-Mg-Zn alloy by pressure die casting method.

  3. Glass Formation Ability and Kinetics of the Gd55Al20Ni25 Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    JO Chol-Lyong; XIA Lei; DING Ding; DONG Yuan-Da

    2006-01-01

    @@ We report a new bulk glass-forming alloy Gd55Al20Ni25. The bulk sample of the alloy is prepared in the shape of rods in diameter 2mm by suction casting. The rod exhibits typical amorphous characteristics in the xray diffraction pattern, paramagnetic property at 300K, distinct glass transition and multi-step crystallization behaviour in differential scanning calorimetry traces. The glass formation ability of the alloy is investigated by using the reduced glass transition temperature Tγg and the parameter γ. Kinetics of glass transition and primary crystallization is also studied. The fragility parameter m obtained from the Vogel-Fulcher-Tammann dependence of glass transition temperature Tg on ln φ (φ is the heating rate) classifies the bulk metallic glasses into the intermediate category according to Angells classification.

  4. Annealing characteristics of amorphous silicon alloy solar cells irradiated with 1.00 MeV protons

    Science.gov (United States)

    Abdulaziz, Salman S.; Woodyard, James R.

    1991-01-01

    Amorphous Si:H and amorphous Si sub x, Ge sub (1-x):H solar cells were irradiated with 1.00 MeV proton fluences in the range of 1.00E14 to 1.25E15 cm (exp -2). Annealing of the short circuit current density was studied at 0, 22, 50, 100, and 150 C. Annealing times ranged from an hour to several days. The measurements confirmed that annealing occurs at 0 C and the initial characteristics of the cells are restored by annealing at 200 C. The rate of annealing does not appear to follow a simple nth order reaction rate model. Calculations of the short-circuit current density using quantum efficiency measurements and the standard AM1.5 global spectrum compare favorably with measured values. It is proposed that the degradation in J sub sc with irradiation is due to carrier recombination through the fraction of D (o) states bounded by the quasi-Fermi energies. The time dependence of the rate of annealing of J sub sc does appear to be consistent with the interpretation that there is a thermally activated dispersive transport mechanism which leads to the passivation of the irradiation induced defects.

  5. Effects of femtosecond laser ablation on the surface morphology and microstructure of a bulk TiCuPdZr glass alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Hongshui; LIANG Chunyong; CHEN Xueguang; WANG Lei; YANG Yang; YANG Jianjun; ZHU Shengli; LI Changyi

    2009-01-01

    The effects of femtosecond laser ablation on the surface characteristics and microstructure of a bulk TiCuPdZr glass alloy were investigated. The heat influence zone of femtosecond laser ablated with a laser energy of 100 μJ exhibits a ripple-like feather, while a porous structure appears on the surface of the specimen ablated by a 200 μJ femtosecond laser. The contents of Ti, Zr, and Pd on the ablated surface decrease and that of Cu increases with increasing laser energy. The crystallization process occurs on the glass alloy specimens during femtosecond laser ablation, and the crystallinity of a 100 μJ femtosecond laser-ablated specimen is greater than that of a 200 μJ femtosecond laser-ablated one.

  6. Effect of repeated melting of the mother ingot on the thermal stability of a Zr60Al15Ni25 bulk glassy alloy

    Institute of Scientific and Technical Information of China (English)

    YAN Zhijie; LI Jinfu; WANG Honghua; HE Shunrong; ZhOU Yaohe

    2003-01-01

    The effect of repeated melting of the mother ingot on the thermal stability of a Zr60Al15Ni25 glassy alloy was investigated by differential scanning calorimetry (DSC). Experimental results indicate that after the repeated melting of the ingots at 1300 and 1580 K, the glass transition temperature Ts increases from 686.4 to 690.7 and 696.8 K and the onset temperature of crystallization Tx from 757.9 to 758.6 and 763.4 K, respectively, indicating that the thermal stability becomes higher after the repeated arc melting of the mother ingot and that it is more effective at higher temperature. Within the framework of structure heredity, the origin of the improvement of the thermal stability of Zr60Al15Ni2s bulk glassy alloy is discussed.

  7. Coextrusion forming characteristics of novel Cu alloy/bulk metallic glass composite%新型铜合金/非晶复合材料的挤压成形特性

    Institute of Scientific and Technical Information of China (English)

    刘勇; 张丽; 郭洪民; 杨湘杰

    2011-01-01

    A novel Cu alloy/bulk metallic glass (BMG) composite was fabricated through the coextrusion process, based on the excellent thermoplastic forming characteristics of BMG in the supercooled liquid region (SLR). The Cu-based amorphous Cu40Zr44Ag8Al8 and pure Cu alloy were selected as components. The Cu alloy/BMG composite bar was easily fabricated at extrusion temperature of 703 K and extrusion speed of 0.4 mm/min. The morphology and structure of the core BMG before and after the coextrusion with Cu were characterized by optical microscopy (OM), X-ray diffractometry (XRD), differential scanning calorimetry(DSC) and microhardness(HV). The results indicate that the core BMG can reach the approximately uniform distribution of the dimension after suffering the shortly inhomogeneous distribution of the dimension in the initial stages of coextrusion. Combining the analysis of XRD, DSC and micro hardness (HV), it can be concluded that the crystallization of core BMG does not occur after the coextrusion with Cu at 703 K.%基于大块非晶在过冷液相区间具有较好的热塑性成形特点,选择铜基非晶Cu40Zr44Ag8Al8和铜合金,通过挤压成形工艺,制备出一种新型的铜合金/非晶复合材料;在703 K和挤压速度为0.4 mm/min下对该复合材料进行挤压,获得铜合金、非晶复合材料棒材.通过光学金相(OM)、X射线衍射(XRD)、示差扫描量热分析(DSC)和维氏硬度测试(HV)对挤压变形前、后芯部非晶进行形貌观察和结构分析.结果表明:芯部非晶在挤压前期呈不均匀分布,而后分布非常均匀;结合XRD、DSC和硬度的结果分析,在703 K下挤压后,芯部非晶没有发生晶化.

  8. Influence of the chemical composition of rapidly quenched amorphous alloys (Ni, Fe, Cr)-B-Si on its crystallization process

    Science.gov (United States)

    Elmanov, G.; Dzhumaev, P.; Ivanitskaya, E.; Skrytnyi, V.; Ruslanov, A.

    2016-04-01

    This paper presents results of research of the structure and phase transformations during the multistage crystallization of the metallic glasses with the compositions Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 labeled as AWS BNi-2 according to American Welding Society. Differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX) were used as experimental research methods. The influence of the alloys chemical composition (boron, manganese and iron) on the temperatures and the exothermic heat effects of phase transformations, as well as on the phase composition of alloys at three stages of crystallization was analyzed. We present a thermodynamic explanation of the observed heat effects. It has been shown that manganese has the main influence on the phase transformations temperatures and heat effects in these two alloys. It is also assumed that at the final crystallization stage simultaneously with the formation of phases Ni3B and β1-Ni3Si should occur the nucleation of borides of CrB type with high Cr and low Si content.

  9. Field-emission transmission electron microscopy study of the reaction sequence between Sn–Ag–Cu alloy and an amorphous Pd(P) thin film in microelectronic packaging

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C.E., E-mail: ceho1975@hotmail.com; Wang, C.C.; Rahman, M.A.; Lin, Y.C.

    2013-02-01

    The reaction sequence between liquid Sn–3Ag–0.5Cu solder and solid Au/Pd(P)/electrolytic-Ni films was carefully examined using a field-emission transmission electron microscope at different exposure times (15 s, 30 s, and 120 s). After 15 s of exposure, the uppermost layer of Au was removed from the interface and a portion of the Pd(P) film remained. At this stage of the reaction, the predominant products were PdSn{sub 3} and Pd{sub 3}P. After 30 s of exposure, Pd(P) was completely exhausted, and three additional intermetallic species, including Pd–Sn–P, Pd{sub 6}P, and Pd{sub 15}P{sub 2}, nucleated. After 120 s of exposure, the aforementioned species were destroyed, and Cu and Ni were involved in the reaction. The predominant product became (Cu,Ni){sub 6}Sn{sub 5}, and the nucleation of a nanocrystalline Ni{sub 2}SnP layer in the middle of (Cu,Ni){sub 6}Sn{sub 5} resulted. These results suggest that Pd and P play a vital role in the early stage of soldering reaction, even though the Pd(P) film is only a few submicrons thick and its P content is quite low (2–5%). - Highlights: ► Reaction sequence between an amorphous Pd(P) film and Sn–Ag–Cu alloy. ► Solder reaction assisted the crystallization of amorphous Pd(P) into Pd–P phase(s). ► Direct proof of the Pd(P)-induced Ni{sub 2}SnP nucleation. ► Pd and P both played a central role in the early stage of soldering reaction.

  10. Atomic packing and diffusion in Fe{sub 85}Si{sub 2}B{sub 9}P{sub 4} amorphous alloy analyzed by ab initio molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaocen; Takeuchi, Akira; Makino, Akihiro [Institute for Material Research, Tohoku University, Sendai 980-8577 (Japan); Liang, Yunye [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan); Kawazoe, Yoshiyuki [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan); Kutateladze Institute of Thermophysics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk (Russian Federation)

    2015-05-07

    In the work reported in this paper, ab initio molecular dynamics simulation was performed on Fe{sub 85}Si{sub 2}B{sub 9}P{sub 4} amorphous alloy. Preferred atomic environment of the elements was analyzed with Voronoi polyhedrons. It showed that B and P atoms prefer less neighbors compared with Fe and Si, making them structurally incompatible with Fe rich structure and repulsive to the formation of α-Fe. However, due to the low bonding energy of B and P caused by low coordination number, the diffusion rates of them were considerably large, resulting in the requirement of fast annealing for achieving optimum nano-crystallization for its soft magnetic property. The simulation work also indicates that diffusion rate in amorphous alloy is largely determined by bonding energy rather than atomic size.

  11. In situ X-ray diffraction study of structural evaluation in Fe73Cu1.5Nd3Si13.5B9 amorphous alloy at high temperature

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The thermodynamics structural relaxation of Fe73Cu1.5Nd3Si13.5B9 amorphous alloy from room temperature to 400℃ has been investigated by measuring the structure factor with in situ X-ray diffraction. The structural information of the atomic con-figuration such as radial distribution function (RDF) and neighbor atomic distance was gained by Fourier transformation. The research result shows that the amor-phous structure remains stable in the temperature range of 30 to 400℃ but exhibits distinct changes in local atomic configuration with the increase of temperature. The quantitative determination of the neighbor atomic distance suggests that the de-gree of short-range order changes by the temperature altering the second nearest neighbor local atomic configuration of the amorphous when structural relaxation occurs.

  12. In situ X-ray diffraction study of structural evaluation in Fe73Cu1.5Nd3Si13.5B9 amorphous alloy at high temperature

    Science.gov (United States)

    Li, Gong; Xu, Tao; Gao, Yunpeng; Liu, Riping

    2008-04-01

    The thermodynamics structural relaxation of Fe73Cu1.5Nd3Si13.5B9 amorphous alloy from room temperature to 400°C has been investigated by measuring the structure factor with in situ X-ray diffraction. The structural information of the atomic configuration such as radial distribution function (RDF) and neighbor atomic distance was gained by Fourier transformation. The research result shows that the amorphous structure remains stable in the temperature range of 30 to 400°C but exhibits distinct changes in local atomic configuration with the increase of temperature. The quantitative determination of the neighbor atomic distance suggests that the degree of short-range order changes by the temperature altering the second nearest neighbor local atomic configuration of the amorphous when structural relaxation occurs.

  13. Investigation of Sb diffusion in amorphous silicon

    OpenAIRE

    Csik, A.; Langer, G A; Erdelyi, G.; Beke, D. L.; Erdelyi, Z.; Vad, K.

    2009-01-01

    Amorphous silicon materials and its alloys become extensively used in some technical applications involving large area of the microelectronic and optoelectronic devices. However, the amorphous-crystalline transition, segregation and diffusion processes still have numerous unanswered questions. In this work we study the Sb diffusion into an amorphous Si film by means of Secondary Neutral Mass Spectrometry (SNMS). Amorphous Si/Si1-xSbx/Si tri-layer samples with 5 at% antimony concentration were...

  14. Fundamentals of amorphous solids structure and properties

    CERN Document Server

    Stachurski, Zbigniew H

    2014-01-01

    Long awaited, this textbook fills the gap for convincing concepts to describe amorphous solids. Adopting a unique approach, the author develops a framework that lays the foundations for a theory of amorphousness. He unravels the scientific mysteries surrounding the topic, replacing rather vague notions of amorphous materials as disordered crystalline solids with the well-founded concept of ideal amorphous solids. A classification of amorphous materials into inorganic glasses, organic glasses, glassy metallic alloys, and thin films sets the scene for the development of the model of ideal amorph

  15. M-Si-B合金非晶形成能力的CALPHAD模式评估%Evaluation of the amorphous-forming ability of M-Si-B ternary alloys using CALPHAD approach

    Institute of Scientific and Technical Information of China (English)

    长谷部光弘

    2005-01-01

    A thermodynamic study has been carried out on M-Si-B (M=Fe, Ni) ternary systems. A regular solution approximation based on the sublattice model was adopted to describe the Gibbs energy for the individual phases in the binary and ternary systems. Thermodynamic parameters for each phase were evaluated by using the experimental data. These parameters enabled us to obtain reproducible calculations of the isothermal and vertical section diagrams.The amorphous-forming ability of M-Si-B ternary alloys has been evaluated by introducing thermodynamic quantities obtained from the phase diagram calculations into Davies-Uhlmann kinetic formulations. For the computation, the timetemperature- transformation (TTT) diagram, which gives the time necessary for the formation of the detectable amount of crystal during transformation, was obtained at a finite temperature The critical cooling rate for amorphization could be defined as the minimum cooling speed that does not intersect the TTT curve and, hence, these critical cooling rates enable us to evaluate the glass-forming ability of M-Si-B ternary alloys. The driving force for the crystallization of the crystalline phase was derived, on the basis of the thermodynamic functions of each phase formulated by the present study. The calculated results showed good agreement with the experimental data on the compositional range of amorphization in these alloy systems.

  16. Investigation of amorphous RuMoC alloy films as a seedless diffusion barrier for Cu/p-SiOC:H ultralow-k dielectric integration

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Guohua [Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen (China); The Chinese University of Hong Kong, Shatin, Hong Kong (China); Liu, Bo [Sichuan University, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Chengdu (China); Li, Qiran [CNRS-Universite Paris Sud UMR 8622, Institut d' Electronique Fondamentale, Orsay (France)

    2015-08-15

    Ultrathin RuMoC amorphous films prepared by magnetron co-sputtering with Ru and MoC targets in a sandwiched scheme Si/p-SiOC:H/RuMoC/Cu were investigated as barrier in copper metallization. The evolution of final microstructure of RuMoC alloy films show sensitive correlation with the content of doped Mo and C elements and can be easily controlled by adjusting the sputtering power of the MoC target. There was no signal of interdiffusion between the Cu and SiOC:H layer in the sample of Cu/RuMoC/p-SiOC:H/Si, even annealing up to 500 C. Very weak signal of oxygen have been confirmed in the RuMoC barrier layer both as-deposited and after being annealed, and a good performance on preventing oxygen diffusion has been proved. Leakage current and resistivity evaluations also reveal the excellent thermal reliability of this Si/p-SiOC:H/RuMoC/Cu film stack at the temperatures up to 500 C, indicating its potential application in the advanced barrierless Cu metallization. (orig.)

  17. Low-Energy Amorphization of Ti1Sb2Te5 Phase Change Alloy Induced by TiTe2 Nano-Lamellae

    Science.gov (United States)

    Ding, Keyuan; Rao, Feng; Lv, Shilong; Cheng, Yan; Wu, Liangcai; Song, Zhitang

    2016-07-01

    Increasing SET operation speed and reducing RESET operation energy have always been the innovation direction of phase change memory (PCM) technology. Here, we demonstrate that ∼87% and ∼42% reductions of RESET operation energy can be achieved on PCM cell based on stoichiometric Ti1Sb2Te5 alloy, compared with Ge2Sb2Te5 and non-stoichiometric Ti0.4Sb2Te3 based PCM cells at the same size, respectively. The Ti1Sb2Te5 based PCM cell also shows one order of magnitude faster SET operation speed compared to that of the Ge2Sb2Te5 based one. The enhancements may be caused by substantially increased concentration of TiTe2 nano-lamellae in crystalline Ti1Sb2Te5 phase. The highly electrical conduction and lowly thermal dissipation of the TiTe2 nano-lamellae play a major role in enhancing the thermal efficiency of the amorphization, prompting the low-energy RESET operation. Our work may inspire the interests to more thorough understanding and tailoring of the nature of the (TiTe2)n(Sb2Te3)m pseudobinary system which will be advantageous to realize high-speed and low-energy PCM applications.

  18. Urchin-Like Amorphous Ni2B Alloys: Efficient Antibacterial Materials and Catalysts for Hydrous Hydrazine Decomposition to Produce H2.

    Science.gov (United States)

    Deng, Miao; Fu, Shi Yan; Yang, Fan; Wu, Ping; Tong, Dong Ge

    2016-03-01

    Urchin-like amorphous Ni2B alloys were successfully prepared for the first time from a mixture of Ni(NH3)6(2+) and polyvinyl alcohol (PVA) via a solution plasma process (SPP). The as-synthesized samples were characterized by X-ray powder diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), selected-area electron diffraction patterns (SAED) and nitrogen adsorption-desorption isotherms. In the performance test, the obtained Ni-B urchins showed great antibacterial activities, comparable with those of amikacin and kanamycin, especially towards Pseudomonas aeruginosa (P. aeruginosa). Meanwhile, the magnetic properties of Ni-B urchins are enhanced in comparison with those of conventional Ni-B. During hydrous hydrazine (N2H4) decomposition, the dehydrogenation performance of Ni-B urchins is superior to those of Raney Ni and conventional Ni-B. The enhanced catalytic performance of Ni-B urchins is attributed to their high surface area of active species nickel and the enhanced intrinsic activity resulting from their unique structure. PMID:27455647

  19. Low-Energy Amorphization of Ti1Sb2Te5 Phase Change Alloy Induced by TiTe2 Nano-Lamellae

    Science.gov (United States)

    Ding, Keyuan; Rao, Feng; Lv, Shilong; Cheng, Yan; Wu, Liangcai; Song, Zhitang

    2016-01-01

    Increasing SET operation speed and reducing RESET operation energy have always been the innovation direction of phase change memory (PCM) technology. Here, we demonstrate that ∼87% and ∼42% reductions of RESET operation energy can be achieved on PCM cell based on stoichiometric Ti1Sb2Te5 alloy, compared with Ge2Sb2Te5 and non-stoichiometric Ti0.4Sb2Te3 based PCM cells at the same size, respectively. The Ti1Sb2Te5 based PCM cell also shows one order of magnitude faster SET operation speed compared to that of the Ge2Sb2Te5 based one. The enhancements may be caused by substantially increased concentration of TiTe2 nano-lamellae in crystalline Ti1Sb2Te5 phase. The highly electrical conduction and lowly thermal dissipation of the TiTe2 nano-lamellae play a major role in enhancing the thermal efficiency of the amorphization, prompting the low-energy RESET operation. Our work may inspire the interests to more thorough understanding and tailoring of the nature of the (TiTe2)n(Sb2Te3)m pseudobinary system which will be advantageous to realize high-speed and low-energy PCM applications. PMID:27469931

  20. Irradiation effect of swift heavy ion for Zr{sub 50}Cu{sub 40}Al{sub 10} bulk glassy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, Naoto; Ishii, Akito; Ishii, Kouji; Iwase, Akihiro [Department of Materials Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Yokoyama, Yoshihiko [Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577 (Japan); Saitoh, Yuichi [Japan Atomic Energy Agency (JAEA), Takasaki Advanced Radiation Research Institute, 1233, Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Ishikawa, Norito [Japan Atomic Energy Agency (JAEA), Tokai Research and Development Center, Naka-ku, Ibaraki 319-1195 (Japan); Yabuuchi, Atsushi [Research Organization for the 21st Century, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Hori, Fuminobu, E-mail: horif@mtr.osakafu-u.ac.jp [Department of Materials Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan)

    2013-11-01

    It has been reported that heavy ion irradiation causes softening in some cases of Zr-based bulk metallic glass alloys. However, the fundamental mechanisms of such softening have not been clarified yet. In this study, Zr{sub 50}Cu{sub 40}Al{sub 10} bulk glassy alloys were irradiated with heavy ions of 10 MeV I at room temperature. The maximum fluence was 3 × 10{sup 14} ions/cm{sup 2}. The positron annihilation measurements have performed before and after irradiation to investigate changes in free volume. We discuss the relationship between the energy loss and local open volume change after 10 MeV I irradiation compared with those obtained for 200 MeV Xe and 5 MeV Al. The energy loss analysis in ion irradiation for the positron lifetime has revealed that the decreasing trend of positron lifetime is well expressed as a function of total electronic energy deposition rather than total elastic energy deposition. It means that the positron lifetime change by the irradiation has a relationship with the inelastic collisions with electrons during heavy ion irradiation.

  1. Sn and Nb modified ultrafine Ti-based bulk alloys with high-strength and enhanced ductility

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G. H. [Department of Materials Engineering, Shanghai University, 149 Yanchang Road, Shanghai 200072 (China); Schneider, R.; Gerthsen, D. [Laboratorium fuer Elektronenmikroskopie, Karlsruher Institut fuer Technologie, D-76128 Karlsruhe (Germany); Chulist, R.; Schaarschuch, R.; Oertel, C.-G.; Skrotzki, W. [Institut fuer Strukturphysik, Technische Universitaet Dresden, D-01062 Dresden (Germany)

    2013-02-11

    Sn and Nb modified ultrafine eutectic Ti-Fe alloys with high strength and plasticity prepared by cold crucible levitation melting were tested in compression at room temperature. (Ti{sub 70.5}Fe{sub 29.5}){sub 93.15}Sn{sub 3.85}Nb{sub 3} alloy exhibited an ultimate compressive strength of 2.36 GPa at 15% plastic strain. Electron microscopy revealed that lamellar structures in Ti{sub 70.5}Fe{sub 29.5} alloy could be tailored by the addition of Sn and Nb to obtain a globular structure. The microstructural refinement, morphology of phase constituents, and their relationships to the mechanical properties are discussed.

  2. Structure and soft magnetic properties of Fe72B20Si4Nb4 bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2009-01-01

    Full Text Available Purpose: The paper presents a microstructure characterization, thermal stability and soft magnetic properties analysis of Fe-based bulk amorphous materials.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4 glassy alloy in form of ribbons and rods. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The thermal properties of the glassy samples were measured using differential thermal analysis (DTA and differential scanning calorimetry (DSC. The magnetic properties were determined by the Maxwell-Wien bridge and VSM methods.Findings: The X-ray diffraction and transmission electron microscopy investigations have revealed that the studied as-cast bulk metallic glasses were amorphous. Broad diffraction halo can be seen for all tested samples, indicating the formation of a glassy phase with the diameters up to 2 mm. The fracture surface of rod samples appears to consist of small fracture zones, which leads to breaking of the samples into parts. A two stage crystallization process was observed for studied amorphous alloy. The changes of crystallization temperatures and magnetic properties as a function of glassy samples thickness were stated.Practical implications: The studied Fe-based alloy system has good glass-forming ability and thermal stability for casting bulk metallic glasses, which exhibit good soft magnetic properties, useful for many electric and magnetic applications.Originality/value: The obtained examination results confirm the utility of applied investigation methods in the microstructure, thermal and soft magnetic properties analysis of examined bulk amorphous alloys.

  3. Amorphous Ni-B alloy nanoparticle film on Ni foam: rapid alternately dipping deposition for efficient overall water splitting

    Science.gov (United States)

    Liang, Yanhui; Sun, Xuping; Asiri, Abdullah M.; He, Yuquan

    2016-03-01

    It is highly attractive, but still remains challenging, to develop noble metal-free bifunctional electrocatalysts efficient for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media. In this letter, we describe the rapid electroless deposition of amorphous Ni-B nanoparticle film on Ni foam (Ni-B/Ni foam) by alternative dipping of Ni foam into Ni precursor and reducing solutions. This Ni-B/Ni foam acts as an efficient and durable 3D catalytic electrode for water splitting, affording 100 mA cm-2 at 360 mV overpotential for the OER and 20 mA cm-2 at 125 mV overpotential for the HER in 1.0 M KOH, and its two-electrode electrolyzer demands a cell voltage of 1.69 V to afford 15 mA cm-2 water-splitting current. Moreover, the catalyst loading can be easily tuned and this alternately dipping deposition technique works universally for other conductive substrates.

  4. Phase selection and nanocrystallization in Cu-free soft magnetic FeSiNbB amorphous alloy upon rapid annealing

    Science.gov (United States)

    Morsdorf, L.; Pradeep, K. G.; Herzer, G.; Kovács, A.; Dunin-Borkowski, R. E.; Povstugar, I.; Konygin, G.; Choi, P.; Raabe, D.

    2016-03-01

    Nucleation of soft magnetic Fe3Si nanocrystals in Cu-free Fe74.5Si15.5Nb3B7 alloy, upon rapid (10 s) and conventional (30 min) annealing, was investigated using x-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy, and atom probe tomography. By employing rapid annealing, preferential nucleation of Fe3Si nanocrystals was achieved, whereas otherwise there is simultaneous nucleation of both Fe3Si and undesired Fe-B compound phases. Analysis revealed that the enhanced Nb diffusivity, achieved during rapid annealing, facilitates homogeneous nucleation of Fe3Si nanocrystals while shifting the secondary Fe-B crystallization to higher temperatures resulting in pure soft magnetic nanocrystallization with very low coercivities of ˜10 A/m.

  5. Preparing Zr65Al7.5Ni10Cu17.5 bulk metallic glasses based on point-line-face-body theory.

    Science.gov (United States)

    Chang, Zexin; Wang, Wenxian; Ge, Yaqiong

    2016-05-10

    Zr65Al7.5Ni10Cu17.5 bulk metallic glasses (BMGs) were prepared based on point-line-face-body (PLFB) theory with the pre-laid powder method from laser processing. The thickness of the prepared bulk amorphous alloy was about 1.6 mm. The microstructure evolution, phase composition, chemical component distribution, and corrosion behavior of the bulk amorphous alloy were investigated. The results showed that the amorphization ratio increased with the increase of the thickness of Zr65Al7.5Ni10Cu17.5 BMGs; furthermore, the volume fraction of the amorphous phase in the bottom layer (first layer), the middle layer (fourth layer), and the surface layer (seventh layer) was approximately 52%, 66%, and 74%, respectively. Due to different thermal cycles during the PLFB-forming process, the amorphous and crystallization coexisted in the deposited layers. For the corrosion property, the experiments of potentiodynamic polarization plots, Nyquist plots, and the equivalent circuits were performed in 3.5 wt. % sodium chloride solution. The seventh layer exhibits better corrosion-resistance performance than the other layers, which can be attributed to a higher amorphization ratio in the surface layer. PMID:27168294

  6. Thermal stability and electrical properties of Se{sub 90}Ge{sub 10-x}In{sub x} amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Abo Ghazala, M.S. [Physics Department, Faculty of Science, Menoufia University, Sheben El-Koom (Egypt); Aboelhasn, E. [Physics Department, Faculty of Science, Banha University, Banha (Egypt); Amar, A.H. [Physics Department, Faculty of Education, Ain Shams University, Cairo (Egypt); Gamel, W. [Physics Department, Faculty of Science, Taiz University, Taiz (Yemen)

    2011-11-15

    Bulk glasses of Se{sub 90}Ge{sub 10-x}In{sub x}(where x = 2, 4 and 6 at.%) were prepared using a conventional rapid quenching technique. The amorphous nature and the crystalline phases of the samples annealed at 393 K for 25 h were investigated using X-ray diffraction. Calorimetric analysis of the bulk glassy samples has been carried out using differential scanning calorimetric (DSC) under non-isothermal condition. It was found that these glasses exhibit double glass transitions and double-stage crystallization transitions on heating. The glass transition temperature, T{sub g} and the crystallization transformation temperature, T{sub c} were found to be dependent on the composition and heating rates. The activation energy for glass transition (E{sub g}) and that for crystallization (E{sub c}) were evaluated using different empirical approaches and their composition dependence was discussed. The results revealed that the activation energy of crystallization, E{sub c} increases with rising the In content. The electrical resisitivity of the prepared glasses was measured as a function of temperature and annealing time. It was found that the activation energy of conduction deduced from the temperature dependence of the resistivity increases with increasing the In content. On the other hand it was found that the activation energy of crystallization deduced from the annealing time dependence of the resistivity using Avrami's equation is compositional dependent. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Bulk undercooling

    Science.gov (United States)

    Kattamis, T. Z.

    1984-01-01

    Bulk undercooling methods and procedures will first be reviewed. Measurement of various parameters which are necessary to understand the solidification mechanism during and after recalescence will be discussed. During recalescence of levitated, glass-encased large droplets (5 to 8 mm diam) high speed temperature sensing devices coupled with a rapid response oscilloscope are now being used at MIT to measure local thermal behavior in hypoeutectic and eutectic binary Ni-Sn alloys. Dendrite tip velocities were measured by various investigators using thermal sensors or high speed cinematography. The confirmation of the validity of solidification models of bulk-undercooled melts is made difficult by the fineness of the final microstructure, the ultra-rapid evolution of the solidifying system which makes measurements very awkward, and the continuous modification of the microstructure which formed during recalescence because of precipitation, remelting and rapid coarsening.

  8. The effect of high energy concentration source irradiation on structure and properties of Fe-based bulk metallic glass

    Science.gov (United States)

    Pilarczyk, Wirginia

    2016-06-01

    Metallic glasses exhibit metastable structure and maintain this relatively stable amorphous state within certain temperature range. High intensity laser beam was used for the surface irradiation of Fe-Co-B-Si-Nb bulk metallic glasses. The variable parameter was laser beam pulse energy. For the analysis of structure and properties of bulk metallic glasses and their surface after laser remelting the X-ray analysis, microscopic observation and test of mechanical properties were carried out. Examination of the nanostructure of amorphous materials obtained by high pressure copper mold casting method and the irradiated with the use of TITAN 80-300 HRTEM was carried out. Nanohardness and reduced Young's modulus of particular amorphous and amorphous-crystalline material zone of the laser beam were examined with the use of Hysitron TI950 Triboindenter nanoindenter and with the use of Berkovich's indenter. The XRD and microscopic analysis showed that the test material is amorphous in its structure before irradiation. Microstructure observation with electron transmission microscopy gave information about alloy crystallization in the irradiated process. Identification of given crystal phases allows to determine the kind of crystal phases created in the first place and also further changes of phase composition of alloy. The main value of the nanohardness of the surface prepared by laser beam has the order of magnitude similar to bulk metallic glasses formed by casting process irrespective of the laser beam energy used. Research results analysis showed that the area between parent material and fusion zone is characterized by extraordinarily interesting structure which is and will be the subject of further analysis in the scope of bulk metallic glasses amorphous structure and high energy concentration source. The main goal of this work is the results' presentation of structure and chosen properties of the selected bulk metallic glasses after casting process and after irradiation

  9. Thermal properties of Fe-based bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2012-12-01

    Full Text Available Purpose: The aim of paper is presentation of results bulk metallic glasses thermal properties such as temperatures typical for glassy transition and thermal conductivity. Design/methodology/approach: Investigations were realized for Fe36Co36B19.2Si4.8Nb4 samples with dimension 3 mm in diameter. Bulk test pieces were fabricated by copper mold casting method. Thermal analysis of master alloy (DTA and samples in as-cast state (DSC was realized. For amorphous structure confirmation the X-ray diffraction phase analysis (XRD was realized. Additionally scanning electron microscopy (SEM micrographs were performed in order to structure analysis. Thermal conductivity was determined by prototype measuring station.Findings: The XRD and SEM analysis confirmed amorphous structure of samples. Broad diffraction “halo” was observed for every testing piece. Fracture morphology is smooth with many “veins” on the surface, which are characteristic for glassy state. DTA analysis confirmed eutectic chemical composition of master alloy. Thermal conductivity measurements proved that both samples have comparable thermal conductivity.Practical implications: The FeCo-based bulk metallic glasses have attracted great interest for a variety application fields for example precision machinery materials, electric applications, structural materials, sporting goods, medical devices. Thermal conductivity is useful and important property for example computer simulation of temperature distribution and glass forming ability calculation.Originality/value: The obtained results confirm the utility of applied investigation methods in the thermal and structure analysis of examined amorphous alloys. Thermal conductivity was determined using the prototype measuring station, which is original issue of the paper. In future, the measuring station will be expanded for samples with different dimensions.

  10. An investigation on hydrogen storage kinetics of nanocrystalline and amorphous Mg{sub 2}Ni{sub 1-x}Co{sub x} (x = 0-0.4) alloy prepared by melt spinning

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yanghuan, E-mail: zyh59@yahoo.com.cn [Elected State Key Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Li Baowei; Ren Huipin [Elected State Key Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Ding Xiaoxia; Liu Xiaogang; Chen Lele [Elected State Key Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China)

    2011-02-10

    Research highlights: > The investigation of the structures of the Mg{sub 2}Ni{sub 1-x}Co{sub x} (x = 0, 0.1, 0.2, 0.3, 0.4) alloys indicates that a nanocrystalline and amorphous structure can be obtained in the experiment alloys by melt spinning technology. The substitution of Co for Ni facilitates the glass formation in the Mg{sub 2}Ni-type alloy. And the amorphization degree of the alloys visibly increases with increasing Co content. > Both the melt spinning and Co substitution significantly improve the hydrogen storage kinetics of the alloys. The hydrogen absorption saturation ratio (R{sub t}{sup a}) and hydrogen desorption ratio (R{sub t}{sup d}) as well as the high rate discharge ability (HRD) increase with rising spinning rate and Co content. The hydrogen diffusion coefficient (D), the Tafel polarization curves and the electrochemical impedance spectra (EIS) measurements show that the electrochemical kinetics notably increases with rising spinning rate and Co content. > Furthermore, all the as-spun alloys, when the spinning rate reaches to 30 m/s, have nearly same hydrogen absorption kinetics, indicating that the hydrogen absorption kinetics of the as-spun alloy is predominately controlled by diffusion ability of hydrogen atoms. - Abstract: In order to improve the hydrogen storage kinetics of the Mg{sub 2}Ni-type alloys, Ni in the alloy was partially substituted by element Co, and melt-spinning technology was used for the preparation of the Mg{sub 2}Ni{sub 1-x}Co{sub x} (x = 0, 0.1, 0.2, 0.3, 0.4) hydrogen storage alloys. The structures of the as-cast and spun alloys are characterized by XRD, SEM and TEM. The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys is tested by an automatic galvanostatic system. The hydrogen diffusion coefficients in the alloys are calculated by virtue of potential-step method. The

  11. Wetting and reaction characteristics of crystalline and amorphous SiO2 derived rice-husk ash and SiO2/SiC substrates with Al-Si-Mg alloys

    Science.gov (United States)

    Bahrami, A.; Pech-Canul, M. I.; Gutiérrez, C. A.; Soltani, N.

    2015-12-01

    A study of the wetting behavior of three substrate types (SiC, SiO2-derived RHA and SiC/SiO2-derived RHA) by two Al-Si-Mg alloys using the sessile drop method has been conducted, using amorphous and crystalline SiO2 in the experiment. Mostly, there is a transition from non-wetting to wetting contact angles, being the lowest θ values achieved with the alloy of high Mg content in contact with amorphous SiO2. The observed wetting behavior is attributed to the deposited Mg on the substrates. A strong diffusion of Si from the SiC/Amorphous RHA substrate into the metal drop explains the free Si segregated at the drop/substrate interface and drop surface. Although incorporation of both SiO2-derived RHA structures into the SiC powder compact substrates increases the contact angles in comparison with the SiC substrate alone, the still observed acute contact angles in RHA/SiC substrates make them promising for fabrication of composites with high volume fraction of reinforcement by the pressureless infiltration technique. The observed wetting characteristics, with decrease in surface tension and contact angles is explained by surface related phenomena. Based on contact angle changes, drop dimensions and surface tension values, as well as on the interfacial elemental mapping, and XRD analysis of substrates, some wetting and reaction pathways are proposed and discussed.

  12. Magnetic properties and loss separation in Fe{sub 76−x}Ag{sub x}Nb{sub 2}Si{sub 13}B{sub 9} amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Stokłosa, Z., E-mail: zbigniew.stoklosa@us.edu.pl; Kwapuliński, P.; Rasek, J.; Haneczok, G.; Kubisztal, M.

    2015-06-15

    Highlights: • Soft magnetic properties can be optimized by applying a suitable heat treatment. • Low field magnetic permeability of the optimized samples increases about 10 times. • Total magnetic loss of the optimized samples decreases at least 10 times. • Plasticity is much higher than that reported for similar nanocrystalline alloys. • Observed effects are attributed to formation of the relaxed amorphous phase. - Abstract: Some selected properties (magnetic, plastic, elastic) in amorphous Fe{sub 76−x}Ag{sub x}Nb{sub 2}Si{sub 13}B{sub 9} (x = 0.5, 0.75, 1.0) alloys, obtained by melt spinning technique, are presented and discussed in detail. It was shown that a suitable heat treatment of the as quenched samples (i.e. the optimization annealing) leads to a significant improvement of soft magnetic properties (permeability increases at least 10 times). The observed effect is attributed to formation of the so-called relaxed amorphous phase free of iron nanograins. Special attention is paid for loss separation into different components: hysteresis loss, eddy-current loss and residual loss. The latter effect can be attributed to diffusion of free volume and practically disappear after the optimization annealing.

  13. Electrum, the Gold-Silver Alloy, from the Bulk Scale to the Nanoscale: Synthesis, Properties, and Segregation Rules.

    Science.gov (United States)

    Guisbiers, Grégory; Mendoza-Cruz, Rubén; Bazán-Díaz, Lourdes; Velázquez-Salazar, J Jesús; Mendoza-Perez, Rafael; Robledo-Torres, José Antonio; Rodriguez-Lopez, José-Luis; Montejano-Carrizales, Juan Martín; Whetten, Robert L; José-Yacamán, Miguel

    2016-01-26

    The alloy Au-Ag system is an important noble bimetallic phase, both historically (as "Electrum") and now especially in nanotechnology, as it is applied in catalysis and nanomedicine. To comprehend the structural characteristics and the thermodynamic stability of this alloy, a knowledge of its phase diagram is required that considers explicitly its size and shape (morphology) dependence. However, as the experimental determination remains quite challenging at the nanoscale, theoretical guidance can provide significant advantages. Using a regular solution model within a nanothermodynamic approach to evaluate the size effect on all the parameters (melting temperature, melting enthalpy, and interaction parameters in both phases), the nanophase diagram is predicted. Besides an overall shift downward, there is a "tilting" effect on the solidus-liquidus curves for some particular shapes exposing the (100) and (110) facets (cube, rhombic dodecahedron, and cuboctahedron). The segregation calculation reveals the preferential presence of silver at the surface for all the polyhedral shapes considered, in excellent agreement with the latest transmission electron microscopy observations and energy dispersive spectroscopy analysis. By reviewing the nature of the surface segregated element of different bimetallic nanoalloys, two surface segregation rules, based on the melting temperatures and surface energies, are deduced. Finally, the optical properties of Au-Ag nanoparticles, calculated within the discrete dipole approximation, show the control that can be achieved in the tuning of the local surface plasmon resonance, depending of the alloy content, the chemical ordering, the morphology, the size of the nanoparticle, and the nature of the surrounding environment. PMID:26605557

  14. On the dynamics of the reentrant spin-glass state of the Fe100-xZrx (x = 9, 10) amorphous alloys

    Science.gov (United States)

    Ribeiro, P. R. T.; Machado, F. L. A.; Dahlberg, E. Dan

    2015-05-01

    Low temperature magnetization (M) and ac susceptibility (χac) data were used to investigate the reentrant spin-glass state in lengths of melt-spun ribbons of Fe100-xZrx (x = 9, 10) amorphous alloys. The temperature range investigated was from 2 to 300 K, while the applied magnetic field H was varied in the range of ±85 kOe. The magnetic properties were found to be strongly influenced by the sample composition despite the fact that the amount of Fe varies by 1 at. %. For instance, the Curie temperature (TC) is reduced from 232.5 K to 213.0 K with decreasing Fe concentration, while M for the lower Fe concentration, measured at the highest applied magnetic field (H = 85 kOe) was nearly double the value for that of the higher; the coercivity in the ferromagnetic regime is reduced by a factor close to five when x is increased from 9 at. % to 10 at. %. The ac susceptibility measured for frequencies f in the range of 10-104 Hz showed a sharp drop in the magnitude of the in-phase contribution ( χa c ' ) and a peak at the out-of-phase component ( χa c ″ ), which shifts to higher temperatures with increasing values of f. The Voguel-Fulcher law applied to the χa c ″ data yielded an activation energy Ea/kB = 21.3 K (40.1 K), the glassy temperature TG = 15.5 K (38.2 K), and a relaxation time τ 0 = 9.1 × 10 - 7 s ( 8.3 × 10 - 7 s ) , for the sample with x = 10 (x = 9). A plot of χa c ″ vs χa c ' for a broad range of T and f yielded a broad maximum near the glassy temperature TG for both sample concentrations.

  15. Development of amorphous silicon-germanium-alloys for stacked solar cells; Entwicklung von amorphen Silizium-Germanium-Legierungen fuer den Einsatz in Stapelsolarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Lundszien, D.

    2001-01-01

    To obtain high efficiency silicon based thin film solar cells, the concept of stacked solar cells is routinely used. The use of component cells with different optical bandgaps provides a better utilization of the solar spectrum. In a stacked cell structure, a high quality narrow bandgap material is needed for the active layer of the bottom cell. Amorphous silicon-germanium-alloys (a-SiGe:H) have been successfully employed because of their tunable optical bandgap E{sub G} between 1.8 eV (a-Si:H) and 1.1 eV (a-Ge:H). Considerable effort has been put into the development of a-SiGe:H. Still, with increasing Ge content, the material shows a characteristic deterioration of its electronic properties, like an exponential increase of the defect density, thus counteracting the gain in absorption obtained for higher Ge contents. It is the defect density which has the dominant influence on carrier transport and cell efficiency by affecting the mobility lifetime product and the electric field in the devices. The performance of a-SiGe:H pin solar cells with a wide range of Ge contents i.e. a wide range of optical band gaps (E{sub G}=1.3 to 1.6 eV) are compared. It is demonstrated how the deterioration of the material properties can be overcome by careful adjustment of the device design and the use of highly reflective ZnO/Ag back contacts. (orig.)

  16. Influence of nickel on structure and hardness of Fe-Co bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2010-01-01

    Full Text Available Purpose: In the present paper, influence of Ni addition on structure and hardness Fe-based bulk metallic glass were investigated.Design/methodology/approach: The studies were performed on Fe36+xCo36-x-yNiyB19.2Si4.8Nb4 ( x= 0;1, y=0;10;15 glassy alloy in a form of rods with diameter up to 5 mm. The tests, carried out to obtain amorphous metallic glasses, were realized with the use pressure die casting method. The system includes a copper mould, high frequency power supply, quartz nozzle and a source of inert gas as argon. The following experimental techniques were used for the test of structure: X-ray diffraction (XRD phase analysis and scanning electron microscopy (SEM. Microhardness was examined by Vickers diamond testing machine.Findings: The X-ray diffraction revealed that all samples with thickness 2 mm were amorphous. The structural studies revealed that amorphous structure depended on thickness and nickel contents in a preliminary alloy.Research limitations/implications: The relationship between structure and microhardness can be useful for practical application of these alloys.Practical implications: The Fe-based bulk metallic glasses attracted great interest for a variety of application fields, for example structural materials, electric applications, precision machinery materials. These amorphous alloys exhibit high strength, a high elastic strain limit, high fracture toughness, and other useful mechanical properties which are attractive to many engineering applications.Originality/value: The originality of this paper are studies of changes of structure and hardness of Fe36+xCo36-x-yNiyB19.2Si4.8Nb4 ( x= 0;1, y=0;10;15 mainly depending on Ni addition in this alloy

  17. Rapid solidification of Ni{sub 50}Nb{sub 28}Zr{sub 22} glass former alloy through suction-casting; Solidificacao rapida da liga formadora de fase amorfa Ni{sub 50}Nb{sub 28}Zr{sub 22} atraves de fundicao em coquilha por succao

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, M.I.; Santos, F.S.; Bolfarini, C.; Botta Filho, W.J.; Kiminami, C.S., E-mail: issao16@gmail.co [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    To select new alloys with high glass forming ability (GFA) to present amorphous structure in millimeter scale, several semi-empirical models have been developed. In the present work, a new alloy, Ni{sub 50}Nb{sub 28}Zr{sub 22}d, was designed based on the combination of topological instability lambda (A) criterion and electronegativity difference ({Delta}e). The alloy was rapidly solidified in a bulk wedge sample by cooper mold suction casting in order to investigate its amorphization. The sample was characterized by the combination of scanning electron microscopy (MEV), X-ray diffraction (XRD) and differential scanning calorimeter (DSC). For the minimum thickness of 200 {mu}m analyzed, it was found that the alloy did not show a totally amorphous structure. Factor such as low cooling rate, existence of oxides on the surface of the elements and presence of oxygen in the atmosphere of equipment did not allowed the achievement of higher amorphous thickness. (author)

  18. Glass Formability and Soft Magnetic Properties of Bulk Y-Fe-B-Ti Metals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Ti effects on the glass forming ability and the magnetic properties of Y-Fe-B-Ti bulk metallic glasses have been investigated. Substituting 2 and 4 at% Ti for Fe or B in Y6Fe70B22 alloys decrease the saturation magnetization (σs) and deteriorate the glass forming ability, respectively. However, substitution of 2 at% Ti for Y in Y6Fe72B22 alloy induces larger supercooled region of 72.7℃, which not only makes the bulk glassy rod as large as 3mm in diameter, but also results in the superior soft magnetic properties of σ5=126emu/g,coercivity ( Hc ) = 0.2 Oe and Curie temperature (Tc) = 268℃. Among all Y-Fe-B-Ti bulk amorphous rods, Y4Fe72B22Ti2 displays the best glass forming ability and also the proper soft magnetic properties.

  19. Gibbs Free Energy and Activation Energy of ZrTiAlNiCuSn Bulk Glass Forming Alloys

    Institute of Scientific and Technical Information of China (English)

    Jianfei SUN; Jun SHEN; Zhenye ZHU; Gang WANG; Dawei XING; Yulai GAO; Bide ZHOU

    2004-01-01

    The Gibbs free energy differences between the supercooled liquid and the crystalline mixture for the (Zr52.5Ti5Al10- Ni14.6Cu17.9)(100-x)/100Snx ·(x=0, 1, 2, 3, 4 and 5) glass forming alloys are estimated by introducing the equation proposed by Thompson, Spaepen and Turnbull. It can be seen that the Gibbs free energy differences decrease first as the increases of Sn addition smaller than 3, then followed by a decrease due to the successive addition of Sn larger than 3, indicating that the thermal stabilities of these glass forming alloys increase first and then followed by a decrease owing to the excessive addition of Sn. Furthermore, the activation energy of Zr52.5Ti5Al10Ni14.6Cu17.9 and (Zr5 2.5Ti5 Al10 Ni14.6 Cu 17.9)0.97Sn3 was evaluated by Kissinger equation. It is noted that the Sn addition increases the activation energies for glass transition and crystallization, implying that the higher thermal stability can be obtained by appropriate addition of Sn.

  20. Non-isothermal crystallization kinetics of Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Sirui [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Chunju [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080 (China); Ma, Mingzhen [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Shan, Debin, E-mail: shandb@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080 (China); Guo, Bin [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

    2014-07-01

    Highlights: • Some kinetics parameters of Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} amorphous alloy were calculated. • The first and third exothermic peaks at the heating rates of 5 K/min and 10 K/min split into two peaks. • The local Avrami exponents at various heating rates showed different trends under different heating rates. • The growth dimensionality reduced from 2 to 1 as heating rates increase. • The heating rate had significant influence on the growth mechanism during annealing. - Abstract: The thermodynamics and kinetics of Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} amorphous alloy under non-isothermal condition were evaluated using differential scanning calorimetry (DSC). The first and third exothermic events at the heating rates of 5 K/min and 10 K/min split into two peaks. The local Avrami exponents at various heating rates calculated by the Kolmogorov–Johnson–Mehl–Avrami equations showed different trends. The grain growth was controlled by atom diffusion at all heating rates. But their growth dimensionality reduced from 2 to 1 as heating rates increase at the beginning of crystallization process. The result exhibited that the heating rate had a great influence on growth mechanism, the crystallization peaks of Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} amorphous alloy separated into two single-step processes for the change of growth dimensionality. Two fragility indexes evaluated by Angell and DA equations were 44 and 42.5, respectively, implying that the as-cast Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} amorphous alloy should be considered as “intermediate glasses”.