WorldWideScience

Sample records for bulgeless dwarf galaxies

  1. The Cold Gas Content of Bulgeless Dwarf Galaxies

    CERN Document Server

    Pilkington, K; Calura, F; Brooks, A M; Mayer, L; Brook, C B; Stinson, G S; Thacker, R J; Few, C G; Cunnama, D; Wadsley, J

    2011-01-01

    We present an analysis of the neutral hydrogen (HI) properties of a fully cosmological hydrodynamical dwarf galaxy, run with varying simulation parameters. As reported by Governato et al. (2010), the high resolution, high star formation density threshold version of this galaxy is the first simulation to result in the successful reproduction of a (dwarf) spiral galaxy without any associated stellar bulge. We have set out to compare in detail the HI distribution and kinematics of this simulated bulgeless disk with what is observed in a sample of nearby dwarfs. To do so, we extracted the radial gas density profiles, velocity dispersion (e.g., velocity ellipsoid, turbulence), and the power spectrum of structure within the cold interstellar medium from the simulations. The highest resolution dwarf, when using a high density star formation threshold comparable to densities of giant molecular clouds, possesses bulk characteristics consistent with those observed in nature, though the cold gas is not as radially exten...

  2. At the heart of the matter: the origin of bulgeless dwarf galaxies and Dark Matter cores

    CERN Document Server

    Governato, Fabio; Mayer, Lucio; Brooks, Alyson; Rhee, George; Wadsley, James; Jonsson, Patrik; Willman, Beth; Stinson, Greg; Quinn, Thomas; Madau, Piero

    2009-01-01

    For almost two decades the properties of "dwarf" galaxies have challenged the Cold Dark Matter (CDM) paradigm of galaxy formation. Most observed dwarf galaxies consists of a rotating stellar disc embedded in a massive DM halo with a near constant-density core. Yet, models based on the CDM scenario invariably form galaxies with dense spheroidal stellar "bulges" and steep central DM profiles, as low angular momentum baryons and DM sink to the center of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different DM particle candidate. This Letter presents new hydrodynamical simulations in a Lambda$CDM framework where analogues of dwarf galaxies, bulgeless and with a shallow central DM profile, are formed. This is achieved by resolving the inhomogeneous interstellar medium, resultin...

  3. Hierarchical formation of bulgeless galaxies: why outflows have low angular momentum

    OpenAIRE

    Brook, C. B.; Governato, F.; Roskar, R.; Stinson, G.; Brooks, A. M.; J. Wadsley(McMaster Univ., Hamilton, Canada); Quinn, T.; Gibson, B.K.; Snaith, O.; Pilkington, K.; House, E.; Pontzen, A.

    2011-01-01

    Using high resolution, fully cosmological smoothed particle hydro-dynamical simulations of dwarf galaxies in a Lambda cold dark matter Universe, we show how baryons attain a final angular momentum distribution which allows pure disc galaxies to form. Blowing out substantial amounts of gas through supernovae and stellar winds, which is well supported observationally, is a key ingredient in forming bulgeless discs. We outline why galactic outflows preferentially remove low angular momentum mate...

  4. Hierarchical formation of bulgeless galaxies: Why outflows have low angular momentum

    CERN Document Server

    Brook, C B; Roskar, R; Stinson, G; Brooks, A; Wadsley, J; Quinn, T; Gibson, B K; Snaith, O; Pilkington, K; House, E

    2010-01-01

    Using high resolution, fully cosmological smoothed particle hydro-dynamical simulations of dwarf galaxies in a Lambda cold dark matter Universe, we show how baryons attain a final angular momentum distribution which allows pure disc galaxies to form. Blowing out substantial amounts of gas through supernovae and stellar winds, which is well supported observationally, is a key ingredient in forming bulgeless discs. We outline why galactic outflows preferentially remove low angular momentum material, and show that this is a natural result when structure forms in a cold dark matter cosmology. The driving factors are a) the mean angular momentum of accreted material increases with time, b) lower potentials at early times, c) the existence of an extended reservoir of high angular momentum gas which is not within star forming regions, meaning that only gas from the inner region (low angular momentum gas) is expelled and d) the tendency for outflows to follow the path of least resistance which is perpendicular to the...

  5. BULGELESS GIANT GALAXIES CHALLENGE OUR PICTURE OF GALAXY FORMATION BY HIERARCHICAL CLUSTERING ,

    International Nuclear Information System (INIS)

    To better understand the prevalence of bulgeless galaxies in the nearby field, we dissect giant Sc-Scd galaxies with Hubble Space Telescope (HST) photometry and Hobby-Eberly Telescope (HET) spectroscopy. We use the HET High Resolution Spectrograph (resolution R ≡ λ/FWHM ≅ 15, 000) to measure stellar velocity dispersions in the nuclear star clusters and (pseudo)bulges of the pure-disk galaxies M 33, M 101, NGC 3338, NGC 3810, NGC 6503, and NGC 6946. The dispersions range from 20 ± 1 km s-1 in the nucleus of M 33 to 78 ± 2 km s-1 in the pseudobulge of NGC 3338. We use HST archive images to measure the brightness profiles of the nuclei and (pseudo)bulges in M 101, NGC 6503, and NGC 6946 and hence to estimate their masses. The results imply small mass-to-light ratios consistent with young stellar populations. These observations lead to two conclusions. (1) Upper limits on the masses of any supermassive black holes are M. ∼6 Msun in M 101 and M. ∼6 Msun in NGC 6503. (2) We show that the above galaxies contain only tiny pseudobulges that make up ∼circ > 150 km s-1, including M 101, NGC 6946, IC 342, and our Galaxy, show no evidence for a classical bulge. Four may contain small classical bulges that contribute 5%-12% of the light of the galaxy. Only four of the 19 giant galaxies are ellipticals or have classical bulges that contribute ∼1/3 of the galaxy light. We conclude that pure-disk galaxies are far from rare. It is hard to understand how bulgeless galaxies could form as the quiescent tail of a distribution of merger histories. Recognition of pseudobulges makes the biggest problem with cold dark matter galaxy formation more acute: How can hierarchical clustering make so many giant, pure-disk galaxies with no evidence for merger-built bulges? Finally, we emphasize that this problem is a strong function of environment: the Virgo cluster is not a puzzle, because more than 2/3 of its stellar mass is in merger remnants.

  6. Bulgeless Giant Galaxies Challenge Our Picture of Galaxy Formation by Hierarchical Clustering

    Science.gov (United States)

    Kormendy, John; Drory, Niv; Bender, Ralf; Cornell, Mark E.

    2010-11-01

    To better understand the prevalence of bulgeless galaxies in the nearby field, we dissect giant Sc-Scd galaxies with Hubble Space Telescope (HST) photometry and Hobby-Eberly Telescope (HET) spectroscopy. We use the HET High Resolution Spectrograph (resolution R ≡ λ/FWHM ~= 15, 000) to measure stellar velocity dispersions in the nuclear star clusters and (pseudo)bulges of the pure-disk galaxies M 33, M 101, NGC 3338, NGC 3810, NGC 6503, and NGC 6946. The dispersions range from 20 ± 1 km s-1 in the nucleus of M 33 to 78 ± 2 km s-1 in the pseudobulge of NGC 3338. We use HST archive images to measure the brightness profiles of the nuclei and (pseudo)bulges in M 101, NGC 6503, and NGC 6946 and hence to estimate their masses. The results imply small mass-to-light ratios consistent with young stellar populations. These observations lead to two conclusions. (1) Upper limits on the masses of any supermassive black holes are M • 150 km s-1, including M 101, NGC 6946, IC 342, and our Galaxy, show no evidence for a classical bulge. Four may contain small classical bulges that contribute 5%-12% of the light of the galaxy. Only four of the 19 giant galaxies are ellipticals or have classical bulges that contribute ~1/3 of the galaxy light. We conclude that pure-disk galaxies are far from rare. It is hard to understand how bulgeless galaxies could form as the quiescent tail of a distribution of merger histories. Recognition of pseudobulges makes the biggest problem with cold dark matter galaxy formation more acute: How can hierarchical clustering make so many giant, pure-disk galaxies with no evidence for merger-built bulges? Finally, we emphasize that this problem is a strong function of environment: the Virgo cluster is not a puzzle, because more than 2/3 of its stellar mass is in merger remnants. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford

  7. The Chemical and Dynamical Evolution of Isolated Dwarf Galaxies

    OpenAIRE

    Pilkington, K.; Gibson, B. K.; Calura, F; Stinson, G.S.; Brook, C. B.; Brooks, A.

    2011-01-01

    Using a suite of simulations (Governato et al. 2010) which successfully produce bulgeless (dwarf) disk galaxies, we provide an analysis of their associated cold interstellar media (ISM) and stellar chemical abundance patterns. A preliminary comparison with observations is undertaken, in order to assess whether the properties of the cold gas and chemistry of the stellar components are recovered successfully. To this end, we have extracted the radial and vertical gas density profiles, neutral h...

  8. Dwarf-Galaxy Cosmology

    CERN Document Server

    Schulte-Ladbeck, Regina; Brinks, Elias; Kravtsov, Andrey

    2010-01-01

    Dwarf galaxies provide opportunities for drawing inferences about the processes in the early universe by observing our "cosmological backyard"-the Local Group and its vicinity. This special issue of the open-access journal Advances in Astronomy is a snapshot of the current state of the art of dwarf-galaxy cosmology.

  9. PROPERTIES OF BULGELESS DISK GALAXIES. II. STAR FORMATION AS A FUNCTION OF CIRCULAR VELOCITY

    International Nuclear Information System (INIS)

    We study the relation between the surface density of gas and star formation rate in 20 moderately inclined, bulgeless disk galaxies (Sd-Sdm Hubble types) using CO(1-0) data from the IRAM 30 m telescope, H I emission line data from the VLA/EVLA, Hα data from the MDM Observatory, and polycyclic aromatic hydrocarbon emission data derived from Spitzer IRAC observations. We specifically investigate the efficiency of star formation as a function of circular velocity (vcirc). Previous work found that the vertical dust structure and disk stability of edge-on, bulgeless disk galaxies transition from diffuse dust lanes with large scale heights and gravitationally stable disks at vcirc –1 (M* ∼10 M☉) to narrow dust lanes with small scale heights and gravitationally unstable disks at vcirc > 120 km s–1. We find no transition in star formation efficiency (ΣSFR/ΣHi+H2) at vcirc = 120 km s–1 or at any other circular velocity probed by our sample (vcirc = 46-190 km s–1). Contrary to previous work, we find no transition in disk stability at any circular velocity in our sample. Assuming our sample has the same dust structure transition as the edge-on sample, our results demonstrate that scale height differences in the cold interstellar medium of bulgeless disk galaxies do not significantly affect the molecular fraction or star formation efficiency. This may indicate that star formation is primarily affected by physical processes that act on smaller scales than the dust scale height, which lends support to local star formation models.

  10. Properties of Bulgeless Disk Galaxies II. Star Formation as a Function of Circular Velocity

    CERN Document Server

    Watson, Linda C; Lisenfeld, Ute; Wong, Man-Hong; Boeker, Torsten; Schinnerer, Eva

    2012-01-01

    We study the relation between the surface density of gas and star formation rate in twenty moderately-inclined, bulgeless disk galaxies (Sd-Sdm Hubble types) using CO(1-0) data from the IRAM 30m telescope, HI emission line data from the VLA/EVLA, H-alpha data from the MDM Observatory, and PAH emission data derived from Spitzer IRAC observations. We specifically investigate the efficiency of star formation as a function of circular velocity (v_circ). Previous work found that the vertical dust structure and disk stability of edge-on, bulgeless disk galaxies transition from diffuse dust lanes with large scale heights and gravitationally-stable disks at v_circ 120 km/s. We find no transition in star formation efficiency (Sigma_SFR/Sigma_HI+H2) at v_circ = 120 km/s, or at any other circular velocity probed by our sample (v_circ = 46 - 190 km/s). Contrary to previous work, we find no transition in disk stability at any circular velocity in our sample. Assuming our sample has the same dust structure transition as t...

  11. Star formation in bulgeless late type galaxies: clues to their evolution

    CERN Document Server

    Das, M; Ramya, S; Misra, K

    2012-01-01

    We present GMRT 1280 MHz radio continuum observations and follow-up optical studies of the disk and nuclear star formation in a sample of low luminosity bulgeless galaxies. The main aim is to understand bulge formation and overall disk evolution in these late type galaxies. We detected radio continuum from five of the twelve galaxies in our sample; the emission is mainly associated with disk star formation. Only two of the detected galaxies had extended radio emission; the others had patchy disk emission. In the former two galaxies, NGC3445 and NGC4027, the radio continuum is associated with star formation triggered by tidal interactions with nearby companion galaxies. We did follow-up Halpha imaging and nuclear spectroscopy of both galaxies using the Himalayan Chandra Telescope (HCT). The Halpha emission is mainly associated with the strong spiral arms. The nuclear spectra indicate ongoing nuclear star formation in NGC3445 and NGC4027 which maybe associated with nuclear star clusters. No obvious signs of AGN...

  12. A Luminous X-Ray Flare from the Nucleus of the Dormant Bulgeless Spiral Galaxy NGC 247

    OpenAIRE

    FENG, HUA; Ho, Luis C.; Kaaret, Philip; Tao, Lian; Yamaoka, Kazutaka; Zhang, Shuo; Grisé, Fabien

    2015-01-01

    NGC 247 is a nearby late-type bulgeless spiral galaxy that contains an inactive nucleus. We report a serendipitous discovery of an X-ray flare from the galaxy center with a luminosity of up to 2 x 10^(39) erg s^(−1) in the 0.3–10 keV band with XMM-Newton. A Chandra observation confirms that the new X-ray source is spatially coincident with the galaxy nucleus. The XMM-Newton data revealed a hard power-law spectrum with a spectral break near 3–4 keV, no pulsations on timescales longer than 150 ...

  13. DISCOVERY OF AN ACTIVE SUPERMASSIVE BLACK HOLE IN THE BULGELESS GALAXY NGC 4561

    Energy Technology Data Exchange (ETDEWEB)

    Salvo, C. Araya; Mathur, S. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Ghosh, H. [CNRS/CEA-Saclay, F-91911 Gif-sur-Yvette (France); Fiore, F. [Osservatorio Astronomico di Roma, Via Frascati 33, I-100040 Monteporzio Catone (Italy); Ferrarese, L., E-mail: araya@astronomy.ohio-state.edu [Hertzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2012-10-01

    We present XMM-Newton observations of the Chandra-detected nuclear X-ray source in NGC 4561. The hard X-ray spectrum can be described by a model composed of an absorbed power law with {Gamma} = 2.5{sup +0.4}{sub -0.3} and column density N{sub H} = 1.9{sup +0.1}{sub -0.2} Multiplication-Sign 10{sup 22} atoms cm{sup -2}. The absorption-corrected luminosity of the source is L(0.2-10.0 keV) =2.5 Multiplication-Sign 10{sup 41} erg s{sup -1}, with bolometric luminosity over 3 Multiplication-Sign 10{sup 42} erg s{sup -1}. Based on the spectrum and the luminosity, we identify the nuclear X-ray source in NGC 4561 to be an active galactic nucleus (AGN), with a black hole (BH) of mass M{sub BH} >2 Multiplication-Sign 10{sup 4} M{sub Sun }. The presence of a supermassive black hole at the center of this bulgeless galaxy shows that BH masses are not necessarily related to bulge properties, contrary to general belief. Observations such as these call into question several theoretical models of BH-galaxy coevolution that are based on merger-driven BH growth; secular processes clearly play an important role. Several emission lines are detected in the soft X-ray spectrum of the source which can be well parameterized by an absorbed diffuse thermal plasma with non-solar abundances of some heavy elements. Similar soft X-ray emission is observed in spectra of Seyfert 2 galaxies and low-luminosity AGNs, suggesting an origin in the circumnuclear plasma.

  14. THE BULGELESS SEYFERT/LINER GALAXY NGC 3367: DISK, BAR, LOPSIDEDNESS, AND ENVIRONMENT

    International Nuclear Information System (INIS)

    regardless of the highly isolated environment. Black hole growth in bulgeless galaxies may be triggered by smooth mass accretion.

  15. Dynamical friction in dwarf galaxies

    OpenAIRE

    Hernandez, X.; Gilmore, Gerard

    1998-01-01

    We present a simplified analytic approach to the problem of the spiraling of a massive body orbiting within the dark halo of a dwarf galaxy. This dark halo is treated as the core region of a King distribution of dark matter particles, in consistency with the observational result of dwarf galaxies having solid body rotation curves. Thus we derive a simple formula which provides a reliable and general first order solution to the problem, totally analogous to the one corresponding to the dynamic...

  16. Discovery of a Population of Bulgeless Galaxies with Extremely Red Mid-IR Colors: Obscured AGN Activity in the Low Mass Regime?

    CERN Document Server

    Satyapal, Shobita; McAlpine, William; Ellison, Sara L; Fischer, Jacqueline; Rosenberg, Jessica L

    2014-01-01

    In contrast to massive, bulge hosting galaxies, very few supermassive black holes (SMBHs) are known in either low mass, or bulgeless galaxies. Such a population could provide clues to the origins of SMBHs and to secular pathways for their growth. Using the all-sky Wide-Field Infrared Survey Explorer (WISE) survey, and bulge-to-disk decompositions from the Sloan Digital Sky Survey (SDSS) Data Release 7, we report the discovery of a population of local (z<0.3) bulgeless disk galaxies with extremely red mid-infrared colors highly suggestive of a dominant active galactic nucleus (AGN), despite having no optical AGN signatures in their SDSS spectra. Using various mid-infrared selection criteria from the literature, there are between 30 to over 300 bulgeless galaxies with possible AGNs. Other known scenarios that can heat the dust to high temperatures do not appear to explain the observed colors of this sample. If these galaxies are confirmed to host AGNs, this study will provide a breakthrough in characterizing...

  17. A Luminous X-ray Flare From The Nucleus of The Dormant Bulgeless Spiral Galaxy NGC 247

    CERN Document Server

    Feng, Hua; Kaaret, Philip; Tao, Lian; Yamaoka, Kazutaka; Zhang, Shuo; Grisé, Fabien

    2015-01-01

    NGC 247 is a nearby late-type bulgeless spiral galaxy that contains an inactive nucleus. We report a serendipitous discovery of an X-ray flare from the galaxy center with a luminosity up to 2*10^39 erg/s in the 0.3-10 keV band with XMM-Newton. A Chandra observation confirms that the new X-ray source is spatially coincident with the galaxy nucleus. The XMM-Newton data revealed a hard power-law spectrum with a spectral break near 3-4 keV, no pulsations on timescales longer than 150 ms, and a flat power spectrum consistent with Poisson noise from 1 mHz to nearly 10 Hz. Follow-up observations with Swift detected a second flux peak followed by a luminosity drop by factor of almost 20. The spectral and temporal behaviors of the nuclear source are well consistent with the scenario that the flare was due to an outburst of a low-mass X-ray binary that contains a stellar-mass black hole emitting near its Eddington limit at the peak. However, it cannot be ruled out that the sudden brightening in the nucleus was due to a...

  18. Discovery of a population of bulgeless galaxies with extremely red MID-IR colors: Obscured AGN activity in the low-mass regime?

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, S.; Secrest, N. J.; McAlpine, W.; Rosenberg, J. L. [School of Physics, Astronomy, and Computational Sciences, George Mason University, MS 3F3, 4400 University Drive, Fairfax, VA 22030 (United States); Ellison, S. L. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1 (Canada); Fischer, J., E-mail: satyapal@physics.gmu.edu [Naval Research Laboratory, Remote Sensing Division, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2014-04-01

    In contrast to massive, bulge hosting galaxies, very few supermassive black holes (SMBHs) are known in either low-mass or bulgeless galaxies. Such a population could provide clues to the origins of SMBHs and to secular pathways for their growth. Using the all-sky Wide-field Infrared Survey Explorer (WISE ) survey, and bulge-to-disk decompositions from the Sloan Digital Sky Survey (SDSS) Data Release 7, we report the discovery of a population of local (z < 0.3) bulgeless disk galaxies with extremely red mid-infrared colors which are highly suggestive of a dominant active galactic nucleus (AGN), despite having no optical AGN signatures in their SDSS spectra. Using various mid-infrared selection criteria from the literature, there are between 30 and over 300 bulgeless galaxies with possible AGNs. Other known scenarios that can heat the dust to high temperatures do not appear to explain the observed colors of this sample. If these galaxies are confirmed to host AGNs, this study will provide a breakthrough in characterizing the properties of SMBHs in the low bulge mass regime and in understanding their relation with their host galaxies. Mid-infrared selection identifies AGNs that dominate their host galaxy's emission and therefore reveal a different AGN population than that uncovered by optical studies. We find that the fraction of all galaxies identified as candidate AGNs by WISE is highest at lower stellar masses and drops dramatically in higher mass galaxies, in striking contrast to the findings from optical studies.

  19. Discovery of a population of bulgeless galaxies with extremely red MID-IR colors: Obscured AGN activity in the low-mass regime?

    International Nuclear Information System (INIS)

    In contrast to massive, bulge hosting galaxies, very few supermassive black holes (SMBHs) are known in either low-mass or bulgeless galaxies. Such a population could provide clues to the origins of SMBHs and to secular pathways for their growth. Using the all-sky Wide-field Infrared Survey Explorer (WISE ) survey, and bulge-to-disk decompositions from the Sloan Digital Sky Survey (SDSS) Data Release 7, we report the discovery of a population of local (z < 0.3) bulgeless disk galaxies with extremely red mid-infrared colors which are highly suggestive of a dominant active galactic nucleus (AGN), despite having no optical AGN signatures in their SDSS spectra. Using various mid-infrared selection criteria from the literature, there are between 30 and over 300 bulgeless galaxies with possible AGNs. Other known scenarios that can heat the dust to high temperatures do not appear to explain the observed colors of this sample. If these galaxies are confirmed to host AGNs, this study will provide a breakthrough in characterizing the properties of SMBHs in the low bulge mass regime and in understanding their relation with their host galaxies. Mid-infrared selection identifies AGNs that dominate their host galaxy's emission and therefore reveal a different AGN population than that uncovered by optical studies. We find that the fraction of all galaxies identified as candidate AGNs by WISE is highest at lower stellar masses and drops dramatically in higher mass galaxies, in striking contrast to the findings from optical studies.

  20. Dwarf elliptical galaxies as ancient tidal dwarf galaxies

    CERN Document Server

    Dabringhausen, Jörg

    2012-01-01

    The formation of tidal dwarf galaxies (TDGs) is triggered by the encounters of already existing galaxies. Their existence is predicted from numerical calculations of encountering galaxies and is also well documented with observations. The numerical calculations on the formation of TDGs furthermore predict that TDGs cannot contain significant amounts of non-baryonic dark matter. In this paper, the first exhaustive sample of TDG-candidates from observations and numerical calculations is gathered from the literature. These stellar systems are gas-rich at the present, but they will probably evolve into gas-poor objects that are indistinguishable from old dwarf elliptical galaxies (dEs) based on their masses and radii. Indeed, known gas-poor TDGs appear as normal dEs. According to the currently prevailing cosmological paradigm, there should also be a population of primordial galaxies that formed within haloes of dark matter in the same mass range. Due to their different composition and origin, it would be expected...

  1. Uncovering Blue Diffuse Dwarf Galaxies

    CERN Document Server

    James, Bethan L; Stark, Daniel P; Belokurov, Vasily; Pettini, Max; Olszewski, Edward W

    2014-01-01

    Extremely metal poor (XMP) galaxies are known to be very rare, despite the large numbers of low-mass galaxies predicted by the local galaxy luminosity function. This paper presents a sub-sample of galaxies that were selected via a morphology-based search on SDSS images with the aim of finding these elusive XMP galaxies. By using the recently discovered extremely metal-poor galaxy, Leo P, as a guide, we obtained a collection of faint, blue systems, each with isolated HII regions embedded in a diffuse continuum, that have remained undetected until now. Here we show the first results from optical spectroscopic follow-up observations of 12 of ~100 of these blue, diffuse dwarf (BDD) galaxies yielded by our search algorithm. Oxygen abundances were obtained via the direct method for eight galaxies, and found to be in the range 7.45<12+log(O/H)<8.0, with two galaxies being classified as XMPs. All BDDs were found to currently have a young star-forming population (<10 Myr) and relatively high ionisation parame...

  2. A Luminous X-Ray Flare from the Nucleus of the Dormant Bulgeless Spiral Galaxy NGC 247

    Science.gov (United States)

    Feng, Hua; Ho, Luis C.; Kaaret, Philip; Tao, Lian; Yamaoka, Kazutaka; Zhang, Shuo; Grisé, Fabien

    2015-07-01

    NGC 247 is a nearby late-type bulgeless spiral galaxy that contains an inactive nucleus. We report a serendipitous discovery of an X-ray flare from the galaxy center with a luminosity of up to 2× {10}39 erg s-1 in the 0.3-10 keV band with XMM-Newton. A Chandra observation confirms that the new X-ray source is spatially coincident with the galaxy nucleus. The XMM-Newton data revealed a hard power-law spectrum with a spectral break near 3-4 keV, no pulsations on timescales longer than 150 ms, and a flat power spectrum consistent with Poisson noise from 1 mHz to nearly 10 Hz. Follow-up observations with Swift detected a second flux peak followed by a luminosity drop by a factor of almost 20. The spectral and temporal behaviors of the nuclear source are consistent with the scenario that the flare was due to an outburst of a low-mass X-ray binary that contains a stellar-mass black hole emitting near its Eddington limit at the peak. However, it cannot be ruled out that the sudden brightening in the nucleus was due to accretion onto a possible low-mass nuclear black hole, fed by a tidally disrupted star or a gas cloud; the Monitor of All-sky X-ray Image observations limit the peak luminosity of the flare to less than ˜ {10}43 erg s-1, suggesting that it is either a low-mass black hole or an inefficient tidal disruption event.

  3. Measuring the mass of the central black hole in the bulgeless galaxy NGC 4395 from gas dynamical modeling

    CERN Document Server

    Brok, Mark den; Barth, Aaron J; Carson, Daniel J; Neumayer, Nadine; Cappellari, Michele; Debattista, Victor P; Ho, Luis C; Hood, Carol E; McDermid, Richard M

    2015-01-01

    NGC 4395 is a bulgeless spiral galaxy, harboring one of the nearest known type 1 Seyfert nuclei. Although there is no consensus on the mass of its central engine, several estimates suggest it to be one of the lightest massive black holes (MBHs) known. We present the first direct dynamical measurement of the mass of this MBH from a combination of two-dimensional gas kinematic data, obtained with the adaptive optics assisted near infrared integral field spectrograph Gemini/NIFS, and high-resolution multiband photometric data from Hubble Space Telescope's Wide Field Camera 3 (HST/WFC3). We use the photometric data to model the shape and stellar mass-to-light ratio (M/L) of the nuclear star cluster. From the Gemini/NIFS observations, we derive the kinematics of warm molecular hydrogen gas as traced by emission through the H$_2$ 1--0 S(1) transition. These kinematics show a clear rotational signal, with a position angle orthogonal to NGC 4395's radio jet. Our best fitting tilted ring models of the kinematics of th...

  4. Manganese in dwarf spheroidal galaxies

    CERN Document Server

    North, P; Jablonka, P; Hill, V; Shetrone, M; Letarte, B; Lemasle, B; Venn, K A; Battaglia, G; Tolstoy, E; Irwin, M J; Primas, F; Francois, P

    2012-01-01

    We provide manganese abundances (corrected for the effect of the hyperfine structure) for a large number of stars in the dwarf spheroidal galaxies Sculptor and Fornax, and for a smaller number in the Carina and Sextans dSph galaxies. Abundances had already been determined for a number of other elements in these galaxies, including alpha and iron-peak ones, which allowed us to build [Mn/Fe] and [Mn/alpha] versus [Fe/H] diagrams. The Mn abundances imply sub-solar [Mn/Fe] ratios for the stars in all four galaxies examined. In Sculptor, [Mn/Fe] stays roughly constant between [Fe/H]\\sim -1.8 and -1.4 and decreases at higher iron abundance. In Fornax, [Mn/Fe] does not vary in any significant way with [Fe/H]. The relation between [Mn/alpha] and [Fe/H] for the dSph galaxies is clearly systematically offset from that for the Milky Way, which reflects the different star formation histories of the respective galaxies. The [Mn/alpha] behavior can be interpreted as a result of the metal-dependent Mn yields of type II and ...

  5. Black Holes in Bulgeless Galaxies: An XMM-Newton Investigation of NGC 3367 AND NGC 4536

    Science.gov (United States)

    McAlpine, W.; Satyapal, S.; Gliozzi, M.; Cheung, C. C.; Sambruna, R. M.; Eracleous, Michael

    2012-01-01

    The vast majority of optically identified active galactic nuclei (AGNs) in the local Universe reside in host galaxies with prominent bulges, supporting the hypothesis that black hole formation and growth is fundamentally connected to the build-up of galaxy bulges. However, recent mid-infrared spectroscopic studies with Spitzer of a sample of optically "normal" late-type galaxies reveal remarkably the presence of high-ionization [NeV] lines in several sources, providing strong evidence for AGNs in these galaxies. We present follow-up X-ray observations recently obtained with XMM-Newton of two such sources, the late-type optically normal galaxies NGC 3367 and NGC 4536. Both sources are detected in our observations. Detailed spectral analysis reveals that for both galaxies, the 2-10 keV emission is dominated by a power law with an X-ray luminosity in the L(sub 2- 10 keV) approximates 10(exp 39) - 10(exp 40) ergs/s range, consistent with low luminosity AGNs. While there is a possibility that X-ray binaries account for some fraction of the observed X-ray luminosity, we argue that this fraction is negligible. These observations therefore add to the growing evidence that the fraction of late-type galaxies hosting AGNs is significantly underestimated using optical observations alone. A comparison of the midinfrared [NeV] luminosity and the X-ray luminosities suggests the presence of an additional highly absorbed X-ray source in both galaxies, and that the black hole masses are in the range of 10(exp 5) - 10(exp 7) solar M for NGC 3367 and 10(exp 4) - (exp 10) solar M for NGC 4536

  6. Photometric properties of Local Volume dwarf galaxies

    OpenAIRE

    Sharina, M. E.; Karachentsev, I. D.; Dolphin, A. E.; Karachentseva, V E; Tully, R. Brent; Karataeva, G. M.; Makarov, D. I.; Makarova, L. N.; Sakai, S.; Shaya, E. J.; Nikolaev, E. Yu.; Kuznetsov, A N

    2007-01-01

    We present surface photometry and metallicity measurements for 104 nearby dwarf galaxies imaged with the Advanced Camera for Surveys and Wide Field and Planetary Camera 2 aboard the Hubble Space Telescope. In addition, we carried out photometry for 26 galaxies of the sample and for Sextans B on images of the Sloan Digital Sky Survey. Our sample comprises dwarf spheroidal, irregular and transition type galaxies located within ~10 Mpc in the field and in nearby groups: M81, Centaurus A, Sculpto...

  7. Dwarf Galaxies, MOND, and Relativistic Gravitation

    OpenAIRE

    Arthur Kosowsky

    2010-01-01

    MOND is a phenomenological modification of Newton's law of gravitation which reproduces the dynamics of galaxies, without the need for additional dark matter. This paper reviews the basics of MOND and its application to dwarf galaxies. MOND is generally successful at reproducing stellar velocity dispersions in the Milky Way's classical dwarf ellipticals, for reasonable values of the stellar mass-to-light ratio of the galaxies; two discrepantly high mass-to-light ratios may be explained by tid...

  8. The Bulgeless Seyfert/LINER Galaxy NGC 3367: Disk, Bar, Lopsidedness and Environment

    CERN Document Server

    Hernández-Toledo, H M; Valenzuela, O; Puerari, I; García-Barreto, J A; Moreno-Díaz, E; Bravo-Alfaro, H

    2011-01-01

    NGC3367 is a nearby isolated active galaxy that shows a radio jet, a strong bar and evidence of lopsidedness. We present a quantitative analysis of the stellar and gaseous structure of the galaxy disk and a search for evidence of recent interaction based on new UBVRI Halpha and JHK images and on archival Halpha Fabry-Perot and HI VLA data. From a coupled 1D/2D GALFIT bulge/bar/disk decomposition an (B/D ~ 0.07-0.1) exponential pseudobulge is inferred in all the observed bands. A NIR estimate of the bar strength = 0.44 places NGC 3367 bar among the strongest ones. The asymmetry properties were studied using (1) optical and NIR CAS indexes (2) the stellar (NIR) and gaseous (Halpha, HI) A_1 Fourier mode amplitudes and (3) the HI integrated profile and HI mean intensity distribution. While the average stellar component shows asymmetry values close to the average found in the Local Universe for isolated galaxies, the young stellar component and gas values are largely decoupled showing significantly larger A_1 mod...

  9. LOW CO LUMINOSITIES IN DWARF GALAXIES

    International Nuclear Information System (INIS)

    We present maps of 12COJ = 2-1 emission covering the entire star-forming disks of 16 nearby dwarf galaxies observed by the IRAM HERACLES survey. The data have 13'' angular resolution, ∼250 pc at our average distance of D = 4 Mpc, and sample the galaxies by 10-1000 resolution elements. We apply stacking techniques to perform the first sensitive search for CO emission in dwarf galaxies outside the Local Group ranging from individual lines of sight, stacking over IR-bright regions of embedded star formation, and stacking over the entire galaxy. We detect five galaxies in CO with total CO luminosities of LCO2-1 = (3-28) × 106 K km s–1 pc2. The other 11 galaxies remain undetected in CO even in the stacked images and have LCO2-1 ∼6 K km s–1 pc2. We combine our sample of dwarf galaxies with a large sample of spiral galaxies from the literature to study scaling relations of LCO with MB and metallicity. We find that dwarf galaxies with metallicities of Z ≈ 1/2-1/10 Z☉ have LCO of 2-4 orders of magnitude smaller than massive spiral galaxies and that their LCO per unit LB is 1-2 orders of magnitude smaller. A comparison with tracers of star formation (FUV and 24 μm) shows that LCO per unit star formation rate (SFR) is 1-2 orders of magnitude smaller in dwarf galaxies. One possible interpretation is that dwarf galaxies form stars much more efficiently: we argue that the low LCO/SFR ratio is due to the fact that the CO-to-H2 conversion factor, αCO, changes significantly in low-metallicity environments. Assuming that a constant H2 depletion time of τdep = 1.8 Gyr holds in dwarf galaxies (as found for a large sample of nearby spirals) implies αCO values for dwarf galaxies with Z ≈ 1/2-1/10 Z☉ that are more than one order of magnitude higher than those found in solar metallicity spiral galaxies. Such a significant increase of αCO at low metallicity is consistent with previous studies, in particular those of Local Group dwarf galaxies that model dust emission

  10. Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers

    International Nuclear Information System (INIS)

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ∼10% of satellite dwarf galaxies with M star > 106 M ☉ that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.

  11. The Hunt for Dwarf Galaxies' Ancestors

    Science.gov (United States)

    Kohler, Susanna

    2016-01-01

    Dwarf galaxies are typically very faint, and are therefore hard to find. Given that, what are our chances of finding their distant ancestors, located billions of light-years away? A recent study aims to find out.Ancient CounterpartsDwarf galaxies are a hot topic right now, especially as we discover more and more of them nearby. Besides being great places to investigate a variety of astrophysical processes, local group dwarf galaxies are also representative of the most common type of galaxy in the universe. For many of these dwarf galaxies, their low masses and typically old stellar populations suggest that most of their stars were formed early in the universes history, and further star formation was suppressed when the universe was reionized at redshifts of z ~ 610. If this is true, most dwarf galaxies are essentially fossils: theyve evolved little since that point.To test this theory, wed like to find counterparts to our local group dwarf galaxies at these higher redshifts of z = 6 or 7. But dwarf galaxies, since they dont exhibit lots of active star formation, have very low surface brightnesses making them very difficult to detect. What are the chances that current or future telescope sensitivities will allow us to detect these? Thats the question Anna Patej and Abraham Loeb, two theorists at Harvard University, have addressed in a recent study.Entering a New RegimeThe surface brightness vs. size for 73 local dwarf galaxies scaled back to redshifts of z=6 (top) and z=7 (bottom). So far weve been able to observe high-redshift galaxies within the boxed region of the parameter space. JWST will open the shaded region of the parameter space, which includes some of the dwarf galaxies. [Patej Loeb 2015]Starting from observational data for 87 Local-Group dwarf galaxies, Patej and Loeb used a stellar population synthesis code to evolve the galaxies backward in time to redshifts of z = 6 and 7. Next, they narrowed this sample to only those dwarfs for which most star

  12. An Optically Obscured AGN in a Low Mass, Irregular Dwarf Galaxy: A Multi-Wavelength Analysis of J1329+3234

    CERN Document Server

    Secrest, Nathan; Gliozzi, Mario; Rothberg, Barry; Ellison, Sara; Mowry, Seth; Rosenberg, Jessica; Fischer, Jacqueline; Schmitt, Henrique

    2014-01-01

    Supermassive black holes (SMBHs) are found ubiquitously in large, bulge-dominated galaxies throughout the local universe, yet little is known about their presence and properties in bulgeless and low-mass galaxies. This is a significant deficiency, since the mass distribution and occupation fraction of nonstellar black holes provide important observational constraints on SMBH seed formation theories and many dwarf galaxies have not undergone major mergers that would erase information on their original black hole population. Using data from the Wide-field Infrared Survey Explorer, we discovered hundreds of bulgeless and dwarf galaxies that display mid-infrared signatures of extremely hot dust highly suggestive of powerful accreting massive black holes, despite having no signatures of black hole activity at optical wavelengths. Here we report, in our first follow-up X-ray investigation of this population, that the irregular dwarf galaxy J132932.41+323417.0 (z = 0.0156) contains a hard, unresolved X-ray source de...

  13. Neutral Hydrogen in Local Group Dwarf Galaxies

    Science.gov (United States)

    Grcevich, Jana

    The gas content of the faintest and lowest mass dwarf galaxies provide means to study the evolution of these unique objects. The evolutionary histories of low mass dwarf galaxies are interesting in their own right, but may also provide insight into fundamental cosmological problems. These include the nature of dark matter, the disagreement between the number of observed Local Group dwarf galaxies and that predicted by lambda cold dark matter models, and the discrepancy between the observed census of baryonic matter in the Milky Way's environment and theoretical predictions. This thesis explores these questions by studying the neutral hydrogen (HI) component of dwarf galaxies. First, limits on the HI mass of the ultra-faint dwarfs are presented, and the HI content of all Local Group dwarf galaxies is examined from an environmental standpoint. We find that those Local Group dwarfs within 270 kpc of a massive host galaxy are deficient in HI as compared to those at larger galactocentric distances. Ram-pressure arguments are invoked, which suggest halo densities greater than 2-3 x 10-4 cm-3 out to distances of at least 70 kpc, values which are consistent with theoretical models and suggest the halo may harbor a large fraction of the host galaxy's baryons. We also find that accounting for the incompleteness of the dwarf galaxy count, known dwarf galaxies whose gas has been removed could have provided at most 2.1 x 108 M⊙ of HI gas to the Milky Way. Second, we examine the possibility of discovering unknown gas-rich ultra-faint galaxies in the Local Group using HI. The GALFA-HI Survey catalog is searched for compact, isolated HI clouds which are most similar to the expected HI characteristics of low mass dwarf galaxies. Fifty-one Local Group dwarf galaxy candidates are identified through column density, brightness temperature, and kinematic selection criteria, and their properties are explored. Third, we present hydrodynamic simulations of dwarf galaxies experiencing a

  14. Oxygen abundances in nearby dwarf irregular galaxies

    International Nuclear Information System (INIS)

    Oxygen abundances are obtained by optical spectrophotometry of H II regions in seven nearby dwarf irregular galaxies. All of these yield oxygen abundances of less than 1/10 of the solar value, and most are in the range of 3-5 percent of the solar value. This suggests that observations of nearby dwarf galaxies may provide an effective means for studying the chemical evolution of low-mass galaxies and, possibly, the primordial helium abundance. A strong correlation is found between the oxygen abundances and absolute magnitudes for nearby irregular galaxies. This correlation will be useful for estimating abundances of irregular galaxies without observable H II regions, and possibly as a distance indicator for irregular galaxies with known abundances. It is inferred from this relationship that infall is no more important in irregular galaxies with extremely large H I halos than in typical irregular galaxies. 72 refs

  15. Shell Galaxies, Dynamical Friction, and Dwarf Disruption

    CERN Document Server

    Ebrova, Ivana; Canalizo, Gabriela; Bennert, Nicola; Jilkova, Lucie

    2009-01-01

    Using N-body simulations of shell galaxies created in nearly radial minor mergers, we investigate the error of collision dating, resulting from the neglect of dynamical friction and of gradual disruption of the cannibalized dwarf.

  16. The Hunt for Missing Dwarf Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2015-11-01

    Theories of galaxy formation and evolution predict that there should be significantly more dwarf galaxies than have been observed. Are our theories wrong? Or are dwarf galaxies just difficult to detect? Recent results from a survey of a galaxy cluster 62 million light-years away suggest there may be lots of undiscovered dwarf galaxies hiding throughout the universe!Hiding in FaintnessThe missing dwarf problem has had hints of a resolution with the recent discovery of Ultra-Diffuse Galaxies (UDGs) in the Coma and Virgo galaxy clusters. UDGs have low masses and large radii, resulting in a very low surface brightness that makes them extremely difficult to detect. If many dwarfs are UDGs, this could well explain why weve been missing them!But the Coma and Virgo galaxy clusters are similar in that theyre both very massive. Are there UDGs in other galaxy clusters as well? To answer this question, an international team of scientists is running the Next Generation Fornax Survey (NGFS), a survey searching for faint dwarf galaxies in the central 30 square degrees of the Fornax galaxy cluster.The NGFS uses near-UV and optical observations from the Dark Energy Camera mounted on the 4m Blanco Telescope in Chile. The survey is still underway, but in a recent publication led by Roberto P. Muoz (Institute of Astrophysics at the Pontifical Catholic University of Chile), the team has released an overview of the first results from only the central 3 square degrees of the NGFS field.Surprising DetectionGalaxy radii vs. their absolute i-band magnitudes, for the dwarfs found in NGFS as well as other stellar systems in the nearby universe. The NGFS dwarfs are similar to the ultra-diffuse dwarfs found in the Virgo and Coma clusters, but are several orders of magnitude fainter. [Muoz et al. 2015]In just this small central field, the team has found an astounding 284 low-surface-brightness dwarf galaxy candidates 158 of them previously undetected. At the bright end of this sample are dwarf

  17. Neutral hydrogen detection survey of dwarf galaxies. II. Faint Virgo dwarfs and a field sample

    International Nuclear Information System (INIS)

    Neutral hydrogen spectra are presented for 53 faint dwarf galaxies in Virgo, completing the Arecibo survey of all late-type dwarfs in the Virgo Cluster Catalog, and for 42 dwarf galaxies from the field sample of Binggeli et al. (1989). For detected galaxies, heliocentric velocities, profile widths, and single-beam fluxes are tabulated. The field sample has been used to investigate the field luminosity function and the clustering of dwarf galaxies vis-a-vis bright galaxies. 31 refs

  18. Missing dark matter in dwarf galaxies?

    CERN Document Server

    Oman, Kyle A; Sales, Laura V; Fattahi, Azadeh; Frenk, Carlos S; Sawala, Till; Schaller, Matthieu; White, Simon D M

    2016-01-01

    We use cosmological hydrodynamical simulations of the APOSTLE project to examine the fraction of baryons in $\\Lambda$CDM haloes that collect into galaxies. This `galaxy formation efficiency' correlates strongly and with little scatter with halo mass, dropping steadily towards dwarf galaxies. The baryonic mass of a galaxy may thus be used to place a lower limit on total halo mass and, consequently, on its asymptotic maximum circular velocity. A number of dwarfs seem to violate this constraint, having baryonic masses up to ten times higher than expected from their rotation speeds, or, alternatively, rotating at only half the speed expected for their mass. Taking the data at face value, either these systems have formed galaxies with extraordinary efficiency - highly unlikely given their shallow potential wells - or they inhabit haloes with extreme deficits in their dark matter content. This `missing dark matter' is reminiscent of the inner mass deficits of galaxies with slowly-rising rotation curves, but extends...

  19. Surface photometry of new nearby dwarf galaxies

    CERN Document Server

    Makarova, L N; Grebel, E K; Barsunova, O Y

    2002-01-01

    We present CCD surface photometry of 16 nearby dwarf galaxies, many of which were only recently discovered. Our sample comprises both isolated galaxies and galaxies that are members of nearby galaxy groups. The observations were obtained in the Johnson B and V bands (and in some cases in Kron-Cousins I). We derive surface brightness profiles, total magnitudes, and integrated colors. For the 11 galaxies in our sample with distance estimates the absolute B magnitudes lie in the range of -10>Mb>-13. The central surface brightness ranges from 22.5 to 27.0 mag/sq.arcsec. Most of the dwarf galaxies show exponential light profiles with or without a central light depression. Integrated radial color gradients, where present, appear to indicate a more centrally concentrated younger population and a more extended older population.

  20. Morphological transformations of Dwarf Galaxies in the Local Group

    CERN Document Server

    Carraro, Giovanni

    2014-01-01

    In the Local Group there are three main types of dwarf galaxies: Dwarf Irregulars, Dwarf Spheroidals, and Dwarf Ellipticals. Intermediate/transitional types are present as well. This contribution reviews the idea that the present day variety of dwarf galaxy morphologies in the Local Group might reveal the existence of a transformation chain of events, of which any particular dwarf galaxy represents a manifestation of a particular stage. In other words, all dwarf galaxies that now are part of the Local Group would have formed identically in the early universe, but then evolved differently because of morphological transformations induced by dynamical processes like galaxy harassment, ram pressure stripping, photo-evaporation, and so forth. We start describing the population of dwarf galaxies and their spatial distribution in the LG. Then, we describe those phenomena that can alter the morphology of a dwarf galaxies, essentially by removing, partially or completely, their gas content. Lastly, we discuss morpholo...

  1. Resonant stripping as the origin of dwarf spheroidal galaxies

    CERN Document Server

    D'Onghia, Elena; Cox, Thomas J; Hernquist, Lars

    2009-01-01

    Dwarf spheroidal galaxies are the most dark matter dominated systems in the nearby Universe and their origin is one of the outstanding puzzles of how galaxies form. Dwarf spheroidals are poor in gas and stars, making them unusually faint, and those known as ultra-faint dwarfs have by far the lowest measured stellar content of any galaxy. Previous theories require that dwarf spheroidals orbit near giant galaxies like the Milky Way, but some dwarfs have been observed in the outskirts of the Local Group. Here we report simulations of encounters between dwarf disk galaxies and somewhat larger objects. We find that the encounters excite a process, which we term ``resonant stripping'', that can transform them into dwarf spheroidals. This effect is distinct from other mechanisms proposed to form dwarf spheroidals, including mergers, galaxy-galaxy harassment, or tidal and ram pressure stripping, because it is driven by gravitational resonances. It may account for the observed properties of dwarf spheroidals in the Lo...

  2. "Missing Mass" Found in Recycled Dwarf Galaxies

    Science.gov (United States)

    2007-05-01

    Astronomers studying dwarf galaxies formed from the debris of a collision of larger galaxies found the dwarfs much more massive than expected, and think the additional material is "missing mass" that theorists said should not be present in this kind of dwarf galaxy. Multiwavelength Image of NGC 5291 Multiwavelength image of NGC 5291 and dwarf galaxies around it. CREDIT: P-A Duc, CEA-CNRS/NRAO/AUI/NSF/NASA. Click on image for page of more graphics and full information The scientists used the National Science Foundation's Very Large Array (VLA) radio telescope to study a galaxy called NGC 5291, 200 million light-years from Earth. This galaxy collided with another 360 million years ago, and the collision shot streams of gas and stars outward. Later, the dwarf galaxies formed from the ejected debris. "Our detailed studies of three 'recycled' dwarf galaxies in this system showed that the dwarfs have twice as much unseen matter as visible matter. This was surprising, because they were expected to have very little unseen matter," said Frederic Bournaud, of the French astrophysics laboratory AIM of the French CEA and CNRS. Bournaud and his colleagues announced their discovery in the May 10 online issue of the journal Science. "Dark matter," which astronomers can detect only by its gravitational effects, comes, they believe, in two basic forms. One form is the familiar kind of matter seen in stars, planets, and humans -- called baryonic matter -- that does not emit much light or other type of radiation. The other form, called non-baryonic dark matter, comprises nearly a third of the Universe but its nature is unknown. The visible portion of spiral galaxies, like our own Milky Way, lies mostly in a flattened disk, usually with a bulge in the center. This visible portion, however, is surrounded by a much larger halo of dark matter. When spiral galaxies collide, the material expelled outward by the interaction comes from the galaxies' disks. For this reason, astronomers did

  3. CCD photometry of apparent dwarf galaxies in Fornax

    International Nuclear Information System (INIS)

    Blue and red CCD surface photometry of two apparent dwarf galaxies in the Fornax cluster region is presented. Luminosity profiles are derived and their form discussed. The fainter galaxy resembles an archetypal diffuse dwarf elliptical but the brighter of the pair is either an unusual red dwarf or a background galaxy in chance juxtaposition. (author)

  4. Discovery of a Large Population of Ultraluminous X-ray Sources in the Bulge-less Galaxies NGC 337 and ESO 501-23

    CERN Document Server

    Somers, Garrett; Martini, Paul; Watson, Linda; Grier, Catherine J; Ferrarese, Laura

    2013-01-01

    We have used Chandra observations of eight bulge-less disk galaxies to identify new ultraluminous X-ray source (ULX) candidates, study their high mass X-ray binary (HMXB) population, and search for low-luminosity active galactic nuclei (AGN). We report the discovery of 16 new ULX candidates in our sample of galaxies. Eight of these are found in the star forming galaxy NGC 337, none of which are expected to be background contaminants. The HMXB luminosity function of NGC 337 implies a star formation rate (SFR) of 6.8$^{+4.4}_{-3.5}$ \\msun\\ yr$^{-1}$, consistent at 1.5$\\sigma$ with a recent state of the art SFR determination. We also report the discovery of a bright ULX candidate (X-1) in ESO 501-23. X-1's spectrum is well fit by an absorbed power law with $\\Gamma = 1.18^{+0.19}_{-0.11}$ and N$\\rm{_H}$ = 1.13$^{+7.07}_{-1.13} \\times 10^{20}$ cm$^{-2}$, implying a 0.3-8 keV flux of $1.08^{+0.05}_{-0.07} \\times 10^{-12}$ \\esc. Its X-ray luminosity (L$_X$) is poorly constrained due to uncertainties in the host gala...

  5. Photometric properties of Local Volume dwarf galaxies

    CERN Document Server

    Sharina, M E; Dolphin, A E; Karachentseva, V E; Tully, R Brent; Karataeva, G M; Makarov, D I; Makarova, L N; Sakai, S; Shaya, E J; Nikolaev, E Yu; Kuznetsov, A N

    2007-01-01

    We present surface photometry and metallicity measurements for 104 nearby dwarf galaxies imaged with the Advanced Camera for Surveys and Wide Field and Planetary Camera 2 aboard the Hubble Space Telescope. In addition, we carried out photometry for 26 galaxies of the sample and for Sextans~B on images of the Sloan Digital Sky Survey. Our sample comprises dwarf spheroidal, irregular and transition type galaxies located within ~10 Mpc in the field and in nearby groups: M81, Centaurus A, Sculptor, and Canes Venatici I cloud. It is found that the early-type galaxies have on average higher metallicity at a given luminosity in comparison to the late-type objects. Dwarf galaxies with M_B > -12 -- -13 mag deviate toward larger scale lengths from the scale length -- luminosity relation common for spiral galaxies, h \\propto L^{0.5}_B. The following correlations between fundamental parameters of the galaxies are consistent with expectations if there is pronounced gas-loss through galactic winds: 1) between the luminosit...

  6. Massive Star Clusters in Dwarf Galaxies

    CERN Document Server

    Larsen, Soeren S

    2015-01-01

    Dwarf galaxies can have very high globular cluster specific frequencies, and the GCs are in general significantly more metal-poor than the bulk of the field stars. In some dwarfs, such as Fornax, WLM, and IKN, the fraction of metal-poor stars that belong to GCs can be as high as 20%-25%, an order of magnitude higher than the 1%-2% typical of GCs in halos of larger galaxies. Given that chemical abundance anomalies appear to be present also in GCs in dwarf galaxies, this implies severe difficulties for self-enrichment scenarios that require GCs to have lost a large fraction of their initial masses. More generally, the number of metal-poor field stars in these galaxies is today less than what would originally have been present in the form of low-mass clusters if the initial cluster mass function was a power-law extending down to low masses. This may imply that the initial GC mass function in these dwarf galaxies was significantly more top-heavy than typically observed in present-day star forming environments.

  7. Missing dark matter in dwarf galaxies?

    Science.gov (United States)

    Oman, Kyle A.; Navarro, Julio F.; Sales, Laura V.; Fattahi, Azadeh; Frenk, Carlos S.; Sawala, Till; Schaller, Matthieu; White, Simon D. M.

    2016-08-01

    We use cosmological hydrodynamical simulations of the APOSTLE project to examine the fraction of baryons in $\\Lambda$CDM haloes that collect into galaxies. This `galaxy formation efficiency' correlates strongly and with little scatter with halo mass, dropping steadily towards dwarf galaxies. The baryonic mass of a galaxy may thus be used to place a lower limit on total halo mass and, consequently, on its asymptotic maximum circular velocity. A number of dwarfs seem to violate this constraint, having baryonic masses up to ten times higher than expected from their rotation speeds, or, alternatively, rotating at only half the speed expected for their mass. Taking the data at face value, either these systems have formed galaxies with extraordinary efficiency - highly unlikely given their shallow potential wells - or they inhabit haloes with extreme deficits in their dark matter content. This `missing dark matter' is reminiscent of the inner mass deficits of galaxies with slowly-rising rotation curves, but extends to regions larger than the luminous galaxies themselves, disfavouring explanations based on star formation-induced `cores' in the dark matter. An alternative could be that galaxy inclination errors have been underestimated, and that these are just systems where inferred mass profiles have been compromised by systematic uncertainties in interpreting the velocity field. This should be investigated further, since it might provide a simple explanation not only for missing-dark-matter galaxies but also for other challenges to our understanding of the inner structure of cold dark matter haloes.

  8. Tests of modified gravity with dwarf galaxies

    International Nuclear Information System (INIS)

    In modified gravity theories that seek to explain cosmic acceleration, dwarf galaxies in low density environments can be subject to enhanced forces. The class of scalar-tensor theories, which includes f(R) gravity, predict such a force enhancement (massive galaxies like the Milky Way can evade it through a screening mechanism that protects the interior of the galaxy from this ''fifth'' force). We study observable deviations from GR in the disks of late-type dwarf galaxies moving under gravity. The fifth-force acts on the dark matter and HI gas disk, but not on the stellar disk owing to the self-screening of main sequence stars. We find four distinct observable effects in such disk galaxies: 1. A displacement of the stellar disk from the HI disk. 2. Warping of the stellar disk along the direction of the external force. 3. Enhancement of the rotation curve measured from the HI gas compared to that of the stellar disk. 4. Asymmetry in the rotation curve of the stellar disk. We estimate that the spatial effects can be up to 1 kpc and the rotation velocity effects about 10 km/s in infalling dwarf galaxies. Such deviations are measurable: we expect that with a careful analysis of a sample of nearby dwarf galaxies one can improve astrophysical constraints on gravity theories by over three orders of magnitude, and even solar system constraints by one order of magnitude. Thus effective tests of gravity along the lines suggested by Hui, Nicolis, and Stubbs (2009) and Jain (2011) can be carried out with low-redshift galaxies, though care must be exercised in understanding possible complications from astrophysical effects

  9. The Metamorphosis of Tidally Stirred Dwarf Galaxies

    CERN Document Server

    Mayer, L; Colpi, M; Moore, B; Quinn, T; Wadsley, J; Lake, J S G; Mayer, Lucio; Governato, Fabio; Colpi, Monica; Moore, Ben; Quinn, Thomas; Wadsley, James; Lake, Joachim Stadel & George

    2001-01-01

    We present results from high-resolution N-Body/SPH simulations of rotationally supported dwarf irregular galaxies moving on bound orbits in the massive dark matter halo of the Milky Way.The dwarf models span a range in disk surface density and the masses and sizes of their dark halos are consistent with the predictions of cold dark matter cosmogonies. We show that the strong tidal field of the Milky Way determines severe mass loss in their halos and disks and induces bar and bending instabilities that transform low surface brightness dwarfs (LSBs) into dwarf spheroidals (dSphs) and high surface brightness dwarfs (HSBs) into dwarf ellipticals (dEs) in less than 10 Gyr. The final central velocity dispersions of the remnants are in the range 8-30 km/s and their final $v/\\sigma$ falls to values $< 0.5$, matching well the kinematics of early-type dwarfs. The transformation requires the orbital time of the dwarf to be $\\simlt 3-4$ Gyr, which implies a halo as massive and extended as predicted by hierarchical mod...

  10. DISCOVERY OF A LARGE POPULATION OF ULTRALUMINOUS X-RAY SOURCES IN THE BULGELESS GALAXIES NGC 337 AND ESO 501-23

    International Nuclear Information System (INIS)

    We have used Chandra observations of eight bulgeless disk galaxies to identify new ultraluminous X-ray source (ULX) candidates, study their high-mass X-ray binary (HMXB) population, and search for low-luminosity active galactic nuclei (AGNs). We report the discovery of 16 new ULX candidates in our sample of galaxies. Eight of these are found in the star forming galaxy NGC 337, none of which are expected to be background contaminants. The HMXB luminosity function of NGC 337 implies a star formation rate (SFR) of 6.8+4.4-3.5 M☉ yr–1, consistent at 1.5σ with a recent state of the art SFR determination. We also report the discovery of a bright ULX candidate (X-1) in ESO 501-23. X-1's spectrum is well fit by an absorbed power law with Γ= 1.18+0.19-0.11 and NH = 1.13+7.07-1.13×1020 cm–2, implying a 0.3-8 keV flux of 1.08+0.05-0.07×10-12 erg s–1 cm–2. Its X-ray luminosity (LX ) is poorly constrained due to uncertainties in the host galaxy's distance, but we argue that its spectrum implies LX > 1040 erg s–1. An optical counterpart to this object may be present in an Hubble Space Telescope image. We also identify ULX candidates in IC 1291, PGC 3853, NGC 5964, and NGC 2805. We find no evidence of nuclear activity in the galaxies in our sample, placing a flux upper limit of 4 × 10–15 erg s–1 cm–2 on putative AGN. Additionally, the Type II-P supernova SN 2011DQ in NGC 337, which exploded two months before our X-ray observation, is undetected

  11. Choirs H I galaxy groups: The metallicity of dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Sarah M.; Drinkwater, Michael J. [School of Mathematics and Physics, University of Queensland, Qld 4072 (Australia); Meurer, Gerhardt; Bekki, Kenji [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Dopita, Michael A.; Nicholls, David C. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT 2611 (Australia); Kilborn, Virginia, E-mail: sarah@sarahsweet.com.au [Swinburne University of Technology, Mail number H30, PO Box 218, Hawthorn, Victoria 3122 (Australia)

    2014-02-10

    We present a recalibration of the luminosity-metallicity relation for gas-rich, star-forming dwarfs to magnitudes as faint as M{sub R} ∼ –13. We use the Dopita et al. metallicity calibrations to calibrate the relation for all the data in this analysis. In metallicity-luminosity space, we find two subpopulations within a sample of high-confidence Sloan Digital Sky Survey (SDSS) DR8 star-forming galaxies: 52% are metal-rich giants and 48% are metal-medium galaxies. Metal-rich dwarfs classified as tidal dwarf galaxy (TDG) candidates in the literature are typically of metallicity 12 + log(O/H) = 8.70 ± 0.05, while SDSS dwarfs fainter than M{sub R} = –16 have a mean metallicity of 12 + log(O/H) = 8.28 ± 0.10, regardless of their luminosity, indicating that there is an approximate floor to the metallicity of low-luminosity galaxies. Our hydrodynamical simulations predict that TDGs should have metallicities elevated above the normal luminosity-metallicity relation. Metallicity can therefore be a useful diagnostic for identifying TDG candidate populations in the absence of tidal tails. At magnitudes brighter than M{sub R} ∼ –16, our sample of 53 star-forming galaxies in 9 H I gas-rich groups is consistent with the normal relation defined by the SDSS sample. At fainter magnitudes, there is an increase in dispersion of the metallicity of our sample, suggestive of a wide range of H I content and environment. In our sample, we identify three (16% of dwarfs) strong TDG candidates (12 + log(O/H) > 8.6) and four (21%) very metal-poor dwarfs (12 + log(O/H) < 8.0), which are likely gas-rich dwarfs with recently ignited star formation.

  12. Evolutionary Status of Dwarf ``Transition'' Galaxies

    Science.gov (United States)

    Knezek, Patricia M.; Sembach, Kenneth R.; Gallagher, John S., III

    1999-03-01

    We present deep B-band, R-band, and Hα imaging of three dwarf galaxies: NGC 3377A, NGC 4286, and IC 3475. Based on previous broadband imaging and H I studies, these mixed morphology galaxies have been proposed to be, respectively, a gas-rich low surface brightness Im dwarf, a nucleated dwarf that has lost most of its gas and is in transition from Im to dS0, N, and the prototypical example of a gas-poor ``huge low surface brightness'' early-type galaxy. From the combination of our broadband and Hα imaging with the published information on the neutral gas content of these three galaxies, we find that (1) NGC 3377A is a dwarf spiral, similar to those found by Schombert and coworkers and Matthews & Gallagher; (2) both NGC 3377A and NGC 4286 have comparable amounts of ongoing star formation, as indicated by their Hα emission, while IC 3475 has no detected H II regions to a very low limit; (3) the global star formation rates are at least a factor of 20 below those of 30 Doradus for NGC 3377A and NGC 4286; (4) while the amount of star formation is comparable, the distribution of star-forming regions is very different between NGC 3377A and NGC 4286, with Hα emission scattered over most of the optical face of NGC 3377A and all contained within the inner half of the optical disk of NGC 4286; (5) given their current star formation rates and gas contents, both NGC 3377A and NGC 4286 can continue to form stars for more than a Hubble time; (6) both NGC 3377A and NGC 4286 have integrated total B-R colors that are redder than the integrated total B-R color for IC 3475 and thus it is unlikely that either galaxy will ever evolve into an IC 3475 counterpart; and (7) IC 3475 is too blue to be a dE. We thus conclude that we have not identified potential precursors to galaxies such as IC 3475, and unless significant changes occur in the star formation rates, neither NGC 3377A nor NGC 4286 will evolve into a dwarf elliptical or dwarf spheroidal within a Hubble time. Furthermore

  13. AN OPTICALLY OBSCURED AGN IN A LOW MASS, IRREGULAR DWARF GALAXY: A MULTI-WAVELENGTH ANALYSIS OF J1329+3234

    Energy Technology Data Exchange (ETDEWEB)

    Secrest, N. J.; Satyapal, S.; Gliozzi, M.; Rothberg, B.; Mowry, W. S.; Rosenberg, J. L. [Department of Physics and Astronomy, George Mason University, MS 3F3, 4400 University Drive, Fairfax, VA 22030 (United States); Ellison, S. L. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1 (Canada); Fischer, J.; Schmitt, H. [Naval Research Laboratory, Remote Sensing Division, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2015-01-01

    Supermassive black holes (SMBHs) are found ubiquitously in large, bulge-dominated galaxies throughout the local universe, yet little is known about their presence and properties in bulgeless and low-mass galaxies. This is a significant deficiency, since the mass distribution and occupation fraction of nonstellar black holes provide important observational constraints on SMBH seed formation theories and many dwarf galaxies have not undergone major mergers that would erase information on their original black hole population. Using data from the Wide-field Infrared Survey Explorer, we discovered hundreds of bulgeless and dwarf galaxies that display mid-infrared signatures of extremely hot dust highly suggestive of powerful accreting massive black holes, despite having no signatures of black hole activity at optical wavelengths. Here we report, in our first follow-up X-ray investigation of this population, that the irregular dwarf galaxy J132932.41+323417.0 (z = 0.0156) contains a hard, unresolved X-ray source detected by XMM-Newton with luminosity L {sub 2-10} {sub keV} = 2.4 × 10{sup 40} erg s{sup –1}, over two orders of magnitude greater than that expected from star formation, strongly suggestive of the presence of an accreting massive black hole. While enhanced X-ray emission and hot dust can be produced in extremely low metallicity environments, J132932.41+323417.0 is not extremely metal poor (≈40% solar). With a stellar mass of 2.0 × 10{sup 8} M {sub ☉}, this galaxy is similar in mass to the Small Magellanic Cloud, and is one of the lowest mass galaxies with evidence for a massive nuclear black hole currently known.

  14. Obscured AGNs in Bulgeless Hosts discovered by WISE: The Case Study of SDSS J1224+5555

    OpenAIRE

    Satyapal, S.; Secrest, N. J.; Rothberg, B.; O'Connor, J.; Ellison, S. L.; Hickox, R. C.; Constantin, A.; Gliozzi, M.; Rosenberg, J. L.

    2016-01-01

    There is mounting evidence that supermassive black holes form and grow in bulgeless galaxies. However, a robust determination of the fraction of AGNs in bulgeless galaxies, an important constraint to models of supermassive black hole seed formation and merger-free models of AGN fueling, is unknown, since optical studies have been shown to be incomplete for low mass AGNs. In a recent study using the Wide-field Infrared Survey Explorer, we discovered hundreds of bulgeless galaxies that display ...

  15. HI Recycling Formation of Tidal Dwarf Galaxies

    CERN Document Server

    Duc, P A; Duc, Pierre-Alain; Brinks, Elias

    2000-01-01

    Galactic collisions trigger a number of phenomena, such as transportation inward of gas from distances of up to kiloparsecs from the center of a galaxy to the nuclear region, fuelling a central starburst or nuclear activity. The inverse process, the ejection of material into the intergalactic medium by tidal forces, is another important aspect and can be studied especially well through detailed HI observations of interacting systems which have shown that a large fraction of the gaseous component of colliding galaxies can be expelled. Part of this tidal debris might fall back, be dispersed throughout the intergalactic medium or recondense to form a new generation of galaxies: the so-called tidal dwarf galaxies. The latter are nearby examples of galaxies in formation. The properties of these recycled objects are reviewed here and different ways to identify them are reviewed.

  16. White dwarf-red dwarf binaries in the Galaxy

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are

  17. Satellites and Haloes of Dwarf Galaxies

    CERN Document Server

    Sales, Laura V; White, Simon D M; Navarro, Julio F

    2012-01-01

    We study the abundance of satellite galaxies as a function of primary stellar mass using the SDSS/DR7 spectroscopic catalogue. In contrast with previous studies, which focussed mainly on bright primaries, our central galaxies span a wide range of stellar mass, 10^7.5 < M_*^pri/M_sun < 10^11, from dwarfs to central cluster galaxies. Our analysis confirms that the average number of satellites around bright primaries, when expressed in terms of satellite-to-primary stellar mass ratio (m_*^sat/M_*^pri), is a strong function of M_*^pri. On the other hand, satellite abundance is largely independent of primary mass for dwarf primaries (M_*^pri<10^10 M_sun). These results are consistent with galaxy formation models in the LCDM scenario. We find excellent agreement between SDSS data and semi-analytic mock galaxy catalogues constructed from the Millennium-II Simulation. Satellite galaxies trace dark matter substructure in LCDM, so satellite abundance reflects the dependence on halo mass, M_200, of both substru...

  18. Suites of dwarfs around Nearby giant galaxies

    International Nuclear Information System (INIS)

    The Updated Nearby Galaxy Catalog (UNGC) contains the most comprehensive summary of distances, radial velocities, and luminosities for 800 galaxies located within 11 Mpc from us. The high density of observables in the UNGC makes this sample indispensable for checking results of N-body simulations of cosmic structures on a ∼1 Mpc scale. The environment of each galaxy in the UNGC was characterized by a tidal index Θ1, depending on the separation and mass of the galaxy's main disturber (MD). We grouped UNGC galaxies with a common MD in suites, and ranked suite members according to their Θ1. All suite members with positive Θ1 are assumed to be physical companions of the MD. About 58% of the sample are members of physical groups. The distribution of suites by the number of members, n, follows a relation N(n) ∼ n –2. The 20 most populated suites contain 468 galaxies, i.e., 59% of the UNGC sample. The fraction of MDs among the brightest galaxies is almost 100% and drops to 50% at MB = –18m. We discuss various properties of MDs, as well as galaxies belonging to their suites. The suite abundance practically does not depend on the morphological type, linear diameter, or hydrogen mass of the MD, the tightest correlation being with the MD dynamical mass. Dwarf galaxies around MDs exhibit well-known segregation effects: the population of the outskirts has later morphological types, richer H I contents, and higher rates of star formation activity. Nevertheless, there are some intriguing cases where dwarf spheroidal galaxies occur at the far periphery of the suites, as well as some late-type dwarfs residing close to MDs. Comparing simulation results with galaxy groups, most studies assume the Local Group is fairly typical. However, we recognize that the nearby groups significantly differ from each other and there is considerable variation in their properties. The suites of companions around the Milky Way and M31, consisting of the Local Group, do not quite seem to

  19. DWARF GALAXIES AND THE COSMIC WEB

    International Nuclear Information System (INIS)

    We use a cosmological simulation of the formation of the Local Group of Galaxies to identify a mechanism that enables the removal of baryons from low-mass halos without appealing to feedback or reionization. As the Local Group forms, matter bound to it develops a network of filaments and pancakes. This moving web of gas and dark matter drifts and sweeps a large volume, overtaking many halos in the process. The dark matter content of these halos is unaffected but their gas can be efficiently removed by ram pressure. The loss of gas is especially pronounced in low-mass halos due to their lower binding energy and has a dramatic effect on the star formation history of affected systems. This 'cosmic web stripping' may help to explain the scarcity of dwarf galaxies compared with the numerous low-mass halos expected in ΛCDM and the large diversity of star formation histories and morphologies characteristic of faint galaxies. Although our results are based on a single high-resolution simulation, it is likely that the hydrodynamical interaction of dwarf galaxies with the cosmic web is a crucial ingredient so far missing from galaxy formation models.

  20. Tests of Modified Gravity with Dwarf Galaxies

    CERN Document Server

    Jain, Bhuvnesh

    2011-01-01

    In modified gravity theories that seek to explain cosmic acceleration, dwarf galaxies in low density environments can be subject to enhanced forces. The class of scalar-tensor theories, which includes f(R) gravity, predict such a force enhancement (massive galaxies like the Milky Way can evade it through a screening mechanism that protects the interior of the galaxy from this "fifth" force). We study observable deviations from GR in the disks of late-type dwarf galaxies moving under gravity. The fifth-force acts on the dark matter and HI gas disk, but not on the stellar disk owing to the self-screening of main sequence stars. We find four distinct observable effects in such disk galaxies: 1. A displacement of the stellar disk from the HI disk. 2. Warping of the stellar disk along the direction of the external force. 3. Enhancement of the rotation curve measured from the HI gas compared to that of the stellar disk. 4. Asymmetry in the rotation curve of the stellar disk. We estimate that the spatial effects can...

  1. Chemical substructure and inhomogeneous mixing in Local Group dwarf galaxies

    Science.gov (United States)

    Venn, K. A.

    Evidence for inhomogeneous mixing in the Carina, Draco, and Sculptor dwarf galaxies is examined from chemical abundance patterns. Inhomogeneous mixing at early times is indicated in the classical dwarf galaxies, though cannot be ascertained in ultra faint dwarfs. Mixing efficiencies can affect the early metallicity distribution function, the pre-enrichment levels in globular clusters, and also have an impact on the structure of dwarf systems at early times. Numerical models that include chemical evolution explicitly do a better job in reproducing the observations, and make interesting predictions for the nature of dwarf galaxies and their first stars at the earliest times.

  2. The Outer Disks of Dwarf Irregular Galaxies

    CERN Document Server

    Hunter, Deidre A; Oh, Se-Heon; Anderson, Ed; Nordgren, Tyler E; Massey, Philip; Wilsey, Nick; Riabokin, Malanka

    2011-01-01

    To explore the properties of extreme outer stellar disks, we obtained ultra-deep V and GALEX UV images of 4 dwarf irregular galaxies and one Blue Compact Dwarf galaxy and ultra-deep B images of 3 of these. Our V-band surface photometry extends to 29.5 magnitudes arcsec^-2. We convert the FUV and V-band photometry, along with Halpha photometry, into radial star formation rate profiles that are sensitive to timescales from 10 Myrs to the lifetime of the galaxy. We also compare the stellar distributions, surface brightness profiles, and star formation rate profiles to HI-line emission maps, gas surface density profiles, and gas kinematics. Our data lead us to two general observations: First, the exponential disks in these irregular galaxies are extraordinarily regular. The stellar disks continue to decline exponentially as far as our measurements extend. In spite of lumpiness in the distribution of young stars and HI distributions and kinematics that have significant unordered motions, sporadic processes that ha...

  3. Interaction between the IGM and a dwarf galaxy

    CERN Document Server

    Lora, V; Grebel, E K

    2014-01-01

    Dwarf Galaxies are the most common objects in the Universe and are believed to contain large amounts of dark matter. There are mainly three morphologic types of dwarf galaxies: dwarf ellipticals, dwarf spheroidals and dwarf irregulars. Dwarf irregular galaxies are particularly interesting in dwarf galaxy evolution, since dwarf spheroidal predecessors could have been very similar to them. Therefore, a mechanism linked to gas-loss in dwarf irregulars should be observed, i.e. ram pressure stripping. In this paper, we study the interaction between the ISM of a dwarf galaxy, and a flowing IGM. We derive the weak-shock, plasmon solution corresponding to the balance between the post-bow shock pressure and the pressure of the stratified ISM (which we assume follows the fixed stratification of a gravitationally dominant dark matter halo). We compare our model with previously published numerical simulations and with the observed shape of the HI cloud around the Ho II and Pegasus dwarf irregular galaxies. We show that s...

  4. Dwarf spheroidal galaxy kinematics and spiral galaxy scaling laws

    OpenAIRE

    Salucci, Paolo; Wilkinson, Mark I.; Walker, Matthew G.; Gilmore, Gerard F.; Grebel, Eva K.; Koch, Andreas; Martins, Christiane Frigerio; Wyse, Rosemary F. G.

    2011-01-01

    Kinematic surveys of the dwarf spheroidal (dSph) satellites of the Milky Way are revealing tantalising hints about the structure of dark matter (DM) haloes at the low-mass end of the galaxy luminosity function. At the bright end, modelling of spiral galaxies has shown that their rotation curves are consistent with the hypothesis of a Universal Rotation Curve whose shape is supported by a cored dark matter halo. In this paper, we investigate whether the internal kinematics of the Milky Way dSp...

  5. The RSA survey of dwarf galaxies, 1: Optical photometry

    Science.gov (United States)

    Vader, J. Patricia; Chaboyer, Brian

    1994-01-01

    We present detailed surface photometry, based on broad B-band charge coupled device (CCD) images, of about 80 dwarf galaxies. Our sample represents approximately 10% of all dwarf galaxies identified in the vicinity of Revised Shapley-Ames (RSA) galaxies on high resolution blue photographic plates, referred to as the RSA survey of dwarf galaxies. We derive global properties and radial surface brightness profiles, and examine the morphologies. The radial surface brightness profiles of dwarf galaxies, whether early or late type, display the same varieties in shape and complexity as those of classical giant galaxies. Only a few are well described by a pure r(exp 1/4) law. Exponential profiles prevail. Features typical of giant disk galaxies, such as exponential profiles with a central depression, lenses, and even, in one case (IC 2041), a relatively prominent bulge are also found in dwarf galaxies. Our data suggest that the central region evolves from being bulge-like, with an r(exp 1/4) law profile, in bright galaxies to a lens-like structure in dwarf galaxies. We prove detailed surface photometry to be a helpful if not always sufficient tool in investigating the structure of dwarf galaxies. In many cases kinematic information is needed to complete the picture. We find the shapes of the surface brightness profiles to be loosely associated with morphological type. Our sample contains several new galaxies with properties intermediate between those of giant and dwarf ellipticals (but no M32-like objects). This shows that such intermediate galaxies exist so that at least a fraction of early-type dwarf ellipticals is structurally related to early-type giants instead of belonging to a totally unrelated, disjunct family. This supports an origin of early-type dwarf galaxies as originally more massive systems that acquired their current morphology as a result of substantial, presumable supernova-driven, mass loss. On the other hand, several early-type dwarfs in our sample are

  6. Dwarf satellite galaxies in the modified dynamics

    CERN Document Server

    Milgrom, M

    2000-01-01

    In the modified dynamics (MOND) the inner workings of dwarf satellites can be greatly affected by their mother galaxy-over and beyond its tidal effects. Because of MOND's nonlinearity a system's internal dynamics can be altered by an external field in which it is immersed (even when this field, by itself, is constant in space). As a result, the size and velocity dispersion of the satellite vary as the external field varies along its orbit. A notable outcome of this is a substantial increase in the dwarf's vulnerability to eventual tidal disruption-rather higher than Newtonian dynamics (with a dark-matter halo) would lead us to expect for a satellite with given observed parameters.

  7. A Comprehensive Search for Dark Matter Annihilation in Dwarf Galaxies

    OpenAIRE

    Geringer-Sameth, Alex; Koushiappas, Savvas M.; Walker, Matthew G.

    2014-01-01

    We present a new formalism designed to discover dark matter annihilation occurring in the Milky Way's dwarf galaxies. The statistical framework extracts all available information in the data by simultaneously combining observations of all the dwarf galaxies and incorporating the impact of particle physics properties, the distribution of dark matter in the dwarfs, and the detector response. The method performs maximally powerful frequentist searches and produces confidence limits on particle p...

  8. Spitzer Observations of Tidal Dwarf Galaxies

    CERN Document Server

    Higdon, Sarah J U

    2007-01-01

    We present Spitzer observations of Tidal Dwarf Galaxies (TDGs) in three interacting systems: NGC 5291, Arp105 and Stephan's Quintet. The spectra show bright emission from polyaromatic hydrocarbons (PAHs), nebular lines and warm molecular hydrogen, characteristic of recent episodes of star formation. The PAH emission that falls in the IRAC 8.0 micron band leads to the TDGs having an extremely red IRAC color, with [4.5] - [8.0] > 3. The emission from PAHs is characterized by a model with mainly neutral 100-C PAH atoms.

  9. A Dwarf Galaxy Survey in the Local Volume

    OpenAIRE

    Grebel, E. K.; Seitzer, P.; Dolphin, A. E.; Geisler, D; Guhathakurta, P.; Hodge, P. W.; Karachentsev, I. D.; Karachentseva, V E; Sarajedini, A.

    2000-01-01

    We are carrying out a comprehensive multi-wavelength study of dwarf galaxies in the Local Volume (< 5 Mpc). After our all-sky survey more than doubled the dwarf census we are now measuring structural parameters, integrated properties, and velocities. Our 200-orbit HST snapshot program yields stellar content, star formation history, and TRGB distances. We can thus study the morphology-density relation in galaxy groups in three dimensions, the influence of environment on galaxy evolution, and t...

  10. The evolution of stellar structures in dwarf galaxies

    OpenAIRE

    Bastian, N.; Weisz, D. R.; Skillman, E. D.; McQuinn, K. B. W.; Dolphin, A. E.; Gutermuth, R. A.; Cannon, J. M.; Ercolano, B.; Gieles, M.; Kennicutt, R. C.; Walter, F.

    2010-01-01

    We present a study of the variation of spatial structure of stellar populations within dwarf galaxies as a function of the population age. We use deep Hubble Space Telescope/Advanced Camera for Surveys imaging of nearby dwarf galaxies in order to resolve individual stars and create composite colour-magnitude diagrams (CMDs) for each galaxy. Using the obtained CMDs, we select Blue Helium Burning stars (BHeBs), which can be unambiguously age-dated by comparing the absolute magnitude of individu...

  11. Dwarf Galaxies and the Cosmic Web

    CERN Document Server

    Benitez-Llambay, Alejandro; Abadi, Mario G; Gottloeber, Stefan; Yepes, Gustavo; Hoffman, Yehuda; Steinmetz, Matthias

    2012-01-01

    We use a cosmological simulation of the formation of the Local Group of Galaxies to identify a mechanism that enables the removal of baryons from low-mass halos without appealing to feedback or reionization. As the Local Group forms, matter bound to it develops a network of filaments and pancakes. This moving web of gas and dark matter drifts and sweeps a large volume, overtaking many halos in the process. The dark matter content of these halos is unaffected but their gas can be efficiently removed by ram-pressure. The loss of gas is especially pronounced in low-mass halos due to their lower binding energy and has a dramatic effect on the star formation history of affected systems. This "cosmic web stripping" may help to explain the scarcity of dwarf galaxies compared with the numerous low-mass halos expected in \\Lambda CDM and the large diversity of star formation histories and morphologies characteristic of faint galaxies. Although our results are based on a single high-resolution simulation, it is likely t...

  12. Testing modified gravity with dwarf spheroidal galaxies

    CERN Document Server

    Haghi, Hosein

    2016-01-01

    The observed velocity dispersion of the classical dwarf spheroidal (dSph) galaxies of the Milky Way (MW) requires the Newtonian stellar mass-to-light ($M_*/L$) ratios in the range of about 10 to more than 100 solar units that are well outside the acceptable limit predicted by stellar population synthesis models. Using Jeans analysis, we calculate the line-of-sight velocity dispersion ($\\sigma_{\\emph{los}}$) of stars in eight MW dSphs in the context of the modified gravity (MOG) theory of Moffat, assuming a constant $M_*/L$ ratio without invoking the exotic cold dark matter. First, we use the weak field approximation of MOG and assume the two parameters $ \\alpha $ and $ \\mu $ of the theory to be constant as has already been inferred from fitting to the observed rotational data of The HI Nearby Galaxy Survey catalogue of galaxies. We find that the derived $M_*/L$ ratios for almost all dSphs are too large to be explained by the stellar population values. In order to fit the line-of-sight velocity dispersions of ...

  13. How Typical Are The Local Group Dwarf Galaxies?

    OpenAIRE

    Weisz, Daniel R.; Dolphin, Andrew E.; Dalcanton, Julianne J.; Skillman, Evan D.; Holtzman, Jon; Williams, Benjamin F.; Gilbert, Karoline M.; Seth, Anil C; Cole, Andrew; Gogarten, Stephanie M.; Rosema, Keith; Karachentsev, Igor D.; McQuinn, Kristen B W; Zaritsky, Dennis

    2011-01-01

    We compare the cumulative star formation histories (SFHs) of Local Group (LG) dwarf galaxies with those in the volume-limited ACS Nearby Galaxy Survey Treasury (ANGST) sample (D < 4 Mpc), in order to understand how typical the LG dwarf galaxies are relative to those in the nearby universe. The SFHs were derived in a uniform manner from high quality optical color-magnitude diagrams constructed from Hubble Space Telescope imaging. We find that the {\\it mean} cumulative SFHs of the LG dwarfs are...

  14. Wave Dark Matter and Dwarf Spheroidal Galaxies

    CERN Document Server

    Parry, Alan R

    2013-01-01

    We explore a model of dark matter called wave dark matter (also known as scalar field dark matter and boson stars) which has recently been motivated by a new geometric perspective by Bray. Wave dark matter describes dark matter as a scalar field which satisfies the Einstein-Klein-Gordon equations. These equations rely on a fundamental constant $\\Upsilon$ (also known as the "mass term" of the Klein-Gordon equation). Specifically, in this dissertation, we study spherically symmetric wave dark matter and compare these results with observations of dwarf spheroidal galaxies as a first attempt to compare the implications of the theory of wave dark matter with actual observations of dark matter. This includes finding a first estimate of the fundamental constant $\\Upsilon$. The majority of this thesis has also been presented by the author in three separate shorter papers with arXiv reference codes [arXiv:1210.5269 [gr-qc

  15. Dwarf Cepheids in the Carina Dwarf Spheroidal Galaxy

    CERN Document Server

    Mateo, M; Nemec, J; Mateo, Mario; Hurley-Keller, Denise; Nemec, James

    1998-01-01

    We have discovered 20 dwarf Cepheids (DC) in the Carina dSph galaxy from the analysis of individual CCD images obtained for a deep photometric study of the system. These short-period pulsating variable stars are by far the most distant (~100 kpc) and faintest (V ~ 23.0) DCs known. The Carina DCs obey a well-defined period-luminosity relation, allowing us to readily distinguish between overtone and fundamental pulsators in nearly every case. Unlike RR Lyr stars, the pulsation mode turns out to be uncorrelated with light-curve shape, nor do the overtone pulsators tend towards shorter periods compared to the fundamental pulsators. Using the period-luminosity (PL) relations from Nemec et al. (1994 AJ, 108, 222) and McNamara (1995, AJ, 109, 1751), we derive (m-M)_0 = 20.06 +/- 0.12, for E(B-V) = 0.025 and [Fe/H] = -2.0, in good agreement with recent, independent estimates of the distance/reddening of Carina. The error reflects the uncertainties in the DC distance scale, and in the metallicity and reddening of Cari...

  16. Bridging the gap between low and high mass dwarf galaxies

    CERN Document Server

    Forbes, Duncan; Graham, Alister; Foster, Caroline; Hau, G; Benson, Andrew

    2011-01-01

    While the dark matter content within the most massive giant and smallest dwarf galaxies has been probed -- spanning a range of over one million in mass -- an important observational gap remains for galaxies of intermediate mass. This gap covers K band magnitudes of approximately -16 > M_K > -18 (for which dwarf galaxies have B--K ~ 2). On the high mass side of the gap are dwarf elliptical (dE) galaxies, that are dominated by stars in their inner regions. While the low mass side includes dwarf spheroidal (dSph) galaxies that are dark matter-dominated and ultra compact dwarf (UCD) objects that are star-dominated. Evolutionary pathways across the gap have been suggested but remain largely untested because the `gap' galaxies are faint, making dynamical measurements very challenging. With long exposures on the Keck telescope using the ESI instrument we have succeeded in bridging this gap by measuring the dynamical mass for five dwarf galaxies with M_K ~ -17.5 (M_B ~ --15.5). With the exception of our brightest dwa...

  17. Dwarf galaxies in the Antlia Cluster: First results

    CERN Document Server

    Castelli, A V S; Cellone, S A; Richtler, T; Dirsch, B; Infante, L; Aruta, C; Gómez, M

    2006-01-01

    We present the first results of a project aimed to study the galaxy population of the Antlia cluster, the third nearest galaxy cluster after Virgo and Fornax. The observations for the Antlia project consist of Washington wide-field images taken with the MOSAIC camera mounted at the prime focus of the CTIO 4-m Blanco telescope. Our preliminary results correspond to the identification and classification of dwarf galaxies in the central cluster region, extending the list of Ferguson & Sandage (1990). The final aim of our project is to study the luminosity function, morphology and structural parameters of dwarf galaxies in the Antlia cluster with a more complete sample.

  18. Cold HI in faint dwarf galaxies

    CERN Document Server

    Patra, Narendra Nath; Karachentsev, Igor D; Kaisin, Serafim S; Begum, Ayesha

    2015-01-01

    We present the results of a study of the amount and distribution of cold atomic gas, as well its correlation with recent star formation in a sample of extremely faint dwarf irregular galaxies. Our sample is drawn from the Faint Irregular Galaxy GMRT Survey (FIGGS) and its extension, FIGGS2. We use two different methods to identify cold atomic gas. In the first method, line-of-sight HI spectra were decomposed into multiple Gaussian components and narrow Gaussian components were identified as cold HI. In the second method, the brightness temperature (T_B) is used as a tracer of cold HI. We find that the amount of cold gas identified using the T_B method is significantly larger than the amount of gas identified using Gaussian decomposition. We also find that a large fraction of the cold gas identified using the T_B method is spatially coincident with regions of recent star formation, although the converse is not true. That is only a small fraction of the regions with recent star formation are also covered by col...

  19. Cold H I in faint dwarf galaxies

    Science.gov (United States)

    Patra, Narendra Nath; Chengalur, Jayaram N.; Karachentsev, Igor D.; Kaisin, Serafim S.; Begum, Ayesha

    2016-03-01

    We present the results of a study of the amount and distribution of cold atomic gas, as well its correlation with recent star formation in a sample of extremely faint dwarf irregular galaxies. Our sample is drawn from the Faint Irregular Galaxy GMRT Survey (FIGGS) and its extension, FIGGS2. We use two different methods to identify cold atomic gas. In the first method, line-of-sight H I spectra were decomposed into multiple Gaussian components and narrow Gaussian components were identified as cold H I. In the second method, the brightness temperature (TB ) is used as a tracer of cold H I. We find that the amount of cold gas identified using the TB method is significantly larger than the amount of gas identified using Gaussian decomposition. We also find that a large fraction of the cold gas identified using the TB method is spatially coincident with regions of recent star formation, although the converse is not true. That is only a small fraction of the regions with recent star formation are also covered by cold gas. For regions where the star formation and the cold gas overlap, we study the relationship between the star formation rate density and the cold H I column density. We find that the star formation rate density has a power-law dependence on the H I column density, but that the slope of this power law is significantly flatter than that of the canonical Kennicutt-Schmidt relation.

  20. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    Science.gov (United States)

    Wheeler, Coral Rose

    2016-06-01

    The high dark matter content and the shallow potential wells of low mass galaxies (10^3 Msun important questions in near field cosmology: why are there so few observed dwarfs compared to the number predicted by simulations? What shuts down star formation in ultra-faint galaxies? Why do dwarfs have inverted age gradients and what does it take to convert a dwarf irregular (dIrrs) into a dwarf spheroidal (dSph) galaxy?We to attempt to answer these questions by running ultra-high resolution cosmological FIRE simulations of isolated dwarf galaxies. We predict that many ultra-faint dwarfs should exist as satellites of more massive isolated Local Group dwarfs. The ultra-faints (Mstar 10 Gyr), having had their star formation shut down by reionization. Additionally, we show that the kinematics and ellipticities of isolated simulated dwarf centrals are consistent with observed dSphs satellites without the need for harassment from a massive host. We further show that most (but not all) observed *isolated* dIrrs in the Local Volume also have dispersion-supported stellar populations, contradicting the previous view that these objects are rotating. Finally, we investigate the stellar age gradients in dwarfs — showing that early mergers and strong feedback can create an inverted gradient, with the older stars occupying larger galactocentric radii.These results offer an interesting direction in testing models that attempt to solve dark matter problems via explosive feedback episodes. Can the same models that create large cores in simulated dwarfs preserve the mild stellar rotation that is seen in a minority of isolated dIrrs? Can the bursty star formation that created a dark matter core also match observed stellar gradients in low mass galaxies? Comparisons between our simulations and observed dwarfs should provide an important benchmark for this question going forward.

  1. Chemodynamic evolution of dwarf galaxies in tidal fields

    CERN Document Server

    Williamson, David; Romeo, Alessandro B

    2016-01-01

    The mass-metallicity relation shows that the galaxies with the lowest mass have the lowest metallicities. As most dwarf galaxies are in group environments, interaction effects such as tides could contribute to this trend. We perform a series of smoothed particle hydrodynamics (SPH) simulations of dwarf galaxies in external tidal fields to examine the effects of tides on their metallicities and metallicity gradients. In our simulated galaxies, gravitational instabilities drive gas inwards and produce centralized star formation and a significant metallicity gradient. Strong tides can contribute to these instabilities, but their primary effect is to strip the outer low-metallicity gas, producing a truncated gas disk with a large metallicity. This suggests that the role of tides on the mass-metallicity relation is to move dwarf galaxies to higher metallicities.

  2. Dark satellites and the morphology of dwarf galaxies

    CERN Document Server

    Helmi, Amina; Starkenburg, E; Starkenburg, T K; Vera-Ciro, C A; De Lucia, G; Li, Y -S

    2012-01-01

    One of the strongest predictions of the LambdaCDM cosmological model is the presence of dark satellites orbiting all types of galaxies. We focus here on the dynamical effects of such satellites on disky dwarf galaxies, and demonstrate that these encounters can be dramatic. Although mergers with M_sat > M_d are not very common, because of the lower baryonic content they occur much more frequently on the dwarf scale than for L_*-galaxies. As an example, we present a numerical simulation of a 20% (virial) mass ratio merger between a dark satellite and a disky dwarf (akin to the Fornax dwarf galaxy in luminosity) that shows that the merger remnant has a spheroidal morphology. We conclude that perturbations by dark satellites provide a plausible path for the formation of dSph systems and also could trigger starbursts in gas rich dwarf galaxies. Therefore the transition from disky to the often amorphous, irregular, or spheroidal morphologies of dwarfs could be a natural consequence of the dynamical heating of hithe...

  3. Dark influences: imprints of dark satellites on dwarf galaxies

    NARCIS (Netherlands)

    Starkenburg, T. K.; Helmi, A.

    2015-01-01

    Context. In the context of the current Λ cold dark matter cosmological model small dark matter halos are abundant and satellites of dwarf galaxies are expected to be predominantly dark. Since low mass galaxies have smaller baryon fractions, interactions with these satellites may leave particularly d

  4. IC3328 a "dwarf elliptical galaxy" with spiral structure

    CERN Document Server

    Jerjen, H; Binggeli, B; Jerjen, Helmut; Kalnajs, Agris; Binggeli, Bruno

    2000-01-01

    We present the 2-D photometric decomposition of the Virgo galaxy IC3328. The analysis of the global light distribution of this morphologically classified nucleated dwarf elliptical galaxy (dE1,N) reveals a tightly wound, bi-symmetric spiral structure with a diameter of 4.5 kpc, precisely centered on the nucleus of the dwarf. The amplitude of the spiral is only three percent of the dwarf's surface brightness making it the faintest and smallest spiral ever found in a galaxy. In terms of pitch angle and arm winding the spiral is similar to the intermediate-type galaxy M51, but it lacks the dust and prominent HII regions which signal the presence of gas. The visual evidence of a spiral pattern in an early-type dwarf galaxy reopens the question on whether these dwarfs are genuine rotationally supported or anisotropic stellar systems. In the case of IC3328, we argue for a nearly face-on disk (dS0) galaxy with an estimated maximum rotation velocity of v_c,max = 55kms-1. The faintness of the spiral and the small moti...

  5. A Dwarf Galaxy Survey in the Local Volume

    CERN Document Server

    Grebel, E K; Dolphin, A E; Geisler, D; Guhathakurta, P; Hodge, P W; Karachentsev, I D; Karachentseva, V E; Sarajedini, A

    2000-01-01

    We are carrying out a comprehensive multi-wavelength study of dwarf galaxies in the Local Volume (< 5 Mpc). After our all-sky survey more than doubled the dwarf census we are now measuring structural parameters, integrated properties, and velocities. Our 200-orbit HST snapshot program yields stellar content, star formation history, and TRGB distances. We can thus study the morphology-density relation in galaxy groups in three dimensions, the influence of environment on galaxy evolution, and the universality of the metallicity-surface brightness-luminosity relation.

  6. Dark matter and dark energy in dwarf galaxy systems

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.

    2014-01-01

    Quantitative estimates of themaximumallowed totalmasses and sizes of the dark-matter halos in groups and associations of dwarf galaxies—special types of metagalactic populations identified in recent astronomical observations with the Hubble Space Telescope—are presented. Dwarf-galaxy systems are formed of isolated dark-matter halos with a small number of dark galaxies embedded in them. Data on the sizes of these systems and the velocity dispersions of the embedded galaxies can be used to determine lower limits on the total dark-halo masses using the virial theorem. Upper limits follow from the conditions that the systems immersed in the cosmic dark-energy background be gravitationally bound. The median maximum masses are close to 1012 M ⊙ for both groups and associations of dwarf galaxies, although the median virial masses for these two types of systems differ by approximately a factor of ten.

  7. The Formation History of the Ultra-Faint Dwarf Galaxies

    CERN Document Server

    Brown, Thomas M; Geha, Marla; Kirby, Evan; VandenBerg, Don A; Kalirai, Jason S; Simon, Joshua D; Avila, Roberto J; Munoz, Ricardo R; Guhathakurta, Puragra; Renzini, Alvio; Ferguson, Henry C; Vargas, Luis C; Gennaro, Mario

    2013-01-01

    We present early results from a Hubble Space Telescope survey of the ultra-faint dwarf galaxies. These Milky Way satellites were discovered in the Sloan Digital Sky Survey, and appear to be an extension of the classical dwarf spheroidals to low luminosities, offering a new front in the efforts to understand the missing satellite problem. Because they are the least luminous, most dark matter dominated, and least chemically evolved galaxies known, the ultra-faint dwarfs are the best candidate fossils from the early universe. The primary goal of the survey is to measure the star-formation histories of these galaxies and discern any synchronization due to the reionization of the universe. We find that the six galaxies of our survey have very similar star-formation histories, and that each is dominated by stars older than 12 Gyr.

  8. New Low Surface Brightness Dwarf Galaxies Detected Around Nearby Spirals

    OpenAIRE

    Karachentsev, I. D.; Riepe, P.; Zilch, T.; Blauensteiner, M.; Elvov, M.; Hochleitner, P.; Hubl, B.; Kerschhuber, G.; Küppers, S.; Neyer, F.; Pölzl, R.; Remmel, P.; Schneider, O.; Sparenberg, R.; Trulson, U.

    2015-01-01

    We conduct a survey of low surface brightness (LSB) satellite galaxies around the Local Volume massive spirals using long exposures with small amateur telescopes. We identified 27 low and very low surface brightness objects around the galaxies NGC,672, 891, 1156, 2683, 3344, 4258, 4618, 4631, and 5457 situated within 10 Mpc from us, and found nothing new around NGC,2903, 3239, 4214, and 5585. Assuming that the dwarf candidates are the satellites of the neighboring luminous galaxies, their abs...

  9. Anomalous Cepheids in the Sculptor dwarf galaxy

    International Nuclear Information System (INIS)

    The Sculptor dwarf galaxy contains at least three Cepheids (V25, V26, and V119), each with a period near 1 day and B magnitudes about 1.4 mag brighter than those of the Sculptor RR Lyrae stars. Low-resolution spectra of these so-called anomalous Cepheids were obtained. Metal abundances of the Cepheids have been determined by the Delta-S method and are found to be: Fe/H = -1.9 + or - 0.2, -1.8 + or - 0.2, and -2.2 + or - 0.3 for V25, V26, and V119, respectively. These values are consistent with the metal abundances of Sculptor red giants estimated from the color of the giant branch. Pulsational masses have been estimated for V25 and V26, but there is a need for improved photometry of these stars to obtain accurate results. It cannot be unambiguously established whether the Sculptor anomalous Cepheids are evolved single stars, aged about 3 Gyr, or whether they are created by mass transfer in older binary systems. The occurrence of anomalous Cepheids in other systems is discussed. There is some evidence that most anomalous Cepheids in the Small Magellanic Cloud are evolved single stars. 89 references

  10. Carbon in the Draco Dwarf Spheroidal Galaxy

    CERN Document Server

    Shetrone, Matthew D; Stanford, Laura M; Siegel, Michael H; Bond, Howard E

    2013-01-01

    Measurements of [C/Fe], [Ca/H], and [Fe/H] have been derived from Keck I LRISb spectra of 35 giants in the Draco dwarf spheroidal galaxy. The iron abundances are derived by a spectrum synthesis modeling of the wavelength region from 4850 to 5375 A, while calcium and carbon abundances are obtained by fitting the Ca II H and K lines and the CH G band respectively. A range in metallicity of -2.9 -2.25, and among these there is a trend for the [C/Fe] abundance to decrease with increasing luminosity on the red giant branch. This is a phenomenon that is also seen among both field and globular cluster giants of the Galactic halo, where it has been interpreted as a consequence of deep mixing of material between the base of the convective envelope and the outer limits of the hydrogen-burning shell. However, among the six Draco giants observed that turn out to have metallicities -2.65 < [Fe/H] < -2.25 there is no such trend seen in the carbon abundance. This may be due to small sample statistics or primordial in...

  11. Radio Continuum and HI study of Blue Compact Dwarf Galaxies

    OpenAIRE

    Ramya, S.; Kantharia, N. G.; Prabhu, T. P.

    2010-01-01

    The multifrequency radio continuum and 21cm HI observations of five blue compact dwarf (BCD) galaxies, Mrk 104, Mrk 108, Mrk 1039, Mrk 1069 and I Zw 97 using the Giant Meterwave Radio Telescope (GMRT) are presented here. Radio continuum emission at 610 MHz and 325 MHz is detected from all the observed galaxies whereas only a few are detected at 240 MHz. In our sample, three galaxies are members of groups and two galaxies (Mrk 1069 and I Zw 97) are isolated galaxies. The radio emission from Mr...

  12. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    Science.gov (United States)

    Wheeler, Coral; Oñorbe, Jose; Bullock, James S.; Boylan-Kolchin, Michael; Elbert, Oliver D.; Garrison-Kimmel, Shea; Hopkins, Philip F.; Kereš, Dušan

    2015-10-01

    We present Feedback in Realistic Environment (FIRE)/GIZMO hydrodynamic zoom-in simulations of isolated dark matter haloes, two each at the mass of classical dwarf galaxies (Mvir ≃ 1010 M⊙) and ultra-faint galaxies (Mvir ≃ 109 M⊙), and with two feedback implementations. The resulting central galaxies lie on an extrapolated abundance matching relation from M⋆ ≃ 106 to 104 M⊙ without a break. Every host is filled with subhaloes, many of which form stars. Each of our dwarfs with M⋆ ≃ 106 M⊙ has 1-2 well-resolved satellites with M⋆ = 3-200 × 103 M⊙. Even our isolated ultra-faint galaxies have star-forming subhaloes. If this is representative, dwarf galaxies throughout the Universe should commonly host tiny satellite galaxies of their own. We combine our results with the Exploring the Local Volume in Simulations (ELVIS) simulations to show that targeting ˜ 50 kpc regions around nearby isolated dwarfs could increase the chances of discovering ultra-faint galaxies by ˜35 per cent compared to random pointings, and specifically identify the region around the Phoenix dwarf galaxy as a good potential target. The well-resolved ultra-faint galaxies in our simulations (M⋆ ≃ 3-30 × 103 M⊙) form within Mpeak ≃ 0.5-3 × 109 M⊙ haloes. Each has a uniformly ancient stellar population ( > 10 Gyr) owing to reionization-related quenching. More massive systems, in contrast, all have late-time star formation. Our results suggest that Mhalo ≃ 5 × 109 M⊙ is a probable dividing line between haloes hosting reionization `fossils' and those hosting dwarfs that can continue to form stars in isolation after reionization.

  13. The Star Formation Properties of Void Dwarf Galaxies

    Science.gov (United States)

    Moorman, Crystal; Vogeley, Michael S.

    2016-01-01

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on time scales of 10 Myr and 100 Myr, using Ha emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable S/N HI detections from ALFALFA. For the HI detected sample, SSFRs are similar regardless of large-scale environment. Investigating only the HI detected dwarf galaxies reveals a trend towards higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit HI mass, known as the star formation efficiency (SFE) of a galaxy, as a function of environment. For the overall HI detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies again reveals a trend towards higher SFEs in voids. These results suggest that void environments provide a nurturing environment for dwarf galaxy evolution.

  14. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    CERN Document Server

    Wheeler, Coral; Bullock, James S; Boylan-Kolchin, Michael; Elbert, Oliver; Garrison-Kimmel, Shea; Hopkins, Philip F; Keres, Dusan

    2015-01-01

    We present FIRE/Gizmo hydrodynamic zoom-in simulations of isolated dark matter halos, two each at the mass of classical dwarf galaxies ($M_{\\rm vir} \\simeq 10^{10} M_{\\odot}$) and ultra-faint galaxies ($M_{\\rm vir} \\simeq 10^9 M_{\\odot}$), and with two feedback implementations. The resultant central galaxies lie on an extrapolated abundance matching relation from $M_{\\star} \\simeq 10^6$ to $10^4 M_{\\odot}$ without a break. Every host is filled with subhalos, many of which form stars. Our dwarfs with $M_{\\star} \\simeq 10^6 M_{\\odot}$ each have 1-2 well-resolved satellites with $M_{\\star} = 3-200 \\times 10^3 M_{\\odot}$. Even our isolated ultra-faint galaxies have star-forming subhalos. If this is representative, dwarf galaxies throughout the universe should commonly host tiny satellite galaxies of their own. We combine our results with the ELVIS simulations to show that targeting $\\sim 50~ \\rm kpc$ regions around nearby isolated dwarfs could increase the chances of discovering ultra-faint galaxies by $\\sim 35\\%...

  15. THE ACCRETION OF DWARF GALAXIES AND THEIR GLOBULAR CLUSTER SYSTEMS

    International Nuclear Information System (INIS)

    The question of where the low-metallicity globular clusters in early-type galaxies came from has profound implications for the formation of those galaxies. Our work supports the idea that the metal-poor globular cluster systems of giant early-type galaxies formed in dwarf galaxies that have been subsumed by the giants. To support this hypothesis, two linear relations, one involving globular cluster metallicity versus host galaxy luminosity and one involving metallicity versus velocity dispersion were studied. Tentatively, these relations show that the bright ellipticals do not obey the same trend as the dwarfs, suggesting that the low-metallicity globular clusters did not form within their parent bright ellipticals.

  16. Constraining the subgrid physics in simulations of isolated dwarf galaxies

    Science.gov (United States)

    Vandenbroucke, Bert; Verbeke, Robbert; De Rijcke, Sven

    2016-05-01

    Simulating dwarf galaxy haloes in a reionizing Universe puts severe constraints on the subgrid model employed in the simulations. Using the same subgrid model that works for simulations without a UV-background (UVB) results in gas-poor galaxies that stop forming stars very early on, except for haloes with high masses. This is in strong disagreement with observed galaxies, which are gas rich and star forming down to a much lower mass range. To resolve this discrepancy, we ran a large suite of isolated dwarf galaxy simulations to explore a wide variety of subgrid models and parameters, including timing and strength of the UVB, strength of the stellar feedback and metallicity-dependent Pop III feedback. We compared these simulations to observed dwarf galaxies by means of the baryonic Tully-Fisher relation (BTFR), which links the baryonic content of a galaxy to the observationally determined strength of its gravitational potential. We found that the results are robust to changes in the UVB. The strength of the stellar feedback shifts the results on the BTFR, but does not help to form gas-rich galaxies at late redshifts. Only by including Pop III feedback are we able to produce galaxies that lie on the observational BTFR and that have neutral gas and ongoing star formation at redshift zero.

  17. Surveying for Dwarf Galaxies Within Void FN8

    Science.gov (United States)

    McNeil, Stephen R.

    2016-06-01

    The dwarf galaxy population in low density volumes, or voids, is a test of galaxy formation models and how they treat dark matter; some models say dwarf galaxies cannot be in void centers while others say they can. Since it appears many dwarf galaxies are H-alpha emitters, a well-designed deep survey through a nearby void center will either find nothing, and thus constrain the population there to be at some percentage below the mean, or it will find H-alpha emitters and significantly challenge several otherwise successful theories. Either result is a significant step in better understanding galaxy formation and large-scale structure. In 2013, a redshifted H-alpha imaging survey was begun for dwarf galaxies with ‑14.0 ≤ Mr ≤ ‑12.0 in the heart and back of the void FN8. Our first results have been surprising, furnishing significantly more candidate objects than anticipated. Through the Gemini Fast Turnaround Program, seven spectrum have been obtained, with one spectrum being a strong candidate for habitation within the center of the void.

  18. A Comprehensive Search for Dark Matter Annihilation in Dwarf Galaxies

    CERN Document Server

    Geringer-Sameth, Alex; Walker, Matthew G

    2014-01-01

    We present a new formalism designed to discover dark matter annihilation occurring in the Milky Way's dwarf galaxies. The statistical framework extracts all available information in the data by simultaneously combining observations of all the dwarf galaxies and incorporating the impact of particle physics properties, the distribution of dark matter in the dwarfs, and the detector response. The method performs maximally powerful frequentist searches and produces confidence limits on particle physics parameters. Probability distributions of test statistics under various hypotheses are constructed exactly, without relying on large sample approximations. The derived limits have proper coverage by construction and claims of detection are not biased by imperfect background modeling. We implement this formalism using data from the Fermi Gamma-ray Space Telescope to search for an annihilation signal in the complete sample of Milky Way dwarfs whose dark matter distributions can be reliably determined. We find that the...

  19. A Virial Core in the Sculptor Dwarf Spheroidal Galaxy

    OpenAIRE

    Agnello, A.; Evans, N. W.

    2012-01-01

    The projected virial theorem is applied to the case of multiple stellar populations in the nearby dwarf spheroidal galaxies. As each population must reside in the same gravitational potential, this provides strong constraints on the nature of the dark matter halo. We derive necessary conditions for two populations with Plummer or exponential surface brightnesses to reside in a cusped Navarro-Frenk-White (NFW) halo. We apply our methods to the Sculptor dwarf spheroidal, and show that there is ...

  20. Dwarf spheroidal galaxies and Bose-Einstein condensate dark matter

    CERN Document Server

    Diez-Tejedor, Alberto; Profumo, Stefano

    2014-01-01

    We constrain the parameters of a self-interacting massive dark matter scalar particle in a condensate using the kinematics of the eight brightest dwarf spheroidal satellites of the Milky Way. For the case of an attractive self-interaction the condensate develops a mass density profile with a characteristic scale radius that is closely related to the fundamental parameters of the theory. We find that the velocity dispersion of dwarf spheroidal galaxies suggests a scale radius of the order of 1 kpc, in tension with previous results found using the rotational curve of low-surface-brightness and dwarf galaxies. We discuss the implications of our findings for the particle dark matter model and argue that a single classical coherent state cannot play, in general, a relevant role for the description of dark matter in galaxies.

  1. On the mass to light ratios of dwarf spheroidal galaxies

    International Nuclear Information System (INIS)

    Previous estimates of the mass to light ratios of local dwarf spheroidal galaxies have indicated they form an inhomogeneous population. We here use a tidal equation and show that if we assume that all of these dwarf galaxies are on essentially similar orbits around the Milky Way (rather than having perigalactica comparable with their present distances) we can derive values of M/Lv which have a much smaller spread and no longer have correlations with luminosity and distance. It is then possible to maintain the view that either all of these dwarf galaxies contain dark matter or none of them do, with the main determining factor being the currently uncertain mass of the Milky Way. (author). 23 refs, 2 tabs

  2. The link between mass distribution and starbursts in dwarf galaxies

    CERN Document Server

    McQuinn, Kristen B W; Skillman, Evan D; Dolphin, Andrew E; McGaugh, Stacy S; Williams, Benjamin F

    2015-01-01

    Recent studies have shown that starburst dwarf galaxies have steeply rising rotation curves in their inner parts, pointing to a close link between the intense star formation and a centrally concentrated mass distribution (baryons and dark matter). More quiescent dwarf irregulars typically have slowly rising rotation curves, although some "compact" irregulars with steep, inner rotation curves exist. We analyze archival Hubble Space Telescope images of two nearby "compact" irregular galaxies (NGC 4190 and NGC 5204), which were selected solely on the basis of their dynamical properties and their proximity. We derive their recent star-formation histories by fitting color-magnitude diagrams of resolved stellar populations, and find that the star-formation properties of both galaxies are consistent with those of known starburst dwarfs. Despite the small sample, this strongly reinforces the notion that the starburst activity is closely related to the inner shape of the potential well.

  3. GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES

    International Nuclear Information System (INIS)

    We examine the global properties of the stellar and H I components of 229 low H I mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H I masses 7.7 M☉ and H I line widths –1. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M*) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M* ∼8 M☉ is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper H I mass limit yields the selection of a sample with lower gas fractions for their M* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H I depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that H I disks are more extended than stellar ones.

  4. The morphology-density relation for dwarf galaxies

    International Nuclear Information System (INIS)

    The morphology-density relation is examined for dwarf galaxies with absolute magnitudes -18 less than or equal to M sub B sub T less than or equal to -12.5, based on a deep photographic survey of nearby groups and clusters of galaxies. Results are given. Compared to dwarf ellipticals, dwarf irregulars form a more extended population in nearby clusters, and may in fact be entirely absent from the cluster cores. The spatial distribution of dwarf ellipticals in clusters depends on luminosity and the presence or absence of nucleation. Nucleated dE's and non-nucleated dE's fainter than M sub B sub T approx. -13.5 are concentrated toward the centers of clusters like the giant E and S0 galaxies. In contrast, non-nucleated dE's brighter than M sub B sub T approx. -14.5 are distributed like the spirals and irregulars. The intrinsic shapes of the bright non-nucleated dE's are similar to those of the dwarf irregulars, suggesting a possible evolutionary connection between these two classes of galaxies

  5. MAPPING THE EXTENDED H I DISTRIBUTION OF THREE DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Deidre A.; Zahedy, Fakhri; Bowsher, Emily C. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Wilcots, Eric M.; Kepley, Amanda A.; Gaal, Veronika, E-mail: dah@lowell.edu, E-mail: fsz@mit.edu, E-mail: bowsher@chara.gsu.edu, E-mail: ewilcots@astro.wisc.edu, E-mail: aak8t@mail.astro.virginia.edu [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706-1582 (United States)

    2011-11-15

    We present large field H I-line emission maps obtained with the single-dish Green Bank Telescope centered on the dwarf irregular galaxies Sextans A, NGC 2366, and WLM. We do not detect the extended skirts of emission associated with the galaxies that were reported from Effelsberg observations. The ratio of H I at 10{sup 19} atoms cm{sup -2} to optical extents of these galaxies is instead 2-3, which is normal for this type of galaxy. There is no evidence for a truncation in the H I distribution {>=}10{sup 19} atoms cm{sup -2}.

  6. Mapping the Extended HI Distribution of Three Dwarf Galaxies

    CERN Document Server

    Hunter, Deidre A; Bowsher, Emily C; Wilcots, Eric M; Kepley, Amanda A; Gaal, Veronika

    2011-01-01

    We present large field HI-line emission maps obtained with the single-dish Green Bank Telescope centered on the dwarf irregular galaxies Sextans A, NGC 2366, and WLM. We do not detect the extended skirts of emission associated with the galaxies that were reported from Effelsberg observations (Huchtmeier et al. 1981). The ratio of HI at 10^19 atoms cm^-2 to optical extents of these galaxies are instead 2--3, which is normal for this type of galaxy. There is no evidence for a truncation in the HI distribution >/=10^19 atoms cm^-2.

  7. MAPPING THE EXTENDED H I DISTRIBUTION OF THREE DWARF GALAXIES

    International Nuclear Information System (INIS)

    We present large field H I-line emission maps obtained with the single-dish Green Bank Telescope centered on the dwarf irregular galaxies Sextans A, NGC 2366, and WLM. We do not detect the extended skirts of emission associated with the galaxies that were reported from Effelsberg observations. The ratio of H I at 1019 atoms cm–2 to optical extents of these galaxies is instead 2-3, which is normal for this type of galaxy. There is no evidence for a truncation in the H I distribution ≥1019 atoms cm–2.

  8. Abundances in southern Local Group dwarf irregular galaxies

    International Nuclear Information System (INIS)

    We have obtained optical spectrophotometry of H II regions in the southern Local Group dwarf irregular galaxies NGC 6822, WLM and SagDIG. Oxygen abundances are deduced via direct electron temperatures for NGC 6822 and WLM and via an empirical method for all three galaxies. These galaxies conform to the luminosity-abundance relationship for irregular galaxies. Although WLM shows a relatively low abundance, we find it unlikely that this is the cause of the lack of long-period Cepheid variables. (author)

  9. Kinematics of dwarf galaxies in gas-rich groups, and the survival and detectability of tidal dwarf galaxies

    CERN Document Server

    Sweet, Sarah M; Meurer, Gerhardt; Kilborn, Virginia; Audcent-Ross, Fiona; Baumgardt, Holger; Bekki, Kenji

    2015-01-01

    We present DEIMOS multi-object spectroscopy (MOS) of 22 star-forming dwarf galaxies located in four gas-rich groups, including six newly-discovered dwarfs. Two of the galaxies are strong tidal dwarf galaxy (TDG) candidates based on our luminosity-metallicity relation definition. We model the rotation curves of these galaxies. Our sample shows low mass-to-light ratios (M/L=0.73$\\pm0.39M_\\odot/L_\\odot$) as expected for young, star-forming dwarfs. One of the galaxies in our sample has an apparently strongly-falling rotation curve, reaching zero rotational velocity outside the turnover radius of $r_{turn}=1.2r_e$. This may be 1) a polar ring galaxy, with a tilted bar within a face-on disk; 2) a kinematic warp. These scenarios are indistinguishable with our current data due to limitations of slit alignment inherent to MOS-mode observations. We consider whether TDGs can be detected based on their tidal radius, beyond which tidal stripping removes kinematic tracers such as H$\\alpha$ emission. When the tidal radius i...

  10. Surface Brightness Profiles of Dwarf Galaxies: I. Profiles and Statistics

    CERN Document Server

    Herrmann, Kimberly A; Elmegreen, Bruce G

    2013-01-01

    Radial surface brightness profiles of spiral galaxies are classified into three types: (I) single exponential, or the light falls off with one exponential to a break before falling off (II) more steeply, or (III) less steeply. Profile breaks are also found in dwarf disks, but some dwarf Type IIs are flat or increasing out to a break before falling off. Here we re-examine the stellar disk profiles of 141 dwarfs: 96 dwarf irregulars (dIms), 26 Blue Compact Dwarfs (BCDs), and 19 Magellanic-type spirals (Sms). We fit single, double, or even triple exponential profiles in up to 11 passbands: GALEX FUV and NUV, ground-based UBV JHK and H{\\alpha}, and Spitzer 3.6 and 4.5 {\\mu}m. We find that more luminous galaxies have brighter centers, larger inner and outer scale lengths, and break at larger radii; dwarf trends with M_B extend to spirals. However, the V-band break surface brightness is independent of break type, M_B, and Hubble type. Dwarf Type II and III profiles fall off similarly beyond the breaks but have diff...

  11. EXPLORING THE INTERSTELLAR MEDIA OF OPTICALLY COMPACT DWARF GALAXIES

    International Nuclear Information System (INIS)

    We present new Very Large Array H I spectral line, archival Sloan Digital Sky Survey, and archival Spitzer Space Telescope imaging of eight star-forming blue compact dwarf galaxies that were selected to be optically compact (optical radii B ∼> –17), ongoing star formation (based on emission-line selection by the Hα or [O III] lines), and are nearby (mean velocity = 3315 km s–1 ≅ 45 Mpc). One galaxy in the sample, ADBS 113845+2008, is found to have an H I halo that extends 58 r-band scale lengths from its stellar body. In contrast, the rest of the sample galaxies have H I radii to optical-scale-length ratios ranging from 9.3 to 26. The size of the H I disk in the 'giant disk' dwarf galaxy ADBS 113845+2008 appears to be unusual as compared with similarly compact stellar populations.

  12. Exploring the Interstellar Media of Optically Compact Dwarf Galaxies

    CERN Document Server

    Most, Hans P; Salzer, John J; Rosenberg, Jessica J; Engstrom, Eric; Fliss, Palmer

    2013-01-01

    We present new Very Large Array HI spectral line, archival Sloan Digital Sky Survey, and archival Spitzer Space Telescope imaging of eight star-forming blue compact dwarf galaxies that were selected to be optically compact (optical radii less than 1 kpc). These systems have faint blue absolute magnitudes (M_B >= -17), ongoing star formation (based on emission-line selection by the H alpha or [OIII] lines), and are nearby (mean velocity = 3315 km/s = 45 Mpc). One galaxy in the sample, ADBS 113845+2008, is found to have an HI halo that extends 58 r-band scale lengths from its stellar body. In contrast, the rest of the sample galaxies have HI radii to optical-scale-length ratios ranging from 9.3 to 26. The size of the HI disk in the "giant disk" dwarf galaxy ADBS 113845+2008 appears to be unusual as compared to similarly compact stellar populations.

  13. Discovery of a tidal dwarf galaxy in the Leo Triplet

    International Nuclear Information System (INIS)

    We report the discovery of a dwarf galaxy in the Leo Triplet. Analysis of the neutral hydrogen distribution shows that it rotates independently of the tidal tail of NGC 3628, with a radial velocity gradient of 35-40 km s–1 over approximately 13 kpc. The galaxy has an extremely high neutral gas content, accounting for a large amount of its total dynamic mass and suggesting a low amount of dark matter. It is located at the tip of the gaseous tail, which strongly suggests a tidal origin. If this is the case, it would be one of the most confident and nearest (to the Milky Way) detections of a tidal dwarf galaxy and, at the same time, the object most detached from its parent galaxy (≈140 kpc) of this type.

  14. SURFACE BRIGHTNESS PROFILES OF DWARF GALAXIES. I. PROFILES AND STATISTICS

    International Nuclear Information System (INIS)

    Radial surface brightness profiles of spiral galaxies are classified into three types: (I) single exponential, or the light falls off with one exponential to a break before falling off (II) more steeply, or (III) less steeply. Profile breaks are also found in dwarf disks, but some dwarf Type IIs are flat or increasing out to a break before falling off. Here we re-examine the stellar disk profiles of 141 dwarfs: 96 dwarf irregulars (dIms), 26 Blue Compact Dwarfs (BCDs), and 19 Magellanic-type spirals (Sms). We fit single, double, or even triple exponential profiles in up to 11 passbands: GALEX FUV and NUV, ground-based UBVJHK and Hα, and Spitzer 3.6 and 4.5 μm. We find that more luminous galaxies have brighter centers, larger inner and outer scale lengths, and breaks at larger radii; dwarf trends with MB extend to spirals. However, the V-band break surface brightness is independent of break type, MB , and Hubble type. Dwarf Type II and III profiles fall off similarly beyond the breaks but have different interiors and IIs break ∼twice as far as IIIs. Outer Type II and III scale lengths may have weak trends with wavelength, but pure Type II inner scale lengths clearly decrease from the FUV to visible bands whereas Type III inner scale lengths increase with redder bands. This suggests the influence of different star formation histories on profile type, but nonetheless the break location is approximately the same in all passbands. Dwarfs continue trends between profile and Hubble types such that later-type galaxies have more Type II but fewer Type I and III profiles than early-type spirals. BCDs and Sms are over-represented as Types III and II, respectively, compared to dIms

  15. Faint Dwarf Galaxies in Hickson Compact Group 90

    Science.gov (United States)

    Ordenes-Briceño, Yasna; Taylor, Matthew A.; Puzia, Thomas H.; Muñoz, Roberto P.; Eigenthaler, Paul; Georgiev, Iskren Y.; Goudfrooij, Paul; Hilker, Michael; Lançon, Ariane; Mamon, Gary; Mieske, Steffen; Miller, Bryan W.; Peng, Eric W.; Sánchez-Janssen, Rubén

    2016-08-01

    We report the discovery of a very diverse set of five low-surface brightness (LSB) dwarf galaxy candidates in Hickson Compact Group 90 (HCG 90) detected in deep U- and I-band images obtained with VLT/VIMOS. These are the first LSB dwarf galaxy candidates found in a compact group of galaxies. We measure spheroid half-light radii in the range 0.7 ≲ reff/kpc ≲ 1.5 with luminosities of -11.65 ≲ MU ≲ -9.42 and -12.79 ≲ MI ≲ -10.58 mag, corresponding to a color range of (U - I)0 ≃ 1.1 - 2.2 mag and surface brightness levels of μU ≃ 28.1 mag/arcsec2 and μI ≃ 27.4 mag/arcsec2. Their colours and luminosities are consistent with a diverse set of stellar population properties. Assuming solar and 0.02 Z⊙ metallicities we obtain stellar masses in the range M_*|_{Z_odot } ˜eq 10^{5.7-6.3} M_{odot } and M_*|_{0.02 Z_odot } ˜eq 10^{6.3-8} M_{odot }. Three dwarfs are older than 1 Gyr, while the other two significantly bluer dwarfs are younger than ˜2 Gyr at any mass/metallicity combination. Altogether, the new LSB dwarf galaxy candidates share properties with dwarf galaxies found throughout the Local Volume and in nearby galaxy clusters such as Fornax. We find a pair of candidates with ˜2 kpc projected separation, which may represent one of the closest dwarf galaxy pairs found. We also find a nucleated dwarf candidate, with a nucleus size of reff ≃ 46 - 63 pc and magnitude MU, 0 = -7.42 mag and (U - I)0 = 1.51 mag, which is consistent with a nuclear stellar disc with a stellar mass in the range 104.9 - 6.5 M⊙.

  16. Sulphur, zinc and carbon in the Sculptor dwarf spheroidal galaxy

    OpenAIRE

    Skúladóttir, Ása

    2016-01-01

    The Sculptor dwarf spheroidal galaxy is a Milky Way satellite with predominantly old stellar population, and therefore the ideal target to study early chemical evolution. The chemical abundances of photospheres of stars reveal the composition of their birth environment; studying stars of different ages, therefore, provides insight into the chemical enrichment history of the galaxy in which they dwell. High-resolution spectra of 100 stars were used to further explore the chemical enrichment hi...

  17. Jeans Analysis for Dwarf Spheroidal Galaxies in Wave Dark Matter

    OpenAIRE

    Chen, Shu-Rong; Schive, Hsi-Yu; Chiueh, Tzihong

    2016-01-01

    Observations suggest that dwarf spheroidal (dSph) galaxies exhibit large constant-density cores in the centers, which can hardly be explained by dissipationless cold dark matter simulations. Wave dark matter (${\\psi {\\rm DM}}$), characterized by a single parameter, the dark matter particle mass $m_{\\psi}$, predicts a central soliton core in every galaxy arising from quantum pressure against gravity. Here we apply Jeans analysis to the kinematic data of eight classical dSphs so as to constrain...

  18. Testing MOND with Ultra-Compact Dwarf Galaxies

    OpenAIRE

    Scarpa, Riccardo

    2005-01-01

    The properties of the recently discovered Ultra-Compact Dwarf Galaxies (UCDs) show that their internal acceleration of gravity is everywhere above a0, the MOdified Newtonian Dynamics (MOND) constant of gravity. MOND therefore makes the strong prediction that no mass discrepancy should be observed for this class of objects. This is confirmed by the few UCDs for which virial masses were derived. We argue that UCD galaxies represent a suitable test-bench for the theory, in the sense that even a ...

  19. Constraining the subgrid physics in simulations of isolated dwarf galaxies

    CERN Document Server

    Vandenbroucke, Bert; De Rijcke, Sven

    2016-01-01

    Simulating dwarf galaxy halos in a reionizing Universe puts severe constraints on the sub-grid model employed in the simulations. Using the same sub-grid model that works for simulations without a UV-background (UVB) results in gas poor galaxies that stop forming stars very early on, except for halos with high masses. This is in strong disagreement with observed galaxies, which are gas rich and star forming down to a much lower mass range. To resolve this discrepancy, we ran a large suite of isolated dwarf galaxy simulations to explore a wide variety of sub-grid models and parameters, including timing and strength of the UVB, strength of the stellar feedback, and metallicity dependent Pop III feedback. We compared these simulations to observed dwarf galaxies by means of the baryonic Tully-Fisher relation (BTFR), which links the baryonic content of a galaxy to the observationally determined strength of its gravitational potential. We found that the results are robust to changes in the UVB. The strength of the ...

  20. Dwarf galaxies in the halo of NGC 891

    International Nuclear Information System (INIS)

    We report the results of a survey of the region within 40 arcmin of NGC 891, a nearby nearly perfectly edge-on spiral galaxy. Candidate 'non-stars' with diameters greater than 15 arcsec were selected from the GSC 2.3.2 catalog and cross-comparison of observations in several bands using archived GALEX, DSS2, WISE, and Two Micron All Sky Survey images identified contaminating stars, artifacts, and background galaxies, all of which were excluded. The resulting 71 galaxies, many of which were previously uncataloged, comprise a size-limited survey of the region. A majority of the galaxies are in the background of NGC 891 and are for the most part members of the A347 cluster at a distance of about 75 Mpc. The new finds approximately double the known membership of A347, previously thought to be relatively sparse. We identify a total of seven dwarf galaxies, most of which are new discoveries. The newly discovered dwarf galaxies are dim and gas-poor and may be associated with the previously observed arcs of red giant branch halo stars in the halo and the prominent H I filament and the lopsided features in the disk of NGC 891. Several of the dwarfs show signs of disruption, consistent with being remnants of an ancient collision.

  1. Dwarf Galaxies in the Halo of NGC 891

    Science.gov (United States)

    Schulz, Earl

    2014-07-01

    We report the results of a survey of the region within 40 arcmin of NGC 891, a nearby nearly perfectly edge-on spiral galaxy. Candidate "non-stars" with diameters greater than 15 arcsec were selected from the GSC 2.3.2 catalog and cross-comparison of observations in several bands using archived GALEX, DSS2, WISE, and Two Micron All Sky Survey images identified contaminating stars, artifacts, and background galaxies, all of which were excluded. The resulting 71 galaxies, many of which were previously uncataloged, comprise a size-limited survey of the region. A majority of the galaxies are in the background of NGC 891 and are for the most part members of the A347 cluster at a distance of about 75 Mpc. The new finds approximately double the known membership of A347, previously thought to be relatively sparse. We identify a total of seven dwarf galaxies, most of which are new discoveries. The newly discovered dwarf galaxies are dim and gas-poor and may be associated with the previously observed arcs of red giant branch halo stars in the halo and the prominent H I filament and the lopsided features in the disk of NGC 891. Several of the dwarfs show signs of disruption, consistent with being remnants of an ancient collision.

  2. The Dwarf Galaxy Population in Nearby Groups. The data

    CERN Document Server

    Carrasco, E R; Infante, L; Carrasco, Eleazar R.; Oliveira, Claudia M. de; Infante, Leopoldo

    2006-01-01

    We used V and I CCD photometry to search for low-surface brightness dwarf galaxies (LSBD) in the central ( 22.5 V mag/arcsec^2, h > 1.5 arcsec, and diameters larger than 1.2 h^-1 kpc. Twenty of the eighty galaxies are extended LSB galaxies that were detected only on smoothed images, after masking all high surface brightness objects. The completeness in the detection is ~80% for galaxies with V<=20 and 22.5galaxies in smoothed images instead. The detected LSBD galaxies are highly concentrated towards the center of the four groups in the inner 250 h^-1 kpc. The best fit power-law slope of the surface density distribution is, on average, beta ~ -1.5 (R < 250 h^-1 kpc), in agreement with the values found for satellites dwarfs around isolated E/S0 galaxies and in X-ray groups. The LSBD galaxies in the Mv-mu0 plane does not show a clear c...

  3. Fitting dwarf galaxy rotation curves with conformal gravity

    CERN Document Server

    O'Brien, James G

    2011-01-01

    We continue our study of the application of the conformal gravity theory to galactic rotation curves. Previously we had studied a varied 111 spiral galaxy sample consisting of high surface brightness galaxies, low surface brightness galaxies and dwarf galaxies. With no free parameters other than galactic mass to light ratios, we had found that the theory is able to account for the systematics that is observed in the entire set of galactic rotation curves without the need for any dark matter whatsoever. In the present paper we extend our study to incorporate a further 22 galaxies of which 20 are dwarf galaxies and provide updated studies of 2 additional galaxies that had been in the original sample, and again without dark matter find fully acceptable fits. Our current study brings to 133 the number of rotation curves of galaxies that have been successfully fitted by the conformal gravity theory. Since one of the primary ingredients in the theory is a universal contribution to galactic motions coming from matte...

  4. Dwarf Galaxy Gives universe A Breath of Fresh Oxygen

    Science.gov (United States)

    2002-07-01

    Astronomers have discovered that a nearby dwarf galaxy is spewing oxygen and other "heavy" elements into intergalactic space. This observation from NASA's Chandra X-ray Observatory supports the idea that dwarf galaxies may be responsible for most of the heavy elements between the galaxies. Despite comprising only a very small fraction of the mass of the universe, so-called heavy elements - everything other than hydrogen and helium -- are essential for the formation of planets and can greatly influence astronomical phenomena, including the rate at which galaxies form. A team led by Crystal Martin of the University of California, Santa Barbara, observed the dwarf galaxy NGC 1569 using Chandra. As reported in an article to be published in The Astrophysical Journal, they found that huge quantities of oxygen and other heavy elements are escaping from the galaxy in bubbles of multimillion-degree gases that are thousands of light years in diameter "Dwarf galaxies are much smaller than ordinary galaxies like our Milky Way and much more common," said Martin. "Because of their small mass, they have relatively low gravity and matter can escape more easily from dwarfs than normal galaxies. This makes them very important in understanding how the universe was seeded with various elements." Scientists have speculated that heavy elements escaping from dwarf galaxies in the early universe could play a dominant role in enriching the intergalactic gas from which other galaxies form. Enriched gas cools more quickly, so the rate and manner of formation of new galaxies in the early universe would have been strongly affected by this process. NGC 1569 X-ray/Optical Composite NGC 1569 Composite Optical/X-ray image "With Chandra it was possible to test these ideas," said Henry Kobulnicky of the University of Wisconsin, Madison, a member of the research team. "We could trace the distribution of oxygen and other elements in the galaxy and determine how much of this matter is escaping from the

  5. The environment of nearby Blue Compact Dwarf Galaxies

    CERN Document Server

    Lopez-Sanchez, Angel R; van Eymeren, Janine; Esteban, Cesar; Popping, Attila; Hibbard, John

    2009-01-01

    We are obtaining deep multiwavelength data of a sample of nearby blue compact dwarf galaxies (BCDGs) combining broad-band optical/NIR and H$\\alpha$ photometry, optical spectroscopy and 21-cm radio observations. Here we present HI results obtained with the Australia Telescope Compact Array for some BCDGs, all showing evident interaction features in their neutral gas component despite the environment in which they reside. Our analysis strongly suggests that interactions with or between low-luminosity dwarf galaxies or HI clouds are the main trigger mechanism of the star-forming bursts in BCDGs; however these dwarf objects are only detected when deep optical images and complementary HI observations are performed. Are therefore BCDGs real isolated systems?

  6. The Primeval Populations of the Ultra-Faint Dwarf Galaxies

    CERN Document Server

    Brown, Thomas M; Geha, Marla; Kirby, Evan N; VandenBerg, Don A; Munoz, Ricardo R; Kalirai, Jason S; Simon, Joshua D; Avila, Roberto J; Guhathakurta, Puragra; Renzini, Alvio; Ferguson, Henry C

    2012-01-01

    We present new constraints on the star formation histories of the ultra-faint dwarf (UFD) galaxies, using deep photometry obtained with the Hubble Space Telescope (HST). A galaxy class recently discovered in the Sloan Digital Sky Survey, the UFDs appear to be an extension of the classical dwarf spheroidals to low luminosities, offering a new front in efforts to understand the missing satellite problem. They are the least luminous, most dark-matter dominated, and least chemically-evolved galaxies known. Our HST survey of six UFDs seeks to determine if these galaxies are true fossils from the early universe. We present here the preliminary analysis of three UFD galaxies: Hercules, Leo IV, and Ursa Major I. Classical dwarf spheroidals of the Local Group exhibit extended star formation histories, but these three Milky Way satellites are at least as old as the ancient globular cluster M92, with no evidence for intermediate-age populations. Their ages also appear to be synchronized to within ~1 Gyr of each other, a...

  7. THE PRIMEVAL POPULATIONS OF THE ULTRA-FAINT DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Thomas M.; Tumlinson, Jason; Kalirai, Jason S.; Avila, Roberto J.; Ferguson, Henry C., E-mail: tbrown@stsci.edu, E-mail: tumlinson@stsci.edu, E-mail: jkalirai@stsci.edu, E-mail: avila@stsci.edu, E-mail: ferguson@stsci.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2012-07-01

    We present new constraints on the star formation histories of the ultra-faint dwarf (UFD) galaxies, using deep photometry obtained with the Hubble Space Telescope (HST). A galaxy class recently discovered in the Sloan Digital Sky Survey, the UFDs appear to be an extension of the classical dwarf spheroidals to low luminosities, offering a new front in efforts to understand the missing satellite problem. They are the least luminous, most dark-matter-dominated, and least chemically evolved galaxies known. Our HST survey of six UFDs seeks to determine if these galaxies are true fossils from the early universe. We present here the preliminary analysis of three UFD galaxies: Hercules, Leo IV, and Ursa Major I. Classical dwarf spheroidals of the Local Group exhibit extended star formation histories, but these three Milky Way satellites are at least as old as the ancient globular cluster M92, with no evidence for intermediate-age populations. Their ages also appear to be synchronized to within {approx}1 Gyr of each other, as might be expected if their star formation was truncated by a global event, such as reionization.

  8. Radio Observations of Super Star Clusters in Dwarf Starburst Galaxies

    CERN Document Server

    Stevens, I R; Norris, R P; Stevens, Ian R.; Forbes, Duncan A.; Norris, Ray P.

    2002-01-01

    We present new radio continuum observations of two dwarf starburst galaxies, NGC3125 and NGC5408, with observations at 4.80GHz (6cm) and 8.64GHz (3cm), taken with the Australia Telescope Compact Array (ATCA). Both galaxies show a complex radio morphology with several emission regions, mostly coincident with massive young star clusters. The radio spectral indices of these regions are negative (with alpha ~ -0.5 - -0.7), indicating that the radio emission is dominated by synchrotron emission associated with supernova activity from the starburst. One emission region in NGC5408 has a flatter index (alpha ~ -0.1) indicative of optically thin free-free emission, which could indicate it is a younger cluster. Consequently, in these galaxies we do not see regions with the characteristic positive spectral index indicative of optically obscured star-formation regions, as seen in other dwarf starbursts such as Hen 2-10.

  9. Cosmological simulations of dwarf galaxies with cosmic ray feedback

    Science.gov (United States)

    Chen, Jingjing; Bryan, Greg L.; Salem, Munier

    2016-08-01

    We perform zoom-in cosmological simulations of a suite of dwarf galaxies, examining the impact of cosmic rays (CRs) generated by supernovae, including the effect of diffusion. We first look at the effect of varying the uncertain CR parameters by repeatedly simulating a single galaxy. Then we fix the comic ray model and simulate five dwarf systems with virial masses range from 8 to 30 × 1010 M⊙. We find that including CR feedback (with diffusion) consistently leads to disc-dominated systems with relatively flat rotation curves and constant star formation rates. In contrast, our purely thermal feedback case results in a hot stellar system and bursty star formation. The CR simulations very well match the observed baryonic Tully-Fisher relation, but have a lower gas fraction than in real systems. We also find that the dark matter cores of the CR feedback galaxies are cuspy, while the purely thermal feedback case results in a substantial core.

  10. Cosmological Simulations of Dwarf Galaxies with Cosmic Ray Feedback

    CERN Document Server

    Chen, Jingjing; Salem, Munier

    2016-01-01

    We perform zoom-in cosmological simulations of a suite of dwarf galaxies, examining the impact of cosmic-rays generated by supernovae, including the effect of diffusion. We first look at the effect of varying the uncertain cosmic ray parameters by repeatedly simulating a single galaxy. Then we fix the comic ray model and simulate five dwarf systems with virial masses range from 8-30 $\\times 10^{10}$ Msun. We find that including cosmic ray feedback (with diffusion) consistently leads to disk dominated systems with relatively flat rotation curves and constant star formation rates. In contrast, our purely thermal feedback case results in a hot stellar system and bursty star formation. The CR simulations very well match the observed baryonic Tully-Fisher relation, but have a lower gas fraction than in real systems. We also find that the dark matter cores of the CR feedback galaxies are cuspy, while the purely thermal feedback case results in a substantial core.

  11. On the Origin of Dwarf Elliptical Galaxies: The Fundamental Plane

    CERN Document Server

    López-Aguerri, J A

    2008-01-01

    Early-type dwarf galaxies are the most common type of galaxies observed in the Universe. The origin of this kind of systems is still not well understood. The aim of this paper is to investigate whether the different locations of dwarf galaxies with respect to ellipticals in the face-on view of the fundamental plane could be due to the transformation of bright disc galaxies in low-mass systems by harassment. We have run high-resolution N-body numerical simulations to test the tidal stripping scenario of the dE galaxies. The present simulations modelled several individual tidal stripping events on initial disc-like galaxy models with different bulge-to-disc mass ratios. Tidal stripping is a very efficient mechanism for removing stars and dark matter particles from galaxies. The particles of the disc and halo components were easily stripped, while the bulge not. Thus, the scale length of the discs were 40-50% shorter than the initial ones. Prograde tidal interactions create tidal features like stable bars in the...

  12. Solo dwarfs I: survey introduction and first results for the Sagittarius dwarf irregular galaxy

    Science.gov (United States)

    Higgs, C. R.; McConnachie, A. W.; Irwin, M.; Bate, N. F.; Lewis, G. F.; Walker, M. G.; Côté, P.; Venn, K.; Battaglia, G.

    2016-05-01

    We introduce the Solitary Local dwarfs survey (Solo), a wide-field photometric study targeting every isolated dwarf galaxy within 3 Mpc of the Milky Way. Solo is based on (u)gi multiband imaging from Canada-France-Hawaii Telescope/MegaCam for northern targets, and Magellan/Megacam for southern targets. All galaxies fainter than MV ≃ -18 situated beyond the nominal virial radius of the Milky Way and M31 (≳300 kpc) are included in this volume-limited sample, for a total of 42 targets. In addition to reviewing the survey goals and strategy, we present results for the Sagittarius dwarf irregular galaxy (Sag DIG), one of the most isolated, low-mass galaxies, located at the edge of the Local Group. We analyse its resolved stellar populations and their spatial distributions. We provide updated estimates of its central surface brightness and integrated luminosity, and trace its surface brightness profile to a level fainter than 30 mag arcsec-2. Sag DIG is well described by a highly elliptical (disc-like) system following a single component Sérsic model. However, a low-level distortion is present at the outer edges of the galaxy that, were Sag DIG not so isolated, would likely be attributed to some kind of previous tidal interaction. Further, we find evidence of an extremely low level, extended distribution of stars beyond ˜5 arcmin (>1.5 kpc) that suggests Sag DIG may be embedded in a very low-density stellar halo. We compare the stellar and H I structures of Sag DIG, and discuss results for this galaxy in relation to other isolated, dwarf irregular galaxies in the Local Group.

  13. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    CERN Document Server

    Sanchez-Conde, Miguel A; Zandanel, F; Gomez, Mario E; Prada, F

    2011-01-01

    In the last few years, most of the attention in gamma-ray dark matter (DM) searches has been devoted to neutralino annihilations in nearby dwarf galaxies. However, massive galaxy clusters in the local Universe may constitute very good targets as well. The main aim of this work is to compare both dwarf galaxies and local galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies and galaxy clusters, and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman~1 appears as the best candidate in the sample and, given the morphology of its annihilation signal, it is also one of the objects more readily observable by IACTs. As for galaxy clusters, Virgo represents the one with the hi...

  14. The Evolution of Nearby Dwarf Galaxies

    NARCIS (Netherlands)

    Tolstoy, E.; Koleva, M; Prugniel, P; Vauglin,

    2011-01-01

    Within the Local Universe galaxies can be studied in great detail star by star. The Colour-Magnitude Diagram synthesis analysis method is well established as the most accurate way to determine the detailed star formation history of galaxies going back to the earliest times. This approach has benefit

  15. Dwarf Galaxies in the Local Group

    NARCIS (Netherlands)

    Tolstoy, Eline; Bruzual, GA; Charlot, S

    2010-01-01

    Within the Local Universe galaxies can be studied in great detail star by star. The Color-Magnitude Diagram synthesis analysis method is well established as the most accurate way to determine the detailed star formation history of galaxies going back to the earliest times. This approach received a s

  16. Gas, Stars and Star Formation in ALFALFA Dwarf Galaxies

    CERN Document Server

    Huang, S; Giovanelli, R; Brinchmann, J; Stierwalt, S; Neff, S G

    2012-01-01

    We examine the global properties of the stellar and HI components of 229 low HI mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with HI masses < 10^{7.7} M_sun and HI line widths < 80 km s^{-1}. SDSS data are combined with photometric properties derived from GALEX to derive stellar masses (M_*) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs) and estimates of their SFRs and M_* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M_* < 10^8 M_sun is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of t...

  17. Dwarf galaxy populations in present-day galaxy clusters: I. Abundances and red fractions

    CERN Document Server

    Weinmann, Simone M; Guo, Qi; Meyer, Hagen T; Janz, Joachim

    2011-01-01

    We compare the galaxy population in the Virgo, Fornax, Coma and Perseus cluster to a state-of-the-art semi-analytic model, focusing on the regime of dwarf galaxies with luminosities from approximately 10^8 L_sun to 10^9 L_sun. We find that the number density profiles of dwarfs in observed clusters are reproduced reasonably well, and that the red fractions of model clusters provide a good match to Coma and Perseus. On the other hand, the red fraction among dwarf galaxies in Virgo is clearly lower than in model clusters. We argue that this is mainly caused by the treatment of environmental effects in the model. This explanation is supported by our finding that the colours of central ("field") dwarf galaxies are reproduced well, in contrast to previous claims. Finally, we report on several differences in the properties of galaxies in observed and simulated clusters that may indicate an underestimate of tidal disruption in the model: The dwarf-to-giant ratio is too high in the model; there is an unexplained flatt...

  18. Dwarf Galaxies in the Coma Cluster; 2, Photometry and Analysis

    CERN Document Server

    Secker, J; Plummer, J D; Secker, Jeff; Harris, William E.; Plummer, Julia D.

    1997-01-01

    We study the dwarf galaxy population in the central ~700 arcmin^2 of the Coma cluster, the majority of which are early-type dwarf elliptical (dE) galaxies. Analysis of the statistically-decontaminated dE galaxy sequence in the color-magnitude diagram reveals a highly significant trend of color with magnitude (\\Delta (B-R)/\\Delta R = -0.056\\pm0.002 mag), in the sense that fainter dEs are bluer and thus presumably more metal-poor. The mean color of the faintest dEs in our sample is (B-R)~1.15 mag, consistent with a color measurement of the diffuse intracluster light in the Coma core. This intracluster light could then have originated from the tidal disruption of faint dEs in the cluster core. The total galaxy luminosity function (LF) is well modeled as the sum of a log-normal distribution for the giant galaxies, and a Schechter function for the dE galaxies with a faint-end slope \\alpha = -1.41\\pm0.05. This value of \\alpha is consistent with those measured for the Virgo and Fornax clusters. The spatial distribut...

  19. DARK AND LUMINOUS MATTER IN THINGS DWARF GALAXIES

    International Nuclear Information System (INIS)

    We present mass models for the dark matter component of seven dwarf galaxies taken from 'The H I Nearby Galaxy Survey' (THINGS) and compare these with those taken from numerical Λ cold dark matter (ΛCDM) simulations. The THINGS high-resolution data significantly reduce observational uncertainties and thus allow us to derive accurate dark matter distributions in these systems. We here use the bulk velocity fields when deriving the rotation curves of the galaxies. Compared to other types of velocity fields, the bulk velocity field minimizes the effect of small-scale random motions more effectively and traces the underlying kinematics of a galaxy more properly. The 'Spitzer Infrared Nearby Galaxies Survey' 3.6 μm and ancillary optical data are used for separating the baryons from their total matter content in the galaxies. The sample dwarf galaxies are found to be dark matter dominated over most radii. The relation between total baryonic (stars + gas) mass and maximum rotation velocity of the galaxies is roughly consistent with the baryonic Tully-Fisher relation calibrated from a larger sample of gas-dominated low-mass galaxies. We find discrepancies between the derived dark matter distributions of the galaxies and those of ΛCDM simulations, even after corrections for non-circular motions have been applied. The observed solid body-like rotation curves of the galaxies rise too slowly to reflect the cusp-like dark matter distribution in cold dark matter halos. Instead, they are better described by core-like models such as pseudo-isothermal halo models dominated by a central constant-density core. The mean value of the logarithmic inner slopes of the mass density profiles is α = -0.29 ± 0.07. They are significantly different from the steep slope of ∼ - 1.0 inferred from previous dark-matter-only simulations, and are more consistent with shallower slopes found in recent ΛCDM simulations of dwarf galaxies in which the effects of baryonic feedback processes are

  20. The distribution of alpha elements in Andromeda dwarf galaxies

    International Nuclear Information System (INIS)

    We present alpha to iron abundance ratios for 226 individual red giant branch stars in nine dwarf galaxies of the Andromeda (M31) satellite system. The abundances are measured from the combined signal of Mg, Si, Ca, and Ti lines in Keck/DEIMOS medium-resolution spectra. This constitutes the first large sample of alpha abundance ratios measured in the M31 satellite system. The dwarf galaxies in our sample exhibit a variety of alpha abundance ratios, with the average values in each galaxy ranging from approximately solar ([α/Fe] ∼ + 0.0) to alpha-enhanced ([α/Fe] ∼ + 0.5). These variations do not show a correlation with internal kinematics, environment, or stellar density. We confirm radial gradients in the iron abundance of two galaxies out of the five with sufficient data (NGC 185 and And II). There is only tentative evidence for an alpha abundance radial gradient in NGC 185. We homogeneously compare our results to the Milky Way classical dwarf spheroidals, finding evidence for wider variation in average alpha abundance. In the absence of chemical abundances for the M31 stellar halo, we compare to the Milky Way stellar halo. A stellar halo comprised of disrupted M31 satellites is too metal-rich and inconsistent with the Milky Way halo alpha abundance distribution even if considering only satellites with predominantly old stellar populations. The M31 satellite population provides a second system in which to study chemical abundances of dwarf galaxies and reveals a wider variety of abundance patterns than the Milky Way.

  1. The mass dependence of dwarf satellite galaxy quenching

    International Nuclear Information System (INIS)

    We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M * ≲ 107 M ☉) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40%-50%. This change in the quenched fraction is large and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low-mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell into their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.

  2. The Mass Dependence of Dwarf Satellite Galaxy Quenching

    CERN Document Server

    Slater, Colin T

    2014-01-01

    We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic clouds. While almost all of the low mass ($M_\\star \\lesssim 10^7$ $M_\\odot$) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40-50%. This change in the quenched fraction is large, and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell in to their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to acco...

  3. The mass dependence of dwarf satellite galaxy quenching

    Energy Technology Data Exchange (ETDEWEB)

    Slater, Colin T.; Bell, Eric F., E-mail: ctslater@umich.edu, E-mail: ericbell@umich.edu [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States)

    2014-09-10

    We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M {sub *} ≲ 10{sup 7} M {sub ☉}) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40%-50%. This change in the quenched fraction is large and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low-mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell into their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.

  4. Dwarf galaxies in the Perseus Cluster: further evidence for a disc origin for dwarf ellipticals

    CERN Document Server

    Penny, Samantha J; Pimbblet, Kevin A; Floyd, David J E

    2014-01-01

    We present the results of a Keck-ESI spectroscopic study of six dwarf elliptical (dE) galaxies in the Perseus Cluster core, and confirm two dwarfs as cluster members for the first time. All six dEs follow the size-magnitude relation for dE/dSph galaxies. Central velocity dispersions are measured for three Perseus dwarfs in our sample, and all lie on the $\\sigma$-luminosity relation for early-type, pressure supported systems. We furthermore examine SA 0426-002, a unique dE in our sample with a bar-like morphology surrounded by low-surface brightness wings/lobes ($\\mu_{B} = 27$ mag arcsec$^{-2}$). Given its morphology, velocity dispersion ($\\sigma_{0} = 33.9 \\pm 6.1 $ km s$^{-1}$), velocity relative to the brightest cluster galaxy NGC 1275 (2711 km s$^{-1}$), size ($R_{e} =2.1 \\pm 0.10$ kpc), and Sersic index ($n= 1.2 \\pm 0.02$), we hypothesise the dwarf has morphologically transformed from a low mass disc to dE via harassment. The low-surface brightness lobes can be explained as a ring feature, with the bar fo...

  5. The Extremely Metal-Poor Dwarf Galaxy AGC 198691

    Science.gov (United States)

    Hirschauer, Alec S.; Salzer, John Joseph; Cannon, John M.; Skillman, Evan D.; SHIELD II Team

    2016-01-01

    We present spectroscopic observations of the nearby dwarf irregular galaxy AGC 198691. This object is part of the Survey of HI in Extremely Low-Mass Dwarfs (SHIELD) sample, which consists of ultra-low HI mass galaxies discovered by the Arecibo Legacy Fast-Acting ALFA (ALFALFA) survey. SHIELD is a multi-configuration Expanded Very Large Array (EVLA) study of the neutral gas content and dynamics of galaxies with HI masses in the range of 106-107 M⊙. Our spectral data were obtained using the new high-throughput KPNO Ohio State Multi-Object Spectrograph (KOSMOS) on the Mayall 4-m telescope as part of a systematic study of the nebular abundances in the SHIELD galaxy sample. These observations enable measurement of the temperature sensitive [OIII]λ4363 line and hence the determination of a "direct" oxygen abundance for AGC 198691. We find this system to be an extremely metal-deficient (XMD) galaxy with an oxygen abundance comparable to such objects as I Zw 18, SBS 0335-052W, Leo P, and DDO 68 - the lowest metallicity star-forming systems known. It is worth noting that two of the five lowest-abundance galaxies currently recognized were discovered via the ALFALFA blind HI survey. These XMD galaxies are potential analogues to the first star-forming systems, which through hierarchical accretion processes built up the large galaxies we observe today in the local Universe. Detailed analysis of such XMD systems offers observational constraint to models of galactic evolution and star formation histories to allow a better understanding of the processes that govern the chemical evolution of low-mass galaxies.

  6. A Vast Thin Plane of Co-rotating Dwarf Galaxies Orbiting the Andromeda Galaxy

    CERN Document Server

    Ibata, Rodrigo A; Conn, Anthony R; Irwin, Michael J; McConnachie, Alan W; Chapman, Scott C; Collins, Michelle L; Fardal, Mark; Ferguson, Annette M N; Ibata, Neil G; Mackey, A Dougal; Martin, Nicolas F; Navarro, Julio; Rich, R Michael; Valls-Gabaud, David; Widrow, Lawrence M; 10.1038/nature11717

    2013-01-01

    Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. An early analysis noted that dwarf galaxies may not be isotropically distributed around our Galaxy, as several are correlated with streams of HI emission, and possibly form co-planar groups. These suspicions are supported by recent analyses, and it has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence (99.998% significance) of a planar sub-group of satellites in the Andromeda galaxy, comprising approximately 50% of the population. The structure is vast: at least 400 kpc in diameter, but also extremely thin, with a perpendicular scatter <14.1 kpc (99% confidence). Radial velocity measurements reveal that the satellites in this structure have the same sen...

  7. Solo Dwarfs I: Survey introduction and first results for the Sagittarius Dwarf Irregular Galaxy

    CERN Document Server

    Higgs, C R; Irwin, M; Bate, N F; Lewis, G F; Walker, M G; Cote, P; Venn, K; Battaglia, G

    2016-01-01

    We introduce the Solitary Local Dwarfs Survey (Solo), a wide field photometric study targeting every isolated dwarf galaxy within 3 Mpc of the Milky Way. Solo is based on (u)gi multi-band imaging from CFHT/MegaCam for northern targets, and Magellan/Megacam for southern targets. All galaxies fainter than Mv = -18 situated beyond the nominal virial radius of the Milky Way and M31 (>300 kpc) are included in this volume-limited sample, for a total of 42 targets. In addition to reviewing the survey goals and strategy, we present results for the Sagittarius Dwarf Irregular Galaxy (Sag DIG), one of the most isolated, low mass galaxies, located at the edge of the Local Group. We analyze its resolved stellar populations and their spatial distributions. We provide updated estimates of its central surface brightness and integrated luminosity, and trace its surface brightness profile to a level fainter than 30 mag./sq.arcsec. Sag DIG is well described by a highly elliptical (disk-like) system following a single component...

  8. Radio Continuum and HI study of Blue Compact Dwarf Galaxies

    CERN Document Server

    Ramya, S; Prabhu, T P

    2010-01-01

    The multifrequency radio continuum and 21cm HI observations of five blue compact dwarf (BCD) galaxies, Mrk 104, Mrk 108, Mrk 1039, Mrk 1069 and I Zw 97 using the Giant Meterwave Radio Telescope (GMRT) are presented here. Radio continuum emission at 610 MHz and 325 MHz is detected from all the observed galaxies whereas only a few are detected at 240 MHz. In our sample, three galaxies are members of groups and two galaxies (Mrk 1069 and I Zw 97) are isolated galaxies. The radio emission from Mrk 104 and Mrk 108 is seen to encompass the entire optical galaxy whereas the radio emission from Mrk 1039, Mrk 1069, I Zw 97 is confined to massive HII regions. This, we suggest, indicates that the star formation in the latter group of galaxies has recently been triggered and that the environment in which the galaxy is evolving plays a role. Star formation rates (SFR) calculated from 610 MHz emission is in the range 0.01-0.1 M_sun/yr; this is similar to the SFR obtained for individual star forming regions in BCDs. The int...

  9. Calibrating UV Star Formation Rates for Dwarf Galaxies from STARBIRDS

    CERN Document Server

    McQuinn, Kristen B W; Dolphin, Andrew E; Mitchell, Noah P

    2015-01-01

    Integrating our knowledge of star formation traced by observations at different wavelengths is essential for correctly interpreting and comparing star formation activity in a variety of systems and environments. This study compares extinction corrected integrated ultraviolet (UV) emission from resolved galaxies with color-magnitude diagram (CMD) based star formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The datasets are from the panchromatic STARBurst IRregular Dwarf Survey (STARBIRDS) and include deep legacy GALEX UV imaging, HST optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near UV fluxes predicted from the CMD-based SFRs - using four different models - agree with the measured, extinction corrected, integrated near UV fluxes from GALEX images, but the far UV predicted fluxes do not. Further, we find a systematic deviation between the SFRs based on integrated far U...

  10. HST detection of spiral structure in two Coma Cluster dwarf galaxies

    CERN Document Server

    Graham, A W; Guzmán, R; Graham, Alister W.; Jerjen, Helmut; Guzman, Rafael

    2003-01-01

    We report the discovery of (stellar) spiral-like structure in Hubble Space Telescope images of two dwarf galaxies (GMP 3292 and GMP 3629) belonging to the Coma cluster. GMP 3629 is the faintest such galaxy detected in a cluster environment, and it is the first such galaxy observed in the dense Coma cluster. The large bulge and the faintness of the broad spiral-like pattern in GMP 3629 suggests that its disk may have been largely depleted. >We may therefore have found an example of the ``missing link'' in theories of galaxy evolution which have predicted that dwarf spiral galaxies, particularly in clusters, evolve into dwarf elliptical galaxies.

  11. Super Star Clusters in the Blue Dwarf Galaxy UM 462

    OpenAIRE

    Vanzi, Leonardo

    2003-01-01

    I present optical observations of the Blue Compact Dwarf Galaxy UM 462. The images of this galaxy show several bright compact sources. A careful study of these sources has revealed their nature of young Super Star Clusters. The ages determined from the analysis of the stellar continuum and $H\\alpha$ are between few and few tens Myr. The total star formation taking place into the clusters is about 0.05 $\\mathrm{M_{\\odot}/yr}$. The clusters seem to be located at the edges of two large round-lik...

  12. Stellar Populations of the Sagittarius Dwarf Irregular Galaxy

    OpenAIRE

    Lee, Myung Gyoon; Kim, Sang Chul

    1999-01-01

    We present deep BVRI CCD photometry of the stars in the dwarf irregular galaxy SagDIG. The color-magnitude diagrams of the measured stars in SagDIG show a blue plume which consists mostly of young stellar populations, and a well-defined red giant branch (RGB). The foreground reddening of SagDIG is estimated to be E(B-V)=0.06. The tip of the RGB is found to be at I_(TRGB)=21.55 +/- 0.10 mag. From this the distance to this galaxy is estimated to be d = 1.18 +/- 0.10 Mpc. This result, combined w...

  13. No WIMP Mini-Spikes in Dwarf Spheroidal Galaxies

    OpenAIRE

    Wanders, Mark; Bertone, Gianfranco; Volonteri, Marta; Weniger, Christoph(GRAPPA, University of Amsterdam, The Netherlands)

    2014-01-01

    The formation of black holes inevitably affects the distribution of dark and baryonic matter in their vicinity, leading to an enhancement of the dark matter density, called spike, and if dark matter is made of WIMPs, to a strong enhancement of the dark matter annihilation rate. Spikes at the center of galaxies like the Milky Way are efficiently disrupted by baryonic processes, but mini-spikes can form and survive undisturbed at the center of dwarf spheroidal galaxies. We show that Fermi LAT s...

  14. The evolution of stellar structures in dwarf galaxies

    CERN Document Server

    Bastian, N; Skillman, E D; McQuinn, K B W; Dolphin, A E; Gutermuth, R A; Cannon, J M; Ercolano, B; Gieles, M; Kennicutt, R C; Walter, F

    2010-01-01

    We present a study of the variation of spatial structure of stellar populations within dwarf galaxies as a function of the population age. We use deep Hubble Space Telescope/Advanced Camera for Surveys imaging of nearby dwarf galaxies in order to resolve individual stars and create composite colour-magnitude diagrams (CMDs) for each galaxy. Using the obtained CMDs, we select Blue Helium Burning stars (BHeBs), which can be unambiguously age-dated by comparing the absolute magnitude of individual stars with stellar isochrones. Additionally, we select a very young (<10 Myr) population of OB stars for a subset of the galaxies based on the tip of the young main-sequence. By selecting stars in different age ranges we can then study how the spatial distribution of these stars evolves with time. We find, in agreement with previous studies, that stars are born within galaxies with a high degree of substructure which is made up of a continuous distribution of clusters, groups and associations from parsec to hundreds...

  15. Indirect Dark Matter Detection for Flattened Dwarf Galaxies

    OpenAIRE

    Sanders, Jason L.; Evans, N. Wyn; Geringer-Sameth, Alex; Dehnen, Walter

    2016-01-01

    We analyze the effects of flattening on the annihilation (J) and decay (D) factors of dwarf spheroidal galaxies with both analytic and numerical methods. Flattening has two consequences: first, there is a geometric effect as the squeezing (or stretching) of the dark matter distribution enhances (or diminishes) the J-factor; second, the line of sight velocity dispersion of stars must hold up the flattened baryonic component in the flattened dark matter halo. We provide analytic formulae and a ...

  16. Ultra-diffuse galaxies: the high-spin tail of the abundant dwarf galaxy population

    CERN Document Server

    Amorisco, N C

    2016-01-01

    Recent observations have revealed the existence of an abundant population of faint, low surface brightness (SB) galaxies, which appear to be numerous and ubiquitous in nearby galaxy clusters, including the Virgo, Coma and Fornax clusters. With median stellar masses of dwarf galaxies, these ultra-diffuse galaxies (UDGs) have unexpectedly large sizes, corresponding to a mean SB of $24\\lesssim\\langle\\mu_e\\rangle_r\\ {\\rm mag}^{-1} {\\rm arcsec}^2\\lesssim27$ within the effective radius. We show that the UDG population represents the tail of galaxies formed in dwarf-sized haloes with higher-than-average angular momentum at collapse. By adopting the standard model of disk formation -- in which the size of galaxies is set by the spin of the halo -- we recover both the abundance of UDGs as a function of the host cluster mass and the distribution of sizes within the UDG population. According to this model, UDGs are not failed $L_*$ galaxies, but genuine dwarfs, and their low SB is not uniquely connected to the harsh clu...

  17. Ultradiffuse galaxies: the high-spin tail of the abundant dwarf galaxy population

    Science.gov (United States)

    Amorisco, N. C.; Loeb, A.

    2016-06-01

    Recent observations have revealed the existence of an abundant population of faint, low surface brightness (SB) galaxies, which appear to be numerous and ubiquitous in nearby galaxy clusters, including the Virgo, Coma and Fornax clusters. With median stellar masses of dwarf galaxies, these ultradiffuse galaxies (UDGs) have unexpectedly large sizes, corresponding to a mean SB of 24 ≲ r mag-1 arcsec2 ≲ 27 within the effective radius. We show that the UDG population represents the tail of galaxies formed in dwarf-sized haloes with higher-than-average angular momentum. By adopting the standard model of disc formation - in which the size of galaxies is set by the spin of the halo - we recover both the abundance of UDGs as a function of the host cluster mass and the distribution of sizes within the UDG population. According to this model, UDGs are not failed L* galaxies, but genuine dwarfs, and their low SB is not uniquely connected to the harsh cluster environment. We therefore expect a correspondingly abundant population of UDGs in the field, with possibly different morphologies and colours.

  18. Faint Dwarf Galaxies in Hickson Compact Group 90

    CERN Document Server

    Ordenes-Briceño, Yasna; Puzia, Thomas H; Muñoz, Roberto P; Eigenthaler, Paul; Georgiev, Iskren Y; Goudfrooij, Paul; Hilker, Michael; Lançon, Ariane; Mamon, Gary; Mieske, Steffen; Miller, Bryan W; Peng, Eric W; Sánchez-Janssen, Rubén

    2016-01-01

    We report the discovery of a very diverse set of five low-surface brightness (LSB) dwarf galaxy candidates in Hickson Compact Group 90 (HCG 90) detected in deep U- and I-band images obtained with VLT/VIMOS. These are the first LSB dwarf galaxy candidates found in a compact group of galaxies. We measure spheroid half-light radii in the range $0.7\\!\\lesssim\\! r_{\\rm eff}/{\\rm kpc}\\! \\lesssim\\! 1.5$ with luminosities of $-11.65\\!\\lesssim\\! M_U\\! \\lesssim\\! -9.42$ and $-12.79\\!\\lesssim\\! M_I\\! \\lesssim\\! -10.58$ mag, corresponding to a color range of $(U\\!-\\!I)_0\\!\\simeq\\!1.1\\!-\\!2.2$ mag and surface brightness levels of $\\mu_U\\!\\simeq\\!28.1\\,{\\rm mag/arcsec^2}$ and $\\mu_I\\!\\simeq\\!27.4\\,{\\rm mag/arcsec^2}$. Their colours and luminosities are consistent with a diverse set of stellar population properties. Assuming solar and 0.02 Z$_\\odot$ metallicities we obtain stellar masses in the range $M_*|_{Z_\\odot} \\simeq 10^{5.7-6.3} M_{\\odot}$ and $M_*|_{0.02\\,Z_\\odot}\\!\\simeq\\!10^{6.3-8}\\,M_{\\odot}$. Three dwarfs are ol...

  19. The Star Formation History of the Carina Dwarf Galaxy

    CERN Document Server

    Hurley-Keller, D A; Nemec, J; Hurley-Keller, Denise; Mateo, Mario; Nemec, James

    1998-01-01

    We have analyzed deep B and V photometry of the Carina dwarf spheroidal reaching below the old main-sequence turnoff to about V = 25. Using simulated color-magnitude diagrams to model a range of star formation scenarios, we have extracted a detailed, global star formation history. Carina experienced three significant episodes of star formation at about 15 Gyr, 7 Gyr, and 3 Gyr. Contrary to the generic picture of galaxy evolution, however, the bulk of star formation, at least 50%, occured during the episode 7 Gyr ago, which may have lasted as long as 2 Gyr. For unknown reasons, Carina formed only 10-20% of its stars at an ancient epoch and then remained quiescent for more than 4 Gyr. The remainder (~30%) formed relatively recently, only 3 Gyr ago. Interest in the local population of dwarf galaxies has increased lately due to their potential importance in the understanding of faint galaxy counts. We surmise that objects like Carina, which exhibits the most extreme episodic behavior of any of the dwarf spheroida...

  20. Dwarf Galaxies, MOND, and Relativistic Gravitation

    Directory of Open Access Journals (Sweden)

    Arthur Kosowsky

    2010-01-01

    Certain limits of these theories can also give the accelerating expansion of the Universe. The standard dark matter cosmology boasts numerous manifest triumphs; however, alternatives should also be pursued as long as outstanding observational issues remain unresolved, including the empirical successes of MOND on galaxy scales and the phenomenology of dark energy.

  1. Dwarf galaxies around the Milky Way: linking ages, kinematics and chemistry

    Science.gov (United States)

    Hill, Vanessa

    2015-08-01

    I will review recent observations of stellar populations in dwarf galaxies around the Milky Way, with special emphasis on the picture emerging for the evolution of these systems when combining kinematics, metallicities, detailed abundances and ages for large samples of stars. Very recently, the conditions in these systems at the earliest epochs have been the subject of dedicated investigations, in the form of observing extremely-metal poor stars in dwarf galaxies, and I will review with special care this area, including the apparent carbon paucity in some dwarf galaxies (eg. Sculptor). Finally, I will highlight the expected return from the Gaia space astrometric mission for our understanding of nearby dwarf galaxies.

  2. Structural analysis of the Sextans dwarf spheroidal galaxy

    Science.gov (United States)

    Roderick, T. A.; Jerjen, H.; Da Costa, G. S.; Mackey, A. D.

    2016-07-01

    We present wide-field g- and i-band stellar photometry of the Sextans dwarf spheroidal galaxy and its surrounding area out to four times its half-light radius (rh = 695 pc), based on images obtained with the Dark Energy Camera at the 4-m Blanco telescope at CTIO. We find clear evidence of stellar substructure associated with the galaxy, extending to a distance of 82 arcmin (2 kpc) from its centre. We perform a statistical analysis of the overdensities and find three distinct features, as well as an extended halo-like structure, to be significant at the 99.7 per cent confidence level or higher. Unlike the extremely elongated and extended substructures surrounding the Hercules dwarf spheroidal galaxy, the overdensities seen around Sextans are distributed evenly about its centre, and do not appear to form noticeable tidal tails. Fitting a King model to the radial distribution of Sextans stars yields a tidal radius rt = 83.2 arcmin ± 7.1 arcmin (2.08 ± 0.18 kpc), which implies the majority of detected substructure is gravitationally bound to the galaxy. This finding suggests that Sextans is not undergoing significant tidal disruption from the Milky Way, supporting the scenario in which the orbit of Sextans has a low eccentricity.

  3. How Typical Are The Local Group Dwarf Galaxies?

    CERN Document Server

    Weisz, Daniel R; Dalcanton, Julianne J; Skillman, Evan D; Holtzman, Jon; Williams, Benjamin F; Gilbert, Karoline M; Seth, Anil C; Cole, Andrew; Gogarten, Stephanie M; Rosema, Keith; Karachentsev, Igor D; McQuinn, Kristen B W; Zaritsky, Dennis

    2011-01-01

    We compare the star formation histories (SFHs) of Local Group (LG) dwarf galaxies with those in the volume-limited ACS Nearby Galaxy Survey Treasury (ANGST) sample (D~4Mpc). The SFHs were derived in a uniform manner from high quality optical color-magnitude diagrams constructed from HST imaging. The mean cumulative SFHs of the LG and ANGST dwarf galaxies are all very similar for the three different morphological types (dSph/dE, dI, dI/dSph). The star formation rates (SFRs) at earliest times are measurably higher than the average lifetime SFRs, while SFRs are lower at later times. We find that the systematic uncertainties, due to varying photometric depths and uncertainties in the stellar models, are similar to any differences between the mean cumulative SFHs of the LG and ANGST samples, indicating consistency between the samples. As for the ANGST galaxies alone, we find the combined LG and ANGST samples, are generally consistent with the cosmic SFH and that the mean cumulative SFHs are not well described by s...

  4. Andromeda IV, a solitary gas-rich dwarf galaxy

    CERN Document Server

    Karachentsev, I D; Tully, R B; Makarova, L N; Sharina, M E; Begum, A; Rizzi, L

    2015-01-01

    Observations are presented of the isolated dwarf irregular galaxy And IV made with the Hubble Space Telescope Advanced Camera for Surveys and the Giant Metrewave Radio Telescope in the 21 cm HI line. We determine the galaxy distance of $7.17\\pm0.31$ Mpc using the Tip of Red Giant Branch method. The galaxy has a total blue absolute magnitude of -12.81 mag, linear Holmberg diameter of 1.88 kpc and an HI-disk extending to 8.4 times the optical Holmberg radius. The HI mass-to-blue luminosity ratio for And IV amounts $12.9~M_{\\odot}/L_{\\odot}$. From the GMRT data we derive the rotation curve for the HI and fit it with different mass models. We find that the data are significantly better fit with an iso-thermal dark matter halo, than by an NFW halo. We also find that MOND rotation curve provides a very poor fit to the data. The fact that the iso-thermal dark matter halo provides the best fit to the data supports models in which star formation feedback results in the formation of a dark matter core in dwarf galaxies...

  5. METALS REMOVED BY OUTFLOWS FROM MILKY WAY DWARF SPHEROIDAL GALAXIES

    International Nuclear Information System (INIS)

    The stars in the dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are significantly more metal-poor than would be expected from a closed box model of chemical evolution. Gas outflows likely carried away most of the metals produced by the dSphs. Based on previous Keck/DEIMOS observations and models, we calculate the mass in Mg, Si, Ca, and Fe expelled from each of eight dSphs. Essentially, these masses are the differences between the observed amount of metals present in the dSphs' stars today and the inferred amount of metals produced by supernovae. We conclude that the dSphs lost 96% to >99% of the metals their stars manufactured. We apply the observed mass function of Milky Way dSphs to the ejected mass function to determine that a single large dSph, like Fornax, lost more metals over 10 Gyr than all smaller dSphs combined. Therefore, small galaxies like dSphs are not significant contributors to the metal content of the intergalactic medium. Finally, we compare our ejected mass function to previous X-ray measurements of the metal content of the winds from the post-starburst dwarf irregular galaxy NGC 1569. Remarkably, the most recent starburst in that galaxy falls exactly on the ejected-mass-stellar-mass relation defined by the Milky Way dSphs.

  6. IN-SPIRALING CLUMPS IN BLUE COMPACT DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G. [IBM Research Division, T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Zhang Hongxin; Hunter, Deidre A., E-mail: bge@watson.ibm.com [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2012-03-10

    Giant star formation clumps in dwarf irregular galaxies can have masses exceeding a few percent of the galaxy mass enclosed inside their orbital radii. They can produce sufficient torques on dark matter halo particles, halo stars, and the surrounding disk to lose their angular momentum and spiral into the central region in 1 Gyr. Pairs of giant clumps with similarly large relative masses can interact and exchange angular momentum to the same degree. The result of this angular momentum loss is a growing central concentration of old stars, gas, and star formation that can produce a long-lived starburst in the inner region, identified with the blue compact dwarf (BCD) phase. This central concentration is proposed to be analogous to the bulge in a young spiral galaxy. Observations of star complexes in five local BCDs confirm the relatively large clump masses that are expected for this process. The observed clumps also seem to contain old field stars, even after background light subtraction, in which case the clumps may be long-lived. The two examples with clumps closest to the center have the largest relative clump masses and the greatest contributions from old stars. An additional indication that the dense central regions of BCDs are like bulges is the high ratio of the inner disk scale height to the scale length, which is comparable to 1 for four of the galaxies.

  7. Chemical Abundance Patterns and the Early Environment of Dwarf Galaxies

    CERN Document Server

    Corlies, Lauren; Tumlinson, Jason; Bryan, Greg

    2013-01-01

    Recent observations suggest that abundance pattern differences exist between low metallicity stars in the Milky Way stellar halo and those in the dwarf satellite galaxies. This paper takes a first look at what role the early environment for pre-galactic star formation might have played in shaping these stellar populations. In particular, we consider whether differences in cross-pollution between the progenitors of the stellar halo and the satellites could help to explain the differences in abundance patterns. Using an N-body simulation, we find that the progenitor halos of the main halo are primarily clustered together at z=10 while the progenitors of the satellite galaxies remain on the outskirts of this cluster. Next, analytically modeled supernova-driven winds show that main halo progenitors cross-pollute each other more effectively while satellite galaxy progenitors remain more isolated. Thus, inhomogeneous cross-pollution as a result of different high-z spatial locations of each system's progenitors can ...

  8. The evolution of the photometric properties of Local Group dwarf spheroidal galaxies

    CERN Document Server

    Calura, F; Matteucci, F

    2008-01-01

    We investigate the present-day photometric properties of the dwarf spheroidal galaxies in the Local Group. From the analysis of their integrated colours, we consider a possible link between dwarf spheroidals and giant ellipticals. From the analysis of the V vs (B-V) plot, we search for a possible evolutionary link between dwarf spheroidal galaxies (dSphs) and dwarf irregular galaxies (dIrrs). By means of chemical evolution models combined with a spectro-photometric model, we study the evolution of six Local Group dwarf spheroidal galaxies (Carina, Draco, Sagittarius, Sculptor, Sextans and Ursa Minor). The chemical evolution models, which adopt up-to-date nucleosynthesis from low and intermediate mass stars as well as nucleosynthesis and energetic feedback from supernovae type Ia and II, reproduce several observational constraints of these galaxies, such as abundance ratios versus metallicity and the metallicity distributions. The proposed scenario for the evolution of these galaxies is characterised by low st...

  9. Carbon Star Survey of Local Group Dwarf Galaxies. II. Pegasus, DDO 210 and Tucana

    CERN Document Server

    Battinelli, P

    2000-01-01

    We present the latest results of our ongoing four filter photometric survey of C stars in Local Group dwarf irregular galaxies. Observations of the two low luminosity dwarf irregular galaxies, Pegasus and DDO 210, revealed respectively 40 and 3 C stars, assuming that the reddening of Pegasus is negligible. No C stars were identified in Tucana. Our observations permit the estimation of the CMD contamination by foreground M dwarf thus yielding reliable C/M ratios. Our R, I photometry of the C stars cannot be used to solve the extinction controversy toward Pegasus. The three C stars in DDO 210 are quite bright when compared to C star populations in dwarf galaxies. A larger fainter population in that galaxy seems however improbable. The statistics of C stars, currently on hand for dwarf galaxies, show a well-defined trend with the absolute magnitude of galaxies.

  10. Search for Blue Compact Dwarf Galaxies During Quiescence

    CERN Document Server

    Almeida, J Sanchez; Amorin, R; Aguerri, J A; Sanchez-Janssen, R; Tenorio-Tagle, G

    2008-01-01

    Blue Compact Dwarf (BCD) galaxies are metal poor systems going through a major starburst that cannot last for long. We have identified galaxies which may be BCDs during quiescence (QBCD), i.e., before the characteristic starburst sets in or when it has faded away. These QBCD galaxies are assumed to be like the BCD host galaxies. The SDSS/DR6 database provides ~21500 QBCD candidates. We also select from SDSS/DR6 a complete sample of BCD galaxies to serve as reference. The properties of these two galaxy sets have been computed and compared. The QBCD candidates are thirty times more abundant than the BCDs, with their luminosity functions being very similar except for the scaling factor, and the expected luminosity dimming associated with the end of the starburst. QBCDs are redder than BCDs, and they have larger HII region based oxygen abundance. QBCDs also have lower surface brightness. The BCD candidates turn out to be the QBCD candidates with the largest specific star formation rate (actually, with the largest...

  11. Dwarf galaxies and the cosmic web

    OpenAIRE

    Benítez-Llambay, Alejandro; Navarro, Julio F.; Abadi, Mario G.; Gottlöber, Stefan; Yepes, Gustavo; Hoffman, Yehuda; Steinmetz, Matthias

    2013-01-01

    The Astrophysical Journal Letters 763.2 (2013): L41 reproduced by permission of the AAS We use a cosmological simulation of the formation of the Local Group of Galaxies to identify a mechanism that enables the removal of baryons from low-mass halos without appealing to feedback or reionization. As the Local Group forms, matter bound to it develops a network of filaments and pancakes. This moving web of gas and dark matter drifts and sweeps a large volume, overtaking many halos in the proce...

  12. Indirect Dark Matter Detection for Flattened Dwarf Galaxies

    CERN Document Server

    Sanders, Jason L; Geringer-Sameth, Alex; Dehnen, Walter

    2016-01-01

    We analyze the effects of flattening on the annihilation (J) and decay (D) factors of dwarf spheroidal galaxies with both analytic and numerical methods. Flattening has two consequences: first, there is a geometric effect as the squeezing (or stretching) of the dark matter distribution enhances (or diminishes) the J-factor; second, the line of sight velocity dispersion of stars must hold up the flattened baryonic component in the flattened dark matter halo. We provide analytic formulae and a simple numerical approach to estimate the correction to the J- and D-factors required over simple spherical modeling. The formulae are validated with a series of equilibrium models of flattened stellar distributions embedded in flattened dark-matter distributions. We compute corrections to the J- and D-factors for the Milky Way dwarf spheroidal galaxies under the assumption that they are prolate or oblate and find that the hierarchy of J-factors for the dwarf spheroidals is slightly altered. We demonstrate that spherical ...

  13. Structural analysis of the Sextans dwarf spheroidal galaxy

    CERN Document Server

    Roderick, T A; Da Costa, G S; Mackey, A D

    2016-01-01

    We present wide-field $g$ and $i$ band stellar photometry of the Sextans dwarf spheroidal galaxy and its surrounding area out to four times its half-light radius ($r_h=695\\,$pc), based on images obtained with the Dark Energy Camera at the 4-m Blanco telescope at CTIO. We find clear evidence of stellar substructure associated with the galaxy, extending to a distance of $82\\arcmin$ (2\\,kpc) from its centre. We perform a statistical analysis of the over-densities and find three distinct features, as well as an extended halo-like structure, to be significant at the $99.7\\%$ confidence level or higher. Unlike the extremely elongated and extended substructures surrounding the Hercules dwarf spheroidal galaxy, the over-densities seen around Sextans are distributed evenly about its centre, and do not appear to form noticeable tidal tails. Fitting a King model to the radial distribution of Sextans stars yields a tidal radius $r_t =83.2\\arcmin\\pm7.1\\arcmin$ (2.08$\\pm$0.18\\,kpc), which implies the majority of detected s...

  14. Herschel Spectroscopic Observations of LITTLE THINGS Dwarf Galaxies

    CERN Document Server

    Cigan, Phil; Cormier, Diane; Lebouteiller, Vianney; Madden, Suzanne; Hunter, Deidre; Brinks, Elias; Elmegreen, Bruce; Schruba, Andreas; Heesen, Volker

    2015-01-01

    We present far-infrared spectral line observations of five galaxies from the LITTLE THINGS sample: DDO 69, DDO 70, DDO 75, DDO 155, and WLM. While most studies of dwarfs focus on bright systems or starbursts due to observational constraints, our data extend the observed parameter space into the regime of low surface brightness dwarf galaxies with low metallicities and moderate star formation rates. Our targets were observed with Herschel at the [CII] 158um, [OI] 63um, [OIII] 88um, and NII 122um emission lines using the PACS Spectrometer. These high-resolution maps allow us for the first time to study the far-infrared properties of these systems on the scales of larger star-forming complexes. The spatial resolution in our maps, in combination with star formation tracers, allows us to identify separate PDRs in some of the regions we observed. Our systems have widespread [CII] emission that is bright relative to continuum, averaging near 0.5% of the total infrared budget - higher than in solar-metallicity galaxi...

  15. A VIRIAL CORE IN THE SCULPTOR DWARF SPHEROIDAL GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Agnello, A.; Evans, N. W., E-mail: aagnello@ast.cam.ac.uk, E-mail: nwe@ast.cam.ac.uk [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2012-08-01

    The projected virial theorem is applied to the case of multiple stellar populations in the nearby dwarf spheroidal galaxies. As each population must reside in the same gravitational potential, this provides strong constraints on the nature of the dark matter halo. We derive necessary conditions for two populations with Plummer or exponential surface brightnesses to reside in a cusped Navarro-Frenk-White (NFW) halo. We apply our methods to the Sculptor dwarf spheroidal, and show that there is no NFW halo compatible with the energetics of the two populations. The dark halo must possess a core radius of {approx}120 pc for the virial solutions for the two populations to be consistent. This conclusion remains true, even if the effects of flattening or self-gravity of the stellar populations are included.

  16. Dark Matter Searches with Cherenkov Telescopes: Nearby Dwarf Galaxies or Local Galaxy Clusters?

    International Nuclear Information System (INIS)

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  17. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    International Nuclear Information System (INIS)

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  18. Dark Matter Searches with Cherenkov Telescopes: Nearby Dwarf Galaxies or Local Galaxy Clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Conde, Miguel A.; /KIPAC, Menlo Park /SLAC /IAC, La Laguna /Laguna U., Tenerife; Cannoni, Mirco; /Huelva U.; Zandanel, Fabio; /IAA, Granada; Gomez, Mario E.; /Huelva U.; Prada, Francisco; /IAA, Granada

    2012-06-06

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  19. OLD GLOBULAR CLUSTERS IN MAGELLANIC-TYPE DWARF IRREGULAR GALAXIES

    International Nuclear Information System (INIS)

    We have performed a search for old globular clusters (GCs) using archival F606W and F814W Hubble Space Telescope/Advanced Camera for Surveys images of 19 Magellanic-type dwarf Irregular (dIrr) galaxies. Those dIrrs reside in nearby (2-8 Mpc) associations of dwarf galaxies only. All dIrrs have absolute magnitudes fainter than or equal to that of the SMC (MV = -16.2 mag). We detect in total 50 GC candidates in 13 dIrrs, of which 37 have (V - I) colors consistent with 'blue' (old, metal-poor) GCs (bGCs). The luminosity function (LF) of the bGC candidates in our sample shows a turnover magnitude of MV = -7.41 ± 0.22 mag, consistent with other galaxy types. The width of the LF is σ = 1.79 ± 0.31, which is typical for dIrrs, but broader than the typical width in massive galaxies. The half-light radii and ellipticities of the GCs in our sample are similar to those of old GCs in the Magellanic Clouds and to those of 'old halo' (OH) GCs in our Galaxy, but not as extended and spherical as the Galactic 'young halo' (YH) GCs. The ε distribution shows a turnover rather than a power law as observed for the Galactic GCs. This might suggest that GCs in dIrrs are kinematically young and not yet fully relaxed. The present-day specific frequencies of GCs (SN ) in the galaxies in our sample span a broad range: 0.3 N N values would increase by a factor of 2.5-16, comparable with values for early-type dwarfs (dE/dSphs). A bright central GC candidate, similar to nuclear clusters of dEs, is observed in one of our dIrrs: NGC 1959. This nuclear GC has luminosity, color, and structural parameters similar to that of ω Cen and M 54, suggesting that the latter might have their origin in the central regions of similar Galactic building blocks as the dIrrs in this study. A comparison between properties of bGCs and Galactic YH GCs, suspected to have originated from similar dIrrs, is performed.

  20. Dwarf Galaxy Formation Was Suppressed By Cosmic Reionization

    CERN Document Server

    Wyithe, S; Loeb, Abraham; Wyithe, Stuart

    2006-01-01

    A large number of faint galaxies, born less than a billion years after the big bang, have recently been discovered. The fluctuations in the distribution of these galaxies contributed to a scatter in the ionization fraction of cosmic hydrogen on scales of tens of Mpc, as observed along the lines of sight to the earliest known quasars. Theoretical simulations predict that the formation of dwarf galaxies should have been suppressed after cosmic hydrogen was reionized, leading to a drop in the cosmic star formation rate. Here we present evidence for this suppression. We show that the post-reionization galaxies which produced most of the ionizing radiation at a redshift z~5.5, must have had a mass in excess of ~10^{10.9+/-0.5} solar masses or else the aforementioned scatter would have been smaller than observed. This limiting mass is two orders of magnitude larger than the galaxy mass that is thought to have dominated the reionization of cosmic hydrogen (~10^8 solar masses). We predict that future surveys with spa...

  1. Globular clusters indicate ultra diffuse galaxies are dwarfs

    CERN Document Server

    Beasley, Michael A

    2016-01-01

    We present an analysis of archival {\\it HST/ACS} imaging in the F475W ($g_{475}$), F606W ($V_{606}$) and F814W ($I_{814}$) bands of the globular cluster (GC) system of a large (3.4 kpc effective radius) ultra-diffuse galaxy (DF17) believed located in the Coma Cluster of galaxies. We detect 11 GCs down to the 5$\\sigma$ completeness limit of the imaging ($I_{814}=$27 mag). Correcting for background and our detection limits yields a total population of GCs in this galaxy of $32\\pm6$ and a $V$-band specific frequency, $S_N=33\\pm6$. Based on comparisons to the GC systems of Local galaxies, we show that both the absolute number and the colors of the GC system of DF17 are consistent with the GC system of a dark-matter dominated dwarf galaxy with virial mass $\\sim1.0\\times10^{11}$~\\msun and a dark-to-stellar mass ratio, $M_{vir} / M_{ star}\\sim 1300$. Based on the stellar mass-growth of the Milky Way, we show that DF17 cannot be understood as a failed Milky Way-like system, but is more similar to quenched Large Magel...

  2. Calibrating UV Star Formation Rates for Dwarf Galaxies from STARBIRDS

    Science.gov (United States)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Dolphin, Andrew E.; Mitchell, Noah P.

    2015-08-01

    Integrating our knowledge of star formation (SF) traced by observations at different wavelengths is essential for correctly interpreting and comparing SF activity in a variety of systems and environments. This study compares extinction corrected integrated ultraviolet (UV) emission from resolved galaxies with color-magnitude diagram (CMD) based star formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The data sets are from the panchromatic Starburst Irregular Dwarf Survey and include deep legacy GALEX UV imaging, Hubble Space Telescope optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near-UV fluxes predicted from the CMD-based SFRs—using four different models—agree with the measured, extinction corrected, integrated near-UV fluxes from GALEX images, but the far-UV (FUV) predicted fluxes do not. Furthermore, we find a systematic deviation between the SFRs based on integrated FUV luminosities and existing scaling relations, and the SFRs based on the resolved stellar populations. This offset is not driven by different SF timescales, variations in SFRs, UV attenuation, nor stochastic effects. This first comparison between CMD-based SFRs and an integrated FUV emission SFR indicator suggests that the most likely cause of the discrepancy is the theoretical FUV-SFR calibration from stellar evolutionary libraries and/or stellar atmospheric models. We present an empirical calibration of the FUV-based SFR relation for dwarf galaxies, with uncertainties, which is ˜53% larger than previous relations. Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

  3. Structure and stellar content of dwarf galaxies; IV, B and R photometry of dwarf galaxies in the CVnI cloud

    CERN Document Server

    Bremnes, T; Prugniel, P

    1999-01-01

    We have carried out CCD photometry in the Cousins B and R bands of 15 galaxies in the Canes Venatici I cloud. Total magnitudes, effective radii, effective surface brightnesses, as well as galaxy radii at various isophotal levels in both colors were determined. Best-fitting exponential parameters and color gradients are also given for these galaxies. The photometric parameters presented here will analyzed in a forthcoming paper, together with previously published data for nearby dwarf galaxies.

  4. The blue plume population in dwarf spheroidal galaxies: young stellar population or genuine blue stragglers?

    CERN Document Server

    Momany, Y; Saviane, I; Zaggia, S; Rizzi, L; Gullieuszik, M

    2007-01-01

    In the context of dwarf spheroidal galaxies it is hard to firmly disentangle a genuine Blue Stragglers (BSS) population from a normal young main (MS) sequence. This difficulty is persistent. For a sample of 9 non-star forming Local Group dwarf galaxies we compute the ``BSS frequency'' and compare it with that found in the Milky Way globular/open clusters and halo. The comparison shows that the BSS-frequency in dwarf galaxies, at any given Mv, is always higher than that in globular clusters of similar luminosities. Moreover, the estimated BSS-frequency for the lowest luminosity dwarf galaxies is in excellent agreement with that observed in the Milky Way halo and open clusters. We conclude that the low density, almost collision-less environment, of our dwarf galaxy sample point to their very low dynamical evolution and consequent negligible production of collisional BSS.

  5. Variable stars in the Pegasus dwarf galaxy (DDO 216)

    International Nuclear Information System (INIS)

    Observations obtained over a period of five years of the resolved stars in the Pegasus dwarf irregular galaxy (DDO 216) have been searched for variable stars. Thirty-one variables were found, and periods established for 12. Two of these variable stars are clearly eclipsing variables, seven are very likely Cepheid variables, and the remaining three are probable Cepheids. The period-luminosity relation for the Cepheids indicates a distance modulus for Pegasus of m - M = 26.22 + or - 0.20. This places Pegasus very near the zero-velocity surface of the Local Group. 25 refs

  6. Photo-evaporation by thermal winds in dwarf galaxies

    OpenAIRE

    Shaviv, Nir J.; Dekel, Avishai

    2003-01-01

    We revisit the evaporation process of gas from dwarf galaxies after it has been photo-ionized by the UV flux from the first stars and AGNs and heated to T~10^4K or 2x10^4K respectively. Earlier estimates, based on the balance between pressure and gravity, indicated that dark haloes of virial velocity lower than Vevap ~ 11-13 km/s have lost most of their gas in a dynamical time. We follow the continuous evaporation by a thermal wind during the period when the ionizing flux was effective. We fi...

  7. Chemical Evolution of Mn in Three Dwarf Spheroidal Galaxies

    Indian Academy of Sciences (India)

    Men-Quan Liu; Jie Zhang

    2014-09-01

    Based on an improved model, more reasonable nucleosyn-thesis and explosion rate of SNeIa and CCSNe, we studied Mn evolution for three local dwarf spheroidal galaxies (dSphs), considering the detailed SNe yield and explosion rates for different types of progenitors. The results can explain the main observation ofMn abundance for tens stars in those dSphs, and give some constraints to the nucleosynthesis and explosion ratio of different types of supernovae and Star Formation Rates (SFR) in those dSphs.

  8. Dark Matter in $\\gamma$ lines: Galactic Center vs dwarf galaxies

    OpenAIRE

    Lefranc, Valentin; Moulin, Emmanuel; Panci, Paolo; Sala, Filippo; Silk, Joseph

    2016-01-01

    We provide CTA sensitivities to Dark Matter (DM) annihilation in $\\gamma$-ray lines, from the observation of the Galactic Center (GC) as well as, for the first time, of dwarf Spheroidal galaxies (dSphs). We compare the GC reach with that of dSphs as a function of a putative core radius of the DM distribution, which is itself poorly known. We find that the currently best dSph candidates constitute a more promising target than the GC, for core radii of one to a few kpc. We use the most recent i...

  9. The effect of dwarf galaxies disruption in semi-analytic models

    CERN Document Server

    Henriques, Bruno; Thomas, Peter

    2007-01-01

    We present results for a galaxy formation model that includes a simple treatment for the disruption of dwarf galaxies by gravitational forces and galaxy encounters within galaxy clusters. This is implemented a posteriori in a semi-analytic model by considering the stability of cluster dark matter sub-haloes at z=0. We assume that a galaxy whose dark matter substructure has been disrupted will itself disperse, while its stars become part of the population of intracluster stars responsible for the observed intracluster light. Despite the simplicity of this assumption, our results show a substantial improvement over previous models and indicate that the inclusion of galaxy disruption is indeed a necessary ingredient of galaxy formation models. We find that galaxy disruption suppresses the number density of dwarf galaxies by about a factor of two. This makes the slope of the faint end of the galaxy luminosity function shallower, in agreement with observations. In particular, the abundance of faint, red galaxies i...

  10. TiNy Titans: The Role of Dwarf-Dwarf Interactions in the Evolution of Low Mass Galaxies

    CERN Document Server

    Stierwalt, S; Patton, D; Johnson, K; Kallivayalil, N; Putman, M; Privon, G; Ross, G

    2014-01-01

    We introduce TiNy Titans (TNT), the first systematic study of star formation and the subsequent processing of the interstellar medium in interacting dwarf galaxies. Here we present the first results from a multiwavelength observational program based on a sample of 104 dwarf galaxy pairs selected from a range of environments within the SDSS and caught in various stages of interaction. The TNT dwarf pairs span mass ratios of M1/M2 100 A, occur in 20% of TNT dwarf pairs, regardless of environment, compared to only 6-8% of matched unpaired dwarfs. Starbursts can be triggered throughout the merger (out to large pair separations) and not just approaching coalescence. Despite their enhanced star formation, most TNT dwarf pairs have similar gas fractions relative to unpaired dwarfs. Thus, there may be significant reservoirs of diffuse, non-starforming gas surrounding the dwarf pairs or the gas consumption timescales may be long in the starburst phase. The only TNT dwarf pairs with low gas fractions (fgas <0.4) and...

  11. DGSAT: Dwarf Galaxy Survey with Amateur Telescopes. I. Discovery of low surface brightness systems around nearby spiral galaxies

    Science.gov (United States)

    Javanmardi, B.; Martinez-Delgado, D.; Kroupa, P.; Henkel, C.; Crawford, K.; Teuwen, K.; Gabany, R. J.; Hanson, M.; Chonis, T. S.; Neyer, F.

    2016-04-01

    Context. We introduce the Dwarf Galaxy Survey with Amateur Telescopes (DGSAT) project and report the discovery of eleven low surface brightness (LSB) galaxies in the fields of the nearby galaxies NGC 2683, NGC 3628, NGC 4594 (M 104), NGC 4631, NGC 5457 (M 101), and NGC 7814. Aims: The DGSAT project aims to use the potential of small-sized telescopes to probe LSB features around large galaxies and to increase the sample size of the dwarf satellite galaxies in the Local Volume. Methods: Using long exposure images, fields of the target spiral galaxies are explored for extended LSB objects. After identifying dwarf galaxy candidates, their observed properties are extracted by fitting models to their light profiles. Results: We find three, one, three, one, one, and two new LSB galaxies in the fields of NGC 2683, 3628, 4594, 4631, 5457, and 7814, respectively. In addition to the newly found galaxies, we analyse the structural properties of nine already known galaxies. All of these 20 dwarf galaxy candidates have effective surface brightnesses in the range 25.3 ≲ μe ≲ 28.8 mag arcsec-2 and are fit with Sersic profiles with indices n ≲ 1. Assuming that they are in the vicinity of the above mentioned massive galaxies, their r-band absolute magnitudes, their effective radii, and their luminosities are in the ranges -15.6 ≲ Mr ≲ -7.8, 160 pc ≲ Re ≲ 4.1 kpc, and 0.1 × 106 ≲ (L/L⊙)r ≲ 127 × 106, respectively. To determine whether these LSB galaxies are indeed satellites of the above mentioned massive galaxies, their distances need to be determined via further observations. Conclusions: Using small telescopes, we are readily able to detect LSB galaxies with similar properties to the known dwarf galaxies of the Local Group.

  12. The dynamics of Andromeda's dwarf galaxies and stellar streams

    CERN Document Server

    Collins, Michelle L M; Ibata, Rodrigo A; Martin, Nicolas F; Preston, Janet

    2016-01-01

    As part of the Z-PAndAS Keck II DEIMOS survey of resolved stars in our neighboring galaxy, Andromeda (M31), we have built up a unique data set of measured velocities and chemistries for thousands of stars in the Andromeda stellar halo, particularly probing its rich and complex substructure. In this contribution, we will discuss the structural, dynamical and chemical properties of Andromeda's dwarf spheroidal galaxies, and how there is no observational evidence for a difference in the evolutionary histories of those found on and off M31's vast plane of satellites. We will also discuss a possible extension to the most significant merger event in M31 - the Giant Southern Stream - and how we can use this feature to refine our understanding of M31's mass profile, and its complex evolution.

  13. Star formation rate in Holmberg IX dwarf galaxy

    Directory of Open Access Journals (Sweden)

    Anđelić M.M.

    2011-01-01

    Full Text Available In this paper we use previously determined Hα fluxes for dwarf galaxy Holmberg IX (Arbutina et al. 2009 to calculate star formation rate (SFR in this galaxy. We discuss possible contaminations of Hα flux and, for the first time, we take into account optical emission from supernova remnants (SNRs as a possible source of contamination of Hα flux. Derived SFR for Holmberg IX is 3:4 x 10-4M.yr-1. Our value is lower then in previous studies, due to luminous shock-heated source M&H 9-10, possible hypernova remnant, which we excluded from the total Hα flux in our calculation of SFR.

  14. Dwarfs and Giants in the local flows of galaxies.

    Science.gov (United States)

    Chernin, A. D.; Emelyanov, N. V.; Karachentsev, I. D.

    We use recent Hubble Space Telescope data on nearby dwarf and giant galaxies to study the dynamical structure and evolutionary trends of the local expansion flows of galaxies. It is found that antigravity of dark energy dominates the force field of the flows and makes them expand with acceleration. It also cools the flows and introduces to them the nearly linear velocity-distance relation with the time-rate close to the global Hubble's factor. There are grounds to expect that this is the universal physical regularity that is common not only for the nearby flows we studied here, but also for all the expansion flows of various spatial scales from the 1 Mpc scale and up to the scale of the global cosmological expansion.

  15. The Horizontal Branch of the Sculptor Dwarf galaxy

    CERN Document Server

    Salaris, Maurizio; Tolstoy, Eline; Fiorentino, Giuliana; Cassisi, Santi

    2013-01-01

    We have performed the first detailed simulation of the horizontal branch of the Sculptor dwarf spheroidal galaxy by means of synthetic modelling techniques,taking consistently into account the star formation history and metallicity evolution as determined from the main sequence and red giant branch spectroscopic observations. The only free parameter in the whole analysis is the integrated mass loss of red giant branch stars. This is the first time that synthetic horizontal branch models, consistent with the complex star formation history of a galaxy, are calculated and matched to the observations. We find that the metallicity range covered by the star formation history, as constrained by observations, plus a simple mass loss law, enable us to cover both the full magnitude and colour range of HB stars. In addition the number count distribution along the observed horizontal branch, can be also reproduced, provided that the red giant branch mass loss is mildly metallicity dependent, with a very small dispersion ...

  16. The Different Environmental Dependencies of Star Formation for Giant and Dwarf Galaxies

    Science.gov (United States)

    Haines, C. P.; La Barbera, F.; Mercurio, A.; Merluzzi, P.; Busarello, G.

    2006-08-01

    We examine the origins of the bimodality observed in the global properties of galaxies around a stellar mass of 3×1010 Msolar by comparing the environmental dependencies of star formation for the giant and dwarf galaxy populations. The Sloan Digital Sky Survey DR4 spectroscopic data set is used to produce a sample of galaxies in the vicinity of the supercluster centered on the cluster A2199 at z=0.03 that is >~90% complete to M*r+3.3. From this we measure global trends with environment for both giant (Mr7 Gyr) or passive (EW [Hα] ~80% in the cluster cores to ~40% in field regions beyond 3-4Rvir, as found in previous studies. In contrast, we find that the dwarf galaxy population shows a sharp transition at ~1Rvir, from being predominantly old/passive within the cluster, to outside where virtually all galaxies are forming stars and old/passive galaxies are only found as satellites to more massive galaxies. These results imply fundamental differences in the evolution of giant and dwarf galaxies: whereas the star formation histories of giant galaxies are determined primarily by their merger history, star formation in dwarf galaxies is much more resilient to the effects of major mergers. Instead, dwarf galaxies become passive only once they become satellites within a more massive halo either by losing their halo gas reservoir to the host halo or through other environment-related processes such as galaxy harassment and ram pressure stripping.

  17. Delayed Star Formation in Isolated Dwarf Galaxies: HST Star Formation History of the Aquarius Dwarf Irregular

    CERN Document Server

    Cole, Andrew A; Dolphin, Andrew E; Skillman, Evan D; McConnachie, Alan W; Brooks, Alyson M; Leaman, Ryan

    2014-01-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ~10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ~10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ~2). The star formation rate increased dramatically ~6-8 Gyr ago (z ~ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M(HI)/M(stellar), dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CD...

  18. Binary stars as probes of dark substructures in dwarf galaxies

    CERN Document Server

    Penarrubia, Jorge; Walker, Matthew G; Gilmore, Gerry; Evans, N Wyn; Mackay, Craig D

    2010-01-01

    We use analytical and N-body methods to examine the survival of wide stellar binaries against repeated encounters with dark substructures orbiting in the dark matter haloes of dwarf spheroidal galaxies (dSphs). Our models adopt cosmologically-motivated conditions wherein dSphs are dark-matter dominated systems that form hierarchically and orbit about a host galaxy. Our analytical estimates show that wide binaries are disrupted at a rate that is proportional to the local density of dark substructures averaged over the life-time of the binary population. The fact that external tides can efficiently strip dark substructures from the outskirts of dSphs implies that the present number and distribution of binaries is strongly coupled with the mass evolution of individual galaxies. Yet we show that for the range of dynamical masses and Galactocentric distances spanned by Milky Way dSphs, a truncation in the separation function at a_max <~ 0.1 pc is expected in all these galaxies. An exception may be the Sagittari...

  19. Evolution of dwarf galaxies simulated in the cosmological LCDM scenario

    Science.gov (United States)

    Gonzalez, Alejandro; Colin, Pedro; Avila-Reese, Vladimir; Rodriguez-Puebla, Aldo; Valenzuela, Octavio

    2014-03-01

    We present results from numerical simulations of low-mass galaxies with the aim to explore the way their stellar masses are assembled. We analyze how the mass assembly histories of the parent halo determine the growth of their host galaxy and its implications on the current paradigm of formation and evolution of low-mass structures in the LCDM scenario. We have found that low-mass galaxies simulated in this scenario assemble their stellar masses following roughly the dark matter halo assembly, which seems to be in tension with the downsizing trend suggested by current observational inferences. We show that there is no more room to increase the strength of feedback from astrophysical processes in order to deviate strongly the stellar mass assembly from the dark halo one, as has been recently invoked to solve some of the potential issues faced by CDM-based simulations of dwarf galaxies. Alejandro González acknowledges finacial support from UNAM, Fundacion UNAM, and the APS to attend this meeting.

  20. THE STELLAR AND GASEOUS CONTENTS OF THE ORION DWARF GALAXY

    International Nuclear Information System (INIS)

    We present new Kitt Peak National Observatory 0.9 m optical and Very Large Array H I spectral line observations of the Orion dwarf galaxy. This nearby (D ≅ 5.4 Mpc), intermediate-mass (Mdyn≅ 1.1 x 1010 Msun) dwarf displays a wealth of structure in its neutral interstellar medium, including three prominent 'hole/depression' features in the inner H I disk. We explore the rich gas kinematics, where solid-body rotation dominates and the rotation curve is flat out to the observed edge of the H I disk (∼6.8 kpc). The Orion dwarf contains a substantial fraction of dark matter throughout its disk: comparing the 4.7 x 108 Msun of detected neutral gas with estimates of the stellar mass from optical and near-infrared imaging (3.7 x 108 Msun) implies a mass-to-light ratio ≅13. New Hα observations show only modest-strength current star formation (SF; ∼0.04 Msun yr-1); this SF rate is consistent with our 1.4 GHz radio continuum non-detection.

  1. The Dearth of Neutral Hydrogen in Galactic Dwarf Spheroidal Galaxies

    CERN Document Server

    Spekkens, K; Mason, B S; Willman, B; Aguirre, J E

    2014-01-01

    We present new upper limits on the neutral hydrogen (HI) content within the stellar half-light ellipses of 15 Galactic dwarf spheroidal galaxies (dSphs), derived from pointed observations with the Green Bank Telescope (GBT) as well as Arecibo L-band Fast ALFA (ALFALFA) survey and Galactic All-Sky Survey (GASS) data. All of the limits Mlim are more stringent than previously reported values, and those from the GBT improve upon contraints in the literature by a median factor of 23. Normalizing by V-band luminosity Lv and dynamical mass Mdyn, we find Mlim/Lv ~ 10^{-3} Mo/Lo and Mlim/Mdyn ~ 5 x 10^{-5}, irrespective of location in the Galactic halo. Comparing these relative HI contents to those of the Local Group and nearby neighbor dwarfs compiled by McConnachie, we find that the Galactic dSphs are extremely gas-poor. Our HI upper limits therefore provide the clearest picture yet of the environmental dependence of the HI content in Local Volume dwarfs. If ram pressure stripping explains the dearth of HI in these ...

  2. The Stellar and Gaseous Contents of the Orion Dwarf Galaxy

    CERN Document Server

    Cannon, John M; Most, Hans; Salzer, John J; Haugland, Kaitlin; Scudder, Jillian; Sugden, Arthur; Weindling, Jacob

    2010-01-01

    We present new KPNO 0.9-m optical and VLA HI spectral line observations of the Orion dwarf galaxy. This nearby (D ~ 5.4 Mpc), intermediate-mass (M_dyn = 1.1x10^10 Solar masses) dwarf displays a wealth of structure in its neutral ISM, including three prominent "hole/depression" features in the inner HI disk. We explore the rich gas kinematics, where solid-body rotation dominates and the rotation curve is flat out to the observed edge of the HI disk (~6.8 kpc). The Orion dwarf contains a substantial fraction of dark matter throughout its disk: comparing the 4.7x10^8 Solar masses of detected neutral gas with estimates of the stellar mass from optical and near-infrared imaging (3.7x10^8 Solar masses) implies a mass-to-light ratio of ~13. New H alpha observations show only modest-strength current star formation (~0.04 Solar masses per year); this star formation rate is consistent with our 1.4 GHz radio continuum non-detection.

  3. A spectroscopic binary in the Hercules dwarf spheroidal galaxy

    International Nuclear Information System (INIS)

    We present the radial velocity curve of a single-lined spectroscopic binary in the faint Hercules dwarf spheroidal (dSph) galaxy, based on 34 individual spectra covering more than 2 yr of observations. This is the first time that orbital elements could be derived for a binary in a dSph. The system consists of a metal-poor red giant and a low-mass companion, possibly a white dwarf, with a 135 day period in a moderately eccentric (e = 0.18) orbit. Its period and eccentricity are fully consistent with metal-poor binaries in the Galactic halo, while the projected semimajor axis is small, at ap sin i = 38 R ☉. In fact, a very close orbit could inhibit the production of heavier elements through s-process nucleosynthesis, leading to the very low abundances of neutron-capture elements that are found in this star. We discuss the further implications for the chemical enrichment history of the Hercules dSph, but find no compelling binary scenario that could reasonably explain the full, peculiar abundance pattern of the Hercules dSph galaxy.

  4. PERSEUS I: A DISTANT SATELLITE DWARF GALAXY OF ANDROMEDA

    International Nuclear Information System (INIS)

    We present the discovery of a new dwarf galaxy, Perseus I/Andromeda XXXIII, found in the vicinity of Andromeda (M31) in stacked imaging data from the Pan-STARRS1 3π survey. Located 27.°9 away from M31, Perseus I has a heliocentric distance of 785 ± 65 kpc, compatible with it being a satellite of M31 at 374−10+14 kpc from its host. The properties of Perseus I are typical for a reasonably bright dwarf galaxy (MV = –10.3 ± 0.7), with an exponential half-light radius of rh = 1.7 ± 0.4 arcmin or rh=400−85+105 pc at this distance, and a moderate ellipticity (ϵ=0.43−0.17+0.15). The late discovery of Perseus I is due to its fairly low surface brightness (μ0=25.7−0.9+1.0 mag arcsec–2), and to the previous lack of deep, high quality photometric data in this region. If confirmed to be a companion of M31, the location of Perseus I, far east from its host, could place interesting constraints on the bulk motion of the satellite system of M31

  5. A spectroscopic binary in the Hercules dwarf spheroidal galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Andreas; Hansen, Terese [Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, D-69117 Heidelberg (Germany); Feltzing, Sofia [Lund Observatory, Department of Astronomy and Theoretical Physics, Box 43, SE-22100 Lund (Sweden); Wilkinson, Mark I., E-mail: akoch@lsw.uni-heidelberg.de [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2014-01-01

    We present the radial velocity curve of a single-lined spectroscopic binary in the faint Hercules dwarf spheroidal (dSph) galaxy, based on 34 individual spectra covering more than 2 yr of observations. This is the first time that orbital elements could be derived for a binary in a dSph. The system consists of a metal-poor red giant and a low-mass companion, possibly a white dwarf, with a 135 day period in a moderately eccentric (e = 0.18) orbit. Its period and eccentricity are fully consistent with metal-poor binaries in the Galactic halo, while the projected semimajor axis is small, at a{sub p} sin i = 38 R {sub ☉}. In fact, a very close orbit could inhibit the production of heavier elements through s-process nucleosynthesis, leading to the very low abundances of neutron-capture elements that are found in this star. We discuss the further implications for the chemical enrichment history of the Hercules dSph, but find no compelling binary scenario that could reasonably explain the full, peculiar abundance pattern of the Hercules dSph galaxy.

  6. Photo-evaporation by thermal winds in dwarf galaxies

    CERN Document Server

    Shaviv, N J

    2003-01-01

    We revisit the evaporation process of gas from dwarf galaxies after it has been photo-ionized by the UV flux from the first stars and AGNs and heated to T~10^4K or 2x10^4K respectively. Earlier estimates, based on the balance between pressure and gravity, indicated that dark haloes of virial velocity lower than Vevap ~ 11-13 km/s have lost most of their gas in a dynamical time. We follow the continuous evaporation by a thermal wind during the period when the ionizing flux was effective. We find that the critical virial velocity for significant evaporation is significantly higher. For example, if the ionization starts at z-ion=10 and is maintained until z=2, a mass loss of one e-fold occurs in haloes of Vevap ~ 25 (or 35 km/s) for T ~ 10^4K (or 2x10^4K). Haloes of Vevap ~ 21 km/s (or 29 km/s) lose one e-fold within the first Hubble time at z=10. Any dwarf galaxies with virial velocities smaller than Vevap must have formed their stars from a small fraction of their gas before z-ion, and then lost the rest of th...

  7. Dwarf Galaxies in the Coma Cluster: I. Velocity Dispersion Measurements

    CERN Document Server

    Kourkchi, E; Carter, D; Karick, A M; Mármol-Queraltó, E; Chiboucas, K; Tully, R B; Mobasher, B; Guzmán, R; Matković, A; Gruel, N

    2011-01-01

    We present the study of a large sample of early-type dwarf galaxies in the Coma cluster observed with DEIMOS on the Keck II to determine their internal velocity dispersion. We focus on a subsample of 41 member dwarf elliptical galaxies for which the velocity dispersion can be reliably measured, 26 of which were studied for the first time. The magnitude range of our sample is $-21

  8. Global properties of the Sculptor and Fornax dwarf elliptical galaxies

    International Nuclear Information System (INIS)

    The global properties of the Sculptor and Fornax dwarf elliptical galaxies are examined. These are determined from star counts from Schmidt plates. Luminosity functions (LFs) are constructed. Giants and horizontal-branch star counts imply Y = 0.23 ± 0.05 for Sculptor. Comparisons of globular cluster and theoretical LFs with Sculptor's indicate a range in the turn-off mass, or the RGB mass loss rate. The LF of Fornax shows a larger ratio of bright to faint giants than is seen in clusters, or in two-burst model functions. This indicates that a two-burst model for Fornax is inadequate. Radial profiles are compared with King (1966) models and exponential laws. Fits confirm the assertion that the profiles of the halo dwarfs are as well fit by exponentials as are many irregulars. Results for the King model fits imply a mass for the Galaxy of 1.2 ± 0.6 x 1011 solar masses. Two-dimensional structure in both systems is investigated using residual maps of the raw star counts minus symmetric fits. These maps clearly show internal structure

  9. New low surface brightness dwarf galaxies in the Centaurus group

    CERN Document Server

    Müller, Oliver; Binggeli, Bruno

    2016-01-01

    We conducted an extensive CCD search for faint, unresolved dwarf galaxies of very low surface brightness in the whole Centaurus group region encompassing the Cen A and M 83 subgroups lying at a distance of roughly 4 and 5 Mpc, respectively. The aim is to significantly increase the sample of known Centaurus group members down to a fainter level of completeness, serving as a basis for future studies of the 3D structure of the group. Following our previous survey of 60 square degrees covering the M 83 subgroup, we extended and completed our survey of the Centaurus group region by imaging another 500 square degrees area in the g and r bands with the wide-field Dark Energy Survey Camera at the 4m Blanco telescope at CTIO. The limiting central surface brightness reached for suspected Centaurus members is $\\mu_r \\approx 29$ mag arcsec$^{-2}$, corresponding to an absolute magnitude $M_r \\approx -9.5$. The images were enhanced using different filtering techniques. We found 41 new dwarf galaxy candidates, which togethe...

  10. Alignment of Red-Sequence Cluster Dwarf Galaxies: From the Frontier Fields to the Local Universe

    Science.gov (United States)

    Barkhouse, Wayne Alan; Archer, Haylee; Burgad, Jaford; Foote, Gregory; Rude, Cody; Lopez-Cruz, Omar

    2015-08-01

    Galaxy clusters are the largest virialized structures in the universe. Due to their high density and mass, they are an excellent laboratory for studying the environmental effects on galaxy evolution. Numerical simulations have predicted that tidal torques acting on dwarf galaxies as they fall into the cluster environment will cause the major axis of the galaxies to align with their radial position vector (a line that extends from the cluster center to the galaxy's center). We have undertaken a study to measure the redshift evolution of the alignment of red-sequence cluster dwarf galaxies based on a sample of 57 low-redshift Abell clusters imaged at KPNO using the 0.9-meter telescope, and 64 clusters from the WINGS dataset. To supplement our low-redshift sample, we have included galaxies selected from the Hubble Space Telescope Frontier fields. Leveraging the HST data allows us to look for evolutionary changes in the alignment of red-sequence cluster dwarf galaxies over a redshift range of 0 results based on the alignment of the red-sequence dwarf galaxies with: 1) the major axis of the brightest cluster galaxy, 2) the major axis of the cluster defined by the position of cluster members, and 3) a radius vector pointing from the cluster center to individual dwarf galaxies. Our combined cluster sample is sub-divided into different radial regions and redshift bins.

  11. WFPC2 Observations of the URSA Minor Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Mighell, Kenneth J.; Burke, Christopher J.

    1999-01-01

    We present our analysis of archival Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) observations in F555W (approximately V) and F814W (approximately I) of the central region of the Ursa Minor dwarf spheroidal galaxy. The V versus V - I color-magnitude diagram features a sparsely populated blue horizontal branch, a steep thin red giant branch, and a narrow subgiant branch. The main sequence reaches approximately 2 magnitudes below the main-sequence turnoff (V(sup UMi, sub TO) approximately equals 23.27 +/- 0.11 mag) of the median stellar population. We compare the fiducial sequence of the Galactic globular cluster M92 (NGC 6341). The excellent match between Ursa Minor and M92 confirms that the median stellar population of the UMi dSph galaxy is metal poor ([Fe/H](sub UMi) approximately equals [Fe/H](sub M92) approximately equals -2.2 dex) and ancient (age(sub UMi)approximately equalsage(sub M92) approximately equals 14 Gyr). The B - V reddening and the absorption in V are estimated to be E(B - V) = 0.03 +/- 0.01 mag and A(sup UMi, sub V) = 0.09 +/- 0.03 mag. A new estimate of the distance modulus of Ursa Minor, (m - M)(sup UMi, sub 0) = 19.18 +/- 0.12 mag, has been derived based on fiducial-sequence fitting M92 [DELTA.V(sub UMi - M92) = 4.60 +/- 0.03 mag and DELTA(V - I)(sub UMi - M92) = 0.010 +/- 0.005 mag] and the adoption of the apparent V distance modulus for M92 of (m - M)(sup M92, sub V) = 14.67 +/- 0.08 mag (Pont et al. 1998, A&A, 329, 87). The Ursa Minor dwarf spheroidal galaxy is then at a distance of 69 +/- 4 kpc from the Sun. These HST observations indicate that Ursa Minor has had a very simple star formation history consisting mainly of a single major burst of star formation about 14 Gyr ago which lasted approximately ancient. If the ancient Galactic globular clusters, like M92, formed concurrently with the early formation of the Milky Way galaxy itself, then the Ursa Minor dwarf spheroidal is probably as old as the Milky Way.

  12. The origin of prolate rotation in dwarf spheroidal galaxies formed by mergers of disky dwarfs

    CERN Document Server

    Ebrova, Ivana

    2015-01-01

    Motivated by the discovery of prolate rotation of stars in Andromeda II, a dwarf spheroidal companion of M31, we study the origin of this type of streaming motion via mergers of disky dwarf galaxies. We simulate merger events between two identical dwarfs changing the initial inclination of their disks with respect to the orbit and the amount of orbital angular momentum. On radial orbits the amount of prolate rotation in the merger remnants correlates strongly with the inclination of the disks and is well understood as due to the conservation of the angular momentum component of the disks along the merger axis. For non-radial orbits prolate rotation may still be produced if the orbital angular momentum is initially not much larger than the intrinsic angular momentum of the disks. The orbital structure of the remnants with significant rotation is dominated by box orbits in the center and long-axis tubes in the outer parts. We also detect significant figure rotation resulting from the tidal distortion of the dis...

  13. The early-type dwarf galaxy population of the Centaurus cluster

    OpenAIRE

    Misgeld, I.; Hilker, M.; Mieske, S.

    2009-01-01

    We present a photometric study of the early-type dwarf galaxy population of the Centaurus cluster, aiming at investigating the galaxy luminosity function (LF) and galaxy scaling relations down to the regime of galaxies with M_V~-10 mag. On deep VLT/FORS1 V- and I-band images of the central part of the cluster, we identify cluster dwarf-galaxy candidates using both morphological and surface brightness selection criteria. Photometric and structural parameters of the candidates are derived from ...

  14. Early-type dwarf galaxies with multicomponent stellar structure: Are they remnants of disc galaxies strongly transformed by their environment?

    CERN Document Server

    Aguerri, J Alfonso L

    2016-01-01

    The surface brightness distribution of $\\sim$30-40$\\%$ of the early-type dwarf galaxies with $-18 \\leq M_{B} \\leq -15$ in the Virgo and the Coma clusters is fitted by models that include two structural components (S\\`ersic + exponential) as for bright disc galaxies.The goal of the present study is to determine whether early-type dwarf galaxies with a two-component stellar structure in the Virgo and the Coma clusters are low-luminosity copies of bright disc galaxies or are the remnants of bright galaxies strongly transformed by cluster environmental effects.I analysed the location of bright disc galaxies and early-type dwarfs in the $r_{b,e}/h$- $n$ plane. The location in this plane of the two-component dwarf galaxies was compared with the remnants of tidally disrupted disc galaxies reported by numerical simulations. Bright unbarred disc galaxies show a strong correlation in the $r_{b,e}/h$-$n$ plane. Galaxies with larger S\\`ersic shape parameters show a higher $r_{b,e}/h$ ratio. In contrast, two-component ear...

  15. The faint outer regions of the Pegasus Dwarf Irregular galaxy: a much larger and undisturbed galaxy

    CERN Document Server

    Kniazev, Alexei; Hoffman, G Lyle; Grebel, Eva K; Zucker, Daniel B; Pustilnik, Simon A

    2009-01-01

    We investigate the spatial extent and structure of the Pegasus dwarf irregular galaxy using deep, wide-field, multicolour CCD photometry from the Sloan Digital Sky Survey (SDSS) and new deep HI observations. We study an area of ~0.6 square degrees centred on the Pegasus dwarf that was imaged by SDSS. Using effective filtering in colour-magnitude space we reduce the contamination by foreground Galactic field stars and increase significantly the contrast in the outer regions of the Pegasus dwarf. Our extended surface photometry, reaches down to a surface brightness magnitude mu_r~32 mag/sq.arcsec. It reveals a stellar body with a diameter of ~8 kpc that follows a Sersic surface brightness distribution law, which is composed of a significantly older stellar population than that observed in the ~2 kpc main body. The galaxy is at least five times more extended than listed in NED. The faint extensions of the galaxy are not equally distributed around its circumference; the north-west end is more jagged than the sout...

  16. The observed properties of dwarf galaxies in and around the Local Group

    CERN Document Server

    McConnachie, Alan W

    2012-01-01

    Positional, structural and dynamical parameters for all dwarf galaxies in and around the Local Group are presented, and various aspects of our observational understanding of this volume-limited sample are discussed. Over 100 nearby galaxies that have distance estimates placing them within 3Mpc of the Sun are identified. This distance threshold samples dwarfs in a large range of environments, from the satellite systems of the MW and M31, to the dwarfs in the outer regions of the Local Group, to the numerous isolated galaxies found in its surroundings. It extends to, but does not include, the galaxies associated with the next nearest groups. Our basic knowledge of this important galactic subset and their resolved stellar populations will continue to improve dramatically over the coming years with existing and future observational capabilities, and they will continue to provide the most detailed information available on numerous aspects of dwarf galaxy formation and evolution. Basic observational parameters, suc...

  17. THE CHEMICAL EVOLUTION OF THE URSA MINOR DWARF SPHEROIDAL GALAXY

    International Nuclear Information System (INIS)

    We present an abundance analysis based on high-resolution spectra of 10 stars selected to span the full range in metallicity in the Ursa Minor (UMi) dwarf spheroidal (dSph) galaxy. We find that [Fe/H] for the sample stars ranges from -1.35 to -3.10 dex. Combining our sample with previously published work for a total of 16 luminous UMi giants, we establish the trends of abundance ratios [X/Fe] as functions of [Fe/H] for 15 elements. In key cases, particularly for the α-elements, these trends resemble those for stars in the outer part of the Galactic halo, especially at the lowest metallicities probed. The neutron-capture elements show an r-process distribution over the full range of Fe metallicity reached in this dSph galaxy. This suggests that the duration of star formation in the UMi dSph was shorter than in other dSph galaxies. The derived ages for a larger sample of UMi stars with more uncertain metallicities also suggest a population dominated by uniformly old (∼13 Gyr) stars, with a hint of an age-metallicity relationship. Upon comparing our results for UMi, our earlier work in Draco, and published studies of more metal-rich dSph Galactic satellites, there appears to be a pattern of moving from a chemical inventory for dSph giants with [Fe/H] ∼ - 1.5 dex leads to a chemical inventory wildly discrepant from that of any component of the Milky Way. We note the presence of two UMi giants with [Fe/H] <-3.0 dex in our sample and reaffirm that the inner Galactic halo could have been formed by early accretion of Galactic satellite galaxies and dissolution of young globular clusters, while the outer halo could have formed from those satellite galaxies that accreted somewhat later.

  18. PULSATING VARIABLE STARS IN THE COMA BERENICES DWARF SPHEROIDAL GALAXY

    International Nuclear Information System (INIS)

    We present B, V, I time-series photometry of the Coma Berenices dwarf spheroidal galaxy, a faint Milky Way (MW) satellite, recently discovered by the Sloan Digital Sky Survey. We have obtained V, B - V and V, V - I color-magnitude diagrams that reach V ∼ 23.0-23.2 mag showing the galaxy turnoff at V ∼ 21.7 mag, and have performed the first study of the variable star population of this new MW companion. Two RR Lyrae stars (a fundamental-mode, RRab, and a first overtone, RRc, pulsator) and a short period variable with period P = 0.12468 days were identified in the galaxy. The RRab star has a rather long period of P ab = 0.66971 days and is about 0.2 mag brighter than the RRc variable and other nonvariable stars on the galaxy horizontal branch (HB). In the period-amplitude diagram, the RRab variable falls closer to the loci of Oosterhoff type-II systems and evolved fundamental-mode RR Lyrae stars in the Galactic globular cluster M3. The average apparent magnitude of the galaxy HB, (V HB) = 18.64 ± 0.04 mag, leads to a distance modulus for the Coma dSph μ0 = 18.13 ± 0.08 mag, corresponding to a distance d = 42+2-1 kpc, by adopting a reddening E(B - V) = 0.045 ± 0.015 mag and a metallicity [Fe/H] =-2.53 ± 0.05 dex.

  19. Sulphur in the Sculptor dwarf spheroidal galaxy - Including NLTE corrections

    CERN Document Server

    Skuladottir, Asa; Tolstoy, Eline; Hill, Vanessa; Salvadori, Stefania; Korotin, Sergey A; Pettini, Max

    2015-01-01

    In Galactic halo stars, sulphur has been shown to behave like other $\\alpha$-elements, but until now, no comprehensive studies have been done on this element in stars of other galaxies. Here, we use high-resolution ESO VLT/FLAMES/GIRAFFE spectra to determine sulphur abundances for 85 stars in the Sculptor dwarf spheroidal galaxy, covering the metallicity range $-2.5\\leq \\text{[Fe/H]} \\leq-0.8$. The abundances are derived from the S~I triplet at 9213, 9228, and 9238~\\AA. These lines have been shown to be sensitive to departure from local thermodynamic equilibrium, i.e. NLTE effects. Therefore, we present new NLTE corrections for a grid of stellar parameters covering those of the target stars. The NLTE-corrected sulphur abundances in Sculptor show the same behaviour as other $\\alpha$-elements in that galaxy (such as Mg, Si, and Ca). At lower metallicities ($\\text{[Fe/H]}\\lesssim-2$) the abundances are consistent with a plateau at $\\text{[S/Fe]}\\approx+0.16$, similar to what is observed in the Galactic halo, $\\t...

  20. Surface brightness fluctuation distances for nearby dwarf elliptical galaxies

    CERN Document Server

    Jerjen, H; Takalo, L; Coleman, M; Valtonen, M J; Jerjen, Helmut; Rekola, Rami; Takalo, Leo; Coleman, Matthew; Valtonen, Mauri

    2001-01-01

    We obtained B and R-band CCD images for the dwarf elliptical (dE) galaxies DDO44, UGC4998, KK98_77, DDO71, DDO113, and UGC7356 at the NOT. Using Fourier analysis technique we measure stellar R-band surface brightness fluctuations (SBFs) and magnitudes in 29 different fields of the galaxies. Independent tip of the red giant branch distances for DDO44, KK98_77, DDO71 are used to convert their set of apparent into absolute SBF magnitudes. The results are combined with the local (B-R) colours and compared with the (B-R)-\\bar{M}_R relation for mainly old, metal-poor stellar populations as predicted by Worthey's population synthesis models using Padova isochrones. While the colour dependency of the theoretical relation is confirmed by the empirical data, we find a systematic zero point offset between observations and theory in the sense that models are too faint by 0.13+-0.02 mag. Based on these findings we establish a new semiempirical calibration of the SBF method as distance indicator for dE galaxies with an est...

  1. Ages and chemical abundances in dwarf spheroidal galaxies

    CERN Document Server

    Smecker-Hane, T A; Smecker-Hane, Tammy; William, Andrew Mc

    1999-01-01

    The dwarf spheroidal galaxies (dSphs) in the Local Group are excellent systems on which we can test theories of galaxy formation and evolution. Color-magnitude diagrams (CMDs) containing many thousands of stars from the asymptotic giant branch to well below the oldest main-sequence turnoff are being used to infer their star-formation histories, and surprisingly complex evolutionary histories have been deduced. Spectroscopy of individual red giant stars in the dSphs is being used to determine the distribution of chemical abundances in them. By combining photometry and spectroscopy, we can overcome the age-metallicity degeneracy inherent in CMDs and determine the evolution of dSphs with unprecedented accuracy. We report on recent progress and discuss a new and exciting avenue of research, high-dispersion spectroscopy that yields abundances for numerous chemical elements. The later allows us to estimate the enrichment from both Type Ia and Type II supernovae (SNe) and places new limits on how much of the Galaxy ...

  2. In-spiraling Clumps in Blue Compact Dwarf Galaxies

    CERN Document Server

    Elmegreen, Bruce G; Hunter, Deidre

    2012-01-01

    Giant star-formation clumps in dwarf irregular galaxies can have masses exceeding a few percent of the galaxy mass enclosed inside their orbital radii. They can produce sufficient torques on dark matter halo particles, halo stars, and the surrounding disk to lose their angular momentum and spiral into the central region in 1 Gyr. Pairs of giant clumps with similarly large relative masses can interact and exchange angular momentum to the same degree. The result of this angular momentum loss is a growing central concentration of old stars, gas, and star formation that can produce a long-lived starburst in the inner region, identified with the BCD phase. This central concentration is proposed to be analogous to the bulge in a young spiral galaxy. Observations of star complexes in five local BCDs confirm the relatively large clump masses that are expected for this process. The observed clumps also seem to contain old field stars, even after background light subtraction, in which case the clumps may be long-lived....

  3. Chemical Evolution of Dwarf Spheroidal and Blue Compact Galaxies

    CERN Document Server

    Lanfranchi, G A; Lanfranchi, Gustavo A.; Matteucci, Francesca

    2003-01-01

    We studied the chemical evolution of Dwarf Spheroidal (dSph) and Blue Compact Galaxies (BCGs) by means of comparison between the predictions of chemical evolution models and several observed abundance ratios. Detailed models with up to date nucleosynthesis taking into account the role played by supernovae of different types (II, Ia) were developed for both types of galaxies allowing us to follow the evolution of several chemical elements. The models are specified by the prescriptions of the star formation (SF) and galactic wind efficiencies chosen to reproduce the main features of these galaxies. We also investigated a possible connection in the evolution of dSph and BCGs and compared the predictions of the models to the abundance ratios observed in Damped Lyman alpha Systems (DLAs). The main conclusions are: i) the observed distribution of [alpha/Fe] vs. [Fe/H] in dSph is mainly a result of the SF rate coupled with the wind efficiency; ii) a low SF efficiency and a high wind efficiency are required to reprod...

  4. Distribution of star-forming complexes in dwarf irregular galaxies

    CERN Document Server

    Parodi, B R

    2003-01-01

    We study the distribution of bright star-forming complexes in a homogeneous sample of 72 late-type (``irregular'') dwarf galaxies located within the 10 Mpc volume. Star-forming complexes are identified as bright lumps in B-band galaxy images and isolated by means of the unsharp-masking method. For the sample as a whole the radial number distribution of bright lumps largely traces the underlying exponential-disk light profiles, but peaks at a 10 percent smaller scale length. Moreover, the presence of a tail of star forming regions out to at least six optical scale lengths provides evidence against a systematic star formation truncation within that galaxy extension. Considering these findings, we apply a scale length-independent concentration index, taking into account the implied non-uniform random spread of star formation regions throughout the disk. The number profiles frequently manifest a second, minor peak at about two scale lengths. Relying on a two-dimensional stochastic self-propagating star formation ...

  5. STATISTICAL ANALYSIS OF DWARF GALAXIES AND THEIR GLOBULAR CLUSTERS IN THE LOCAL VOLUME

    International Nuclear Information System (INIS)

    Although morphological classification of dwarf galaxies into early and late types can account for some of their origin and characteristics, this does not aid the study of their formation mechanism. Thus an objective classification using principal component analysis together with K means cluster analysis of these dwarf galaxies and their globular clusters (GCs) is carried out to overcome this problem. It is found that the classification of dwarf galaxies in the local volume is irrespective of their morphological indices. The more massive (MV0 V0 > - 13.7) are influenced by their environment in the star formation process.

  6. Star Formation at Low Metallicity in Local Dwarf Irregular Galaxies

    Science.gov (United States)

    Elmegreen, Bruce; Hunter, Deidre Ann; Rubio, Monica; Brinks, Elias; Cortés, Juan R.; Cigan, Phil

    2016-01-01

    The radial profiles of star formation rates and surface mass densities for gas and stars have been compiled for 20 local dwarf irregular galaxies and converted into disk scale heights and Toomre Q values. The scale heights are relatively large compared to the galaxy sizes (~0.6 times the local radii) and generally increase with radius in a flare. The gaseous Q values are high, ~4, at most radii and even higher for the stars. Star formation proceeds even with these high Q values in a normal exponential disk as viewed in the far ultraviolet. Such normal star formation suggests that Q is not relevant to star formation in dIrrs. The star formation rate per unit area always equals approximately the gas surface density divided by the midplane free fall time with an efficiency factor of about 1% that decreases systematically with radius in approximate proportion to the gas surface density. We view this efficiency variation as a result of a changing molecular fraction in a disk where atomic gas dominates both stars and molecules. In a related study, CO observations with ALMA of star-forming regions at the low metallicities of these dwarfs, which averages 13% solar, shows, in the case of the WLM galaxy, tiny CO clouds inside much larger molecular and atomic hydrogen envelopes. The CO cloud mass fraction within the molecular region is only one percent or so. Nevertheless, the CO clouds have properties that are similar to solar neighborhood clouds: they satisfy the size-linewidth relation observed in the LMC, SMC, and other local dwarfs where CO has been observed, and the same virial mass versus luminosity relation. This uniforming of CO cloud properties seems to be the result of a confining pressure from the weight of the overlying molecular and atomic shielding layers. Star formation at low metallicity therefore appears to be a three dimensional process independent of 2D instabilities involving Q, in highly atomic gas with relatively small CO cores, activated at a rate

  7. Gravitational wave radiation from a double white dwarf system inside our galaxy: a potential method for seeking strange dwarfs

    Institute of Scientific and Technical Information of China (English)

    Zhan-Kui Lü; Shi-Wei Wu; Zhi-Cheng Zeng

    2009-01-01

    Like the investigation of double white dwarf (DWD) systems, strange dwarf (SD) - white dwarf (WD) system evolution in Laser Interferometer Space Antenna (LISA)'s absolute amplitude-frequency diagram is investigated. Since there is a strange quark core inside an SD, SDs' radii are significantly smaller than the value predicted by the standard WD model, which may strongly affect the gravitational wave (GW) signal in the mass-transferring phases of binary systems. We study how an SD-WD binary evolves across LISA's absolute amplitude-frequency diagram. In principle, we provide an executable way to detect SDs in the Galaxy's DWD systems by radically new windows offered by GW detectors.

  8. A 21 cm redshift survey and the large scale distribution of dwarf galaxies

    International Nuclear Information System (INIS)

    The first results of an all-sky 21-cm redshift survey of all 1849 galaxies classified as dwarf, magellanic irregular or irregular are presented. The detection rate is∼85 %. The survey reveals a broad continuum of galaxies with absolute blue luminosities. Detailed comparison of the spatial distributions of dwarf and bright galaxies shows that there is no difference between the two distributions. Dwarf galaxies do not fill the voids seen in the bright galaxy distribution. This rules out a certain class of biased galaxy formation theories. If biasing occurs, the dark matter which is in the voids cannot be traced by dwarf and LSB galaxies, and biasing must be equally effective for both bright and faint galaxies. The dwarf redshift sample has been used in conjunction with other redshift samples to measure the topology of the universe out to∼21 000 km s-1. The universe shows a sponge-like topology, which implies random phase Gaussian initial density fluctuations. This topology is inconsistent with explosive amplification or cosmic string galaxy formation models. The cold dark matter model withω=1 and H=50 km s-1 Mpc-1 fits best the topology of the universe on different length scales

  9. The spatial distribution of dwarf galaxies in the CfA slice of the universe

    Science.gov (United States)

    Thuan, Trinh X.; Gott, J. Richard, III; Schneider, Stephen E.

    1987-01-01

    A complete (with the the exception of one) redshift sample of 58 galaxies in the Nilson catalog classified as dwarf, irregular, or Magellanic irregular is used to investigate the large-scale clustering properties of these low-surface brightness galaxies in the CfA slice of the universe (alpha in the range of 8-17 h, delta in the range of 26.5-32.5 deg). It is found that the low-surface brightness dwarf galaxies also lie on the structures delineated by the high-surface brightness normal galaxies and that they do not fill in the voids. This is inconsistent with a class of biased galaxy formation theories which predict that dwarf galaxies should be present everywhere, including the voids.

  10. The G-dwarf problem in the Galaxy

    CERN Document Server

    Caimmi, R

    2007-01-01

    The empirical differential metallicity distribution (EDMD) is deduced for (i) local thick disk stars; (ii) likely metal-weak thick disk stars; (iii) chemically selected local G dwarfs, with the corrections performed in order to take into account the stellar scale height; in addition to previous results related to (iv) solar neighbourhood halo subdwarfs; and (v) K-giant bulge stars. The thick disk is conceived as made of two distinct regions: the halo-like and the bulge-like thick disk, and the related EDMD is deduced. Under the assumption that each distribution is typical for the corresponding subsystem, the EDMD of the thick disk, the thick + thin disk, and the Galaxy, is determined by weighting the mass. Models of chemical evolution are computed for each subsystem assuming the instantaneous recycling approximation. The EDMD data are reasonably fitted by simple models implying both homogeneous and inhomogeneous star formation, provided that star formation is inhibited during thick disk evolution. The initial...

  11. Metal diffusion in smoothed particle hydrodynamics simulations of dwarf galaxies

    CERN Document Server

    Williamson, David John; Kawata, Daisuke

    2016-01-01

    We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows, and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths, by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by varying whether the speed of sound is included as a velocity term. Stronger diffusion produces a tighter [O/Fe]-[Fe/H] distribution in the gas, and cuts off the gas metallicity distribution function at lower metallicities. Diffusion suppresses the formation of low-metallicity stars, even with weak diffusion, and also strips metals from enriched outflows. This produces a remarkably tight correlation between "metal mass-loading" (mean metal outflow rate divided by mean metal production rate) and the strength of diffusion, even...

  12. Tidal dwarf galaxies as a test of fundamental physics

    CERN Document Server

    Gentile, G; Combes, F; Kroupa, P; Zhao, H S; Tiret, O

    2007-01-01

    Within the cold dark matter (CDM) framework tidal dwarf galaxies (TDGs) cannot contain dark matter, so the recent results by Bournaud et al. (2007) that 3 rotating TDGs do show significant evidence for being dark matter dominated is inconsistent with the current concordance cosmological theory unless yet another dark matter component is postulated. We confirm that the TDG rotation curves are consistent with Newtonian dynamics only if either an additional dark matter component is postulated, or if all 3 TDGs happen to be viewed edge-on, which is unlikely given the geometry of the tidal debris. We also find that the observed rotation curves are very naturally explained without any free parameters within the modified Newtonian dynamics (MOND) framework if inclinations are adopted as derived by Bournaud et al. We explore different inclination angles and two different assumptions about the external field effect. The results do not change significantly, and we conclude therefore that Newtonian dynamics has severe p...

  13. Dark Matter in $\\gamma$ lines: Galactic Center vs dwarf galaxies

    CERN Document Server

    Lefranc, Valentin; Panci, Paolo; Sala, Filippo; Silk, Joseph

    2016-01-01

    We provide CTA sensitivities to Dark Matter (DM) annihilation in $\\gamma$-ray lines, from the observation of the Galactic Center (GC) as well as, for the first time, of dwarf Spheroidal galaxies (dSphs). We compare the GC reach with that of dSphs as a function of a putative core radius of the DM distribution, which is itself poorly known. We find that the currently best dSph candidates constitute a more promising target than the GC, for core radii of one to a few kpc. We use the most recent instrument response functions and background estimations by CTA, on top of which we add the diffuse photon component. Our analysis is of particular interest for TeV-scale electroweak multiplets as DM candidates, such as the supersymmetric Wino and the Minimal Dark Matter fiveplet, whose predictions we compare with our projected sensitivities.

  14. X-Ray Sources in the Dwarf Spheroidal Galaxy Draco

    Science.gov (United States)

    Sonbas, E.; Rangelov, B.; Kargaltsev, O.; Dhuga, K. S.; Hare, J.; Volkov, I.

    2016-04-01

    We present the spectral analysis of an 87 ks XMM-Newton observation of Draco, a nearby dwarf spheroidal galaxy. Of the approximately 35 robust X-ray source detections, we focus our attention on the brightest of these sources, for which we report X-ray and multiwavelength parameters. While most of the sources exhibit properties consistent with active galactic nuclei, few of them possess the characteristics of low-mass X-ray binaries (LMXBs) and cataclysmic variable (CVs). Our analysis places constraints on the population of X-ray sources with LX > 3 × 1033 erg s‑1 in Draco, suggesting that there are no actively accreting black hole and neutron star binaries. However, we find four sources that could be quiescent state LMXBs/CVs associated with Draco. We also place constraints on the central black hole luminosity and on a dark matter decay signal around 3.5 keV.

  15. THE DEARTH OF NEUTRAL HYDROGEN IN GALACTIC DWARF SPHEROIDAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Spekkens, Kristine; Urbancic, Natasha [Department of Physics, Royal Military College of Canada, P.O. Box 17000, Station Forces, Kingston, Ontario K7K 7B4 (Canada); Mason, Brian S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Willman, Beth [Haverford College, 370 Lancaster Avenue, Haverford, PA 19041 (United States); Aguirre, James E., E-mail: kristine.spekkens@rmc.ca [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States)

    2014-11-01

    We present new upper limits on the neutral hydrogen (H I) content within the stellar half-light ellipses of 15 Galactic dwarf spheroidal galaxies (dSphs), derived from pointed observations with the Green Bank Telescope (GBT) as well as Arecibo L-band Fast ALFA survey and Galactic All-Sky Survey data. All of the limits M{sub H} {sub I}{sup lim} are more stringent than previously reported values, and those from the GBT improve upon constraints in the literature by a median factor of 23. Normalizing by V-band luminosity L{sub V} and dynamical mass M {sub dyn}, we find M{sub H} {sub I}{sup lim}/L{sub V}∼10{sup −3} M{sub ⊙}/L{sub ⊙} and M{sub H} {sub I}{sup lim}/M{sub dyn}∼5×10{sup −5}, irrespective of location in the Galactic halo. Comparing these relative H I contents to those of the Local Group and nearby neighbor dwarfs compiled by McConnachie, we find that the Galactic dSphs are extremely gas-poor. Our H I upper limits therefore provide the clearest picture yet of the environmental dependence of the H I content in Local Volume dwarfs. If ram pressure stripping explains the dearth of H I in these systems, then orbits in a relatively massive Milky Way are favored for the outer halo dSph Leo I, while Leo II and Canes Venatici I have had a pericentric passage in the past. For Draco and Ursa Minor, the interstellar medium mass that should accumulate through stellar mass loss in between pericentric passages exceeds M{sub H} {sub I}{sup lim} by a factor of ∼30. In Ursa Minor, this implies that either this material is not in the atomic phase, or that another mechanism clears the recycled gas on shorter timescales.

  16. A spectroscopic binary in the Hercules dwarf spheroidal galaxy

    CERN Document Server

    Koch, Andreas; Feltzing, Sofia; Wilkinson, Mark I

    2013-01-01

    We present the radial velocity curve of a single-lined spectroscopic binary in the faint Hercules dwarf spheroidal (dSph) galaxy, based on 34 individual spectra covering more than two years of observations. This is the first time that orbital elements could be derived for a binary in a dSph. The system consists of a metal-poor red giant and a low-mass companion, possibly a white dwarf, with a 135-days period in a moderately eccentric ($e=0.18$) orbit. Its period and eccentricity are fully consistent with metal-poor binaries in the Galactic halo, while the projected semimajor axis is small, at $a_p$ sin$i$ = 38 R$_{sun}$. In fact, a very close orbit could inhibit the production of heavier elements through $s$-process nucleosynthesis, leading to the very low abundances of neutron-capture elements that are found in this star. We discuss the further implications for the chemical enrichment history of the Hercules dSph, but find no compelling binary scenario that could reasonably explain the full, peculiar abundan...

  17. The early days of the Sculptor dwarf spheroidal galaxy

    CERN Document Server

    Jablonka, P; Mashonkina, L; Hill, V; Revaz, Y; Shetrone, M; Starkenburg, E; Irwin, M; Tolstoy, E; Battaglia, G; Venn, K; Helmi, A; Primas, F; Francois, P

    2015-01-01

    We present the high resolution spectroscopic study of five -3.9<=[Fe/H]<=-2.5 stars in the Local Group dwarf spheroidal, Sculptor, thereby doubling the number of stars with comparable observations in this metallicity range. We carry out a detailed analysis of the chemical abundances of alpha, iron peak, light and heavy elements, and draw comparisons with the Milky Way halo and the ultra faint dwarf stellar populations. We show that the bulk of the Sculptor metal-poor stars follows the same trends in abundance ratios versus metallicity as the Milky Way stars. This suggests similar early conditions of star formation and a high degree of homogeneity of the interstellar medium. We find an outlier to this main regime, which seems to miss the products of the most massive of the TypeII supernovae. In addition to its value to help refining galaxy formation models, this star provides clues to the production of cobalt and zinc. Two of our sample stars have low odd-to-even barium isotope abundance ratios, suggesti...

  18. Ejection of Supernova-Enriched Gas From Dwarf Disk Galaxies

    CERN Document Server

    Fragile, P C; Lin, D N C; Murray, Stephen D.; Lin, Douglas N. C.

    2004-01-01

    We examine the efficiency with which supernova-enriched gas may be ejected from dwarf disk galaxies, using a methodology previously employed to study the self-enrichment efficiency of dwarf spheroidal systems. Unlike previous studies that focused on highly concentrated starbursts, in the current work we consider discrete supernova events spread throughout various fractions of the disk. We model disk systems having gas masses of 10^8 and 10^9 solar masses with supernova rates of 30, 300, and 3000 per Myr. The supernova events are confined to the midplane of the disk, but distributed over radii of 0, 30, and 80% of the disk radius, consistent with expectations for Type II supernovae. In agreement with earlier studies, we find that the enriched material from supernovae is largely lost when the supernovae are concentrated near the nucleus, as expected for a starburst event. In contrast, however, we find the loss of enriched material to be much less efficient when the supernovae occur over even a relatively small ...

  19. Ejection of Supernova-Enriched Gas From Dwarf Disk Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Fragile, P C; Murray, S D; Lin, D C

    2004-06-15

    We examine the efficiency with which supernova-enriched gas may be ejected from dwarf disk galaxies, using a methodology previously employed to study the self-enrichment efficiency of dwarf spheroidal systems. Unlike previous studies that focused on highly concentrated starbursts, in the current work we consider discrete supernova events spread throughout various fractions of the disk. We model disk systems having gas masses of 10{sup 8} and 10{sup 9} M{sub {circle_dot}} with supernova rates of 30, 300, and 3000 Myr{sup -1}. The supernova events are confined to the midplane of the disk, but distributed over radii of 0, 30, and 80% of the disk radius, consistent with expectations for Type II supernovae. In agreement with earlier studies, we find that the enriched material from supernovae is largely lost when the supernovae are concentrated near the nucleus, as expected for a starburst event. In contrast, we find the loss of enriched material to be much less efficient (as low as 21%) when the supernovae occur over even a relatively small fraction of the disk. The difference is due to the ability of the system to relax following supernova events that occur over more extended regions. Larger physical separations also reduce the likelihood of supernovae going off within low-density ''chimneys'' swept out by previous supernovae. We also find that, for the most distributed systems, significant metal loss is more likely to be accompanied by significant mass loss. A comparison with theoretical predications indicates that, when undergoing self-regulated star formation, galaxies in the mass range considered shall efficiently retain the products of Type II supernovae.

  20. The same with less: The cosmic web of warm versus cold dark matter dwarf galaxies

    CERN Document Server

    Reed, Darren S; Smith, Robert E; Potter, Doug; Stadel, Joachim; Moore, Ben

    2014-01-01

    We explore fundamental properties of the distribution of low mass dark matter halos within the cosmic web using warm dark matter (WDM) and cold dark matter (CDM) cosmological simulations. Using self abundance-matched mock galaxy catalogs, we show that the distribution of dwarf galaxies in a WDM universe, wherein low mass halo formation is heavily suppressed, is nearly indistinguishable to that of a CDM universe whose low mass halos are not seen because galaxy formation is suppressed below some threshold halo mass. However, if the scatter between dwarf galaxy luminosity and halo properties is large enough, low mass CDM halos would sometimes host relatively bright galaxies thereby populating CDM voids with the occasional isolated galaxy and reducing the numbers of completely empty voids. Otherwise, without high mass to light scatter, all mock galaxy clustering statistics that we consider--the auto-correlation function, the numbers and radial profiles of satellites, the numbers of isolated galaxies, and the PDF ...

  1. The Herschel Virgo Cluster Survey: VII. Dust in cluster dwarf elliptical galaxies

    CERN Document Server

    De Looze, I; Zibetti, S; Fritz, J; Cortese, L; Davies, J I; Verstappen, J; Bendo, G J; Bianchi, S; Clemens, M; Bomans, D J; Boselli, A; Corbelli, E; Dariush, A; Alighieri, S di Serego; Fadda, D; Garcia-Appadoo, D A; Gavazzi, G; Giovanardi, C; Grossi, M; Hughes, T M; Hunt, L K; Jones, A P; Madden, S; Pierini, D; Pohlen, M; Sabatini, S; Smith, M W L; Vlahakis, C; Xilouris, E M

    2010-01-01

    We use the Science Demonstration Phase data of the Herschel Virgo Cluster Survey to search for dust emission of early-type dwarf galaxies in the central regions of the Virgo Cluster as an alternative way of identifying the interstellar medium.We present the first possible far-infrared detection of cluster early-type dwarf galaxies: VCC781 and VCC951 are detected at the 10 sigma level in the SPIRE 250 micron image. Both detected galaxies have dust masses of the order of 10^5 Msun and average dust temperatures ~20K. The detection rate (less than 1%) is quite high compared to the 1.7% detection rate for Hi emission, considering that dwarfs in the central regions are more Hi deficient. We conclude that the removal of interstellar dust from dwarf galaxies resulting from ram pressure stripping, harassment, or tidal effects must be as e?cient as the removal of interstellar gas.

  2. Uncovering Additional Clues to Galaxy Evolution. I. Dwarf Irregulars in the Field

    CERN Document Server

    Lee, H; Kingsburgh, R L; Ross, R; Stevenson, C C; Lee, Henry; Call, Marshall L. Mc; Kingsburgh, Robin L.; Ross, Robert; Stevenson, Chris C.

    2003-01-01

    In order to recognize environmental effects on the evolution of dwarf galaxies in clusters of galaxies, it is first necessary to quantify the properties of objects which have evolved in relative isolation. With oxygen abundance as the gauge of metallicity, two key diagnostics of the evolution of dwarf irregular galaxies in the field are re-examined: the metallicity-luminosity relationship and the metallicity-gas fraction relationship. Gas fractions are evaluated from the masses of luminous components only, i.e., constituents of the nucleogenetic pool. Results from new optical spectroscopy obtained for H II regions in five dwarf irregular galaxies in the Local Volume are incorporated into a new analysis of field dwarfs with [O III]4363 detections and good distances. The updated fit to the metallicity-luminosity relationship is consistent with results reported in the literature. The fit to the metallicity-gas fraction relation shows an excellent correlation consistent with expectations of the simple "closed box...

  3. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. IV: Measurement for Sculptor

    OpenAIRE

    Piatek, S.; Pryor, C.; Bristow, P.; Olszewski, E. W.; Harris, H. C.; Mateo, M.; Minniti, D.; Tinney, C. G.

    2006-01-01

    This article presents a measurement of the proper motion of the Sculptor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope using the Space Telescope Imaging Spectrograph in the imaging mode.

  4. Simulations of the formation and evolution of isolated dwarf galaxies

    Science.gov (United States)

    Valcke, S.; de Rijcke, S.; Dejonghe, H.

    2008-09-01

    We present new fully self-consistent models of the formation and evolution of isolated dwarf galaxies (DGs). We have used the publicly available N-body/smoothed particle hydrodynamics (SPH) code HYDRA, to which we have added a set of star formation criteria, and prescriptions for chemical enrichment [taking into account contributions from both Type Ia supernova (SNIa) and Type II supernova (SNII)], supernova feedback, and gas cooling. We extensively tested the soundness of these prescriptions and the numerical convergence of the models. The models follow the evolution of an initially homogeneous gas cloud collapsing in a pre-existing dark matter (DM) halo. These simplified initial conditions are supported by the merger trees of isolated DGs extracted from the milli-Millennium Simulation. The star formation histories (SFHs) of the model galaxies exhibit burst-like behaviour. These bursts are a consequence of the blow-out and subsequent in-fall of gas. The amount of gas that leaves the galaxy for good is found to be small, in absolute numbers, ranging between 3 × 107 and 6 × 107Msolar. For the least massive models, however, this is over 80 per cent of their initial gas mass. The local fluctuations in gas density are strong enough to trigger starbursts in the massive models, or to inhibit anything more than small residual star formation (SF) for the less massive models. Between these starbursts there can be time intervals of several gigayears. The models' surface brightness profiles are well fitted by Sérsic profiles and the correlations between the models' Sérsic parameters and luminosity agree with the observations. We have also compared model predictions for the half-light radius Re, central velocity dispersion σc, broad-band colour B - v, metallicity [Z/Zsolar] versus luminosity relations and for the location relative to the fundamental plane with the available data. The properties of the model DGs agree quite well with those of observed DGs. However, the

  5. Exploring the Extended Structure of the Sculptor Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Westfall, K. B.; Ostheimer, J. C.; Frinchaboy, P. M.; Patterson, R. J.; Majewski, S. R.; Kunkel, W. E.

    2000-12-01

    We have undertaken a large area (>3 deg2) survey of the Sculptor dSph using the 1-m Swope telescope. The region surveyed includes roughly 1 deg2 centered on the Sculptor core, with the remaining survey area extending to the east and stretching to almost twice the tidal radius (rt=76.5m) to the northeast and southeast. We have imaged in the Washington M,T2 and DDO51 filters, a combination that allows us to discriminate dwarf and giant stars based on the gravity sensitivity of DDO51. The extended structure of Sculptor can be mapped via those stars selected both as giant stars and as having a combination of M and M-T2 consistent with the red giant branch of Sculptor. We also make use of the areal distribution of blue horizontal branch stars, which delineate the extended structure of Sculptor relatively well in this field at high Galactic latitude. Using the HYDRA spectrograph on the Blanco 4-m, we have obtained more than a dozen radial velocities for candidate Sculptor stars that we have identified well outside (1) the core radius, and (2) the radii explored by previous surveys. A preliminary conclusion from our work so far is that Sculptor does not show as extensive a population of extratidal stars as we have identified in similar work we have conducted around the Carina (Majewski et al. 2000, AJ, 119, 760) and Ursa Minor (Palma et al. 2000, BAAS) dwarf galaxies. Indeed, if a lack of significant extended material around Sculptor is borne out by further study over more area and other position angles, then an interesting correlation begins to emerge: Among four galaxies we have surveyed in this way (Car, UMi, Leo II, and Scl), the relative fraction of the dSph's found outside the nominal tidal radius appears to correlate with the published values of M/L. This may suggest that the derived masses for the dwarf spheroidals may be systematically overestimated to a degree set by the amount of dynamical non-equilibrium in the system. This work was supported by NSF, NASA, the

  6. Is there really a luminosity-surface brightness relation for dwarf galaxies?

    International Nuclear Information System (INIS)

    A simple test is used to argue that the luminosity-surface brightness correlation found by several authors in eye-selected samples of cluster dwarf galaxies is likely to be merely the result of selection effects. There are therefore likely to be many more dwarfs in clusters like Virgo than is generally assumed. (author)

  7. The Nature of Starbursts : II. The Duration of Starbursts in Dwarf Galaxies

    OpenAIRE

    McQuinn, Kristen B W; Skillman, Evan D.; Cannon, John M.; Dalcanton, Julianne; Dolphin, Andrew; Hidalgo-Rodríguez, Sebastian; Holtzman, Jon; Stark, David; Weisz, Daniel; Williams, Benjamin

    2010-01-01

    The starburst phenomenon can shape the evolution of the host galaxy and the surrounding intergalactic medium. The extent of the evolutionary impact is partly determined by the duration of the starburst, which has a direct correlation with both the amount of stellar feedback and the development of galactic winds, particularly for smaller mass dwarf systems. We measure the duration of starbursts in twenty nearby, ongoing, and "fossil" starbursts in dwarf galaxies based on the recent star format...

  8. Jeans Analysis for Dwarf Spheroidal Galaxies in Wave Dark Matter

    CERN Document Server

    Chen, Shu-Rong; Chiueh, Tzihong

    2016-01-01

    Observations suggest that dwarf spheroidal (dSph) galaxies exhibit large constant-density cores in the centers, which can hardly be explained by dissipationless cold dark matter simulations. Wave dark matter (${\\psi {\\rm DM}}$), characterized by a single parameter, the dark matter particle mass $m_{\\psi}$, predicts a central soliton core in every galaxy arising from quantum pressure against gravity. Here we apply Jeans analysis to the kinematic data of eight classical dSphs so as to constrain $m_{\\psi}$, and obtain $m_{\\psi}=1.18_{-0.24}^{+0.28}\\times10^{-22}{\\,\\rm eV}$ and $m_{\\psi}=1.79_{-0.33}^{+0.35}\\times10^{-22}{\\,\\rm eV}~(2\\sigma)$ using the observational data sets of Walker et al. (2007) and Walker et al. (2009b), respectively. We show that the estimate of $m_{\\psi}$ is sensitive to the dSphs kinematic data sets and is robust to various models of stellar density profile. We also consider multiple stellar subpopulations in dSphs and find consistent results. This mass range of $m_{\\psi}$ is in good agre...

  9. Tidal Dwarf Galaxies: Disc Formation at z=0

    CERN Document Server

    Lelli, Federico; Brinks, Elias; McGaugh, Stacy S

    2015-01-01

    Collisional debris around interacting and post-interacting galaxies often display condensations of gas and young stars that can potentially form gravitationally bound objects: Tidal Dwarf Galaxies (TDGs). We summarise recent results on TDGs, which are originally published in Lelli et al. (2015, A&A). We study a sample of six TDGs around three different interacting systems, using high-resolution HI observations from the Very Large Array. We find that the HI emission associated to TDGs can be described by rotating disc models. These discs, however, would have undergone less than one orbit since the time of the TDG formation, raising the question of whether they are in dynamical equilibrium. Assuming that TDGs are in dynamical equilibrium, we find that the ratio of dynamical mass to baryonic mass is consistent with one, implying that TDGs are devoid of dark matter. This is in line with the results of numerical simulations where tidal forces effectively segregate dark matter in the halo from baryonic matter i...

  10. Carbon and Oxygen Abundances in Low Metallicity Dwarf Galaxies

    CERN Document Server

    Berg, Danielle A; Henry, Richard B C; Erb, Dawn K; Carigi, Leticia

    2016-01-01

    The study of carbon and oxygen abundances yields information on the time evolution and nucleosynthetic origins of these elements, yet remains relatively unexplored. At low metallicities (12+log(O/H) < 8.0), nebular carbon measurements are limited to rest-frame UV collisionally excited emission lines. Therefore, we present UV spectrophotometry of 12 nearby, low-metallicity, high-ionization HII regions in dwarf galaxies obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We present the first analysis of the C/O ratio in local galaxies based solely on simultaneous significant detections of the UV O^+2 and C^+2 collisionally excited lines in seven of our targets and five objects from the literature, to create a final sample of 12 significant detections. Our sample is complemented by optical SDSS spectra, from which we measured the nebular physical conditions and oxygen abundances using the direct method. At low metallicity (12+log(O/H) < 8.0), no clear trend is evident in C/O vs. O/...

  11. The First Generation of Virgo Cluster Dwarf Elliptical Galaxies?

    CERN Document Server

    Lisker, T; Hensler, G; Kim, S; Rey, S -C; Weinmann, S; Mastropietro, C; Hielscher, O; Paudel, S; Kotulla, R

    2009-01-01

    In the light of the question whether most early-type dwarf (dE) galaxies in clusters formed through infall and transformation of late-type progenitors, we search for an imprint of such an infall history in the oldest, most centrally concentrated dE subclass of the Virgo cluster: the nucleated dEs that show no signatures of disks or central residual star formation. We select dEs in a (projected) region around the central elliptical galaxies, and subdivide them by their line-of-sight velocity into fast-moving and slow-moving ones. These subsamples turn out to have significantly different shapes: while the fast dEs are relatively flat objects, the slow dEs are nearly round. Likewise, when subdividing the central dEs by their projected axial ratio into flat and round ones, their distributions of line-of-sight velocities differ significantly: the flat dEs have a broad, possibly two-peaked distribution, whereas the round dEs show a narrow single peak. We conclude that the round dEs probably are on circularized orbi...

  12. The effect of tides on the Fornax dwarf spheroidal galaxy

    CERN Document Server

    Battaglia, Giuseppina; Nipoti, Carlo

    2015-01-01

    Estimates of the mass distribution and dark-matter (DM) content of dwarf spheroidal galaxies (dSphs) are usually derived under the assumption that the effect of the tidal field of the host galaxy is negligible over the radial extent probed by kinematic data-sets. We assess the implications of this assumption in the specific case of the Fornax dSph by means of N-body simulations of a satellite orbiting around the Milky Way. We consider observationally-motivated orbits and we tailor the initial distributions of the satellite's stars and DM to match, at the end of the simulations, the observed structure and kinematics of Fornax. In all our simulations the present-day observable properties of Fornax are not significantly influenced by tidal effects. The DM component is altered by the interaction with the Galactic field (up to 20% of the DM mass within 1.6 kpc is lost), but the structure and kinematics of the stellar component are only mildly affected even in the more eccentric orbit (more than 99% of the stellar ...

  13. WFPC2 Observations of the Ursa Minor Dwarf Spheroidal Galaxy

    CERN Document Server

    Mighell, K J; Mighell, Kenneth J.; Burke, Christopher J.

    1999-01-01

    We present our analysis of archival Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) observations in F555W (~V) and F814W (~I) of the central region of the Ursa Minor dwarf spheroidal galaxy. The V versus V-I color-magnitude diagram features a sparsely populated blue horizontal branch, a steep thin red giant branch, and a narrow subgiant branch. The main sequence reaches ~2 magnitudes below the main-sequence turnoff (V_TO ~ 23.27 +- 0.11 mag) of the median stellar population. We compare the fiducial sequence of Ursa Minor with the fiducial sequence of the Galactic globular cluster M92 (NGC 6341). The excellent match between Ursa Minor and M92 confirms that the median stellar population of the UMi dSph galaxy is metal poor ([Fe/H]_UMi ~ [Fe/H]_M92 ~ -2.2 dex) and ancient (age_UMi ~ age_M92 ~ 14 Gyr). The B-V reddening and the absorption in V are estimated to be E(B-V) = 0.03 +- 0.01 mag and A_V = 0.09 +- 0.03 mag. A new estimate of the distance modulus of Ursa Minor, (m-M)_0 = 19.18 +- 0.12 mag, ha...

  14. Dwarf spheroidal galaxies as degenerate gas of free fermions

    Science.gov (United States)

    Domcke, Valerie; Urbano, Alfredo

    2015-01-01

    In this paper we analyze a simple scenario in which Dark Matter (DM) consists of free fermions with mass mf. We assume that on galactic scales these fermions are capable of forming a degenerate Fermi gas, in which stability against gravitational collapse is ensured by the Pauli exclusion principle. The mass density of the resulting con figuration is governed by a non-relativistic Lane-Emden equation, thus leading to a universal cored profile that depends only on one free parameter in addition to mf. After reviewing the basic formalism, we test this scenario against experimental data describing the velocity dispersion of the eight classical dwarf spheroidal galaxies of the Milky Way. We find that, despite its extreme simplicity, the model exhibits a good fit to the data and realistic predictions for the size of DM halos providing that mfsimeq 200 eV. Furthermore, we show that in this setup larger galaxies correspond to the non-degenerate limit of the gas. We propose a concrete realization of this model in which DM is produced non-thermally via inflaton decay. We show that imposing the correct relic abundance and the bound on the free-streaming length constrains the inflation model in terms of inflaton mass, its branching ratio into DM and the reheating temperature.

  15. The far-infrared - radio correlation in dwarf galaxies

    CERN Document Server

    Schleicher, Dominik R G

    2016-01-01

    The far-infrared - radio correlation connects star formation and magnetic fields in galaxies, and has been confirmed over a large range of far-infrared luminosities. Recent investigations indicate that it may even hold in the regime of local dwarf galaxies, and we explore here the expected behavior in the regime of star formation surface densities below 0.1 M_sun kpc^{-2} yr^{-1}. We derive two conditions that can be particularly relevant for inducing a change in the expected correlation: a critical star formation surface density to maintain the correlation between star formation rate and the magnetic field, and a critical star formation surface density below which cosmic ray diffusion losses dominate over their injection via supernova explosions. For rotation periods shorter than 1.5x10^7 (H/kpc)^2 yrs, with H the scale height of the disk, the first correlation will break down before diffusion losses are relevant, as higher star formation rates are required to maintain the correlation between star formation ...

  16. The Influence of Ram Pressure on the Evolution of Tidal Dwarf Galaxies

    CERN Document Server

    Smith, R; Candlish, G N; Fellhauer, M; Sheen, Y K; Gibson, B K

    2013-01-01

    The formation mechanism of tidal dwarf galaxies means they are expected to contain little or no dark matter. As such, they might be expected to be very sensitive to their environment. We investigate the impact of ram pressure on tidal dwarf galaxies in a parameter study, varying dwarf galaxy properties and ram pressures. We submit model tidal dwarf galaxies to wind-tunnel style tests using a toy ram pressure model. The effects of ram pressure are found to be substantial. If tidal dwarf galaxies have their gas stripped, they may be completely destroyed. Ram pressure drag causes acceleration of our dwarf galaxy models, and this further enhances stellar losses. The dragging can also cause stars to lie in a low surface brightness stellar stream that points in the opposite direction to the stripped gas, in a manner distinctive from tidal streams. We investigate the effects of ram pressure on surface density profiles, the dynamics of the stars, and discuss the consequences for dynamical mass measurements.

  17. Galaxy And Mass Assembly (GAMA): The unimodal nature of the dwarf galaxy population

    CERN Document Server

    Mahajan, Smriti; Driver, S; Kelvin, Lee S; Hopkins, A M; Baldry, I; Phillipps, S; Bland-Hawthorn, J; Brough, S; Loveday, J; Penny, Samantha J; Robotham, A S G

    2014-01-01

    In this paper we aim to (i) test the number of statistically distinct classes required to classify the local galaxy population, and, (ii) identify the differences in the physical and star formation properties of visually-distinct galaxies. To accomplish this, we analyse the structural parameters (effective radius r_e, effective surface brightness within r_e (mu_e), central surface brightness (mu_0), and S'ersic index (n)), obtained by fitting the light profile of 432 galaxies (0.002dwarf galaxies (irregulars, blue spheroids and low surface brightness galaxies) form a unimodal population in a parameter space mapped by mu_e, mu_0, n, r_e, SFR, sSFR, M*, M_{dust} and (g-i). The SFR and sSFR distribution of passively evolving ...

  18. TWO LOCAL VOLUME DWARF GALAXIES DISCOVERED IN 21 cm EMISSION: PISCES A AND B

    Energy Technology Data Exchange (ETDEWEB)

    Tollerud, Erik J.; Geha, Marla C. [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06510 (United States); Grcevich, Jana [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Putman, Mary E. [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Stern, Daniel, E-mail: erik.tollerud@yale.edu, E-mail: marla.geha@yale.edu, E-mail: jgrcevich@amnh.org, E-mail: mputman@astro.columbia.edu, E-mail: daniel.k.stern@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States)

    2015-01-01

    We report the discovery of two dwarf galaxies, Pisces A and B, from a blind 21 cm H I search. These were the only two galaxies found via optical imaging and spectroscopy of 22 H I clouds identified in the GALFA-H I survey as dwarf galaxy candidates. They have properties consistent with being in the Local Volume (<10 Mpc), and one has resolved stellar populations such that it may be on the outer edge of the Local Group (∼1 Mpc from M31). While the distance uncertainty makes interpretation ambiguous, these may be among the faintest star-forming galaxies known. Additionally, rough estimates comparing these galaxies to ΛCDM dark matter simulations suggest consistency in number density, implying that the dark matter halos likely to host these galaxies are primarily H I-rich. The galaxies may thus be indicative of a large population of dwarfs at the limit of detectability that are comparable to the faint satellites of the Local Group. Because they are outside the influence of a large dark matter halo to alter their evolution, these galaxies can provide critical anchors to dwarf galaxy formation models.

  19. Large-scale environmental dependence of gas-phase metallicity in dwarf galaxies

    CERN Document Server

    Douglass, Kelly A

    2016-01-01

    We study how the cosmic environment affects galaxy evolution in the Universe by comparing the metallicities of dwarf galaxies in voids with dwarf galaxies in more dense regions. Ratios of the fluxes of emission lines, particularly those of the forbidden [OIII] and [SII] transitions, provide estimates of a region's electron temperature and number density. From these two quantities and the emission line fluxes [OII] 3727, [OIII] 4363, and [OIII] 4959,5007, we estimate the abundance of oxygen with the Direct Te method. We estimate the metallicity of 37 void dwarf galaxies and 75 dwarf galaxies in more dense regions using spectroscopic observations from the Sloan Digital Sky Survey Data Release 7, as re-processed in the MPA-JHU value-added catalog. We find very little difference between the two sets of galaxies, indicating little influence from the large-scale environment on their chemical evolution. Of particular interest are a number of extremely metal-poor dwarf galaxies that are equally abundant in both voids...

  20. Episodic Model For Star Formation History and Chemical Abundances in Giant and Dwarf Galaxies

    CERN Document Server

    Debsarma, Suma; Das, Sukanta; Pfenniger, Daniel

    2016-01-01

    In search for a synthetic understanding, a scenario for the evolution of the star formation rate and the chemical abundances in galaxies is proposed, combining gas infall from galactic halos, outflow of gas by supernova explosions, and an oscillatory star formation process. The oscillatory star formation model is a consequence of the modelling of the fractional masses changes of the hot, warm and cold components of the interstellar medium. The observed periods of oscillation vary in the range $(0.1-3.0)\\times10^{7}$\\,yr depending on various parameters existing from giant to dwarf galaxies. The evolution of metallicity varies in giant and dwarf galaxies and depends on the outflow process. Observed abundances in dwarf galaxies can be reproduced under fast outflow together with slow evaporation of cold gases into hot gas whereas slow outflow and fast evaporation is preferred for giant galaxies. The variation of metallicities in dwarf galaxies supports the fact that low rate of SNII production in dwarf galaxies i...

  1. Dark influences II. Gas and star formation in minor mergers of dwarf galaxies with dark satellites

    Science.gov (United States)

    Starkenburg, T. K.; Helmi, A.; Sales, L. V.

    2016-03-01

    Context. It has been proposed that mergers induce starbursts and lead to important morphological changes in galaxies. Most studies so far have focused on large galaxies, but dwarfs might also experience such events, since the halo mass function is scale-free in the concordance cosmological model. Notably, because of their low mass, most of their interactions will be with dark satellites. Aims: In this paper we follow the evolution of gas-rich disky dwarf galaxies as they experience a minor merger with a dark satellite. We aim to characterize the effects of such an interaction on the dwarf's star formation, morphology, and kinematical properties. Methods: We performed a suite of carefully set-up hydrodynamical simulations of dwarf galaxies that include dark matter, gas, and stars merging with a satellite consisting solely of dark matter. For the host system we vary the gas fraction, disk size and thickness, halo mass, and concentration, while we explore different masses, concentrations, and orbits for the satellite. Results: We find that the interactions cause strong starbursts of both short and long duration in the dwarfs. Their star formation rates increase by factors of a few to 10 or more. They are strongest for systems with extended gas disks and high gas fractions merging with a high-concentration satellite on a planar, radial orbit. In contrast to analogous simulations of Milky Way-mass galaxies, many of the systems experience strong morphological changes and become spheroidal even in the presence of significant amounts of gas. Conclusions: The simulated systems compare remarkably well with the observational properties of a large selection of irregular dwarf galaxies and blue compact dwarfs. This implies that mergers with dark satellites might well be happening but not be fully evident, and may thus play a role in the diversity of the dwarf galaxy population.

  2. Obscured AGNs in Bulgeless Hosts discovered by WISE: The Case Study of SDSS J1224+5555

    CERN Document Server

    Satyapal, S; Rothberg, B; O'Connor, J; Ellison, S L; Hickox, R C; Constantin, A; Gliozzi, M; Rosenberg, J L

    2016-01-01

    There is mounting evidence that supermassive black holes form and grow in bulgeless galaxies. However, a robust determination of the fraction of AGNs in bulgeless galaxies, an important constraint to models of supermassive black hole seed formation and merger-free models of AGN fueling, is unknown, since optical studies have been shown to be incomplete for low mass AGNs. In a recent study using the Wide-field Infrared Survey Explorer, we discovered hundreds of bulgeless galaxies that display mid-infrared signatures of extremely hot dust suggestive of powerful accreting massive black holes, despite having no signatures of black hole activity at optical wavelengths. Here we report X-ray follow-up observations of J122434.66+555522.3, a nearby (z=0.052) isolated bulgeless galaxy that contains an unresolved X-ray source detected at the 3 sigma level by XMM-Newton with an observed luminosity uncorrected for intrinsic absorption of L{2-10~keV}=1.1+/-0.4 10^40 ergs/s. Ground-based near-infrared spectroscopy with the ...

  3. The ACS LCID Project: On the origin of dwarf galaxy types: a manifestation of the halo assembly bias?

    OpenAIRE

    Gallart, Carme; Monelli, Matteo; Mayer, Lucio; Aparicio, Antonio; Battaglia, Giuseppina; Bernard, Edouard J.; Cassisi, Santi; Cole, Andrew A.; Dolphin, Andrew E.; Drozdovsky, Igor; Hidalgo, Sebastian L.; Navarro, Julio F; Salvadori, Stefania; Skillman, Evan D.; Stetson, Peter B

    2015-01-01

    We discuss how knowledge of the whole evolutionary history of dwarf galaxies, including details on the early star formation events, can provide insight on the origin of the different dwarf galaxy types. We suggest that these types may be imprinted by the early conditions of formation rather than only being the result of a recent morphological transformation driven by environmental effects. We present precise star formation histories of a sample of Local Group dwarf galaxies, derived from colo...

  4. Young tidal dwarf galaxies cannot be used to probe dark matter in galaxies

    CERN Document Server

    Flores, H; Fouquet, S; Puech, M; Kroupa, P; Yang, Y; Pawlowski, M

    2015-01-01

    The location of dark-matter free, tidal dwarf galaxies (TDGs) in the baryonic Tully Fisher (bTF) diagram has been used to test cosmological scenarios, leading to various and controversial results. Using new high-resolution 3D spectroscopic data, we re-investigate the morpho-kinematics of these galaxies to verify whether or not they can be used for such a purpose. We find that the three observed TDGs are kinematically not virialized and show complex morphologies and kinematics, leading to considerable uncertainties about their intrinsic rotation velocities and their locations on the bTF. Only one TDG can be identify as a (perturbed) rotation disk that it is indeed a sub-component of NGC5291N and that lies at $<$1$\\sigma$ from the local bTF relation. It results that the presently studied TDGs are young, dynamically forming objects, which are not enough virialized to robustly challenge cosmological scenarios.

  5. How the first stars shaped the faintest gas-dominated dwarf galaxies

    CERN Document Server

    Verbeke, Robbert; De Rijcke, Sven

    2015-01-01

    Low-mass dwarf galaxies are very sensitive test-beds for theories of cosmic structure formation since their weak gravitational fields allow the effects of the relevant physical processes to clearly stand out. Up to now, no unified account exists of the sometimes seemingly conflicting properties of the faintest isolated dwarfs in and around the Local Group, such as Leo T and the recently discovered Leo P and Pisces A systems. Using new numerical simulations, we show that this serious challenge to our understanding of galaxy formation can be effectively resolved by taking into account the regulating influence of the ultraviolet radiation of the first population of stars on a dwarf's star formation rate while otherwise staying within the standard cosmological paradigm for structure formation. These simulations produce faint, gas-dominated, star-forming dwarf galaxies that lie on the baryonic Tully-Fisher relation and that successfully reproduce a broad range of chemical, kinematical, and structural observables o...

  6. Unveiling a Rich System of Faint Dwarf Galaxies in the Next Generation Fornax Survey

    CERN Document Server

    Munoz, Roberto P; Puzia, Thomas H; Taylor, Matthew A; Ordenes-Briceno, Yasna; Alamo-Martinez, Karla; Ribbeck, Karen X; Angel, Simon; Capaccioli, Massimo; Cote, Patrick; Ferrarese, Laura; Galaz, Gaspar; Hempel, Maren; Hilker, Michael; Jordan, Andres; Lancon, Ariane; Mieske, Steffen; Paolillo, Maurizio; Richtler, Tom; Sanchez-Janssen, Ruben; Zhang, Hongxin

    2015-01-01

    We report the discovery of 158 previously undetected dwarf galaxies in the Fornax cluster central regions using a deep coadded $u, g$ and $i$-band image obtained with the DECam wide-field camera mounted on the 4-meter Blanco telescope at the Cerro Tololo Interamerican Observatory as part of the {\\it Next Generation Fornax Survey} (NGFS). The new dwarf galaxies have quasi-exponential light profiles, effective radii $0.1\\!\\!75\\%$ at luminosities brighter than $M_i\\!\\simeq\\!-15.0$ mag to $0\\%$ at luminosities fainter than $M_i\\!\\simeq\\!-10.0$ mag. The two-point correlation function analysis of the NGFS dwarf sample shows an excess on length scales below $\\sim\\!100$ kpc, pointing to the clustering of dwarf galaxies in the Fornax cluster core.

  7. The Dynamical Origin of Early-Type Dwarfs in Galaxy Clusters: A Theoretical Investigation

    CERN Document Server

    Vijayaraghavan, Rukmani; Ricker, Paul M

    2014-01-01

    Observations of early-type dwarf galaxies in clusters often show that cluster dwarf members have significantly higher velocities and less symmetric distributions than cluster giant ellipticals, suggesting that these dwarfs are recently accreted galaxies, possibly from an infalling group. We use a series of $N$-body simulations, exploring a parameter space of groups falling into clusters, to study the observed velocity distributions of the infall components along various lines of sight. We show that, as viewed along a line of sight parallel to the group's infall direction, there is a significant peculiar velocity boost during the pericentric passage of the group, and an increase in velocity dispersion that persists for many Gyr after the merger. The remnants of the infalling group, however, do not form a spatially distinct system -- consistent with recent observations of dwarf galaxies in the Virgo and Fornax clusters. This velocity signature is completely absent when viewed along a direction perpendicular to ...

  8. ON THE EXTENDED STRUCTURE OF THE PHOENIX DWARF GALAXY

    International Nuclear Information System (INIS)

    We present the star formation history (SFH) and its variations with galactocentric distance for the Local Group dwarf galaxy of Phoenix. They have been derived from a (F555W, F814W) color-magnitude diagram obtained from WFPC2-HST data, which reaches the oldest main-sequence turnoffs. The IAC-star and IAC-pop codes and the MinnIAC suite have been used to obtain the star formation rate as a function of time and metallicity, ψ(t, z). We find that Phoenix has had ongoing but gradually decreasing star formation over nearly a Hubble time. The highest level of star formation occurred from the formation of the galaxy till 10.5 Gyr ago, when 50% of the total star formation had already taken place. From that moment, star formation continues at a significant level until 6 Gyr ago (an additional 35% of the stars are formed in this time interval), and at a very low level till the present time. The chemical enrichment law shows a trend of slowly increasing metallicity as a function of time until 6-8 Gyr ago, when metallicity starts to increase steeply to the current value. We have paid particular attention to the study of the variations of the SFH as a function of radius. Young stars are found in the inner region of the galaxy only, but intermediate-age and old stars can be found at all galactocentric distances. The distribution of mass density in alive stars and its evolution with time has been studied. This study shows that star formation started at all galactocentric distances in Phoenix at an early epoch. If stars form in situ in Phoenix, the star formation onset took place all over the galaxy (up to a distance of about 400 pc from the center), but preferentially out of center regions. After that, our results are compatible with a scenario in which the star formation region envelope slowly shrinks as time goes on, possibly as a natural result of pressure support reduction as gas supply diminishes. As a consequence, the star formation stopped first (about 7-8 Gyr ago) in

  9. Secular Evolution in Disk Galaxies: Pseudobulge Growth and the Formation of Spheroidal Galaxies

    CERN Document Server

    Kormendy, John

    2008-01-01

    Updating Kormendy & Kennicutt (2004, ARAA, 42, 603), we review internal secular evolution of galaxy disks. One consequence is the growth of pseudobulges that often are mistaken for true (merger-built) bulges. Many pseudobulges are recognizable as cold, rapidly rotating, disky structures. Bulges have Sersic function brightness profiles with index n > 2; most pseudobulges have n 150 km/s show no evidence for a classical bulge, while only 7 are ellipticals or have classical bulges. It is hard to understand how bulgeless galaxies could form as the quiescent tail of a distribution of merger histories. Our second theme is environmental secular evolution. We confirm that spheroidal galaxies have fundamental plane (FP) correlations that are almost perpendicular to those for bulges and ellipticals. Spheroidals are not dwarf ellipticals. Rather, their structural parameters are similar to those of late-type galaxies. We suggest that spheroidals are defunct late-type galaxies transformed by internal processes such a...

  10. Homogeneous Photometry VI: Variable Stars in the Leo I Dwarf Spheroidal Galaxy?

    CERN Document Server

    Stetson, Peter B; Bono, Giuseppe; Bernard, Edouard J; Monelli, Matteo; Iannicola, Giacinto; Gallart, Carme; Ferraro, Ivan

    2014-01-01

    We have characterized the pulsation properties of 164 candidate RR Lyrae variables (RRLs) and 55 candidate Anomalous and/or short-period Cepheids in Leo I dwarf spheroidal galaxy. On the basis of its RRLs Leo I is confirmed to be an Oosterhoff-intermediate type galaxy, like several other dwarfs. We show that in their pulsation properties, the RRLs representing the oldest stellar population in the galaxy are not significantly different from those of five other nearby, isolated dwarf spheroidal galaxies. A similar result is obtained when comparing them to RR Lyrae stars in recently discovered ultra-faint dwarf galaxies. We are able to compare the period distributions and period-amplitude relations for a statistically significant sample of ab type RR Lyrae stars in dwarf galaxies (~1300stars) with those in the Galactic halo field (~14,000stars) and globular clusters (~1000stars). Field RRLs show a significant change in their period distribution when moving from the inner (dG14kpc) halo regions. This suggests tha...

  11. The early-type dwarf galaxy population of the Hydra I cluster

    CERN Document Server

    Misgeld, I; Hilker, M

    2008-01-01

    We analyse the properties of the early-type dwarf galaxy population in the Hydra I cluster. We investigate the galaxy luminosity function (LF), the colour-magnitude relation (CMR), and the magnitude-surface brightness relation down to M_V -10 mag. Another goal of this study is to find candidates for ultra-compact dwarf galaxies (UCDs). Two spectroscopic surveys performed with Magellan I/LDSS2 and VLT/VIMOS, as well as deep VLT/FORS1 images in V and I bands were examined. We identify cluster members by radial velocity measurements and select other cluster galaxy candidates by their morphology. One possible UCD candidate with M_V=-13.26 mag is found. Our sample of 100 morphologically selected dwarf galaxies defines a CMR that extends the CMR of the giant cluster galaxies to the magnitude limit of our survey (M_V -10 mag). It matches the relations found for the Local Group and the Fornax cluster dwarfs almost perfectly. The Hydra I dwarfs also follow a magnitude-surface brightness relation similar to that of the...

  12. Suppression of star formation in dwarf galaxies by grain photoelectric feedback

    CERN Document Server

    Forbes, John C; Goldbaum, Nathan J; Dekel, Avishai

    2016-01-01

    Photoelectric heating has long been recognized as the primary source of heating for the neutral interstellar medium. Simulations of spiral galaxies found some indication that photoelectric heating could suppress star formation. However, simulations that include photoelectric heating have typically found that it has little effect on the rate of star formation in either spiral galaxies or dwarfs suggesting that supernovae and not photoelectric heating are responsible for setting the star formation law in galaxies. This result is in tension with recent work indicating that a star formation law that depends on galaxy metallicity, as expected for photoelectric heating but not for supernovae, reproduces the present-day galaxy population better than a metallicity-independent one. Here we report a series of simulations of dwarf galaxies, where the effects of both photoelectric heating and supernovae are expected to be strongest. We simultaneously include space- and time-dependent photoelectric heating, and we resolve...

  13. Strangers in the night: Discovery of a dwarf spheroidal galaxy on its first Local Group infall

    CERN Document Server

    Chapman, S C; Ibata, R; McConnachie, A; Martin, N; Irwin, M; Blain, A; Lewis, G F; Letarte, B; Lo, K; Ludlow, A; O'Neil, K

    2007-01-01

    We present spectroscopic observations of the AndXII dwarf spheroidal galaxy using DEIMOS/Keck-II, showing it to be moving rapidly through the Local Group (-556 km/s heliocentric velocity, -281 km/s relative to Andromeda from the MW), falling into the Local Group from ~115 kpc beyond Andromeda's nucleus. AndXII therefore represents a dwarf galaxy plausibly falling into the Local Group for the first time, and never having experienced a dense galactic environment. From Green Bank Telescope observations, a limit on the H{I} gas mass of <3000 Msun suggests that AndXII's gas could have been removed prior to experiencing the tides of the Local Group galaxies. Orbit models suggest the dwarf is close to the escape velocity of M31 for published mass models. AndXII is our best direct evidence for the late infall of satellite galaxies, a prediction of cosmological simulations.

  14. H-alpha Imaging Survey of Low-Redshift Cluster Dwarf Galaxies

    Science.gov (United States)

    Barkhouse, Wayne; Kalawila, Sandanuwan; Rude, Cody; Sultanova, Madina; Archer, Haylee Nichole; Foote, Gregory

    2016-01-01

    We describe our on-going H-alpha imaging survey to measure the star formation activity of dwarf galaxies selected from a sample of low-redshift (0.02 environment can be quantified using radial-dependent measures of the star formation rate within individual clusters, and by comparing clusters within our sample on a cluster-to-cluster basis. Comparison of our H-alpha measurements to CFHT u-band imaging data of our cluster sample, permits us to explore the correlation between the UV continuum and H-alpha emission of the dwarf galaxy population. The goal of our survey is to further understand the mechanism that is responsible for the enhancement/quenching of star formation as dwarf galaxies fall into the galaxy cluster environment.

  15. The same with less: the cosmic web of warm versus cold dark matter dwarf galaxies

    OpenAIRE

    Reed, Darren S.; Schneider, Aurel(Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland); Smith, Robert E; Potter, Doug; Stadel, Joachim; Moore, Ben

    2015-01-01

    We explore fundamental properties of the distribution of low-mass dark matter haloes within the cosmic web using warm dark matter (WDM) and cold dark matter (CDM) cosmological simulations. Using self-abundance-matched mock galaxy catalogues, we show that the distribution of dwarf galaxies in a WDM universe, wherein low-mass halo formation is heavily suppressed, is nearly indistinguishable to that of a CDM universe whose low-mass haloes are not seen because galaxy formation is suppressed below...

  16. On the R-Process Enrichment of Dwarf Spheroidal Galaxies

    CERN Document Server

    Bramante, Joseph

    2016-01-01

    Recent observations of Reticulum II have uncovered an overabundance of r-process elements, compared to similar ultra-faint dwarf spheroidal galaxies (UFDs). Because the metallicity and star formation history of Reticulum II appear consistent with all known UFDs, the high r-process abundance of Reticulum II suggests enrichment through a single, rare event, such as a double neutron star (NS) merger. However, we note that this scenario is extremely unlikely, as binary stellar evolution models require significant supernova natal kicks to produce NS-NS or NS-black hole mergers, and these kicks would efficiently remove compact binary systems from the weak gravitational potentials of UFDs. We examine alternative mechanisms for the production of r-process elements in UFDs, including a novel mechanism wherein NSs in regions of high dark matter density implode after accumulating a black-hole-forming mass of dark matter. We find that r-process proto-material ejection by tidal forces, when a single neutron star implodes ...

  17. On the r-process Enrichment of Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Bramante, Joseph; Linden, Tim

    2016-07-01

    Recent observations of Reticulum II have uncovered an overabundance of r-process elements compared to similar ultra-faint dwarf spheroidal galaxies (UFDs). Because the metallicity and star formation history of Reticulum II appear consistent with all known UFDs, the high r-process abundance of Reticulum II suggests enrichment through a single, rare event, such as a double neutron star (NS) merger. However, we note that this scenario is extremely unlikely, as binary stellar evolution models require significant supernova natal kicks to produce NS–NS or NS–black hole (BH) mergers, and these kicks would efficiently remove compact binary systems from the weak gravitational potentials of UFDs. We examine alternative mechanisms for the production of r-process elements in UFDs, including a novel mechanism wherein NSs in regions of high dark matter (DM) density implode after accumulating a BH-forming mass of DM. We find that r-process proto-material ejection by tidal forces, when a single NS implodes into a BH, can occur at a rate matching the r-process abundance of both Reticulum II and the Milky Way. Remarkably, DM models which collapse a single NS in observed UFDs also solve the missing pulsar problem in the Milky Way Galactic Center. We propose tests specific to DM r-process production which may uncover or rule out this model.

  18. Ultrafaint Dwarf Galaxies - the lowest mass relics from before reionization

    CERN Document Server

    Bland-Hawthorn, Joss; Webster, David

    2015-01-01

    New observations indicate that ultrafaint dwarf galaxies (UFD) -- the least luminous systems bound by dark matter halos (<10^5 Lsun) -- may have formed before reionization. The extrapolated virial masses today are uncertain with estimates ranging from 10^8 Msun to 10^9 Msun. We show that the progenitor halo masses of UFDs can be as low as Mvir = 10^7 Msun. Under the right conditions, such a halo can survive the energy input of a supernova and its radiative progenitor. A clumpy medium is much less susceptible to both internal and external injections of energy. It is less prone to SN sweeping because the coupling efficiency of the explosive energy is much lower than for a diffuse ISM. With the aid of the 3D hydro/ionization code Fyris, we show that sufficient baryons are retained to form stars following a single supernova event in dark matter halos down to Mvir ~ 10^7 Msun with radiative cooling. The gas survives the SN explosion, is enriched with the abundance yields of the discrete events, and reaches surf...

  19. A Chemical Evolution Model for the Fornax Dwarf Spheroidal Galaxy

    Directory of Open Access Journals (Sweden)

    Yuan Zhen

    2016-01-01

    Full Text Available Fornax is the brightest Milky Way (MW dwarf spheroidal galaxy and its star formation history (SFH has been derived from observations. We estimate the time evolution of its gas mass and net inflow and outflow rates from the SFH usinga simple star formation law that relates the star formation rate to the gas mass. We present a chemical evolution model on a 2D mass grid with supernovae (SNe as sources of metal enrichment. We find that a key parameter controlling the enrichment is the mass Mx of the gas to mix with the ejecta from each SN. The choice of Mx depends on the evolution of SN remnants and on the global gas dynamics. It differs between the two types of SNe involved and between the periods before and after Fornax became an MW satellite at time t = tsat. Our results indicate that due to the global gas outflow at t > tsat, part of the ejecta from each SN may directly escape from Fornax. Sample results from our model are presented and compared with data.

  20. Kinematic sub-populations in dwarf spheroidal galaxies

    CERN Document Server

    Ural, Ugur; Koch, Andreas; Gilmore, Gerard; Beers, Timothy C; Belokurov, Vasily; Evans, N Wyn; Grebel, Eva K; Vidrih, Simon; Zucker, Daniel B

    2008-01-01

    We present new spectroscopic data for twenty six stars in the recently-discovered Canes Venatici I (CVnI) dwarf spheroidal galaxy. We use these data to investigate the recent claim of the presence of two dynamically inconsistent stellar populations in this system (Ibata et al., 2006). We do not find evidence for kinematically distinct populations in our sample and we are able to obtain a mass estimate for CVnI that is consistent with all available data, including previously published data. We discuss possible differences between our sample and the earlier data set and study the general detectability of sub-populations in small kinematic samples. We conclude that in the absence of supporting observational evidence (for example, metallicity gradients), sub-populations in small kinematic samples (typically fewer than 100 stars) should be treated with extreme caution, as their detection depends on multiple parameters and rarely produces a signal at the 3sigma confidence level. It is therefore essential to determi...

  1. A Chemical Evolution Model for the Fornax Dwarf Spheroidal Galaxy

    CERN Document Server

    Yuan, Zhen; Jing, Y P

    2015-01-01

    Fornax is the brightest Milky Way (MW) dwarf spheroidal galaxy and its star formation history (SFH) has been derived from observations. We estimate the time evolution of its gas mass and net inflow and outflow rates from the SFH using a simple star formation law that relates the star formation rate to the gas mass. We present a chemical evolution model on a 2D mass grid with supernovae (SNe) as sources of metal enrichment. We find that a key parameter controlling the enrichment is the mass M_x of the gas to mix with the ejecta from each SN. The choice of M_x depends on the evolution of SN remnants and on the global gas dynamics. It differs between the two types of SNe involved and between the periods before and after Fornax became an MW satellite at time t = t_sat . Our results indicate that due to the global gas outflow at t > t_sat , part of the ejecta from each SN may directly escape from Fornax. Sample results from our model are presented and compared with data.

  2. Dwarf spheroidal galaxies as degenerate gas of free fermions

    CERN Document Server

    Domcke, Valerie

    2014-01-01

    In this paper we analyze a simple scenario in which Dark Matter (DM) consists of free fermions with mass $m_f$. We assume that on galactic scales these fermions are capable to form a degenerate Fermi gas, in which stability against gravitational collapse is ensured by the Pauli exclusion principle. The mass density of the resulting configuration is governed by a non-relativistic Lane-Emden equation, thus leading to a universal cored profile that depends only on one free parameter in addition to $m_f$. After reviewing the basic formalism, we test this scenario against experimental data describing the dispersion velocity of the eight classical dwarf spheroidal galaxies of the Milky Way. We find that, despite its extreme simplicity, the model exhibits a good fit of the data and realistic predictions for the size of DM halos providing that $m_f \\simeq 200$ eV. We propose a concrete realization of this model in which DM is produced non-thermally via inflaton decay. We show that imposing the correct relic abundance...

  3. Modeling Wave Dark Matter in Dwarf Spheroidal Galaxies

    CERN Document Server

    Bray, Hubert L

    2013-01-01

    This paper studies a model of dark matter called wave dark matter (also known as scalar field dark matter and boson stars) which has recently also been motivated by a new geometric perspective by Bray [arXiv:1212.5745]. Wave dark matter describes dark matter as a scalar field which satisfies the Einstein-Klein-Gordon equations. These equations rely on a fundamental constant Upsilon (also known as the "mass term" of the Klein-Gordon equation). In this work, we compare the wave dark matter model to observations to obtain a working value of Upsilon. Specifically, we compare the mass profiles of spherically symmetric static states of wave dark matter to the Burkert mass profiles that have been shown by Salucci et al. [arXiv:1111.1165] to predict well the velocity dispersion profiles of the eight classical dwarf spheroidal galaxies. We show that a reasonable working value for the fundamental constant in the wave dark matter model is Upsilon = 50 yr^{-1}. We also show that under precise assumptions the value of Ups...

  4. FUSE observations of the Blue Compact Dwarf Galaxy Mrk 59

    CERN Document Server

    Thuan, T X; Izotov, Yu I

    2001-01-01

    New FUSE far-UV spectroscopy of the nearby metal-deficient (Zsun/8) cometary Blue Compact Dwarf (BCD) galaxy Markarian (Mrk) 59 is discussed. The data are used to investigate element abundances in its interstellar medium. The H I absorption lines are characterized by narrow cores which are interstellar in origin and by broad wings which are stellar in origin. The mean interstellar H I column density is ~ 7x10E20 cm-2 in Mrk 59. No H2 lines are seen and N(H2) is < 10E15 cm-2 at the 10 sigma level. The lack of diffuse H2 is due to the combined effect of a strong UV radiation field which destroys the H2 molecules and a low metallicity which leads to a scarcity of dust grains necessary for H2 formation. P-Cygni profiles of the S VI 933.4, 944.5 A and O VI 1031.9, 1037.6 A lines are seen, indicating the presence of very hot O stars and a stellar wind terminal velocity of ~ 1000 km/s. By fitting the line profiles with multiple components having each a velocity dispersion b = 7 km/s and spanning a radial velocity...

  5. Search for Dark Matter from Dwarf Galaxies using VERITAS

    CERN Document Server

    Zitzer, Benjamin

    2015-01-01

    In the cosmological paradigm, cold dark matter (DM) dominates the mass content of the Universe and is present at every scale. Candidates for DM include many extensions of the standard model, such as weakly interacting massive particles (WIMPs) in the mass range from $\\sim$10 GeV to greater than 10 TeV. The self-annihilation or decay of WIMPs in astrophysical regions of high DM density can produce secondary particles including very high energy (VHE) gamma rays with energy up to the DM particle mass. VERITAS, an array of atmospheric Cherenkov telescopes, sensitive to VHE gamma rays in the 85 GeV-30 TeV energy range, has been utilized for the search for this DM signature. The astrophysical objects considered to be candidates for indirect DM detection by VERITAS are dwarf spheroidal galaxies (dSphs) of the Local Group and the Galactic Center, among others. This presentation reports on the observations of five dSphs, and the results from a joint DM search from these objects.

  6. Delayed star formation in isolated dwarf galaxies: Hubble space telescope star formation history of the Aquarius dwarf irregular

    International Nuclear Information System (INIS)

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈6-8 Gyr ago (z ≈ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M H I/M *, dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.

  7. Delayed star formation in isolated dwarf galaxies: Hubble space telescope star formation history of the Aquarius dwarf irregular

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania, 7001 Australia (Australia); Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55441 (United States); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, Dominion Astrophysical Observatory, Victoria, BC, V9E 2E7 Canada (Canada); Brooks, Alyson M. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Leaman, Ryan, E-mail: andrew.cole@utas.edu.au, E-mail: drw@ucsc.edu, E-mail: adolphin@raytheon.com, E-mail: skillman@astro.umn.edu, E-mail: alan.mcconnachie@nrc-cnrc.gc.ca, E-mail: abrooks@physics.rutgers.edu, E-mail: rleaman@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈6-8 Gyr ago (z ≈ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M {sub H} {sub I}/M {sub *}, dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.

  8. DWARFS GOBBLING DWARFS: A STELLAR TIDAL STREAM AROUND NGC 4449 AND HIERARCHICAL GALAXY FORMATION ON SMALL SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Delgado, David; Rix, Hans-Walter; Maccio, Andrea V. [Max-Planck-Institut fuer Astronomy, Heidelberg (Germany); Romanowsky, Aaron J.; Arnold, Jacob A.; Brodie, Jean P. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Jay Gabany, R. [Black Bird Observatory, Mayhill, New Mexico (United States); Annibali, Francesca [Osservatorio Astronomico di Bologna, INAF, Via Ranzani 1, I-40127 Bologna (Italy); Fliri, Juergen [LERMA, CNRS UMR 8112, Observatoire de Paris, 61 Avenue de l' Observatoire, F-75014 Paris (France); Zibetti, Stefano [Dark Cosmology Centre, Niels Bohr Institute-University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Van der Marel, Roeland P.; Aloisi, Alessandra [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Chonis, Taylor S. [Department of Astronomy, University of Texas at Austin, Texas (United States); Carballo-Bello, Julio A. [Instituto de Astrofisica de Canarias, Tenerife (Spain); Gallego-Laborda, J. [Fosca Nit Observatory, Montsec Astronomical Park, Ager (Spain); Merrifield, Michael R. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2012-04-01

    A candidate diffuse stellar substructure was previously reported in the halo of the nearby dwarf starburst galaxy NGC 4449 by Karachentsev et al. We map and analyze this feature using a unique combination of deep integrated-light images from the BlackBird 0.5 m telescope, and high-resolution wide-field images from the 8 m Subaru Telescope, which resolve the nebulosity into a stream of red giant branch stars, and confirm its physical association with NGC 4449. The properties of the stream imply a massive dwarf spheroidal progenitor, which after complete disruption will deposit an amount of stellar mass that is comparable to the existing stellar halo of the main galaxy. The stellar mass ratio between the two galaxies is {approx}1:50, while the indirectly measured dynamical mass ratio, when including dark matter, may be {approx}1:10-1:5. This system may thus represent a 'stealth' merger, where an infalling satellite galaxy is nearly undetectable by conventional means, yet has a substantial dynamical influence on its host galaxy. This singular discovery also suggests that satellite accretion can play a significant role in building up the stellar halos of low-mass galaxies, and possibly in triggering their starbursts.

  9. Dwarfs Gobbling Dwarfs: A Stellar Tidal Stream Around NGC 4449 and Hierarchical Galaxy Formation on Small Scales

    CERN Document Server

    Martinez-Delgado, David; Gabany, R Jay; Annibali, Francesca; Arnold, Jacob A; Fliri, Juergen; Zibetti, Stefano; van der Marel, Roeland P; Rix, Hans-Walter; Chonis, Taylor S; Carballo-Bello, Julio A; Aloisi, Alessandra; Maccio, Andrea V; Gallego-Laborda, J; Brodie, Jean P; Merrifield, Michael R

    2011-01-01

    We map and analyze a stellar stream in the halo of the nearby dwarf starburst galaxy NGC 4449, detecting it in deep integrated-light images using the Black Bird Observatory 0.5-meter telescope, and resolving it into red giant branch stars using Subaru/Suprime-Cam. The properties of the stream imply a massive dwarf spheroidal progenitor, which will continue to disrupt and deposit an amount of stellar mass that is comparable to the existing stellar halo of the main galaxy. The ratio between luminosity or stellar-mass between the two galaxies is ~1:50, while the dynamical mass-ratio when including dark matter may be ~1:10-1:5. This system may thus represent a "stealth" merger, where an infalling satellite galaxy is nearly undetectable by conventional means, yet has a substantial dynamical influence on its host galaxy. This singular discovery also suggests that satellite accretion can play a significant role in building up the stellar halos of low-mass galaxies, and possibly in triggering their starbursts.

  10. The Star Formation Histories of Local Group Dwarf Galaxies III. Characterizing Quenching in Low-Mass Galaxies

    OpenAIRE

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2015-01-01

    We explore the quenching of low-mass galaxies (10^4 < Mstar < 10^8 Msun) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived from analyzing color-magnitude diagrams of resolved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) Lower mass galaxies quench earlier than higher mass galaxies; (2) Inside of virial radius there is no correlation between a satellite's ...

  11. High-resolution mass models of dwarf galaxies from LITTLE THINGS

    CERN Document Server

    Oh, Se-Heon; Brinks, Elias; Elmegreen, Bruce G; Schruba, Andreas; Walter, Fabian; Rupen, Michael P; Young, Lisa M; Simpson, Caroline E; Johnson, Megan; Herrmann, Kimberly A; Ficut-Vicas, Dana; Cigan, Phil; Heesen, Volker; Ashley, Trisha; Zhang, Hong-Xin

    2015-01-01

    We present high-resolution rotation curves and mass models of 26 dwarf galaxies from LITTLE THINGS. LITTLE THINGS is a high-resolution Very Large Array HI survey for nearby dwarf galaxies in the local volume within 11 Mpc. The rotation curves of the sample galaxies derived in a homogeneous and consistent manner are combined with Spitzer archival 3.6 micron and ancillary optical U, B, and V images to construct mass models of the galaxies. We decompose the rotation curves in terms of the dynamical contributions by baryons and dark matter halos, and compare the latter with those of dwarf galaxies from THINGS as well as Lambda CDM SPH simulations in which the effect of baryonic feedback processes is included. Being generally consistent with THINGS and simulated dwarf galaxies, most of the LITTLE THINGS sample galaxies show a linear increase of the rotation curve in their inner regions, which gives shallower logarithmic inner slopes alpha of their dark matter density profiles. The mean value of the slopes of the 2...

  12. Dense cloud cores revealed by CO in the low metallicity dwarf galaxy WLM.

    Science.gov (United States)

    Rubio, Monica; Elmegreen, Bruce G; Hunter, Deidre A; Brinks, Elias; Cortés, Juan R; Cigan, Phil

    2015-09-10

    Understanding stellar birth requires observations of the clouds in which they form. These clouds are dense and self-gravitating, and in all existing observations they are molecular, with H2 the dominant species and carbon monoxide (CO) the best available tracer. When the abundances of carbon and oxygen are low compared with that of hydrogen, and the opacity from dust is also low, as in primeval galaxies and local dwarf irregular galaxies, CO forms slowly and is easily destroyed, so it is difficult for it to accumulate inside dense clouds. Here we report interferometric observations of CO clouds in the local group dwarf irregular galaxy Wolf-Lundmark-Melotte (WLM), which has a metallicity that is 13 per cent of the solar value and 50 per cent lower than the previous CO detection threshold. The clouds are tiny compared to the surrounding atomic and H2 envelopes, but they have typical densities and column densities for CO clouds in the Milky Way. The normal CO density explains why star clusters forming in dwarf irregulars have similar densities to star clusters in giant spiral galaxies. The low cloud masses suggest that these clusters will also be low mass, unless some galaxy-scale compression occurs, such as an impact from a cosmic cloud or other galaxy. If the massive metal-poor globular clusters in the halo of the Milky Way formed in dwarf galaxies, as is commonly believed, then they were probably triggered by such an impact. PMID:26354481

  13. The number of tidal dwarf satellite galaxies in dependence of bulge index

    CERN Document Server

    Lopez-Corredoira, Martin

    2015-01-01

    We show that a significant correlation (up to 5sigma) emerges between the bulge index, defined to be larger for larger bulge/disk ratio, in spiral galaxies with similar luminosities in the Galaxy Zoo 2 of SDSS and the number of tidal-dwarf galaxies in the catalogue by Kaviraj et al. (2012). In the standard cold or warm dark-matter cosmological models the number of satellite galaxies correlates with the circular velocity of the dark matter host halo. In generalized-gravity models without cold or warm dark matter such a correlation does not exist, because host galaxies cannot capture in-falling dwarf galaxies due to the absence of dark-matter-induced dynamical friction. However, in such models a correlation is expected to exist between the bulge mass and the number of satellite galaxies, because bulges and tidal-dwarf satellite galaxies form in encounters between host galaxies. This is not predicted by dark matter models in which bulge mass and the number of satellites are a priori uncorrelated because higher b...

  14. The same with less: the cosmic web of warm versus cold dark matter dwarf galaxies

    Science.gov (United States)

    Reed, Darren S.; Schneider, Aurel; Smith, Robert E.; Potter, Doug; Stadel, Joachim; Moore, Ben

    2015-08-01

    We explore fundamental properties of the distribution of low-mass dark matter haloes within the cosmic web using warm dark matter (WDM) and cold dark matter (CDM) cosmological simulations. Using self-abundance-matched mock galaxy catalogues, we show that the distribution of dwarf galaxies in a WDM universe, wherein low-mass halo formation is heavily suppressed, is nearly indistinguishable to that of a CDM universe whose low-mass haloes are not seen because galaxy formation is suppressed below some threshold halo mass. However, if the scatter between dwarf galaxy luminosity and halo properties is large enough, low-mass CDM haloes would sometimes host relatively bright galaxies thereby populating CDM voids with the occasional isolated galaxy and reducing the numbers of completely empty voids. Otherwise, without high mass to light scatter, all mock galaxy clustering statistics that we consider - the auto-correlation function, the numbers and radial profiles of satellites, the numbers of isolated galaxies, and the probability distribution function of small voids - are nearly identical in CDM and WDM. WDM voids are neither larger nor emptier than CDM voids, when constructed from abundance-matched halo catalogues. It is thus a challenge to determine whether the CDM problem of the overabundance of small haloes with respect to the number density of observed dwarf galaxies has a cosmological solution or an astrophysical solution. However, some clues about the dark matter particle and the scatter between the properties of dwarf galaxies and their dark matter halo hosts might be found in the cosmic web of galaxies in future surveys of the local volume.

  15. How the First Stars Shaped the Faintest Gas-dominated Dwarf Galaxies

    Science.gov (United States)

    Verbeke, R.; Vandenbroucke, B.; De Rijcke, S.

    2015-12-01

    Low-mass dwarf galaxies are very sensitive test-beds for theories of cosmic structure formation since their weak gravitational fields allow the effects of the relevant physical processes to clearly stand out. Up to now, no unified account has existed of the sometimes seemingly conflicting properties of the faintest isolated dwarfs in and around the Local Group, such as Leo T and the recently discovered Leo P and Pisces A systems. Using new numerical simulations, we show that this serious challenge to our understanding of galaxy formation can be effectively resolved by taking into account the regulating influence of the ultraviolet radiation of the first population of stars on a dwarf's star formation rate while otherwise staying within the standard cosmological paradigm for structure formation. These simulations produce faint, gas-dominated, star-forming dwarf galaxies that lie on the baryonic Tully-Fisher relation and that successfully reproduce a broad range of chemical, kinematical, and structural observables of real late-type dwarf galaxies. Furthermore, we stress the importance of obtaining properties of simulated galaxies in a manner as close as possible to the typically employed observational techniques.

  16. Optically Selected Compact Stellar Regions and Tidal Dwarf Galaxies in (Ultra)-Luminous Infrared Galaxies

    CERN Document Server

    Miralles-Caballero, Daniel

    2012-01-01

    This thesis work is devoted to the analysis of compact star forming regions (knots) in a representative sample of 32 (U)LIRGs. The project is based mainly on optical high angular resolution images taken with the ACS and WFPC2 cameras on board the HST telescope, data from a high spatial resolution simulation of a major galaxy encounter, and with the combination of optical integral field spectroscopy (IFS) taken with the INTEGRAL (WHT) and VIMOS (VLT) instruments. A few thousand knots -a factor of more than one order of magnitude higher than in previous studies- are identified and their photometric properties are characterized as a function of the infrared luminosity of the system and of the interaction phase. These properties are compared with those of compact objects identified in simulations of galaxy encounters. Finally, and with the additional use of IFS data, we search for suitable candidates to tidal dwarf galaxies, setting up constraints on the formation of these objects for the (U)LIRG class. Knots in ...

  17. Gravitational lensing by globular clusters and dwarf galaxies-- the explanation of quasar-galaxy associations

    Science.gov (United States)

    Yushchenko, A.; Kim, C.; Sergeev, A.

    2003-04-01

    Quasar-galaxy associations can be explained as gravitational lensing by globular clusters, located in the halos of the foreground galaxies and dwarf galaxies in small groups of galaxies. We propose an observational test for checking this hypothesis. We used the SUPERCOSMOS sky survey to find the overdensities of star-like sources with zero proper motions in the vicinities of the~foreground galaxies from the CfA3 catalog. The results obtained for 19413 galaxies are presented. We show the results of calculations of number densities of star-like sources with zero proper motions in the vicinity of 19413 galaxies. Two different effects can explain the observational data: lensing by globular clusters and lensing by dwarf galaxies. We carried out the CCD 3-color photometry with the 2.0-m telescope of the~Terskol Observatory and the 1.8-m telescope of the Bohyunsan Observatory (South Korea) to select extremely lensed objects around several galaxies for future spectroscopic observations. From ads Wed Jan 12 06:25:17 2005 Return-Path: Received: (from ads@localhost) by head.cfa.harvard.edu (d/w) id j0CBPHjt007159; Wed, 12 Jan 2005 06:25:17 -0500 (EST) Received: from cfa.harvard.edu (cfa.harvard.edu [131.142.10.1]) by head.cfa.harvard.edu (d/w) with ESMTP id j0CBOuKD007095 for ; Wed, 12 Jan 2005 06:24:56 -0500 (EST) Received: from uqbar.mao.kiev.ua (mao.gluk.org [194.183.183.193]) by cfa.harvard.edu (8.12.9-20030924/8.12.9/cfunix Mast-Sol 1.0) with ESMTP id j0CBOgRv026875 for ; Wed, 12 Jan 2005 06:24:51 -0500 (EST) Received: from maoling.mao.kiev.ua (root@maoling.mao.kiev.ua [194.44.216.101]) by uqbar.mao.kiev.ua (8.11.6/8.11.6) with ESMTP id j0CBOdv08381 for ; Wed, 12 Jan 2005 13:24:39 +0200 Received: from maoling.mao.kiev.ua (gallaz@localhost [127.0.0.1]) by maoling.mao.kiev.ua (8.12.3/8.12.3/Debian-7.1) with ESMTP id j0CBObPb014682 for ; Wed, 12 Jan 2005 13:24:37 +0200 Received: (from gallaz@localhost) by maoling.mao.kiev.ua (8.12.3/8.12.3/Debian-7.1) id j0CBObwQ014680 for

  18. Chemistry of Stars in the Sculptor Dwarf Galaxy from VLT-FLAMES

    Science.gov (United States)

    Venn, Kim A.; Hill, V.

    The chemical composition of 91 stars in the Sculptor dwarf spheroidal galaxy is presented as determined from spectra taken with the FLAMES multiobject spectrograph in the Medusa mode. The analysis methods are outlined. The [α/Fe] ratios are shown for Mg, Ca, and Ti, and compared with those of Galactic stars. Heavy element abundance ratios (Y, Ba, and Eu) are also presented. Since the Sculptor dwarf galaxy has had a significantly different star formation history and chemical evolution than the Galaxy, then comparison of Sculptor's metal-poor (old) stars to similar metallicity stars in the Galaxy can be used to discuss galaxy formation scenarios, as well as test some of our fundamental assumptions in stellar nucleosynthesis.

  19. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10.

    Science.gov (United States)

    Reines, Amy E; Sivakoff, Gregory R; Johnson, Kelsey E; Brogan, Crystal L

    2011-02-01

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids. PMID:21217688

  20. Observational Constraints on the Molecular Gas Content in Nearby Starburst Dwarf Galaxies

    CERN Document Server

    McQuinn, Kristen B W; Dalcanton, Julianne J; Dolphin, Andrew E; Cannon, John M; Holtzman, Jon; Weisz, Daniel R; Williams, Benjamin F

    2012-01-01

    Using star formation histories derived from optically resolved stellar populations in nineteen nearby starburst dwarf galaxies observed with the Hubble Space Telescope, we measure the stellar mass surface densities of stars newly formed in the bursts. By assuming a star formation efficiency (SFE), we then calculate the inferred gas surface densities present at the onset of the starbursts. Assuming a SFE of 1%, as is often assumed in normal star-forming galaxies, and assuming that the gas was purely atomic, translates to very high HI surface densities (~10^2-10^3 Msun pc^-2), which are much higher than have been observed in dwarf galaxies. This implies either higher values of SFE in these dwarf starburst galaxies or the presence of significant amounts of H_2 in dwarfs (or both). Raising the assumed SFEs to 10% or greater (in line with observations of more massive starbursts associated with merging galaxies), still results in HI surface densities higher than observed in 10 galaxies. Thus, these observations app...

  1. ANDROMEDA XXVIII: A DWARF GALAXY MORE THAN 350 kpc FROM ANDROMEDA

    International Nuclear Information System (INIS)

    We report the discovery of a new dwarf galaxy, Andromeda XXVIII, using data from the recently released Sloan Digital Sky Survey Data Release 8. The galaxy is a likely satellite of Andromeda, and, at a separation of 365+17–1 kpc, would be one of the most distant of Andromeda's satellites. Its heliocentric distance is 650+150–80 kpc, and analysis of its structure and luminosity shows that it has an absolute magnitude of MV = –8.5+0.4–1.0 and half-light radius of rh = 210+60–50 pc, similar to many other faint Local Group dwarfs. With presently available imaging we are unable to determine whether there is ongoing or recent star formation, which prevents us from classifying it as a dwarf spheroidal or a dwarf irregular.

  2. Extended stellar substructure surrounding the Bo\\"otes I dwarf spheroidal galaxy

    CERN Document Server

    Roderick, T A; Jerjen, H; Da Costa, G S

    2016-01-01

    We present deep stellar photometry of the Bo\\"otes I dwarf spheroidal galaxy in g and i band filters, taken with the Dark Energy Camera at Cerro Tololo in Chile. Our analysis reveals a large, extended region of stellar substructure surrounding the dwarf, as well as a distinct over-density encroaching on its tidal radius. A radial profile of the Bo\\"otes I stellar distribution shows a break radius indicating the presence of extra-tidal stars. These observations strongly suggest that Bo\\"otes I is experiencing tidal disruption, although not as extreme as that exhibited by the Hercules dwarf spheroidal. Combined with revised velocity dispersion measurements from the literature, we see evidence suggesting the need to review previous theoretical models of the Bo\\"otes I dwarf spheroidal galaxy.

  3. Impact of axisymmetric mass models for dwarf spheroidal galaxies on indirect dark matter searches

    CERN Document Server

    Klop, Niki; Hayashi, Kohei; Ando, Shin'ichiro

    2016-01-01

    Dwarf spheroidals are low-luminosity satellite galaxies of the Milky Way highly dominated by dark matter. Therefore, they are prime targets to search for signals from dark matter annihilation using gamma-ray observations. We analyse about 7 years of PASS8 Fermi data for seven classical dwarf galaxies, including Draco, adopting both the widely used Navarro-Frenk-White (NFW) profile and observationally motivated axisymmetric density profiles. For four of the selected dwarfs (Sextans, Carina, Sculptor and Fornax) axisymmetric mass models suggest a cored density profile rather than the commonly adopted cusped profile. We found that upper limits on the annihilation cross section for some of these dwarfs are significantly higher than the ones achieved using an NFW profile. Therefore, upper limits in the literature obtained using cusped profiles like the NFW might have been overestimated. Our results eventually show that it is extremely important to use observationally motivated density profiles going beyond the usu...

  4. Suppression of star formation in dwarf galaxies by photoelectric grain heating feedback.

    Science.gov (United States)

    Forbes, John C; Krumholz, Mark R; Goldbaum, Nathan J; Dekel, Avishai

    2016-07-28

    Photoelectric heating--heating of dust grains by far-ultraviolet photons--has long been recognized as the primary source of heating for the neutral interstellar medium. Simulations of spiral galaxies have shown some indication that photoelectric heating could suppress star formation; however, simulations that include photoelectric heating have typically shown that it has little effect on the rate of star formation in either spiral galaxies or dwarf galaxies, which suggests that supernovae are responsible for setting the gas depletion time in galaxies. This result is in contrast with recent work indicating that a star formation law that depends on galaxy metallicity--as is expected with photoelectric heating,but not with supernovae--reproduces the present-day galaxy population better than does a metallicity-independent one. Here we report a series of simulations of dwarf galaxies, the class of galaxy in which the effects of both photoelectric heating and supernovae are expected to be strongest. We simultaneously include space and time-dependent photoelectric heating in our simulations, and we resolve the energy-conserving phase of every supernova blast wave, which allows us to directly measure the relative importance of feedback by supernovae and photoelectric heating in suppressing star formation. We find that supernovae are unable to account for the observed large gas depletion times in dwarf galaxies. Instead, photoelectric heating is the dominant means by which dwarf galaxies regulate their star formation rate at any given time,suppressing the rate by more than an order of magnitude relative to simulations with only supernovae. PMID:27350244

  5. Suppression of star formation in dwarf galaxies by photoelectric grain heating feedback

    Science.gov (United States)

    Forbes, John C.; Krumholz, Mark R.; Goldbaum, Nathan J.; Dekel, Avishai

    2016-07-01

    Photoelectric heating—heating of dust grains by far-ultraviolet photons—has long been recognized as the primary source of heating for the neutral interstellar medium. Simulations of spiral galaxies have shown some indication that photoelectric heating could suppress star formation; however, simulations that include photoelectric heating have typically shown that it has little effect on the rate of star formation in either spiral galaxies or dwarf galaxies, which suggests that supernovae are responsible for setting the gas depletion time in galaxies. This result is in contrast with recent work indicating that a star formation law that depends on galaxy metallicity—as is expected with photoelectric heating, but not with supernovae—reproduces the present-day galaxy population better than does a metallicity-independent one. Here we report a series of simulations of dwarf galaxies, the class of galaxy in which the effects of both photoelectric heating and supernovae are expected to be strongest. We simultaneously include space- and time-dependent photoelectric heating in our simulations, and we resolve the energy-conserving phase of every supernova blast wave, which allows us to directly measure the relative importance of feedback by supernovae and photoelectric heating in suppressing star formation. We find that supernovae are unable to account for the observed large gas depletion times in dwarf galaxies. Instead, photoelectric heating is the dominant means by which dwarf galaxies regulate their star formation rate at any given time, suppressing the rate by more than an order of magnitude relative to simulations with only supernovae.

  6. OBSERVATIONAL CONSTRAINTS ON THE MOLECULAR GAS CONTENT IN NEARBY STARBURST DWARF GALAXIES

    International Nuclear Information System (INIS)

    Using star formation histories derived from optically resolved stellar populations in 19 nearby starburst dwarf galaxies observed with the Hubble Space Telescope, we measure the stellar mass surface densities of stars newly formed in the bursts. By assuming a star formation efficiency (SFE), we then calculate the inferred gas surface densities present at the onset of the starbursts. Assuming an SFE of 1%, as is often assumed in normal star-forming galaxies, and assuming that the gas was purely atomic, translates to very high H I surface densities (∼102-103 M☉ pc–2), which are much higher than have been observed in dwarf galaxies. This implies either higher values of SFE in these dwarf starburst galaxies or the presence of significant amounts of H2 in dwarfs (or both). Raising the assumed SFEs to 10% or greater (in line with observations of more massive starbursts associated with merging galaxies), still results in H I surface densities higher than observed in 10 galaxies. Thus, these observations appear to require that a significant fraction of the gas in these dwarf starbursts galaxies was in the molecular form at the onset of the bursts. Our results imply molecular gas column densities in the range 1019-1021 cm–2 for the sample. In the galaxies where CO observations have been made, these densities correspond to values of the CO–H2 conversion factor (XCO) in the range >(3-80) × 1020 cm–2 (K km s–1)–1, or up to 40 × greater than Galactic XCO values.

  7. OBSERVATIONAL CONSTRAINTS ON THE MOLECULAR GAS CONTENT IN NEARBY STARBURST DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D. [Department of Astronomy, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Dalcanton, Julianne J.; Weisz, Daniel R.; Williams, Benjamin F. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Holtzman, Jon, E-mail: kmcquinn@astro.umn.edu [Department of Astronomy, New Mexico State University, Box 30001, Department 4500, 1320 Frenger Street, Las Cruces, NM 88003 (United States)

    2012-06-01

    Using star formation histories derived from optically resolved stellar populations in 19 nearby starburst dwarf galaxies observed with the Hubble Space Telescope, we measure the stellar mass surface densities of stars newly formed in the bursts. By assuming a star formation efficiency (SFE), we then calculate the inferred gas surface densities present at the onset of the starbursts. Assuming an SFE of 1%, as is often assumed in normal star-forming galaxies, and assuming that the gas was purely atomic, translates to very high H I surface densities ({approx}10{sup 2}-10{sup 3} M{sub Sun} pc{sup -2}), which are much higher than have been observed in dwarf galaxies. This implies either higher values of SFE in these dwarf starburst galaxies or the presence of significant amounts of H{sub 2} in dwarfs (or both). Raising the assumed SFEs to 10% or greater (in line with observations of more massive starbursts associated with merging galaxies), still results in H I surface densities higher than observed in 10 galaxies. Thus, these observations appear to require that a significant fraction of the gas in these dwarf starbursts galaxies was in the molecular form at the onset of the bursts. Our results imply molecular gas column densities in the range 10{sup 19}-10{sup 21} cm{sup -2} for the sample. In the galaxies where CO observations have been made, these densities correspond to values of the CO-H{sub 2} conversion factor (X{sub CO}) in the range >(3-80) Multiplication-Sign 10{sup 20} cm{sup -2} (K km s{sup -1}){sup -1}, or up to 40 Multiplication-Sign greater than Galactic X{sub CO} values.

  8. DRIVERS OF H I TURBULENCE IN DWARF GALAXIES

    International Nuclear Information System (INIS)

    Neutral hydrogen (H I) velocity dispersions are believed to be set by turbulence in the interstellar medium (ISM). Although turbulence is widely believed to be driven by star formation, recent studies have shown that this driving mechanism may not be dominant in regions of low star formation surface density (ΣSFR), such those as found in dwarf galaxies or the outer regions of spirals. We have generated average H I line profiles in a number of nearby dwarfs and low-mass spirals by co-adding H I spectra in subregions with either a common radius or ΣSFR. We find that the individual spatially resolved ''superprofiles'' are composed of a central narrow peak (∼5-15 km s–1) with higher velocity wings to either side, similar to their global counterparts as calculated for the galaxy as a whole. Under the assumption that the central peak reflects the H I turbulent velocity dispersion, we compare measures of H I kinematics determined from the superprofiles to local ISM properties, including surface mass densities and measures of star formation. The shape of the wings of the superprofiles do not show any correlation with local ISM properties, which indicates that they may be an intrinsic feature of H I line-of-sight spectra. On the other hand, the H I velocity dispersion is correlated most strongly with baryonic and H I surface mass density, which points toward a gravitational origin for turbulence, but it is unclear which, if any, gravitational instabilities are able to operate efficiently in these systems. Star formation energy is typically produced at a level sufficient to drive H I turbulent motions at realistic coupling efficiencies in regimes where ΣSFR ∼> 10–4 M☉ yr–1 kpc–2, as is typically found in inner spiral disks. At low star formation intensities, on the other hand, star formation cannot supply enough energy to drive the observed turbulence, nor does it uniquely determine the turbulent velocity dispersion. Nevertheless, even at low intensity, star

  9. Theoretical lower limits on sizes of ultra faint dwarf galaxies from dynamical friction

    OpenAIRE

    Hernandez, X.

    2016-01-01

    Dwarf spheroidal galaxies are the smallest known stellar systems where under Newtonian interpretations, a significant amount of dark matter is required to explain observed kinematics. In fact, they are in this sense the most heavily dark matter dominated objects known. That, plus the increasingly small sizes of the newly discovered ultra faint dwarfs, puts these systems in the regime where dynamical friction on individual stars starts to become relevant. We calculate the dynamical friction ti...

  10. Stable State Simulations of Andromeda Dwarf Spheroidal Satellite Galaxies Using MOND

    Science.gov (United States)

    Walentosky, Matthew; Blankartz, Benjamin; Alexander, Stephen; Messinger, Justin; Staron, Alex

    2016-01-01

    We present the results of numerical simulations of the stable state condition of several dwarf spheroidal galaxies orbiting the Andromeda galaxy. Using Modified Newtonian Dynamics, we calculate the motion of ten thousand stars in a spherically symmetric Hernquist potential to obtain both the line of sight bulk velocity dispersion and the dispersion profile, i.e. the velocity dispersion as a function of distance from the galactic center. Our results for the bulk dispersion show excellent agreement with observed values and previously published theoretical results and provide reliable estimates of the mass to luminosity ratio. We predict relatively flat radial dispersion profiles for several of the Andromeda dwarf spheroidal galaxies that are similar to those measured for the Milky Way dwarf spheroidals .

  11. The True Durations of Starbursts: HST Observations of Three Nearby Dwarf Starburst Galaxies

    CERN Document Server

    McQuinn, Kristen B W; Cannon, John M; Dalcanton, Julianne J; Dolphin, Andrew; Stark, David; Weisz, Daniel

    2009-01-01

    The duration of a starburst is a fundamental parameter affecting the evolution of galaxies yet, to date, observational constraints on the durations of starbursts are not well established. Here we study the recent star formation histories (SFHs) of three nearby dwarf galaxies to rigorously quantify the duration of their starburst events using a uniform and consistent approach. We find that the bursts range from ~200 - ~400 Myr in duration resolving the tension between the shorter timescales often derived observationally with the longer timescales derived from dynamical arguments. If these three starbursts are typical of starbursts in dwarf galaxies, then the short timescales (3 - 10 Myr) associated with starbursts in previous studies are best understood as "flickering" events which are simply small components of the larger starburst. In this sample of three nearby dwarfs, the bursts are not localized events. All three systems show bursting levels of star formation in regions of both high and low stellar densit...

  12. Fundamental properties of the new dwarf galaxy And VI - alias "Pegasus Dwarf" - another companion of M31

    CERN Document Server

    Hopp, U; Greggio, L; Mehlert, D; Hopp, Ulrich; Schulte-Ladbeck, Regina E.; Greggio, Laura; Mehlert, Dorte

    1998-01-01

    We present medium deep CCD imaging in B, V, and I of the Pegasus Dwarf galaxy (And VI) which was recently found by Karachentsev & Karachentseva (1998), and independently also by Armandroff et al. (1999). The Calar Alto 2.2m images show a low surface brightness galaxy. Its structure resembles that of the other known dSph companions of M31 And I, II, III, and V. The brightest stars are resolved in all three colors. Color-magnitude diagrams in either B-V or V-I show the tip of the red giant branch which allows us to estimate a true distance modulus of $24.5 \\pm 0.2$. The color-magnitude diagrams and the structure show no evidence for recent star formation, thus, a classification as spheroidal dwarf galaxy with a rather old population seems appropriate. The total absolute magnitude of this dwarf is $M_{V,0} = -10.4\\pm0.2$.

  13. Globular Clusters, Ultracompact Dwarfs, and Dwarf Galaxies in Abell 2744 at the Redshift of 0.308

    CERN Document Server

    Lee, Myung Gyoon

    2016-01-01

    We report a photometric study of globular clusters (GCs), ultracompact dwarfs (UCDs), and dwarf galaxies in the giant merging galaxy cluster Abell 2744 at z = 0.308. Color-magnitude diagrams of the point sources derived from deep F814W (restframe r') and F105W (restframe I) images of Abell 2744 in the Hubble Space Telescope Frontier Field show a rich population of point sources whose colors are similar to those of typical GCs. These sources are as bright as -14.9 < M_r' < -11.4 (26.0 < F814W < 29.5) mag, being mostly UCDs and bright GCs in Abell 2744. The luminosity function (LF) of these sources shows a break at M_r' ~ -12.9 (F814W ~ 28.0) mag, indicating a boundary between UCDs and bright GCs. The numbers of GCs and UCDs are estimated to be N_GC = 385,000+-24,000, and 147 +- 26, respectively. The clustercentric radial number density profiles of the UCDs and bright GCs show similar slopes, but these profiles are much steeper than that of the dwarf galaxies and the mass density profile based on gr...

  14. A VLT/FORS2 spectroscopic survey of individual stars in a transforming dwarf galaxy

    CERN Document Server

    Battaglia, G; Rejkuba, M

    2016-01-01

    Understanding the properties of dwarf galaxies is important not only to put them in their proper cosmological context, but also to understand the formation and evolution of the most common type of galaxies. Dwarf galaxies are divided into two main classes, dwarf irregulars (dIrrs) and dwarf spheroidals (dSphs), which differ from each other mainly because the former are gas-rich objects currently forming stars, while the latter are gas-deficient with no on-going star formation. Transition types (dT) are thought to represent dIs in the process of losing their gas, and can therefore shed light into the possible process of dwarf irregulars (dIrrs) becoming gas-deficient, passively evolving galaxies. Here we present preliminary results from our wide-area VLT/FORS2 MXU spectroscopic survey of the Phoenix dT, from which we obtained line-of-sight velocities and metallicities from the nIR Ca II triplet lines for a large sample of individual Red Giant Branch stars.

  15. Photometric Calibration of DECam Images of the Sextans Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Howard, Brittany; Vivas, Kathy

    2016-01-01

    As part of an ongoing study on the variable star population of the Sextans Dwarf Spheroidal Galaxy, we present here details on the photometric calibration of the data, which were obtained with the Dark Energy Camera (DECam) at the Blanco 4mTelescope at the Cerro Tololo Interamerican Observatory. Since DECam is a relatively new instrument, we tested different calibration strategies including calibrating each chip individually and all together. Our results indicate that the color terms and zero points are constant across the camera, at least in the g, r and i bands. We present preliminary results on the location of variable stars in the Sextans dwarf galaxy.

  16. KECK/LRIS SPECTROSCOPIC CONFIRMATION OF COMA CLUSTER DWARF GALAXY MEMBERSHIP ASSIGNMENTS

    International Nuclear Information System (INIS)

    Keck/LRIS multi-object spectroscopy has been carried out on 140 of some of the lowest and highest surface brightness faint (19 < R < 22) dwarf galaxy candidates in the core region of the Coma Cluster. These spectra are used to measure redshifts and establish membership for these faint dwarf populations. The primary goal of the low surface brightness sample is to test our ability to use morphological and surface brightness criteria to distinguish between Coma Cluster members and background galaxies using high resolution Hubble Space Telescope/Advanced Camera for Surveys images. Candidates were rated as expected members, uncertain, or expected background. From 93 spectra, 51 dwarf galaxy members and 20 background galaxies are identified. Our morphological membership estimation success rate is ∼100% for objects expected to be members and better than ∼90% for galaxies expected to be in the background. We confirm that low surface brightness is a very good indicator of cluster membership. High surface brightness galaxies are almost always background with confusion arising only from the cases of the rare compact elliptical (cE) galaxies. The more problematic cases occur at intermediate surface brightness. Many of these galaxies are given uncertain membership ratings, and these were found to be members about half of the time. Including color information will improve membership determination but will fail for some of the same objects that are already misidentified when using only surface brightness and morphology criteria. cE galaxies with B-V colors ∼0.2 mag redward of the red sequence in particular require spectroscopic follow up. In a sample of 47 high surface brightness, ultracompact dwarf candidates, 19 objects have redshifts which place them in the Coma Cluster, while another 6 have questionable redshift measurements but may also prove to be members. Redshift measurements are presented and the use of indirect means for establishing cluster membership is

  17. THE TRUE DURATIONS OF STARBURSTS: HUBBLE SPACE TELESCOPE OBSERVATIONS OF THREE NEARBY DWARF STARBURST GALAXIES

    International Nuclear Information System (INIS)

    The duration of a starburst is a fundamental parameter affecting the evolution of galaxies yet, to date, observational constraints on the durations of starbursts are not well established. Here we study the recent star formation histories of three nearby dwarf galaxies to rigorously quantify the duration of their starburst events using a uniform and consistent approach. We find that the bursts range from ∼200 to ∼400 Myr in duration resolving the tension between the shorter timescales often derived observationally with the longer timescales derived from dynamical arguments. If these three starbursts are typical of starbursts in dwarf galaxies, then the short timescales (3-10 Myr) associated with starbursts in previous studies are best understood as 'flickering' events which are simply small components of the larger starburst. In this sample of three nearby dwarfs, the bursts are not localized events. All three systems show bursting levels of star formation in regions of both high and low stellar density. The enhanced star formation moves around the galaxy during the bursts and covers a large fraction of the area of the galaxy. These massive, long-duration bursts can significantly affect the structure, dynamics, and chemical evolution of the host galaxy and can be the progenitors of 'superwinds' that drive much of the recently chemically enriched material from the galaxy into the intergalactic medium.

  18. Chemical Abundances of Seven Irregular and Three Tidal Dwarf Galaxies in the M81 Group

    CERN Document Server

    Croxall, Kevin V; Lee, Henry; Skillman, Evan D; Lee, Janice C; Côté, Stéphanie; Kennicutt, Robert C; Miller, Bryan W; 10.1088/0004-637X/705/1/723

    2009-01-01

    We have derived nebular abundances for 10 dwarf galaxies belonging to the M81 Group, including several galaxies which do not have abundances previously reported in the literature. For each galaxy, multiple H \\ii regions were observed with GMOS-N at the Gemini Observatory in order to determine abundances of several elements (oxygen, nitrogen, sulfur, neon, and argon). For seven galaxies, at least one H \\ii region had a detection of the temperature sensitive [OIII] $\\lambda$4363 line, allowing a "direct" determination of the oxygen abundance. No abundance gradients were detected in the targeted galaxies and the observed oxygen abundances are typically in agreement with the well known metallicity-luminosity relation. However, three candidate "tidal dwarf" galaxies lie well off this relation, UGC 5336, Garland, and KDG 61. The nature of these systems suggests that UGC 5336 and Garland are indeed recently formed systems, whereas KDG 61 is most likely a dwarf spheroidal galaxy which lies along the same line of sigh...

  19. The Herschel Dwarf Galaxy Survey: I. Properties of the low-metallicity ISM from PACS spectroscopy

    CERN Document Server

    Cormier, D; Lebouteiller, V; Abel, N; Hony, S; Galliano, F; Remy-Ruyer, A; Bigiel, F; Baes, M; Boselli, A; Chevance, M; Cooray, A; De Looze, I; Doublier, V; Galametz, M; Hugues, T; Karczewski, O L; Lee, M -Y; Lu, N; Spinoglio, L

    2015-01-01

    The far-infrared (FIR) lines are key tracers of the physical conditions of the interstellar medium (ISM) and are becoming workhorse diagnostics for galaxies throughout the universe. Our goal is to explain the differences and trends observed in the FIR line emission of dwarf galaxies compared to more metal-rich galaxies. We present Herschel PACS spectroscopic observations of the CII157um, OI63 and 145um, OIII88um, NII122 and 205um, and NIII57um fine-structure cooling lines in a sample of 48 low-metallicity star-forming galaxies of the guaranteed time key program Dwarf Galaxy Survey. We correlate PACS line ratios and line-to-LTIR ratios with LTIR, LTIR/LB, metallicity, and FIR color, and interpret the observed trends in terms of ISM conditions and phase filling factors with Cloudy radiative transfer models. We find that the FIR lines together account for up to 3 percent of LTIR and that star-forming regions dominate the overall emission in dwarf galaxies. Compared to metal-rich galaxies, the ratios of OIII/NII1...

  20. R-process enrichment from a single event in an ancient dwarf galaxy.

    Science.gov (United States)

    Ji, Alexander P; Frebel, Anna; Chiti, Anirudh; Simon, Joshua D

    2016-03-31

    Elements heavier than zinc are synthesized through the rapid (r) and slow (s) neutron-capture processes. The main site of production of the r-process elements (such as europium) has been debated for nearly 60 years. Initial studies of trends in chemical abundances in old Milky Way halo stars suggested that these elements are produced continually, in sites such as core-collapse supernovae. But evidence from the local Universe favours the idea that r-process production occurs mainly during rare events, such as neutron star mergers. The appearance of a plateau of europium abundance in some dwarf spheroidal galaxies has been suggested as evidence for rare r-process enrichment in the early Universe, but only under the assumption that no gas accretes into those dwarf galaxies; gas accretion favours continual r-process enrichment in these systems. Furthermore, the universal r-process pattern has not been cleanly identified in dwarf spheroidals. The smaller, chemically simpler, and more ancient ultrafaint dwarf galaxies assembled shortly after the first stars formed, and are ideal systems with which to study nucleosynthesis events such as the r-process. Reticulum II is one such galaxy. The abundances of non-neutron-capture elements in this galaxy (and others like it) are similar to those in other old stars. Here, we report that seven of the nine brightest stars in Reticulum II, observed with high-resolution spectroscopy, show strong enhancements in heavy neutron-capture elements, with abundances that follow the universal r-process pattern beyond barium. The enhancement seen in this 'r-process galaxy' is two to three orders of magnitude higher than that detected in any other ultrafaint dwarf galaxy. This implies that a single, rare event produced the r-process material in Reticulum II. The r-process yield and event rate are incompatible with the source being ordinary core-collapse supernovae, but consistent with other possible sources, such as neutron star mergers. PMID

  1. COMPARING THE OBSERVABLE PROPERTIES OF DWARF GALAXIES ON AND OFF THE ANDROMEDA PLANE

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Michelle L. M.; Martin, Nicolas F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Rich, R. M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Ibata, Rodrigo A. [Observatoire de Strasbourg, 11, Rue de l' Université, F-67000 Strasbourg (France); Chapman, Scott C. [Department of Physics and Atmospheric Science, Dalhousie University, Coburg Road, Halifax B3H1A6 (Canada); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, British Columbia, Victoria V9E 2E7 (Canada); Ferguson, Annette M. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Irwin, Michael J. [Institute of Astronomy, Madingley Rise, Cambridge CB3 0HA (United Kingdom); Lewis, Geraint F., E-mail: michelle.collins@yale.edu [Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, NSW 2006 (Australia)

    2015-01-20

    The thin, extended planes of satellite galaxies detected around both the Milky Way and Andromeda are not a natural prediction of the Λ-cold dark matter paradigm. Galaxies in these distinct planes may have formed and evolved in a different way (e.g., tidally) from their off-plane neighbors. If this were the case, one would expect the on- and off-plane dwarf galaxies in Andromeda to have experienced different evolutionary histories, which should be reflected by the chemistries, dynamics, and star formation histories of the two populations. In this work, we present new, robust kinematic observations for two on-plane M31 dwarf spheroidal galaxies (And XVI and XVII) and compile and compare all available observational metrics for the on- and off-plane dwarfs to search for a signal that would corroborate such a hypothesis. We find that, barring their spatial alignment, the on- and off-plane Andromeda dwarf galaxies are indistinguishable from one another, arguing against vastly different formative and evolutionary histories for these two populations.

  2. COMPARING THE OBSERVABLE PROPERTIES OF DWARF GALAXIES ON AND OFF THE ANDROMEDA PLANE

    International Nuclear Information System (INIS)

    The thin, extended planes of satellite galaxies detected around both the Milky Way and Andromeda are not a natural prediction of the Λ-cold dark matter paradigm. Galaxies in these distinct planes may have formed and evolved in a different way (e.g., tidally) from their off-plane neighbors. If this were the case, one would expect the on- and off-plane dwarf galaxies in Andromeda to have experienced different evolutionary histories, which should be reflected by the chemistries, dynamics, and star formation histories of the two populations. In this work, we present new, robust kinematic observations for two on-plane M31 dwarf spheroidal galaxies (And XVI and XVII) and compile and compare all available observational metrics for the on- and off-plane dwarfs to search for a signal that would corroborate such a hypothesis. We find that, barring their spatial alignment, the on- and off-plane Andromeda dwarf galaxies are indistinguishable from one another, arguing against vastly different formative and evolutionary histories for these two populations

  3. Star Formation in Dwarf Galaxies of the Nearby Centaurus A Group

    CERN Document Server

    Cote, Stephanie; Skillman, Evan D; Miller, Bryan W

    2009-01-01

    We present Halpha narrow-band imaging of 17 dwarf irregular galaxies (dIs) in the nearby Centaurus A Group. Although all large galaxies of the group have a current or recent enhanced star formation episode, the dIs have normal star formation rates and do not contain a larger fraction of dwarf starbursts than other nearby groups. Relative distances between dIs and larger galaxies of the group can be computed in 3D since most of them have now fairly accurately known distances. We find that the dI star formation rates do not depend on local environment, and in particular they do not show any correlation with the distance of the dI to the nearest large galaxy of the group. There is a clear morphology-density relation in the Centaurus A Group, similarly to the Sculptor and Local Groups, in the sense that dEs/dSphs tend to be at small distances from the more massive galaxies of the group, while dIs are on average at larger distances. We find four transition dwarfs in the Group, dwarfs that show characteristics of b...

  4. Comparing the Observable Properties of Dwarf Galaxies on and off the Andromeda Plane

    Science.gov (United States)

    Collins, Michelle L. M.; Martin, Nicolas F.; Rich, R. M.; Ibata, Rodrigo A.; Chapman, Scott C.; McConnachie, Alan W.; Ferguson, Annette M.; Irwin, Michael J.; Lewis, Geraint F.

    2015-01-01

    The thin, extended planes of satellite galaxies detected around both the Milky Way and Andromeda are not a natural prediction of the Λ-cold dark matter paradigm. Galaxies in these distinct planes may have formed and evolved in a different way (e.g., tidally) from their off-plane neighbors. If this were the case, one would expect the on- and off-plane dwarf galaxies in Andromeda to have experienced different evolutionary histories, which should be reflected by the chemistries, dynamics, and star formation histories of the two populations. In this work, we present new, robust kinematic observations for two on-plane M31 dwarf spheroidal galaxies (And XVI and XVII) and compile and compare all available observational metrics for the on- and off-plane dwarfs to search for a signal that would corroborate such a hypothesis. We find that, barring their spatial alignment, the on- and off-plane Andromeda dwarf galaxies are indistinguishable from one another, arguing against vastly different formative and evolutionary histories for these two populations.

  5. ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. III. AN EXTREMELY METAL DEFICIENT GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Skillman, Evan D.; Berg, Danielle A.; Olive, Keith A.; McQuinn, Kristen B. W., E-mail: skillman@astro.umn.edu, E-mail: berg@astro.umn.edu, E-mail: olive@physics.umn.edu, E-mail: kmcquinn@astro.umn.edu [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); and others

    2013-07-01

    We present KPNO 4 m and LBT/MODS spectroscopic observations of an H II region in the nearby dwarf irregular galaxy Leo P discovered recently in the Arecibo ALFALFA survey. In both observations, we are able to accurately measure the temperature sensitive [O III] {lambda}4363 line and determine a ''direct'' oxygen abundance of 12 + log(O/H) = 7.17 {+-} 0.04. Thus, Leo P is an extremely metal deficient (XMD) galaxy, and, indeed, one of the most metal deficient star-forming galaxies ever observed. For its estimated luminosity, Leo P is consistent with the relationship between luminosity and oxygen abundance seen in nearby dwarf galaxies. Leo P shows normal {alpha} element abundance ratios (Ne/O, S/O, and Ar/O) when compared to other XMD galaxies, but elevated N/O, consistent with the ''delayed release'' hypothesis for N/O abundances. We derive a helium mass fraction of 0.2509{sup +0.0184}{sub -0.0123}, which compares well with the WMAP + BBN prediction of 0.2483 {+-} 0.0002 for the primordial helium abundance. We suggest that surveys of very low mass galaxies compete well with emission line galaxy surveys for finding XMD galaxies. It is possible that XMD galaxies may be divided into two classes: the relatively rare XMD emission line galaxies which are associated with starbursts triggered by infall of low-metallicity gas and the more common, relatively quiescent XMD galaxies like Leo P, with very low chemical abundances due to their intrinsically small masses.

  6. ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. III. AN EXTREMELY METAL DEFICIENT GALAXY

    International Nuclear Information System (INIS)

    We present KPNO 4 m and LBT/MODS spectroscopic observations of an H II region in the nearby dwarf irregular galaxy Leo P discovered recently in the Arecibo ALFALFA survey. In both observations, we are able to accurately measure the temperature sensitive [O III] λ4363 line and determine a ''direct'' oxygen abundance of 12 + log(O/H) = 7.17 ± 0.04. Thus, Leo P is an extremely metal deficient (XMD) galaxy, and, indeed, one of the most metal deficient star-forming galaxies ever observed. For its estimated luminosity, Leo P is consistent with the relationship between luminosity and oxygen abundance seen in nearby dwarf galaxies. Leo P shows normal α element abundance ratios (Ne/O, S/O, and Ar/O) when compared to other XMD galaxies, but elevated N/O, consistent with the ''delayed release'' hypothesis for N/O abundances. We derive a helium mass fraction of 0.2509+0.0184-0.0123, which compares well with the WMAP + BBN prediction of 0.2483 ± 0.0002 for the primordial helium abundance. We suggest that surveys of very low mass galaxies compete well with emission line galaxy surveys for finding XMD galaxies. It is possible that XMD galaxies may be divided into two classes: the relatively rare XMD emission line galaxies which are associated with starbursts triggered by infall of low-metallicity gas and the more common, relatively quiescent XMD galaxies like Leo P, with very low chemical abundances due to their intrinsically small masses.

  7. Stellar hydrodynamical modeling of dwarf galaxies: simulation methodology, tests, and first results

    CERN Document Server

    Vorobyov, Eduard I; Hensler, Gerhard

    2015-01-01

    Cosmological simulations still lack numerical resolution or physical processes to simulate dwarf galaxies in sufficient details. Accurate numerical simulations of individual dwarf galaxies are thus still in demand. We aim at (i) studying in detail the coupling between stars and gas in a galaxy, exploiting the so-called stellar hydrodynamical approach, and (ii) studying the chemo-dynamical evolution of individual galaxies starting from self-consistently calculated initial gas distributions. We present a novel chemo-dynamical code in which the dynamics of gas is computed using the usual hydrodynamics equations, while the dynamics of stars is described by the stellar hydrodynamics approach, which solves for the first three moments of the collisionless Boltzmann equation. The feedback from stellar winds and dying stars is followed in detail. In particular, a novel and detailed approach has been developed to trace the aging of various stellar populations, which enables an accurate calculation of the stellar feedba...

  8. Chemical evolution of Local Group dwarf galaxies in a cosmological context -- I. A new modelling approach and its application to the Sculptor dwarf spheroidal galaxy

    CERN Document Server

    Romano, Donatella

    2013-01-01

    We present a new approach for chemical evolution modelling, specifically designed to investigate the chemical properties of dwarf galaxies in a full cosmological framework. In particular, we focus on the Sculptor dwarf spheroidal galaxy as a test bed for our model. We select four candidate Sculptor-like galaxies from the satellite galaxy catalogue generated by implementation of a version of the Munich semi-analytic model for galaxy formation on the level 2 Aquarius dark matter simulations. We follow explicitly the evolution of several chemical elements, both in the cold gas out of which the stars form and in the hot medium residing in the halo. We take into account in detail the lifetimes of stars of different initial masses, the distribution of the delay times for type Ia supernova explosions and the dependency of the stellar yields from the initial metallicity of the stars. We allow large fractions of metals to be deposited into the hot phase, either directly as stars die or through reheated gas flows power...

  9. The Eating Habits of Giants and Dwarfs: Chemo-dynamics of Halo Assembly in Nearby Galaxies

    Science.gov (United States)

    Romanowsky, Aaron J.; SAGES Team

    2012-01-01

    I will present novel results on the halo assembly of nearby galaxies, from dwarfs to the most massive ellipticals, using Subaru imaging and Keck spectroscopy. Field stars, globular clusters, and planetary nebulae are used as wide-field chemo-dynamical tracers, mapping out halo substructures that were previously known and unknown. Comparisons are made with simulations of galaxy formation. Supported by the National Science Foundation Grants AST-0808099, AST-0909237, and AST-1109878.

  10. The True Durations of Starbursts: HST Observations of Three Nearby Dwarf Starburst Galaxies

    OpenAIRE

    McQuinn, Kristen B W; Skillman, Evan D.; Cannon, John M.; Dalcanton, Julianne J.; Dolphin, Andrew; Stark, David; Weisz, Daniel

    2009-01-01

    The duration of a starburst is a fundamental parameter affecting the evolution of galaxies yet, to date, observational constraints on the durations of starbursts are not well established. Here we study the recent star formation histories (SFHs) of three nearby dwarf galaxies to rigorously quantify the duration of their starburst events using a uniform and consistent approach. We find that the bursts range from ~200 - ~400 Myr in duration resolving the tension between the shorter timescales of...

  11. The frequency and properties of young tidal dwarf galaxies in nearby gas-rich groups

    Science.gov (United States)

    Lee-Waddell, K.; Spekkens, K.; Chandra, P.; Patra, N.; Cuillandre, J.-C.; Wang, J.; Haynes, M. P.; Cannon, J.; Stierwalt, S.; Sick, J.; Giovanelli, R.

    2016-08-01

    We present high-resolution Giant Metrewave Radio Telescope (GMRT) H I observations and deep Canada-France-Hawaii Telescope (CFHT) optical imaging of two galaxy groups: NGC 4725/47 and NGC 3166/9. These data are part of a multi-wavelength unbiased survey of the gas-rich dwarf galaxy populations in three nearby interacting galaxy groups. The NGC 4725/47 group hosts two tidal knots and one dwarf irregular galaxy (dIrr). Both tidal knots are located within a prominent H I tidal tail, appear to have sufficient mass (Mgas ≈ 108 M⊙) to evolve into long-lived tidal dwarf galaxies (TDGs) and are fairly young in age. The NGC 3166/9 group contains a TDG candidate, AGC 208457, at least three dIrrs and four H I knots. Deep CFHT imaging confirms that the optical component of AGC 208457 is bluer - with a 0.28 mag g - r colour - and a few Gyr younger than its purported parent galaxies. Combining the results for these groups with those from the NGC 871/6/7 group reported earlier, we find that the H I properties, estimated stellar ages and baryonic content of the gas-rich dwarfs clearly distinguish tidal features from their classical counterparts. We optimistically identify four potentially long-lived tidal objects associated with three separate pairs of interacting galaxies, implying that TDGs are not readily produced during interaction events as suggested by some recent simulations. The tidal objects examined in this survey also appear to have a wider variety of properties than TDGs of similar mass formed in current simulations of interacting galaxies, which could be the result of pre- or post-formation environmental influences.

  12. Can physical stellar collisions explain the blue stragglers in the dwarf spheroidal galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, P.J.T.

    1993-01-01

    The hypothesis that the blue stragglers in the dwarf spheroidal galaxie have a collisional origin is considered. If all of the dark matter in these galaxies is in the form of low-mass stars and the binary frequency is [approx equal] 50%, then it is quite possible that [approx equal] 10% to 20% of their blue stragglers have been produced by physical stellar collisions.

  13. GHOSTS I: A new faint very isolated dwarf galaxy at D = 12 ± 2 Mpc

    Energy Technology Data Exchange (ETDEWEB)

    Monachesi, Antonela; Bell, Eric F. [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Radburn-Smith, David J.; Dalcanton, Julianne J. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); De Jong, Roelof S.; Streich, David; Vlajić, Marija [Leibniz-Institut für Astrophysik Potsdam, D-14482 Potsdam (Germany); Bailin, Jeremy [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Holwerda, Benne W. [European Space Agency Research Fellow (ESTEC), Keplerlaan 1, 2200-AG Noordwijk (Netherlands); Alyson Ford, H. [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Zucker, Daniel B., E-mail: antonela@umich.edu [Department of Physics and Astronomy, E7A 317, Macquarie University, Sydney, NSW 2109 (Australia)

    2014-01-10

    We report the discovery of a new faint dwarf galaxy, GHOSTS I, using HST/ACS data from one of our GHOSTS (Galaxy Halos, Outer disks, Substructure, Thick disk, and Star clusters) fields. Its detected individual stars populate an approximately 1 mag range of its luminosity function (LF). Using synthetic color-magnitude diagrams (CMDs) to compare with the galaxy's CMD, we find that the colors and magnitudes of GHOSTS I's individual stars are most consistent with being young helium-burning and asymptotic giant branch stars at a distance of ∼12 ± 2 Mpc. Morphologically, GHOSTS I appears to be actively forming stars, so we tentatively classify it as a dwarf irregular (dIrr) galaxy, although future Hubble Space Telescope (HST) observations deep enough to resolve a larger magnitude range in its LF are required to make a more secure classification. GHOSTS I's absolute magnitude is M{sub V}∼−9.85{sub −0.33}{sup +0.40}, making it one of the least luminous dIrr galaxies known, and its metallicity is lower than [Fe/H] = –1.5 dex. The half-light radius of GHOSTS I is 226 ± 38 pc and its ellipticity is 0.47 ± 0.07, similar to Milky Way and M31 dwarf satellites at comparable luminosity. There are no luminous massive galaxies or galaxy clusters within ∼4 Mpc from GHOSTS I that could be considered as its host, making it a very isolated dwarf galaxy in the local universe.

  14. HST Imaging of the Local Volume Dwarf Galaxies Pisces A and B: Prototypes for Local Group Dwarfs

    Science.gov (United States)

    Tollerud, Erik J.; Geha, Marla C.; Grcevich, Jana; Putman, Mary E.; Weisz, Daniel R.; Dolphin, Andrew E.

    2016-08-01

    We present observations of the Pisces A and B galaxies with the Advanced Camera for Surveys on the Hubble Space Telescope. Photometry from these images clearly resolves a red giant branch (RGB) for both objects, demonstrating that they are nearby dwarf galaxies. We describe a Bayesian inferential approach to determining the distance to these galaxies using the magnitude of the tip of the RGB, and then apply this approach to these galaxies. This reveals the distance to these galaxies as {5.64}-0.15+0.13 {{Mpc}} and {8.89}-0.85+0.75 {{Mpc}} for Pisces A and B, respectively, placing both within the Local Volume but not the Local Group (LG). We estimate the star formation histories of these galaxies, which suggests that they have recently undergone an increase in their star formation rates. Together these yield luminosities for Pisces A and B of {M}V=-{11.57}-0.05+0.06 and ‑12.9 ± 0.2, respectively, and estimated stellar masses of {log}({M}* /{M}ȯ )={7.0}-1.7+0.4 and {7.5}-1.8+0.3. We further show that these galaxies are likely at the boundary between nearby voids and higher-density filamentary structure. This suggests that they are entering a higher-density region from voids, where they would have experienced delayed evolution, consistent with their recent increased star formation rates. If this is indeed the case, they are useful for study as proxies of the galaxies that later evolved into typical LG satellite galaxies.

  15. HST Imaging of the Local Volume Dwarf Galaxies Pisces A&B: Prototypes for Local Group Dwarfs

    CERN Document Server

    Tollerud, Erik J; Grcevich, Jana; Putman, Mary E; Weisz, Daniel R; Dolphin, Andrew E

    2016-01-01

    We present observations of the Pisces A and B galaxies with the Advanced Camera for Surveys on the Hubble Space Telescope. Photometry from these images clearly resolve a Red Giant Branch for both objects, demonstrating that they are nearby dwarf galaxies. We describe a Bayesian inferential approach to determining the distance to these galaxies using the magnitude of the tip of the RGB, and then apply this approach to these galaxies. We also provide the full probability distributions for parameters derived using this approach. This reveals the distance to these galaxies as $5.64^{+0.13}_{-0.15} \\, {\\rm Mpc}$ and $8.89^{+0.75}_{-0.85} \\, {\\rm Mpc}$ for Pisces A and B, respectively, placing both within the Local Volume but not the Local Group. We estimate the star formation histories of these galaxies, which suggests that they have recently undergone an increase in their star formation rates. Together these yield luminosities for Pisces A and B of $M_V=-11.57^{+0.06}_{-0.05}$ and $-12.9 \\pm 0.2$, respectively, a...

  16. A Universal Mass Profile for Dwarf Spheroidal Galaxies?

    Science.gov (United States)

    Walker, Matthew G.; Mateo, Mario; Olszewski, Edward W.; Peñarrubia, Jorge; Wyn Evans, N.; Gilmore, Gerard

    2009-10-01

    We apply the Jeans equation to estimate masses for eight of the brightest dwarf spheroidal (dSph) galaxies. For Fornax, the dSph with the largest kinematic data set, we obtain a model-independent constraint on the maximum circular velocity, V max = 20+4 -3 km s-1. Although we obtain only lower limits of V max >~ 10 km s-1 for the remaining dSphs, we find that in all cases the enclosed mass at the projected half-light radius is well constrained and robust to a wide range of halo models and velocity anisotropies. We derive a simple analytic formula that estimates M(r half) accurately with respect to results from the full Jeans analysis. Applying this formula to the entire population of Local Group dSphs with published kinematic data, we demonstrate a correlation such that M(r half) vprop r 1.4±0.4 half, or in terms of the mean density interior to the half-light radius, langρrang vprop r -1.6±0.4 half. This relation is driven by the fact that the dSph data exhibit a correlation between global velocity dispersion and half-light radius. We argue that tidal forces are unlikely to have introduced this relation, but tides may have increased the scatter and/or altered the slope. While the data are well described by mass profiles ranging over a factor of lsim2 in normalization (V max ~ 10-20 km s-1), we consider the hypothesis that all dSphs are embedded within a "universal" dark matter halo. We show that in addition to the power law M vprop r 1.4, viable candidates include a cuspy "Navarro-Frenk-White" halo with V max ~ 15 km s-1 and scale radius r 0 ~ 800 pc, as well as a cored halo with V max ~ 13 km s-1 and r 0 ~ 150 pc. Finally, assuming that their measured velocity dispersions accurately reflect their masses, the smallest dSphs now allow us to resolve dSph densities at radii as small as a few tens of pc. At these small scales, we find mean densities as large as langρrang USA.

  17. VCC 2062: an old Tidal Dwarf Galaxy in the Virgo Cluster?

    CERN Document Server

    Duc, Pierre-Alain; Lisenfeld, Ute; Brinks, Elias; Boquien, Mederic

    2007-01-01

    Numerical simulations predict the existence of old Tidal Dwarf Galaxies (TDGs) that would have survived several Gyr after the collision lying at their origin. Such survivors, which would by now have become independent relaxed galaxies, would be ideal laboratories, if nearby enough, to tackle a number of topical issues, including the distribution of Dark Matter in and around galaxies. However finding old dwarf galaxies with a confirmed tidal origin is an observational challenge. A dwarf galaxy in the Virgo Cluster, VCC 2062, exhibits several unusual properties that are typical of a galaxy made out of recycled material. We discuss whether it may indeed be a TDG. We analysed multi-wavelength observations of VCC 2062, including an IRAM CO map, an optical spectrum of its HII regions, GALEX ultraviolet and archival broad-band and narrow-band optical images as well as a VLA HI datacube, originally obtained as part of the VIVA project. VCC 2062 appears to be the optical, low surface brightness counterpart of a kinema...

  18. Dwarf Galaxies in the Coma Cluster: II. Spectroscopic and Photometric Fundamental Planes

    CERN Document Server

    Kourkchi, E; Carter, D; Mobasher, B

    2011-01-01

    We present a study of the fundamental plane, FP, for a sample of 71 dwarf galaxies in the core of Coma cluster in magnitude range $-21 < M_I <-15$. Taking advantage of high resolution DEIMOS spectrograph on Keck II for measuring the internal velocity dispersion of galaxies and high resolution imaging of HST/ACS, which allows an accurate surface brightness modeling, we extend the fundamental plane (FP) of galaxies to $\\sim$1 magnitude fainter luminosities than all the previous studies of the FP in Coma cluster. We find that, the scatter about the FP depends on the faint-end luminosity cutoff, such that the scatter increases for fainter galaxies. The residual from the FP correlates with the galaxy colour, with bluer galaxies showing larger residuals from FP. We find $M/L \\propto M^{-0.15\\pm0.22}$ in F814W-band indicating that in faint dwarf ellipticals, the $M/L$ ratio is insensitive to the mass. We find that less massive dwarf ellipticals are bluer than their brighter counterparts, possibly indicating on...

  19. Finding gas-rich dwarf galaxies betrayed by their ultraviolet emission

    CERN Document Server

    Meyer, Jennifer Donovan; Putman, Mary; Grcevich, Jana

    2015-01-01

    We present ultraviolet (UV) follow-up of a sample of potential dwarf galaxy candidates selected for their neutral hydrogen (HI) properties, taking advantage of the low UV background seen by the GALEX satellite and its large and publicly available imaging footprint. The HI clouds, which are drawn from published GALFA-HI and ALFALFA HI survey compact cloud catalogs, are selected to be galaxy candidates based on their spatial compactness and non-association with known high-velocity cloud complexes or Galactic HI emission. Based on a comparison of their UV characteristics to those of known dwarf galaxies, half (48%) of the compact HI clouds have at least one potential stellar counterpart with UV properties similar to those of nearby dwarf galaxies. If galaxies, the star formation rates, HI masses, and star formation efficiencies of these systems follow the trends seen for much larger galaxies. The presence of UV emission is an efficient method to identify the best targets for spectroscopic follow-up, which is nec...

  20. R-process enrichment from a single event in an ancient dwarf galaxy

    Science.gov (United States)

    Ji, Alexander P.; Frebel, Anna; Chiti, Anirudh; Simon, Joshua D.

    2016-03-01

    Elements heavier than zinc are synthesized through the rapid (r) and slow (s) neutron-capture processes. The main site of production of the r-process elements (such as europium) has been debated for nearly 60 years. Initial studies of trends in chemical abundances in old Milky Way halo stars suggested that these elements are produced continually, in sites such as core-collapse supernovae. But evidence from the local Universe favours the idea that r-process production occurs mainly during rare events, such as neutron star mergers. The appearance of a plateau of europium abundance in some dwarf spheroidal galaxies has been suggested as evidence for rare r-process enrichment in the early Universe, but only under the assumption that no gas accretes into those dwarf galaxies; gas accretion favours continual r-process enrichment in these systems. Furthermore, the universal r-process pattern has not been cleanly identified in dwarf spheroidals. The smaller, chemically simpler, and more ancient ultrafaint dwarf galaxies assembled shortly after the first stars formed, and are ideal systems with which to study nucleosynthesis events such as the r-process. Reticulum II is one such galaxy. The abundances of non-neutron-capture elements in this galaxy (and others like it) are similar to those in other old stars. Here, we report that seven of the nine brightest stars in Reticulum II, observed with high-resolution spectroscopy, show strong enhancements in heavy neutron-capture elements, with abundances that follow the universal r-process pattern beyond barium. The enhancement seen in this ‘r-process galaxy’ is two to three orders of magnitude higher than that detected in any other ultrafaint dwarf galaxy. This implies that a single, rare event produced the r-process material in Reticulum II. The r-process yield and event rate are incompatible with the source being ordinary core-collapse supernovae, but consistent with other possible sources, such as neutron star mergers.

  1. Improving the sensitivity of gamma-ray telescopes to dark matter annihilation in dwarf spheroidal galaxies

    Science.gov (United States)

    Carlson, Eric; Hooper, Dan; Linden, Tim

    2015-03-01

    The Fermi-LAT Collaboration has studied the gamma-ray emission from a stacked population of dwarf spheroidal galaxies and used this information to set constraints on the dark matter annihilation cross section. Interestingly, their analysis uncovered an excess with a test statistic (TS) of 8.7. If interpreted naively, this constitutes a 2.95 σ local excess (p -value=0.003 ), relative to the expectations of their background model. In order to further test this interpretation, the Fermi-LAT team studied a large number of blank sky locations and found TS >8.7 excesses to be more common than predicted by their background model, decreasing the significance of their dwarf excess to 2.2 σ (p -value=0.027 ) . We argue that these TS >8.7 blank sky locations are largely the result of unresolved blazars, radio galaxies, and star-forming galaxies, and show that multiwavelength information can be used to reduce the degree to which such sources contaminate the otherwise blank sky. In particular, we show that masking regions of the sky that lie within 1° of sources contained in the BZCAT or CRATES catalogs reduce the fraction of blank sky locations with TS >8.7 by more than a factor of 2. Taking such multiwavelength information into account can enable experiments such as Fermi to better characterize their backgrounds and increase their sensitivity to dark matter in dwarf galaxies, the most important of which remain largely uncontaminated by unresolved point sources. We also note that for the range of dark matter masses and annihilation cross sections currently being tested by studies of dwarf spheroidal galaxies, simulations predict that Fermi should be able to detect a significant number of dark matter subhalos. These subhalos constitute a population of subthreshold gamma-ray point sources and represent an irreducible background for searches for dark matter annihilation in dwarf galaxies.

  2. The no-spin zone: rotation vs dispersion support in observed and simulated dwarf galaxies

    CERN Document Server

    Wheeler, Coral; Bullock, James S; Boylan-Kolchin, Michael; Onorbe, Jose; Fitts, Alex; Hopkins, Philip F; Keres, Dusan

    2015-01-01

    We perform a systematic Bayesian analysis of rotation vs. dispersion support ($v_{\\rm rot} / \\sigma$) in $40$ dwarf galaxies throughout the Local Volume (LV) over a stellar mass range $10^{3.5} M_{\\rm \\odot} < M_{\\star} < 10^8 M_{\\rm \\odot}$. We find that the stars in $\\sim 90\\%$ of the LV dwarf galaxies studied -- both satellites and isolated systems -- are dispersion-supported. In particular, we show that $7/10$ *isolated* dwarfs in our sample have stellar populations with $v_{\\rm rot} / \\sigma < 0.6$. All have $v_{\\rm rot} / \\sigma \\lesssim 2$. These results challenge the traditional view that the stars in gas-rich dwarf irregulars (dIrrs) are distributed in cold, rotationally-supported stellar disks, while gas-poor dwarf spheroidals (dSphs) are kinematically distinct in having dispersion-supported stars. We see no clear trend between $v_{\\rm rot} / \\sigma$ and distance to the closest $\\rm L_{\\star}$ galaxy, nor between $v_{\\rm rot} / \\sigma$ and $M_{\\star}$ within our mass range. We apply the sam...

  3. TESTING MODIFIED NEWTONIAN DYNAMICS WITH ROTATION CURVES OF DWARF AND LOW SURFACE BRIGHTNESS GALAXIES

    International Nuclear Information System (INIS)

    Dwarf and low surface brightness (LSB) galaxies are ideal objects to test modified Newtonian dynamics (MOND), because in most of these galaxies the accelerations fall below the threshold where MOND supposedly applies. We have selected from the literature a sample of 27 dwarf and LSB galaxies. MOND is successful in explaining the general shape of the observed rotation curves for roughly three quarters of the galaxies in the sample presented here. However, for the remaining quarter, MOND does not adequately explain the observed rotation curves. Considering the uncertainties in distances and inclinations for the galaxies in our sample, a small fraction of poor MOND predictions is expected and is not necessarily a problem for MOND. We have also made fits taking the MOND acceleration constant, a 0, as a free parameter in order to identify any systematic trends. We find that there appears to be a correlation between central surface brightness and the best-fit value of a0, in the sense that lower surface brightness galaxies tend to have lower a0. However, this correlation depends strongly on a small number of galaxies whose rotation curves might be uncertain due to either bars or warps. Without these galaxies, there is less evidence of a trend, but the average value we find for a0 ∼ 0.7 x 10-8 cm s-2 is somewhat lower than derived from previous studies. Such lower fitted values of a0 could occur if external gravitational fields are important.

  4. Stellar hydrodynamical modeling of dwarf galaxies: simulation methodology, tests, and first results

    Science.gov (United States)

    Vorobyov, Eduard I.; Recchi, Simone; Hensler, Gerhard

    2015-07-01

    Context. In spite of enormous progress and brilliant achievements in cosmological simulations, they still lack numerical resolution or physical processes to simulate dwarf galaxies in sufficient detail. Accurate numerical simulations of individual dwarf galaxies are thus still in demand. Aims: We aim to improve available numerical techniques to simulate individual dwarf galaxies. In particular, we aim to (i) study in detail the coupling between stars and gas in a galaxy, exploiting the so-called stellar hydrodynamical approach; and (ii) study for the first time the chemodynamical evolution of individual galaxies starting from self-consistently calculated initial gas distributions. Methods: We present a novel chemodynamical code for studying the evolution of individual dwarf galaxies. In this code, the dynamics of gas is computed using the usual hydrodynamics equations, while the dynamics of stars is described by the stellar hydrodynamics approach, which solves for the first three moments of the collisionless Boltzmann equation. The feedback from stellar winds and dying stars is followed in detail. In particular, a novel and detailed approach has been developed to trace the aging of various stellar populations, which facilitates an accurate calculation of the stellar feedback depending on the stellar age. The code has been accurately benchmarked, allowing us to provide a recipe for improving the code performance on the Sedov test problem. Results: We build initial equilibrium models of dwarf galaxies that take gas self-gravity into account and present different levels of rotational support. Models with high rotational support (and hence high degrees of flattening) develop prominent bipolar outflows; a newly-born stellar population in these models is preferentially concentrated to the galactic midplane. Models with little rotational support blow away a large fraction of the gas and the resulting stellar distribution is extended and diffuse. Models that start from non

  5. The imprint of reionization on the star formation histories of dwarf galaxies

    Science.gov (United States)

    Benítez-Llambay, A.; Navarro, J. F.; Abadi, M. G.; Gottlöber, S.; Yepes, G.; Hoffman, Y.; Steinmetz, M.

    2015-07-01

    We use a compilation of star formation histories (SFHs) and cosmological simulations to explore the impact of cosmic reionization on nearby isolated dwarf galaxies. Nearby dwarfs show a wide diversity of SFHs; from ancient systems that completed their star formation (SF) ˜10 Gyr ago to young dwarfs that formed the majority of their stars in the past ˜5 Gyr to `two-component' systems characterized by the overlap of old and young stars. As an ensemble, SF in nearby dwarfs dips to lower-than-average rates at intermediate times (4 < t/Gyr < 8), a feature caused in the simulation by cosmic reionization. Reionization heats the gas and drives it out of low-mass haloes, affecting especially systems with virial temperatures of ˜2 × 104 K at zreion. SF begins before zreion in systems above this threshold; its associated feedback compounds the effects of reionization, emptying the haloes of gas and leaving behind old stellar systems. In haloes below the threshold at zreion, reionization leads to a delay in the onset of SF that lasts until the halo grows massive enough to allow gas to cool and form stars, leading to a system with a prominent young stellar component. `Two-component' systems may be traced to late accretion events that allow young stars to form in systems slightly above the threshold at zreion. The dearth of intermediate-age stars in nearby dwarfs might be the clearest signature of the imprint of cosmic reionization on the SFHs of dwarf galaxies.

  6. Antlia B: A faint dwarf galaxy member of the NGC 3109 association

    CERN Document Server

    Sand, D J; Crnojević, D; Hargis, J R; Willman, B; Strader, J; Grillmair, C J

    2015-01-01

    We report the discovery of Antlia B, a faint dwarf galaxy at a projected distance of $\\sim$72 kpc from NGC 3109 ($M_{V}$$\\sim$$-$15 mag), the primary galaxy of the NGC 3109 dwarf association at the edge of the Local Group. The tip of the red giant branch distance to Antlia B is $D$=1.29$\\pm$0.10 Mpc, which is consistent with the distance to NGC 3109. A qualitative analysis indicates the new dwarf's stellar population has both an old, metal poor red giant branch ($\\gtrsim$10 Gyr, [Fe/H]$\\sim$$-$2), and a younger blue population with an age of $\\sim$200-400 Myr, analogous to the original Antlia dwarf, another likely satellite of NGC 3109. Antlia B has \\ion{H}{1} gas at a velocity of $v_{helio,HI}$=376 km s$^{-1}$, confirming the association with NGC 3109 ($v_{helio}$=403 km s$^{-1}$). The HI gas mass (M$_{HI}$=2.8$\\pm$0.2$\\times$10$^{5}$ M$_{\\odot}$), stellar luminosity ($M_{V}$=$-$9.7$\\pm$0.6 mag) and half light radius ($r_{h}$=273$\\pm$29 pc) are all consistent with the properties of dwarf irregular and dwarf ...

  7. THE ACS NEARBY GALAXY SURVEY TREASURY. X. QUANTIFYING THE STAR CLUSTER FORMATION EFFICIENCY OF NEARBY DWARF GALAXIES

    International Nuclear Information System (INIS)

    We study the relationship between the field star formation and cluster formation properties in a large sample of nearby dwarf galaxies. We use optical data from the Hubble Space Telescope and from ground-based telescopes to derive the ages and masses of the young (tage ∼< 100 Myr) cluster sample. Our data provide the first constraints on two proposed relationships between the star formation rate (SFR) of galaxies and the properties of their cluster systems in the low SFR regime. The data show broad agreement with these relationships, but significant galaxy-to-galaxy scatter exists. In part, this scatter can be accounted for by simulating the small number of clusters detected from stochastically sampling the cluster mass function. However, this stochasticity does not fully account for the observed scatter in our data, suggesting that there may be true variations in the fraction of stars formed in clusters in dwarf galaxies. Comparison of the cluster formation and the brightest cluster in our sample galaxies also provide constraints on cluster destruction models.

  8. The Star Formation Histories of Local Group Dwarf Galaxies III. Characterizing Quenching in Low-Mass Galaxies

    CERN Document Server

    Weisz, Daniel R; Skillman, Evan D; Holtzman, Jon; Gilbert, Karoline M; Dalcanton, Julianne J; Williams, Benjamin F

    2015-01-01

    We explore the quenching of low-mass galaxies (10^4 < Mstar < 10^8 Msun) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived from analyzing color-magnitude diagrams of resolved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) Lower mass galaxies quench earlier than higher mass galaxies; (2) Inside of virial radius there is no correlation between a satellite's current proximity to a massive host and its quenching epoch; (3) There are hints of systematic differences in quenching times of M31 and Milky Way (MW) satellites, although the sample sample size and uncertainties in the SFHs of M31 dwarfs prohibit definitive conclusions. Combined with literature results, we qualitatively consider the redshift evolution (z=0-1) of the quenched galaxy fraction over ~7 dex in stellar mass (10^4 < Mstar < 10^11.5 Msun). The quenched fraction of all galaxies generally increases to...

  9. A new galactic chemical evolution model with dust: results for dwarf irregular galaxies and DLA systems

    CERN Document Server

    Gioannini, Lorenzo; Vladilo, Giovanni; Calura, Francesco

    2016-01-01

    We present a galactic chemical evolution model which adopts updated prescriptions for all the main processes governing the dust cycle. We follow in detail the evolution of the abundances of several chemical species (C, O, S, Si, Fe and Zn) in the gas and dust of a typical dwarf irregular galaxy. The dwarf irregular galaxy is assumed to evolve with a low but continuous level of star formation and experience galactic winds triggered by supernova explosions. We predict the evolution of the gas to dust ratio in such a galaxy and discuss critically the main processes involving dust, such as dust production by AGB stars and Type II SNe, destruction and accretion (gas condensation in clouds). We then apply our model to Damped Lyman-Alpha systems which are believed to be dwarf irregulars, as witnessed by their abundance patterns. Our main conclusions are: i) we can reproduce the observed gas to dust ratio in dwarf galaxies. ii) We find that the process of dust accretion plays a fundamental role in the evolution of du...

  10. Stellar orbits and the survival of metallicity gradients in simulated dwarf galaxies

    CERN Document Server

    Schroyen, Joeri; Koleva, Mina; Cloet-Osselaer, Annelies; Vandenbroucke, Bert

    2013-01-01

    We present a detailed analysis of the formation, evolution, and possible longevity of metallicity gradients in simulated dwarf galaxies. Specifically, we investigate the role of potentially orbit-changing processes such as radial stellar migration and dynamical heating in shaping or destroying these gradients. We also consider the influence of the star formation density threshold, investigating both a low and high value (0.1 amu/$cm^{3}$ - 100 amu/$cm^{3}$). The Nbody-SPH models that we use to self-consistently form and evolve dwarf galaxies in isolation show that, in the absence of significant angular momentum, metallicity gradients are gradually built up during the evolution of the dwarf galaxy, by ever more centrally concentrated star formation adding to the overall gradient. Once formed, they are robust, survive easily in the absence of external disturbances and hardly decline over several Gyr, and they agree well with observed metallicity gradients of dwarf galaxies in the Local Group. The underlying orb...

  11. Double-mode RR Lyrae stars in the Draco dwarf galaxy and in other stellar systems

    International Nuclear Information System (INIS)

    Eleven double-mode (dm) RR Lyrae stars, with periods midway between the periods for the c-type and ab-type RR Lyrae stars, have been identified in the Draco dwarf galaxy by reanalyzing the photometry of Baade and Swope (1961) for 35 stars. The stars are V11, 72, 75, 83, 112, 138, 143, 156, 165, 169 and 190. (Auth.)

  12. r-process Production Sites as inferred from Eu Abundances in Dwarf Galaxies

    CERN Document Server

    Beniamini, Paz; Piran, Tsvi

    2016-01-01

    Recent observations of $r$-process material in ultra-faint dwarf galaxies (UFDs) shed light on the sources of these elements. Strong upper limits on the Eu mass in some UFDs combined with detections of much larger masses in a UFD, Reticulum II, and other dwarf galaxies imply that Eu production is dominated by rare events, and that the minimal Eu mass observed in any UFD is approximately the amount of Eu mass produced per event. This is consistent with other independent observations in the Galaxy. We estimate, using a model independent likelihood analysis, the rate and Eu (Fe) mass produced per $r$-process (Fe production) event in dwarf galaxies including classical dwarfs and UFDs. The mass and rate of the Fe production events are consistent with the normal core-collapse supernova~(ccSN) scenario. The Eu mass per event is $3\\times 10^{-5}M_{\\odot}<\\tilde{m}_{\\rm Eu}<2\\times 10^{-4}M_{\\odot}$, corresponding to a total $r$-process mass per event of $6\\times 10^{-3}M_{\\odot}<\\tilde{m}_{r-process}<4\\ti...

  13. Families of ellipsoidal stellar systems adn the formation of dwarf elliptical galaxies

    International Nuclear Information System (INIS)

    Core radii and central surface brightnesses of bulges and elliptical galaxies are measured using CCD photometry obtained with the Canada-France-Hawaii Telescope (scale = 0''.22 pixel-1; seeing = 0''.45--1''.0 FWHM). The correlations between core parameters are derived and compared for ellipticals, bulges, dwarf spheroidal galaxies, dwarf irregular galaxies, and globular clusters. The results are as follows. 1. Ihe data confirm the existence of well-defined correlations between the core parameters of elliptical galaxies. More luminous ellipticals have larger core radii r/sub c/ and lower central surface brightnesses μ/sub 0v/. Galaxies with larger core radii have larger central velocity dispersions. The small, bright core of M32 is normal for a galaxy of M/sub B/ = -15.2. Radio ellipticals and brightest cluster galaxies satisfy the correlations. 2. The bulges of disk galaxies are basically similar to elliptical galaxies. Their cores have slightly smaller r/sub c/ and brighter μ/sub 0v/ than ellipticals of the same luminosity, because their nonisothermal profiles rise more rapidly toward the center and because they often contain extra nuclei superposed on their cores. 3. There is a large discontinuity between the parameter correlations for bright ellipticals, including M32, and those for dwarf spheroidals. Seven dE's in the Local Group and three in the Virgo Cluster have core parameters which are correlated, but not as in ordinary ellipticals. More luminous dE's have larger r/sub c/ and brighter μ/sub 0v/

  14. THE NATURE OF STARBURSTS. II. THE DURATION OF STARBURSTS IN DWARF GALAXIES

    International Nuclear Information System (INIS)

    The starburst phenomenon can shape the evolution of the host galaxy and the surrounding intergalactic medium. The extent of the evolutionary impact is partly determined by the duration of the starburst, which has a direct correlation with both the amount of stellar feedback and the development of galactic winds, particularly for smaller mass dwarf systems. We measure the duration of starbursts in twenty nearby, ongoing, and 'fossil' starbursts in dwarf galaxies based on the recent star formation histories derived from resolved stellar population data obtained with the Hubble Space Telescope. Contrary to the shorter times of 3-10 Myr often cited, the starburst durations we measure range from 450to650 Myr in fifteen of the dwarf galaxies and up to 1.3 Gyr in four galaxies; these longer durations are comparable to or longer than the dynamical timescales for each system. The same feedback from massive stars that may quench the flickering star formation does not disrupt the overall burst event in our sample of galaxies. While five galaxies present fossil bursts, fifteen galaxies show ongoing bursts and thus the final durations may be longer than we report here for these systems. One galaxy shows a burst that has been ongoing for only 20 Myr; we are likely seeing the beginning of a burst event in this system. Using the duration of the starbursts, we calculate that the bursts deposited 1053.9-1057.2 erg of energy into the interstellar medium through stellar winds and supernovae, and produced 3%-26% of the host galaxy's mass.

  15. The baryon cycle of dwarf galaxies: dark, bursty, gas-rich polluters

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Sijing; Madau, Piero; Conroy, Charlie [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Governato, Fabio [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Mayer, Lucio [Institute of Theoretical Physics, University of Zurich, Winterthurerstrasse 190, CH-9057 Zurich (Switzerland)

    2014-09-10

    We present results from a fully cosmological, very high-resolution, ΛCDM simulation of a group of seven field dwarf galaxies with present-day virial masses in the range M {sub vir} = 4.4 × 10{sup 8}-3.6 × 10{sup 10} M {sub ☉}. The simulation includes a blastwave scheme for supernova feedback, a star-formation recipe based on a high gas density threshold, metal-dependent radiative cooling, a scheme for the turbulent diffusion of metals and thermal energy, and a uniform UV background. The properties of the simulated dwarfs are strongly modulated by the depth of the gravitational potential well. All three halos with M {sub vir} < 10{sup 9} M {sub ☉} are devoid of stars, as they never reach the density threshold for star formation of 100 atoms cm{sup –3}. The other four, M {sub vir} > 10{sup 9} M {sub ☉} dwarfs have blue colors, low star-formation efficiencies, high cold gas-to-stellar mass ratios, and low stellar metallicities. Their bursty star-formation histories are characterized by peak specific star-formation rates in excess of 50-100 Gyr{sup –1}, far outside the realm of normal, more massive galaxies. The median stellar age of the simulated galaxies decreases with decreasing halo mass, with the two M {sub vir} ≅ 2-3 × 10{sup 9} M {sub ☉} dwarfs being predominantly young, and the two more massive systems hosting intermediate and older populations. The cosmologically young dwarfs are lit up by tidal interactions, have compact morphologies, and have metallicities and cold gas fractions similar to the relatively quiescent, extremely metal-deficient dwarf population. Metal-enriched galactic outflows produce sub-solar effective yields and pollute with heavy elements a megaparsec-size region of the intergalactic medium, but are not sufficient to completely quench star-formation activity and are absent in the faintest dwarfs.

  16. Constraining the Distribution of L- & T-Dwarfs in the Galaxy

    CERN Document Server

    Ryan, Russell; Cohen, S H; Windhorst, R A; Hathi, Nimish P; Cohen, Seth H; Windhorst, Rogier A

    2005-01-01

    We estimate the thin disk scale height of the Galactic population of L- & T-dwarfs based on star counts from 15 deep parallel fields from the Hubble Space Telescope. From these observations, we have identified 28 candidate L- & T- dwarfs based on their (i'-z') color and morphology. By comparing these star counts to a simple Galactic model, we estimate the scale height to be 350+-50 pc that is consistent with the increase in vertical scale with decreasing stellar mass and is independent of reddening, color-magnitude limits, and other Galactic parameters. With this refined measure, we predict that less than 10^9 M_{sol} of the Milky Way can be in the form L- & T- dwarfs, and confirm that high-latitude, z~6 galaxy surveys which use the i'-band dropout technique are 97-100% free of L- & T- dwarf interlopers.

  17. Predicting the Velocity Dispersions of the Dwarf Satellite Galaxies of Andromeda

    Science.gov (United States)

    McGaugh, Stacy S.

    2016-05-01

    Dwarf Spheroidal galaxies in the Local Group are the faintest and most diffuse stellar systems known. They exhibit large mass discrepancies, making them popular laboratories for studying the missing mass problem. The PANDAS survey of M31 revealed dozens of new examples of such dwarfs. As these systems were discovered, it was possible to use the observed photometric properties to predict their stellar velocity dispersions with the modified gravity theory MOND. These predictions, made in advance of the observations, have since been largely confirmed. A unique feature of MOND is that a structurally identical dwarf will behave differently when it is or is not subject to the external field of a massive host like Andromeda. The role of this "external field effect" is critical in correctly predicting the velocity dispersions of dwarfs that deviate from empirical scaling relations. With continued improvement in the observational data, these systems could provide a test of the strong equivalence principle.

  18. Stellar Populations of the Dwarf Galaxy UKS 2323--326 in the Sculptor Group

    OpenAIRE

    Lee, Myung Gyoon; Byun, Yong-Ik

    1999-01-01

    We present deep BVRI CCD photometry of the stars in the dwarf irregular galaxy UKS 2323-326 in the Sculptor Group. The color-magnitude diagrams of the measured stars in UKS 2323-326 show a blue plume which consists mostly of young stellar populations, and a well-defined red giant branch (RGB). The tip of the RGB is found to be at I_TRGB = 22.65 +/- 0.10 mag. From this the distance to this galaxy is estimated to be d = 2.08 +/- 0.12 Mpc. The corresponding distance of this galaxy from the cente...

  19. The sensitivity of harassment to orbit: mass loss from early-type dwarfs in galaxy clusters

    Science.gov (United States)

    Smith, R.; Sánchez-Janssen, R.; Beasley, M. A.; Candlish, G. N.; Gibson, B. K.; Puzia, T. H.; Janz, J.; Knebe, A.; Aguerri, J. A. L.; Lisker, T.; Hensler, G.; Fellhauer, M.; Ferrarese, L.; Yi, S. K.

    2015-12-01

    We conduct a comprehensive numerical study of the orbital dependence of harassment on early-type dwarfs consisting of 168 different orbits within a realistic, Virgo-like cluster, varying in eccentricity and pericentre distance. We find harassment is only effective at stripping stars or truncating their stellar discs for orbits that enter deep into the cluster core. Comparing to the orbital distribution in cosmological simulations, we find that the majority of the orbits (more than three quarters) result in no stellar mass loss. We also study the effects on the radial profiles of the globular cluster systems of early-type dwarfs. We find these are significantly altered only if harassment is very strong. This suggests that perhaps most early-type dwarfs in clusters such as Virgo have not suffered any tidal stripping of stars or globular clusters due to harassment, as these components are safely embedded deep within their dark matter halo. We demonstrate that this result is actually consistent with an earlier study of harassment of dwarf galaxies, despite the apparent contradiction. Those few dwarf models that do suffer stellar stripping are found out to the virial radius of the cluster at redshift = 0, which mixes them in with less strongly harassed galaxies. However when placed on phase-space diagrams, strongly harassed galaxies are found offset to lower velocities compared to weakly harassed galaxies. This remains true in a cosmological simulation, even when haloes have a wide range of masses and concentrations. Thus phase-space diagrams may be a useful tool for determining the relative likelihood that galaxies have been strongly or weakly harassed.

  20. Abundance ratios of red giants in low mass ultra faint dwarf spheroidal galaxies

    CERN Document Server

    François, P; Bonifacio, P; Bidin, C Moni; Geisler, D; Sbordone, L

    2015-01-01

    Low mass dwarf spheroidal galaxies are key objects for our understanding of the chemical evolution of the pristine Universe and the Local Group of galaxies. Abundance ratios in stars of these objects can be used to better understand their star formation and chemical evolution. We report on the analysis of a sample of 11 stars belonging to 5 different ultra faint dwarf spheroidal galaxies (UfDSph) based on X-Shooter spectra obtained at the VLT. Medium resolution spectra have been used to determine the detailed chemical composition of their atmosphere. We performed a standard 1D LTE analysis to compute the abundances. Considering all the stars as representative of the same population of low mass galaxies, we found that the [alpha/Fe] ratios vs [Fe/H] decreases as the metallicity of the star increases in a way similar to what is found for the population of stars belonging to dwarf spheroidal galaxies. The main difference is that the solar [alpha/Fe] is reached at a much lower metallicity for the UfDSph than the ...

  1. Hubble Space Telescope Imaging of Globular Cluster Candidates in Low Surface Brightness Dwarf Galaxies

    CERN Document Server

    Sharina, M E; Makarov, D I; Sharina, Margarita E.; Puzia, Thomas H.; Makarov, Dmitry I.

    2005-01-01

    Fifty-seven nearby low surface brightness dwarf galaxies were searched for globular cluster candidates (GCCs) using Hubble Space Telescope WFPC2 imaging in V and I. The sample consists of 18 dwarf spheroidal (dSph), 36 irregular (dIrr), and 3 "transition" type (dIrr/dSph) galaxies with angular sizes less than 3.7 kpc situated at distances 2-6 Mpc in the field and in the nearby groups: M81, Centaurus A, Sculptor, Canes Venatici I cloud. We find that ~50% of dSph, dIrr/dSph, and dIrr galaxies contain GCCs. The fraction of GCCs located near the center of dwarf spheroidal galaxies is >2 times higher than that for dIrrs. The mean integral color of GCCs in dSphs, V-I = 1.04+/-0.16 mag, coincides with the corresponding value for Galactic globular clusters and is similar to the blue globular cluster sub-populations in massive early-type galaxies. The color distribution for GCCs in dIrrs shows a clear bimodality with peaks near V-I = 0.5 and 1.0 mag. Blue GCCs are presumably young with ages t -6.5 mag in both dSph an...

  2. The escape of ionising radiation from high-redshift dwarf galaxies

    CERN Document Server

    Paardekooper, Jan-Pieter; Altay, Gabriel; Kruip, Chael

    2011-01-01

    The UV escape fraction from high-redshift galaxies plays a key role in models of cosmic reionisation. Because it is currently not possible to deduce the escape fractions during the epoch of reionisation from observations, we have to rely on numerical simulations. Our aim is to better constrain the escape fraction from high-redshift dwarf galaxies, as these are the most likely sources responsible for reionising the Universe. We employ a N-body/SPH method that includes realistic prescriptions for the physical processes that are important for the evolution of dwarf galaxies. These models are post-processed with radiative transfer to determine the escape fraction of ionising radiation. We perform a parameter study to assess the influence of the spin parameter, gas fraction and formation redshift of the galaxy and study the importance of numerical parameters as resolution, source distribution and local gas clearing. We find that the UV escape fraction from high-redshift dwarf galaxies that have formed a rotational...

  3. HI Observations of two New Dwarf Galaxies: Pisces A & B with the SKA Pathfinder KAT-7

    CERN Document Server

    Carignan, C; Lucero, D M; Randriamampandry, T H; Jarrett, T H; Oosterloo, T A; Tollerud, E J

    2016-01-01

    Context. Pisces A & Pisces B are the only two galaxies found via optical imaging and spectroscopy out of 22 HI clouds identified in the GALFAHI survey as dwarf galaxy candidates. Aims. Derive the HI content and kinematics of Pisces A & B. Methods. Aperture synthesis HI observations using the seven dish Karoo Array Telescope (KAT-7), which is a pathfinder instrument for MeerKAT, the South African precursor to the mid-frequency Square Kilometre Array (SKA-MID). Results. The small rotation velocities detected of ~5 km/sec and ~10 km/sec in Pisces A & B respectively, and their HI content show that they are really dwarf irregular galaxies (dIrr). Despite that small rotation component, it is more the random motions ~9-11 km/sec that provide most of the gravitational support, especially in the outer parts. The study of their kinematics, especially the strong gradients of random motions, suggest that those two dwarf galaxies are not yet in equilibrium. Conclusions. These HI rich galaxies may be indicative...

  4. The Nature of Starbursts : II. The Duration of Starbursts in Dwarf Galaxies

    CERN Document Server

    McQuinn, Kristen B W; Cannon, John M; Dalcanton, Julianne; Dolphin, Andrew; Hidalgo-Rodríguez, Sebastian; Holtzman, Jon; Stark, David; Weisz, Daniel; Williams, Benjamin

    2010-01-01

    The starburst phenomenon can shape the evolution of the host galaxy and the surrounding intergalactic medium. The extent of the evolutionary impact is partly determined by the duration of the starburst, which has a direct correlation with both the amount of stellar feedback and the development of galactic winds, particularly for smaller mass dwarf systems. We measure the duration of starbursts in twenty nearby, ongoing, and "fossil" starbursts in dwarf galaxies based on the recent star formation histories derived from resolved stellar population data obtained with the Hubble Space Telescope. Contrary to the shorter times of 3-10 Myr often cited, the starburst durations we measure range from 450 - 650 Myr in fifteen of the dwarf galaxies and up to 1.3 Gyr in four galaxies; these longer durations are comparable to or longer than the dynamical timescales for each system. The same feedback from massive stars that may quench the flickering SF does not disrupt the overall burst event in our sample of galaxies. Whil...

  5. Metallicity Distribution Functions of Dwarf Galaxies: A Probe of Star Formation History and Baryonic Physics

    Science.gov (United States)

    Escala, Ivanna; Kirby, Evan N.; Wetzel, Andrew R.; Hopkins, Philip F.

    2016-06-01

    We examine the metallicity distribution functions (MDFs) of simulated, isolated dwarf galaxies (M_{star} = 4 × 10^{4} - 3 × 10^{8} M_{⊙}) from the Feedback in Realistic Environments (FIRE) project to quantify the impact of star formation history (SFH) and baryonic physics. These high-resolution cosmological simulations include realistic treatments of stellar evolution and complex gas dynamics and do not require the usual approximations (e.g., instantaneous recycling and instantaneous mixing) of analytic chemical evolution models. The evolution of the MDF with redshift informs which processes drive the dominant contributions to the distribution at z = 0, thus enabling a reconstruction of the SFH and gas loss/accretion history. We then compare the theoretical MDFs to the observed MDFs of Local Group dwarf galaxies to infer plausible SFHs for each matched galaxy.

  6. A low pre-infall mass for the Carina dwarf galaxy from disequilibrium modelling

    CERN Document Server

    Ural, Uğur; Read, Justin I; Walker, Matthew G

    2015-01-01

    Dark matter only simulations of galaxy formation predict many more subhalos around a Milky Way like galaxy than the number of observed satellites. Proposed solutions require the satellites to inhabit dark matter halos with masses between one to ten billion solar masses at the time they fell into the Milky Way. Here we use a modelling approach, independent of cosmological simulations, to obtain a preinfall mass of 360 (+380,-230) million solar masses for one of the Milky Way's satellites: Carina. This determination of a low halo mass for Carina can be accommodated within the standard model only if galaxy formation becomes stochastic in halos below ten billion solar masses. Otherwise Carina, the eighth most luminous Milky Way dwarf, would be expected to inhabit a significantly more massive halo. The implication of this is that a population of "dark dwarfs" should orbit the Milky Way: halos devoid of stars and yet more massive than many of their visible counterparts.

  7. The Different Environmental Dependencies of Star-formation for Giant and Dwarf Galaxies

    CERN Document Server

    Haines, C P; Mercurio, A; Merluzzi, P; Busarello, G

    2006-01-01

    We examine the origins of the bimodality observed in the global properties of galaxies around a stellar mass of 3x10^10 M_sun by comparing the environmental dependencies of star-formation for the giant and dwarf galaxy populations. The Sloan Digital Sky Survey DR4 spectroscopic dataset is used to produce a sample of galaxies in the vicinity of the supercluster centered on the cluster A2199 at z=0.03 that is ~90% complete to a magnitude limit of M*+3.3. From these we measure global trends with environment for both giant (M_r7 Gyr) or passive (EW[H_alpha]<4 A) falls gradually from ~80% in the cluster cores to ~40% in field regions beyond 3-4 R_virial, as found in previous studies. In contrast, we find that the dwarf galaxy population shows a sharp transition at ~1 R_virial, from being predominantly old/passive within the cluster, to outside where virtually all galaxies are forming stars and old/passive galaxies are only found as satellites to more massive galaxies. These results imply fundamental differences...

  8. HST photometry of dwarf elliptical galaxies in Coma, and an explanation for the alleged structural dichotomy between dwarf and bright elliptical galaxies

    CERN Document Server

    Graham, A W; Graham, Alister W.; Guzman, Rafael

    2003-01-01

    We have analyzed archival HST F606W images of 18 dwarf elliptical (dE) galaxy candidates in the Coma Cluster. We model the full radial extent of their light- profiles by simultaneously fitting a PSF-convolved Sersic R^(1/n) model and, when necessary, either a central point-source or a central PSF-convolved Gaussian. The luminosities of the central component L_nuc scale with the host galaxy luminosity L_gal such that L_nuc = 10^(4.76 +/- 0.10) (L_gal/10^7)^(0.87 +/- 0.26). The underlying host galaxies display systematic departures from an exponential model that are correlated with the model-independent host galaxy luminosity and are not due to biasing from the nuclear component. The Pearson correlation coefficient between log(n) and central galaxy surface brightness mu_0 (excluding the flux from extraneous central components) is -0.83 at a significance level of 99.99%. The Pearson correlation coefficient between the logarithm of the Sersic index `n' and the host galaxy magnitude is -0.77 at a significance of 9...

  9. The role of dwarf galaxy interactions in shaping the Magellanic System and implications for Magellanic Irregulars

    Science.gov (United States)

    Besla, Gurtina; Kallivayalil, Nitya; Hernquist, Lars; van der Marel, Roeland P.; Cox, T. J.; Kereš, Dušan

    2012-04-01

    We present a novel pair of numerical models of the interaction history between the Large and Small Magellanic Clouds (LMC and SMC, respectively) and our Milky Way (MW) in light of recent high-precision proper motions from the Hubble Space Telescope. Given the updated velocities, cosmological simulations of hierarchical structure formation favour a scenario where the Magellanic Clouds (MCs) are currently on their first infall towards ourGalaxy. We illustrate here that the observed irregular morphology and internal kinematics of the Magellanic System (in gas and stars) are naturally explained by interactions between the LMC and SMC, rather than gravitational interactions with the MW. These conclusions provide further support that the MCs are completing their first infall to our system. In particular, we demonstrate that the Magellanic Stream, a band of H I gas trailing behind the Clouds 150° across the sky, can be accounted for by the action of LMC tides on the SMC before the system was accreted by the MW. We further demonstrate that the off-centre, warped stellar bar of the LMC, and its one-armed spiral can be naturally explained by a recent direct collision with its lower mass companion, the SMC. Such structures are key morphological characteristics of a class of galaxies referred to as Magellanic Irregulars, the majority of which are not associated with massive spiral galaxies. We infer that dwarf-dwarf galaxy interactions are important drivers for the morphological evolution of Magellanic Irregulars and can dramatically affect the efficiency of baryon removal from dwarf galaxies via the formation of extended tidal bridges and tails. Such interactions are not only important for the evolution of dwarf galaxies but also have direct consequences for the build-up of baryons in our own MW, as LMC-mass systems are believed to be the dominant building blocks of MW-type haloes.

  10. Warp or lag? The ionized and neutral hydrogen gas in the edge-on dwarf galaxy UGC 1281

    CERN Document Server

    Kamphuis, P; van der Kruit, P C; Heald, G H

    2011-01-01

    The properties of gas in the halos of galaxies constrain global models of the interstellar medium. Kinematical information is of particular interest since it is a clue to the origin of the gas. Until now mostly massive galaxies have been investigated for their halo properties. Here we report on deep HI and H{\\alpha} observations of the edge-on dwarf galaxy UGC 1281 in order to determine the existence of extra-planar gas and the kinematics of this galaxy. This is the first time a dwarf galaxy is investigated for its gaseous halo characteristics. We have obtained H{\\alpha} integral field spectroscopy using PPAK at Calar Alto and deep HI observations with the WSRT of this edge-on dwarf galaxy. These observations are compared to 3D models in order to determine the distribution of HI in the galaxy. We find that UGC 1281 has H{\\alpha} emission up to 25"(655 pc) in projection above the plane and in general a low H{\\alpha} flux. Compared to other dwarf galaxies UGC 1281 is a normal dwarf galaxy with a slowly rising r...

  11. ALFALFA Discovery of the Nearby Gas-Rich Dwarf Galaxy Leo~P. III. An Extremely Metal Deficient Galaxy

    CERN Document Server

    Skillman, Evan D; Berg, Danielle A; Pogge, Richard W; Haurberg, Nathalie C; Cannon, John M; Aver, Erik; Olive, Keith A; Giovanelli, Riccardo; Haynes, Martha P; Adams, Elizabeth A K; McQuinn, Kristen B W; Rhode, Katherine L

    2013-01-01

    We present KPNO 4-m and LBT/MODS spectroscopic observations of an HII region in the nearby dwarf irregular galaxy Leo P discovered recently in the Arecibo ALFALFA survey. In both observations, we are able to accurately measure the temperature sensitive [O III] 4363 Angstrom line and determine a "direct" oxygen abundance of 12 + log(O/H) = 7.17 +/- 0.04. Thus, Leo P is an extremely metal deficient (XMD) galaxy, and, indeed, one of the most metal deficient star-forming galaxies ever observed. For its estimated luminosity, Leo P is consistent with the relationship between luminosity and oxygen abundance seen in nearby dwarf galaxies. Leo P shows normal alpha element abundance ratios (Ne/O, S/O, and Ar/O) when compared to other XMD galaxies, but elevated N/O, consistent with the "delayed release" hypothesis for N/O abundances. We derive a helium mass fraction of 0.2509 +0.0184 -0.0123 which compares well with the WMAP + BBN prediction of 0.2483 +/- 0.0002 for the primordial helium abundance. We suggest that surve...

  12. The radial velocity and metal abundance of the Sextans dwarf spheroidal galaxy

    International Nuclear Information System (INIS)

    The AAT FOCAP fibre system has been used to obtain spectra, centred at the Ca II IR-triplet, of 14 stars in the field of the recently discovered Sextans dwarf spheroidal galaxy. Radial velocities derived from these spectra indicate that six of the stars observed are Sextans members. Their velocities cluster closely about a value of 230±6 km s-1 which we take as the heliocentric velocity of this galaxy. This velocity, when corrected to the galactic rest frame, indicates that Sextans makes a contribution comparable to those of other dSph galaxies, such as Sculptor and Ursa Minor, to calculations of the mass of the galaxy's halo. The spectra of the Sextans members also yield an estimate of the mean abundance of this galaxy: a value of [Fe/H]=-1.7±0.25 dex is suggested from a comparison of the line strengths with those of globular cluster stars. (author)

  13. The Nature of Starbursts: I. The Star Formation Histories of Eighteen Nearby Starburst Dwarf Galaxies

    CERN Document Server

    McQuinn, Kristen B W; Cannon, John M; Dalcanton, Julianne; Dolphin, Andrew; Hidalgo-Rodríguez, Sebastian; Holtzman, Jon; Stark, David; Weisz, Daniel; Williams, Benjamin

    2010-01-01

    We use archival HST observations of resolved stellar populations to derive the star formation histories (SFHs) of 18 nearby starburst dwarf galaxies. In this first paper we present the observations, color-magnitude diagrams, and the SFHs of the 18 starburst galaxies, based on a homogeneous approach to the data reduction, differential extinction, and treatment of photometric completeness. We adopt a star formation rate (SFR) threshold normalized to the average SFR of the individual system as a metric for classifying starbursts in SFHs derived from resolved stellar populations. This choice facilitates finding not only currently bursting galaxies but also "fossil" bursts increasing the sample size of starburst galaxies in the nearby (D100 Myr temporal baseline is thus fundamental to any starburst definition or identification method. The longer lived bursts rule out rapid "self-quenching" of starbursts on global scales. The bursting galaxies' gas consumption timescales are shorter than the Hubble time for all but...

  14. REVERSAL OF FORTUNE: INCREASED STAR FORMATION EFFICIENCIES IN THE EARLY HISTORIES OF DWARF GALAXIES?

    International Nuclear Information System (INIS)

    On dwarf galaxy scales, the different shapes of the galaxy stellar mass function and the dark halo mass function require a star-formation efficiency (SFE) in these systems that is currently more than 1 dex lower than that of Milky Way-size halos. Here, we argue that this trend may actually be reversed at high redshift. Specifically, by combining the resolved star-formation histories of nearby isolated dwarfs with the simulated mass-growth rates of dark matter halos, we show that the assembly of these systems occurs in two phases: (1) an early, fast halo accretion phase with a rapidly deepening potential well, characterized by a high SFE; and (2) a late, slow halo accretion phase where, perhaps as a consequence of reionization, the SFE is low. Nearby dwarfs have more old stars than predicted by assuming a constant or decreasing SFE with redshift, a behavior that appears to deviate qualitatively from the trends seen among more massive systems. Taken at face value, the data suggest that at sufficiently early epochs, dwarf galaxy halos above the atomic cooling mass limit can be among the most efficient sites of star formation in the universe

  15. Star formation history and evolution of gas-rich dwarf galaxies in the Centaurus A group

    CERN Document Server

    Grossi, M; Pritzl, B J; Knezek, P M; Gallagher, J S; Minchin, R F; Freeman, K C

    2006-01-01

    We analyse the properties of three unusual dwarf galaxies in the Centaurus A group discovered with the HIPASS survey. From their optical morphology they appear to be low surface brightness dwarf spheroidals, yet they are gas-rich (M_{HI}/L_{B} > 1) with gas-mass-to-stellar light ratios larger than typical dwarf irregular galaxies. Therefore these systems appear different from any dwarfs of the Local Group. They should be favoured hosts for starburst, whereas we find a faint star formation region in only one object. We have obtained 21-cm data and Hubble Space Telescope photometry in V and I bands, and have constructed Colour Magnitude Diagrams (CMDs) to investigate their stellar populations and to set a constraint on their age. From the comparison of the observed and model CMDs we infer that all three galaxies are at least older than 2 Gyr (possibly even as old as 10 Gyr) and remain gas-rich because their star formation rates (SFRs) have been very low (< 10^{-3} M_{sun}/yr) throughout. In such systems, sta...

  16. Forged in FIRE: cusps, cores, and baryons in low-mass dwarf galaxies

    CERN Document Server

    Oñorbe, Jose; Bullock, James S; Hopkins, Philip F; Kerěs, Dušan; Faucher-Giguère, Claude-André; Quataert, Eliot; Murray, Norman

    2015-01-01

    We present ultra-high resolution cosmological hydrodynamic simulations of $M_*\\simeq10^{4-6}M_{\\odot}$ dwarf galaxies that form within $M_{v}=10^{9.5-10}M_{\\odot}$ dark matter halos. Our simulations rely on the FIRE implementation of star formation feedback and were run with high enough force and mass resolution to directly resolve stellar and dark matter structure on the ~200 pc scales of interest for classical and ultra-faint dwarfs in the Local Group. The resultant galaxies sit on the $M_*$ vs. $M_{v}$ relation required to match the Local Group stellar mass function. They have bursty star formation histories and also form with half-light radii and metallicities that broadly match those observed for local dwarfs at the same stellar mass. For the first time we demonstrate that it is possible to create a large (~1 kpc) dark matter core in a cosmological simulation of an $M_*\\simeq10^6M_{\\odot}$ dwarf galaxy that resides within an $M_{v}=10^{10}M_{\\odot}$ halo -- precisely the scale of interest for resolving t...

  17. On The gamma-ray emission from Reticulum II and other dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; Linden, Tim

    2015-09-01

    The recent discovery of ten new dwarf galaxy candidates by the Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) could increase the Fermi Gamma-Ray Space Telescope's sensitivity to annihilating dark matter particles, potentially enabling a definitive test of the dark matter interpretation of the long-standing Galactic Center gamma-ray excess. In this paper, we compare the previous analyses of Fermi data from the directions of the new dwarf candidates (including the relatively nearby Reticulum II) and perform our own analysis, with the goal of establishing the statistical significance of any gamma-ray signal from these sources. We confirm the presence of an excess from Reticulum II, with a spectral shape that is compatible with the Galactic Center signal. The significance of this emission is greater than that observed from 99.84% of randomly chosen high-latitude blank-sky locations, corresponding to a local detection significance of 3.2σ. We caution that any dark matter interpretation of this excess must be validated through observations of additional dwarf spheroidal galaxies, and improved calculations of the relative J-factor of dwarf spheroidal galaxies. We improve upon the standard blank-sky calibration approach through the use of multi-wavelength catalogs, which allow us to avoid regions that are likely to contain unresolved gamma-ray sources.

  18. A Comprehensive Archival Search for Counterparts to Ultra-Compact High Velocity Clouds: Five Local Volume Dwarf Galaxies

    CERN Document Server

    Sand, D J; Bennet, P; Willman, B; Hargis, J; Strader, J; Olszewski, E; Tollerud, E J; Simon, J D; Caldwell, N; Guhathakurta, P; James, B L; Koposov, S; McLeod, B; Morrell, N; Peacock, M; Salinas, R; Seth, A C; Stark, D P; Toloba, E

    2015-01-01

    We report the discovery of five Local Volume dwarf galaxies uncovered during a comprehensive archival search for optical counterparts to ultra-compact high velocity clouds (UCHVCs). The UCHVC population of HI clouds are thought to be candidate gas-rich, low mass halos at the edge of the Local Group and beyond, but no comprehensive search for stellar counterparts to these systems has been presented. Careful visual inspection of all publicly available optical and ultraviolet imaging at the position of the UCHVCs revealed six blue, diffuse counterparts with a morphology consistent with a faint dwarf galaxy beyond the Local Group. Optical spectroscopy of all six candidate dwarf counterparts show that five have an H$\\alpha$-derived velocity consistent with the coincident HI cloud, confirming their association; the sixth diffuse counterpart is likely a background object. The size and luminosity of the UCHVC dwarfs is consistent with other known Local Volume dwarf irregular galaxies. The gas fraction ($M_{HI}/M_{sta...

  19. Looking for dark matter annihilations in dwarf galaxies

    OpenAIRE

    Ferrer, F.

    2004-01-01

    We calculate the flux of high energy gamma-rays from annihilation of neutralino dark matter in the centre of the Milky Way and the three nearest dwarf spheroidals (Sagittarius, Draco and Canis Major), using realistic models of the dark matter distribution.

  20. Local Group Dwarf Galaxies and the Star Formation Law at High Redshift

    CERN Document Server

    Gnedin, N Yu

    2000-01-01

    I show how the existing observational data on Local Group dwarf galaxies can be used to estimate the average star formation law during the first 3 Gyr of the history of the universe. I find that the observational data are consistent with the orthodox Schmidt law with a star formation efficiency of about 4 percent if the star formation is continuous (during the first 3 Gyr). The efficiency is proportionally higher if most of the gas in the dwarfs was consumed (and never replenished) in a short time interval well before the universe turned 3 Gyr.

  1. Chemical composition and constraints on mass loss for globular clusters in dwarf galaxies: WLM and IKN

    CERN Document Server

    Larsen, S S; Forbes, D A; Strader, J

    2014-01-01

    We determine the metallicities for globular clusters (GCs) in the WLM and IKN dwarf galaxies, using VLT/UVES and Keck/ESI spectroscopy. For the WLM GC we also measure detailed abundance ratios for a number of light, alpha, Fe-peak and n-capture elements. We find low metallicities of [Fe/H]=-2.0 and -2.1 for the WLM GC and the GC IKN-5, respectively. We estimate that 17%-31% of the metal-poor stars in WLM belong to the GC, and IKN-5 may even contain a similar number of metal-poor stars as the whole of the IKN dwarf itself. These high ratios of metal-poor GCs to field stars are in tension with GC formation scenarios that require GCs to have lost a very large fraction of their initial mass. The GCs in the WLM and IKN dwarf galaxies resemble those in the Fornax dSph by being significantly more metal-poor than a typical halo GC in the Milky Way and other large galaxies. They are also substantially more metal-poor than the bulk of the field stars in their parent galaxies. The overall abundance patterns in the WLM G...

  2. The Universal Stellar Mass-Stellar Metallicity Relation for Dwarf Galaxies

    CERN Document Server

    Kirby, Evan N; Guhathakurta, Puragra; Cheng, Lucy; Bullock, James S; Gallazzi, Anna

    2013-01-01

    We present spectroscopic metallicities of individual stars in seven gas-rich dwarf irregular galaxies (dIrrs), and we show that dIrrs obey the same mass-metallicity relation as the dwarf spheroidal (dSph) satellites of both the Milky Way and M31: Z_* ~ M_*^(0.30 +/- 0.02). The uniformity of the relation is in contradiction to previous estimates of metallicity based on photometry. This relationship is roughly continuous with the stellar mass-stellar metallicity relation for galaxies as massive as M_* = 10^12 M_sun. Although the average metallicities of dwarf galaxies depend only on stellar mass, the shapes of their metallicity distributions depend on galaxy type. The metallicity distributions of dIrrs resemble simple, leaky box chemical evolution models, whereas dSphs require an additional parameter, such as gas accretion, to explain the shapes of their metallicity distributions. Furthermore, the metallicity distributions of the more luminous dSphs have sharp, metal-rich cut-offs that are consistent with the s...

  3. Young star clusters in the outer disks of LITTLE THINGS dwarf irregular galaxies

    CERN Document Server

    Hunter, Deidre A; Gehret, Elizabeth

    2016-01-01

    We examine FUV images of the LITTLE THINGS sample of nearby dwarf irregular (dIrr) and Blue Compact Dwarf (BCD) galaxies to identify distinct young regions in their far outer disks. We use these data, obtained with the Galaxy Evolution Explorer satellite, to determine the furthest radius at which in situ star formation can currently be identified. The FUV knots are found at distances from the center of the galaxies of 1 to 8 disk scale lengths and have ages of <20 Myrs and masses of 20 to 1E5 Msolar. The presence of young clusters and OB associations in the outer disks of dwarf galaxies shows that dIrrs do have star formation taking place there in spite of the extreme nature of the environment. Most regions are found where the HI surface density is ~1 Msolar per pc2, although both the HI and dispersed old stars go out much further. This limiting density suggests a cutoff in the ability to form distinct OB associations and perhaps even stars. We compare the star formation rates in the FUV regions to the ave...

  4. Threshing in Action - The tidal disruption of a dwarf galaxy by the Hydra I Cluster

    CERN Document Server

    Koch, Andreas; Rich, R Michael; Collins, Michelle L M; Black, Christine S; Hilker, Michael; Benson, Andrew J

    2012-01-01

    We report on the discovery of strong tidal features around a dwarf spheroidal galaxy in the Hydra I galaxy cluster, indicating its ongoing tidal disruption. This very low surface brightness object, HCC-087, was originally classified as an early-type dwarf in the Hydra Cluster Catalogue (HCC), but our re-analysis of the ESO-VLT/FORS images of the HCC unearthed a clear indication of an S-shaped morphology and a large spatial extent. Its shape, luminosity (M_V=-11.6 mag), and physical size (at a half-light radius of 3.1 kpc and a full length of ~5.9 kpc) are comparable to the recently discovered NGC 4449B and the Sagittarius dwarf spheroidal, all of which are undergoing clear tidal disruption. Aided by N-body simulations we argue that HCC-087 is currently at its first apocenter, at 150 kpc, around the cluster center and that it is being tidally disrupted by the galaxy cluster's potential itself. An interaction with the near-by (50 kpc) S0 cluster galaxy HCC-005, at M* ~ 3 x 10^10 M_sun is rather unlikely, as thi...

  5. Dwarf galaxies in CDM and SIDM with baryons: observational probes of the nature of dark matter

    CERN Document Server

    Vogelsberger, Mark; Simpson, Christine; Jenkins, Adrian

    2014-01-01

    We present the first cosmological simulations of dwarf galaxies, which include dark matter self-interactions and baryons. We study two dwarf galaxies within cold dark matter, and four different elastic self-interacting scenarios with constant and velocity-dependent cross sections, motivated by a new force in the hidden dark matter sector. Our highest resolution simulation has a baryonic mass resolution of $1.8\\times 10^2\\,{\\rm M}_\\odot$ and a gravitational softening length of $34\\,{\\rm pc}$ at $z=0$. In this first study we focus on the regime of mostly isolated dwarf galaxies with halo masses $\\sim10^{10}\\,{\\rm M}_\\odot$ where dark matter dynamically dominates even at sub-kpc scales. We find that while the global properties of galaxies of this scale are minimally affected by allowed self-interactions, their internal structures change significantly if the cross section is large enough within the inner sub-kpc region. In these dark-matter-dominated systems, self-scattering ties the shape of the stellar distribu...

  6. Seeking large-scale magnetic fields in a pure-disk dwarf galaxy NGC 2976

    CERN Document Server

    Drzazga, R T; Heald, G H; Elstner, D; Gallagher, J S

    2016-01-01

    It is still unknown how magnetic field-generation mechanisms could operate in low-mass dwarf galaxies. Here, we present a detailed study of a nearby pure-disk dwarf galaxy NGC 2976. Unlike previously observed dwarf objects, this galaxy possesses a clearly defined disk. For the purpose of our studies, we performed deep multi-frequency polarimetric observations of NGC 2976 with the VLA and Effelsberg radio telescopes. Additionally, we supplement them with re-imaged data from the WSRT-SINGS survey. The magnetic field morphology discovered in NGC 2976 consists of a southern polarized ridge. This structure does not seem to be due to just a pure large-scale dynamo process (possibly cosmic-ray driven) at work in this object, as indicated by the RM data and dynamo number calculations. Instead, the field of NGC 2976 is modified by past gravitational interactions and possibly also by ram pressure inside the M 81 galaxy group environment. The estimates of total (7 muG) and ordered (3 muG) magnetic field strengths, as we...

  7. H ii REGIONS WITHIN A COMPACT HIGH VELOCITY CLOUD. A NEARLY STARLESS DWARF GALAXY?

    Energy Technology Data Exchange (ETDEWEB)

    Bellazzini, M. [INAF—Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Magrini, L. [INAF—Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Mucciarelli, A.; Fraternali, F. [Dipartimento di Fisica and Astronomia, Università degli Studi di Bologna, Viale Berti Pichat, 6/2, I-40127 Bologna (Italy); Beccari, G. [European Southern Observatory, Alonso de Cordova 3107, Vitacura Santiago (Chile); Ibata, R.; Martin, N. [Obs. astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l’Université, F-67000 Strasbourg (France); Battaglia, G. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Testa, V. [INAF—Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio (Italy); Fumana, M.; Marchetti, A. [INAF—IASF, via E. Bassini 15, I-20133, Milano (Italy); Correnti, M., E-mail: michele.bellazzini@oabo.inaf.it [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2015-02-10

    Within the SECCO survey we identified a candidate stellar counterpart to the Ultra Compact High Velocity Cloud (UCHVC) HVC274.68+74.70-123 that was suggested by Adams et al. to be a possible mini halo within the Local Group of galaxies. The spectroscopic follow-up of the brightest sources within the candidate reveals the presence of two H ii regions whose radial velocity is compatible with a physical association with the UVHVC. The available data do not allow us to give a definite answer on the nature of the newly identified system. A few alternative hypotheses are discussed. However, the most likely possibility is that we have found a new faint dwarf galaxy residing in the Virgo cluster of galaxies, which we name SECCO 1. Independently of its actual distance, SECCO 1 displays a ratio of neutral hydrogen mass to V luminosity of M{sub H} {sub I}/L{sub V}≳20, by far the largest among local dwarfs. Hence, it appears to be a nearly starless galaxy and it may be an example of the missing links between normal dwarfs and the dark mini halos that are predicted to exist in large numbers according to the currently accepted cosmological model.

  8. The universal stellar mass-stellar metallicity relation for dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Evan N.; Bullock, James S. [University of California, Department of Physics and Astronomy, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Cohen, Judith G. [California Institute of Technology, Department of Astronomy and Astrophysics, 1200 E. California Blvd., MC 249-17, Pasadena, CA 91125 (United States); Guhathakurta, Puragra [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Cheng, Lucy [The Harker School, 500 Saratoga Ave., San Jose, CA 95117 (United States); Gallazzi, Anna, E-mail: ekirby@uci.edu [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)

    2013-12-20

    We present spectroscopic metallicities of individual stars in seven gas-rich dwarf irregular galaxies (dIrrs), and we show that dIrrs obey the same mass-metallicity relation as the dwarf spheroidal (dSph) satellites of both the Milky Way and M31: Z{sub ∗}∝M{sub ∗}{sup 0.30±0.02}. The uniformity of the relation is in contradiction to previous estimates of metallicity based on photometry. This relationship is roughly continuous with the stellar mass-stellar metallicity relation for galaxies as massive as M {sub *} = 10{sup 12} M {sub ☉}. Although the average metallicities of dwarf galaxies depend only on stellar mass, the shapes of their metallicity distributions depend on galaxy type. The metallicity distributions of dIrrs resemble simple, leaky box chemical evolution models, whereas dSphs require an additional parameter, such as gas accretion, to explain the shapes of their metallicity distributions. Furthermore, the metallicity distributions of the more luminous dSphs have sharp, metal-rich cut-offs that are consistent with the sudden truncation of star formation due to ram pressure stripping.

  9. Comparing the observable properties of dwarf galaxies on and off the Andromeda plane

    CERN Document Server

    Collins, Michelle L M; Rich, R M; Ibata, Rodrigo A; Chapman, Scott C; McConnachie, Alan W; Ferguson, Annette M; Irwin, Michael J; Lewis, Geraint F

    2014-01-01

    The thin, extended planes of satellite galaxies detected around both the Milky Way and Andromeda are not a natural prediction of the LCDM paradigm. Galaxies in these distinct planes may have formed and evolved in a different way (e.g., tidally) to their off-plane neighbours. If this were the case, one would expect the on- and off-plane dwarf galaxies in Andromeda to have experienced different evolutionary histories, which should be reflected by the chemistries, dynamics, and star formation histories of the two populations. In this work, we present new, robust kinematic observations for 2 on-plane M31 dSphs (And XVI and XVII) and compile and compare all available observational metrics for the on- and off-plane dwarfs to search for a signal that would corroborate such a hypothesis. We find that, barring their spatial alignment, the on- and off-plane Andromeda dwarf galaxies are indistinguishable from one another, arguing against vastly different formative and evolutionary histories for these two populations.

  10. The ACS LCID Project: On the origin of dwarf galaxy types: a manifestation of the halo assembly bias?

    CERN Document Server

    Gallart, C; Mayer, L; Aparicio, A; Battaglia, G; Bernard, E J; Cassisi, S; Cole, A A; Dolphin, A E; Drozdovsky, I; HIdalgo, S L; Navarro, J F; Salvadori, S; Skillman, E D; Stetson, P B; Weisz, D R

    2015-01-01

    We discuss how knowledge of the whole evolutionary history of dwarf galaxies, including details on the early star formation events, can provide insight on the origin of the different dwarf galaxy types. We suggest that these types may be imprinted by the early conditions of formation rather than being only the result of a recent morphological transformation driven by environmental effects. We present precise star formation histories of a sample of Local Group dwarf galaxies, derived from colour-magnitude diagrams reaching the oldest main-sequence turnoffs. We argue that these galaxies can be assigned to two basic types: fast dwarfs that started their evolution with a dominant and short star formation event, and slow dwarfs that formed a small fraction of their stars early and have continued forming stars until the present time (or almost). These two different evolutionary paths do not map directly onto the present-day morphology (dwarf spheroidal vs dwarf irregular). Slow and fast dwarfs also differ in their ...

  11. Effect of Black Holes in Local Dwarf Spheroidal Galaxies on Gamma-Ray Constraints on Dark Matter Annihilation

    OpenAIRE

    Gonzalez-Morales, Alma X.; Profumo, Stefano; Queiroz, Farinaldo S.(Department of Physics, Santa Cruz Institute for Particle Physics, University of California, 95064, Santa Cruz, CA, USA)

    2014-01-01

    Recent discoveries of optical signatures of black holes in dwarf galaxies indicates that low-mass galaxies can indeed host intermediate massive black holes. This motivates the assessment of the resulting effect on the host dark matter density profile, and the consequences for the constraints on the plane of the dark matter annihilation cross section versus mass, stemming from the non-observation of gamma rays from local dwarf spheroidals with the Fermi Large Area Telescope. We compute the den...

  12. Disk and dwarf spheroidal galaxies kinematics from general relativity with infrared renormalization group effects

    International Nuclear Information System (INIS)

    Full text: The running of coupling constants is a well known phenomenon within Quantum Field Theory. It is also known that the renormalization group method can be extended to quantum field theory on curved space time. Nonetheless, although we know that the beta function of QED go to zero in the infrared limit fast enough to lead to constant charge at the classical level (in conformity with both the Appelquist-Carazzone theorem and experimental data), no analogous proof exists for General Relativity. Some authors have proposed that the infrared beta function of General Relativity is not trivial, and as such certain small running of the gravitational coupling might take place at astrophysical scales, leading in particular to changes on the role of dark matter in galaxies. We review and extend our contribution to infrared Renormalization Group (RG) effects to General Relativity in the context of galaxies, an approach we call RGGR. We extend our previous results by analyzing a larger sample of galaxies, now also including elliptical and dwarf spheroidal galaxies, besides disk galaxies (both LSB and HSB). We compare our RGGR results to both standard dark matter profiles (NFW, Isothermal, Burkert) and alternative models of gravity (MOND, MSTG), showing that the RGGR results are similar in quality to the best dark matter profiles (the cored ones, e.g., Isothermal and Burkert), while displaying a better fitting to the data than NFW, MOND or MSTG. To the latter, we evaluated both the shape of the rotation curve and the expected stellar mass-to-light ratios. Dwarf spheroidal (dSph) galaxies are small galaxies believed to be dominated by dark matter, with the highest fraction do dark matter per baryonic matter. These galaxies provide a strong test to any theory that mimics either all or part of the dark matter behavior. In particular, this is the only type of galaxy that MOND seems incapable of fitting the data. (author)

  13. Relating basic properties of bright early-type dwarf galaxies to their location in Abell 901/902

    CERN Document Server

    Barazza, F D; Gray, M E; Jogee, S; Balogh, M; McIntosh, D H; Bacon, D; Barden, M; Bell, E F; Boehm, A; Caldwell, J A R; Haeussler, B; Heiderman, A; Heymans, C; van Kampen, K Jahnke E; Lane, K; Marinova, I; Meisenheimer, K; Peng, C Y; Sánchez, S F; Taylor, A; Wisotzki, L; Zheng, X

    2009-01-01

    We present a study of the population of bright early-type dwarf galaxies in the multiple-cluster system Abell 901/902. We use data from the STAGES survey and COMBO-17 to investigate the relation between the color and structural properties of the dwarfs and their location in the cluster. The definition of the dwarf sample is based on the central surface brightness and includes galaxies in the luminosity range -16 >= M_B <~-19 mag. Using a fit to the color magnitude relation of the dwarfs, our sample is divided into a red and blue subsample. We find a color-density relation in the projected radial distribution of the dwarf sample: at the same luminosity dwarfs with redder colors are located closer to the cluster centers than their bluer counterparts. Furthermore, the redder dwarfs are on average more compact and rounder than the bluer dwarfs. These findings are consistent with theoretical expectations assuming that bright early-type dwarfs are the remnants of transformed late-type disk galaxies involving pro...

  14. Reconciling dwarf galaxies with LCDM cosmology: Simulating a realistic population of satellites around a Milky Way-mass galaxy

    CERN Document Server

    Wetzel, Andrew R; Kim, Ji-hoon; Faucher-Giguere, Claude-Andre; Keres, Dusan; Quataert, Eliot

    2016-01-01

    Low-mass "dwarf" galaxies represent the most significant challenges to the cold dark matter (CDM) model of cosmological structure formation. Because these faint galaxies are (best) observed within the Local Group of the Milky Way (MW) and Andromeda (M31), understanding their formation in such an environment is critical. We present the first results from the Latte Project: the Milky Way on FIRE (Feedback in Realistic Environments). This simulation models the formation of a MW-mass galaxy to z = 0 within LCDM cosmology, including dark matter, gas, and stars at unprecedented resolution: baryon mass of 7070 M_sun at spatial resolution down to 1 pc. Latte was simulated using the GIZMO code with a mesh-free method for accurate hydrodynamics and the FIRE model for star formation and explicit feedback within a multi-phase interstellar medium. For the first time, Latte self-consistently resolves the internal structure of dwarf galaxies that form around a MW-mass host down to M_star > 10^5 M_sun. Latte's population of ...

  15. The central region of the Fornax cluster; 3, Dwarf galaxies, globular clusters, and cD halo are there interrelations?

    CERN Document Server

    Hilker, M; Richtler, T

    1999-01-01

    In this paper we briefly review the properties of the dwarf galaxy population at the core of the Fornax cluster, as well as the properties of the extraordinary rich globular cluster system and the cD halo around the central galaxy NGC 1399. In turn, the question whether a scenario in which dwarf galaxies have been accreted and dissolved in the cluster center can explain the observed properties is addressed. The possibility of accretion of a certain number of dwarf galaxies, the stripping of their globular clusters and gas, and the formation of new globular clusters from stripped infalling gas are discussed. An increase in the specific frequency of the central globular cluster system is only possible, if the infalling gas from stripped dwarfs formed globulars very efficiently and/or accreted and stripped dwarf galaxies possessed a rich globular cluster system themselves. In conclusion, we argue that although the dwarf galaxy infall is a very attractive scenario to explain a number of properties in the system t...

  16. Dark Matter Cores in the Fornax and Sculptor Dwarf Galaxies

    DEFF Research Database (Denmark)

    C. Amorisco, Nicola; Zavala Franco, Jesus; J. L. de Boer, Thomas

    2014-01-01

    We combine the detailed Star Formation Histories of the Fornax and Sculptor dwarf Spheroidals with the mass assembly history of their dark matter halo progenitors to estimate if the energy deposited by Supernova type II (SNeII) is sufficient to create a substantial dark matter core. Assuming...... the efficiency of energy injection of the SNeII into dark matter particles is \\epsilon=0.05, we find that a single early episode, z...

  17. The origin of the mu_e - M_B and Kormendy relations in dwarf elliptical galaxies

    CERN Document Server

    Boselli, A; Cortese, L; Gavazzi, G

    2008-01-01

    The present work is aimed at studying the distribution of galaxies of different types and luminosities along different structural scaling relations to see whether massive and dwarf ellipticals have been shaped by the same formation process. This exercise is here done by comparing the distribution of Virgo cluster massive and dwarf ellipticals and star forming galaxies along the B band effective surface brightness and effective radius vs. absolute magnitude relations and the Kormendy relation to the predictions of models tracing the effects of ram-pressure stripping on disc galaxies entering the cluster environment and galaxy harassment. Dwarf ellipticals might have been formed from low luminosity, late-type spirals that recently entered into the cluster and lost their gas because of a ram-pressure stripping event, stopping their activity of star formation. The perturbations induced by the abrupt decrease of the star formation activity are sufficient to modify the structural properties of disc galaxies into th...

  18. A chemical confirmation of the faint Boötes II dwarf spheroidal galaxy

    International Nuclear Information System (INIS)

    We present a chemical abundance study of the brightest confirmed member star of the ultra-faint dwarf galaxy Boötes II from Keck/HIRES high-resolution spectroscopy at moderate signal-to-noise ratios. At [Fe/H] = –2.93 ± 0.03(stat.) ± 0.17(sys.), this star chemically resembles metal-poor halo field stars and the signatures of other faint dwarf spheroidal galaxies at the same metallicities in that it shows enhanced [α/Fe] ratios, Solar Fe-peak element abundances, and low upper limits on the neutron-capture element Ba. Moreover, this star shows no chemical peculiarities in any of the eight elements we were able to measure. This implies that the chemical outliers found in other systems remain outliers pertaining to the unusual enrichment histories of the respective environments, while Boo II appears to have experienced an enrichment history typical of its very low mass. We also re-calibrated previous measurements of the galaxy's metallicity from the calcium triplet (CaT) and find a much lower value than reported before. The resulting broad metallicity spread, in excess of one dex, the very metal-poor mean, and the chemical abundance patterns of the present star imply that Boötes II is a low-mass, old, metal-poor dwarf galaxy and not an overdensity associated with the Sagittarius Stream as has been previously suggested based on its sky position and kinematics. The low, mean CaT metallicity of –2.7 dex falls right on the luminosity-metallicity relation delineated over four orders of magnitude from the more luminous to the faintest galaxies. Thus Boötes II's chemical enrichment appears representative of the galaxy's original mass, while tidal stripping and other mass loss mechanisms were probably not significant as for other low-mass satellites.

  19. Constraining ultracompact dwarf galaxy formation with galaxy clusters in the local universe

    Science.gov (United States)

    Pfeffer, J.; Hilker, M.; Baumgardt, H.; Griffen, B. F.

    2016-05-01

    We compare the predictions of a semi-analytic model for ultracompact dwarf galaxy (UCD) formation by tidal stripping to the observed properties of globular clusters (GCs) and UCDs in the Fornax and Virgo clusters. For Fornax we find the predicted number of stripped nuclei agrees very well with the excess number of GCs+UCDs above the GC luminosity function. GCs+UCDs with masses >107.3 M⊙ are consistent with being entirely formed by tidal stripping. Stripped nuclei can also account for Virgo UCDs with masses >107.3 M⊙ where numbers are complete by mass. For both Fornax and Virgo, the predicted velocity dispersions and radial distributions of stripped nuclei are consistent with that of UCDs within ˜50-100 kpc but disagree at larger distances where dispersions are too high and radial distributions too extended. Stripped nuclei are predicted to have radially biased anisotropies at all radii, agreeing with Virgo UCDs at clustercentric distances larger than 50 kpc. However, ongoing disruption is not included in our model which would cause orbits to become tangentially biased at small radii. We find the predicted metallicities and central black hole masses of stripped nuclei agree well with the metallicities and implied black hole masses of UCDs for masses >106.5 M⊙. The predicted black hole masses also agree well with that of M60-UCD1, the first UCD with a confirmed central black hole. These results suggest that observed GC+UCD populations are a combination of genuine GCs and stripped nuclei, with the contribution of stripped nuclei increasing towards the high-mass end.

  20. Early-type dwarf galaxies in clusters: a mixed bag with various origins?

    CERN Document Server

    Lisker, Thorsten

    2009-01-01

    The formation of early-type dwarf (dE) galaxies, the most numerous objects in clusters, is believed to be closely connected to the physical processes that drive galaxy cluster evolution, like galaxy harassment and ram-pressure stripping. However, the actual significance of each mechanism for building the observed cluster dE population is yet unknown. Several distinct dE subclasses were identified, which show significant differences in their shape, stellar content, and distribution within the cluster. Does this diversity imply that dEs originate from various formation channels? Does "cosmological" formation play a role as well? I try to touch on these questions in this brief overview of dEs in galaxy clusters.

  1. ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. II. OPTICAL IMAGING OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, Katherine L.; Salzer, John J.; Haurberg, Nathalie C.; Van Sistine, Angela; Young, Michael D. [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Haynes, Martha P.; Giovanelli, Riccardo; Adams, Elizabeth A. K. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, Saint Paul, MN 55105 (United States); Skillman, Evan D.; McQuinn, Kristen B. W., E-mail: rhode@astro.indiana.edu, E-mail: slaz@astro.indiana.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: betsey@astro.cornell.edu, E-mail: jcannon@macalester.edu, E-mail: skillman@astro.umn.edu, E-mail: kmcquinn@astro.umn.edu [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States)

    2013-06-15

    We present results from ground-based optical imaging of a low-mass dwarf galaxy discovered by the ALFALFA 21 cm H I survey. Broadband (BVR) data obtained with the WIYN 3.5 m telescope at Kitt Peak National Observatory (KPNO) are used to construct color-magnitude diagrams of the galaxy's stellar population down to V{sub o} {approx} 25. We also use narrowband H{alpha} imaging from the KPNO 2.1 m telescope to identify a H II region in the galaxy. We use these data to constrain the distance to the galaxy to be between 1.5 and 2.0 Mpc. This places Leo P within the Local Volume but beyond the Local Group. Its properties are extreme: it is the lowest-mass system known that contains significant amounts of gas and is currently forming stars.

  2. A spectroscopic measure of the star-formation rate density in dwarf galaxies at z~1

    CERN Document Server

    Davies, G T; Glazebrook, Karl; Bower, Richard; Baldry, I K; Balogh, Michael; Hau, G K T; Li, I H; McCarthy, P; Savaglio, S

    2009-01-01

    We use a K-selected (22.5 < K_AB < 24.0) sample of dwarf galaxies (8.4 < log(M*/Msun) < 10) at 0.89galaxies, we robustly measure a turnover in the [OII] luminosity density at a stellar mass of M~10^10 Msun. By comparison with the [OII]-based SFRD measured from the Sloan Digital Sky Survey we confirm that, while the SFRD of the lowest-mass galaxies changes very little with time, the SFRD of more massive galaxies evolves strongly, such that they dominate the SFRD at z = 1.

  3. ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. II. OPTICAL IMAGING OBSERVATIONS

    International Nuclear Information System (INIS)

    We present results from ground-based optical imaging of a low-mass dwarf galaxy discovered by the ALFALFA 21 cm H I survey. Broadband (BVR) data obtained with the WIYN 3.5 m telescope at Kitt Peak National Observatory (KPNO) are used to construct color-magnitude diagrams of the galaxy's stellar population down to Vo ∼ 25. We also use narrowband Hα imaging from the KPNO 2.1 m telescope to identify a H II region in the galaxy. We use these data to constrain the distance to the galaxy to be between 1.5 and 2.0 Mpc. This places Leo P within the Local Volume but beyond the Local Group. Its properties are extreme: it is the lowest-mass system known that contains significant amounts of gas and is currently forming stars.

  4. Surprising Image Revises Understanding Of Dwarf Galaxies -- Building Blocks of the Universe

    Science.gov (United States)

    2003-01-01

    An intensive study of a neighboring dwarf galaxy has surprised astronomers by showing that most of its molecular gas -- the raw material for new stars -- is scattered among clumps in the galaxy's outskirts, not near its center as they expected. Composite view of galaxy Composite view of the galaxy IC 10. Optical view in blue; Ionized hydrogen (H-alpha) in red; and molecular gas (CO) in green. CREDIT: OVRO, Caltech, NOAO, KPNO "This tells us that the galaxies we call dwarf irregulars are even more irregular than we thought," said Fabian Walter, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. "Our new work also shows that these galaxies probably are useful 'laboratories' for studying how stars were formed when the Universe was young," Walter added. Walter worked with Christopher Taylor of the University of Massachusetts and Nick Scoville of Caltech. The scientists presented their results at the American Astronomical Society's meeting in Seattle, WA. Using the millimeter-wave interferometer at Caltech's Owens Valley Radio Observatory, the astronomers combined 15 smaller images into a single mosaic to produce an image showing the location of Carbon Monoxide (CO) gas throughout a galaxy called IC 10, some 2.5 million light-years away. IC 10 is one of the Local Group of galaxies of which our own Milky Way is part. The telescope system was tuned to a frequency near 115 GigaHertz, where the CO molecule naturally emits radio waves. "We found the clumps of CO gas far from the galaxy's center, and not near the regions of current star formation," Walter said. "This tells us that stars may, in fact, form way out there in the outskirts of the galaxy, where we didn't expect," he added. Most of the galaxy's gas is atomic Hydrogen, composed of single Hydrogen atoms. Most of the galaxy's molecular gas is composed of Hydrogen molecules with two atoms each. Atomic Hydrogen can be seen with radio telescopes because it naturally emits at a radio frequency of 1420 Mega

  5. Forged in FIRE: cusps, cores and baryons in low-mass dwarf galaxies

    Science.gov (United States)

    Oñorbe, Jose; Boylan-Kolchin, Michael; Bullock, James S.; Hopkins, Philip F.; Kereš, Dušan; Faucher-Giguère, Claude-André; Quataert, Eliot; Murray, Norman

    2015-12-01

    We present multiple ultrahigh resolution cosmological hydrodynamic simulations of M⋆ ≃ 104-6.3 M⊙ dwarf galaxies that form within two Mvir = 109.5-10 M⊙ dark matter halo initial conditions. Our simulations rely on the Feedback in Realistic Environments (FIRE) implementation of star formation feedback and were run with high enough force and mass resolution to directly resolve structure on the ˜200 pc scales. The resultant galaxies sit on the M⋆ versus Mvir relation required to match the Local Group stellar mass function via abundance matching. They have bursty star formation histories and also form with half-light radii and metallicities that broadly match those observed for local dwarfs at the same stellar mass. We demonstrate that it is possible to create a large (˜1 kpc) constant-density dark matter core in a cosmological simulation of an M⋆ ≃ 106.3 M⊙ dwarf galaxy within a typical Mvir = 1010 M⊙ halo - precisely the scale of interest for resolving the `too big to fail' problem. However, these large cores are not ubiquitous and appear to correlate closely with the star formation histories of the dwarfs: dark matter cores are largest in systems that form their stars late (z ≲ 2), after the early epoch of cusp building mergers has ended. Our M⋆ ≃ 104 M⊙ dwarf retains a cuspy dark matter halo density profile that matches that of a dark-matter-only run of the same system. Though ancient, most of the stars in our ultrafaint form after reionization; the ultraviolet field acts mainly to suppress fresh gas accretion, not to boil away gas that is already present in the protodwarf.

  6. Age and metallicity gradients in early-type galaxies: A dwarf to giant sequence

    CERN Document Server

    Koleva, Mina; De Rijcke, Sven; Zeilinger, Werner W

    2011-01-01

    We studied the stellar populations of 40 early-type galaxies using medium resolution long-slit spectroscopy along their major axes (and along the minor axis for two of them), from 10^7 Msol to 10^12 Msol (-9.2 > M_B > -22.4 mag). All the studied galaxies lie on the mass-metallicity and age-mass relations. The transition type dwarfs deviate from the latter relation having younger mean age, and the low-mass dwarf spheroidals have older ages, marking a discontinuity in the relation, possibly due to selection effects. In all mass regimes, the mean metallicity gradients are approximately -0.2 and the mean age gradients +0.1 dex per decade of radius. The individual gradients are widely spread: $ -0.1 < \

  7. Searching for Dark Matter with X-ray Observations of Local Dwarf Galaxies

    CERN Document Server

    Jeltema, Tesla E

    2008-01-01

    A generic feature of weakly interacting massive particle (WIMP) dark matter models is the emission of photons over a broad energy band resulting from the stable yields of dark matter pair annihilation. Inverse Compton scattering off cosmic microwave background photons of energetic electrons and positrons produced in dark matter annihilation is expected to produce significant diffuse X-ray emission. Dwarf galaxies are ideal targets for this type of dark matter search technique, being nearby, dark matter dominated systems free of any astrophysical diffuse X-ray background. In this paper, we present the first systematic study of X-ray observations of local dwarf galaxies aimed at the search for WIMP dark matter. We outline the optimal energy and angular ranges for current telescopes, and analyze the systematic uncertainties connected to electron/positron diffusion. We do not observe any significant X-ray excess, and translate this null result into limits on the mass and pair annihilation cross section for partic...

  8. Limits on the H I content of the dwarf galaxy Hydra II

    Science.gov (United States)

    Janzen, Andrew; Klopf, Eve M.; Lockman, Felix J.; Montez, Rodolfo, Jr.; Plarre, Kurt; Pokhrel, Nau Raj; Selina, Robert J.; Togi, Aditya; Zomederis, Mehrnoush

    2015-12-01

    Sensitive 21 cm H I observations have been made with the Green Bank Telescope toward the newly-discovered Local Group dwarf galaxy Hydra II, which may lie within the leading arm of the Magellanic Stream. No neutral hydrogen was detected. Our 5σ limit of MHI ≤ 210 M⊙ for a 15 km s-1 linewidth gives a gas to luminosity ratio MHI/ LV ≤ 2.6 × 10-2M⊙L⊙-1. The limits on H I mass and MHI/LV are typical of dwarf galaxies found within a few hundred kpc of the Milky Way. Whatever the origin of Hydra II, its neutral gas properties are not unusual.

  9. Limits on the HI content of the dwarf galaxy Hydra II

    CERN Document Server

    Janzen, Andrew; Lockman, Felix J; Montez, Rodolfo; Plarre, Kurt; Pokhrel, Nau Raj; Selina, Robert J; Togi, A; Zomederis, Mehrnoush

    2015-01-01

    Sensitive 21cm HI observations have been made with the Green Bank Telescope toward the newly-discovered Local Group dwarf galaxy Hydra II, which may lie within the leading arm of the Magellanic Stream. No neutral hydrogen was detected. Our 5-sigma limit of MHI < 210 solar masses for a 15 km/s linewidth gives a gas-to-luminosity ratio MHI/L_V < 2.6 x 10^{-2} Mo / Lo. The limits on HI mass and MHI/L_V are typical of dwarf galaxies found within a few hundred kpc of the Milky Way. Whatever the origin of Hydra II, its neutral gas properties are not unusual.

  10. The impact of galaxy harassment on the globular cluster systems of early-type cluster dwarf galaxies

    Science.gov (United States)

    Smith, R.; Sánchez-Janssen, R.; Fellhauer, M.; Puzia, T. H.; Aguerri, J. A. L.; Farias, J. P.

    2013-02-01

    The dynamics of globular cluster systems (GCSs) around galaxies are often used to assess the total enclosed mass, and even to constrain the dark matter distribution. The GCS of a galaxy is typically assumed to be in dynamical equilibrium within the potential of the host galaxy. However cluster galaxies are subjected to a rapidly evolving and, at times, violently destructive tidal field. We investigate the impact of the harassment on the dynamics of GCs surrounding early-type cluster dwarfs, using numerical simulations. We find that the dynamical behaviour of the GCS is strongly influenced by the fraction of bound dark matter fDM remaining in the galaxy. Only when fDM falls to ˜15 per cent do stars and GCs begin to be stripped. Still the observed GC velocity dispersion can be used to measure the true enclosed mass to within a factor of 2, even when fDM falls as low as ˜3 per cent. This is possible partly because unbound GCs quickly separate from the galaxy body. However even the distribution of bound GCs may spatially expand by a factor of 2-3. Once fDM falls into the <3 per cent regime, the galaxy is close to complete disruption, and GCS dynamics can no longer be used to reliably estimate the enclosed mass. In this regime, the remaining bound GCS may spatially expand by a factor of 4 to 8. It may be possible to test if a galaxy is in this regime by measuring the dynamics of the stellar disc. We demonstrate that if a stellar disc is rotationally supported, it is likely that a galaxy has sufficient dark matter that the dynamics of the GCS can be used to reliably estimate the enclosed mass.

  11. Constraints on MACHO Dark Matter from the Star Cluster in the Dwarf Galaxy Eridanus II

    OpenAIRE

    Brandt, Timothy D.

    2016-01-01

    I show that a recently discovered star cluster near the center of the ultra-faint dwarf galaxy Eridanus II provides strong constraints on massive compact halo objects (MACHOs) of >~5 M_sun as the main component of dark matter. MACHO dark matter will dynamically heat the cluster, driving it to larger sizes and higher velocity dispersions until it dissolves into its host galaxy. The star cluster has a luminosity of just ~2000 L_sun and is relatively puffy, with a half-light radius of 13 pc, mak...

  12. VCC 144 - a star-bursting dwarf galaxy in the Virgo Cluster

    OpenAIRE

    Brosch, N.; Almoznino, E.; L. Hoffman

    1997-01-01

    We describe results of a multi-spectral study of a blue compact dwarf galaxy in Virgo. The object was observed with broad-band and H$\\alpha$ imaging, UV observations, and radio synthesis. Our data were combined with published optical observations, with HI single-beam observation and with FIR data, and were compared to results of evolutionary synthesis programs. The radio observations revealed a compact source of HI coincident with the optical galaxy, embedded in a diffuse, HI cloud which has ...

  13. The Evolution of Dwarf Galaxies with Star Formation in Outward Propagating Super Shell

    OpenAIRE

    Mori, Masao; Yoshii, Yuzuru; Tsujimoto, Takuji; Nomoto, Ken'ichi

    1997-01-01

    We simulate the dynamical and chemical evolution of a dwarf galaxy embedded in a dark matter halo, using a three-dimensional N-body/SPH simulation code combined with stellar population synthesis. The initial condition is adopted in accord with a $10^{10}M_\\odot$ virialized sphere in a 1-sigma CDM perturbation which contains 10% baryonic mass. A supersonic spherical outflow is driven by the first star burst near the center of the galaxy and produces an expanding super shell in which stars are ...

  14. Foreground effect on the $J$-factor estimation of classical dwarf spheroidal galaxies

    OpenAIRE

    Ichikawa, Koji; Ishigaki, Miho N.; Matsumoto, Shigeki; Ibe, Masahiro; Sugai, Hajime; Hayashi, Kohei

    2016-01-01

    The gamma-ray observation of the dwarf spheroidal galaxies (dSphs) is a promising approach to search for the dark matter annihilation (or decay) signal. The dSphs are the nearby satellite galaxies with a clean environment and dense dark matter halo so that they give stringent constraints on the ${\\cal O}(1)$ TeV dark matter. However, recent studies have revealed that current estimation of astrophysical factors relevant for the dark matter searches are not conservative, where the various non-n...

  15. Kinematic Properties and Dark Matter Fraction of Virgo Dwarf Early-Type Galaxies

    CERN Document Server

    Toloba, E; Peletier, R; Gorgas, J

    2012-01-01

    What happens to dwarf galaxies as they enter the cluster potential well is one of the main unknowns in studies of galaxy evolution. Several evidence suggests that late-type galaxies enter the cluster and are transformed to dwarf early-type galaxies (dEs). We study the Virgo cluster to understand which mechanisms are involved in this transformation. We find that the dEs in the outer parts of Virgo have rotation curves with shapes and amplitudes similar to late-type galaxies of the same luminosity. These dEs are rotationally supported, have disky isophotes, and younger ages than those dEs in the center of Virgo, which are pressure supported, often have boxy isophotes and are older. Ram pressure stripping, thus, explains the properties of the dEs located in the outskirts of Virgo. However, the dEs in the central cluster regions, which have lost their angular momentum, must have suffered a more violent transformation. A combination of ram pressure stripping and harassment is not enough to remove the rotation and ...

  16. The frequency and properties of young tidal dwarf galaxies in nearby gas-rich groups

    CERN Document Server

    Lee-Waddell, K; Chandra, P; Patra, N; Cuillandre, J -C; Wang, J; Haynes, M P; Cannon, J; Stierwalt, S; Sick, J; Giovanelli, R

    2016-01-01

    We present high-resolution Giant Metrewave Radio Telescope (GMRT) HI observations and deep Canada-France-Hawaii Telescope (CFHT) optical imaging of two galaxy groups: NGC 4725/47 and NGC 3166/9. These data are part of a multi-wavelength unbiased survey of the gas-rich dwarf galaxy populations in three nearby interacting galaxy groups. The NGC 4725/47 group hosts two tidal knots and one dIrr. Both tidal knots are located within a prominent HI tidal tail, appear to have sufficient mass (M_gas~10^8 M_sol) to evolve into long-lived tidal dwarf galaxies (TDGs) and are fairly young in age. The NGC 3166/9 group contains a TDG candidate, AGC 208457, at least three dIrrs and four HI knots. Deep CFHT imaging confirms that the optical component of AGC 208457 is bluer -- with a 0.28 mag g-r colour -- and a few Gyr younger than its purported parent galaxies. Combining the results for these groups with those from the NGC 871/6/7 group reported earlier, we find that the HI properties, estimated stellar ages and baryonic con...

  17. GHOSTS I: A New Faint very Isolated Dwarf Galaxy at D = 12 +/- 2 Mpc

    CERN Document Server

    Monachesi, Antonela; Radburn-Smith, David J; de Jong, Roelof S; Bailin, Jeremy; Dalcanton, Julianne J; Holwerda, Benne W; Ford, H Alyson; Streich, David; Vlajic, Marija; Zucker, Daniel B

    2013-01-01

    We report the discovery of a new faint dwarf galaxy, GHOSTS I, using HST/ACS data from one of our GHOSTS (Galaxy Halos, Outer disks, Substructure, Thick disk, and Star clusters) fields. Its detected individual stars populate an approximately one magnitude range of its luminosity function (LF). Using synthetic color-magnitude diagrams (CMDs) to compare with the galaxy's CMD, we find that the colors and magnitudes of GHOSTS I's individual stars are most consistent with being young helium-burning and asymptotic giant branch stars at a distance of 12 +/- 2 Mpc. Morphologically, GHOSTS I appears to be actively forming stars, so we tentatively classify it as a dwarf irregular (dIrr) galaxy, although future HST observations deep enough to resolve a larger magnitude range in its LF are required to make a more secure classification. GHOSTS I's absolute magnitude is $M_V = -9.85^{+ 0.40}_{- 0.33}$, making it one of the least luminous dIrr galaxies known, and its metallicity is lower than [Fe/H] =-1.5 dex. The half-ligh...

  18. Environmental effects on star formation in dwarf galaxies and star clusters

    CERN Document Server

    Pasetto, S; Fujita, Y; Chiosi, C; Grebel, E K

    2014-01-01

    In this paper we develop a simple analytical criterion to investigate the role of the environment on the onset of star formation. We will consider the main external agents that influence the star formation (i.e. ram pressure, tidal interaction, Rayleigh-Taylor and Kelvin-Helmholtz instabilities) in a spherical galaxy moving through an external environment. The theoretical framework developed here has direct applications to the cases of dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy. We develop an analytic formalism to solve the fluid dynamics equations in a non-inertial reference frame mapped with spherical coordinates. The two-fluids instability at the interface between a stellar system and its surrounding hotter and less dense environment is related to the star formation processes through a set of differential equations. The solution presented here is quite general, allowing us to investi...

  19. The impact of galaxy harassment on the globular cluster systems of early-type cluster dwarf galaxies

    CERN Document Server

    Smith, Rory; Fellhauer, Michael; Puzia, Thomas H; Aguerri, J A L; Farias, Juan-Pablo

    2012-01-01

    The dynamics of globular cluster systems (GCSs) around galaxies are often used to assess the total enclosed mass, and even to constrain the dark matter distribution. The globular cluster system of a galaxy is typically assumed to be in dynamical equilibrium within the potential of the host galaxy. However cluster galaxies are subjected to a rapidly evolving and, at times, violently destructive tidal field. We investigate the impact of the harassment on the dynamics of GCs surrounding early type cluster dwarfs, using numerical simulations. We find that the dynamical behaviour of the GCS is strongly influenced by the fraction of bound dark matter f_{DM} remaining in the galaxy. Only when f_{DM} falls to ~15%, do stars and GCs begin to be stripped. Still the observed GC velocity dispersion can be used to measure the true enclosed mass to within a factor of 2, even when f_{DM} falls as low as ~3%. This is possible partly because unbound GCs quickly separate from the galaxy body. However even the distribution of {...

  20. A spectroscopic survey of dwarf galaxies in the Coma cluster: stellar populations, environment and downsizing

    Science.gov (United States)

    Smith, Russell J.; Lucey, John R.; Hudson, Michael J.; Allanson, Steven P.; Bridges, Terry J.; Hornschemeier, Ann E.; Marzke, Ronald O.; Miller, Neal A.

    2009-02-01

    We investigate the stellar populations in a sample of 89 faint red galaxies in the Coma cluster, using high signal-to-noise ratio (S/N) spectroscopy from the 6.5-m MMT. Our sample is drawn from two 1° fields, one centred on the cluster core and the other located 1° to the south-west of the cluster centre. The target galaxies are mostly 2-4mag fainter than M* galaxies with these luminosities have been previously studied only using small samples, or at low S/N. For a comparison sample we use published high-S/N data for red-sequence galaxies in the Shapley supercluster. We use state-of-the-art stellar population models (by R. Schiavon) to interpret the absorption-line indices and infer the single-burst-equivalent age and metallicity (Fe/H) for each galaxy, as well as the abundances of the light elements Mg, Ca, C and N. The ages of the Coma dwarfs span a wide range from 10Gyr, with a strong environmental dependence. The oldest galaxies are found only in the core, while most of the galaxies in the outer south-west field have ages ~3Gyr. The galaxies have a metallicity range -1.0 solar ratios predominate in the outskirts. We show that parametrized models with more complex star formation histories perform no better than single-burst models in reproducing the observed line indices. Assuming a star formation history dominated by a single burst, the number of dwarf galaxies on the red sequence in the Coma core has doubled since z ~ 0.7. Assuming instead an abruptly truncated constant star formation rate, the equivalent redshift is z ~ 0.4. These estimates bracket the red-sequence growth time-scales found by direct studies of distant clusters. In the south-west field, the red sequence was established only at z ~ 0.2 for a burst-dominated star formation history (z ~ 0.1 for the truncated case). Our observations confirm previous indications of very recently quenched star formation in this part of the cluster. Our results strongly support the scenario in which much of the

  1. Can we measure the slopes of density profiles in dwarf spheroidal galaxies?

    CERN Document Server

    Kowalczyk, Klaudia; Kazantzidis, Stelios; Mayer, Lucio

    2012-01-01

    Using collisionless N-body simulations of dwarf galaxies orbiting the Milky Way (MW) we construct realistic models of dwarf spheroidal (dSph) galaxies of the Local Group. The dwarfs are initially composed of stellar disks embedded in dark matter haloes with different inner density slopes and are placed on an eccentric orbit typical for MW subhaloes. After a few Gyr of evolution the stellar component is triaxial as a result of bar instability induced by tidal forces. Observing the simulated dwarfs along three principal axes of the stellar component we create mock data sets and determine the their half-light radii and line-of-sight velocity dispersions. Using the estimator proposed by Wolf et al. we calculate masses within half-light radii. The masses obtained this way are over(under)estimated by up to a factor of two when the line of sight is along the longest (shortest) axis of the stellar component. We then divide the initial stellar distribution into an inner and outer population and trace their evolution i...

  2. ANDROMEDA XXIX: A NEW DWARF SPHEROIDAL GALAXY 200 kpc FROM ANDROMEDA

    International Nuclear Information System (INIS)

    We report the discovery of a new dwarf galaxy, Andromeda XXIX (And XXIX), using data from the recently released Sloan Digital Sky Survey Data Release 8, and confirmed by Gemini North telescope Multi-Object Spectrograph imaging data. And XXIX appears to be a dwarf spheroidal galaxy, separated on the sky by a little more than 15° from M31, with a distance inferred from the tip of the red giant branch of 730 ± 75 kpc, corresponding to a three-dimensional separation from M31 of 207+20–2 kpc (close to M31's virial radius). Its absolute magnitude, as determined by comparison to the red giant branch luminosity function of the Draco dwarf spheroidal, is MV = –8.3 ± 0.4. And XXIX's stellar populations appear very similar to Draco's; consequently, we estimate a metallicity for And XXIX of [Fe/H] ∼–1.8. The half-light radius of And XXIX is 360 ± 60 pc and its ellipticity is 0.35 ± 0.06, typical of dwarf satellites of the Milky Way and M31 at this absolute magnitude range.

  3. Search for a Dark Matter annihilation signal from the Sagittarius dwarf galaxy with H.E.S.S

    CERN Document Server

    Moulin, E; Glicenstein, J-F; Jacholkowska, A; Rolland, L; Vivier, M

    2007-01-01

    Dwarf Spheroidal galaxies are amongst the best targets to search for a Dark Matter annihilation signal. The annihilation of WIMPs in the center of Sagittarius dwarf spheroidal (Sgr dSph) galaxy would produce high energy gamma-rays in the final state. Observations carried out with the H.E.S.S. array of Imaging Atmospheric Cherenkov telescopes are presented. A careful modelling of the Dark Matter halo profile of Sgr dwarf was performed using latest measurements on its structural parameters. Constraints on the velocity-weighted cross section of Dark Matter particles are derived in the framework of Supersymmetric and Kaluza-Klein models.

  4. A multiple burst accretion Model to describe the metallicity distributions and mass-metallicity relation for Local Dwarf Galaxies

    CERN Document Server

    Hartwick, F D A

    2015-01-01

    A one parameter model to describe the individual metallicity distributions and mass-metallicity relation for dwarf galaxies is presented. This multiple-burst model is based on an accretion scenario, accomodates the observational constraint between $\\overline{z}$ and $\\sigma_{z}^{2}$ recently established by Leaman (2012), and predicts a slope consistent with the mass-metallicity relation of Kirby et al (2013) who showed that the local group dwarf spheroidal and dwarf irregular galaxies lie on the same relation. One interpretation of the model is that it describes star formation occuring either in gas rich mergers or at the intersection of colliding gas streams.

  5. Mass assembly history and infall time of the Fornax dwarf spheroidal galaxy.

    OpenAIRE

    Wang, M.-Y.; Strigari, L. E.; Lovell, M R; Frenk, C. S.; Zentner, A. R.

    2016-01-01

    We use cosmological simulations to identify dark matter subhalo host candidates of the Fornax dwarf spheroidal galaxy using the stellar kinematic properties of Fornax. We consider cold dark matter (CDM), warm dark matter (WDM), and decaying dark matter (DDM) simulations for our models of structure formation. The subhalo candidates in CDM typically have smaller mass and higher concentrations at z = 0 than the corresponding candidates in WDM and DDM. We examine the formation histories of the ∼1...

  6. Prospects for annihilating Dark Matter towards Milky Way's dwarf galaxies by the Cherenkov Telescope Array

    OpenAIRE

    Lefranc, Valentin; Panci, Paolo; Mamon, Gary A.

    2016-01-01

    We derive the large Cherenkov Telescope Array (CTA) sensitivity to dark matter (DM) annihilation in several primary channels, over a broad range of DM masses. These sensitivities are estimated when CTA is pointed towards a large sample of Milky Way's dwarf spheroidal galaxies (dSphs) with promising $J$-factors and small statistical uncertainties. This analysis neglects systematic uncertainties, which we estimate at the level of at least 1 dex. We also present sensitivities on the annihilation...

  7. Searching for Dark Matter with X-ray Observations of Local Dwarf Galaxies

    OpenAIRE

    Jeltema, Tesla E.; Profumo, Stefano

    2008-01-01

    A generic feature of weakly interacting massive particle (WIMP) dark matter models is the emission of photons over a broad energy band resulting from the stable yields of dark matter pair annihilation. Inverse Compton scattering off cosmic microwave background photons of energetic electrons and positrons produced in dark matter annihilation is expected to produce significant diffuse X-ray emission. Dwarf galaxies are ideal targets for this type of dark matter search technique, being nearby, d...

  8. Indirect research of dark matter toward dwarf galaxies with the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The first part of this document summarizes the astrophysical arguments to suppose the existence of dark matter. The cosmological model γCDM is presented as well as the concept of cross section of dark matter self-annihilation. Dwarf galaxies satellites of the Milky Way, the sources of our study are introduced into a second chapter. After recalling the large structures that make up the universe, the issues related to dwarf galaxies are addressed: missing satellites problem, distribution of dark matter density within them and tidal forces due to the Milky Way. The second part discusses the modeling of the dark matter density in dwarf galaxies. The methodology, using the Jeans equation and dispersion of projected stars velocities, is presented. Three dark matter profiles are retained: NFW, Burkert and Einasto and fifteen dwarf galaxies. Neutrino production during the self-annihilation of dark matter is then addressed. The energy spectra of neutrinos are generated with PYTHIA software and compared with other results for the galactic center. Twenty-three assumptions of mass dark matter candidates are chosen, ranging from 25 GeV/c2 100 TeV/c2. Five self-annihilation channels are selected for analysis: b-b, W+W- T+T- μ+μ- νμ νμ. The third part includes a presentation of the detector used for the study, the ANTARES neutrino telescope. Three reconstruction algorithms developed and used in collaboration are also detailed: AAFIT, BBFit and GridFit. The analysis of data ANTARES aimed to find a neutrinos excess characteristic of dark matter self-annihilation is summarized in the sixth and final chapter. No excess was observed, a limit on the cross section of dark matter self-annihilation was determined. (author)

  9. Self-consistent photometric and spectroscopic Star Formation Histories in Dwarf Galaxies

    Science.gov (United States)

    García-Benito, R.; Pérez, E.; Pérez-Montero, E.; González Delgado, R.; Vílchez, J. M.

    2016-06-01

    This project aims to unify the spectroscopic and stellar photometric views by performing a comprehensive study of a sample of the nearest Blue Compact Dwarf Galaxies (BCDs). We plan to derive Star Formation Histories (SFH) both by means of Color-Magnitude Diagrams (CMDs) from extant Hubble Space Telescope (HST) optical imaging and with spectral fitting methods techniques using MUSE, allowing us to obtain state-of-the-art 2D stellar properties and abundances of the gas in BCDs.

  10. Dissipative dark matter and the rotation curves of dwarf galaxies

    CERN Document Server

    Foot, R

    2015-01-01

    There is ample evidence from rotation curves that dark matter halo's around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) the Tully-Fisher relation. Dark matter halo's around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless `dark photon' (from an unbroken dark $U(1)$ gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interaction facilitates halo heating by enabling ordinary supernovae to be a source of these `dark photons'. Dark matter halo's can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo should have evolved to a steady state or `equilibrium' configuration where heating and cooling rates local...

  11. Sowing the seeds of massive black holes in small galaxies: Young clusters as the building blocks of ultracompact dwarf galaxies

    International Nuclear Information System (INIS)

    Interacting galaxies often have complexes of hundreds of young stellar clusters of individual masses ∼104-106 M ☉ in regions that are a few hundred parsecs across. These cluster complexes interact dynamically, and their coalescence is a candidate for the origin of some ultracompact dwarf galaxies. Individual clusters with short relaxation times are candidates for the production of intermediate-mass black holes of a few hundred solar masses, via runaway stellar collisions prior to the first supernovae in a cluster. It is therefore possible that a cluster complex hosts multiple intermediate-mass black holes that may be ejected from their individual clusters due to mergers or binary processes, but bound to the complex as a whole. Here we explore the dynamical interaction between initially free-flying massive black holes and clusters in an evolving cluster complex. We find that, after hitting some clusters, it is plausible that the massive black hole will be captured in an ultracompact dwarf forming near the center of the complex. In the process, the hole typically triggers electromagnetic flares via stellar disruptions, and is also likely to be a prominent source of gravitational radiation for the advanced ground-based detectors LIGO and VIRGO. We also discuss other implications of this scenario, notably that the central black hole could be considerably larger than expected in other formation scenarios for ultracompact dwarfs.

  12. Sowing the seeds of massive black holes in small galaxies: Young clusters as the building blocks of ultracompact dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Amaro-Seoane, Pau [Max Planck Institut für Gravitationsphysik (Albert-Einstein-Institut), D-14476 Potsdam (Germany); Konstantinidis, Symeon [Astronomisches Rechen-Institut, Zentrum für Astronomie, Universität Heidelberg, Mönchhofstraße 12-14, Heidelberg D-69120 (Germany); Freitag, Marc Dewi [Institute of Astronomy, Madingley Road, CB3 0HA Cambridge (United Kingdom); Coleman Miller, M. [Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, MD 20742-2421 (United States); Rasio, Frederic A., E-mail: Pau.Amaro-Seoane@aei.mpg.de, E-mail: simos@ari.uni-heidelberg.de, E-mail: marc.freitag@gmail.com, E-mail: miller@astro.umd.edu, E-mail: rasio@northwestern.edu [Department of Physics and Astronomy, and Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208 (United States)

    2014-02-20

    Interacting galaxies often have complexes of hundreds of young stellar clusters of individual masses ∼10{sup 4}-10{sup 6} M {sub ☉} in regions that are a few hundred parsecs across. These cluster complexes interact dynamically, and their coalescence is a candidate for the origin of some ultracompact dwarf galaxies. Individual clusters with short relaxation times are candidates for the production of intermediate-mass black holes of a few hundred solar masses, via runaway stellar collisions prior to the first supernovae in a cluster. It is therefore possible that a cluster complex hosts multiple intermediate-mass black holes that may be ejected from their individual clusters due to mergers or binary processes, but bound to the complex as a whole. Here we explore the dynamical interaction between initially free-flying massive black holes and clusters in an evolving cluster complex. We find that, after hitting some clusters, it is plausible that the massive black hole will be captured in an ultracompact dwarf forming near the center of the complex. In the process, the hole typically triggers electromagnetic flares via stellar disruptions, and is also likely to be a prominent source of gravitational radiation for the advanced ground-based detectors LIGO and VIRGO. We also discuss other implications of this scenario, notably that the central black hole could be considerably larger than expected in other formation scenarios for ultracompact dwarfs.

  13. Ultra Compact Dwarf galaxies in Abell 1689: a photometric study with the ACS

    CERN Document Server

    Mieske, S; Benítez, N; Coe, D; Blakeslee, J P; Zekser, K; Ford, H; Broadhurst, T J; Illingworth, G D; Hartig, G F; Clampin, M; Ardila, D R; Bartko, F; Bouwens, R J; Brown, R A; Burrows, C J; Cheng, E S; Cross, N J G; Feldman, P D; Franx, M; Golimowski, D A; Goto, T; Gronwall, C; Holden, B; Homeier, N; Kimble, R A; Krist, J E; Lesser, M P; Martel, A R; Menanteau, F; Meurer, G R; Miley, G K; Postman, M; Rosati, P; Sirianni, M; Sparks, W B; Tran, H D; Tsvetanov, Z I; White, R L; Zheng, W

    2004-01-01

    The properties of Ultra Compact Dwarf (UCD) galaxy candidates in Abell 1689 (z=0.183) are investigated, based on deep high resolution ACS images. A UCD candidate has to be unresolved, have i26.8 mag, the radial and luminosity distribution of the UCD candidates can be explained well by Abell 1689's globular cluster (GC) system. For i<26.8 mag, there is an overpopulation of 15 +/- 5 UCD candidates with respect to the GC luminosity function. For i<26 mag, the radial distribution of UCD candidates is more consistent with the dwarf galaxy population than with the GC system of Abell 1689. The UCD candidates follow a color-magnitude trend with a slope similar to that of Abell 1689's genuine dwarf galaxy population, but shifted fainter by about 2-3 mag. Two of the three brightest UCD candidates (M_V ~ -17 mag) are slightly resolved. At the distance of Abell 1689, these two objects would have King-profile core radii of ~35 pc and r_eff ~300 pc, implying luminosities and sizes 2-3 times those of M32's bulge. Addi...

  14. Beacons In the Dark: Using Novae and Supernovae to Detect Dwarf Galaxies in the Local Universe

    CERN Document Server

    Conroy, Charlie

    2015-01-01

    We propose that luminous transients, including novae and supernovae, can be used to detect the faintest galaxies in the universe. Beyond a few Mpc, dwarf galaxies with stellar masses $<10^6 M_{\\odot}$ will likely be too faint and/or too low in surface brightness to be directly detected in upcoming large area ground-based photometric surveys. However, single epoch LSST photometry will be able to detect novae to distances of $\\sim30$ Mpc and SNe to Gpc-scale distances. Depending on the form of the stellar mass-halo mass relation and the underlying star formation histories of low mass dwarfs, the expected nova rates will be a few to $\\sim100$ yr$^{-1}$ and the expected SN rates (including both type Ia and core-collapse) will be $\\sim10^2-10^4$ within the observable ($4\\pi$ sr) volume. The transient rate associated with intrahalo stars will be comparably large, but these transients will be located close to bright galaxies, in contrast to the dwarfs, which should trace the underlying large scale structure of th...

  15. Dense cloud cores revealed by CO in the low metallicity dwarf galaxy WLM

    CERN Document Server

    Rubio, Monica; Hunter, Deidre A; Brinks, Elias; Cortes, Juan R; Cigan, Phil

    2016-01-01

    Understanding stellar birth requires observations of the clouds in which they form. These clouds are dense and self-gravitating, and in all existing observations, they are molecular with H_2 the dominant species and CO the best available tracer. When the abundances of carbon and oxygen are low compared to hydrogen, and the opacity from dust is also low, as in primeval galaxies and local dwarf irregular galaxies, CO forms slowly and is easily destroyed, so it is difficult for it to accumulate inside dense clouds. Here we report interferometric observations of CO clouds in the local group dwarf irregular galaxy Wolf-Lundmark-Melotte (WLM), which has a metallicity that is 13% of the solar value and 50% lower than the previous CO detection threshold. The clouds are tiny compared to the surrounding atomic and H_2 envelopes, but they have typical densities and column densities for CO clouds in the Milky Way. The normal CO density explains why star clusters forming in dwarf irregulars have similar densities to star ...

  16. Copious r-process enrichment from a single event in an ancient dwarf galaxy

    CERN Document Server

    Ji, Alexander P; Chiti, Anirudh; Simon, Joshua D

    2015-01-01

    The elements heavier than zinc are synthesized through the (r)apid and (s)low neutron-capture processes. The primary astrophysical production site of the r-process elements (such as europium) has been debated for nearly 60 years. Chemical abundance trends of old Galactic halo stars initially suggested continual r-process production from sources like core-collapse supernovae, but evidence in the local universe favored r-process production primarily from rare events like neutron star mergers. The appearance of a europium abundance plateau in some dwarf spheroidal galaxies was suggested as evidence for rare r-process enrichment in the early universe, but only under the assumption of no gas accretion into the dwarfs. Invoking cosmologically motivated gas accretion actually favors continual r-process enrichment in those systems. Furthermore, the universal r-process pattern has not been cleanly identified in those galaxies. The smaller, chemically simpler, and more ancient ultra-faint dwarf galaxies (UFDs) assemble...

  17. The DART imaging and CaT survey of the Fornax Dwarf Spheroidal Galaxy

    CERN Document Server

    Battaglia, G; Helmi, A; Irwin, M J; Letarte, B; Jablonka, P; Hill, V; Venn, K A; Shetrone, M D; Arimoto, N; Primas, F; Kaufer, A; François, P; Szeifert, T; Abel, T; Sadakane, K

    2006-01-01

    As part of the DART project we have used the ESO/2.2m Wide Field Imager in conjunction with the VLT/FLAMES GIRAFFE spectrograph to study the detailed properties of the resolved stellar population of the Fornax dwarf spheroidal galaxy out to and beyond its tidal radius. We re-derived the structural parameters of the Fornax dwarf spheroidal using our wide field imaging covering the galaxy out to its tidal radius, and analysed the spatial distribution of the Fornax stars of different ages as selected from Colour-Magnitude Diagram analysis. We have obtained accurate velocities and metallicities from spectra in the CaII triplet wavelength region for 562 Red Giant Branch stars which have velocities consistent with membership in Fornax dwarf spheroidal. We have found evidence for the presence of at least three distinct stellar components: a young population (few 100 Myr old) concentrated in the centre of the galaxy, visible as a Main Sequence in the Colour-Magnitude Diagram; an intermediate age population (2-8 Gyr o...

  18. The scaling relations of early-type dwarf galaxies across a range of environments

    CERN Document Server

    Penny, Samantha J; Forbes, Duncan A; Benson, Andrew J; Mould, Jeremy

    2015-01-01

    We present the results of a Keck-ESI study of dwarf galaxies across a range of environment: the Perseus Cluster, the Virgo Cluster, the NGC 1407 group, and the NGC 1023 group. Eighteen dEs are targeted for spectroscopy, three for the first time. We confirm cluster membership for one Virgo dE, and group membership for one dE in the NGC 1023 group, and one dE in the NGC 1407 group for the first time. Regardless of environment, the dEs follow the same size-magnitude and $\\sigma$-luminosity relation. Two of the Virgo dwarfs, VCC 1199 and VCC 1627, have among the highest central velocity dispersions ($\\sigma_{0}$ = 58.4 km s$^{-1}$ and 49.2 km s$^{-1}$) measured for dwarfs of their luminosity ($M_{R}\\approx -17$). Given their small sizes ($R_{e} < 300$ pc) and large central velocity dispersions, we classify these two dwarfs as compact ellipticals rather than dEs. Group dEs typically have higher mean dynamical-to-stellar mass ratios than the cluster dEs, with $M_{dyn}/M_{\\star} = 5.1\\pm0.6$ for the group dwarfs,...

  19. Indications of M-Dwarf Deficits in the Halo and Thick Disk of the Galaxy

    Science.gov (United States)

    Konishi, Mihoko; Shibai, Hiroshi; Sumi, Takahiro; Fukagawa, Misato; Matsuo, Taro; Samland, Matthias S.; Yamamoto, Kodai; Sudo, Jun; Itoh, Yoichi; Arimoto, Nobuo; Kajisawa, Masaru; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Currie, Thayne; Egner, Sebastian E.; Feldt, Marcus; Goto, Miwa; Grady, Carol A.; Guyon, Oliver; Hashimoto, Jun; Hayano, Yutaka; Hayashi, Masahiko; McElwain, Michael W.

    2014-01-01

    We compared the number of faint stars detected in deep survey fields with the current stellar distribution model of the Galaxy and found that the detected number in the H band is significantly smaller than the predicted number. This indicates that M-dwarfs, the major component, are fewer in the halo and the thick disk. We used archived data of several surveys in both the north and south field of GOODS (Great Observatories Origins Deep Survey), MODS in GOODS-N, and ERS and CANDELS in GOODS-S. The number density of M-dwarfs in the halo has to be 20+/-13% relative to that in the solar vicinity, in order for the detected number of stars fainter than 20.5 mag in the H band to match with the predicted value from the model. In the thick disk, the number density of M-dwarfs must be reduced (52+/-13%) or the scale height must be decreased ( approx. 600 pc). Alternatively, overall fractions of the halo and thick disks can be significantly reduced to achieve the same effect, because our sample mainly consists of faint M-dwarfs. Our results imply that the M-dwarf population in regions distant from the Galactic plane is significantly smaller than previously thought. We then discussed the implications this has on the suitability of the model predictions for the prediction of non-companion faint stars in direct imaging extrasolar planet surveys by using the best-fit number densities.

  20. Distances to Dwarf Galaxies of the Canes Venatici I Cloud

    CERN Document Server

    Makarov, D I; Uklein, R I

    2013-01-01

    We determined the spatial structure of the scattered concentration of galaxies in the Canes Venatici constellation. We redefined the distances for 30 galaxies of this region using the deep images from the Hubble Space Telescope archive with the WFPC2 and ACS cameras. We carried out a high-precision stellar photometry of the resolved stars in these galaxies, and determined the photometric distances by the tip of the red giant branch (TRGB) using an advanced technique and modern calibrations. High accuracy of the results allows us to distinguish the zone of chaotic motions around the center of the system. A group of galaxies around M94 is characterized by the median velocity VLG=287 km/s, distance D=4.28 Mpc, internal velocity dispersion sigma=51 km/s and total luminosity LB=1.61x10^10 Lo. The projection mass of the system amounts to Mp=2.56x10^12 Mo, which corresponds to the mass-luminosity ratio of (M/L)p=159 (M/L)o. The estimate of the mass-luminosity ratio is significantly higher than the typical ratio M/LB...

  1. A Deeper Look at Faint Hα Emission in Nearby Dwarf Galaxies

    Science.gov (United States)

    Lee, Janice C.; Veilleux, Sylvain; McDonald, Michael; Hilbert, Bryan

    2016-02-01

    We present deep Hα imaging of three nearby dwarf galaxies, carefully selected to optimize observations with the Maryland-Magellan Tunable Filter (MMTF) on the Magellan 6.5 m telescope. An effective bandpass of ˜13 Å is used, and the images reach 3σ flux limits of ˜8 × 10-18 erg s-1 cm-2, which is about an order of magnitude lower than standard narrowband observations obtained by the most recent generation of local Hα galaxy surveys. The observations were originally motivated by the finding that the Hα/FUV flux ratio of galaxies systematically declines as global galactic properties such as the star formation rate (SFR) and stellar mass decrease. The three dwarf galaxies selected for study have SFRs that, when calculated from their Hα luminosities using standard conversion recipes, are ˜50% of those based on the FUV. Follow-up studies of many of the potential causes for the trends in the Hα/FUV flux ratio have been performed, but the possibility that previous observations have missed a non-negligible fraction of faint ionized emission in dwarf galaxies has not been investigated. The MMTF observations reveal both diffuse and structured Hα emission (filaments, shells, possible single-star H ii regions) spanning extents up to 2.5 times larger relative to previous observations. However, only up to an additional ˜5% of Hα flux is captured, which does not account for the trends in the Hα/FUV ratio. Beyond investigation of the Hα/FUV ratio, the impact of the newly detected extended flux on our understanding of star formation, the properties of H ii regions, and the propagation of ionizing photons warrant further investigation.

  2. Globular Clusters, Ultra-Compact Dwarfs, and the Formation of Galaxy Halos

    Science.gov (United States)

    Peng, Eric

    2015-08-01

    Globular clusters (GCs) are a distinctive and ubiquitous constituent of galaxy halos. Their existence alludes to an early epoch of galaxy building characterized by the high star formation rates needed to form massive clusters, and a merging process that produced the extended, spheroidal stellar halos in today's galaxies. While studies of stellar halos are generally limited by low surface brightnesses or the faintness of individual halo stars, GCs are bright and compact, making them excellent tracers of stellar halos out to hundreds of megaparsecs. The Next Generation Virgo Cluster Survey (NGVS) is a CFHT Large Program that has acquired imaging of the 104 square degrees within the Virgo Cluster's virial radius. This deep and contiguous imaging of the nearest galaxy cluster provides us a new view of globular clusters across the full range of galaxy morphology and mass, as well as in the regions between galaxies. It also provides the first complete census of ultra-compact dwarfs (UCDs) in Virgo, objects which may be related to massive GCs and galaxy nuclei. In this talk, I will present what we have learned so far about extragalactic GC systems and UCDs from the NGVS, from both photometry and spectroscopy.

  3. A Spatial Characterization of the Sagittarius Dwarf Galaxy Tidal Tails

    CERN Document Server

    Newby, Matthew; Newberg, Heidi Jo; Desell, Travis; Magdon-Ismail, Malik; Szymanski, Boleslaw; Varela, Carlos; Willett, Benjamin; Yanny, Brian

    2013-01-01

    We measure the spatial density of F turnoff stars in the Sagittarius dwarf tidal stream, from Sloan Digital Sky Survey (SDSS) data, using statistical photometric parallax. We find a set of continuous, consistent parameters that describe the leading Sgr stream's position, direction, and width for 15 stripes in the North Galactic Cap, and 3 stripes in the South Galactic Cap. We produce a catalog of stars that has the density characteristics of the dominant leading Sgr tidal stream that can be compared with simulations. We find that the width of the leading (North) tidal tail is consistent with recent triaxial and axisymmetric halo model simulations. The density along the stream is roughly consistent common disruption models in the North, but possibly not in the South. We explore the possibility that one or more of the dominant Sgr streams has been mis-identified, and that one or more of the `bifurcated' pieces is the real Sgr tidal tail, but we do not reach definite conclusions. If two dwarf progenitors are ass...

  4. Unusually low heavy-element abundance found in the blue compact dwarf galaxy SBSO335-052

    International Nuclear Information System (INIS)

    Blue compact dwarf galaxies are noted for their high star-formation activity and young age. They can therefore be used to verify models of galaxy formation, the chemical evolution of matter and the evolution of massive stars, for example. Here we report observations of the blue compact dwarf galaxy, SBS0335-052, which show that this galaxy has an extremely low heavy-element abundance; the oxygen abundance is 77-times lower than the solar value and 1.7-times lower than that found in another galaxy, I Zw 18, which was the most deficient in heavy elements. The electron temperature, 24,800 K, is very high which leads us to conclude that there are a significant number of stars with masses ∼100 solar mass and effective temperatures of ionizing stars of up to 8 x 104 K in the galaxy. Our observations imply that SBS0335-052 is very young. (author)

  5. OUTSIDE-IN SHRINKING OF THE STAR-FORMING DISK OF DWARF IRREGULAR GALAXIES

    International Nuclear Information System (INIS)

    We have studied multi-band surface brightness profiles of a representative sample of 34 nearby dwarf irregular galaxies. Our data include Galaxy Evolution Explorer (GALEX) FUV/NUV, UBV, and Hα and Spitzer 3.6 μm images. These galaxies constitute the majority of the LITTLE THINGS survey (Local Irregulars That Trace Luminosity Extremes—The H I Nearby Galaxy Survey). By modeling the azimuthal averages of the spectral energy distributions with a complete library of star formation histories, we derived the stellar mass surface density distributions and the star formation rate averaged over three different timescales: the recent 0.1 Gyr, 1 Gyr, and a Hubble time. We find that, for ∼80% (27 galaxies) of our sample galaxies, radial profiles (at least in the outer part) at shorter wavelengths, corresponding to younger stellar populations, have shorter disk scale lengths than those at longer wavelengths, corresponding to older stellar populations. This indicates that the star-forming disk has been shrinking. In addition, the radial distributions of the stellar mass surface density are well described as piece-wise exponential profiles, and ∼80% of the galaxies have steeper mass profiles in the outer disk than in the inner region. The steep radial decline of the star formation rate in the outer parts compared to that in the inner disks gives a natural explanation for the down-bending stellar mass surface density profiles. Within the inner disks, our sample galaxies on average have constant ratios of recent star formation rate to stellar mass with radius. Nevertheless, ∼35% (12 galaxies, among which 7 have baryonic mass ∼8 M☉ ) of the sample exhibit negative slopes across the observed disk, which is in contrast with the so-called inside-out disk growth scenario suggested for luminous spiral galaxies. The tendency of star formation to become concentrated toward the inner disks in low-mass dwarf irregular galaxies is interpreted as a result of their susceptibility

  6. Bursts of star formation in computer simulations of dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Comins, N.F.

    1984-09-01

    A three-dimensional Stochastic Self-Propagating Star Formation (SSPSF) model of compact galacies is presented. Two phases of gas, active and inactive, are present, and permanent depletion of gas in the form of long lived, low mass stars and remnants occurs. Similarly, global infall of gas from a galactic halo or through galactic cannibalism is permitted. We base our parameters on the observed properties of the compact blue galaxy I Zw 36. Our results are that bursts of star formation occur much more frequently in these runs than continuous nonbursting star formation, suggesting that the blue compact galaxies are probably undergoing bursts rather than continuous, nonbursting low-level star formation activity.

  7. A case study for a tidal interaction between dwarf galaxies in UGC 6741

    CERN Document Server

    Paudel, Sanjaya; Ree, C H

    2015-01-01

    We present a case study of the tidal interaction between low mass, star-forming, galaxies initially found exploring the Sloan Digital Sky Survey (SDSS) images and further analyzed with SDSS spectroscopy and UV GALEX photometry. With a luminosity of M$_{r}$ = $-$17.7 mag and exhibiting a prominent tidal filament, UGC 6741 appears as a scale down version of massive gas--rich interacting systems and mergers.The stellar disk of the smaller companion, UGC 6741_B, which is three times less massive, has likely been already destroyed. Both galaxies, which are connected by a 15 kpc long stellar bridge, have a similar oxygen abundance of 12+log(O/H)$\\sim$8.3. Several knots of star-forming regions are identified along the bridge, some with masses exceeding $\\sim$10$^{7}$ M$_{\\sun}$. The most compact of them, which are unresolved, may evolve into globular clusters or Ultra Compact Dwarf galaxies (UCDs). This would be the first time progenitors of such objects are detected in mergers involving dwarf galaxies. UGC 6741 has...

  8. Anomalous Evolution of the Dwarf Galaxy HIPASS J1321-31

    CERN Document Server

    Pritzl, B J; Grossi, M; Disney, M J; Minchin, R F; Freeman, K C; Tolstoy, E; Saha, A; Pritzl, Barton J.; Knezek, Patricia M.; III, John S. Gallagher; Grossi, Marco; Disney, Mike J.; Minchin, Robert F.; Freeman, Kenneth C.; Tolstoy, Eline; Saha, Abi

    2003-01-01

    We present HST/WFPC2 observations of the dwarf galaxy HIPASS J1321-31. This unusual galaxy lies in the direction of the Centaurus A group of galaxies, and has a color-magnitude diagram with a distinctive red plume of luminous stars. This feature could arise from (a) a red giant branch if the galaxy were much nearer than previously recognized, (b) a peculiar asymptotic giant branch, or, (c) an ~1 Gigayear old population of intermediate mass red supergiants, which we find to be the most likely explanation. However, the lack of equally luminous blue stars requires that the star formation has dropped substantially since these stars were formed. Evidently HIPASS J1321-31 experienced an episode of enhanced star formation rather recently in its star formation history followed by a period of relative quiescence which has led to the evolution of the main sequence stars into the red supergiant branch. The stellar populations in HIPASS J1321-31 reflect a star formation history that is uncommon in star forming dwarf gala...

  9. Identification of old tidal dwarfs near early-type galaxies from deep imaging and HI observations

    CERN Document Server

    Duc, Pierre-Alain; McDermid, Richard M; Cuillandre, Jean-Charles; Serra, Paolo; Bournaud, Frédéric; Cappellari, Michele; Emsellem, Eric

    2014-01-01

    It has recently been proposed that the dwarf spheroidal galaxies located in the Local Group disks of satellites (DoSs) may be tidal dwarf galaxies (TDGs) born in a major merger at least 5 Gyr ago. Whether TDGs can live that long is still poorly constrained by observations. As part of deep optical and HI surveys with the CFHT MegaCam camera and Westerbork Synthesis Radio Telescope made within the ATLAS3D project, and follow-up spectroscopic observations with the Gemini-North telescope, we have discovered old TDG candidates around several early-type galaxies. At least one of them has an oxygen abundance close to solar, as expected for a tidal origin. This confirmed pre-enriched object is located within the gigantic, but very low surface brightness, tidal tail that emanates from the elliptical galaxy, NGC 5557. An age of 4 Gyr estimated from its SED fitting makes it the oldest securely identified TDG ever found so far. We investigated the structural and gaseous properties of the TDG and of a companion located in...

  10. Satellite accretion in action: a tidally disrupting dwarf spheroidal around the nearby spiral galaxy NGC 253

    CERN Document Server

    Romanowsky, Aaron J; Martin, Nicolas F; Morales, Gustavo; Jennings, Zachary G; GaBany, R Jay; Brodie, Jean P; Grebel, Eva K; Schedler, Johannes; Sidonio, Michael

    2015-01-01

    We report the discovery of NGC 253-dw2, a dwarf spheroidal (dSph) galaxy candidate undergoing tidal disruption around a nearby spiral galaxy, NGC 253 in the Sculptor group: the first such event identified beyond the Local Group. The dwarf was found using small-aperture amateur telescopes, and followed up with Suprime-Cam on the 8 m Subaru Telescope in order to resolve its brightest stars. Using g- and R_c-band photometry, we detect a red giant branch consistent with an old, metal-poor stellar population at a distance of ~ 3.5 Mpc. From the distribution of likely member stars, we infer a highly elongated shape with a semi-major axis half-light radius of (2 +/- 0.4) kpc. Star counts also yield a luminosity estimate of ~ 2x10^6 L_Sun,V (M_V ~ -10.7). The morphological properties of NGC 253-dw2 mark it as distinct from normal dSphs and imply ongoing disruption at a projected distance of ~ 50 kpc from the main galaxy. Our observations support the hierarchical paradigm wherein massive galaxies continously accrete l...

  11. NGC 5011C: an overlooked dwarf galaxy in the Centaurus A group

    CERN Document Server

    Saviane, Ivo; 10.1086/512157

    2008-01-01

    (abridged) We report the discovery of a previously unnoticed member of the Centaurus A Group, NGC 5011C. While the galaxy is a well known stellar system listed with a NGC number its true identity remained hidden because of coordinate confusion and wrong redshifts in the literature. NGC 5011C attracted our attention since, at a putative distance of 45.3 Mpc, it would be a peculiar object having a very low surface brightness typical of a dwarf galaxy, and at the same time having the size of an early-type spiral or S0 galaxy. To confirm or reject this peculiarity, our immediate objective was to have the first reliable measurement of its recession velocity. The observations were carried out with EFOSC2 at the 3.6m ESO telescope. We found that NGC 5011C has indeed a low redshift of v_sun=647+/-96 km/sec and thus is a nearby dwarf galaxy rather than a member of the distant Centaurus cluster as believed for the past 23 years. Rough distance estimates based on photometric parameters also favor this scenario. As a byp...

  12. The interstellar medium in Andromeda's dwarf spheroidal galaxies: I. Content and origin of the interstellar dust

    CERN Document Server

    De Looze, Ilse; Bendo, George J; Fritz, Jacopo; Boquien, Mederic; Cormier, Diane; Gentile, Gianfranco; Kennicutt, Robert C; Madden, Suzanne C; Smith, Matthew W L; Young, Lisa

    2016-01-01

    Dwarf spheroidal galaxies are among the most numerous galaxy population in the Universe, but their main formation and evolution channels are still not well understood. The three dwarf spheroidal satellites (NGC147, NGC185, and NGC205) of the Andromeda galaxy are characterised by very different interstellar medium (ISM) properties, which might suggest them being at different galaxy evolutionary stages. While the dust content of NGC205 has been studied in detail by De Looze et al. (2012), we present new Herschel dust continuum observations of NGC147 and NGC185. The non-detection of NGC147 in Herschel SPIRE maps puts a strong constraint on its dust mass (< 128 Msun). For NGC185, we derive a total dust mass M_d = 5.1 x 10^3 Msun, which is a factor of ~2-3 higher than that derived from ISO and Spitzer observations and confirms the need for longer wavelength observations to trace more massive cold dust reservoirs. We, furthermore, estimate the dust production by asymptotic giant branch (AGB) stars and supernovae...

  13. The intrinsic ellipticity of dwarf spheroidal galaxies: constraints from the Andromeda system

    CERN Document Server

    Salomon, Jean-Baptiste; Martin, Nicolas; Famaey, Benoit

    2015-01-01

    We present a study of the intrinsic deprojected ellipticity distribution of the satellite dwarf galaxies of the Andromeda galaxy, assuming that their visible components have a prolate shape, which is a natural outcome of simulations. Different possibilities for the orientation of the major axis of the prolate dwarf galaxies are tested, pointing either as close as possible to the radial direction towards the centre of Andromeda, or tangential to the radial direction, or with a random angle in the plane that contains the major axis and the observer. We find that the mean intrinsic axis ratio is ~ 1/2, with small differences depending on the assumed orientation of the population. Our deprojections also suggest that a significant fraction of the satellites, ~ 10%, are tidally disrupted remnants. We find that there is no evidence of any obvious difference in the morphology and major axis orientation between satellites that belong to the vast thin plane of co-rotating galaxies around Andromeda and those that do not...

  14. A Deeper Look at Faint H$\\alpha$ Emission in Nearby Dwarf Galaxies

    CERN Document Server

    Lee, Janice C; McDonald, Michael; Hilbert, Bryan

    2016-01-01

    We present deep H$\\alpha$ imaging of three nearby dwarf galaxies, carefully selected to optimize observations with the Maryland-Magellan Tunable Filter (MMTF) on the Magellan 6.5m telescope. An effective bandpass of $\\sim$13\\AA\\ is used, and the images reach 3$\\sigma$ flux limits of $\\sim$8$\\times10^{-18}$ ergs s$^{-1}$ cm$^{-2}$, which is about an order of magnitude lower than standard narrowband observations obtained by the most recent generation of local H$\\alpha$ galaxy surveys. The observations were originally motivated by the finding that the H$\\alpha$/FUV flux ratio of galaxies systematically declines as global galactic properties such as the star formation rate and stellar mass decrease. The three dwarf galaxies selected for study have star formation rates, that when calculated from their H$\\alpha$ luminosities using standard conversion recipes, are $\\sim$50\\% of those based on the FUV. Follow-up studies of many of the potential causes for the trends in the H$\\alpha$/FUV flux ratio have been performed...

  15. An Interferometric Study of the Blue Compact Dwarf Galaxy IZW18

    CERN Document Server

    Petrosyan, A R; Comte, G; Kunth, D; Le Coarer, E

    1996-01-01

    We present high spatial resolution observations of the blue compact dwarf galaxy IZW18 performed in the Halpha line with a scanning Fabry-Perot interferometer at the CFH telescope. Morphological structure of the galaxy in Halpha and in the red continuum is investigated. We also analyse the velocity field of the ionized gas. Besides the two compact HII components of the main body we find a population of small HII regions in its surroundings whose diameter distribution and Halpha luminosity function are consistent with those observed in dwarf Irregular galaxies. In the main body of the galaxy besides of the NW and SE red continuum peaks which are displaced with respect to the Halpha maxima, three new red condensations have been discovered. They have no clear Halpha counterparts. The velocity field in IZW18 shows peculiar motions superimposed on a quite regular background implying solid-body rotation with a gradient of about 70km/sec/ kpc. The Halpha line profiles exhibit an asymmetric structure, except for the ...

  16. The Recent Star Formation Histories of M81 Group Dwarf Irregular Galaxies

    CERN Document Server

    Weisz, Daniel R; Cannon, John M; Dolphin, Andrew E; Kennicutt, Robert C; Lee, Janice; Walter, Fabian

    2008-01-01

    We present observations and analysis of nine dwarf irregular galaxies (dIs) in the M81 Group taken with the Advanced Camera for Surveys aboard the Hubble Space Telescope. The nine galaxy sample (the Garland, M81 Dwarf A, DDO 53, Ho IX, Ho I, DDO 165, NGC 2366, Ho II, and IC 2574) spans 6 magnitudes in luminosity, a factor of 1000 in current star formation rate, and 0.5 dex in metallicity. Here we use color-magnitude diagrams of resolved stellar populations to study the star formation histories (SFHs) of these galaxies. We divide the sample into faint and bright galaxies, with a dividing line of M_${B}$ = -15, and then analyze the similarities and differences in the SFHs, birthrate parameters, fraction of stars formed per time interval, and spatial distribution of stellar components. Comparing these parameters as a function of luminosity, we find only minor differences in SF characteristics. We extend our comparison to select dIs in the Local Group (LG), and find only minor differences in SF parameters. The fr...

  17. The Origin of Prolate Rotation in Dwarf Spheroidal Galaxies Formed by Mergers of Disky Dwarfs

    Czech Academy of Sciences Publication Activity Database

    Ebrová, Ivana; Lokas, E.

    2015-01-01

    Roč. 813, č. 1 (2015), 10/1-10/15. ISSN 0004-637X Institutional support: RVO:67985815 Keywords : galaxies * fundamental parameters * kinematics and dynamics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.993, year: 2014

  18. Simulations of isolated dwarf galaxies formed in dark matter halos with different mass assembly histories

    Energy Technology Data Exchange (ETDEWEB)

    González-Samaniego, A.; Avila-Reese, V.; Rodríguez-Puebla, A.; Valenzuela, O. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510 México D. F. (Mexico); Colín, P. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, A.P. 72-3 (Xangari), Morelia, Michoacán 58089 (Mexico)

    2014-04-10

    We present zoom-in N-body/hydrodynamics resimulations of dwarf galaxies formed in isolated cold dark matter (CDM) halos with the same virial mass (M{sub v} ≈ 2.5 × 10{sup 10} M {sub ☉}) at redshift z = 0. Our goals are to (1) study the mass assembly histories (MAHs) of the halo, stellar, and gaseous components; and (2) explore the effects of the halo MAHs on the stellar/baryonic assembly of simulated dwarfs. Overall, the dwarfs are roughly consistent with observations. More specific results include: (1) the stellar-to-halo mass ratio remains roughly constant since z ∼ 1, i.e., the stellar MAHs closely follow halo MAHs. (2) The evolution of the galaxy gas fractions, f{sub g} , are episodic, showing that the supernova-driven outflows play an important role in regulating f{sub g} —and hence, the star formation rate (SFR)—however, in most cases, a large fraction of the gas is ejected from the halo. (3) The star formation histories are episodic with changes in the SFRs, measured every 100 Myr, of factors of 2-10 on average. (4) Although the dwarfs formed in late assembled halos show more extended SF histories, their z = 0 specific SFRs are still below observations. (5) The inclusion of baryons most of the time reduces the virial mass by 10%-20% with respect to pure N-body simulations. Our results suggest that rather than increasing the strength of the supernova-driven outflows, processes that reduce the star formation efficiency could help to solve the potential issues faced by CDM-based simulations of dwarfs, such as low values of the specific SFR and high stellar masses.

  19. Updated Models for the Creation of a Low-z QSO Absorber by a Dwarf Galaxy Wind

    CERN Document Server

    Keeney, Brian A; Stocke, John T; Danforth, Charles W; Levesque, Emily M

    2014-01-01

    We present new GALEX images and optical spectroscopy of J1229+02, a dwarf post-starburst galaxy located 81 kpc from the 1585 km/s absorber in the 3C 273 sight line. The absence of H\\alpha\\ emission and the faint GALEX UV fluxes confirm that the galaxy's recent star formation rate is $1$R_{vir}$ are likely intergalactic systems and cannot be identified unambiguously as the circumgalactic material of any one individual galaxy.

  20. On the distance and reddening of the Local Group dwarf irregular galaxy NGC 6822

    CERN Document Server

    Fusco, F; Bono, G; Cassisi, S; Monelli, M; Pietrinferni, A

    2012-01-01

    On the basis of a new photometric analysis of the Local Group Dwarf Irregular Galaxy NCG 6822 based on observations obtained with Advanced Camera for Surveys on board of the the Hubble Space Telescope, we have obtained a new estimate of the extinction of two fields located in the southeast region of the galaxy. Due to the presence of significant differences in the distance estimates to NGC 6822 available in literature, we have decided to provide an independent determination of the distance to this galaxy based on an updated and self-consistent theoretical calibration of the tip of the Red Giant Branch (TRGB) brightness. As a result we have obtained a new determination of the distance to NGC 6822 equal to ${\\rm(m-M)}_0=23.54\\pm 0.05$, and compared our measurement with the most recent determinations of this distance.

  1. H I Structure and Kinematics in the LITTLE THINGS Dwarf Galaxies

    Science.gov (United States)

    Pokhrel, Nau Raj; Simpson, Caroline E.; LITTLE THINGS Team

    2016-01-01

    We present a catalog and analysis of the properties of neutral hydrogen gas (H I) holes/shells in the LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The H I Nearby Galaxy Survey) galaxies. LITTLE THINGS uses high angular resolution (~6''), high spectral resolution (≤ 2.6 km s-1), and high sensitivity (≤ 1.1 mJy beam-1 channel-1) H I observations of 41 nearby (≤ 10.3 Mpc) gas-rich dwarf galaxies. We are interested in dwarf galaxies because they are the most common types of galaxies in the local universe and they are believed to be the first galaxies to form in the universe. Here we study the interaction between star formation evolution and the interstellar medium from which stars form. In the sample, we detected 306 holes with sizes ranging from about 38 pc to 2.3 kpc, the expansion rates varying from 5 to 30 km s-1, and the estimated kinetic age varying from 1 Myr to 127 Myr. The distribution of the holes per unit area is found nearly constant both inside (51%) and outside (49%) of the V-band break radius, where the radial luminosity function changes slope. We derived surface and volume porosity and found that porosity doesn't correlate with star formation rate (SFR) for the LITTLE THINGS sample. Assuming that the holes are formed from the stellar feedback, we calculated the supernova rate (SNR) and the SFR. We did find a correlation between the SFR calculated from Hα (a star formation tracer) and the SFR estimated from the SNR, consistent with hole formation from stellar feedback. The relation between the estimated kinetic ages of the holes with the SNR gives the indication of the star formation history.

  2. Young Star Clusters in the Outer Disks of LITTLE THINGS Dwarf Irregular Galaxies

    Science.gov (United States)

    Hunter, Deidre A.; Elmegreen, Bruce G.; Gehret, Elizabeth

    2016-06-01

    We examine FUV images of the LITTLE THINGS sample of nearby dwarf irregular (dIrr) and Blue Compact Dwarf galaxies to identify distinct young regions in their far outer disks. We use these data, obtained with the Galaxy Evolution Explorer satellite, to determine the furthest radius at which in situ star formation can currently be identified. The FUV knots are found at distances from the center of the galaxies of 1–8 disk scale lengths and have ages of ≤slant 20 Myr and masses of 20 M{}ȯ to 1 × 105M{}ȯ . The presence of young clusters and OB associations in the outer disks of dwarf galaxies shows that dIrrs do have star formation taking place there in spite of the extreme nature of the environment. Most regions are found where the H i surface density is ∼1 M{}ȯ pc‑2, though both the H i and dispersed old stars go out much further. This limiting density suggests a cutoff in the ability to form distinct OB associations and perhaps even stars. We compare the star formation rates in the FUV regions to the average rates expected at their radii and beyond from the observed gas, using the conventional correlation for gas-rich regions. The localized rates are typically 10% of the expected average rates for the outer disks. Either star formation in dIrrs at surface densities \\lt 1 {M}ȯ pc‑2 occurs without forming distinct associations, or the Kennicutt–Schmidt relation over-predicts the rate beyond this point. In the latter case, the stellar disks in the far-outer parts of dIrrs result from scattering of stars from the inner disk.

  3. THRESHING IN ACTION: THE TIDAL DISRUPTION OF A DWARF GALAXY BY THE HYDRA I CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Andreas [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, D-69117 Heidelberg (Germany); Burkert, Andreas [Universitaetssternwarte der Ludwig-Maximilians Universitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Rich, R. Michael; Black, Christine S. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA (United States); Collins, Michelle L. M. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Hilker, Michael [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Benson, Andrew J., E-mail: akoch@lsw.uni-heidelberg.de [Department of Astronomy, Caltech, Pasadena, CA (United States)

    2012-08-10

    We report on the discovery of strong tidal features around a dwarf spheroidal galaxy in the Hydra I galaxy cluster, indicating its ongoing tidal disruption. This very low surface brightness object, HCC-087, was originally classified as an early-type dwarf in the Hydra Cluster Catalogue (HCC), but our re-analysis of the ESO-VLT/FORS images of the HCC unearthed a clear indication of an S-shaped morphology and a large spatial extent. Its shape, luminosity (M{sub V} = -11.6 mag), and physical size (at a half-light radius of 3.1 kpc and a full length of {approx}5.9 kpc) are comparable to the recently discovered NGC 4449B and the Sagittarius dwarf spheroidal, all of which are undergoing clear tidal disruption. Aided by N-body simulations we argue that HCC-087 is currently at its first apocenter, at 150 kpc, around the cluster center and that it is being tidally disrupted by the galaxy cluster's potential itself. An interaction with the nearby (50 kpc) S0 cluster galaxy HCC-005, at M{sub *} {approx} 3 Multiplication-Sign 10{sup 10} M{sub Sun} is rather unlikely, as this constellation requires a significant amount of dynamical friction and thus low relative velocities. The S-shaped morphology and large spatial extent of the satellite would, however, also appear if HCC-087 would orbit the cluster center. These features appear to be characteristic properties of satellites that are seen in the process of being tidally disrupted, independent of the environment of the destruction. An important finding of our simulations is an orientation of the tidal tails perpendicular to the orbit.

  4. THRESHING IN ACTION: THE TIDAL DISRUPTION OF A DWARF GALAXY BY THE HYDRA I CLUSTER

    International Nuclear Information System (INIS)

    We report on the discovery of strong tidal features around a dwarf spheroidal galaxy in the Hydra I galaxy cluster, indicating its ongoing tidal disruption. This very low surface brightness object, HCC-087, was originally classified as an early-type dwarf in the Hydra Cluster Catalogue (HCC), but our re-analysis of the ESO-VLT/FORS images of the HCC unearthed a clear indication of an S-shaped morphology and a large spatial extent. Its shape, luminosity (MV = –11.6 mag), and physical size (at a half-light radius of 3.1 kpc and a full length of ∼5.9 kpc) are comparable to the recently discovered NGC 4449B and the Sagittarius dwarf spheroidal, all of which are undergoing clear tidal disruption. Aided by N-body simulations we argue that HCC-087 is currently at its first apocenter, at 150 kpc, around the cluster center and that it is being tidally disrupted by the galaxy cluster's potential itself. An interaction with the nearby (50 kpc) S0 cluster galaxy HCC-005, at M* ∼ 3 × 1010 M☉ is rather unlikely, as this constellation requires a significant amount of dynamical friction and thus low relative velocities. The S-shaped morphology and large spatial extent of the satellite would, however, also appear if HCC-087 would orbit the cluster center. These features appear to be characteristic properties of satellites that are seen in the process of being tidally disrupted, independent of the environment of the destruction. An important finding of our simulations is an orientation of the tidal tails perpendicular to the orbit.

  5. Stellar Kinematics and Metallicities in the Ultra-faint Dwarf Galaxy Reticulum II

    Science.gov (United States)

    Simon, J. D.; Drlica-Wagner, A.; Li, T. S.; Nord, B.; Geha, M.; Bechtol, K.; Balbinot, E.; Buckley-Geer, E.; Lin, H.; Marshall, J.; Santiago, B.; Strigari, L.; Wang, M.; Wechsler, R. H.; Yanny, B.; Abbott, T.; Bauer, A. H.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dodelson, S.; Cunha, C. E.; Estrada, J.; Evrard, A. E.; Fausti Neto, A.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gaztanaga, E.; Gerdes, D.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; March, M.; Martini, P.; Miller, C. J.; Miquel, R.; Ogando, R.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Schubnell, M.; Sevilla, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Tucker, D.; Vikram, V.; Walker, A. R.; Wester, W.; DES Collaboration

    2015-07-01

    We present Magellan/M2FS, Very Large Telescope/GIRAFFE, and Gemini South/GMOS spectroscopy of the newly discovered Milky Way satellite Reticulum II. Based on the spectra of 25 Ret II member stars selected from Dark Energy Survey imaging, we measure a mean heliocentric velocity of 62.8+/- 0.5 {km} {{{s}}}-1 and a velocity dispersion of 3.3+/- 0.7 {km} {{{s}}}-1. The mass-to-light ratio of Ret II within its half-light radius is 470+/- 210 {M}⊙ /{L}⊙ , demonstrating that it is a strongly dark matter-dominated system. Despite its spatial proximity to the Magellanic Clouds, the radial velocity of Ret II differs from that of the LMC and SMC by 199 and 83 {km} {{{s}}}-1, respectively, suggesting that it is not gravitationally bound to the Magellanic system. The likely member stars of Ret II span 1.3 dex in metallicity, with a dispersion of 0.28 ± 0.09 dex, and we identify several extremely metal-poor stars with {{[Fe/H]}}\\lt -3. In combination with its luminosity, size, and ellipticity, these results confirm that Ret II is an ultra-faint dwarf galaxy. With a mean metallicity of {{[Fe/H]}}=-2.65+/- 0.07, Ret II matches Segue 1 as the most metal-poor galaxy known. Although Ret II is the third-closest dwarf galaxy to the Milky Way, the line-of-sight integral of the dark matter density squared is {{log}}10(J)=18.8+/- 0.6 {GeV}{ }2 {{cm}}-5 within 0.°2, indicating that the predicted gamma-ray flux from dark matter annihilation in Ret II is lower than that of several other dwarf galaxies. Based on data obtained from the ESO Science Archive Facility under request number 157689.

  6. Spatial Correlation between Dust and Hα Emission in Dwarf Irregular Galaxies

    Science.gov (United States)

    Jimmy; Tran, Kim-Vy; Saintonge, Amélie; Accurso, Gioacchino; Brough, Sarah; Oliva-Altamirano, Paola; Salmon, Brett; Forrest, Ben

    2016-07-01

    Using a sample of dwarf irregular galaxies selected from the ALFALFA blind H i-survey and observed using the VIMOS IFU, we investigate the relationship between Hα emission and Balmer optical depth ({τ }{{b}}). We find a positive correlation between Hα luminosity surface density and Balmer optical depth in 8 of 11 at ≥0.8σ significance (6 of 11 at ≥1.0σ) galaxies. Our spaxels have physical scales ranging from 30 to 80 pc, demonstrating that the correlation between these two variables continues to hold down to spatial scales as low as 30 pc. Using the Spearman’s rank correlation coefficient to test for correlation between {{{Σ }}}{{H}α } and {τ }{{b}} in all the galaxies combined, we find ρ =0.39, indicating a positive correlation at 4σ significance. Our low stellar-mass galaxy results are in agreement with observations of emission line regions in larger spiral galaxies, indicating that this relationship is independent of the size of the galaxy hosting the emission line region. The positive correlation between Hα luminosity and Balmer optical depth within spaxels is consistent with the hypothesis that young star-forming regions are surrounded by dusty birth-clouds. Based on VLT service mode observations (Programs 081.B-0649 and 083.B-0662) gathered at the European Southern Observatory, Chile.

  7. Dwarf spheroidal satellites of the Milky Way from dark matter free tidal dwarf galaxy progenitors: maps of orbits

    CERN Document Server

    Casas, R A; Ramírez, K Pena; Kroupa, P

    2012-01-01

    The long term time evolution of tidal dwarf satellite galaxies with two different initial densities orbiting a host galaxy that resembles the Milky Way has been studied using a large set of Newtonian N-Body simulations. From the simulations two maps of the orbital conditions that lead to quasi-equilibrium objects were constructed. It has been found that several orbits of the satellites allow for the existence, for about 1 Gyr or more, of out-of-equilibrium bodies with high apparent mass-to-light ratios. Within this framework the satellites in the quasi-stable phase reproduce the observed satellite properties for about 16% of the orbit for high density progenitors, and for about 66% for progenitors with lower densities An additional simulation for a single satellite with initial mass of 10^7 Msun and Plummer radius of 0.15 kpc leads to remnants in the quasi- equilibrium phase that simultaneously reproduce remarkably well the observational quantities of the UFDGs of the Milky Way. This satellite in the quasi-st...

  8. A tidally disrupting dwarf galaxy in the halo of NGC 253

    CERN Document Server

    Toloba, Elisa; Spekkens, Kristine; Crnojevic, Denija; Simon, Joshua; Guhathakurta, Puragra; Strader, Jay; Caldwell, Nelson; McLeod, Brian; Seth, Anil

    2015-01-01

    We report the discovery of Scl-MM-Dw2, a new dwarf galaxy at a projected separation of $\\sim$50 kpc from NGC 253, as part of the PISCeS (Panoramic Imaging Survey of Centaurus and Sculptor) project. We measure a tip of the red giant branch distance of $3.12\\pm0.30$ Mpc, suggesting that Scl-MM-Dw2 is likely a satellite of NGC 253. We qualitatively compare the distribution of red giant branch (RGB) stars in the color-magnitude diagram with theoretical isochrones and find that it is consistent with an old, $\\sim$12 Gyr, and metal poor, $-2.3<$[Fe/H]$<-1.1$, stellar population. We also detect a small number of asymptotic giant branch stars consistent with a metal poor $2-3$ Gyr population in the center of the dwarf. Our non-detection of HI in a deep Green Bank Telescope spectrum implies a gas fraction $M_{HI}/L_V<0.02$ Msun/Lsun. The stellar and gaseous properties of Scl-MM-Dw2 suggest that it is a dwarf spheroidal galaxy. Scl-MM-Dw2 has a luminosity of $M_V=-12.1\\pm0.5$ mag and a half-light radius of $r_...

  9. Simulations of isolated dwarf galaxies formed in dark matter halos with different mass assembly histories

    CERN Document Server

    González-Samaniego, A; Avila-Reese, V; Rodríguez-Puebla, A; Valenzuela, O

    2013-01-01

    We present high-resolution N-body/Hydrodynamics simulations of dwarf galaxies formed in isolated CDM halos with the same virial mass, Mv~2.5x10^10 Msun at z=0, in order to (1) study the mass assembly histories (MAHs) of the halo, stars, and gas components, and (2) explore the effects of the halo MAHs on the stellar/baryonic assembly of the simulated dwarfs and on their z~0 properties. Overall, the simulated dwarfs are roughly consistent with observations. Our main results are: a) The stellar-to-halo mass ratio is ~0.01 and remains roughly constant since z~1 (the stellar MAHs follow closely the halo MAHs), with a smaller value at higher z's for those halos that assemble their mass later. b) The evolution of the galaxy gas fraction, fg, is episodic and higher, most of the time, than the stellar fraction. When fg decreases (increases), the gas fraction in the halo typically increases (decreases), showing that the SN driven outflows play an important role in regulating the gas fractions -and hence the SFR- of the...

  10. USING M DWARF SPECTRA TO MAP EXTINCTION IN THE LOCAL GALAXY

    International Nuclear Information System (INIS)

    We use spectra of more than 56,000 M dwarfs from the Sloan Digital Sky Survey (SDSS) to create a high-latitude extinction map of the local Galaxy. Our technique compares spectra from the stars in the SDSS Data Release 7 M dwarf sample in low-extinction lines of sight, as determined by Schlegel et al., to other SDSS M dwarf spectra in order to derive improved distance estimates and accurate line-of-sight extinctions. Unlike most previous studies, which have used a two-color method to determine extinction, we fit extinction curves to fluxes across the spectral range from 5700 to 9200 A for every star in our sample. Our result is an AV map that extends from a few tens of pc to approximately 2 kpc away from the Sun. We also use a similar technique to create a map of RV values within approximately 1 kpc of the Sun and find that they are consistent with the widely accepted diffuse interstellar medium value of 3.1. Using our extinction data, we derive a dust scale height for the local Galaxy of 119 ± 15 pc and find evidence for a local dust cavity.

  11. The Baryon Cycle of Dwarf Galaxies: Dark, Bursty, Gas-Rich Polluters

    CERN Document Server

    Shen, Sijing; Conroy, Charlie; Governato, Fabio; Mayer, Lucio

    2013-01-01

    We present results from a fully cosmological, very high-resolution, LCDM "zoom-in" simulation of a group of seven field dwarf galaxies with present-day virial masses in the range M_vir=4.4e8-3.6e10 Msun. The simulation includes a blastwave scheme for supernova feedback, a star formation recipe based on a high gas density threshold, metal-dependent radiative cooling, a scheme for the turbulent diffusion of metals and thermal energy, and a uniform UV background that modifies the ionization and excitation state of the gas. The properties of the simulated dwarfs are strongly modulated by the depth of the gravitational potential well. All three halos with M_vir 1e9 Msun dwarfs have blue colors, low star formation efficiencies, high cold gas to stellar mass ratios, and low stellar metallicities. Their bursty star formation histories are characterized by peak specific star formation rates in excess of 50-100 1/Gyr, far outside the realm of normal, more massive galaxies, and in agreement with observations of extreme...

  12. Insights into Pre-Enrichment of Star Clusters and Self-Enrichment of Dwarf Galaxies from their Intrinsic Metallicity Dispersions

    CERN Document Server

    Leaman, Ryan

    2012-01-01

    Star clusters are known to have smaller intrinsic metallicity spreads than dwarf galaxies due to their shorter star formation timescales. Here we use individual spectroscopic [Fe/H] measurements of stars in 19 Local Group dwarf galaxies, 13 Galactic open clusters, and 49 globular clusters to show that star cluster and dwarf galaxy linear metallicity distributions are binomial in form, with all objects showing strong correlations between their mean linear metallicity $\\bar{Z}$ and intrinsic spread in metallicity $\\sigma(Z)^{2}$. A plot of $\\sigma(Z)^{2}$ versus $\\bar{Z}$ shows that the correlated relationships are offset for the dwarf galaxies from the star clusters. The common binomial nature of these linear metallicity distributions can be explained with a simple inhomogeneous chemical evolution model (e.g., Oey 2000), where the star cluster and dwarf galaxy behaviour in the $\\sigma(Z)^{2}-\\bar{Z}$ diagram is reproduced in terms of the number of enrichment events, covering fraction, and intrinsic size of the...

  13. GALEX Ultraviolet Imaging of Dwarf Galaxies and Star Formation

    CERN Document Server

    Hunter, Deidre A; Ludka, Bonnie C

    2009-01-01

    We present ultraviolet integrated and azimuthally-averaged surface photometric properties of a sample of 44 dIm, BCD, and Sm galaxies measured from archival NUV and FUV images obtained with GALEX. We compare the UV to Halpha and V-band properties and convert FUV, Halpha, and V-band luminosities into star formation rates (SFRs). We also model the star formation history from colors and compare the integrated SFRs and SFR profiles with radius for these methods. In most galaxies, the UV photometry extends beyond Halpha in radius, providing a better measure of the star formation activity in the outer disks. The Halpha appears to be lacking in the outer disk because of faintness in low density gas. The FUV and V-band profiles are continuous with radius, although they sometimes have a kink from a double exponential disk. There is no obvious difference in star formation properties between the inner and outer disks. No disk edges have been observed, even to stellar surface densities as low as 0.1 Msun/pc2 and star for...

  14. Triangulum II: A Very Dense Ultra-Faint Dwarf Galaxy

    CERN Document Server

    Kirby, Evan N; Simon, Joshua D; Guhathakurta, Puragra

    2015-01-01

    Laevens et al. recently discovered Triangulum II, a satellite of the Milky Way. Its Galactocentric distance is 36 kpc, and its luminosity is only 450 L_sun. We measured the radial velocities of six members stars with Keck/DEIMOS, and we found a velocity dispersion of sigma_v = 5.1 -1.4 +4.0 km/s. We also measured the metallicities of three stars and found a range of 0.8 dex in [Fe/H]. The velocity and metallicity dispersions identify Triangulum II as a dark matter-dominated galaxy. The galaxy is moving very quickly toward the Galactic center (v_GSR = -262 km/s). Although it might be in the process of being tidally disrupted as it approaches pericenter, there is no strong evidence for disruption. The ellipticity is low, and the mean velocity, = -382.1 +/- 2.9 km/s, rules out an association with the Triangulum-Andromeda substructure or the Pan-Andromeda Archaeological Survey (PAndAS) stellar stream. If Triangulum II is in dynamical equilibrium, then it would have a mass-to-light ratio of 3600 -2100 +3500 M_sun...

  15. The RR Lyrae Variable Population in the Phoenix Dwarf Galaxy

    CERN Document Server

    Ordoñez, Antonio J; Sarajedini, Ata

    2014-01-01

    We present the first detailed study of the RR Lyrae variable population in the Local Group dSph/dIrr transition galaxy, Phoenix, using previously obtained HST/WFPC2 observations of the galaxy. We utilize template light curve fitting routines to obtain best fit light curves for RR Lyrae variables in Phoenix. Our technique has identified 78 highly probable RR Lyrae stars (54 ab-type; 24 c-type) with about 40 additional candidates. We find mean periods for the two populations of $\\langle P_{ab}\\rangle = 0.60 \\pm 0.03$ days and $\\langle P_{c}\\rangle = 0.353 \\pm 0.002$ days. We use the properties of these light curves to extract, among other things, a metallicity distribution function for ab-type RR Lyrae. Our analysis yields a mean metallicity of $\\langle [Fe/H]\\rangle = -1.68 \\pm 0.06$ dex for the RRab stars. From the mean period and metallicity calculated from the ab-type RR Lyrae, we conclude that Phoenix is more likely of intermediate Oosterhoff type; however the morphology of the Bailey diagram for Phoenix R...

  16. Too Many, Too Few, or Just Right? The Predicted Number and Distribution of Milky Way Dwarf Galaxies

    CERN Document Server

    Hargis, Jonathan R; Peter, Annika H G

    2014-01-01

    We predict the spatial distribution and number of Milky Way dwarf galaxies to be discovered in the DES and LSST surveys, by completeness correcting the observed SDSS dwarf population. We apply most massive in the past, earliest forming, and earliest infall toy models to a set of dark matter-only simulated Milky Way/M31 halo pairs from Exploring the Local Volume In Simulations (ELVIS). The observed spatial distribution of Milky Way dwarfs in the LSST-era will discriminate between the earliest infall and other simplified models for how dwarf galaxies populate dark matter subhalos. Inclusive of all toy models and simulations, at 90% confidence we predict a total of 37-114 L $\\gtrsim 10^3$L$_{\\odot}$ dwarfs and 131-782 L $\\lesssim 10^3$L$_{\\odot}$ dwarfs within 300 kpc. These numbers of L $\\gtrsim 10^3$L$_{\\odot}$ dwarfs are dramatically lower than previous predictions, owing primarily to our use of updated detection limits and the decreasing number of SDSS dwarfs discovered per sky area. For an effective $r_{\\rm...

  17. The Imprint of Reionization on the Star Formation Histories of Dwarf Galaxies

    CERN Document Server

    Benitez-Llambay, Alejandro; Abadi, Mario G; Gottloeber, Stefan; Yepes, Gustavo; Hoffman, Yehuda; Steinmetz, Matthias

    2014-01-01

    We explore the impact of cosmic reionization on nearby isolated dwarf galaxies using a compilation of SFHs estimated from deep HST data and a cosmological hydrodynamical simulation of the Local Group. The nearby dwarfs show a wide diversity of star formation histories; from ancient systems that have largely completed their star formation $\\sim 10$ Gyr ago to young dwarfs that have formed the majority of their stars in the past $\\sim 5$ Gyr to two-component systems characterized by the overlap of comparable numbers of old and young stars. Taken as an ensemble, star formation in nearby dwarfs dips to lower-than-average rates at intermediate times ($4

  18. Indications of M-dwarf Deficits in the Halo and Thick Disk of the Galaxy

    CERN Document Server

    Konishi, Mihoko; Sumi, Takahiro; Fukagawa, Misato; Matsuo, Taro; Samland, Matthias S; Yamamoto, Kodai; Sudo, Jun; Itoh, Yoichi; Arimoto, Nobuo; Kajisawa, Masaru; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D; Carson, Joseph; Currie, Thayne; Egner, Sebastian E; Feldt, Markus; Goto, Miwa; Grady, Carol A; Guyon, Olivier; Hashimoto, Jun; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S; Henning, Thomas; Hodapp, Klaus W; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Kuzuhara, Masayuki; Kwon, Jungmi; McElwain, Michael W; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martín, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H; Takami, Hideki; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L; Usuda, Tomonori; Watanabe, Makoto; Wisniewski, John P; Yamada, Toru; Tamura, Motohide

    2014-01-01

    We compared the number of faint stars detected in deep survey fields with the current stellar distribution model of the Galaxy and found that the detected number in the H band is significantly smaller than the predicted number. This indicates that M-dwarfs, the major component, are fewer in the halo and the thick disk. We used archived data of several surveys in both the north and south field of GOODS (Great Observatories Origins Deep Survey), MODS in GOODS-N, and ERS and CANDELS in GOODS-S. The number density of M-dwarfs in the halo has to be 20+/-13% relative to that in the solar vicinity, in order for the detected number of stars fainter than 20.5 mag in the H band to match with the predicted value from the model. In the thick disk, the number density of M-dwarfs must be reduced (52+/-13%) or the scale height must be decreased (~600 pc). Alternatively, overall fractions of the halo and thick disks can be significantly reduced to achieve the same effect, because our sample mainly consists of faint M-dwarfs....

  19. THE NATURE OF STARBURSTS. I. THE STAR FORMATION HISTORIES OF EIGHTEEN NEARBY STARBURST DWARF GALAXIES

    International Nuclear Information System (INIS)

    We use archival Hubble Space Telescope observations of resolved stellar populations to derive the star formation histories (SFHs) of 18 nearby starburst dwarf galaxies. In this first paper, we present the observations, color-magnitude diagrams (CMDs), and the SFHs of the 18 starburst galaxies, based on a homogeneous approach to the data reduction, differential extinction, and treatment of photometric completeness. We adopt a star formation rate (SFR) threshold normalized to the average SFR of the individual system as a metric for classifying starbursts in SFHs derived from resolved stellar populations. This choice facilitates finding not only the currently bursting galaxies but also 'fossil' bursts increasing the sample size of starburst galaxies in the nearby (D 100 Myr temporal baseline is thus fundamental to any starburst definition or identification method. The longer lived bursts rule out rapid 'self-quenching' of starbursts on global scales. The bursting galaxies' gas consumption timescales are shorter than the Hubble time for all but one galaxy confirming the short-lived nature of starbursts based on fuel limitations. Additionally, we find that the strength of the Hα emission usually correlates with the CMD-based SFR during the last 4-10 Myr. However, in four cases, the Hα emission is significantly less than what is expected for models of starbursts; the discrepancy is due to the SFR changing on timescales of a few Myr. The inherently short timescale of the Hα emission limits identifying galaxies as starbursts based on the current characteristics which may or may not be representative of the recent SFH of a galaxy.

  20. Pre-existing dwarfs, tidal knots and a tidal dwarf galaxy: an unbiased HI study of the gas-rich interacting galaxy group NGC 3166/9

    CERN Document Server

    Lee-Waddell, Karen; Haynes, Martha P; Stierwalt, Sabrina; Chengalur, Jayaram; Chandra, Poonam; Giovanelli, Riccardo

    2012-01-01

    We present Arecibo Legacy Fast ALFA (ALFALFA) and follow-up Giant Metrewave Radio Telescope (GMRT) HI observations of the gas-rich interacting group NGC 3166/9. The sensitive ALFALFA data provide a complete census of HI-bearing systems in the group while the high-resolution GMRT data elucidate their origin, enabling one of the first unbiased physical studies of gas-rich dwarf companions and the subsequent identification of second generation, tidal dwarf galaxies in a nearby group. The ALFALFA maps reveal an extended HI envelope around the NGC 3166/9 group core, which we mosaic at higher resolution using six GMRT pointings spanning ~1 square degree. A thorough search of the GMRT datacube reveals eight low-mass objects with gas masses ranging from 4x10^7 to 3x10^8 M_sol and total dynamical masses up to 1.4x10^9 M_sol. A comparison of the HI fluxes measured from the GMRT data to those measured in the ALFALFA data suggests that a significant fraction (~60%) of the HI is smoothly distributed on scales greater than...

  1. A deep Large Binocular Telescope view of the Canes Venatici I dwarf galaxy

    CERN Document Server

    Martin, Nicolas F; De Jong, Jelte T A; Rix, Hans-Walter; Bell, Eric F; Sand, David J; Hill, John M; Kochanek, Christopher S; Thompson, David; Burwitz, Vadim; Giallongo, Emanuele; Ragazzoni, Roberto; Diolaiti, Emiliano; Gasparo, Federico; Grazian, Andrea; Pedichini, Fernando; Bechtold, Jill

    2007-01-01

    We present the first deep color-magnitude diagram of the Canes Venatici I (CVnI) dwarf galaxy from observations with the wide field Large Binocular Camera of the Large Binocular Telescope. Reaching down to the main-sequence turnoff of the oldest stars, it reveals a dichotomy in the stellar populations of CVnI: it harbors an old (>~ 10 Gyr), metal-poor ([Fe/H] ~ -2.0) and spatially extended population along with a much younger (~1.4-2.0 Gyr), 0.5 dex more metal-rich, and spatially more concentrated population. These young stars are also offset by ~100 pc to the East of the center of the galaxy. The data suggest that this young population should be identified with the kinematically cold stellar component found by Ibata et al. (2006). CVnI therefore follows the behavior of the other remote MW dwarf spheroidals which all contain intermediate age and/or young populations: a complex star formation history is possible in extremely low-mass galaxies.

  2. UGC 7639: a Dwarf Galaxy in the Canes Venatici I Cloud

    CERN Document Server

    Buson, L M; Mazzei, P; Galletta, G

    2015-01-01

    We want to get insight into the nature, i.e. the formation mechanism and the evolution, of UGC 7639, a dwarf galaxy in the Canes Venatici I Cloud (CVnIC). We used archival GALEX (FUV and NUV) and SDSS images, as well as Hyperleda and NED databases, to constrain its global properties. GALEX FUV/NUV images show that UGC 7639 inner regions are composed mostly by young stellar populations. In addition, we used smoothed particle hydrodynamics (SPH) simulations with chemo-photometric implementation to account for its formation and evolution. UGC 7639 is an example of blue dwarf galaxy whose global properties are well matched by our multi-wavelength and multi-technique approach, that is also a suitable approach to highlight the evolution of these galaxies as a class. We found that the global properties of UGC 7639, namely its total absolute B-band magnitude, its whole spectral energy distribution (SED), and its morphology are well-matched by an encounter with a system four times more massive than our target. Moreove...

  3. VERITAS Search for VHE Gamma-ray Emission from Dwarf Spheroidal Galaxies

    CERN Document Server

    Acciari, V A; Aune, T; Beilicke, M; Benbow, W; Boltuch, D; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Christiansen, J L; Ciupik, L; Cui, W; Dickherber, R; Duke, C; Finley, J P; Finnegan, G; Furniss, A; Galante, N; Godambe, S; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Hui, C M; Humensky, T B; Imran, A; Kaaret, P; Karlsson, N; Kertzman, M; Kieda, D; Konopelko, A; Krawczynski, H; Krennrich, F; Maier, G; McArthur, S; McCann, A; McCutcheon, M; Moriarty, P; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Schroedter, M; Sembroski, G H; Senturk, G Demet; Smith, A W; Steele, D; Swordy, S P; Tešić, G; Theiling, M; Thibadeau, S; Varlotta, A; Vassiliev, V V; Vincent, S; Wagner, R G; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Wissel, S; Zitzer, B

    2010-01-01

    Indirect dark matter searches with ground-based gamma-ray observatories provide an alternative for identifying the particle nature of dark matter that is complementary to that of direct search or accelerator production experiments. We present the results of observations of the dwarf spheroidal galaxies Draco, Ursa Minor, Bootes 1, and Willman 1 conducted by VERITAS. These galaxies are nearby dark matter dominated objects located at a typical distance of several tens of kiloparsecs for which there are good measurements of the dark matter density profile from stellar velocity measurements. Since the conventional astrophysical background of very high energy gamma rays from these objects appears to be negligible, they are good targets to search for the secondary gamma-ray photons produced by interacting or decaying dark matter particles. No significant gamma-ray flux above 200 GeV was detected from these four dwarf galaxies for a typical exposure of ~20 hours. The 95% confidence upper limits on the integral gamma...

  4. The Composition of the Sagittarius Dwarf Spheroidal Galaxy and Implications for Nucleosynthesis and Chemical Evolution

    CERN Document Server

    McWilliam, A; William, Andrew Mc; Smecker-Hane, Tammy A.

    2004-01-01

    We outline the results of a study of the chemical composition of 14 stars in the Sagittarius dwarf spheroidal galaxy (Sgr dSph). For the Sgr dSph stars with [Fe/H]>-1 the abundances are highly unusual, showing a striking enhancement in heavy s-process elements, increasing with [Fe/H], deficiencies of the alpha- elements (O, Si, Ca, and Ti), deficiencies of Al and Na, and deficiencies of the iron-peak elements Mn and Cu. Our abundances suggest that the composition of the metal-rich Sgr dSph stars is dominated by the ejecta of an old, metal-poor population, including products of AGB stars and type Ia supernovae (SN). We suggest two scenarios to explain the observations: Prolonged chemical evolution in a galaxy experiencing significant mass-loss, and chemical enrichment with episodic bursts of star formation. The Galactic globular cluster Omega Cen, and the Fornax dwarf galaxy show similar abundance patterns, which suggests that those systems evolved similar to the Sgr dSph.

  5. Understanding the shape and diversity of dwarf galaxy rotation curves in LCDM

    CERN Document Server

    Read, J I; Agertz, O; Fraternali, F

    2016-01-01

    The shape and wide diversity of dwarf galaxy rotation curves is at apparent odds with dark matter halos in LCDM. We generate mock rotation curve data from dwarf galaxy simulations to show that this owes to bursty star formation driven by stellar feedback. There are three main effects. Firstly, stellar feedback transforms dark matter cusps into cores. Ignoring such transformations leads to a poor fit of the rotation curve shape and a large systematic bias on the halo concentration parameter c. Secondly, if close to a recent starburst, large HI bubbles push the rotation curve out of equilibrium. This makes the gas rotational velocity a poor probe of the underlying potential, leading to a systematic error on the halo virial mass M200 of up to half a dex. Thirdly, when galaxies are viewed near face-on (i<40deg), it is challenging to properly correct for their inclination i. This leads to a very shallow rotation curve, with a systematic underestimate of M200 of over a dex. All three problems can be easily avoid...

  6. The Herschel Virgo Cluster Survey XIV: transition-type dwarf galaxies in the Virgo cluster

    CERN Document Server

    De Looze, Ilse; Boselli, Alessandro; Cortese, Luca; Fritz, Jacopo; Auld, Robbie; Bendo, George J; Bianchi, Simone; Boquien, Médéric; Clemens, Marcel; Ciesla, Laure; Davies, Jonathan; Alighieri, Sperello di Serego; Grossi, Marco; Jones, Anthony; Madden, Suzanne C; Pappalardo, Ciro; Pierini, Daniele; Smith, Matthew W L; Verstappen, Joris; Vlahakis, Catherine; Zibetti, Stefano

    2013-01-01

    We use dust scaling relations to investigate the hypothesis that Virgo cluster transition-type dwarfs are infalling star-forming field galaxies, which is argued based on their optical features (e.g. disks, spiral arms, bars) and kinematic properties similar to late-type galaxies. After their infall, environmental effects gradually transform them into early-type galaxies through the removal of their interstellar medium and quenching of all star formation activity. In this paper, we aim to verify whether this hypothesis holds using far-infrared diagnostics based on Herschel observations of the Virgo cluster taken as part of the Herschel Virgo Cluster Survey (HeViCS). We select transition-type objects in the nearest cluster, Virgo, based on spectral diagnostics indicative for their residual or ongoing star formation. We detect dust Md ~ 10^{5-6} Msun in 36% of the transition-type dwarfs located on the high end of the stellar mass distribution. This suggests that the dust reservoirs present in non-detections fall...

  7. No Evidence for Classical Cepheids and a New Dwarf Galaxy Behind the Galactic Disk

    CERN Document Server

    Pietrukowicz, P; Szymanski, M K; Soszynski, I; Pietrzynski, G; Wyrzykowski, L; Poleski, R; Ulaczyk, K; Skowron, J; Mroz, P; Pawlak, M; Kozlowski, S

    2015-01-01

    Based on data from the ongoing OGLE Galaxy Variability Survey (OGLE GVS) we have verified observed properties of stars detected by the near-infrared VVV survey in a direction near the Galactic plane at longitude l~-27 deg and recently tentatively classified as classical Cepheids belonging to a, hence claimed, dwarf galaxy at a distance of about 90 kpc from the Galactic Center. Three of four stars are detected in the OGLE GVS I-band images. We show that two of the objects are not variable at all and the third one with a period of 5.695 d and a nearly sinusoidal light curve of an amplitude of 0.5 mag cannot be a classical Cepheid and is very likely a spotted object. These results together with a very unusual shape of the Ks-band light curve of the fourth star indicate that very likely none of them is a Cepheid and, thus, there is no evidence for a background dwarf galaxy. Our observations show that a great care must be taken when classifying objects by their low-amplitude close-to-sinusoidal near-infrared light...

  8. Constraints on MACHO Dark Matter from the Star Cluster in the Dwarf Galaxy Eridanus II

    CERN Document Server

    Brandt, Timothy D

    2016-01-01

    I show that a recently discovered star cluster near the center of the ultra-faint dwarf galaxy Eridanus II provides strong constraints on massive compact halo objects (MACHOs) of >~5 M_sun as the main component of dark matter. MACHO dark matter will dynamically heat the cluster, driving it to larger sizes and higher velocity dispersions until it dissolves into its host galaxy. The star cluster has a luminosity of just ~2000 L_sun and is relatively puffy, with a half-light radius of 13 pc, making it much more fragile than other known clusters in dwarf galaxies. For a wide range of plausible dark matter halo properties, Eri II's star cluster combines with existing constraints from microlensing, wide binaries, and disk kinematics to rule out dark matter composed entirely of MACHOs from ~10$^{-7}$ M_sun up to arbitrarily high masses. The cluster in Eri II closes the ~20--100 M_sun window of allowed MACHO dark matter and provides much stronger constraints than wide Galactic binaries for MACHOs of up to thousands o...

  9. Deep Near-Infrared Surface Photometry and Properties of Local Volume Dwarf Irregular Galaxies

    CERN Document Server

    Young, T; López-Sánchez, Á R; Koribalski, B S

    2014-01-01

    We present deep H-band surface photometry and analysis of 40 Local Volume galaxies, a sample primarily composed of dwarf irregulars in the Cen A group, obtained using the IRIS2 detector at the 3.9m Anglo-Australian Telescope. We probe to a surface brightness of ~25 mag arcsec$^{-2}$, reaching a 40 times lower stellar density than the Two Micron All Sky Survey (2MASS). Employing extremely careful and rigorous cleaning techniques to remove contaminating sources, we perform surface photometry on 33 detected galaxies deriving the observed total magnitude, effective surface brightness and best fitting S\\'ersic parameters. We make image quality and surface photometry comparisons to 2MASS and VISTA Hemispheric Survey (VHS) demonstrating that deep targeted surveys are still the most reliable means of obtaining accurate surface photometry. We investigate the B-H colours with respect to mass for Local Volume galaxies, finding that the colours of dwarf irregulars are significantly varied, eliminating the possibility of ...

  10. Improving the Sensitivity of Gamma-Ray Telescopes to Dark Matter Annihilation in Dwarf Spheroidal Galaxies

    CERN Document Server

    Carlson, Eric; Linden, Tim

    2014-01-01

    The Fermi-LAT collaboration has studied the gamma-ray emission from a stacked population of dwarf spheroidal galaxies and used this information to set constraints on the dark matter annihilation cross section. Interestingly, their analysis uncovered an excess with a test statistic (TS) of 8.7. If interpreted naively, this constitutes a 2.95 sigma local excess (p-value=0.003), relative to the expectations of their background model. In order to further test this interpretation, the Fermi-LAT team studied a large number of blank sky locations and found TS>8.7 excesses to be more common than predicted by their background model, decreasing the significance of their dwarf excess to 2.2 sigma (p-value=0.027). We argue that these TS>8.7 blank sky locations are largely the result of unresolved blazars, radio galaxies, and starforming galaxies, and show that multi-wavelength information can be used to reduce the degree to which such sources contaminate the otherwise blank sky. In particular, we show that masking region...

  11. The Formation of Kiloparsec-Scale HI Holes in Dwarf Galaxies

    CERN Document Server

    Warren, Steven R; Skillman, Evan D; Cannon, John M; Dalcanton, Julianne J; Dolphin, Andrew E; Kennicutt, Robert C; Jr.,; Koribalski, Barbel; Ott, Juergen; Stilp, Adrienne M; Van Dyk, Schuyler D; Walter, Fabian; West, Andrew A

    2011-01-01

    The origin of kpc-scale holes in the atomic hydrogen (H I) distributions of some nearby dwarf irregular galaxies presents an intriguing problem. Star formation histories (SFHs) derived from resolved stars give us the unique opportunity to study past star forming events that may have helped shape the currently visible H I distribution. Our sample of five nearby dwarf irregular galaxies spans over an order of magnitude in both total H I mass and absolute B-band magnitude and is at the low mass end of previously studied systems. We use Very Large Array H I line data to estimate the energy required to create the centrally dominant hole in each galaxy. We compare this energy estimate to the past energy released by the underlying stellar populations computed from SFHs derived from data taken with the Hubble Space Telescope. The inferred integrated stellar energy released within the characteristic ages exceeds our energy estimates for creating the holes in all cases, assuming expected efficiencies. Therefore, it app...

  12. Ultra-light dark matter in ultra-faint dwarf galaxies

    Science.gov (United States)

    Calabrese, Erminia; Spergel, David N.

    2016-08-01

    Cold Dark Matter (CDM) models struggle to match the observations at galactic scales. The tension can be reduced either by dramatic baryonic feedback effects or by modifying the particle physics of CDM. Here, we consider an ultra-light scalar field DM particle manifesting a wave nature below a DM particle mass-dependent Jeans scale. For DM mass m ˜ 10-22 eV, this scenario delays galaxy formation and avoids cusps in the centre of the dark matter haloes. We use new measurements of half-light mass in ultra-faint dwarf galaxies Draco II and Triangulum II to estimate the mass of the DM particle in this model. We find that if the stellar populations are within the core of the density profile then the data are in agreement with a Wave Dark Matter model having a DM particle with m ˜ 3.7-5.6 × 10-22 eV. The presence of this extremely light particle will contribute to the formation of a central solitonic core replacing the cusp of a Navarro-Frenk-White profile and bringing predictions closer to observations of cored central density in dwarf galaxies.

  13. Chemo-dynamical evolution of the Local Group dwarf galaxies: The origin of r-process elements

    Science.gov (United States)

    Hirai, Y.; Ishimaru, Y.; Saitoh, T. R.; Fujii, M. S.; Hidaka, J.; Kajino, T.

    2016-06-01

    The r-process elements such as Au, Eu, and U are observed in the extremely metal-poor stars in the Milky Way halo and the Local Group dwarf galaxies. However, the origin of r-process elements has not yet been identified. The abundance of r-process elements of stars in the Local Group galaxies provides clues to clarify early evolutionary history of galaxies. It is important to understand the chemical evolution of the Local Group dwarf galaxies which would be building blocks of the Milky Way. In this study, we perform a series of N-body/smoothed particle hydrodynamic simulations of dwarf galaxies. We show that neutron star mergers can reproduce the observation of r-process elements. We find that the effects of gas mixing processes including metals in the star-forming region of a typical scale of giant molecular clouds ¥sim 10-100 pc play significant roles in the early chemical enrichment of dwarf galaxies. We also find that the star formation rate of ˜ 10^{-3} M_{⊙}yr^{-1} in early epoch (<1 Gyr) of galactic halo evolution is necessary for these results. Our results suggest that neutron star mergers are a major site of r-process.

  14. Constraints on 3.55 keV line emission from stacked observations of dwarf spheroidal galaxies

    CERN Document Server

    Malyshev, D; Eckert, D

    2014-01-01

    Several recent works have reported the detection of an unidentified X-ray line at 3.55 keV, which could possibly be attributed to the decay of dark matter (DM) particles in the halos of galaxy clusters and in the M31 galaxy. We analyze all publicly-available XMM-Newton data of dwarf spheroidal galaxies to test the possible DM origin of the line. Dwarf spheroidal galaxies have high mass-to-light ratios and their interstellar medium is not a source of diffuse X-ray emission, thus they are expected to provide the cleanest DM decay line signal. Our analysis shows no evidence for the presence of the line in the stacked spectra of the dwarf galaxies. It excludes the sterile neutrino DM decay origin of the 3.5 keV line reported by Bulbul et al. (2014) at the level of 4.6 sigma under standard assumptions about the Galactic DM column density in the direction of selected dwarf galaxies and at the level of 3.3 sigma assuming minimal Galactic DM column density. As a by-product of our analysis, we provide updated upper li...

  15. The interstellar medium in Andromeda's dwarf spheroidal galaxies - I. Content and origin of the interstellar dust

    Science.gov (United States)

    De Looze, Ilse; Baes, Maarten; Bendo, George J.; Fritz, Jacopo; Boquien, Médéric; Cormier, Diane; Gentile, Gianfranco; Kennicutt, Robert C.; Madden, Suzanne C.; Smith, Matthew W. L.; Young, Lisa

    2016-07-01

    Dwarf spheroidal galaxies are among the most numerous galaxy population in the Universe, but their main formation and evolution channels are still not well understood. The three dwarf spheroidal satellites (NGC 147, NGC 185, and NGC 205) of the Andromeda galaxy are characterized by very different interstellar medium properties, which might suggest them being at different galaxy evolutionary stages. While the dust content of NGC 205 has been studied in detail in an earlier work, we present new Herschel dust continuum observations of NGC 147 and NGC 185. The non-detection of NGC 147 in Herschel SPIRE maps puts a strong constraint on its dust mass (≤128^{+124}_{-68} M⊙). For NGC 185, we derive a total dust mass Md = 5.1±1.0 × 103 M⊙, which is a factor of ˜2-3 higher than that derived from ISO and Spitzer observations and confirms the need for longer wavelength observations to trace more massive cold dust reservoirs. We, furthermore, estimate the dust production by asymptotic giant branch (AGB) stars and supernovae (SNe). For NGC 147, the upper limit on the dust mass is consistent with expectations of the material injected by the evolved stellar population. In NGC 185 and NGC 205, the observed dust content is one order of magnitude higher compared to the estimated dust production by AGBs and SNe. Efficient grain growth, and potentially longer dust survival times (3-6 Gyr) are required to account for their current dust content. Our study confirms the importance of grain growth in the gas phase to account for the current dust reservoir in galaxies.

  16. The interstellar medium in Andromeda's dwarf spheroidal galaxies: I. Content and origin of the interstellar dust

    Science.gov (United States)

    De Looze, Ilse; Baes, Maarten; Bendo, George J.; Fritz, Jacopo; Boquien, Médéric; Cormier, Diane; Gentile, Gianfranco; Kennicutt, Robert C.; Madden, Suzanne C.; Smith, Matthew W. L.; Young, Lisa

    2016-04-01

    Dwarf spheroidal galaxies are among the most numerous galaxy population in the Universe, but their main formation and evolution channels are still not well understood. The three dwarf spheroidal satellites (NGC 147, NGC 185, and NGC 205) of the Andromeda galaxy are characterised by very different interstellar medium (ISM) properties, which might suggest them being at different galaxy evolutionary stages. While the dust content of NGC 205 has been studied in detail by De Looze et al. (2012), we present new Herschel dust continuum observations of NGC 147 and NGC 185. The non-detection of NGC 147 in Herschel SPIRE maps puts a strong constraint on its dust mass (≤ 128^{+124}_{-68} M⊙). For NGC 185, we derive a total dust mass Md = 5.1±1.0 × 103 M⊙, which is a factor of ˜ 2-3 higher than that derived from ISO and Spitzer observations and confirms the need for longer wavelength observations to trace more massive cold dust reservoirs. We, furthermore, estimate the dust production by asymptotic giant branch (AGB) stars and supernovae (SNe). For NGC 147, the upper limit on the dust mass is consistent with expectations of the material injected by the evolved stellar population. In NGC 185 and NGC 205, the observed dust content is one order of magnitude higher compared to the estimated dust production by AGBs and SNe. Efficient grain growth, and potentially longer dust survival times (3-6 Gyr) are required to account for their current dust content. Our study confirms the importance of grain growth in the gas phase to account for the current dust reservoir in galaxies.

  17. Inverse Compton Gamma Rays from Dark Matter Annihilation in the Dwarf Galaxies

    Science.gov (United States)

    Medhi, Jayashri; Duorah, H. L.; Barua, A. G.; Duorah, K.

    2016-09-01

    Dwarf spheroidal (dSph) galaxies are thought to be good candidates for dark matter search due to their high mass-to-light (M/L) ratio. One of the most favored dark matter candidates is the lightest neutralino (neutral χ particle) as predicted in the Minimal Supersymmetric Standard Model (MSSM). In this study, we model the gamma ray emission from dark matter annihilation coming from the nearby dSph galaxies Draco, Segue 1, Ursa Minor and Willman 1, taking into account the contribution from prompt photons and photons produced from inverse Compton scattering off starlight and Cosmic Microwave Background (CMB) photons by the energetic electrons and positrons from dark matter annihilation. We also compute the energy spectra of electrons and positrons from the decay of dark matter annihilation products. Gamma ray spectra and fluxes for both prompt and inverse Compton emission have been calculated for neutralino annihilation over a range of masses and found to be in agreement with the observed data. It has been found that the ultra faint dSph galaxy Segue 1 gives the largest gamma ray flux limits while the lowest gamma ray flux limits has been obtained from Ursa Minor. It is seen that for larger M/L ratio of dwarf galaxies the intensity pattern originating from e + e - pairs scattering off CMB photons is separated by larger amount from that off the starlight photons for the same neutralino mass. As the e + e - energy spectra have an exponential cut off at high energies, this may allow to discriminate some dark matter scenarios from other astrophysical sources. Finally, some more detailed study about the effect of inverse Compton scattering may help constrain the dark matter signature in the dSph galaxies.

  18. Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxies

    Science.gov (United States)

    Hunt, Leslie K.; Madden, Suzanne C.; Schneider, Raffaella

    2008-12-01

    'Shea and Michael L. Norman; 16. Damped Lyα systems as probes of chemical evolution over cosmological timescales Miroslava Dessauges-Zavadsky; 17. Connecting high-redshift galaxy populations through observations of local damped Lyman alpha dwarf galaxies Regina E. Schulte-Ladbeck; 18. Chemical enrichment and feedback in low metallicity environments: constraints on galaxy formation Francesca Matteucci; 19. Effects of reionization on dwarf galaxy formation Massimo Ricotti; 20. The importance of following the evolution of the dust in galaxies on their SEDs A. Schurer, F. Calura, L. Silva, A. Pipino, G. L. Granato, F. Matteucci and R. Maiolino; 21. About the chemical evolution of dSphs (and the peculiar globular cluster ωCen) Andrea Marcolini and Annibale D'Ercole; 22. Young star clusters in the small Magellanic cloud: impact of local and global conditions on star formation Elena Sabbi, Linda J. Smith, Lynn R. Carlson, Antonella Nota, Monca Tosi, Michele Cignoni, Jay S. Gallagher III, Marco Sirianni and Margaret Meixner; 23. Modeling the ISM properties of metal-poor galaxies and gamma-ray burst hosts Emily M. Levesque, Lisa J. Kewley, Kirsten Larson and Leonie Snijders; 24. Dwarf galaxies and the magnetisation of the IGM Uli Klein; Session III. Explosive Events in Low-Metallicity Environments: 25. Supernovae and their evolution in a low metallicity ISM Roger A. Chevalier; 26. First stars - type Ib supernovae connection Ken'ichi Nomoto, Masaomi Tanaka, Yasuomi Kamiya, Nozomu Tominaga and Keiichi Maeda; 27. Supernova nucleosynthesis in the early universe Nozomu Tominaga, Hideyuki Umeda, Keiichi Maeda, Ken'ichi Nomoto and Nobuyuki Iwamoto; 28. Powerful explosions at Z = 0? Sylvia Ekström, Georges Meynet, Raphael Hirschi and André Maeder; 29. Wind anisotropy and stellar evolution Cyril Georgy, Georges Meynet and André Maeder; 30. Low-mass and metal-poor gamma-ray burst

  19. NGC 5011C: An Overlooked Dwarf Galaxy in the Centaurus A Group

    Science.gov (United States)

    Saviane, Ivo; Jerjen, Helmut

    2007-04-01

    A critical study of the properties of groups of galaxies can be done only once a complete census of group members is available. Despite extensive surveys, even nearby groups can lead to surprises. Indeed, we report the discovery of a previously unnoticed member of the Centaurus A Group, NGC 5011C. While the galaxy is a well-known stellar system listed with a NGC number, its true identity has remained hidden because of coordinate confusion and wrong redshifts in the literature. NGC 5011C attracted our attention since, at a putative distance of 45.3 Mpc, it would be a peculiar object with a very low surface brightness typical of a dwarf galaxy and, at the same time, a size typical of an early-type spiral or S0 galaxy. To confirm or reject this peculiarity, our immediate objective was to have the first reliable measurement of its recession velocity. The observations were carried out with EFOSC2 at the 3.6 m European Southern Observatory (ESO) telescope, and the spectra were obtained with the instrument in long-slit mode. The redshifts of both NGC 5011C and its neighbor NGC 5011B were computed by cross-correlating their spectra with that of a radial velocity standard star. We found that NGC 5011C indeed has a low redshift of vodot = 647 ± 96 km s-1 and thus is a nearby dwarf galaxy rather than a member of the distant Centaurus cluster, as believed for the past 23 years. Rough distance estimates based on photometric parameters also favor this scenario. As a by-product of our study we update the redshift for NGC 5011B to vodot = 3227 ± 50 km s-1. Applying population synthesis techniques, we find that NGC 5011B has a luminosity-weighted age of 4 ± 1 Gyr and a solar metallicity, and that the luminosity-weighted age and metallicity of NGC 5011C are 0.9 ± 0.1 Gyr and 1/5 solar. Finally, we estimate a stellar mass of NGC 5011C comparable to that of dwarf spheroidal galaxies in the Local Group. Based on observations made with European Southern Observatory telescopes at the

  20. Seeking large-scale magnetic fields in a pure-disk dwarf galaxy NGC 2976

    Science.gov (United States)

    Drzazga, R. T.; Chyży, K. T.; Heald, G. H.; Elstner, D.; Gallagher, J. S.

    2016-05-01

    Aims: It is still unknown how magnetic field-generation mechanisms could operate in low-mass dwarf galaxies. Here, we present a detailed study of a nearby pure-disk dwarf galaxy NGC 2976. Unlike previously observed dwarf objects, this galaxy possesses a clearly defined disk. We also discuss whether NGC 2976 could serve as a potential source of the intergalactic magnetic field. Methods: For the purpose of our studies, we performed deep multi-frequency polarimetric observations of NGC 2976 with the VLA and Effelsberg radio telescopes. Additionally, we supplement them with re-imaged data from the WSRT-SINGS survey for which a rotation measure (RM) synthesis was performed. A new weighting scheme for the RM synthesis algorithm, consisting of including information about the quality of data in individual frequency channels, was proposed and investigated. Application of this new weighting to the simulated data, as well as to the observed data, results in an improvement of the signal-to-noise ratio in the Faraday depth space. Results: The magnetic field morphology discovered in NGC 2976 consists of a southern polarized ridge. This structure does not seem to be due to just a pure large-scale dynamo process (possibly cosmic-ray driven) at work in this object, as indicated by the RM data and dynamo number calculations. Instead, the field of NGC 2976 is modified by past gravitational interactions and possibly also by ram pressure inside the M 81 galaxy group environment. The estimates of total (7 μG) and ordered (3 μG) magnetic field strengths, as well as degree of field order (0.46), which is similar to those observed in spirals, suggest that tidally generated magnetized gas flows can further enhance dynamo action in the object. NGC 2976 is apparently a good candidate for the efficient magnetization of its neighbourhood. It is able to provide an ordered (perhaps also regular) magnetic field into the intergalactic space up to a distance of about 5 kpc. Conclusions: Tidal