WorldWideScience

Sample records for bulge giants probing

  1. Chemical similarities between Galactic bulge and local thick disk red giant stars

    OpenAIRE

    Melendez, J.; Asplund, M.; Alves-Brito, A.; Cunha, K.; B. Barbuy; Bessell, M. S.; Chiappini, C.; Freeman, K. C.; Ramirez, I.; Smith, V.V.; Yong, D.

    2008-01-01

    The evolution of the Milky Way bulge and its relationship with the other Galactic populations is still poorly understood. The bulge has been suggested to be either a merger-driven classical bulge or the product of a dynamical instability of the inner disk. To probe the star formation history, the initial mass function and stellar nucleosynthesis of the bulge, we performed an elemental abundance analysis of bulge red giant stars. We also completed an identical study of local thin disk, thick d...

  2. Manganese abundances in Galactic bulge red giants

    CERN Document Server

    Barbuy, B; Zoccali, M; Minniti, D; Renzini, A; Ortolani, S; Gomez, A; Trevisan, M; Dutra, N

    2013-01-01

    Manganese is mainly produced in type II SNe during explosive silicon burning, in incomplete Si-burning regions, and depends on several nucleosynthesis environment conditions, such as mass cut beween the matter ejected and falling back onto the remnant, electron and neutron excesses, mixing fallback, and explosion energy. Manganese is also produced in type Ia SNe. The aim of this work is the study of abundances of the iron-peak element Mn in 56 bulge giants, among which 13 are red clump stars. Four bulge fields along the minor axis are inspected. The study of abundances of Mn-over-Fe as a function of metallicity in the Galactic bulge may shed light on its production mechanisms. High-resolution spectra were obtained using the FLAMES+UVES spectrograph on the Very Large Telescope. The spectra were obtained within a program to observe 800 stars using the GIRAFFE spectrograph, together with the present UVES spectra. We aim at identifying the chemical evolution of manganese, as a function of metallicity, in the Gala...

  3. Chemical Evolution of the Galactic Bulge as Derived from High-Resolution Infrared Spectroscopy of K and M Red Giants

    CERN Document Server

    Cunha, K; Cunha, Katia; Smith, Verne V.

    2006-01-01

    We present chemical abundances in K and M red-giant members of the Galactic bulge derived from high-resolution infrared spectra obtained with the Phoenix spectrograph on Gemini-South. The elements studied are carbon, nitrogen, oxygen, sodium, titanium, and iron. The evolution of C and N abundances in the studied red-giants show that their oxygen abundances represent the original values with which the stars were born. Oxygen is a superior element for probing the timescale of bulge chemical enrichment via [O/Fe] versus [Fe/H]. The [O/Fe]-[Fe/H] relation in the bulge does not follow the disk relation, with [O/Fe] values falling above those of the disk. Titanium also behaves similarly to oxygen with respect to iron. Based on these elevated values of [O/Fe] and [Ti/Fe] extending to large Fe abundances, it is suggested that the bulge underwent a more rapid chemical enrichment than the halo. In addition, there are declines in both [O/Fe] and [Ti/Fe] in those bulge targets with the largest Fe abundances, signifying a...

  4. Heavy elements Ba, La, Ce, Nd, and Eu in 56 Galactic bulge red giants

    CERN Document Server

    Van der Swaelmen, M; Hill, V; Zoccali, M; Minniti, D; Ortolani, S; Gomez, A

    2016-01-01

    Aims. The aim of this work is the study of abundances of the heavy elements Ba, La, Ce, Nd, and Eu in 56 bulge giants (red giant branch and red clump) with metallicities ranging from -1.3 dex to 0.5 dex. Methods. We obtained high-resolution spectra of our giant stars using the FLAMES-UVES spectrograph on the Very Large Telescope. We inspected four bulge fields along the minor axis. Results. We measure the chemical evolution of heavy elements, as a function of metallicity, in the Galactic bulge. Conclusions. The [Ba, La, Ce, Nd/Fe] vs. [Fe/H] ratios decrease with increasing metallicity, in which aspect they differ from disc stars. In our metal-poor bulge stars, La and Ba are enhanced relative to their thick disc counterpart, while in our metal-rich bulge stars La and Ba are underabundant relative to their disc counterpart. Therefore, this contrast between bulge and discs trends indicates that bulge and (solar neighbourhood) thick disc stars could behave differently. An increase in [La, Nd/Eu] with increasing m...

  5. Detached Red Giant Eclipsing Binary Twins: Rosetta Stones to the Galactic Bulge

    CERN Document Server

    Nataf, David M; Pinsonneault, Marc H

    2012-01-01

    We identify 34 highly-probable detached, red giant eclipsing binary pairs among 315 candidates in Devor's catalog of $\\sim$10,000 OGLE-II eclipsing binaries. We estimate that there should be at least 200 such systems in OGLE-III. We show that spectroscopic measurements of the metallicities and radial-velocity-derived masses of these systems would independently constrain both the age-metallicity and helium-metallicity relations of the Galactic Bulge, potentially breaking the age-helium degeneracy that currently limits our ability to characterize the Bulge stellar population. Mass and metallicity measurements alone would be sufficient to immediately validate or falsify recent claims about the age and helium abundance of the Bulge. A spectroscopic survey of these systems would constrain models of Milky Way assembly, as well as provide significant auxiliary science on research questions such as mass loss on the red giant branch. We discuss the theoretical uncertainties in stellar evolution models that would need ...

  6. Zinc abundances in Galactic bulge field red giants: implications for DLA systems

    CERN Document Server

    Barbuy, B; da Silveira, C R; Hill, V; Zoccali, M; Minniti, D; Renzini, A; Ortolani, S; Gomez, A

    2015-01-01

    Zinc in stars is an important reference element because it is a proxy to Fe in studies of damped Lyman-alpha systems, permitting a comparison of chemical evolution histories of bulge stellar populations and DLAs. In terms of nucleosynthesis, it behaves as an alpha element because it is enhanced in metal-poor stars. The aim of this work is to derive the iron-peak element Zn abundances in 56 bulge giants from high resolution spectra. These results are compared with data from other bulge samples, as well as from disk and halo stars, and damped Lyman-alpha systems, in order to better understand the chemical evolution in these environments. High-resolution spectra were obtained using FLAMES+UVES on the Very Large Telescope. We find [Zn/Fe]=+0.24+-0.02 in the range -1.3 -0.1, it shows a spread of -0.60 < [Zn/Fe] < +0.15, with most of these stars having low [Zn/Fe]<0.0. These low zinc abundances at the high metallicity end of the bulge define a decreasing trend in [Zn/Fe] with increasing metallicities. A c...

  7. Microlensing Optical Depth towards the Galactic Bulge Using Clump Giants from the MACHO Survey

    Energy Technology Data Exchange (ETDEWEB)

    Popowski, P; Griest, K; Thomas, C L; Cook, K H; Bennett, D P; Becker, A C; Alves, D R; Minniti, D; Drake, A J; Alcock, C; Allsman, R A; Axelrod, T S; Freeman, K C; Geha, M; Lehner, M J; Marshall, S L; Nelson, C A; Peterson, B A; Quinn, P J; Stubbs, C W; Sutherland, W; Vandehei, T; Welch, D

    2005-07-14

    Using 7 years of MACHO survey data, we present a new determination of the optical depth to microlensing towards the Galactic bulge. We select the sample of 62 microlensing events (60 unique) on clump giant sources and perform a detailed efficiency analysis. We use only the clump giant sources because these are bright bulge stars and are not as strongly affected by blending as other events. Using a subsample of 42 clump events concentrated in an area of 4.5 deg{sup 2} with 739000 clump giant stars, we find {tau} = 2.17{sub -0.38}{sup +0.47} x 10{sup -6} at (l,b) = (1{sup o}.50, -2{sup o}.68), somewhat smaller than found in most previous MACHO studies, but in excellent agreement with recent theoretical predictions. We also present the optical depth in each of the 19 fields in which we detected events, and find limits on optical depth for fields with no events. The errors in optical depth in individual fields are dominated by Poisson noise. We measure optical depth gradients of (1.06 {+-} 0.71) x 10{sup -6}deg{sup -1} and (0.29 {+-} 0.43) x 10{sup -6}deg{sup -1} in the galactic latitude b and longitude l directions, respectively. Finally, we discuss the possibility of anomalous duration distribution of events in the field 104 centered on (l,b) = (3{sup o}.11, -3{sup o}.01) as well as investigate spatial clustering of events in all fields.

  8. CHEMICAL ABUNDANCE ANALYSIS OF A NEUTRON-CAPTURE ENHANCED RED GIANT IN THE BULGE PLAUT FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian I.; Rich, R. Michael [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); McWilliam, Andrew, E-mail: cijohnson@astro.ucla.edu, E-mail: rmr@astro.ucla.edu, E-mail: cjohnson@cfa.harvard.edu, E-mail: andy@obs.carnegiescience.edu [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States)

    2013-09-20

    We present chemical abundances for 27 elements ranging from oxygen to erbium in the metal-poor ([Fe/H] = –1.67) bulge red giant branch star 2MASS 18174532-3353235. The results are based on equivalent width and spectrum synthesis analyses of a high-resolution (R ∼ 30, 000) spectrum obtained with the Magellan-MIKE spectrograph. While the light (Z ∼< 30) element abundance patterns match those of similar metallicity bulge and halo stars, the strongly enhanced heavy element abundances are more similar to 'r-II' halo stars (e.g., CS 22892-052) typically found at [Fe/H] ∼< – 2.5. We find that the heaviest elements (Z ≥ 56) closely follow the scaled-solar r-process abundance pattern. We do not find evidence supporting significant s-process contributions; however, the intermediate mass elements (e.g., Y and Zr) appear to have been produced through a different process than the heaviest elements. The light and heavy element abundance patterns of 2MASS 18174532-3353235 are in good agreement with the more metal-poor r-process enhanced stars CS 22892-052 and BD +17{sup o}3248. 2MASS 18174532-3353235 also shares many chemical characteristics with the similar metallicity but comparatively α-poor Ursa Minor dwarf galaxy giant COS 82. Interestingly, the Mo and Ru abundances of 2MASS 18174532-3353235 are also strongly enhanced and follow a similar trend recently found to be common in moderately metal-poor main-sequence turn-off halo stars.

  9. High resolution spectroscopic analysis of seven giants in the bulge globular cluster NGC 6723

    CERN Document Server

    Rojas-Arriagada, A; Vásquez, S; Ripepi, V; Musella, I; Marconi, M; Grado, A; Limatola, L

    2016-01-01

    Globular clusters associated with the Galactic bulge are important tracers of stellar populations in the inner Galaxy. High resolution analysis of stars in these clusters allows us to characterize them in terms of kinematics, metallicity, and individual abundances, and to compare these fingerprints with those characterizing field populations. We present iron and element ratios for seven red giant stars in the globular cluster NGC~6723, based on high resolution spectroscopy. High resolution spectra ($R\\sim48~000$) of seven K giants belonging to NGC 6723 were obtained with the FEROS spectrograph at the MPG/ESO 2.2m telescope. Photospheric parameters were derived from $\\sim130$ FeI and FeII transitions. Abundance ratios were obtained from line-to-line spectrum synthesis calculations on clean selected features. An intermediate metallicity of [Fe/H]$=-0.98\\pm0.08$ dex and a heliocentric radial velocity of $v_{hel}=-96.6\\pm1.3~km s^{-1}$ were found for NGC 6723. Alpha-element abundances present enhancements of $[O/...

  10. Probing cosmic plasma with giant radio pulses

    CERN Document Server

    Kondratiev, V I; Soglasnov, V A; Kovalev, Y Y; Bartel, N; Cannon, W; Novikov, A Y

    2007-01-01

    VLBI observations of the Crab pulsar with the 64-m radio telescope at Kalyazin (Russia) and the 46-m radio telescope of the Algonquin Radio Observatory (Canada) at 2.2 GHz and single-dish observations of the millisecond pulsar B1937+21 with the GBT (USA) at 2.1 GHz were conducted to probe the interstellar medium and study the properties of giant pulses. The VLBI data were processed with a dedicated software correlator, which allowed us to obtain the visibility of single giant pulses. Two frequency scales of 50 and 450 kHz were found in the diffraction spectra of giant pulses from the Crab pulsar. The location of the scattering region was estimated to be close to the outer edge of the nebula. No correlation was found between the power spectra of giant pulses at left- and right-hand circular polarization. We explain this lack of correlation through the influence of the strong magnetic field on circularly polarized emission in the region close to the Crab pulsar. Combining the measurement of the decorrelation ba...

  11. Temperatures and metallicities of M giants in the galactic Bulge from low-resolution K-band spectra

    CERN Document Server

    Schultheis, M; Nandakumar, G

    2016-01-01

    With the existing and upcoming large multi-fibre low-resolution spectrographs, the question arises how precise stellar parameters such as Teff and [Fe/H] can be obtained from low-resolution K-band spectra with respect to traditional photometric temperature measurements. Until now, most of the effective temperatures in galactic Bulge studies come directly from photometric techniques. Uncertainties in interstellar reddening and in the assumed extinction law could lead to large systematic errors. We aim to obtain and calibrate the relation between Teff and the $\\rm ^{12}CO$ first overtone bands for M giants in the galactic Bulge covering a wide range in metallicity. We use low-resolution spectra for 20 M giants with well-studied parameters from photometric measurements covering the temperature range 3200 < Teff < 4500 K and a metallicity range from 0.5 dex down to -1.2 dex and study the behaviour of Teff and [Fe/H] on the spectral indices. We find a tight relation between Teff and the $\\rm ^{12}CO(2-0)$ ba...

  12. Using 3D Spectroscopy to Probe the Orbital Structure of Composite Bulges

    CERN Document Server

    Erwin, Peter; Thomas, Jens; Fabricius, Maximilian; Bender, Ralf; Rusli, Stephanie; Nowak, Nina; Beckman, John E; Beltrán, Juan Carlos Vega

    2014-01-01

    Detailed imaging and spectroscopic analysis of the centers of nearby S0 and spiral galaxies shows the existence of "composite bulges", where both classical bulges and disky pseudobulges coexist in the same galaxy. As part of a search for supermassive black holes in nearby galaxy nuclei, we obtained VLT-SINFONI observations in adaptive-optics mode of several of these galaxies. Schwarzschild dynamical modeling enables us to disentangle the stellar orbital structure of the different central components, and to distinguish the differing contributions of kinematically hot (classical bulge) and kinematically cool (pseudobulge) components in the same galaxy.

  13. Probing giant magnetoresistance with THz spectroscopy

    DEFF Research Database (Denmark)

    Jin, Zuanming; Tkach, Alexander; Casper, Frederick;

    2014-01-01

    We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined. © 2014 OSA.......We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined. © 2014 OSA....

  14. High-resolution abundance analysis of red giants in the metal-poor bulge globular cluster HP~1

    CERN Document Server

    Barbuy, B; Vemado, A; Ernandes, H; Ortolani, S; Saviane, I; Bica, E; Minniti, D; Dias, B; Momany, Y; Hill, V; Zoccali, M; Siqueira-Mello, C

    2016-01-01

    The globular cluster HP~1 is projected at only 3.33 degrees from the Galactic center. Together with its distance, this makes it one of the most central globular clusters in the Milky Way. It has a blue horizontal branch (BHB) and a metallicity of [Fe/H]~-1.0. This means that it probably is one of the oldest objects in the Galaxy. Abundance ratios can reveal the nucleosynthesis pattern of the first stars as well as the early chemical enrichment and early formation of stellar populations. High-resolution spectra obtained for six stars were analyzed to derive the abundances of the light elements C, N, O, Na, and Al, the alpha-elements Mg, Si, Ca, and Ti, and the heavy elements Sr, Y , Zr, Ba, La, and Eu.} High-resolution spectra of six red giants that are confirmed members of the bulge globular cluster HP~1 were obtained with the 8m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. The spectroscopic parameter derivation was based on the excitation and ionization equilibrium of FeI...

  15. Handheld, giant magnetoresistive-sensor-based eddy current probes

    Science.gov (United States)

    Brady, S. K.; Palmer, D. D.

    2012-05-01

    The minimum crack length detectable with conventional eddy current probes increases dramatically as the thickness of metal through which the inspection is performed increases. The skin depth phenomenon is unavoidable, and demands low frequency inspection, hindering sensitivity. However, one time derivative introduced by Faraday's Law can be avoided by using giant magnetoresistive sensors to detect eddy currents instead of conventional coils, improving sensitivity. The theory will be explained, along with some probe designs and the observed benefits in sensitivity.

  16. The SLUGGS survey: Probing the supermassive black hole connection with bulges and haloes using red and blue globular cluster systems

    CERN Document Server

    Pota, Vincenzo; Forbes, Duncan A; Romanowsky, Aaron J; Brodie, Jean P; Strader, Jay

    2013-01-01

    Understanding whether the bulge or the halo provides the primary link to the growth of supermassive black holes has strong implications for galaxy evolution and supermassive black hole formation itself. In this paper, we approach this issue by investigating extragalactic globular cluster (GC) systems, which can be used to probe the physics of both the bulge and the halo of the host galaxy. We study the relation between the supermassive black hole masses M_BH and the globular cluster system velocity dispersions sigma_GC using an updated and improved sample of 21 galaxies. We exploit the dichotomy of globular cluster system colours, to test if the blue and red globular clusters correlate differently with black hole mass. This may be expected if they trace the potentially different formation history of the halo and of the bulge of the host galaxy respectively. We find that M_BH correlates with the total GC system velocity dispersion, although not as strongly as claimed by recent work of Sadoun & Colin. We al...

  17. Null-Wave Giant Gravitons from Thermal Spinning Brane Probes

    CERN Document Server

    Armas, Jay; Pedersen, Andreas Vigand

    2013-01-01

    We construct and analyze thermal spinning giant gravitons in type II/M-theory based on spherically wrapped black branes, using the method of thermal probe branes originating from the blackfold approach. These solutions generalize in different directions recent work in which the case of thermal (non-spinning) D3-brane giant gravitons was considered, and reveal a rich phase structure with various new properties. First of all, we extend the construction to M-theory, by constructing thermal giant graviton solutions using spherically wrapped M2- and M5-branes. More importantly, we switch on new quantum numbers, namely internal spins on the sphere, which are not present in the usual extremal limit for which the brane world volume stress tensor is Lorentz invariant. We examine the effect of this new type of excitation and in particular analyze the physical quantities in various regimes, including that of small temperatures as well as low/high spin. As a byproduct we find new stationary dipole-charged black hole solu...

  18. Bulge Formation

    CERN Document Server

    Combes, F

    1999-01-01

    The currently discussed theories of bulge formation are reviewed, including the primordial scenario, where bulges form rapidly and then accrete disks, the secular scenario, where bulges are formed by dynamical evolution of disks through bars and galaxy interactions, and some combinations of both, where formation of bulges and disks are more continuous and interleaved. The various scenarios make specific predictions about the relative masses, angular momenta, colours, metallicities of bulges relative to disks, and the bulge-to-disk ratio as a function of time. Dynamical processes relevant to the formation of bulges (bar instabilities, mergers) are described and tested against observed statistics. Current data suggest a dynamical feedback from gravitational instabilities in bulge and disk formation. It is very difficult to discriminate between the various scenarios from surveys at z=0 only, and observations at high redshift are presently the best hope for large progress.

  19. Two Groups of Red Giants with Distinct Chemical Abundances in the Bulge Globular Cluster NGC 6553 Through the Eyes of APOGEE

    CERN Document Server

    Tang, Baitian; Geisler, Doug; Schiavon, Ricardo; Majewski, Steven R; Villanova, Sandro; Carrera, Ricardo; Zamora, Olga; Garcia-Hernandez, D A; Shetrone, Matthew; Frinchaboy, Peter; Meza, Andres; Fernández-Trincado, J G; Muñoz, Ricardo R; Lin, Chien-Cheng; Lane, Richard R; Nitschelm, Christian; Pan, Kaike; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey

    2016-01-01

    Multiple populations revealed in globular clusters (GCs) are important windows to the formation and evolution of these stellar systems. The metal-rich GCs in the Galactic bulge are an indispensable part of this picture, but the high optical extinction in this region has prevented extensive research. In this work, we use the high resolution near-infrared (NIR) spectroscopic data from APOGEE to study the chemical abundances of NGC 6553, which is one of the most metal-rich bulge GCs. We identify ten red giants as cluster members using their positions, radial velocities, iron abundances, and NIR photometry. Our sample stars show a mean radial velocity of $-0.14\\pm5.47$ km s$^{-1}$, and a mean [Fe/H] of $-0.15\\pm 0.05$. We clearly separate two populations of stars in C and N in this GC for the first time. NGC 6553 is the most metal-rich GC where the multiple stellar population phenomenon is found until now. Substantial chemical variations are also found in Na, O, and Al. However, the two populations show similar S...

  20. Bulge growth through disk instabilities in high-redshift galaxies

    CERN Document Server

    Bournaud, Frederic

    2015-01-01

    The role of disk instabilities, such as bars and spiral arms, and the associated resonances, in growing bulges in the inner regions of disk galaxies have long been studied in the low-redshift nearby Universe. There it has long been probed observationally, in particular through peanut-shaped bulges. This secular growth of bulges in modern disk galaxies is driven by weak, non-axisymmetric instabilities: it mostly produces pseudo-bulges at slow rates and with long star-formation timescales. Disk instabilities at high redshift (z>1) in moderate-mass to massive galaxies (10^10 to a few 10^11 Msun of stars) are very different from those found in modern spiral galaxies. High-redshift disks are globally unstable and fragment into giant clumps containing 10^8-10^9 Msun of gas and stars each, which results in highly irregular galaxy morphologies. The clumps and other features associated to the violent instability drive disk evolution and bulge growth through various mechanisms, on short timescales. The giant clumps can...

  1. Chemistry of the Galactic Bulge: New Results

    Science.gov (United States)

    Zoccali, Manuela; Hill, Vanessa; Barbuy, Beatriz; Lecureur, Aurelie; Minniti, Dante; Renzini, Alvio; Gonzalez, Oscar; Gómez, Ana; Ortolani, Sergio

    2009-06-01

    VLT-FLAMES observations provide by far the largest sample of high dispersion spectra of Bulge red giants available. Five years of work on these 900 spectra have yielded the abundances of different elements in the Milky Way Bulge, and new results on its formation. The results so far include the Bulge metallicity distribution, the Bulge metallicity gradient, the metallicity dependence on kinematics, the history of enrichment with alpha-elements, as well as the lithium abundance. The evidence collected on Milky Way Bulge chemical enrichment supports a rapid early formation scenario, and the metallicity gradient argues against formation via secular bar evolution.

  2. Galactic bulges

    CERN Document Server

    Peletier, Reynier; Gadotti, Dimitri

    2016-01-01

    This book consists of invited reviews on Galactic Bulges written by experts in the field. A central point of the book is that, while in the standard picture of galaxy formation a significant amount of the baryonic mass is expected to reside in classical bulges, the question what is the fraction of galaxies with no classical bulges in the local Universe has remained open. The most spectacular example of a galaxy with no significant classical bulge is the Milky Way. The reviews of this book attempt to clarify the role of the various types of bulges during the mass build-up of galaxies, based on morphology, kinematics, and stellar populations, and connecting their properties at low and high redshifts. The observed properties are compared with the predictions of the theoretical models, accounting for the many physical processes leading to the central mass concentration and their destruction in galaxies. This book serves as an entry point for PhD students and non-specialists and as a reference work for researchers...

  3. The Bulge of M31

    CERN Document Server

    Mould, Jeremy

    2013-01-01

    Bulges are not just elliptical subgalaxies situated in the centers of large spirals. It might seem that way from their ages and chemistry, but bulge kinematics have been known to be different since the first long slit spectra were obtained. M31 presents the best opportunity to investigate all the issues of the stellar populations of bulges. This review collects the array of probing data that has been accumulated in the last decade. But the intriguing question `how did it form like this ?' remains.

  4. Fluorine Abundances in the Milky Way Bulge

    CERN Document Server

    Cunha, K; Gibson, B K

    2008-01-01

    Fluorine (19F) abundances are derived in a sample of 6 bulge red giants in Baade's Window. These giants span a factor of 10 in metallicity and this is the first study to define the behavior of 19F with metallicity in the bulge. The bulge results show an increase in F/O with increasing oxygen. This trend overlaps what is found in the disk at comparable metallicities, with the most oxygen-rich bulge target extending the disk trend. The increase in F/O in the disk arises from 19F synthesis in both asymptotic giant branch (AGB) stars and metal-rich Wolf-Rayet (WR) stars through stellar winds. The lack of an s-process enhancement in the most fluorine-rich bulge giant in this study, suggests that WR stars represented a larger contribution than AGB stars to 19F production in the bulge when compared to the disk. If this result for fluorine is combined with the previously published overall decline in the O/Mg abundance ratios in metal-rich bulge stars, it suggests that WR winds played a role in shaping chemical evolut...

  5. Constraining the structure and formation of the Galactic bulge from a field in its outskirts. FLAMES-GIRAFFE spectra of $\\sim400$ red giants around $(l,b)=(0\\degr,-10\\degr)$

    CERN Document Server

    Uttenthaler, Stefan; Nataf, David M; Robin, Annie C; Lebzelter, Thomas; Chen, B

    2012-01-01

    The presence of two stellar populations in the Milky Way bulge has been reported recently. We aim at studying the abundances and kinematics of stars in the outer bulge, thereby providing additional constraints on models of its formation. Spectra of 401 red giant stars in a field at (l,b)=(0{\\deg},-10{\\deg}) were obtained with FLAMES at the VLT. Stars of luminosities down to below the two bulge red clumps (RCs) are included. From these spectra we measure general metallicities, abundances of Fe and the alpha-elements, and radial velocities (RV) of the stars. These measurements as well as photometric data are compared to simulations with the Besancon and TRILEGAL models of the Galaxy. We confirm the presence of two populations among our sample stars: i) a metal-rich one at [M/H] ~+0.3, comprising about 30% of the sample, with low RV dispersion and low alpha-abundance, and ii) a metal-poor population at [M/H] ~-0.6 with high RV dispersion and high alpha-abundance. The metal-rich population could be connected to t...

  6. Giant machine set to probe secrets of the universe

    CERN Multimedia

    2006-01-01

    "Deep underground on the Franco-Swiss border someone will throw a switch next year to start one of the most ambitious experiments in history, probing the secrets of the universe and possibly finding new dimensions." (1 page)

  7. Giant machine set to probe secrets of the universe

    CERN Multimedia

    2006-01-01

    "Deep underground on the Franco-Swiss border someone will throw a switch next year to start one of the most ambitious experiments in history, probing the secrets of the universe and possibly finding new dimensions." (2/3 page)

  8. The Calcium Triplet metallicity calibration for galactic bulge stars

    CERN Document Server

    Vasquez, S; Hill, V; Gonzalez, O A; Saviane, I; Rejkuba, M; Battaglia, G

    2015-01-01

    We present a new calibration of the Calcium II Triplet equivalent widths versus [Fe/H], constructed upon K giant stars in the Galactic bulge. This calibration will be used to derive iron abundances for the targets of the GIBS survey, and in general it is especially suited for solar and supersolar metallicity giants, typical of external massive galaxies. About 150 bulge K giants were observed with the GIRAFFE spectrograph at VLT, both at resolution R~20,000 and at R~6,000. In the first case, the spectra allowed us to perform direct determination of Fe abundances from several unblended Fe lines, deriving what we call here high resolution [Fe/H] measurements. The low resolution spectra allowed us to measure equivalent widths of the two strongest lines of the near infrared Calcium II triplet at 8542 and 8662 A. By comparing the two measurements we derived a relation between Calcium equivalent widths and [Fe/H] that is linear over the metallicity range probed here, -1<[Fe/H]<+0.7. By adding a small second or...

  9. The Asymptotic Giant Branch and the Tip of the Red Giant Branch as Probes of Star Formation History: The Nearby Dwarf Irregular Galaxy KKH 98

    OpenAIRE

    Melbourne, J.; Williams, B.; Dalcanton, J.; Ammons, S. M.; Max, C.; Koo, D.C.; Girardi, Leo; Dolphin, A.

    2010-01-01

    We investigate the utility of the asymptotic giant branch (AGB) and the red giant branch (RGB) as probes of the star formation history (SFH) of the nearby (D=2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (IR) Keck Laser Guide Star Adaptive Optics (AO) images resolve 592 IR bright stars reaching over 1 magnitude below the Tip of the Red Giant Branch. Significantly deeper optical (F475W and F814W) Hubble Space Telescope images of the same field contain over 2500 stars, reaching to the ...

  10. Stars and Planetary Nebulae in the Galactic Bulge

    CERN Document Server

    Cuisinier, F; Acker, A; Maciel, W J

    2000-01-01

    We compare the populations of Red Giant stars and Planetary Nebulae in the Galactic Bulge, in the light of recent determinations of their abundances patterns. We find both populations to be compatible. From the planetary nebulae, we find evidences that the Bulge did not form stars recently. The whole abundances pattern remains however puzzling, some elements favoring a quick evolution of the Galactic Bulge (Mg and Ti), and others a much slower one (He, O, Si, S, Ar and Ca).

  11. OGLE-2015-BLG-0051/KMT-2015-BLG-0048Lb: a Giant Planet Orbiting a Low-mass Bulge Star Discovered by High-cadence Microlensing Surveys

    CERN Document Server

    Han, C; Gould, A; Bozza, V; Jung, Y K; Albrow, M D; Kim, S -L; Lee, C -U; Cha, S -M; Kim, D -J; Lee, Y; Park, B -G; Shin, I -G; Szymański, M K; Soszyński, I; Skowron, J; Mróz, P; Poleski, R; Pietrukowicz, P; Kozłowski, S; Ulaczyk, K; Wyrzykowski, Ł; Pawlak, M

    2016-01-01

    We report the discovery of an extrasolar planet detected from the combined data of a microlensing event OGLE-2015-BLG-0051/KMT-2015-BLG-0048 acquired by two microlensing surveys. Despite that the short planetary signal occurred in the very early Bulge season during which the lensing event could be seen for just about an hour, the signal was continuously and densely covered. From the Bayesian analysis using models of the mass function, matter and velocity distributions combined with the information of the angular Einstein radius, it is found that the host of the planet is located in the Galactic bulge. The planet has a mass $0.72_{-0.07}^{+0.65}\\ M_{\\rm J}$ and it is orbiting a low-mass M-dwarf host with a projected separation $d_\\perp=0.73 \\pm 0.08$ AU. The discovery of the planet demonstrates the capability of the current high-cadence microlensing lensing surveys in detecting and characterizing planets.

  12. Bulge Microlensing Optical Depth from EROS 2 observations

    CERN Document Server

    Afonso, C; Alard, C; Andersen, J; Ansari, R; Aubourg, E; Bareyre, P; Bauer, F; Beaulieu, J P; Blanc, G

    2003-01-01

    We present a measurement of the microlensing optical depth toward the Galactic bulge based on the analysis of 15 contiguous1 square degrees fields centered on (l=2.5 deg, b=-4.0 deg) and containing 1.42 million clump-giant stars (belonging to the extended clump area) monitored during almost three bulge seasons by EROS (Experience de Recherche d'Objets Sombres). We find a microlensing optical depth towards the bulge tau_bulge=0.94 +/- 0.29 10^-6 averaged over all fields, based on 16 microlensing events with clump giants as sources. This value is substantially below several other determinations by the MACHO and OGLE groups and is more in agreement with what is expected from axisymmetric and non-axisymmetric bulge models.

  13. What planetary nebulae tell us about helium and the CNO elements in Galactic bulge stars

    OpenAIRE

    Buell, James F.

    2012-01-01

    Thermally pulsing asymptotic giant branch (TP-AGB) models of bulge stars are calculated using a synthetic model. The goal is to infer typical progenitor masses and compositions by reproducing the typical chemical composition and central star masses of planetary nebulae (PNe) in the Galactic bulge. The AGB tip luminosity and the observation that the observed lack of bright carbon stars in the bulge are matched by the models. Five sets of galactic bulge PNe were analyzed to find typical abundan...

  14. Capture of field stars by globular clusters in dense bulge regions

    CERN Document Server

    Bica, E; Ortolan, S; Barbuy, B; Bica, Eduardo; Dottori, Horacio; Ortolan, Sergio; Barbuy, Beatriz

    1997-01-01

    The recent detection of a double Red Giant Branch in the optical color-magnitude diagram (CMD) of the bulge globular cluster HP1 (Ortolani et al. 1997), a more populated metal-poor steep one corresponding to the cluster itself, and another metal-rich curved, led us to explore in the present Letter the possibility of capture of field stars by a globular cluster orbiting in dense bulge regions over several gigayears. Analytical arguments, as well as N-body calculations for a cluster model of 10^5 solar masses in a bulge-like environment, suggest that a significant fraction of cluster stars may consist of captures. Metal-poor globular clusters in the inner bulge, like HP1, contrasting at least in Delta [Fe/H] = 1.0 dex with respect to the surrounding metal-rich stars, are ideal probes to further test the capture scenario. In turn, if this scenario is confirmed, the double RGB of HP1 could provide direct estimates of blanketing amounts, which is fundamental for the photometric calibration of metal-rich stellar po...

  15. Polar-bulge galaxies

    CERN Document Server

    Reshetnikov, V P; Mosenkov, A V; Sotnikova, N Ya; Bizyaev, D V

    2015-01-01

    Based on SDSS data, we have selected a sample of nine edge-on spiral galaxies with bulges whose major axes show a high inclination to the disk plane. Such objects are called polar-bulge galaxies. They are similar in their morphology to polar-ring galaxies, but the central objects in them have small size and low luminosity. We have performed a photometric analysis of the galaxies in the g and r bands and determined the main characteristics of their bulges and disks. We show that the disks of such galaxies are typical for the disks of spiral galaxies of late morphological types. The integrated characteristics of their bulges are similar to the parameters of normal bulges. The stellar disks of polar-bulge galaxies often show large-scale warps, which can be explained by their interaction with neighboring galaxies or external accretion from outside.

  16. Giant Radio Halos in Galaxy Clusters as Probes of Particle Acceleration in Turbulent Regions

    Indian Academy of Sciences (India)

    G. Brunetti

    2011-12-01

    Giant radio halos in galaxy clusters probe mechanisms of particle acceleration connected with cluster merger events. Shocks and turbulence are driven in the inter-galactic medium (IGM) during clusters mergers and may have a deep impact on the non-thermal properties of galaxy clusters. Models of turbulent (re)acceleration of relativistic particles allow good correspondence with present observations, from radio halos to -ray upper limits, although several aspects of this complex scenario still remain poorly understood. After providing basic motivations for turbulent acceleration in galaxy clusters, we discuss relevant aspects of the physics of particle acceleration by MHD turbulence and the expected broad-band non-thermal emission from galaxy clusters. We discuss (in brief) the most important results of turbulent (re)acceleration models, the open problems, and the possibilities to test models with future observations. In this respect, further constraints on the origin of giant nearby radio halos can also be obtained by combining their (spectral and morphological) properties with the constraints from -ray observations of their parent clusters.

  17. MOA-2011-BLG-262Lb: A sub-Earth-mass moon orbiting a gas giant primary or a high velocity planetary system in the galactic Bulge

    International Nuclear Information System (INIS)

    We present the first microlensing candidate for a free-floating exoplanet-exomoon system, MOA-2011-BLG-262, with a primary lens mass of M host ∼ 4 Jupiter masses hosting a sub-Earth mass moon. The argument for an exomoon hinges on the system being relatively close to the Sun. The data constrain the product ML πrel where ML is the lens system mass and πrel is the lens-source relative parallax. If the lens system is nearby (large πrel), then ML is small (a few Jupiter masses) and the companion is a sub-Earth-mass exomoon. The best-fit solution has a large lens-source relative proper motion, μrel = 19.6 ± 1.6 mas yr–1, which would rule out a distant lens system unless the source star has an unusually high proper motion. However, data from the OGLE collaboration nearly rule out a high source proper motion, so the exoplanet+exomoon model is the favored interpretation for the best fit model. However, there is an alternate solution that has a lower proper motion and fits the data almost as well. This solution is compatible with a distant (so stellar) host. A Bayesian analysis does not favor the exoplanet+exomoon interpretation, so Occam's razor favors a lens system in the bulge with host and companion masses of Mhost=0.12−0.06+0.19 M⊙ and mcomp=18−10+28 M⊕, at a projected separation of a⊥=0.84−0.14+0.25 AU. The existence of this degeneracy is an unlucky accident, so current microlensing experiments are in principle sensitive to exomoons. In some circumstances, it will be possible to definitively establish the mass of such lens systems through the microlensing parallax effect. Future experiments will be sensitive to less extreme exomoons.

  18. Giant dipole resonance width as a probe for nuclear deformation at finite excitation

    CERN Document Server

    Pandit, Deepak; Mondal, Debasish; Mukhopadhyay, S; Pal, Surajit; Bhattacharya, Srijit; De, A; Banerjee, S R

    2013-01-01

    The systematic study of the correlation between the experimental giant dipole resonance (GDR) width and the average deformation of the nucleus at finite excitation is presented for the mass region A ~ 59 to 208. We show that the width of the GDR (\\Gamma) and the quadrupole deformation of the nucleus do not follow a linear relation, as predicted earlier, due to the GDR induced quadrupole moment and the correlation also depends on the mass of the nuclei. The different empirical values of extracted from the experimental GDR width match exceptionally well with the thermal shape fluctuation model. As a result, this universal correlation between and \\Gamma provides a direct experimental probe to determine the nuclear deformation at finite temperature and angular momentum in the entire mass region.

  19. Discovery in the Galactic Bulge

    Science.gov (United States)

    Kohler, Susanna

    2015-11-01

    In our efforts to map our galaxys structure, one region has remained very difficult to probe: the galactic center. A new survey, however, uses infrared light to peer through the gas and dust in the galactic plane, searching for variable stars in the bulge of the galaxy. This study has discovered a population of very young stars in a thin disk in the galactic center, providing clues to the star formation history of the Milky Way over the last 100 million years.Obscured CenterThe center of the Milky Way is dominated by a region known as the galactic bulge. Efforts to better understand this region in particular, its star formation history have been hindered by the stars, gas, and dust of the galactic disk, which prevent us from viewing the galactic bulge at low latitudes in visible light.The positions of the 35 classical Cepheids discovered in VVV data, projected onto an image of the galactic plane. Click for a better look! The survey area is bounded by the blue lines, and the galactic bar is marked with a red curve. The bottom panel shows the position of the Cepheids overlaid on the VVV bulge extinction map. [Dkny et al. 2015]Infrared light, however, can be used to probe deeper through the dust than visible-light searches. A new survey called VISTA Variables in the Via Lactea (VVV) uses the VISTA telescope in Chile to search, in infrared, for variable stars in the inner part of the galaxy. The VVV survey area spans the Milky Way bulge and an adjacent section of the mid-plane where star formation activity is high.Led by Istvn Dkny, a researcher at the Millennium Institute of Astrophysics and the Pontifical Catholic University of Chile, a team has now used VVV data to specifically identify classical Cepheid variable stars in the bulge. Why? Cepheids are pulsating stars with a very useful relation between their periods and luminosities that allows them to be used as distance indicators. Moreover, classical Cepheids are indicators of young stellar populations which can

  20. MOA-2011-BLG-262Lb: A sub-Earth-mass moon orbiting a gas giant primary or a high velocity planetary system in the galactic Bulge

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Batista, V. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Bond, I. A.; Ling, C. H. [Institute of Natural and Mathematical Sciences, Massey University, Auckland 0745 (New Zealand); Bennett, C. S. [Department of Physics, Massachussets Institute of Technology, Cambridge, MA 02139 (United States); Suzuki, D.; Koshimoto, N. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Beaulieu, J.-P. [UPMC-CNRS, UMR 7095, Institut d' Astrophysique de Paris, 98bis Boulevard Arago, F-75014 Paris (France); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Donatowicz, J. [Technische Universität Wien, Wieder Hauptst. 8-10, A-1040 Vienna (Austria); Bozza, V. [Dipartimento di Fisica, Università di Salerno, Via Ponte Don Melillo 132, I-84084 Fisciano (Italy); Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K.; Matsubara, Y.; Muraki, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Fukui, A., E-mail: bennett@nd.edu [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Okayama 719-0232 (Japan); Collaboration: MOA Collaboration; PLANET Collaboration; μFUN Collaboration; OGLE Collaboration; RoboNet Collaboration; and others

    2014-04-20

    We present the first microlensing candidate for a free-floating exoplanet-exomoon system, MOA-2011-BLG-262, with a primary lens mass of M {sub host} ∼ 4 Jupiter masses hosting a sub-Earth mass moon. The argument for an exomoon hinges on the system being relatively close to the Sun. The data constrain the product M{sub L} π{sub rel} where M{sub L} is the lens system mass and π{sub rel} is the lens-source relative parallax. If the lens system is nearby (large π{sub rel}), then M{sub L} is small (a few Jupiter masses) and the companion is a sub-Earth-mass exomoon. The best-fit solution has a large lens-source relative proper motion, μ{sub rel} = 19.6 ± 1.6 mas yr{sup –1}, which would rule out a distant lens system unless the source star has an unusually high proper motion. However, data from the OGLE collaboration nearly rule out a high source proper motion, so the exoplanet+exomoon model is the favored interpretation for the best fit model. However, there is an alternate solution that has a lower proper motion and fits the data almost as well. This solution is compatible with a distant (so stellar) host. A Bayesian analysis does not favor the exoplanet+exomoon interpretation, so Occam's razor favors a lens system in the bulge with host and companion masses of M{sub host}=0.12{sub −0.06}{sup +0.19} M{sub ⊙} and m{sub comp}=18{sub −10}{sup +28} M{sub ⊕}, at a projected separation of a{sub ⊥}=0.84{sub −0.14}{sup +0.25} AU. The existence of this degeneracy is an unlucky accident, so current microlensing experiments are in principle sensitive to exomoons. In some circumstances, it will be possible to definitively establish the mass of such lens systems through the microlensing parallax effect. Future experiments will be sensitive to less extreme exomoons.

  1. Analysis of the distribution of magnetic fluid inside tumors by a giant magnetoresistance probe

    KAUST Repository

    Gooneratne, Chinthaka P.

    2013-11-29

    Magnetic fluid hyperthermia (MFH) therapy uses the magnetic component of electromagnetic fields in the radiofrequency spectrum to couple energy to magnetic nanoparticles inside tumors. In MFH therapy, magnetic fluid is injected into tumors and an alternating current (AC) magnetic flux is applied to heat the magnetic fluid- filled tumor. If the temperature can be maintained at the therapeutic threshold of 42C for 30 minutes or more, the tumor cells can be destroyed. Analyzing the distribution of the magnetic fluid injected into tumors prior to the heating step in MFH therapy is an essential criterion for homogenous heating of tumors, since a decision can then be taken on the strength and localization of the applied external AC magnetic flux density needed to destroy the tumor without affecting healthy cells. This paper proposes a methodology for analyzing the distribution of magnetic fluid in a tumor by a specifically designed giant magnetoresistance (GMR) probe prior to MFH heat treatment. Experimental results analyzing the distribution of magnetic fluid suggest that different magnetic fluid weight densities could be estimated inside a single tumor by the GMR probe. 2013 Gooneratne et al.

  2. Can giant radio halos probe the merging rate of galaxy clusters?

    CERN Document Server

    Cassano, R; Giocoli, C; Ettori, S

    2016-01-01

    Radio and X-ray observations of galaxy clusters probe a direct link between cluster mergers and giant radio halos (RH), suggesting that these sources can be used as probes of the cluster merging rate with cosmic time. In this paper we carry out an explorative study that combines the observed fractions of merging clusters (fm) and RH (fRH) with the merging rate predicted by cosmological simulations and attempt to infer constraints on merger properties of clusters that appear disturbed in X-rays and of clusters with RH. We use morphological parameters to identify merging systems and analyze the currently largest sample of clusters with radio and X-ray data (M500>6d14 Msun, and 0.2

  3. Kinematics and Composition of the Galactic Bulge: Recent Progress

    CERN Document Server

    Rich, R Michael; Reitzel, David B; Zhao, HongSheng; de Propris, Roberto

    2007-01-01

    We present recent results from a Keck study of the composition of the Galactic bulge, as well as results from the bulge Bulge Radial Velocity Assay (BRAVA). Culminating a 10 year investigation, Fulbright, McWilliam, & Rich (2006, 2007) solved the problem of deriving the iron abundance in the Galactic bulge, and find enhanced alpha element abundances, consistent with the earlier work of McWilliam & Rich (1994). We also report on a radial velocity survey of {\\sl 2MASS}-selected M giant stars in the Galactic bulge, observed with the CTIO 4m Hydra multi-object spectrograph. This program is to test dynamical models of the bulge and to search for and map any dynamically cold substructure in the Galactic bulge. We show initial results on fields at $-10^{\\circ} < l <+10^{\\circ}$ and $b=-4^{\\circ}$. We construct a longitude-velocity plot for the bulge stars and the model data, and find that contrary to previous studies, the bulge does not rotate as a solid body; from $-5^{\\circ}

  4. The Asymptotic Giant Branch and the Tip of the Red Giant Branch as Probes of Star Formation History: The Nearby Dwarf Irregular Galaxy KKH 98

    CERN Document Server

    Melbourne, J; Dalcanton, J; Ammons, S M; Max, C; Koo, D C; Girardi, Leo; Dolphin, A

    2010-01-01

    We investigate the utility of the asymptotic giant branch (AGB) and the red giant branch (RGB) as probes of the star formation history (SFH) of the nearby (D=2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (IR) Keck Laser Guide Star Adaptive Optics (AO) images resolve 592 IR bright stars reaching over 1 magnitude below the Tip of the Red Giant Branch. Significantly deeper optical (F475W and F814W) Hubble Space Telescope images of the same field contain over 2500 stars, reaching to the Red Clump and the Main Sequence turn-off for 0.5 Gyr old populations. Compared to the optical color magnitude diagram (CMD), the near-IR CMD shows significantly tighter AGB sequences, providing a good probe of the intermediate age (0.5 - 5 Gyr) populations. We match observed CMDs with stellar evolution models to recover the SFH of KKH 98. On average, the galaxy has experienced relatively constant low-level star formation (5 x 10^-4 Mo yr^-1) for much of cosmic time. Except for the youngest main sequence populations (age &...

  5. A Sub-Earth-Mass Moon Orbiting a Gas Giant Primary or a High Velocity Planetary System in the Galactic Bulge

    CERN Document Server

    Bennett, D P; Bond, I A; Bennett, C S; Suzuki, D; Beaulieu, J -P; Udalski, A; Donatowicz, J; Abe, F; Botzler, C S; Freeman, M; Fukunaga, D; Fukui, A; Itow, Y; Koshimoto, N; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Sumi, T; Sweatman, W L; Tristram, P J; Tsurumi, N; Wada, K; Yock, P C M; Albrow, M D; Bachelet, E; Brillant, S; Caldwell, J A R; Cassan, A; Cole, A A; Corrales, E; Coutures, C; Dieters, S; Prester, D Dominis; Fouque, P; Greenhill, J; Horne, K; Koo, J -R; Kubas, D; Marquette, J -B; Martin, R; Menzies, J W; Sahu, K C; Wambsganss, J; Williams, A; Choi, M Zub J Y; DePoy, D L; Dong, Subo; Gaudi, B S; Gould, A; Han, C; Henderson, C B; McGregor, D; Lee, C -U; Pogge, R W; Shin, I -G; Yee, J C; Szymaski, M K; Skowron, J; Poleski, R; Kozowski, S; Wyrzykowski, L; Kubiak, M; Pietrukowicz, P; Pietrzyski, G; Soszyski, I; Ulaczyk, K; Tsapras, Y; Street, R A; Dominik, M; Bramich, D M; Browne, P; Hundertmark, M; Kains, N; Snodgrass, C; Steele, I A; Dekany, I; Gonzalez, O A; Heyrovsky, D; Kandori, R; Kerins, E; Lucas, P W; Minniti, D; Nagayama, T; Rejkuba, M; Robin, A C; Saito, R

    2013-01-01

    We present the first microlensing candidate for a free-floating exoplanet-exomoon system, MOA-2011-BLG-262, with a primary lens mass of M_host ~ 4 Jupiter masses hosting a sub-Earth mass moon. The data are well fit by this exomoon model, but an alternate star+planet model fits the data almost as well. Nevertheless, these results indicate the potential of microlensing to detect exomoons, albeit ones that are different from the giant planet moons in our solar system. The argument for an exomoon hinges on the system being relatively close to the Sun. The data constrain the product M pi_rel, where M is the lens system mass and pi_rel is the lens-source relative parallax. If the lens system is nearby (large pi_rel), then M is small (a few Jupiter masses) and the companion is a sub-Earth-mass exomoon. The best-fit solution has a large lens-source relative proper motion, mu_rel = 19.6 +- 1.6 mas/yr, which would rule out a distant lens system unless the source star has an unusually high proper motion. However, data f...

  6. The GIRAFFE Inner Bulge Survey (GIBS) III. Metallicity distributions and kinematics of 26 Galactic bulge fields

    CERN Document Server

    Zoccali, M; Gonzalez, O A; Valenti, E; Rojas-Arriagada, A; Minniti, J; Rejkuba, M; Minniti, D; McWilliam, A; Babusiaux, C; Hill, V; Renzini, A

    2016-01-01

    Several recent studies have demonstrated that the Galactic bulge hosts two components with different mean metallicities, and possibly different spatial distribution and kinematics. As a consequence, both the metallicity distribution and the radial velocity of bulge stars vary across different line of sights. We present here the metallicity distribution function of red clump stars in 26 fields spread across a wide area of the bulge, with special emphasis on fields close to Galactic plane, at latitudes b=-2 and b=-1, that were not explored before. This paper includes new metallicities from a sample of about 5000 K giant stars, observed at spectral resolution R=6500, in the Calcium II Triplet region. They are the main dataset of the GIRAFFE Inner Bulge Survey. As part of the same survey we have previously published results for a sample of about 600 K giant stars, at latitude b=-4 , derived from higher resolution spectra (R=22,500). Results. The combined sample allows us to trace and characterize the metal poor a...

  7. The formation of the Galactic bulge of the Milky Way

    Directory of Open Access Journals (Sweden)

    Freeman K.

    2012-02-01

    Full Text Available We aim to determine if the bulge formed via mergers as predicted by Cold Dark Matter (CDM theory, or from disk instabilities, as suggested by its boxy shape, or both processes. We are observing about 28,000 bulge stars in fields that span longitudes of − 31 to + 26° and latitudes of − 5° to − 10°, targeting mostly red clump giants and we are measuring stellar velocities and chemical abundances. We have almost concluded our observations and have analysed data of 23,000 stars. We find a cylindrical rotation profile for the bulge which blends smoothly out into the disk and from the [Fe/H] results we find the bulge to be comprised of separate components, with an underlying slowly rotating metal poor subsample which we believe to be the inner halo stars and metal weak thick disk. We find only a small [Fe/H] gradient with latitude in the bulge, of − 0.07dex/kpc. This weak gradient does not necessarily support a merger origin for our bulge and the composite nature of the bulge is consistent with formation out of the thin disk as per instability formation models.

  8. Abundance Ratios in the Galactic Bulge and Super Metal-Rich Type II Nucle osynthesis

    CERN Document Server

    Fulbright, J P; McWilliam, A; Fulbright, Jon P.; William, Andrew Mc

    2004-01-01

    We present abundance results from our Keck/HIRES observations of giants in the Galactic Bulge. We confirm that the metallicity distribution of giants in the low-reddening bulge field Baade's Window can be well-fit by a closed-box enrichment model. We also confirm previous observations that find enhanced [Mg/Fe], [Si/Fe] and [Ca/Fe] for all bulge giants, including those at super-solar metallicities. However, we find that the [O/Fe] ratios of metal-rich bulge dwarfs decrease with increasing metallicity, contrary to what is expected if the enhancements of the other $\\alpha$-elements is due to Type II supernovae enrichment. We suggest that the decrease in oxygen production may be due to mass loss in the pre-supernova evolution of metal-rich progenitors.

  9. The lack of carbon stars in the Galactic bulge

    OpenAIRE

    Chunhua, Zhu; Guoliang, Lv; Zhaojun, Wang; Jun, Zhang

    2008-01-01

    In order to explain the lack of carbon stars in the Galactic bulge, we have made a detailed study of thermal pulse - asymptotic giant branch stars by using a population synthesis code. The effects of the oxygen overabundance and the mass loss rate on the ratio of the number of carbon stars to that of oxygen stars in the Galactic bulge are discussed. We find that the oxygen overabundance which is about twice as large as that in the solar neighbourhood (close to the present observations) is ins...

  10. Giant dipole resonance width as a probe for nuclear deformation at finite excitation

    OpenAIRE

    Pandit, Deepak; Dey, Balaram; Mondal, Debasish; Mukhopadhyay, S.; Pal, Surajit; Bhattacharya, Srijit; De, A.; Banerjee, S.R.

    2013-01-01

    The systematic study of the correlation between the experimental giant dipole resonance (GDR) width and the average deformation of the nucleus at finite excitation is presented for the mass region A ~ 59 to 208. We show that the width of the GDR (\\Gamma) and the quadrupole deformation of the nucleus do not follow a linear relation, as predicted earlier, due to the GDR induced quadrupole moment and the correlation also depends on the mass of the nuclei. The different empirical values of extr...

  11. The lack of carbon stars in the Galactic bulge

    Institute of Scientific and Technical Information of China (English)

    Zhu Chun-Hua; Lv Guo-Liang; Wang Zhao-Jun; Zhang Jun

    2008-01-01

    In order to explain the lack of carbon stars in the Galactic bulge, we have made a detailed study of thermal pulseasymptotic giant branch (TP-AGB) stars by using a population synthesis code. The effects of the oxygen overabundance and the mass loss rate on the ratio of the number of carbon stars to that of oxygen stars in the Galactic bulge are discussed. We find that the oxygen overabundance which is about twice as large as that in the solar neighbourhood (close to the present observations) is insufficient to explain the rareness of carbon stars in the bulge. We suggest that the large mass loss rate may serve as a controlling factor in the ratio of the number of carbon stars to that of oxygen stars.

  12. The Chandra Galactic Bulge Survey

    NARCIS (Netherlands)

    Hynes, Robert I.; Jonker, P.G.; Bassa, C. G.; Dieball, A.; Greiss, S.; Maccarone, T. J.; Nelemans, G.; Steeghs, D.; Torres, M. A. P.; Britt, C. T.; Clem, J. L.; Gossen, L.; Grindlay, J. E.; Groot, P.J.; Kuiper, L.; Kuulkers, E.; Mendez, M.; Mikles, V. J.; Ratti, E. M.; Rea, N.; van Haaften, L.; Wijnands, R.; in't Zand, J. J. M.

    2011-01-01

    The Chandra Galactic Bulge Survey (CGBS) is a shallow but wide survey of two approximately 6x1 degree strips of the Galactic Bulge about a degree above and below the plane. The survey by design targets regions where extinction and crowding are manageable and optical counterparts are accessible to de

  13. The Chandra Galactic Bulge Survey

    NARCIS (Netherlands)

    Hynes, Robert I.; Jonker, P. G.; Bassa, C. G.; Nelemans, G.; Steeghs, D.; Torres, M. A. P.; Maccarone, T. J.; Greiss, S.; Clem, J.; Dieball, A.; Mikles, V. J.; Britt, C. T.; Gossen, L.; Collazzi, A. C.; Wijnands, R.; In't Zand, J. J. M.; Mendez, M.; Rea, N.; Kuulkers, E.; Ratti, E. M.; van Haaften, L. M.; Heinke, C.; Ozel, F.; Groot, P. J.; Verbunt, F.

    2012-01-01

    The Chandra Galactic Bulge Survey (GBS) is a shallow but wide survey of two approximately 6x1 degree strips of the Galactic Bulge about a degree above and below the plane. The survey by design targets regions where extinction and crowding are manageable and optical counterparts are accessible to det

  14. Probing Nuclear Symmetry Energy with Giant Dipole Resonances in Finite Nuclei

    Institute of Scientific and Technical Information of China (English)

    CAO Li-gang; MA Zhong-yu

    2009-01-01

    The relationship between the centroid energies of the isovector giant dipole resonance of finite nuclei and the symmetry energy has been studied.It is found the excitation energies of the dipole resonance in finite nuclei are correlated linearly with the symmetry energy at and below the saturation density.This linear correlation leads to the symmetry energy at the saturation density at the interval 33.0 MeV ≤ S(ρ_0) ≤ 37.0 MeV,and the symmetry energy at ρ=0.1 fm~(-3) at the interval 21.2-22.5 MeV.It is proposed that a precise measurement of the dipole mode in nuclei could set up an important constraint on the equation of state for nuclear matter.

  15. Probing interstellar extinction near the 30 Doradus nebula with red giant stars

    CERN Document Server

    De Marchi, Guido; Girardi, Leo

    2013-01-01

    We have studied the interstellar extinction in a field of 3' x 3' located about 6' SW of 30 Doradus in the Large Magellanic Cloud (LMC). Hubble Space Telescope observations in the U, B, V, I and Halpha bands reveal patchy extinction in this field. The colour-magnitude diagram (CMD) shows an elongated stellar sequence, almost parallel to the main sequence (MS), which is in reality made up of stars of the red giant clump (RC) spread across the CMD by the uneven levels of extinction in this region. Since these objects are all at the same distance from us and share very similar physical properties, we can derive quantitatively both the extinction law in the range 3000 - 8000 Angstrom and the absolute extinction towards about 100 objects, setting statistically significant constraints on the dust grains properties in this area. We find an extinction curve considerably flatter than the standard Galactic one and than those obtained before for the LMC. The derived value of Rv = 5.6 +/- 0.3 implies that in this region ...

  16. Composition of the Galactic bulge

    CERN Document Server

    McWilliam, A; William, Andrew Mc

    2003-01-01

    We present detailed abundance results for 9 Galactic bulge stars in Baade's Window, based on HIRES (R=45,000--60,000) spectra taken with the Keck I telescope. The alpha elements show non-uniform enhancements relative to the Solar neighborhood trends: Mg and Si are enhanced in all our bulge stars by $\\sim$0.5--0.3 dex, showing a slight decrease with increasing [Fe/H]. Oxygen is enhanced in most bulge stars, similar to the Galactic halo, but the [O/Fe] ratios suddenly decline beginning at [Fe/H]=$-$0.5 dex, with a slope consistent with no oxygen production in the bulge for [Fe/H]$\\geq

  17. Probing interstellar extinction in the Tarantula Nebula with red giant stars

    Science.gov (United States)

    De Marchi, Guido; Panagia, N.; Girardi, L.; Sabbi, E.

    2014-01-01

    We have studied the properties of the interstellar extinction in a field of 3‧ × 3‧ located about 6‧ SW of 30 Doradus in the Large Magellanic Cloud (LMC). The observations with with the WFPC 2 camera on board the Hubble Space Telescope in the U, B, V , I and H bands show the presence of patchy extinction in this field. In particular, the colour-magnitude diagram (CMD) reveals an elongated stellar sequence, running almost parallel to the main sequence (MS), which is in reality made up of stars belonging to the red giant clump (RC) and spread across the CMD by the considerable and uneven extinction in this region. This allows us to derive in a quantitative way both the extinction law in the range 3 000-8 000 Å and the values of the absolute extinction towards more than 100 objects, thereby setting statistically significant constraints on the properties of the extinction in this area. We find an extinction curve considerably flatter than the standard Galactic one and than those derived before towards a sample of sight lines in the LMC. The value of RV = 5.6 that we find implies that in this region large grains dominate. Comparing the extinction towards the individual RC stars and a similar number of stars in the upper MS reveals that the latter span a narrower range of E(B - V) values, contrary to what has been found elsewhere in the LMC. We are now extending these studies to 30 Doradus itself and to a large portion of the Tarantula nebula using existing HST observations at ultraviolet, optical and near infrared wavelengths.

  18. Probing the clumping structure of Giant Molecular Clouds through the spectrum, polarisation and morphology of X-ray Reflection Nebulae

    CERN Document Server

    Molaro, Margherita; Sunyaev, Rashid

    2015-01-01

    We suggest a method for probing global properties of clump populations in Giant Molecular Clouds (GMCs) in the case where these act as X-ray reflection nebulae (XRNe), based on the study of the clumping's overall effect on the reflected X-ray signal, in particular on the Fe K-alpha line's shoulder. We consider the particular case of Sgr B2, one of the brightest and most massive XRN in our Galaxy. We parametrise the gas distribution inside the cloud using a simple clumping model, with the slope of the clump mass function (alpha), the minimum clump mass (m_{min}), the fraction of the cloud's mass contained in clumps (f_{DGMF}), and the mass-size relation of individual clumps as free parameters, and investigate how these affect the reflected X-ray spectrum. In the case of very dense clumps, similar to those presently observed in Sgr B2, these occupy a small volume of the cloud and present a small projected area to the incoming X-ray radiation. We find that these contribute negligibly to the scattered X-rays. Clu...

  19. Polarization in microlensing towards the Galactic bulge

    CERN Document Server

    Ingrosso, G; De Paolis, F; Jetzer, Ph; Nucita, A A; Strafella, F; Zakharov, A F

    2012-01-01

    Gravitational microlensing, when finite size source effects are relevant, provides an unique tool for the study of source star stellar atmospheres through an enhancement of a characteristic polarization signal. This is due to the differential magnification induced during the crossing of the source star. In this paper we consider a specific set of reported highly magnified, both single and binary exoplanetary systems, microlensing events towards the Galactic bulge and evaluate the expected polarization signal. To this purpose, we consider several polarization models which apply to different types of source stars: hot, late type main sequence and cool giants. As a result we compute the polarization signal P,which goes up to P=0.04% for late type stars and up to a few percent for cool giants, depending on the underlying physical polarization processes and atmosphere model parameters. Given a I band magnitude at maximum magnification of about 12, and a typical duration of the polarization signal up to 1 day, we c...

  20. PROPER MOTIONS IN THE GALACTIC BULGE: PLAUT'S WINDOW

    Directory of Open Access Journals (Sweden)

    K. Vieira

    2009-01-01

    Full Text Available A proper motion study of a eld of 20' x20' inside Plaut's low extinction window (l,b=(0 ;-8 , has been completed. Relative proper motions and photographic BV photometry have been derived for -21; 000 stars reaching to V - 20:5 mag, based on the astrometric reduction of 43 photographic plates, spanning over 21 years of epoch di erence. Proper motion errors are typically 1 mas yr-1. Cross-referencing with the 2MASS catalog yielded a sample of - 8700 stars, from which predominantly disk and bulge subsamples were selected photometrically from the JH color-magnitude diagram. The two samples exhibited di erent proper-motion distributions, with the disk displaying the expected re ex solar motion. Galactic rotation was also detected for stars between -2 and -3 kpc from us. The bulge sample, represented by red giants, has an intrinsic proper motion dispersion of (l; b = (3:39; 2:91 = (0:11; 0:09 mas yr-1, which is in good agreement with previous results. A mean distance of 6:37+0:87 -0:77 kpc has been estimated for the bulge sample, based on the observed K magnitude of the horizontal branch red clump. The metallicity [M=H] distribution was also obtained for a subsample of 60 bulge giants stars, based on calibrated photometric indices. The observed [M=H] shows a peak value at [M=H]-0:1 with an extended metal poor tail and around 30% of the stars with supersolar metallicity. No change in proper motion dispersion was observed as a function of [M=H]. We are currently in the process of obtaining CCD UBV RI photometry for the entire proper-motion sample of - 21; 000 stars.

  1. The Structure of the Milky Way's Bar Outside the Bulge

    CERN Document Server

    Wegg, Christopher; Portail, Matthieu

    2015-01-01

    While it is incontrovertible that the inner Galaxy contains a bar, its structure near the Galactic plane has remained uncertain, where extinction from intervening dust is greatest. We investigate here the Galactic bar outside the bulge, the long bar, using red clump giant (RCG) stars from UKIDSS, 2MASS, VVV, and GLIMPSE. We match and combine these surveys to investigate a wide area in latitude and longitude, |b|<9deg and |l|<40deg. We find: (1) The bar extends to l~25deg at |b|~5deg from the Galactic plane, and to l~30deg at lower latitudes. (2) The long bar has an angle to the line-of-sight in the range (28-33)deg, consistent with studies of the bulge at |l|<10deg. (3) The scale-height of RCG stars smoothly transitions from the bulge to the thinner long bar. (4) There is evidence for two scale heights in the long bar. We find a ~180pc thin bar component reminiscent of the old thin disk near the sun, and a ~45pc super-thin bar component which exists predominantly towards the bar end. (5) Constructing...

  2. A high-velocity bulge RR Lyrae variable on a halo-like orbit

    CERN Document Server

    Kunder, Andrea; Hawkins, Keith; Poleski, Radek; Storm, Jesper; Johnson, Christian I; Shen, Juntai; Li, Zhao-Yu; Cordero, Maria Jose; Nataf, David M; Bono, Giuseppe; Walker, Alistair R; Koch, Andreas; De Propris, Roberto; Udalski, Andrzej; Szymanski, Michal K; Soszynski, Igor; Pietrzynski, Grzegorz; Ulaczyk, Krzysztof; Wyrzykowski, Lukasz; Pietrukowicz, Pawel; Skowron, Jan; Kozlowski, Szymon; Mroz, Przemyslaw

    2015-01-01

    We report on the RR Lyrae variable star, MACHO 176.18833.411, located toward the Galactic bulge and observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay (BRAVA-RR), which has the unusual radial velocity of -372 +- 8 km/s and true space velocity of -482 +- 22 km/s relative to the Galactic rest frame. Located less than 1 kpc from the Galactic center and toward a field at (l,b)=(3,-2.5), this pulsating star has properties suggesting it belongs to the bulge RR Lyrae star population yet a velocity indicating it is abnormal, at least with respect to bulge giants and red clump stars. We show that this star is most likely a halo interloper and therefore suggest that halo contamination is not insignificant when studying metal-poor stars found within the bulge area, even for stars within 1 kpc of the Galactic center. We discuss the possibility that MACHO 176.18833.411 is on the extreme edge of the bulge RR Lyrae radial velocity distribution, and also consider a more exotic scenario in which it...

  3. A HIGH-VELOCITY BULGE RR LYRAE VARIABLE ON A HALO-LIKE ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Kunder, Andrea; Storm, J. [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Rich, R. M. [Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA 90095-1562 (United States); Hawkins, K. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Poleski, R. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Johnson, C. I. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Shen, J.; Li, Z.-Y. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Cordero, M. J. [Astronomisches Rechen-Institut: Zentrum für Astronomie, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Nataf, D. M. [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Bono, G. [Dipartimento di Fisica, Universita di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma (Italy); Walker, A. R. [Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena (Chile); Koch, A. [Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, D-69117 Heidelberg (Germany); De Propris, R. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Turku (Finland); Udalski, A.; Szymanski, M. K.; Soszynski, I.; Pietrzynski, G.; Ulaczyk, K.; Wyrzykowski, Ł. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); and others

    2015-07-20

    We report on the RR Lyrae variable star, MACHO 176.18833.411, located toward the Galactic bulge and observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay, which has the unusual radial velocity of −372 ± 8 km s{sup −1} and true space velocity of −482 ± 22 km s{sup −1} relative to the Galactic rest frame. Located less than 1 kpc from the Galactic center and toward a field at (l, b) = (3, −2.5), this pulsating star has properties suggesting it belongs to the bulge RR Lyrae star population, yet a velocity indicating it is abnormal, at least with respect to bulge giants and red clump stars. We show that this star is most likely a halo interloper and therefore suggest that halo contamination is not insignificant when studying metal-poor stars found within the bulge area, even for stars within 1 kpc of the Galactic center. We discuss the possibility that MACHO 176.18833.411 is on the extreme edge of the bulge RR Lyrae radial velocity distribution, and also consider a more exotic scenario in which it is a runaway star moving through the Galaxy.

  4. Clumpy Disc and Bulge Formation

    CERN Document Server

    Perez, J; Tissera, P; Michel-Dansac, L

    2013-01-01

    We present a set of hydrodynamical/Nbody controlled simulations of isolated gas rich galaxies that self-consistently include SN feedback and a detailed chemical evolution model, both tested in cosmological simulations. The initial conditions are motivated by the observed star forming galaxies at z ~ 2-3. We find that the presence of a multiphase interstellar media in our models promotes the growth of disc instability favouring the formation of clumps which in general, are not easily disrupted on timescales compared to the migration time. We show that stellar clumps migrate towards the central region and contribute to form a classical-like bulge with a Sersic index, n > 2. Our physically-motivated Supernova feedback has a mild influence on clump survival and evolution, partially limiting the mass growth of clumps as the energy released per Supernova event is increased, with the consequent flattening of the bulge profile. This regulation does not prevent the building of a classical-like bulge even for the most ...

  5. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Perez, Ana E.; Majewski, Steven R.; Hearty, Fred R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Cunha, Katia [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Shetrone, Matthew [McDonald Observatory, University of Texas at Austin, Fort Davis, TX 79734 (United States); Johnson, Jennifer A.; Zasowski, Gail [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Smith, Verne V.; Beers, Timothy C. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Schiavon, Ricardo P. [Gemini Observatory, 670 N. A' Ohoku Place, Hilo, HI 96720 (United States); Holtzman, Jon [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Nidever, David [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Allende Prieto, Carlos [Departamento de Astrofisica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Bizyaev, Dmitry; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Eisenstein, Daniel J. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Frinchaboy, Peter M. [Department of Physics and Astronomy, Texas Christian University, 2800 South University Drive, Fort Worth, TX 76129 (United States); Girardi, Leo [Laboratorio Interinstitucional de e-Astronomia - LIneA, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ - 20921-400 (Brazil); and others

    2013-04-10

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403 giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] {<=} -1.7), including two that are very metal-poor [Fe/H] {approx} -2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the {alpha}-elements O, Mg, and Si without significant {alpha}-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.

  6. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. IV. Two bulge populations

    CERN Document Server

    Bensby, T; Meléndez, J; Gould, A; Feltzing, S; Asplund, M; Johnson, J A; Lucatello, S; Yee, J C; Ramírez, I; Cohen, J G; Thompson, I; Gal-Yam, A; Sumi, T; Bond, I A

    2011-01-01

    [ABRIDGED] Based on high-resolution (R~42000 to 48000) and high signal-to-noise (S/N~50 to 150) spectra obtained with UVES/VLT, we present detailed elemental abundances (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba) and stellar ages for 26 microlensed dwarf and subgiant stars in the Galactic bulge. The analysis is based on equivalent width measurements and standard 1-D LTE MARCS model stellar atmospheres. We also present NLTE Li abundances based on line synthesis of the 7Li line at 670.8 nm. We show that the bulge metallicity distribution (MDF) is double-peaked; one peak at [Fe/H]= -0.6 and one at [Fe/H]=+0.3, and with a dearth of stars around solar metallicity. This is in contrast to the MDF derived from red giants in Baade's window, which peaks at this exact value. A simple significance test shows that it is extremely unlikely to have such a gap in the microlensed dwarf star MDF if the dwarf stars are drawn from the giant star MDF. To resolve this issue we discuss several possibilities, but we can n...

  7. The Controversial Star-Formation History and Helium Enrichment of the Milky Way Bulge

    CERN Document Server

    Nataf, David M

    2015-01-01

    The stellar population of the Milky Way bulge is thoroughly studied, with a plethora of measurements from virtually the full suite of instruments available to astronomers. It is thus perhaps surprising that alongside well-established results lies some substantial uncertainty in its star-formation history. Cosmological models predict the bulge to host the Galaxy's oldest stars for [Fe/H]$\\lesssim -1$, and this is demonstrated by RR Lyrae stars and globular cluster observations. There is consensus that bulge stars with [Fe/H]$\\lesssim0$ are older than $t \\approx10$ Gyr. However, at super-solar metallicity, there is a substantial unresolved discrepancy. Data from spectroscopic measurements of the main-sequence turnoff and subgiant branch, the abundances of asymptotic giant branch stars, the period distribution of Mira variables, the chemistry and central-star masses of planetary nebulae, all suggest a substantial intermediate-age population ($t \\approx 3$ Gyr). This is in conflict with predictions from cosmologi...

  8. 3-Dimensional dynamics of the galactic bulge

    NARCIS (Netherlands)

    Soto Vicencio, Mario Humberto

    2010-01-01

    This thesis is part of a project which attempts to unveil the structure of the galactic bulge of our galaxy through the study of the kinematics of stars in low foreground extinction windows.Thus, in order to effectively constraint the phase-space distribution function of the galactic bulge, we have

  9. Stellar Sources in the ISOGAL Inner Galactic Bulge Field (=00, =-10)

    Indian Academy of Sciences (India)

    D. Κ. Ojha; A. Omont; S. Ganesh; G. Simon; Μ. Schultheis

    2000-06-01

    ISOGAL is a survey at 7 and 15 μm with ISOCAM of the inner galactic disk and bulge of our Galaxy. The survey covers ∼ 22 deg2 in selected areas of the central = ± 30 degree of the inner Galaxy. In this paper, we report the study of a small ISOGAL field in the inner galactic bulge (=0°, =-1°, area = 0.033deg2). Using the multicolor near-infrared data (IJK) of DENIS (DEep Near Infrared Southern Sky Survey) and mid-infrared ISOGAL data, we discuss the nature of the ISOGAL sources. The various color-color and color-magnitude diagrams are discussed in the paper. While most of the detected sources are red giants (RGB tip stars), a few of them show an excess in J-K and K-[15] colors with respect to the red giant sequence. Most of them are probably AGB stars with large mass-loss rates.

  10. High resolution infrared spectra of Bulge Globular Clusters: Liller 1, NGC 6553, and Ter 5

    Science.gov (United States)

    Origlia, L.; Rich, R. M.; Castro, S. M.

    2001-12-01

    Using the NIRSPEC spectrograph at Keck II, we have obtained echelle spectra covering the range 1.5-1.8μ m for 2 of the brightest giants in Liller 1 and NGC 6553, old metal rich globular clusters in the Galactic bulge. We also report a preliminary analysis for two giants in the obscured bulge globular cluster Ter 5. We use spectrum synthesis for the abundance analysis, and find [Fe/H]=-0.3+/-0.2 and [O/H]=+0.3+/- 0.1 (from the OH lines) for the giants in Liller 1 and NGC 6553. We measure strong lines for the alpha elements Mg, Ca, and Si, but the lower sensitivity of these lines to abundance permits us to only state a general [α /Fe]=+0.3+/-0.2 dex. The composition of the clusters is similar to that of field stars in the bulge and is consistent with a scenario in which the clusters formed early, with rapid enrichment. Our iron abundance for NGC 6553 is poorly consistent with either the low or the high values recently reported in the literature, unless unusally large, or no α -element enhancements are adopted, respectively. We will also present an abundance analsyis for 2 giants in the highly reddened bulge cluster Ter 5, which appears to be near the Solar metallicity. R. Michael Rich acknowledges finacial support from grant AST-0098739, from the National Science Foundation. Data presented herein were obtained at the W.M.Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors gratefully acknowledge those of Hawaiian ancestry on whose sacred mountain we are privileged to be guests. Without their generous hospitality, none of the observations presented would have been possible.

  11. FAILURE ANALYSIS: WASTEWATER DRUM BULGING

    Energy Technology Data Exchange (ETDEWEB)

    Vormelker, P

    2008-09-15

    A 55 gallon wastewater drum lid was found to be bulged during storage in a remote area. Drum samples were obtained for analysis. The interior surface of these samples revealed blistering and holes in the epoxy phenolic drum liner and corrosion of the carbon steel drum. It is suspected that osmotic pressure drove permeation of the water through the epoxy phenolic coating which was weakened from exposure to low pH water. The coating failed at locations throughout the drum interior. Subsequent corrosion of the carbon steel released hydrogen which pressurized the drum causing deformation of the drum lid. Additional samples from other wastewater drums on the same pallet were also evaluated and limited corrosion was visible on the interior surfaces. It is suspected that, with time, the corrosion would have advanced to cause pressurization of these sealed drums.

  12. The age of the young bulge-like population in the stellar system Terzan5: linking the Galactic bulge to the high-z Universe

    CERN Document Server

    Ferraro, F R; Dalessandro, E; Lanzoni, B; Origlia, L; Rich, R M; Mucciarelli, A; -,

    2016-01-01

    The Galactic bulge is dominated by an old, metal rich stellar population. The possible presence and the amount of a young (a few Gyr old) minor component is one of the major issues debated in the literature. Recently, the bulge stellar system Terzan 5 was found to harbor three sub-populations with iron content varying by more than one order of magnitude (from 0.2 up to 2 times the solar value), with chemical abundance patterns strikingly similar to those observed in bulge field stars. Here we report on the detection of two distinct main sequence turn-off points in Terzan 5, providing the age of the two main stellar populations: 12 Gyr for the (dominant) sub-solar component and 4.5 Gyr for the component at super-solar metallicity. This discovery classifies Terzan 5 as a site in the Galactic bulge where multiple bursts of star formation occurred, thus suggesting a quite massive progenitor possibly resembling the giant clumps observed in star forming galaxies at high redshifts. This connection opens a new route ...

  13. The structure of the Milky Way's bar outside the bulge

    Science.gov (United States)

    Wegg, Christopher; Gerhard, Ortwin; Portail, Matthieu

    2015-07-01

    While it is incontrovertible that the inner Galaxy contains a bar, its structure near the Galactic plane has remained uncertain, where extinction from intervening dust is greatest. We investigate here the Galactic bar outside the bulge, the long bar, using red clump giant (RCG) stars from United Kingdom Infrared Deep Sky Survey, Two Micron All Sky Survey, Vista Variables in the Via Lactea and Galactic Legacy Infrared Midplane Survey Extraordinaire. We match and combine these surveys to investigate a wide area in latitude and longitude, |b| ≤ 9° and |l| ≤ 40°. We find (i) the bar extends to l ˜ 25° at |b| ˜ 5° from the Galactic plane, and to l ˜ 30° at lower latitudes; (ii) the long bar has an angle to the line-of-sight in the range (28°-33°), consistent with studies of the bulge at |l| thin bar component reminiscent of the old thin disc near the Sun, and a ˜45 pc superthin bar components which exist predominantly towards the bar end; (v) constructing parametric models for the red clump magnitude distributions, we find a bar half-length of 5.0 ± 0.2 kpc for the two-component bar, and 4.6 ± 0.3 kpc for the thin bar component alone. We conclude that the Milky Way contains a central box/peanut bulge which is the vertical extension of a longer, flatter bar, similar as seen in both external galaxies and N-body models.

  14. Realistic Stellar Feedback & Bulge Formation in Clumpy Disks

    CERN Document Server

    Hopkins, Philip F; Murray, Norman; Quataert, Eliot; Hernquist, Lars

    2012-01-01

    We use numerical simulations of isolated galaxies to study the effects of realistic stellar feedback on the formation and evolution of giant star-forming gas 'clumps' in high-redshift, gas-rich galaxies. Such galactic disks are unstable to the formation of bound gas-rich clumps whose properties initially depend only on global disk properties, not the microphysics of feedback. In simulations without stellar feedback, clumps turn an order-unity fraction of their mass into stars and sink to the center, forming a large bulge and kicking most of the stars out into a much more extended stellar envelope. By contrast, stellar feedback disrupts even the most massive clumps after they turn ~10-20% of their mass into stars, in a timescale of ~10-100 Myr, ejecting some material into a super-wind and recycling the rest of the gas into the diffuse ISM. This suppresses the bulge formation rate by direct 'clump coalescence' by a factor of several. However, the galactic disks do undergo significant secular evolution in the ab...

  15. The metal content of the bulge globular cluster NGC 6528

    Science.gov (United States)

    Zoccali, M.; Barbuy, B.; Hill, V.; Ortolani, S.; Renzini, A.; Bica, E.; Momany, Y.; Pasquini, L.; Minniti, D.; Rich, R. M.

    2004-08-01

    High resolution spectra of five stars in the bulge globular cluster NGC 6528 were obtained at the 8m VLT UT2-Kueyen telescope with the UVES spectrograph. Out of the five stars, two of them showed evidence of binarity. The target stars belong to the horizontal and red giant branch stages, at 4000 elemental ratios for this template bulge cluster, as a basis for the fundamental calibration of metal-rich populations. The present analysis provides a metallicity [Fe/H] = -0.1±0.2 and the α-elements O, Mg and Si, show [α/Fe] ≈ +0.1, whereas Ca and Ti are around the solar value or below, resulting in an overall metallicity Z ≈ Z⊙. Observations collected both at the European Southern Observatory, Paranal and La Silla, Chile (ESO programme 65.L-0340) and with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, operated by AURA Inc. under contract to NASA. Tables \\ref{targets}, \\ref{logobs}, \\ref{tablines} and Fig. \\ref{chart} are only available in electronic form at http://www.edpsciences.org

  16. High-Redshift Clumpy Disks and Bulges in Cosmological Simulations

    CERN Document Server

    Ceverino, Daniel; Bournaud, Frederic

    2009-01-01

    We analyze the first cosmological simulations that recover the fragmentation of high-redshift galactic discs driven by cold streams. The fragmentation is recovered owing to an AMR resolution better than 70 pc with cooling below 10^4 K. We study three typical star-forming galaxies in haloes of approx. 5 10^11 Msun at z=2.3, when they were not undergoing a major merger. The steady gas supply by cold streams leads to gravitationally unstable, turbulent discs, which fragment into giant clumps and transient features on a dynamical timescale. The disc clumps are not associated with dark-matter haloes. The clumpy discs are self-regulated by gravity in a marginaly unstable state. Clump migration and angular-momentum transfer on an orbital timescale help the growth of a central bulge with a mass comparable to the disc. The continuous gas input keeps the system of clumpy disc and bulge in a near "steady state", for several Gyr. The average star-formation rate, much of which occurs in the clumps, follows the gas accreti...

  17. Proper Motions in the Galactic Bulge: Plaut's Window

    CERN Document Server

    Vieira, Katherine; Mendez, Rene A; Rich, R Michael; Girard, Terrence M; Korchagin, Vladimir I; van Altena, William; Majewski, Steven R; Bergh, Sidney van den

    2007-01-01

    A proper motion study of a field of 20' x 20' inside Plaut's low extinction window (l,b)=(0 deg,-8 deg), has been completed. Relative proper motions and photographic BV photometry have been derived for ~21,000 stars reaching to V~20.5 mag, based on the astrometric reduction of 43 photographic plates, spanning over 21 years of epoch difference. Proper motion errors are typically 1 mas/yr and field dependent systematics are below 0.2 mas/yr. Cross-referencing with the 2MASS catalog yielded a sample of ~8,700 stars, from which predominantly disk and bulge subsamples were selected photometrically from the JH color-magnitude diagram. The two samples exhibited different proper-motion distributions, with the disk displaying the expected reflex solar motion as a function of magnitude. Galactic rotation was also detected for stars between ~2 and ~3 kpc from us. The bulge sample, represented by red giants, has an intrinsic proper motion dispersion of (sigma_l,sigma_b)=(3.39, 2.91)+/-(0.11,0.09) mas/yr, which is in good...

  18. Dusty Mass Loss from Galactic Asymptotic Giant Branch Stars

    Science.gov (United States)

    Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel H.

    2016-06-01

    We are probing how mass loss from Asymptotic Giant Branch (AGB) stars depends upon their metallicity. Asymptotic giant branch (AGB) stars are evolved stars that eject large parts of their mass in outflows of dust and gas in the final stages of their lives. Our previous studies focused on mass loss from AGB stars in lower metallicity galaxies: the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). In our present study, we analyze AGB star mass loss in the Galaxy, with special attention to the Bulge, to investigate how mass loss differs in an overall higher metallicity environment. We construct radiative transfer models of the spectral energy distributions (SEDs) of stars in the Galaxy identified as AGB stars from infrared and optical surveys. Our Magellanic Cloud studies found that the AGB stars with the highest mass loss rates tended to have outflows with carbon-rich dust, and that overall more carbon-rich (C-rich) dust than oxygen-rich (O-rich) was produced by AGB stars in both LMC and SMC. Our radiative transfer models have enabled us to determine reliably the dust chemistry of the AGB star from the best-fit model. For our Galactic sample, we are investigating both the dust chemistries of the AGB stars and their mass-loss rates, to compare the balance of C-rich dust to O-rich dust between the Galactic bulge and the Magellanic Clouds. We are also constructing detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra; e.g., from the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed dust modeling of spectra informs our choice of dust properties to use in radiative transfer modeling of SEDs of Galactic AGB stars. BAS acknowledges funding from NASA ADAP grant NNX15AF15G.

  19. Globular Clusters in the Galactic Bulge

    Science.gov (United States)

    Bica, E.; Ortolani, S.; Barbuy, B.

    2016-06-01

    A view of the Galactic bulge by means of their globular clusters is fundamental for a deep understanding of its formation and evolution. Connections between the globular cluster and field star properties in terms of kinematics, orbits, chemical abundances, and ages should shed light on different stellar population components. Based on spatial distribution and metallicity, we define a probable best list of bulge clusters, containing 43 entries. Future work on newly discovered objects, mostly from the VVV survey, is suggested. These candidates might alleviate the issue of missing clusters on the far side of the bulge. We discuss the reddening law affecting the cluster distances towards the centre of the Galaxy, and conclude that the most suitable total-to-selective absorption value appears to be R V=3.2, in agreement with recent analyses. An update of elemental abundances for bulge clusters is provided.

  20. Signatures of bulge triaxiality from kinematics in Baade's window

    Science.gov (United States)

    Zhao, Hongsheng; Spergel, David N.; Rich, R. Michael

    1994-01-01

    We study a sample of 62 Baade's Window, (l,b) = (1, -4)deg, K giants that have published proper motions, radial velocity, and metallicity. Using R(sub 0) = 8 kpc, we construct the velocity ellipsoids, namely the 3x3 velocity dispersion tensors, for the metal rich stars ((Fe/H) greater than or equal to 0) and metal poor stars ((Fe/H) less than or equal to -0.2). After diagonalizing the tensor, we find a vertex deviation characteristic of a nonaxisymmetric system. Eigenvalues for the two velocity ellipsoids (sigma(sub 1), sigma(sub 2), sigma(sub 3)) are (126, 89, 65) +/- 13 km/s for the metal rich sample and (154, 77, 83) +/- 25 km/s for the metal poor sample with their long axes pointing to two nearly perpendicular directions (l(sub v), b(sub v)) = (-65 +/- 9 deg, +14 +/- 9 deg) and (l(sub v), b(sub v)) = (25 +/- 14 deg, -11 +/- 14 deg), respectively. The vertex deviations of the velocity ellipsoids cannot be consistently explained by any oblate model. We are able to reject the hypothesis that the metal poor and metal rich populations are drawn from the same distribution at better than the 97% confidence level. We populate orbits in a realistic bar potential with a Gaussian velocity distribution, allowing us to simulate and interpret observations. We conclude that the data are consistent with a triaxial bulge pointing towards (l,b) with l less than 0 deg and b = 0 deg as suggested by earlier work on gas dynamics and the observed light distribution. We also predict that low latitude (absolute value of b less than or equal to 4 deg) bulge fields should show the vertex deviation more strongly and would therefore be the best locations for future proper motion studies. In the classification scheme of Athanassoula et al. (1983) the metal rich stars appear to occupy the B-family orbits which rotate in the prograde sense in the rest frame and have boxy shapes that are aligned with and supporting the bar. The metal poor stars in the sample lag behind the metal rich bulge and

  1. CHEMICAL EVOLUTION OF THE INNER 2 DEGREES OF THE MILKY WAY BULGE: [α/Fe] TRENDS AND METALLICITY GRADIENTS

    Energy Technology Data Exchange (ETDEWEB)

    Ryde, N. [Department of Astronomy and Theoretical Physics, Lund Observatory, Lund University, Box 43, SE-221 00, Lund (Sweden); Schultheis, M. [Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Blvd de l’Observatoire, F-06304 Nice (France); Grieco, V.; Matteucci, F. [Dipartimento di Fisica, Sezione di Astronomia, Università di Trieste, via G.B. Tiepolo 11, I-34131, Trieste (Italy); Rich, R. M. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Uttenthaler, S., E-mail: ryde@astro.lu.se [University of Vienna, Department of Astrophysics, Türkenschanzstraße 17, A-1180 Vienna (Austria)

    2016-01-15

    The structure, formation, and evolution of the Milky Way bulge is a matter of debate. Important diagnostics for discriminating between models of bulge formation and evolution include α-abundance trends with metallicity, and spatial abundance and metallicity gradients. Due to the severe optical extinction in the inner Bulge region, only a few detailed investigations of this region have been performed. Here we aim at investigating the inner 2 degrees of the Bulge (projected galactocentric distance of approximately 300 pc), rarely investigated before, by observing the [α/Fe] element trends versus metallicity, and by trying to derive the metallicity gradient in the b < 2° region. [α/Fe] and metallicities have been determined by spectral synthesis of 2 μm spectra of 28 M-giants in the Bulge, lying along the southern minor axis at (l, b) = (0, 0), (0, −1°), and (0, −2°). These were observed with the CRIRES spectrometer at the Very Large Telescope, (VLT) at high spectral resolution. Low-resolution K-band spectra, observed with the ISAAC spectrometer at the VLT, are used to determine the effective temperature of the stars. We present the first connection between the Galactic center (GC) and the Bulge using similar stars, high spectral resolution, and analysis techniques. The [α/Fe] trends in all our three fields show a large similarity among each other and with trends further out in the Bulge. All point to a rapid star formation episode in the Bulge. We find that there is a lack of an [α/Fe] gradient in the Bulge all the way into the center, suggesting a homogeneous Bulge when it comes to the enrichment process and star formation history. We find a large range of metallicities from −1.2 < [Fe/H] < +0.3, with a lower dispersion in the GC: −0.2 < [Fe/H] < +0.3. The derived metallicities of the stars in the three fields get, in the mean, progressively higher the closer to the Galactic plane they lie. We could interpret this as a continuation of the

  2. Theoretical Models of the Galactic Bulge

    CERN Document Server

    Shen, Juntai

    2015-01-01

    Near infrared images from the COBE satellite presented the first clear evidence that our Milky Way galaxy contains a boxy shaped bulge. Recent years have witnessed a gradual paradigm shift in the formation and evolution of the Galactic bulge. Bulges were commonly believed to form in the dynamical violence of galaxy mergers. However, it has become increasingly clear that the main body of the Milky Way bulge is not a classical bulge made by previous major mergers, instead it appears to be a bar seen somewhat end-on. The Milky Way bar can form naturally from a precursor disk and thicken vertically by the internal firehose/buckling instability, giving rise to the boxy appearance. This picture is supported by many lines of evidence, including the asymmetric parallelogram shape, the strong cylindrical rotation (i.e., nearly constant rotation regardless of the height above the disk plane), the existence of an intriguing X-shaped structure in the bulge, and perhaps the metallicity gradients. We review the major theor...

  3. The Gaia-ESO Survey: Metal-rich Bananas in the Bulge

    Science.gov (United States)

    Williams, Angus A.; Evans, N. W.; Molloy, Matthew; Kordopatis, Georges; Smith, M. C.; Shen, J.; Gilmore, G.; Randich, S.; Bensby, T.; Francois, P.; Koposov, S. E.; Recio-Blanco, A.; Bayo, A.; Carraro, G.; Casey, A.; Costado, T.; Franciosini, E.; Hourihane, A.; de Laverny, P.; Lewis, J.; Lind, K.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Worley, C.; Zaggia, S.; Mikolaitis, Š.

    2016-06-01

    We analyze the kinematics of ˜2000 giant stars in the direction of the Galactic bulge, extracted from the Gaia-ESO survey in the region -10^\\circ ≲ {\\ell }≲ 10^\\circ and -11^\\circ ≲ b≲ -3^\\circ . We find distinct kinematic trends in the metal-rich ([{{M}}/{{H}}]\\gt 0) and metal-poor ([{{M}}/{{H}}]\\lt 0) stars in the data. The velocity dispersion of the metal-rich stars drops steeply with latitude, compared to a flat profile in the metal-poor stars, as has been seen previously. We argue that the metal-rich stars in this region are mostly on orbits that support the boxy-peanut shape of the bulge, which naturally explains the drop in their velocity dispersion profile with latitude. The metal-rich stars also exhibit peaky features in their line of sight velocity histograms, particularly along the minor axis of the bulge. We propose that these features are due to stars on resonant orbits supporting the boxy-peanut bulge. This conjecture is strengthened through the comparison of the minor axis data with the velocity histograms of resonant orbits generated in simulations of buckled bars. The “banana” or 2:1:2 orbits provide strongly bimodal histograms with narrow velocity peaks that resemble the Gaia-ESO metal-rich data.

  4. What planetary nebulae tell us about helium and the CNO elements in Galactic bulge stars

    CERN Document Server

    Buell, James F

    2012-01-01

    Thermally pulsing asymptotic giant branch (TP-AGB) models of bulge stars are calculated using a synthetic model. The goal is to infer typical progenitor masses and compositions by reproducing the typical chemical composition and central star masses of planetary nebulae (PNe) in the Galactic bulge. The AGB tip luminosity and the observation that the observed lack of bright carbon stars in the bulge are matched by the models. Five sets of galactic bulge PNe were analyzed to find typical abundances and central star of planetary nebulae (CSPN) masses. These global parameters were matched by the AGB models. These sets are shown to be consistent with the most massive CSPN having the largest abundances of helium and heavy elements. The CSPN masses of the most helium rich (He/H$\\ga$0.130 or $Y\\ga0.34$) PNe are estimated to be between 0.58 and 0.62$ {\\rm M}_{\\sun}$. The oxygen abundance in form $\\log{\\rm (O/H)}+12$ of these highest mass CSPN is estimated to be $\\approx$8.85. TP-AGB models with ZAMS masses between 1.2 ...

  5. Light, Alpha, and Fe-Peak Element Abundances in the Galactic Bulge

    CERN Document Server

    Johnson, Christian I; Kobayashi, Chiaki; Kunder, Andrea; Koch, Andreas

    2014-01-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l,b)=(+5.25,-3.02) and (0,-12). The (+5.25,-3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high resolution (R~20,000), high signal-to-noise (S/N>70) FLAMES-GIRAFFE spectra obtained through the ESO archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did not show strong TiO absorption bands. The present work extends previous analyses of this data set beyond Fe and the alpha-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H]>-0.5. In particular, the bulge [alpha/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick...

  6. The Gaia-ESO Survey: Metal-rich Bananas in the Bulge

    Science.gov (United States)

    Williams, Angus A.; Evans, N. W.; Molloy, Matthew; Kordopatis, Georges; Smith, M. C.; Shen, J.; Gilmore, G.; Randich, S.; Bensby, T.; Francois, P.; Koposov, S. E.; Recio-Blanco, A.; Bayo, A.; Carraro, G.; Casey, A.; Costado, T.; Franciosini, E.; Hourihane, A.; de Laverny, P.; Lewis, J.; Lind, K.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Worley, C.; Zaggia, S.; Mikolaitis, Š.

    2016-06-01

    We analyze the kinematics of ˜2000 giant stars in the direction of the Galactic bulge, extracted from the Gaia-ESO survey in the region -10^\\circ ≲ {\\ell }≲ 10^\\circ and -11^\\circ ≲ b≲ -3^\\circ . We find distinct kinematic trends in the metal-rich ([{{M}}/{{H}}]\\gt 0) and metal-poor ([{{M}}/{{H}}]\\lt 0) stars in the data. The velocity dispersion of the metal-rich stars drops steeply with latitude, compared to a flat profile in the metal-poor stars, as has been seen previously. We argue that the metal-rich stars in this region are mostly on orbits that support the boxy–peanut shape of the bulge, which naturally explains the drop in their velocity dispersion profile with latitude. The metal-rich stars also exhibit peaky features in their line of sight velocity histograms, particularly along the minor axis of the bulge. We propose that these features are due to stars on resonant orbits supporting the boxy–peanut bulge. This conjecture is strengthened through the comparison of the minor axis data with the velocity histograms of resonant orbits generated in simulations of buckled bars. The “banana” or 2:1:2 orbits provide strongly bimodal histograms with narrow velocity peaks that resemble the Gaia-ESO metal-rich data.

  7. Dynamical Modelling of the Galactic Bulge and Bar: Pattern Speed, Stellar, and Dark Matter Mass Distributions

    CERN Document Server

    Portail, Matthieu; Wegg, Christopher; Ness, Melissa

    2016-01-01

    We construct a large set of dynamical models of the galactic bulge, bar and inner disk using the Made-to-Measure method. Our models are constrained to match the red clump giant density from a combination of the VVV, UKIDSS and 2MASS infrared surveys together with stellar kinematics in the bulge from the BRAVA and OGLE surveys, and in the entire bar region from the ARGOS survey. We are able to recover the bar pattern speed and the stellar and dark matter mass distributions in the bar region, thus recovering the entire galactic effective potential. We find a bar pattern speed of $39.0 \\pm 3.5 \\,\\rm{km\\,s^{-1}\\,kpc^{-1}}$, placing the bar corotation radius at $6.1 \\pm 0.5 \\, \\rm{kpc}$ and making the Milky Way bar a typical fast rotator. We evaluate the stellar mass of the long bar and bulge structure to be $M_{\\rm{bar/bulge}} = 1.88 \\pm 0.12 \\times 10^{10} \\, \\rm{M}_{\\odot}$, larger than the mass of disk in the bar region, $M_{\\rm{inner\\ disk}} = 1.29\\pm0.12 \\times 10^{10} \\, \\rm{M}_{\\odot}$. The total dynamical...

  8. The Gaia-ESO survey: Metal-rich bananas in the bulge

    CERN Document Server

    Williams, Angus A; Molloy, Matthew; Kordopatis, Georges; Smith, M C; Shen, J; Gilmore, G; Randich, S; Bensby, T; Francois, P; Koposov, S E; Recio-Blanco, A; Bayo, A; Carraro, G; Casey, A; Costado, T; Franciosini, E; Hourihane, A; de Laverny, P; Lewis, J; Lind, K; Magrini, L; Monaco, L; Morbidelli, L; Sacco, G G; Worley, C; Zaggia, S; Mikolaitis, S

    2016-01-01

    We analyse the kinematics of $\\sim 2000$ giant stars in the direction of the Galactic bulge, extracted from the Gaia-ESO survey in the region $-10^\\circ \\lesssim \\ell \\lesssim 10^\\circ$ and $-11^\\circ \\lesssim b \\lesssim -3^\\circ$. We find distinct kinematic trends in the metal rich ($\\mathrm{[M/H]}>0$) and metal poor ($\\mathrm{[M/H]}<0$) stars in the data. The velocity dispersion of the metal-rich stars drops steeply with latitude, compared to a flat profile in the metal-poor stars, as has been seen previously. We argue that the metal-rich stars in this region are mostly on orbits that support the boxy-peanut shape of the bulge, which naturally explains the drop in their velocity dispersion profile with latitude. The metal rich stars also exhibit peaky features in their line-of-sight velocity histograms, particularly along the minor axis of the bulge. We propose that these features are due to stars on resonant orbits supporting the boxy-peanut bulge. This conjecture is strengthened through the comparison ...

  9. Evidence for a metal-poor population in the inner Galactic Bulge

    CERN Document Server

    Schultheis, M; Zasowski, G; Pérez, A E García; Sellgren, K; Smith, V; García-Hernández, D A; Zamora, O; Fritz, T K; Anders, F; Prieto, C Allende; Bizyaev, D; Kinemuchi, K; Pan, K; Malanushenko, E; Malanushenko, V; Shetrone, M D

    2015-01-01

    The inner Galactic Bulge has, until recently, been avoided in chemical evolution studies due to extreme extinction and stellar crowding. Large, near-IR spectroscopic surveys, such as APOGEE, allow for the first time the measurement of metallicities in the inner region of our Galaxy. We study metallicities of 33 K/M giants situated in the Galactic Center region from observations obtained with the APOGEE survey. We selected K/M giants with reliable stellar parameters from the APOGEE/ASPCAP pipeline. Distances, interstellar extinction values, and radial velocities were checked to confirm that these stars are indeed situated in the inner Galactic Bulge. We find a metal-rich population centered at [M/H] = +0.4 dex, in agreement with earlier studies of other bulge regions, but also a peak at low metallicity around $\\rm [M/H] = -1.0\\,dex$, suggesting the presence of a metal-poor population which has not previously been detected in the central region. Our results indicate a dominant metal-rich population with a metal...

  10. The formation of galaxy bulges: Spectrophotometric constraints

    Science.gov (United States)

    Prugniel, Ph.; Maubon, G.; Simien, F.

    2001-01-01

    We have measured Mg2, Fe 5270 and Fe 5335 spectrophotometric indices (LICK system) in the bulge of 89 galaxies, mostly spirals from the Héraudeau (\\cite{her96}) sample. The indices are reduced to a null velocity dispersion and normalized to an aperture of 0.2 h-1 kpc. The mean errors are 0.009 mag on Mg2, and 0.3 Å on the iron indices. These measurements almost double the amount of similar data already available on spiral galaxies. Our data confirm the existence of the relation between Mg2, and sigma0, the central stellar velocity dispersion; we find an even tighter relation between Mg2, and Vmrot, the maximum rotational velocity of the galaxy, deduced from HI observations. For the most massive bulges, these correlations may be interpreted as a mass-metallicity relation. However, the presence of young stellar populations, traced by the detection of [OIII] lambda 5007 Å, emission, provides clear evidence that age effects do play a role. Since the contribution of the young population is anti-correlated to the mass of the galaxy, it continues the Mg2, vs. sigma0 , relation toward the low-sigma0, region and globally increases its slope. We also present evidence for a new positive correlation between Fe indices and sigma0, and for a significant correlation between the line-strength indices and the total or disk luminosity. We propose to model the whole sequence of bulges within the folowing framework: bulges are composed of a primary population formed prior to the disk, during the initial collapse, and of a secondary population formed during its evolution. The whole family of bulges can be classified into three classes: (A) the bulges dominated by young populations are generally small, have ionized gas, low velocity dispersion and low line strengths; (B) the bulges dominated by the primary population lie along the mass-metallicity sequence defined for elliptical galaxies; and (C) the bulges where the secondary population is significant are less Mg-over-abundant than

  11. The Demographics of galactic bulges in the SDSS database

    CERN Document Server

    Kim, Keunho; Jeong, Hyunjin; Aragon-Salamanca, Alfonso; Smith, Rory; Yi, Sukyoung K

    2016-01-01

    We present a new database of our two-dimensional bulge-disk decompositions for 14,233 galaxies drawn from SDSS DR12 in order to examine the properties of bulges residing in the local universe ($0.005 < z < 0.05$). We performed decompositions in $g$ and $r$ bands by utilizing the {\\sc{galfit}} software. The bulge colors and bulge-to-total ratios are found to be sensitive to the details in the decomposition technique, and hence we hereby provide full details of our method. The $g-r$ colors of bulges derived are almost constantly red regardless of bulge size except for the bulges in the low bulge-to-total ratio galaxies ($B/T_{\\rm r} \\lesssim 0.3$). Bulges exhibit similar scaling relations to those followed by elliptical galaxies, but the bulges in galaxies with lower bulge-to-total ratios clearly show a gradually larger departure in slope from the elliptical galaxy sequence. The scatters around the scaling relations are also larger for the bulges in galaxies with lower bulge-to-total ratios. Both the depa...

  12. Are there carbon stars in the Bulge ?

    OpenAIRE

    Ng, Y. K.

    1998-01-01

    The bulge carbon stars have been a mystery since their discovery, because they are about 2.5mag too faint to be regarded as genuine AGB stars, if located inside the metal-rich bulge (m-M=14.5mag). Part of the mystery can be solved if these carbon stars are related to the Sagittarius dwarf galaxy (SDG; m-M=17.0mag). They are in that case not old and metal-rich, but young, ~0.1 Gyr, with SMC-like metallicity. The sigma_RV=113+/-14 km/s radial velocity dispersion of the stars appears to be consi...

  13. Observations of planetary nebulae in the Galactic Bulge

    CERN Document Server

    Cuisinier, F; Köppen, J; Acker, A; Stenholm, B

    2000-01-01

    High quality spectrophotometric observations of 30 Planetary Nebulae in the Galactic Bulge have been made. Accurate reddenings, plasma parameters, and abundances of He,O,N,S,Ar,Cl are derived. We find the abundances of O,S,Ar in the Planetary Nebulae in the Galactic Bulge to be comparable with the abundances of the Planetary Nebulae in the Disk, high abundances being maybe slightly more frequent in the Bulge. The distribution of the N/O ratio does not present in the Galactic Bulge Planetary Nebulae the extension to high values that it presents in the Disk Planetary Nebulae. We interpret this as a signature of the greater age of Bulge Planetary Nebulae. We thus find the Bulge Planetary Nebulae to be an old population, slightly more metal-rich than the Disk Planetary Nebulae. The population of the Bulge Planetary Nebulae shows hence the same characteristics than the Bulge stellar population.

  14. The Age of the Young Bulge-like Population in the Stellar System Terzan 5: Linking the Galactic Bulge to the High-z Universe

    Science.gov (United States)

    Ferraro, F. R.; Massari, D.; Dalessandro, E.; Lanzoni, B.; Origlia, L.; Rich, R. M.; Mucciarelli, A.

    2016-09-01

    The Galactic bulge is dominated by an old, metal-rich stellar population. The possible presence and the amount of a young (a few gigayears old) minor component is one of the major issues debated in the literature. Recently, the bulge stellar system Terzan 5 was found to harbor three sub-populations with iron content varying by more than one order of magnitude (from 0.2 up to two times the solar value), with chemical abundance patterns strikingly similar to those observed in bulge field stars. Here we report on the detection of two distinct main-sequence turnoff points in Terzan 5, providing the age of the two main stellar populations: 12 Gyr for the (dominant) sub-solar component and 4.5 Gyr for the component at super-solar metallicity. This discovery classifies Terzan 5 as a site in the Galactic bulge where multiple bursts of star formation occurred, thus suggesting a quite massive progenitor possibly resembling the giant clumps observed in star-forming galaxies at high redshifts. This connection opens a new route of investigation into the formation process and evolution of spheroids and their stellar content. Based on data obtained with (1) the ESA/NASA HST, under programs GO-14061, GO-12933, GO-10845, (2) the Very Large Telescope of the European Southern Observatory during the Science Verification of the camera MAD; (3) the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and NASA.

  15. Bulge formation in disk galaxies with MOND

    CERN Document Server

    Combes, F

    2014-01-01

    The formation of galaxies and their various components can be stringent tests of dark matter models and of gravity theories. In the standard cold dark matter (CDM) model, spheroids are formed through mergers in a strongly hierarchical scenario, and also in the early universe through dynamical friction in clumpy galaxies. More secularly, pseudo-bulges are formed by the inner vertical resonance with bars. The high efficiency of bulge formation is in tension with observations in the local universe of a large amount of bulge-less spiral galaxies. In the present work, the formation of bulges in very gas-rich galaxies, as those in the early universe, is studied in the Milgrom's MOdified Newtonian Dynamics (MOND), through multi-grid simulations of the non-linear gravity, including the gas dissipation, star formation and feedback. Clumpy disks are rapidly formed, as in their Newtonian equivalent systems. However, the dynamical friction is not as efficient, in the absence of dark matter halos, and the clumps have no t...

  16. Are Bulges and Disks Real? Decomposing Spectral Data Cubes Into Their Astrophysical Components

    Science.gov (United States)

    Merrifield, Michael; Tabor, Martha; Aragon-Salamanca, Alfonso; Cappellari, Michele; Johnston, Evelyn

    2016-01-01

    Decomposing galaxies photometrically into bulge and disk components is now a well-established technique, but it remains unclear how distinct and real these components are, and how they relate to each other. To address these questions, we have been developing novel techniques to extract the various structural components from integral field unit (IFU) spectral observations of galaxies, in order to study simultaneously their spectral and spatial properties.As a first approach, by spatially decomposing each wavelength in a spectral data cube, we can discover how much light comes from the separate components as a function of wavelength, and hence derive unprecedentedly high quality spectra of bulge and disk for detailed analysis of their stellar populations.In addition, we have decomposed spectral data cubes by fitting the spectrum at each location with the sum of two components, with the spectral properties left entirely free to fit both kinematic and stellar population properties, subject only to the constraint that the relative flux contributions match those of a conventional bulge-disk decomposition.Initial results applied to MaNGA and other IFU surveys show the power of these techniques when applied to such high quality data. The first method allows us to understand the formation sequence of bulges and disks, with, for example, bulges showing the younger stellar populations in S0 galaxies, implying that this was where the last gasp of star formation occurred. The second technique reveals subtle population gradients within individual components, but also confirms that the decomposition into separate components is a credible procedure, as the resulting bulges and disks have entirely plausible kinematic properties that are in no way imposed by the decomposition.Although our initial application of these decomposition techniques has been to studying bulges and disks in S0 galaxies, the methods have much wider application to the spectral data cubes that MaNGA and other

  17. Thermal Giant Gravitons

    CERN Document Server

    Armas, Jay; Obers, Niels A; Orselli, Marta; Pedersen, Andreas Vigand

    2012-01-01

    We study the giant graviton solution as the AdS_5 X S^5 background is heated up to finite temperature. The analysis employs the thermal brane probe technique based on the blackfold approach. We focus mainly on the thermal giant graviton corresponding to a thermal D3-brane probe wrapped on an S^3 moving on the S^5 of the background at finite temperature. We find several interesting new effects, including that the thermal giant graviton has a minimal possible value for the angular momentum and correspondingly also a minimal possible radius of the S^3. We compute the free energy of the thermal giant graviton in the low temperature regime, which potentially could be compared to that of a thermal state on the gauge theory side. Moreover, we analyze the space of solutions and stability of the thermal giant graviton and find that, in parallel with the extremal case, there are two available solutions for a given temperature and angular momentum, one stable and one unstable. In order to write down the equations of mot...

  18. Red giant seismology: Observations

    Directory of Open Access Journals (Sweden)

    Mosser B.

    2013-03-01

    Full Text Available The CoRoT and Kepler missions provide us with thousands of red-giant light curves that allow a very precise asteroseismic study of these objects. Before CoRoT and Kepler, the red-giant oscillation patterns remained obscure. Now, these spectra are much more clear and unveil many crucial interior structure properties. For thousands of red giants, we can derive from seismic data precise estimates of the stellar mass and radius, the evolutionary status of the giants (with a clear difference between clump and RGB stars, the internal differential rotation, the mass loss, the distance of the stars... Analyzing this amount of information is made easy by the identification of the largely homologous red-giant oscillation patterns. For the first time, both pressure and mixed mode oscillation patterns can be precisely depicted. The mixed-mode analysis allows us, for instance, to probe directly the stellar core. Fine details completing the red-giant oscillation pattern then provide further information on the interior structure, including differential rotation.

  19. The Demographics of Galactic Bulges in the SDSS Database

    Science.gov (United States)

    Kim, Keunho; Oh, Sree; Jeong, Hyunjin; Aragón-Salamanca, Alfonso; Smith, Rory; Yi, Sukyoung K.

    2016-07-01

    We present a new database of our two-dimensional bulge-disk decompositions for 14,233 galaxies drawn from Sloan Digital Sky Survey DR12 in order to examine the properties of bulges residing in the local universe (0.005 originate from the presence of young stars. The bulges in galaxies with low bulge-to-total ratios show signs of a frosting of young stars so substantial that their luminosity-weighted Balmer-line ages are as small as 1 Gyr in some cases. While bulges seem largely similar in optical properties to elliptical galaxies, they do show clear and systematic departures as a function of bulge-to-total ratio. The stellar properties and perhaps associated formation processes of bulges seem much more diverse than those of elliptical galaxies.

  20. The Controversial Star-Formation History and Helium Enrichment of the Milky Way Bulge

    Science.gov (United States)

    Nataf, David M.

    2016-06-01

    The stellar population of the Milky Way bulge is thoroughly studied, with a plethora of measurements from virtually the full suite of instruments available to astronomers. It is thus perhaps surprising that alongside well-established results lies some substantial uncertainty in its star-formation history. Cosmological models predict the bulge to host the Galaxy's oldest stars for [Fe/H] ≲ -1, and this is demonstrated by RR Lyrae stars and globular cluster observations. There is consensus that bulge stars with [Fe/H] ≲ 0 are older than t ≈ 10 Gyr. However, at super-solar metallicity, there is a substantial unresolved discrepancy. Data from spectroscopic measurements of the main-sequence turnoff and subgiant branch, the abundances of asymptotic giant branch stars, the period distribution of Mira variables, the chemistry and central-star masses of planetary nebulae, all suggest a substantial intermediate-age population (t ≈ 3 Gyr). This is in conflict with predictions from cosmologically motivated chemical evolution models and photometric studies of the main-sequence turnoff region, which both suggest virtually no stars younger than t ≈ 8 Gyr. A possible resolution to this conflict is enhanced helium-enrichment, as this would shift nearly all of the age estimates in the direction of decreasing discrepancy.

  1. Chemistry of the Most Metal-poor Stars in the Bulge and the z > 10 Universe

    CERN Document Server

    Casey, Andrew R

    2015-01-01

    Metal-poor stars in the Milky Way are local relics of the epoch of the first stars and the first galaxies. However, a low metallicity does not prove that a star formed in this ancient era, as metal-poor stars form over a range of redshift in different environments. Theoretical models of Milky Way formation have shown that at constant metallicity, the oldest stars are those closest to the center of the Galaxy on the most tightly-bound orbits. For that reason, the most metal-poor stars in the bulge of the Milky Way provide excellent tracers of the chemistry of the high-redshift universe. We report the dynamics and detailed chemical abundances of three stars in the bulge with [Fe/H] $\\lesssim-2.7$, two of which are the most metal-poor stars in the bulge in the literature. We find that with the exception of scandium, all three stars follow the abundance trends identified previously for metal-poor halo stars. These three stars have the lowest [Sc II/Fe] abundances yet seen in $\\alpha$-enhanced giant stars in the G...

  2. Red galaxies with pseudo-bulges in the SDSS: closer to disk galaxies or to classical bulges?

    CERN Document Server

    Ribeiro, B; Antón, S; Gomes, J M; Papaderos, P

    2015-01-01

    Pseudo-bulges are expected to markedly differ from classical, quasi-monolithically forming bulges in their star formation history (SFH) and chemical abundance patterns. To test this simple expectation, we carry out a comparative structural and spectral synthesis analysis of 106 red, massive galaxies issued from the SDSS, subdivided into bulgeless, pseudo-bulge and classical bulge galaxies according to their photometric characteristics, and further obeying a specific selection to minimize uncertainties in the analysis and ensure an unbiased derivation and comparison of SFHs. Our 2D photometry analysis suggests that disks underlying pseudo-bulges typically have larger exponential scale lengths than bulgeless galaxies, despite similar integral disk luminosities. Spectral synthesis models of the stellar emission within the 3" SDSS fiber aperture reveal a clear segregation of bulgeless and pseudo-bulge galaxies from classical bulges on the luminosity-weighted planes of age-metallicity and mass-metallicity, though ...

  3. Are there carbon stars in the Bulge?

    CERN Document Server

    Ng, Y K

    1998-01-01

    The bulge carbon stars have been a mystery since their discovery, because they are about 2.5mag too faint to be regarded as genuine AGB stars, if located inside the metal-rich bulge (m-M=14.5mag). Part of the mystery can be solved if these carbon stars are related to the Sagittarius dwarf galaxy (SDG; m-M=17.0mag). They are in that case not old and metal-rich, but young, ~0.1 Gyr, with SMC-like metallicity. The sigma_RV=113+/-14 km/s radial velocity dispersion of the stars appears to be consistent with bulge membership. On the other hand, a similar velocity dispersion could be the result from an induced star formation event when the SDG crosses the galactic midplane. It is suggested that the carbon stars are tracers of such an event and that they therefore are located at distances related to the SDG. However, the majority of the carbon stars are not member of the SDG, nor are they similar to the C-stars which are member of the SDG. The radial velocities can be used to determine a possible membership to the SD...

  4. Composite Bulges: The Coexistence of Classical Bulges and Disky Pseudobulges in S0 and Spiral Galaxies

    CERN Document Server

    Erwin, Peter; Fabricius, Maximilian; Thomas, Jens; Nowak, Nina; Rusli, Stephanie; Bender, Ralf; Beltran, Juan Carlos Vega; Beckman, John E

    2014-01-01

    We study nine S0-Sb galaxies with (photometric) bulges consisting of two distinct components. The outer component is a flattened, kinematically cool, disklike structure: a "disky pseudobulge". Embedded inside is a rounder, kinematically hot spheroid: a "classical bulge". This indicates that pseudobulges and classical bulges are not mutually exclusive: some galaxies have both. The disky pseudobulges almost always have an exponential disk (scale lengths = 125-870 pc, mean $\\sim 440$ pc) with disk-related subcomponents: nuclear rings, bars, and/or spiral arms. They constitute 11-59% of the galaxy stellar mass (mean PB/T = 0.33), with stellar masses $\\sim 7 \\times 10^{9}$-$9 \\times 10^{10} M_{\\odot}$. Classical-bulge components have Sersic indices of 0.9-2.2, effective radii of 25-430 pc and stellar masses of $5 \\times 10^{8}$-$3 \\times 10^{10} M_{\\odot}$ (usually < 10% of the galaxy's stellar mass; mean B/T = 0.06). The classical bulges show rotation, but are kinematically hotter than the disky pseudobulges. ...

  5. Secular- and merger-built bulges in barred galaxies

    CERN Document Server

    Mendez-Abreu, J; Corsini, E M; Aguerri, J A L

    2014-01-01

    (Abridged) We study the incidence, as well as the nature, of composite bulges in a sample of 10 face-on barred galaxies to constrain the formation and evolutionary processes of the central regions of disk galaxies. We analyze the morphological, photometric, and kinematic properties of each bulge. Then, by using a case-by-case analysis we identify composite bulges and classify every component into a classical or pseudobulge. In addition, bar-related boxy/peanut (B/P) structures were also identified and characterised. We find only three galaxies hosting a single-component bulge (two pseudobulges and one classical bulge). We find evidence of composite bulges coming in two main types based on their formation: secular-built and merger- and secular-built. We call secular-built to composite bulges made of entirely by structures associated with secular processes such as pseudo bulges, central disks, or B/P bulges. We find four composite bulges of this kind in our sample. On the other hand, merger- and secular-built b...

  6. On the kinematic separation of field and cluster stars across the bulge globular NGC 6528

    Energy Technology Data Exchange (ETDEWEB)

    Lagioia, E. P.; Bono, G.; Buonanno, R. [Dipartimento di Fisica, Università degli Studi di Roma-Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Milone, A. P. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Stetson, P. B. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Prada Moroni, P. G. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); Dall' Ora, M. [INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli (Italy); Aparicio, A.; Monelli, M. [Instituto de Astrofìsica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands (Spain); Calamida, A.; Ferraro, I.; Iannicola, G. [INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I-00044 Monte Porzio Catone (Italy); Gilmozzi, R. [European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching (Germany); Matsunaga, N. [Kiso Observatory, Institute of Astronomy, School of Science, The University of Tokyo, 10762-30, Mitake, Kiso-machi, Kiso-gun, 3 Nagano 97-0101 (Japan); Walker, A., E-mail: eplagioia@roma2.infn.it [Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena (Chile)

    2014-02-10

    We present deep and precise multi-band photometry of the Galactic bulge globular cluster NGC 6528. The current data set includes optical and near-infrared images collected with ACS/WFC, WFC3/UVIS, and WFC3/IR on board the Hubble Space Telescope. The images cover a time interval of almost 10 yr, and we have been able to carry out a proper-motion separation between cluster and field stars. We performed a detailed comparison in the m {sub F814W}, m {sub F606W} – m {sub F814W} color-magnitude diagram with two empirical calibrators observed in the same bands. We found that NGC 6528 is coeval with and more metal-rich than 47 Tuc. Moreover, it appears older and more metal-poor than the super-metal-rich open cluster NGC 6791. The current evidence is supported by several diagnostics (red horizontal branch, red giant branch bump, shape of the sub-giant branch, slope of the main sequence) that are minimally affected by uncertainties in reddening and distance. We fit the optical observations with theoretical isochrones based on a scaled-solar chemical mixture and found an age of 11 ± 1 Gyr and an iron abundance slightly above solar ([Fe/H] = +0.20). The iron abundance and the old cluster age further support the recent spectroscopic findings suggesting a rapid chemical enrichment of the Galactic bulge.

  7. The contrasting structures of mismatched DNA sequences containing looped-out bases (bulges) and multiple mismatches (bubbles).

    Science.gov (United States)

    Bhattacharyya, A; Lilley, D M

    1989-09-12

    We have studied the structure and reactivities of two kinds of mismatched DNA sequences--unopposed bases, or bulges, and multiple mismatched pairs of bases. These were generated in a constant sequence environment, in relatively long DNA fragments, using a technique based on heteroduplex formation between sequences cloned into single-stranded M13 phage. The mismatched sequences were studied from two points of view, viz 1. The mobility of the fragments on gel electrophoresis in polyacrylamide was studied in order to examine possible bending of the DNA due to the presence of the mismatch defect. Such bending would constitute a global effect on the conformation of the molecule. 2. Sequences in and around the mismatches were studied using enzyme and chemical probes of DNA structure. This would reveal more local structural effects of the mismatched sequences. We observed that the structures of the bulges and the multiple mismatches appear to be fundamentally different. The bulged sequences exhibited a large gel retardation, consistent with a significant bending of the DNA at the bulge, and whose magnitude depends on the number of mismatched bases. The larger bulges were sensitive to cleavage by single-strand specific nucleases, and modified by diethyl pyrocarbonate (adenines) or osmium tetroxide (thymines) in a non-uniform way, suggesting that the bulges have a precise structure that leads to exposure of some, but not all, of the bases. In contrast the multiple mismatches ('bubbles') cause very much less bending of the DNA fragment in which they occur, and uniform patterns of chemical reactivity along the length of the mismatched sequences, suggesting a less well defined, and possibly flexible, structure. The precise structure of the bulges suggests that such features may be especially significant for recognition by proteins.

  8. Red galaxies with pseudo-bulges in the SDSS: closer to disc galaxies or to classical bulges?

    Science.gov (United States)

    Ribeiro, B.; Lobo, C.; Antón, S.; Gomes, J. M.; Papaderos, P.

    2016-03-01

    Pseudo-bulges are expected to markedly differ from classical quasi-monolithically forming bulges in their star formation history (SFH) and chemical abundance patterns. To test this simple expectation, we carry out a comparative structural and spectral synthesis analysis of 106 red massive galaxies issued from the Sloan Digital Sky Survey (SDSS), sub-divided into bulgeless, pseudo-bulge and classical bulge galaxies according to their photometric characteristics, and further obeying a specific selection to minimize uncertainties in the analysis and ensure an unbiased derivation and comparison of SFHs. Our 2D photometry analysis suggests that discs underlying pseudo-bulges typically have larger exponential scalelengths than bulgeless galaxies, despite similar integral disc luminosities. Spectral synthesis models of the stellar emission within the 3-arcsec SDSS fibre aperture reveal a clear segregation of bulgeless and pseudo-bulge galaxies from classical bulges on the luminosity-weighted planes of age-metallicity and mass-metallicity, though a large dispersion is observed within the two former classes. The secular growth of pseudo-bulges is also reflected upon their cumulative stellar mass as a function of time, which is shallower than that for classical bulges. Such results suggest that the centres of bulgeless and pseudo-bulge galaxies substantially differ from those of bulgy galaxies with respect to their SFH and chemical enrichment history, which likely points to different formation/assembly mechanisms.

  9. Rapidly rotating red giants

    CERN Document Server

    Gehan, Charlotte; Michel, Eric

    2016-01-01

    Stellar oscillations give seismic information on the internal properties of stars. Red giants are targets of interest since they present mixed modes, which behave as pressure modes in the convective envelope and as gravity modes in the radiative core. Mixed modes thus directly probe red giant cores, and allow in particular the study of their mean core rotation. The high-quality data obtained by CoRoT and Kepler satellites represent an unprecedented perspective to obtain thousands of measurements of red giant core rotation, in order to improve our understanding of stellar physics in deep stellar interiors. We developed an automated method to obtain such core rotation measurements and validated it for stars on the red giant branch. In this work, we particularly focus on the specific application of this method to red giants having a rapid core rotation. They show complex spectra where it is tricky to disentangle rotational splittings from mixed-mode period spacings. We demonstrate that the method based on the id...

  10. Probing the Deep End of the Milky Way with Kepler: Asteroseismic Analysis of 854 Faint Red Giants Misclassified as Cool Dwarfs

    Science.gov (United States)

    Mathur, S.; García, R. A.; Huber, D.; Regulo, C.; Stello, D.; Beck, P. G.; Houmani, K.; Salabert, D.

    2016-08-01

    Asteroseismology has proven to be an excellent tool to determine not only global stellar properties with good precision, but also to infer the stellar structure, dynamics, and evolution for a large sample of Kepler stars. Prior to the launch of the mission, the properties of Kepler targets were inferred from broadband photometry, leading to the Kepler Input Catalog (KIC). The KIC was later revised in the Kepler Star Properties Catalog, based on literature values and an asteroseismic analysis of stars that were unclassified in the KIC. Here, we present an asteroseismic analysis of 45,400 stars that were classified as dwarfs in the Kepler Star Properties Catalog. We found that around 2% of the sample shows acoustic modes in the typical frequency range that put them in the red-giant category rather than the cool dwarf category. We analyze the asteroseismic properties of these stars, derive their surface gravities, masses, and radii, and present updated effective temperatures and distances. We show that the sample is significantly fainter than the previously known oscillating giants in the Kepler field, with the faintest stars reaching down to a Kepler magnitude of Kp ˜ 16. We demonstrate that 404 stars are at distances beyond 5 kpc and that the stars are significantly less massive than for the original Kepler red-giant sample, consistent with a population of distant halo giants. A comparison with a galactic population model shows that up to 40 stars might be genuine halo giants, which would increase the number of known asteroseismic halo stars by a factor of 4. The detections presented here will provide a valuable sample for galactic archeology studies.

  11. Chemical evolution of the inner 2 degrees of the Milky Way bulge: [alpha/Fe] trends and metallicity gradients

    CERN Document Server

    Ryde, N; Grieco, V; Matteucci, F; Rich, R M; Uttenthaler, S

    2015-01-01

    The structure, formation, and evolution of the Milky Way bulge is a matter of debate. Important diagnostics for discriminating between bulge models include alpha-abundance trends with metallicity, and spatial abundance and metallicity gradients. Due to the severe optical extinction in the inner Bulge region, only a few detailed investigations have been performed of this region. Here we aim at investigating the inner 2 degrees by observing the [alpha/Fe] element trends versus metallicity, and by trying to derive the metallicity gradient. [alpha/Fe] and metallicities have been determined by spectral synthesis of 2 micron spectra observed with VLT/CRIRES of 28 M-giants, lying along the Southern minor axis at (l,b)=(0,0), (0,-1), and (0,-2). VLT/ISAAC spectra are used to determine the effective temperature of the stars. We present the first connection between the Galactic Center and the Bulge using similar stars, high spectral resolution, and analysis techniques. The [alpha/Fe] trends in all our 3 fields show a l...

  12. Trajectories of Cepheid variable stars in the Galactic nuclear bulge

    Science.gov (United States)

    Matsunaga, Noriyuki

    2012-06-01

    The central region of our Galaxy provides us with a good opportunity to study the evolution of galactic nuclei and bulges because we can observe various phenomena in detail at the proximity of 8 kpc. There is a hierarchical alignment of stellar systems with different sizes; from the extended bulge, the nuclear bulge, down to the compact cluster around the central supermassive blackhole. The nuclear bulge contains stars as young as a few Myr, and even hosts the ongoing star formation. These are in contrast to the more extended bulge which are dominated by old stars, ~10Gyr. It is considered that the star formation in the nuclear bulge is caused by fresh gas provided from the inner disk. In this picture, the nuclear bulge plays an important role as the interface between the gas supplier, the inner disk, and the galactic nucleus. Kinematics of young stars in the nuclear bulge is important to discuss the star forming process and the gas circulation in the Galactic Center. We here propose spectroscopic observations of Cepheid variable stars, ~25 Myr, which we recently discovered in the nuclear bulge. The spectra taken in this proposal will allow timely estimates of the systemic velocities of the variable stars.

  13. Which bulges are favoured by barred S0 galaxies?

    CERN Document Server

    Barway, Sudhanshu; Vaghmare, Kaustubh; Kembhavi, Ajit K

    2016-01-01

    S0 galaxies are known to host classical bulges with a broad range of size and mass, while some such S0s are barred and some not. The origin of the bars has remained as a long-standing problem -- what made bar formation possible in certain S0s? By analysing a large sample of S0s with classical bulges observed by the Spitzer space telescope, we find that most of our barred S0s host comparatively low-mass classical bulges, typically with bulge-to-total ratio ($B/T$) less than $0.5$; whereas S0s with more massive classical bulges than these do not host any bar. Furthermore, we find that amongst the barred S0s, there is a trend for the longer and massive bars to be associated with comparatively bigger and massive classical bulges -- possibly suggesting bar growth being facilitated by these classical bulges. In addition, we find that the bulge effective radius is always less than the bar effective radius --indicating an interesting synergy between the host classical bulge and bars being maintained while bar growth ...

  14. FORMATION AND EVOLUTION OF THE GALACTIC BULGE

    Directory of Open Access Journals (Sweden)

    M. Zoccali

    2009-01-01

    Full Text Available Despite its importance as the only galactic spheroid fully resolved in stars, our knowledge of the Galacticbulge has been historically quite poor. This was mainly due to the stellar crowding, to the heavy interstellar absorption in the plane, and to the foreground disk contamination. However, in the last few years, with the use of near IR detectors, 8 meter class (or space based telescopes, and the advent of multi-object spectrographs, we have learnt how to minimize the above e ects. This paper reviews the basic properties (structural parameters, age, chemical content of the Galactic bulge, as determined in the last 4{5 years.

  15. Bulges of disk galaxies at intermediate redshifts. I. Samples with and without bulges in the Groth Strip Survey

    OpenAIRE

    L. Domínguez Palmero; M. Balcells; Erwin, P; Prieto, M.; Cristóbal Hornillos, D.; Eliche Moral, María del Carmen; Guzmán, R.

    2008-01-01

    Context. Analysis of bulges to redshifts of up to z∽1 have provided ambiguous results as to whether bulges as a class are old structures akin to elliptical galaxies or younger products of the evolution of their host disks. Aims. We aim to define a sample of intermediate-z disk galaxies harbouring central bulges, and a complementary sample of disk galaxies without measurable bulges. We intend to provide colour profiles for both samples, as well as measurements of nuclear, disk, and global colo...

  16. Electric giant resonances in sup 4 sup 0 Ca and sup 4 sup 8 Ca probed with electron and proton scattering coincidence experiments

    CERN Document Server

    Strauch, S

    1999-01-01

    Excitation and particle decay of electric giant resonances in sup 4 sup 0 Ca and sup 4 sup 8 Ca are studied with electron and proton beams. Recent results of a sup 4 sup 8 Ca(e,e'n) measurement performed at the S-DALINAC in Darmstadt with kinematics that selectively populate electric monopole, dipole and quadrupole excitations are presented. The extracted B(E1) strength distribution is in good agreement with photo nuclear data and the predictions of microscopic calculations. The summed B(E2+E0) strength distribution, however disagrees with the result of these calculations. The neutron emission of the giant dipole resonance in sup 4 sup 8 Ca shows a large fraction of direct decay to sup 4 sup 7 Ca hole states. In addition, isoscalar giant monopole resonance strength in sup 4 sup 0 Ca was extracted from (e,e'alpha sub 0) and (e,e'alpha sub 1) angular correlations. A study of the quadrupole strength in the alpha sub 0 decay channel of sup 4 sup 0 Ca with a (p,p'alpha) coincidence measurement reiterates the unsol...

  17. Bars rejuvenating bulges? Evidence from stellar population analysis

    CERN Document Server

    Coelho, Paula

    2011-01-01

    We obtained stellar ages and metallicities via spectrum fitting for a sample of 575 bulges with spectra available from the Sloan Digital Sky Survey. The structural properties of the galaxies have been studied in detail in Gadotti (2009b) and the sample contains 251 bulges in galaxies with bars. Using the whole sample, where galaxy stellar mass distributions for barred and unbarred galaxies are similar, we find that bulges in barred and unbarred galaxies occupy similar loci in the age vs. metallicity plane. However, the distribution of bulge ages in barred galaxies shows an excess of populations younger than ~ 4 Gyr, when compared to bulges in unbarred galaxies. Kolmogorov-Smirnov statistics confirm that the age distributions are different with a significance of 99.94%. If we select sub-samples for which the bulge stellar mass distributions are similar for barred and unbarred galaxies, this excess vanishes for galaxies with bulge mass log M < 10.1 M_Sun while for more massive galaxies we find a bimodal bulg...

  18. The Galactic Bulge The Stellar and Planetary Nebulae Populations

    CERN Document Server

    Cuisinier, F; Acker, A; Maciel, W J

    2001-01-01

    We compare abundances patterns in the Bulge for elements observed in stars and in planetary nebulae. Some alpha elements, like Mg and Ti, are overabundant respect to Fe, and others are not, like He, O, Si, S, Ar, Ca. The first ones favor a quick evolution of the Galactic Bulge, and the seconds a much slower one.

  19. Surface photometry of bulge dominated low surface brightness galaxies

    NARCIS (Netherlands)

    Beijersbergen, M; de Blok, WJG; van der Hulst, JM

    1999-01-01

    We present results of broad band BVRI observations of a sample of galaxies with a low surface brightness (LSB) disk and a bulge. These galaxies are well described as exponential disks and exponential bulges with no preferred value for either scale length or central surface brightness. The median B b

  20. Bulge-driven Fueling of Seed Black Holes

    CERN Document Server

    Park, KwangHo; Natarajan, Priyamvada; Bogdanović, Tamara; Wise, John H

    2015-01-01

    We examine radiation-regulated accretion onto intermediate-mass and massive black holes (BHs) embedded in a bulge component. Using spherically symmetric one-dimensional radiation-hydrodynamics simulations, we track the growth of BHs accreting from a cold, neutral gas reservoir with temperature T=10^4 K. We find that the accretion rate of BHs embedded in bulges is proportional to r_{B,eff}/r_B, where r_{B,eff} is the increased effective Bondi radius that includes the gravitational potential of the bulge, and r_B is the Bondi radius of the BH. The radiative feedback from the BH suppresses the cold accretion rate to ~1 percent of the Bondi rate when a bulge is not considered. However, we find that the BH fueling rate increases rapidly when the bulge mass M_bulge is greater than the critical value of 10^6 M_sun and is proportional to M_bulge. Since the critical bulge mass is independent of the central BH mass M_{BH}, the growth rate of BHs with masses of 10^2, 10^4, and 10^6 M_sun exhibits distinct dependencies o...

  1. Bulges and discs of spiral galaxies: edge-on perspective

    CERN Document Server

    Sotnikova, N Ya; Mosenkov, A V

    2010-01-01

    We present a sample of edge-on spiral galaxies both of early and late types.The sample consists of 175 galaxies in the Ks-filter, 169 galaxies in the H-filter and 165 galaxies in the J-filter. Bulge and disc decompositions of each galaxy image, taken from the Two Micron All Sky Survey (2MASS), were performed. We discuss several scaling relations for bulges and discs which indicate a tight link between their formation and evolution. We show that galaxies with bulges fitted by the Sersic index n=2 bulges (classical bulges). First of all, the distribution of the apparent bulge axis ratio q_b for the subsample with n=2 bulges seem to be oblate spheroids with moderate flattening. Secondly, the Photometric Plane of the sample bulges is not flat and has a prominent curvature towards small values of n. Thirdly, despite of the existence of a clear relation between the flattening of stellar discs h/z_0 and the relative mass of a spherical component, the distributions over both parameters are quite different for galaxie...

  2. Giant Planets

    CERN Document Server

    Guillot, Tristan

    2014-01-01

    We review the interior structure and evolution of Jupiter, Saturn, Uranus and Neptune, and giant exoplanets with particular emphasis on constraining their global composition. Compared to the first edition of this review, we provide a new discussion of the atmospheric compositions of the solar system giant planets, we discuss the discovery of oscillations of Jupiter and Saturn, the significant improvements in our understanding of the behavior of material at high pressures and the consequences for interior and evolution models. We place the giant planets in our Solar System in context with the trends seen for exoplanets.

  3. The bulge luminosity for low-mass black holes

    CERN Document Server

    Jiang, Yanfei; Ho, Luis

    2011-01-01

    We study the scaling between bulge magnitude and central black hole (BH) mass in galaxies with virial BH masses 10^7 solar mass. Specfically, bulges span a much wider range of bulge luminosity, and on average the luminosity is larger, at fixed black hole mass. The trend holds both for the active galaxies from Bentz et al. and the inactive sample of Gultekin et al. and cannot be explained by differences in stellar populations, as it persists when we use dynamical bulge masses. Put another way, the ratio between bulge and BH mass is much larger than $\\sim 1000$ for our sample. This is consistent with recent suggestions that black hole mass does not scale with the pseudobulge luminosity. The low-mass scaling relations appear to flatten, consistent with predictions from Volonteri & Natarajan for massive seed BHs.

  4. Gravitational lensing interpretation of the giant luminous arc in Abell 370: A new probing of the mass-to-light ratio

    International Nuclear Information System (INIS)

    From our photometric and spectroscopic data on the distant cluster of galaxies Abell 370 (z=0.374), we suggest that the giant luminous arc observed in this cluster could be the result of gravitational lensing of a background galaxy by the cluster center. Thanks to the observational constraints, we have modeled this lensing effect to fit all the arc structure. This leads to a new determination of the mass-to-light ratio which is compared to the one obtained from the virial theorem and the velocity dispersion

  5. A Connection Between Bulge Properties and the Bimodality of Galaxies

    CERN Document Server

    Drory, Niv

    2007-01-01

    The global colors of galaxies have recently been shown to follow bimodal distributions. Galaxies separate into a ``red sequence'', populated prototypically by early-type galaxies, and a ``blue cloud'', whose typical objects are late-type disk galaxies. Intermediate-type (Sa-Sbc) galaxies populate both regions. It has been suggested that this bimodality reflects the two-component nature of disk-bulge galaxies. However, it has now been established that there are two types of bulges: ``classical bulges'' that are dynamically hot systems resembling (little) ellipticals, and ``pseudobulges'', dynamically cold, flattened, disk-like structures that could not have formed via violent relaxation. Therefore thee question is whether at types Sa-Sbc, where both bulge types are found, the red-blue dichotomy separates galaxies at some value of disk-to-bulge ratio, $B/T$, or, whether it separates galaxies of different bulge type, irrespective of their $B/T$. We identify classical bulges and pseudobulges morphologically with ...

  6. The Panchromatic Hubble Andromeda Treasury I: Bright UV Stars in the Bulge of M31

    CERN Document Server

    Rosenfield, Philip; Girardi, Léo; Dalcanton, Julianne J; Bressan, Alessandro; Lang, Dustin; Williams, Benjamin F; Guhathakurta, Puragra; Howley, Kirsten M; Lauer, Tod R; Bell, Eric F; Bianchi, Luciana; Caldwell, Nelson; Dolphin, Andrew; Dorman, Claire E; Gilbert, Karoline M; Kalirai, Jason; Larsen, Søren S; Olsen, Knut A G; Rix, Hans-Walter; Seth, Anil C; Skillman, Evan D; Weisz, Daniel R

    2012-01-01

    As part of the Panchromatic Hubble Andromeda Treasury (PHAT) multi-cycle program, we observed a 12' \\times 6.5' area of the bulge of M31 with the WFC3/UVIS filters F275W and F336W. From these data we have assembled a sample of \\sim4000 UV-bright, old stars, vastly larger than previously available. We use updated Padova stellar evolutionary tracks to classify these hot stars into three classes: Post-AGB stars (P-AGB), Post-Early AGB (PE-AGB) stars and AGB-manqu\\'e stars. P-AGB stars are the end result of the asymptotic giant branch (AGB) phase and are expected in a wide range of stellar populations, whereas PE-AGB and AGB-manqu\\'e (together referred to as the hot post-horizontal branch; HP-HB) stars are the result of insufficient envelope masses to allow a full AGB phase, and are expected to be particularly prominent at high helium or {\\alpha} abundances when the mass loss on the RGB is high. Our data support previous claims that most UV-bright sources in the bulge are likely hot (extreme) horizontal branch st...

  7. The Density of Dark Matter in the Galactic Bulge and Implications for Indirect Detection

    CERN Document Server

    Hooper, Dan

    2016-01-01

    A recent study, making use of the number of horizontal branch stars observed in infrared photometric surveys and kinematic measurements of M-giant stars from the BRAVA survey, combined with N-body simulations of stellar populations, has presented a new determination of the dark matter mass within the bulge-bar region of the Milky Way. That study constrains the total mass within the $\\pm 2.2 \\times \\pm 1.4 \\times \\pm 1.2$ kpc volume of the bulge-bar region to be ($1.84 \\pm 0.07) \\times 10^{10} \\, M_{\\odot}$, of which 9-30% is made up of dark matter. Here, we use this result to constrain the the Milky Way's dark matter density profile, and discuss the implications for indirect dark matter searches. Although uncertainties remain significant, these results favor dark matter distributions with a cusped density profile. For example, for a scale radius of 20 kpc and a local dark matter density of 0.4 GeV/cm$^3$, density profiles with an inner slope of 0.69 to 1.40 are favored, approximately centered around the stand...

  8. Visualization of lipid domains of lipid domains in giant unilamellar vesicles using an environment-sensitive membrane probe based on 3-hydroxyflavone

    DEFF Research Database (Denmark)

    Klymchenko, Andrey; Oncul, Sule; Didier, Pascal;

    2009-01-01

    We characterized the recently introduced environment-sensitive fluorescent membrane probe based on 3-hydroxyflavone, F2N12S, in model lipid membranes displaying liquid disordered (Ld) phase, liquid ordered (Lo) phase, or their coexistence. Steady-state fluorescence studies in large unilamellar ve...

  9. Near-Infrared Photometry of Globular Clusters Towards the Galactic Bulge: Observations and Photometric Metallicity Indicators

    CERN Document Server

    Cohen, Roger E; Mauro, Francesco; Bonatto, Charles; Geisler, Douglas

    2016-01-01

    We present wide field JHKs photometry of 16 Galactic globular clusters located towards the Galactic bulge, calibrated on the 2MASS photometric system. Differential reddening corrections and statistical field star decontamination are employed for all of these clusters before fitting fiducial sequences to the cluster red giant branches (RGBs). Observed values and uncertainties are reported for several photometric features, including the magnitude of the RGB bump, tip, the horizontal branch (HB) and the slope of the upper RGB. The latest spectroscopically determined chemical abundances are used to build distance- and reddening-independent relations between observed photometric features and cluster metallicity, optimizing the sample size and metallicity baseline of these relations by supplementing our sample with results from the literature. We find that the magnitude different between the HB and the RGB bump can be used to predict metallicities, in terms of both iron abundance [Fe/H] and global metallicity [M/H]...

  10. Towards the big picture of the Milky Way bulge

    Directory of Open Access Journals (Sweden)

    Gonzalez O.A.

    2012-02-01

    Full Text Available Evidence has been growing in the last few years that the Bulge is very complex, with maybe two or more components partially overlapping in space, kinematics and metallicity. An extensive mapping of these properties is necessary to disentangle them. I present our results based on α-elements abundances for a total of 650 RGB stars in 4 fields along the major and minor axis of the Bulge. Results point towards a spatial homogeneity of α-element enhancement in the metal-poor regime and a population of alpha-poor metal-rich stars which disappears at high latitudes (b = −12. Bulge metal-poor alpha enhancement is also indistinguishable from the one of the thick disk. Further constrains on Bulge populations are provided by the Vista Variables in the Via Lactea survey (VVV from which I present our recent results in extinction, structure and photometric metallicities.

  11. Non linear finite element simulation of complex bulge forming processes

    OpenAIRE

    Mac Donald, Bryan J

    2000-01-01

    Bulge forming is a manufacturing process that is becoming increasingly important as a technology that can be used to produce seamless, lightweight and near-net-shape industrial components. The process is being increasingly applied in the automotive and aerospace industries where the demands for increased structural strength and decreased vehicle weight make it a very attractive manufacturing method. This work is concerned with increasing knowledge of the deformation mechanisms during bulg...

  12. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. I. BRIGHT UV STARS IN THE BULGE OF M31

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfield, Philip; Johnson, L. Clifton; Dalcanton, Julianne J.; Williams, Benjamin F.; Gilbert, Karoline M. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Girardi, Leo [Osservatorio Astronomico di Padova-INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Bressan, Alessandro [SISSA, Via Bonomea 265, 34136 Trieste (Italy); Lang, Dustin [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Guhathakurta, Puragra; Dorman, Claire E. [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Howley, Kirsten M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Lauer, Tod R.; Olsen, Knut A. G. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Bianchi, Luciana [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Caldwell, Nelson [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street Cambridge, MA 02138 (United States); Dolphin, Andrew [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Kalirai, Jason [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Larsen, Soren S. [Astronomical Institute, University of Utrecht, Princetonplein 5, 3584 CC Utrecht (Netherlands); Rix, Hans-Walter [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); and others

    2012-08-20

    As part of the Panchromatic Hubble Andromeda Treasury multi-cycle program, we observed a 12' Multiplication-Sign 6.'5 area of the bulge of M31 with the WFC3/UVIS filters F275W and F336W. From these data we have assembled a sample of {approx}4000 UV-bright, old stars, vastly larger than previously available. We use updated Padova stellar evolutionary tracks to classify these hot stars into three classes: Post-AGB stars (P-AGB), Post-Early AGB (PE-AGB) stars, and AGB-manque stars. P-AGB stars are the end result of the asymptotic giant branch (AGB) phase and are expected in a wide range of stellar populations, whereas PE-AGB and AGB-manque (together referred to as the hot post-horizontal branch; HP-HB) stars are the result of insufficient envelope masses to allow a full AGB phase, and are expected to be particularly prominent at high helium or {alpha} abundances when the mass loss on the red giant branch is high. Our data support previous claims that most UV-bright sources in the bulge are likely hot (extreme) horizontal branch (EHB) stars and their progeny. We construct the first radial profiles of these stellar populations and show that they are highly centrally concentrated, even more so than the integrated UV or optical light. However, we find that this UV-bright population does not dominate the total UV luminosity at any radius, as we are detecting only the progeny of the EHB stars that are the likely source of the UV excess. We calculate that only a few percent of main-sequence stars in the central bulge can have gone through the HP-HB phase and that this percentage decreases strongly with distance from the center. We also find that the surface density of hot UV-bright stars has the same radial variation as that of low-mass X-ray binaries. We discuss age, metallicity, and abundance variations as possible explanations for the observed radial variation in the UV-bright population.

  13. Probing the deep end of the Milky Way with \\emph{Kepler}: Asteroseismic analysis of 854 faint Red Giants misclassified as Cool Dwarfs

    CERN Document Server

    Mathur, S; Huber, D; Regulo, C; Stello, D; Beck, P G; Houmani, K; Salabert, D

    2016-01-01

    Asteroseismology has proven to be an excellent tool to determine not only the global stellar properties with a good precision but also to infer stellar structure, dynamics, and evolution for a large sample of Kepler stars. Prior to the launch of the mission the properties of Kepler targets were inferred from broadband photometry, leading to the Input Catalog (KIC Brown et al. 2011). The KIC was later revised in the Kepler Star Properties Catalog (Huber et al. 2014), based on literature values and an asteroseismic analysis of stars which were unclassified in the KIC. Here we present an asteroseismic analysis of 45,400 stars which were classified as dwarfs in the Kepler Star Properties Catalog. We found that around 2% of the sample shows acoustic modes in the typical frequency range that put them in the red-giant category rather than cool dwarfs. We analyse the asteroseismic properties of these stars, derive their surface gravities, masses, and radii and present updated effective temperatures and distances. We ...

  14. 'Giant' multishell CdSe nanocrystal quantum dots with supporessed blinking: novel fluorescent probes for real-time detection of single-molecule events

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, Jennifer A [Los Alamos National Laboratory; Vela, Javier [Los Alamos National Laboratory; Htoon, Han [Los Alamos National Laboratory; Klimov, Victor I [Los Alamos National Laboratory; Casson, Amy R [Los Alamos National Laboratory; Chen, Yongfen [NON LANL

    2009-01-01

    We reported for the first time that key nanocrystal quantum dot (NQD) optical properties-quantum yield, photobleaching and blinking-can be rendered independent ofNQD surface chemistry and environment by growth of a very thick, defect-free inorganic shell. Here, we show the precise shell-thickness dependence of these effects. We demonstrate that 'giant-shell' NQDs can be largely non-blinking for observation times as long as 54 minutes and lhat on-time fractions are independent of experimental time-resolution from 1-200 ms. These effects are primarily demonstrated on (CdSe)CdS (core)shell NQDs, but we also show that alloyed shells comprising Cd.Znl.'S and terminated with a non-cytotoxic ZnS layer exhibit similar properties. The mechanism for suppressed blinking and dramatically enhanced stability is attributed to both effective isolation of the NQD core excitonic wavefunction from the NQD surface, as well as a quasi-Type II electronic structure. The unusual electronic structure provides for effective spatial separation of the electron and hole into the shell and core, respectively, and, thereby, for reduced efficiencies in non-radiative Auger recombination.

  15. Hiding its age: the case for a younger bulge

    CERN Document Server

    Haywood, M; Snaith, O; Calamida, A

    2016-01-01

    The determination of the age of the bulge has led to two contradictory results. On the one side, the color-magnitude diagrams in different bulge fields seem to indicate a uniformly old ($>$10 Gyr) population. On the other side, individual ages derived from dwarfs observed through microlensing events seem to indicate a large spread, from $\\sim$ 2 to $\\sim$ 13 Gyr. Because the bulge is now recognised as being mainly a boxy peanut-shaped bar, it is suggested that disk stars are one of its main constituents, and therefore also stars with ages significantly younger than 10 Gyr. Other arguments as well point to the fact that the bulge cannot be exclusively old, and in particular cannot be a burst population, as it is usually expected if the bulge was the fossil remnant of a merger phase in the early Galaxy. In the present study, we show that given the range of metallicities observed in the bulge, a uniformly old population would be reflected into a significant spread in color at the turn-off which is not observed. ...

  16. Chemodynamical analysis of bulge stars for simulated disc galaxies

    Science.gov (United States)

    Rahimi, A.; Kawata, D.; Brook, Chris B.; Gibson, Brad K.

    2010-01-01

    We analyse the kinematics and chemistry of the bulge stars of two simulated disc galaxies using our chemodynamical galaxy evolution code GCD+. First, we compare stars that are born inside the galaxy with those that are born outside the galaxy and are accreted into the centre of the galaxy. Stars that originate outside the bulge are accreted into it early in its formation within 3 Gyr so that these stars have high [α/Fe] as well as a high total energy reflecting their accretion to the centre of the galaxy. Therefore, higher total energy is a good indicator for finding accreted stars. The bulges of the simulated galaxies formed through multiple mergers separated by about a Gyr. Since [α/Fe] is sensitive to the first few Gyr of star formation history, stars that formed during mergers at different epochs show different [α/Fe]. We show that the [Mg/Fe] against star formation time relation can be very useful to identify a multiple merger bulge formation scenario, provided there is sufficiently good age information available. Our simulations also show that stars formed during one of the merger events retain a systematically prograde rotation at the final time. This demonstrates that the orbit of the ancient merger that helped to form the bulge could still remain in the kinematics of bulge stars.

  17. Looking for imprints of the first stellar generations in metal-poor bulge field stars

    Science.gov (United States)

    Siqueira-Mello, C.; Chiappini, C.; Barbuy, B.; Freeman, K.; Ness, M.; Depagne, E.; Cantelli, E.; Pignatari, M.; Hirschi, R.; Frischknecht, U.; Meynet, G.; Maeder, A.

    2016-09-01

    Context. Efforts to look for signatures of the first stars have concentrated on metal-poor halo objects. However, the low end of the bulge metallicity distribution has been shown to host some of the oldest objects in the Milky Way and hence this Galactic component potentially offers interesting targets to look at imprints of the first stellar generations. As a pilot project, we selected bulge field stars already identified in the ARGOS survey as having [Fe/H] ≈-1 and oversolar [α/Fe] ratios, and we used FLAMES-UVES to obtain detailed abundances of key elements that are believed to reveal imprints of the first stellar generations. Aims: The main purpose of this study is to analyse selected ARGOS stars using new high-resolution (R ~ 45 000) and high-signal-to-noise (S/N> 100) spectra. We aim to derive their stellar parameters and elemental ratios, in particular the abundances of C, N, the α-elements O, Mg, Si, Ca, and Ti, the odd-Z elements Na and Al, the neutron-capture s-process dominated elements Y, Zr, La, and Ba, and the r-element Eu. Methods: High-resolution spectra of five field giant stars were obtained at the 8 m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. Spectroscopic parameters were derived based on the excitation and ionization equilibrium of Fe i and Fe ii. The abundance analysis was performed with a MARCS LTE spherical model atmosphere grid and the Turbospectrum spectrum synthesis code. Results: We confirm that the analysed stars are moderately metal-poor (-1.04 ≤ [Fe/H] ≤-0.43), non-carbon-enhanced (non-CEMP) with [C/Fe] ≤ + 0.2, and α-enhanced. We find that our three most metal-poor stars are nitrogen enhanced. The α-enhancement suggests that these stars were formed from a gas enriched by core-collapse supernovae, and that the values are in agreement with results in the literature for bulge stars in the same metallicity range. No abundance anomalies (Na - O, Al - O, Al - Mg anti-correlations) were

  18. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    Energy Technology Data Exchange (ETDEWEB)

    Schultheis, M. [Université de Nice Sophia-Antipolis, CNRS, Observatoire de Côte d' Azur, Laboratoire Lagrange, 06304 Nice Cedex 4 (France); Zasowski, G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Allende Prieto, C. [Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Anders, F.; Chiappini, C. [Leibniz-Institut für Astrophysik Potsdam (AIP), D-14482 Potsdam (Germany); Beaton, R. L.; García Pérez, A. E.; Majewski, S. R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Beers, T. C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Bizyaev, D. [Apache Point Observatory, Sunspot, NM 88349 (United States); Frinchaboy, P. M. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); Ge, J. [Astronomy Department, University of Florida, Gainesville, FL 32611 (United States); Hearty, F.; Schneider, D. P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Holtzman, J. [New Mexico State University, Las Cruces, NM 88003 (United States); Muna, D. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Nidever, D. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Shetrone, M., E-mail: mathias.schultheis@oca.eu, E-mail: gail.zasowski@gmail.com [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States)

    2014-07-01

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.

  19. Investigation into the factors that influence inverse bulging effect during sheet hydro-mechanical deep drawing

    Directory of Open Access Journals (Sweden)

    Lang Lihui

    2015-01-01

    Full Text Available The factors that influence inverse bulging effect during sheet hydro-mechanical deep drawing are especially researched in this paper. According to the different inverse bulging process, two modes can be singled: the initial inverse bulging (IIB and the local inverse bulging (LIB. IIB includes two parameters: inverse bulging height ratio (HIb/t and inverse bulging pressure ratio (PIb/t. LIB is influenced by IIB and has a direct relationship with liquid chamber pressure in the forming process. The optimal inverse bulging parameters of hemispherical bottom cylindrical part and flat bottom cylindrical part are obtained by numerical simulation. Process parameters including the clearance between the punch and the blank holder and the blank holder entrance radius that have a large influence on inverse bulging effect are optimized, so as to make inverse bulging effect behave better in hydroforming process. Finally, the accuracy of the numerical simulation results was verified by experiments.

  20. Fracture and springback on Double Bulge Tube Hydro-Forming

    Directory of Open Access Journals (Sweden)

    F. Djavanroodi

    2008-01-01

    Full Text Available This research aims to establish a basic understanding of Double Bulge Tube Hydro-Form processing of stainless steel deep drawn cups. The method is briefly reviewed by carrying out experimental tests and Finite element analysis. By measuring bulge height in both formed curves by Coordinate measuring machine (CMM and thickness variation specimen by Ulterasonic thickness measurment device (UTM, it has been shown that maximum thinness occured where the bending is maximized. A finite element model is constructed to simulate the Double Bulge Tube Hydro Forming process and asses the influence of friction cofficient, tube Material properties and springback. It has been shown that material hardening coefficient had the most significant influence on formability characteristics during double bulge tube hydroforming. Also it is shown that springback has significant effect on tolerances of formed tube. Finally fracture strain was estimated by analytical method and compared with simulation results, also fracture location was predicted on Double Bulge Tube Hydro-Forming (DBTHF by simulating the process.

  1. Cusps and Cores in the presence of galactic bulges

    CERN Document Server

    Del Popolo, Antonino

    2014-01-01

    In this paper, we study how the presence of bulge formation in galaxies influence their inner density profile, by means of an extended version of the Del Popolo (2009) semi-analytical model. As in Del Popolo (2009), the model takes into account the effect of baryons adiabatic contraction, ordered and random angular momentum, dynamical friction, and adds to the previous the effect of gas cooling, star formation, supernova feedback, and reionization. Our model shows that dwarf galaxies are bulgeless, in agreement with observations showing that the large majority of them has no stellar bulges, and are characterized by a flat profile well described by a Burkert profile. {We then studied the effect of a bulge, added to the {cored} DM halo, on the density profile}. In the case of a galaxy having a mass $10^{11} M_{\\odot}$ the inner density profile has a slope $\\alpha \\simeq 0.65$, for a bulge of $4.5 \\times 10^{9} M_{\\odot}$, while if bulge formation is not considered, the slope would be $\\alpha \\simeq 0.55$. If th...

  2. Dynamical evolution of a bulge in an N-body model of the Milky Way

    Directory of Open Access Journals (Sweden)

    Gerhard O.

    2012-02-01

    Full Text Available The detailed dynamical structure of the bulge in the Milky Way is currently under debate. Although kinematics of the bulge stars can be well reproduced by a boxy-bulge, the possible existence of a small embedded classical bulge can not be ruled out. We study the dynamical evolution of a small classical bulge in a model of the Milky Way using a self-consistent high resolution N-body simulation. Detailed kinematics and dynamical properties of such a bulge are presented.

  3. Near-Infrared Bulge-Disk Correlations of Lenticular Galaxies

    CERN Document Server

    Barway, Sudhanshu; Kembhavi, Ajit K; Mayya, Y D

    2008-01-01

    We consider the luminosity and environmental dependence of structural parameters of lenticular galaxies in the near-infrared K band. Using a two-dimensional galaxy image decomposition technique, we extract bulge and disk structural parameters for a sample of 36 lenticular galaxies observed by us in the K band. By combining data from the literature for field and cluster lenticulars with our data, we study correlations between parameters that characterise the bulge and the disk as a function of luminosity and environment. We find that scaling relations such as the Kormendy relation, photometric plane and other correlations involving bulge and disk parameters show a luminosity dependence. This dependence can be explained in terms of galaxy formation models in which faint lenticulars (M_T > -24.5) formed via secular formation processes that likely formed the pseudobulges of late-type disk galaxies, while brighter lenticulars (M_T < -24.5) formed through a different formation mechanism most likely involving maj...

  4. Stellar populations in the bulges of isolated galaxies

    Science.gov (United States)

    Morelli, L.; Parmiggiani, M.; Corsini, E. M.; Costantin, L.; Dalla Bontà, E.; Méndez-Abreu, J.; Pizzella, A.

    2016-09-01

    We present photometry and long-slit spectroscopy for 12 S0 and spiral galaxies selected from the Catalogue of Isolated Galaxies. The structural parameters of the sample galaxies are derived from the Sloan Digital Sky Survey i-band images by performing a two-dimensional photometric decomposition of the surface brightness distribution. This is assumed to be the sum of the contribution of a Sérsic bulge, an exponential disc, and a Ferrers bar characterized by elliptical and concentric isophotes with constant ellipticity and position angles. The rotation curves and velocity dispersion profiles of the stellar component are measured from the spectra obtained along the major axis of galaxies. The radial profiles of the Hβ, Mg and Fe line-strength indices are derived too. Correlations between the central values of the Mg 2 and line-strength indices and the velocity dispersion are found. The mean age, total metallicity and total α/Fe enhancement of the stellar population in the centre and at the radius where the bulge gives the same contribution to the total surface brightness as the remaining components are obtained using stellar population models with variable element abundance ratios. We identify intermediate-age bulges with solar metallicity and old bulges with a large spread in metallicity. Most of the sample bulges display super-solar α/Fe enhancement, no gradient in age and negative gradients of metallicity and α/Fe enhancement. These findings support a formation scenario via dissipative collapse where environmental effects are remarkably less important than in the assembly of bulges of galaxies in groups and clusters.

  5. The X-shaped Bulge of the Milky Way Revealed by WISE

    Science.gov (United States)

    Ness, Melissa; Lang, Dustin

    2016-07-01

    The Milky Way bulge has a boxy/peanut morphology and an X-shaped structure. This X-shape has been revealed by the “split in the red clump” from star counts along the line of sight toward the bulge, measured from photometric surveys. This boxy, X-shaped bulge morphology is not unique to the Milky Way and such bulges are observed in other barred spiral galaxies. N-body simulations show that boxy and X-shaped bulges are formed from the disk via dynamical instabilities. It has also been proposed that the Milky Way bulge is not X-shaped, but rather, the apparent split in the red clump stars is a consequence of different stellar populations, in an old classical spheroidal bulge. We present a Wide-Field Infrared Survey Explorer (WISE) image of the Milky Way bulge, produced by downsampling the publicly available “unWISE” coadds. The WISE image of the Milky Way bulge shows that the X-shaped nature of the Milky Way bulge is self-evident and irrefutable. The X-shape morphology of the bulge in itself and the fraction of bulge stars that comprise orbits within this structure has important implications for the formation history of the Milky Way, and, given the ubiquity of boxy X-shaped bulges, spiral galaxies in general.

  6. Chemodynamical analysis of bulge stars for simulated disc galaxies

    OpenAIRE

    A. Rahimi; Kawata, D.; Brook, Chris B.; Gibson, Brad K.

    2009-01-01

    We analyse the kinematics and chemistry of the bulge stars of two simulated disc galaxies using our chemodynamical galaxy evolution code GCD+. First we compare stars that are born inside the galaxy with those that are born outside the galaxy and are accreted into the centre of the galaxy. Stars that originate outside of the bulge are accreted into it early in its formation within 3 Gyrs so that these stars have high [alpha/Fe] as well as having a high total energy reflecting their accretion t...

  7. Ongoing massive star formation in the bulge of M51

    OpenAIRE

    Lamers, H. J. G. L. M.; Panagia, N.; Scuderi, S.; Romaniello, M.; Spaans, M.; de Wit, W.J.M.; Krishner, R.

    2001-01-01

    We studied the HST-WFPC2 observations of the inner kpc of the interacting galaxy M51 in six bands from 2550 to 8140 Angstrom. The images show an oval shaped area ("bulge") of 11x16 arcsec or 450x650 pc around the nucleus, dominated by a smooth population of old stars with overimposed dust lanes. We found 30 bright point-like sources in the bulge of M51; many of these are bright in the UV. They are located in elongated "strings" which follow the general pattern of the dust lanes. The spectral ...

  8. The nuclear bulge. I. K band observations of the central 30 PC

    Science.gov (United States)

    Philipp, S.; Zylka, R.; Mezger, P. G.; Duschl, W. J.; Herbst, T.; Tuffs, R. J.

    1999-08-01

    Out of ~ 500 individual source images we have constructed a mosaic map of the K band surface brightness in an area Delta alphax Delta delta ~ 650''x710'' (R_equiv ~ 15.8 pc for R_0 = 8.5 kpc) centered approximately on Sgr A*. An observing technique was used which allows us to recover an extended background emission. To separate sources from an unresolved background continuum we fitted Lorentzian distributions to the sources and find that about one half of an integrated, not dereddened K band flux density of 752 Jy is contributed by ~ 6*E(4) stars with flux densities S_K(') >~ 100 mu Jy and the remainder is contributed by an extended continuum provided by about 6*E(8) stars too weak to be observed as individual sources. We estimate that >~ 80% of the integrated flux density of the mosaic is contributed by stars in the Nuclear Bulge (NB; R 3 kpc). We determine the K band luminosity functions (KLF) of the mosaic and of subareas dominated by Nuclear Bulge, Galactic Bulge and Disk stars, respectively, and construct difference KLFs which relate to the specific stellar populations of these regions. The detection limit is S_K(') ~ 100 mu Jy, for the completeness limit we estimate S_K(') ~ 2 000 mu Jy. We find that the stellar population of the Nuclear Bulge contains considerably more bright stars (i.e. with reddened K band flux densities S_K(') >~ 5*E(3 mu ) Jy), most of which are probably early O stars, Giants and Supergiants. The stellar population of the Galactic Bulge on the other hand is dominated by stars which appear to be lower mass (Main Sequence (MS) stars. A model KLF constructed with a Salpeter Initial Mass Function (IMF) for stars of spectral type O9 or later (S_K(') masses ranging from 0.06 to 6 M_sun account for the unresolved continuum. Combining observed and model KLF we obtain a mosaic KLF which increases ~ S_K({') - 1} for 10(6) >~ S_K('/mu ) Jy >~ 10(3) and ~ S_K({') - 0.6} for 10(3) >~ S_K('/mu ) Jy >~ 3*E(-3) . For radii R relatively young generation

  9. Reconciling the Galactic Bulge Turnoff Age Discrepancy with Enhanced Helium Enrichment

    CERN Document Server

    Nataf, David M

    2011-01-01

    We show that the factor $\\sim$2 discrepancy between spectroscopic and photometric age determinations of the Galactic bulge main-sequence turnoff can be naturally explained by positing an elevated helium enrichment for the bulge relative to that assumed by standard isochrones. We obtain an upper bound on the helium enrichment parameter of the bulge $({\\Delta}Y/{\\Delta}Z)_{\\rm{Bulge}} \\lesssim 5.0$ given the requirement that the spectroscopic and photometric ages be consistent and the limiting condition of instantaneous star formation. The corresponding mean age for the bulge is $t_{\\rm{Bulge}} \\approx 10$ Gyr. We discuss phenomenological evidence that the bulge may have had a chemical evolution that is distinct from the solar neighborhood in this manner, and we make several testable predictions. Should this emerging picture of the bulge as helium-enhanced hold, it will require the development of new isochrones, new model atmospheres, and modified analysis and cosmological interpretation of the integrated light...

  10. New insights on the Galactic Bulge Initial Mass Function

    CERN Document Server

    Calamida, A; Casertano, S; Anderson, J; Cassisi, S; Gennaro, M; Cignoni, M; Brown, T M; Kains, N; Ferguson, H; Livio, M; Bond, H E; Buonanno, R; Clarkson, W; Ferraro, I; Pietrinferni, A; Salaris, M; Valenti, J

    2015-01-01

    We have derived the Galactic bulge initial mass function of the SWEEPS field down to 0.15 $M_{\\odot}$, using deep photometry collected with the Advanced Camera for Surveys on the Hubble Space Telescope. Observations at several epochs, spread over 9 years, allowed us to separate the disk and bulge stars down to very faint magnitudes, $F814W \\approx$ 26 mag, with a proper-motion accuracy better than 0.5 mas/yr (20 km/s). This allowed us to determine the initial mass function of the pure bulge component uncontaminated by disk stars for this low-reddening field in the Sagittarius window. In deriving the mass function, we took into account the presence of unresolved binaries, errors in photometry, distance modulus and reddening, as well as the metallicity dispersion and the uncertainties caused by adopting different theoretical color-temperature relations. We found that the Galactic bulge initial mass function can be fitted with two power laws with a break at $M \\sim$ 0.56 $M_{\\odot}$, the slope being steeper ($\\a...

  11. Ongoing massive star formation in the bulge of M51

    NARCIS (Netherlands)

    Lamers, HJGLM; Panagia, N; Scuderi, S; Romaniello, M; Spaans, M; Kirshner, R

    2002-01-01

    We present a study of Hubble Space Telescope Wide Field Planetary Camera 2 observations of the inner kiloparsec of the interacting galaxy M51 in six bands from 2550 to 8140 Angstrom. The images show an oval-shaped area (which we call the "bulge") of about 11" x 16", or 450 x 650 pc, around the nucle

  12. The Metallicity Distribution of the Milky Way Bulge

    Science.gov (United States)

    Ness, M.; Freeman, K.

    2016-06-01

    The Galactic bulge of the Milky Way is made up of stars with a broad range of metallicity, -3.0 function decreases as a function of height z from the plane and, more weakly, with galactic radius R GC. The most metal-rich stars in the inner Galaxy are concentrated to the plane and the more metal-poor stars are found predominantly further from the plane, with an overall vertical gradient in the mean of the metallicity distribution function of about - 0.45 dex kpc-1. This vertical gradient is believed to reflect the changing contribution with height of different populations in the innermost region of the Galaxy. The more metal-rich stars of the bulge are part of the boxy/peanut structure and comprise stars in orbits which trace out the underlying X-shape. There is still a lack of consensus on the origin of the metal-poor stars ([Fe/H] function of the bulge, and identifying if there is a unique bulge population which has formed separately from the disk and halo, has important consequences for identifying the relevant processes in the formation and evolution of the Milky Way.

  13. Type-Ia Supernova-driven Galactic Bulge Wind

    CERN Document Server

    Tang, Shikui; Mac Low, Mordecai-Mark; Joung, M Ryan

    2009-01-01

    Stellar feedback in galactic bulges plays an essential role in shaping the evolution of galaxies. To quantify this role and facilitate comparisons with X-ray observations, we conduct 3D hydrodynamical simulations with the adaptive mesh refinement code, FLASH, to investigate the physical properties of hot gas inside a galactic bulge, similar to that of our Galaxy or M31. We assume that the dynamical and thermal properties of the hot gas are dominated by mechanical energy input from SNe, primarily Type Ia, and mass injection from evolved stars as well as iron enrichment from SNe. We study the bulge-wide outflow as well as the SN heating on scales down to ~4 pc. An embedding scheme that is devised to plant individual SNR seeds, allows to examine, for the first time, the effect of sporadic SNe on the density, temperature, and iron ejecta distribution of the hot gas as well as the resultant X-ray morphology and spectrum. We find that the SNe produce a bulge wind with highly filamentary density structures and patch...

  14. METAL-POOR GLOBULAR CLUSTERS OF THE GALACTIC BULGE

    Directory of Open Access Journals (Sweden)

    B. Barbuy

    2009-01-01

    Full Text Available We are carrying studies on the metal-poor globular clusters of the Galactic bulge. These objects appear to be very old, and might be relics of the rst objects in the Galaxy. High resolution observations carried out with VLT-UVES, VLT-FLAMES and Gemini-PHOENIX are presented, and the abundance pattern of these globulars is studied.

  15. The disc origin of the Milky Way bulge

    CERN Document Server

    Di Matteo, P

    2016-01-01

    The Galactic bulge, that is the prominent out-of-plane over-density present in the inner few kiloparsecs of the Galaxy, is a complex structure, as the morphology, kinematics, chemistry and ages of its stars indicate. To understand the nature of its main components -- those at [Fe/H] >~ -1 dex -- it is necessary to make an inventory of the stellar populations of the Galactic disc(s), and of their borders : the chemistry of the disc at the solar vicinity, well known from detailed studies of stars over many years, is not representative of the whole disc. This finding, together with the recent revisions of the mass and sizes of the thin and thick discs, constitutes a major step in understanding the bulge complexity. N-body models of a boxy/peanut-shaped bulge formed from a thin disc through the intermediary of a bar have been successful in interpreting a number of global properties of the Galactic bulge, but they fail in reproducing the detailed chemo-kinematic relations satisfied by its components and their morp...

  16. The X-shaped Bulge of the Milky Way revealed by WISE

    CERN Document Server

    Ness, Melissa

    2016-01-01

    The Milky Way bulge has a boxy/peanut morphology and an X-shaped structure. This X-shape has been revealed by the `split in the red clump' from star counts along the line of sight toward the bulge, measured from photometric surveys. This boxy, X-shaped bulge morphology is not unique to the Milky Way and such bulges are observed in other barred spiral galaxies. N-body simulations show that boxy and X-shaped bulges are formed from the disk via dynamical instabilities. It has also been proposed that the Milky Way bulge is not X-shaped, but rather, the apparent split in the red clump stars is a consequence of different stellar populations, in an old classical spheroidal bulge. We present a WISE image of the Milky Way bulge, produced by downsampling the publicly available "unWISE" coadds. The WISE image of the Milky Way bulge shows that the X-shaped nature of the Milky Way bulge is self-evident and irrefutable. The X-shape morphology of the bulge in itself and the fraction of bulge stars that comprise orbits withi...

  17. Bulges of disk galaxies at intermediate redshifts. I. Samples with and without bulges in the Groth Strip Survey

    CERN Document Server

    Dominguez-Palmero, L; Erwin, P; Prieto, M; Cristobal-Hornillos, D; Eliche-Moral, M C; Guzmán, R

    2008-01-01

    We aim to define a sample of intermediate-z disk galaxies harbouring central bulges, and a complementary sample of disk galaxies without measurable bulges. We intend to provide colour profiles for both samples, as well as measurements of nuclear, disk, and global colours, which may be used to constrain the relative ages of bulges and disks. We select a diameter-limited sample of galaxies in images from the HST/WFPC2 Groth Strip survey, which is divided into two subsamples of higher and lower inclination to assess the role of dust in the measures quantities. Mergers are visually identified and excluded. We take special care to control the pollution by ellipticals. The bulge sample is defined with a criterion based on nuclear surface brightness excess over the inward extrapolation of the exponential law fitted to the outer regions of the galaxies. We extract colour profiles on the semi-minor axis least affected by dust in the disk, and measure nuclear colours at 0.85 kpc from the centre over those profiles. Dis...

  18. Constraints on the Formation of the Galactic Bulge from Na, Al, and Heavy Element Abundances in Plaut's Field

    CERN Document Server

    Johnson, Christian I; Kobayashi, Chiaki; Fulbright, Jon P

    2012-01-01

    We report chemical abundances of Na, Al, Zr, La, Nd, and Eu for 39 red giant branch (RGB) stars and 23 potential inner disk red clump stars located in Plaut-s low extinction window. We also measure lithium for a super Li-rich RGB star. The abundances were determined by spectrum synthesis of high resolution (R~25,000), high signal-to-noise (S/N~50-100 pixel-1) spectra obtained with the Blanco 4m telescope and Hydra multifiber spectrograph. For the bulge RGB stars, we find a general increase in the [Na/Fe] and [Na/Al] ratios with increasing metallicity, and a similar decrease in [La/Fe] and [Nd/Fe]. Additionally, the [Al/Fe] and [Eu/Fe] abundance trends almost identically follow those of the {\\alpha}-elements, and the [Zr/Fe] ratios exhibit relatively little change with [Fe/H]. The consistently low [La/Eu] ratios of the RGB stars indicate that at least a majority of bulge stars formed rapidly (<1 Gyr) and before the main s-process could become a significant pollution source. In contrast, we find that the pot...

  19. Abundances of Baade's Window Giants from Keck/HIRES Spectra: I. Stellar Parameters and [Fe/H] Values

    CERN Document Server

    Fulbright, J P; Rich, R M; Fulbright, Jon. P.; William, Andrew Mc

    2006-01-01

    We present the first results of a new abundance survey of the Milky Way bulge based on Keck/HIRES spectra of 27 K-giants in the Baade's Window ($l = 1$, $b = -4$) field. The spectral data used in this study are of much higher resolution and signal-to-noise than previous optical studies of Galactic bulge stars. The [Fe/H] values of our stars, which range between -1.29 and $+0.51$, were used to recalibrate large low resolution surveys of bulge stars. Our best value for the mean [Fe/H] of the bulge is $-0.10 \\pm 0.04$. This mean value is similar to the mean metallicity of the local disk and indicates that there cannot be a strong metallicity gradient inside the solar circle. The metallicity distribution of stars confirms that the bulge does not suffer from the so-called ``G-dwarf'' problem. This paper also details the new abundance techniques necessary to analyze very metal-rich K-giants, including a new Fe line list and regions of low blanketing for continuum identification.

  20. Stellar populations of classical and pseudo-bulges for a sample of isolated spiral galaxies

    CERN Document Server

    Zhao, Yinghe

    2011-01-01

    In this paper we present the stellar population synthesis results for a sample of 75 bulges in isolated spiral Sb-Sc galaxies, using the spectroscopic data from the Sloan Digital Sky Survey and the STARLIGHT code. We find that both pseudo-bulges and classical bulges in our sample are predominantly composed of old stellar populations, with mean mass-weighted stellar age around 10 Gyr. While the stellar population of pseudo-bulges is, in general, younger than that of classical bulges, the difference is not significant, which indicates that it is hard to distinguish pseudo-bulges from classical bulges, at least for these isolated galaxies, only based on their stellar populations. Pseudo-bulges have star formation activities with relatively longer timescale than classical bulges, indicating that secular evolution is more important in this kind of systems. Our results also show that pseudo-bulges have a lower stellar velocity dispersion than their classical counterparts, which suggests that classical bulges are mo...

  1. Chemical Abundances and Dust in Planetary Nebulae in the Galactic Bulge

    CERN Document Server

    Gutenkunst, S; Pottasch, S R; Sloan, G C; Houck, J R

    2008-01-01

    We present mid-infrared Spitzer spectra of eleven planetary nebulae in the Galactic Bulge. We derive argon, neon, sulfur, and oxygen abundances for them using mainly infrared line fluxes combined with some optical line fluxes from the literature. Due to the high extinction toward the Bulge, the infrared spectra allow us to determine abundances for certain elements more accurately that previously possible with optical data alone. Abundances of argon and sulfur (and in most cases neon and oxygen) in planetary nebulae in the Bulge give the abundances of the interstellar medium at the time their progenitor stars formed; thus these abundances give information about the formation and evolution of the Bulge. The abundances of Bulge planetary nebulae tend to be slightly higher than those in the Disk on average, but they do not follow the trend of the Disk planetary nebulae, thus confirming the difference between Bulge and Disk evolution. Additionally, the Bulge planetary nebulae show peculiar dust properties compared...

  2. Metal-poor stars towards the Galactic bulge - a population potpourri

    CERN Document Server

    Koch, Andreas; Preston, George W; Thompson, Ian B

    2015-01-01

    We present a comprehensive chemical abundance analysis of five red giants and two horizontal branch (HB) stars towards the southern Galactic bulge, at (l,b)$\\sim$(0$^{\\rm o}$,-11$^{\\rm o}$). Based on high-resolution spectroscopy obtained with the Magellan/MIKE spectrograph, we derived up to 23 chemical element abundances and identify a mixed bag of stars, representing various populations in the central regions of the Galaxy. Although cosmological simulations predict that the inner Galaxy was host to the first stars in the Universe, we see no chemical evidence of the ensuing massive supernova explosions: all of our targets exhibit halo-like, solar [Sc/Fe] ratios, which is in contrast to the low values predicted from Population III nucleosynthesis. One of the targets is a CEMP-s star at [Fe/H]=-2.52 dex, and another one is a moderately metal-poor ([Fe/H]=-1.53 dex) CH star with strong enrichment in s-process elements (e.g., [Ba/Fe]=1.35). These individuals provide the first contenders of these classes of stars ...

  3. On the age of Galactic bulge microlensed dwarf and subgiant stars

    CERN Document Server

    Valle, G; Moroni, P G Prada; Degl'Innocenti, S

    2015-01-01

    Recent results by Bensby and collaborators on the ages of microlensed stars in the Galactic bulge have challenged the picture of an exclusively old stellar population. However, these age estimates have not been independently confirmed. In this paper we verify these results by means of a grid-based method and quantify the systematic biases that might be induced by some assumptions adopted to compute stellar models. We explore the impact of increasing the initial helium abundance, neglecting the element microscopic diffusion, and changing the mixing-length calibration in theoretical stellar track computations. We adopt the SCEPtER pipeline with a novel stellar model grid for metallicities [Fe/H] from -2.00 to 0.55 dex, and masses in the range [0.60; 1.60] Msun from the ZAMS to the helium flash at the red giant branch tip. We show for the considered evolutionary phases that our technique provides unbiased age estimates. Our age results are in good agreement with Bensby and collaborators findings and show 16 star...

  4. Effect of tube size on electromagnetic tube bulging

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The commercial finite code ANSYS was employed for the simulation of the electromagnetic tube bulging process. The finite element model and boundary conditions were thoroughly discussed. ANSYS/EMAG was used to model the time varying electromagnetic field in order to obtain the radial and axial magnetic pressure acting on the tube. The magnetic pressure was then used as boundary conditions to model the high velocity deformation of various length tube with ANSYS/LSDYNA. The time space distribution of magnetic pressure on various length tubes was presented. Effect of tube size on the distribution of radial magnetic pressure and axial magnetic pressure and high velocity deformation were discussed. According to the radial magnetic pressure ratio of tube end to tube center and corresponding dimensionless length ratio of tube to coil, the free electromagnetic tube bulging was studied in classification. The calculated results show good agreements with practice.

  5. The effect of massive disks on bulge isophotes

    Science.gov (United States)

    Monet, D. G.; Schechter, P. L.; Richstone, D. O.

    1981-04-01

    Massive disks produce flattened equipotentials. Unless the stars in a galaxy bulge are preferentially hotter in the z direction than in the plane, the isophotes will be at least as flat as the equipotentials. The comparison of two galaxy models having flat rotation curves with the available surface photometry for five external galaxies does not restrict the mass fraction which might reside in the disk. However, star counts in our own Galaxy indicate that unless the disk terminates close to the solar circle, no more than half the mass within that circle lies in the disk. The remaining half must lie either in the bulge or, more probably, in a third dark, round, dynamically distinct component.

  6. Bulging of cans containing plutonium residues. Summary report

    International Nuclear Information System (INIS)

    In 1994, two cans in the Lawrence Livermore National Laboratory Plutonium Facility were found to be bulging as a result of the generation of gases form the plutonium ash residues contained in the cans. This report describes the chronology of this discovery, the response actions that revealed other pressurized cans, the analysis of the causes, the short-term remedial action, a followup inspection of the short-term storage packages, and a review of proposed long-term remedial options

  7. Bulging of cans containing plutonium residues. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A.; Wood, D.H.; Condit, R.H.; Shikany, S.D.

    1996-03-01

    In 1994, two cans in the Lawrence Livermore National Laboratory Plutonium Facility were found to be bulging as a result of the generation of gases form the plutonium ash residues contained in the cans. This report describes the chronology of this discovery, the response actions that revealed other pressurized cans, the analysis of the causes, the short-term remedial action, a followup inspection of the short-term storage packages, and a review of proposed long-term remedial options.

  8. Research on bulging plate of scaler for horizontal pendulum tiltmeter

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-zhong; ZHU Hu; WU Jian

    2005-01-01

    @@ After the horizontal pendulum is used in ground-tilt measurement, its scaling has drawn great attentions from the people, because without a correct calibration of scale value, the observation is of little application significance. From the 1920's, quite a few scholars were engaged in the researches in this respect. And this question was satisfactorily solved until 1962 when Verbaandert (1962) invented the bulging plate, i.e., mercury-cup scaler.After further improvement, the V-M quartz horizontal pendulum tiltmeter was used globally in observation and great success was achieved (Melchior, 1966, 1978). In China, the quartz horizontal pendulum tiltmeter as well as the bulging-plate scaler were developed at the beginning of 1970's and then put into use after some improvements (ZHU and FENG, 1980). The successful observation by SQ quartz horizontal pendulum tiltmeter should be related not only to the excellent performance of horizontal pendulum, but also to its accurate calibration. The bulging plate plays an important role in calibration, because it is the critical component of scaler.

  9. Study of extremely reddened AGB stars in the Galactic bulge

    CERN Document Server

    Jiménez-Esteban, F M

    2015-01-01

    Context. Extremely reddened AGB stars lose mass at high rates of >10^-5 Msun/yr. This is the very last stage of AGB evolution, in which stars in the mass range 2.0--4.0 Msun (for solar metallicity) should have been converted to C stars already. The extremely reddened AGB stars in the Galactic bulge are however predominantly O-rich, implying that they might be either low-mass stars or stars at the upper end of the AGB mass range. Aims. To determine the mass range of the most reddened AGB stars in the Galactic bulge. Methods. Using Virtual Observatory tools, we constructed spectral energy distributions of a sample of 37 evolved stars in the Galactic bulge with extremely red IRAS colours. We fitted DUSTY models to the observational data to infer the bolometric fluxes. Applying individual corrections for interstellar extinction and adopting a common distance, we determined luminosities and mass-loss rates, and inferred the progenitor mass range from comparisons with AGB evolutionary models. Results. The observed ...

  10. ISO Mid-Infrared spectroscopy of Galactic Bulge AGB stars

    CERN Document Server

    Blommaert, J A D L; Okumura, K; Ganesh, S; Omont, A; Cami, J; Glass, I S; Habing, H J; Schultheis, M; Simon, G; Van Loon, J T; Blommaert, Joris A.D.L.; Groenewegen, Martin A.T.; Okumura, Koryo; Ganesh, Shashikiran; Omont, Alain; Cami, Jan; Glass, Ian S.; Habing, Harm J.; Schultheis, Mathias; Simon, Guy; Loon, Jacco Th. van

    2006-01-01

    To study the nature of Bulge AGB stars and in particular their circumstellar dust, we have analysed mid-infrared spectra obtained with the ISOCAM CVF spectrometer in three Bulge fields. The ISOCAM 5-16.5 micron CVF spectra were obtained as part of the ISOGAL infrared survey of the inner Galaxy. A classification of the shape of the 10 micron dust feature was made for each case. The spectra of the individual sources were modelled using a radiative transfer model. Different combinations of amorphous silicates and aluminium-oxide dust were used in the modelling. Spectra were obtained for 29 sources of which 26 are likely to be Bulge AGB stars. Our modelling shows that the stars suffer mass loss rates in the range of 10^{-8} - 5 x 10^{-7} Msun / yr, which is at the low end of the mass-loss rates experienced on the Thermally Pulsing AGB. The luminosities range from 1,700 to 7,700 Lsun as expected for a population of AGB stars with Minit of 1.5 - 2Msun. In agreement with the condensation sequence scenario, we find t...

  11. GAMA: Stellar Mass Assembly in Galaxy Bulges and Disks

    Science.gov (United States)

    Moffett, Amanda J.; Driver, Simon P.; Lange, Rebecca; Robotham, Aaron; Kelvin, Lee; GAMA Team

    2016-01-01

    The Galaxy And Mass Assembly (GAMA) survey has to date obtained spectra, redshifts, and 21-band multi-facility photometry for over 200,000 galaxies in five survey regions that total nearly 300 square degrees on sky. We consider here a low-redshift (zteam. In order to quantify the separate bulge and disk properties of these galaxies, we apply a large-scale automated procedure for fitting images with 2D, multi-component structure models, including evaluation of fit convergence using a grid of input parameter values for each galaxy. From this analysis, we calculate the total bulge and disk contributions to the local galaxy stellar mass budget and derive mass-size relations for both pure spheroid/disk systems and the separate bulge/disk components of multi-component galaxies. We further examine the fraction of total stellar mass assembled in spheroid and disk structures as a function of galaxy environment, where environment is quantified on multiple scales from membership in large-scale filaments to groups/clusters and down to local pairings. We then discuss the effect of environmental conditions on the mechanisms of stellar mass assembly, including the implied balance between merger accumulation and in situ mass growth in different environment regimes.

  12. The Black Hole - Bulge Mass Relation in Megamaser Host Galaxies

    CERN Document Server

    Läsker, Ronald; Seth, Anil; van de Ven, Glenn; Braatz, James A; Henkel, Christian; Lo, K Y

    2016-01-01

    We present HST images for nine megamaser disk galaxies with the primary goal of studying photometric BH-galaxy scaling relations. The megamaser disks provide the highest-precision extragalactic BH mass measurements, while our high-resolution HST imaging affords us the opportunity to decompose the complex nuclei of their late-type hosts in detail. Based on the morphologies and shapes of the galaxy nuclei, we argue that most of these galaxies' central regions contain secularly evolving components (pseudo-bulges), and in many cases we photometrically identify co-existing "classical" bulge components as well. Using these decompositions, we draw the following conclusions: (1) The megamaser BH masses span two orders of magnitude ($10^6$ -- $10^8 M_\\odot$) while the stellar mass of their spiral host galaxies are all $\\sim 10^{11} M_\\odot$ within a factor of three; (2) the BH masses at a given bulge mass or total stellar mass in the megamaser host spiral galaxies tend to be lower than expected, when compared to an ex...

  13. Giant gravitons in non-supersymmetric backgrounds

    International Nuclear Information System (INIS)

    We consider giant gravitons as probes of a class of ten-dimensional solutions of type-IIB supergravity which arise as lifts of solutions of U(1)3 gauged N=2 supergravity in five-dimensions. Surprisingly it is possible to solve exactly for minimum energy configurations of these spherical D3-brane probes in the compact directions, even in backgrounds which preserve no supersymmetry. The branes behave as massive charged particles in the five non-compact dimensions. As an example we probe geometries which are believed to represent the supergravity background of coherent states of giant gravitons. We comment on the apparently repulsive nature of the naked singularities in these geometries. (author)

  14. Giant Cell Arteritis

    Science.gov (United States)

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  15. The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. XV. Long-Period Variables in the Galactic Bulge

    CERN Document Server

    Soszynski, I; Szymanski, M K; Kubiak, M; Pietrzynski, G; Wyrzykowski, L; Ulaczyk, K; Poleski, R; Kozlowski, S; Pietrukowicz, P; Skowron, J

    2013-01-01

    The fifteenth part of the OGLE-III Catalog of Variable Stars (OIII-CVS) contains 232,406 long-period variables (LPVs) detected in the OGLE-II and OGLE-III fields toward the Galactic bulge. The sample consists of 6528 Mira stars, 33,235 semiregular variables and 192,643 OGLE small amplitude red giants. The catalog data and data resources that are being published include observational parameters of stars, finding charts, and time-series I- and V-band photometry obtained between 1997 and 2009. We discuss statistical features of the sample and compare it with collections of LPVs in the Magellanic Clouds. The vast majority of red giant stars in the Galactic bulge have an oxygen-rich chemistry. Mira variables form a separate group in the period-amplitude diagram, which was not noticed for oxygen-rich Miras in the Magellanic Clouds. We find a clear deficit of long-secondary period stars toward the Galactic center compared to the sample of Magellanic Clouds' LPVs.

  16. An Observational Guide to Identifying Pseudobulges and Classical Bulges in Disk Galaxies

    CERN Document Server

    Fisher, David B

    2015-01-01

    In this review our aim is to summarize the observed properties of pseudobulges and classical bulges. We utilize an empirical approach to studying the properties of bulges in disk galaxies, and restrict our analysis to statistical proper- ties. A clear bimodality is observed in a number of properties including morphology, structural properties, star formation, gas content & stellar population, and kinematics. As well as summarizing known methods to identify pseudobulges and classical bulges we also show new results, including absorption line indices that can be used to identify different bulge types. We conclude by summarizing those properties that isolate pseudobulges from classical bulges. Our intention is to describe a practical, easy to use, list of criteria for identifying bulge types.

  17. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge.

    Science.gov (United States)

    Liu, Yaping; Lyle, Stephen; Yang, Zaixin; Cotsarelis, George

    2003-11-01

    Putative epithelial stem cells in the hair follicle bulge are thought to play pivotal roles in the homeostasis, aging, and carcinogenesis of the cutaneous epithelium. Elucidating the role of bulge cells in these processes has been hampered by the lack of gene promoters that target this area with specificity. Here we describe the isolation of the mouse keratin 15 (K15) promoter and demonstrate its utility for preferentially targeting hair follicle bulge cells in adult K15/lacZ transgenic mice. We found that patterns of K15 expression and promoter activity changed with age and correlated with levels of differentiation within the cutaneous epithelium; less differentiated keratinocytes in the epidermis of the neonatal mouse and in the bulge area of the adult mouse preferentially expressed K15. These findings demonstrate the utility of the K15 promoter for targeting epithelial stem cells in the hair follicle bulge and set the stage for elucidating the role of bulge cells in skin biology.

  18. Effect of temperature on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Temperature is one of the key parameters for BT20 titanium alloy cylindrical workpiece manufactured by vacuum hot bulge forming. A two-dimensional nonlinear thermo-mechanical coupled FE model was established. Numerical simulation of vacuum hot bulge forming process of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC Marc. The effects of temperature on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece were analyzed by numerical simulation.The simulated results show that the Y-direction displacement and the equivalent plastic strain of the workpiece increase with increasing bulge temperature. The residual stress decreases with increasing bulge temperature. The optimal temperature range of BT20 titanium alloy during vacuum hot bulge forming is 750-850 ℃. The corresponding experiments were carried out. The simulated results agreed well with the experimental results.

  19. The growth of discs and bulges during hierarchical galaxy formation - I. Fast evolution versus secular processes

    Science.gov (United States)

    Tonini, C.; Mutch, S. J.; Croton, D. J.; Wyithe, J. S. B.

    2016-07-01

    We present a theoretical model for the evolution of mass, angular momentum and size of galaxy discs and bulges, and we implement it into the semi-analytic galaxy formation code, Semi-Analytic Galaxy Evolution. The model follows both secular and violent evolutionary channels, including smooth accretion, disc instabilities, minor and major mergers. We find that the combination of our recipe with hierarchical clustering produces two distinct populations of bulges: merger-driven bulges, akin to classical bulges and ellipticals, and instability-driven bulges, akin to secular (or pseudo-)bulges. The model mostly reproduces the mass-size relation of gaseous and stellar discs, the evolution of the mass-size relation of ellipticals, the Faber-Jackson relation, and the magnitude-colour diagram of classical and secular bulges. The model predicts only a small overlap of merger-driven and instability-driven components in the same galaxy, and predicts different bulge types as a function of galaxy mass and disc fraction. Bulge type also affects the star formation rate and colour at a given luminosity. The model predicts a population of merger-driven red ellipticals that dominate both the low-mass and high-mass ends of the galaxy population, and span all dynamical ages; merger-driven bulges in disc galaxies are dynamically old and do not interfere with subsequent evolution of the star-forming component. Instability-driven bulges dominate the population at intermediate galaxy masses, especially thriving in massive discs. The model green valley is exclusively populated by instability-driven bulge hosts. Through the present implementation, the mass accretion history is perceivable in the galaxy structure, morphology and colours.

  20. Squashed giants: bound states of giant gravitons

    International Nuclear Information System (INIS)

    We consider giant gravitons in the maximally supersymmetric type IIB plane-wave, in the presence of a constant NSNS B-field background. We show that in response to the background B-field the giant graviton would take the shape of a deformed three-sphere, the size and shape of which depend on the B-field, and that the giant becomes classically unstable once the B-field is larger than a critical value Bcr. In particular, for the B-field which is (anti-)self-dual under the SO(4) isometry of the original giant S3, the closed string metric is that of a round S3, while the open string metric is a squashed three-sphere. The squashed giant can be interpreted as a bound state of a spherical three-brane and circular D-strings. We work out the spectrum of geometric fluctuations of the squashed giant and study its stability. We also comment on the gauge theory which lives on the brane (which is generically a noncommutative theory) and a possible dual gauge theory description of the deformed giant. (author)

  1. The growth of disks and bulges during hierarchical galaxy formation. I: fast evolution vs secular processes

    CERN Document Server

    Tonini, Chiara; Croton, Darren J; Wyithe, J Stuart B

    2016-01-01

    We present a theoretical model for the evolution of mass, angular momentum and size of galaxy disks and bulges, and we implement it into the semi-analytic galaxy formation code SAGE. The model follows both secular and violent evolutionary channels, including smooth accretion, disk instabilities, minor and major mergers. We find that the combination of our recipe with hierarchical clustering produces two distinct populations of bulges: merger-driven bulges, akin to classical bulges and ellipticals, and instability-driven bulges, akin to secular (or pseudo-)bulges. The model can successfully reproduce the mass-size relation of gaseous and stellar disks, the evolution of the mass-size relation of ellipticals, the Faber-Jackson relation, and the magnitude-colour diagram of classical and secular bulges. The model predicts only a small overlap of merger-driven and instability-driven components in the same galaxy, and predicts different bulge types as a function of galaxy mass and disk fraction. Bulge type also affe...

  2. Young stars in an old bulge: a natural outcome of internal evolution in the Milky Way

    CERN Document Server

    Ness, M; Bensby, T; Feltzing, S; Roskar, R; Cole, D R; Johnson, J A; Freeman, K

    2014-01-01

    The center of our disk galaxy, the Milky Way, is dominated by a boxy/peanut-shaped bulge. Numerous studies of the bulge based on stellar photometry have concluded that the bulge stars are exclusively old. The perceived lack of young stars in the bulge strongly constrains its likely formation scenarios, providing evidence that the bulge is a unique population that formed early and separately from the disk. However, recent studies of individual bulge stars using the microlensing technique have reported that they span a range of ages, emphasizing that the bulge may not be a monolithic structure. In this letter we demonstrate that the presence of young stars that are located predominantly near the plane is expected for a bulge that has formed from the disk via dynamical instabilities. Using an N-body+SPH simulation of a disk galaxy forming out of gas cooling inside a dark matter halo and forming stars, we find a qualitative agreement between our model and the observations of young metal-rich stars in the bulge. W...

  3. Imaging Extrasolar Giant Planets

    CERN Document Server

    Bowler, Brendan P

    2016-01-01

    High-contrast adaptive optics imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order adaptive optics systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young ($\\approx$5--300~Myr) stars spanning stellar masses between 0.1--3.0~\\Msun, the overall occurrence rate of 5--13~\\Mjup \\ companions at orbital distances ...

  4. Effect of processing parameters on bulge-forming Polycarbonate parts

    Institute of Scientific and Technical Information of China (English)

    HOU Zhen-xiu; WU Jing; LIU Zhi; LI Xiao-dong; Z. R. Wang

    2007-01-01

    According to the data of the experiment made in mechauical tensile of Polycarbonate in high temperature, experiments were done to polycarbonate sheet by hot gas pressure bulge-forming. It was found that selecting and combination of the processing parameters were vital to the quality. In the experiments and numerical simulation with the software of DYNAFORM, the processing parameters have been studied. The results showed that the method of discontinuous pressure and pressure preservation advantage the forming; when temperature and pressure meet the forming conditions, the longer time of pressure preservation promotes sufficient forming.

  5. Free Bulging at Constant Pressure of Superplastic Sheet Metal

    Directory of Open Access Journals (Sweden)

    Costanzo Bellini

    2015-08-01

    Full Text Available This work intends to establish, by means of analytical modelling, a practical definition of the superplastic behaviour by using the results of the free bulging of sheet metal instead of the results of the traditional tensile test. In particular this paper analyses the superplastic flow of PbSn60 alloy and it focuses the attention on the value of H parameter corresponding to the maximum value of dt/dH, never considered in the literature. This parameter can represent a practical tool in industrial applications to establish the superplastic behaviour of a sheet metal.

  6. Searching for Bulges at the End of the Hubble Sequence

    CERN Document Server

    Böker, T; Van der Marel, R P; Boeker, Torsten; Stanek, Rebecca

    2003-01-01

    We investigate the stellar disk properties of a sample of 19 nearby spiral galaxies with low inclination and late Hubble type (Scd or later). We combine our high-resolution HST I-band observations with existing ground-based optical images to obtain surface brightness profiles that cover a high dynamic range of galactic radius. Most of these galaxies contain a nuclear star cluster, as discussed in a separate paper. The main goal of the present work is to constrain the properties of stellar bulges at these extremely late Hubble types. We find that the surface brightness profiles of the latest-type spirals are complex, with a wide range in shapes. We have sorted our sample in a sequence, starting with ``pure'' disk galaxies (approximately 30% of the sample). These galaxies have exponential stellar disks that extend inwards to within a few tens of pc from the nucleus, where the light from the nuclear cluster starts to dominate. They appear to be truly bulge-less systems. Progressing along the sequence, the galaxi...

  7. OGLE Atlas of Classical Novae I. Galactic Bulge Objects

    CERN Document Server

    Mroz, P; Poleski, R; Soszynski, I; Szymanski, M K; Pietrzynski, G; Wyrzykowski, L; Ulaczyk, K; Kozlowski, S; Pietrukowicz, P; Skowron, J

    2015-01-01

    Classical novae eruptions are possible sources of lithium formation and gamma-rays emission. The remnant systems of novae eruptions can also become Type Ia supernovae. The contribution of novae to these phenomena depends on nova rates that are not well established for the Galaxy. Here, we directly measure the Galactic bulge nova rate of $13.9 \\pm 2.6$ yr$^{-1}$. This measurement is much more accurate than any previous measurement of this kind thanks to multiple years of bulge monitoring by the OGLE survey. Our sample consists of 39 novae eruptions, $\\sim$1/3 of which are OGLE-based discoveries. The long-term monitoring allows us to not only measure the nova rate but also to study in detail the light curves of 39 eruptions and over 80 post-nova candidates. We measured orbital periods for 9 post-novae and 9 novae, in 14 cases we procured the first estimates. The OGLE survey is very sensitive to the frequently erupting recurrent novae. We did not found any object similar to M31 2008-12a, which erupts once a year...

  8. Dynamics of the Galactic Bulge using Planetary Nebulae

    CERN Document Server

    Beaulieu, S F; Kálnay, A J; Saha, P; Zhao, H S; Beaulieu, Sylvie F.; Freeman, Kenneth C.; Kalnajs, Agris J.; Saha, Prasenjit; Zhao, HongSheng

    2000-01-01

    Evidence for a bar at the center of the Milky Way triggered a renewed enthusiasm for dynamical modelling of the Galactic bar-bulge. Our goal is to compare the kinematics of a sample of tracers, planetary nebulae, widely distributed over the bulge with the corresponding kinematics for a range of models of the inner Galaxy. Three of these models are N-body barred systems arising from the instabilities of a stellar disk (Sellwood, Fux and Kalnajs), and one is a Schwarzschild system constructed to represent the 3D distribution of the COBE/DIRBE near-IR light and then evolved as an N-body system for a few dynamical times (Zhao). For the comparison of our data with the models, we use a new technique developed by Saha (1998). The procedure finds the parameters of each model, i.e. the solar galactocentric distance R_o in model units, the orientation angle phi, the velocity scale (in km/s per model unit), and the solar tangential velocity which best fit the data.

  9. Planetary Nebulae towards the Galactic bulge. I. [OIII] fluxes

    CERN Document Server

    Kovacevic, Anna V; Jacoby, George H; Sharp, Rob; Miszalski, Brent; Frew, David J

    2010-01-01

    We present [OIII]{\\lambda}5007 fluxes and angular diameters for 435 Planetary Nebulae (PN) in the central 10' x 10' region towards the Galactic bulge. Our sample is taken from the new discoveries of the MASH PN surveys as well as previously known PN. This sample accounts for 80% of known PN in this region. Fluxes and diameters are measured from narrow-band imaging with the MOSAIC-II camera on the 4-m Blanco telescope at the Cerro-Tololo Inter-American Observatory. This is the largest (~60 square degrees), uniform [OIII]{\\lambda}5007 survey of the inner Galactic bulge ever undertaken. 104 of the objects have measured [OIII]{\\lambda}5007, [OIII]{\\lambda}4959, H{\\alpha} or H{\\beta} fluxes from the literature, which we use to undertake a detailed comparison to demonstrate the integrity of our new fluxes. Our independent measurements are in excellent agreement with the very best literature sources over two orders of magnitude, while maintaining good consistency over five orders of magnitude. The excellent resoluti...

  10. Dynamos of giant planets

    OpenAIRE

    F. H. Busse; Simitev, R.

    2009-01-01

    Possibilities and difficulties of applying the theory of magnetic field generation by convection flows in rotating spherical fluid shells to the Giant Planets are outlined. Recent progress in the understanding of the distribution of electrical conductivity in the Giant Planets suggests that the dynamo process occurs predominantly in regions of semiconductivity. In contrast to the geodynamo the magnetic field generation in the Giant Planets is thus characterized by strong radial conductivity v...

  11. Chemical abundances and dust in planetary nebulae in the Galactic bulge

    NARCIS (Netherlands)

    Gutenkunst, S.; Bernard-Salas, J.; Pottasch, S. R.; Sloan, G. C.; Houck, J. R.

    2008-01-01

    We present mid-infrared Spitzer spectra of 11 planetary nebulae in the Galactic bulge. We derive argon, neon, sulfur, and oxygen abundances for them using mainly infrared line fluxes combined with some optical line fluxes from the literature. Due to the high extinction toward the bulge, the infrared

  12. An Experimental Study of Bulge-Forming Polycarbonate (PC)Semisphere Shell Parts

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, a new bulge-forming technology is described to manufacture a polycarbonate semisphere shell. Some experiments have been done, and the experimental results show that this technique is feasible to form polycarbonate part. But the wall thickness distribution of the bulged specimen by this method is not so even.

  13. Biomechanical analysis of cancerous and normal cells based on bulge generation in a microfluidic device.

    Science.gov (United States)

    Kim, Yu Chang; Park, Sang-Jin; Park, Je-Kyun

    2008-10-01

    This paper presents a new biomechanical analysis method for discrimination between cancerous and normal cells through compression by poly(dimethylsiloxane) (PDMS) membrane deflection in a microfluidic device. When a cell is compressed, cellular membrane will expand and then small bulges will appear on the peripheral cell membrane beyond the allowable strain. It is well known that the amount of F-actin in cancer cells is less than that of normal cells and bulges occur at the sites where cytoskeleton becomes detached from the membrane bilayer. Accordingly, we have demonstrated the difference of the bulge generation between breast cancer cells (MCF7) and normal cells (MCF10A). After excessive deformation, the bulges generated in MCF7 cells were not evenly distributed on the cell periphery. Contrary to this, the bulges of MCF10A cells showed an even distribution. In addition, the morphologies of bulges of MCF7 and MCF10A cells looked swollen protrusion and tubular protrusion, respectively. Peripheral strains at the moment of the bulge generation were also 72% in MCF7 and 46% in MCF10A. The results show that the bulge generation can be correlated with the cytoskeleton quantity inside the cell, providing the first step of a new biomechanical approach. PMID:18810292

  14. The maximum optical depth toward bulge stars from axisymmetric models of the Milky Way

    NARCIS (Netherlands)

    Kuijken, K

    1997-01-01

    It has been known that recent microlensing results toward the bulge imply mass densities that are surprisingly high, given dynamical constraints on the Milky Way mass distribution. We derive the maximum optical depth toward the bulge that may be generated by axisymmetric structures in the Milky Way,

  15. Stellar Populations of Late-Type Bulges at z=1 in the HUDF

    CERN Document Server

    Hathi, N P; Pasquali, A; Malhotra, S; Rhoads, J E; Pirzkal, N; Windhorst, R A; Xu, C

    2008-01-01

    We take advantage of the exceptional depth of the Hubble Ultra Deep Field (HUDF) images and the deep GRism ACS Program for Extragalactic Science (GRAPES) grism spectroscopy to explore the stellar populations of 34 bulges belonging to late-type galaxies at z=0.8-1.3. We selected these galaxies based on the presence of a noticeable Balmer break (at 4000 A) in their GRAPES spectra, and by visual inspection of the HUDF images. The narrow extraction of these GRAPES spectra around the galaxy center enable us to study the spectrum of the bulges in these late-type galaxies. The 4000 A break in the bulges spectra allows us to estimate the bulges redshifts and stellar ages. We first used the HUDF images to measure bulges color and Sersic index, and then we analyze the bulges spectra by fitting stellar population models. Our results show that, (1) the average age of late-type bulges in our sample is ~1.3 Gyr and stellar masses are in the range of log(M)=6.5-10 solar, (2) late-type bulges are younger and less massive com...

  16. Breast tissue bulge and lesion visibility during stereotactic biopsy – A phantom study

    International Nuclear Information System (INIS)

    Background: During mammography guided stereotactic breast biopsy a bulge of tissue can form in the paddle needle biopsy aperture. This bulge has been estimated to have a height of up to 30% of the breast itself. During clinical biopsy we have noticed that lesions can appear to be less visible when tissue bulges are evident. This can make biopsy more difficult in some cases. Objectives: This experiment investigates how lesion visibility varies with breast bulge magnitude. Method: Using a phantom to represent breast and breast bulge, lesion visibility was assessed using a two alternative forced choice methodology. To mimic clinical conditions, imaging was performed on a full field digital mammography system with the biopsy paddle attached using an automatic exposure device. Organ dose (breast) was estimated. Results: As breast bulge increases lesion visibility decreases; organ dose increases as breast bulge magnitude increases. Conclusion: Consideration should be given to the impact of breast bulge magnitude and lesion visibility when performing image guided biopsy. Advances in knowledge: The authors found no similar studies and the results of this study demonstrate a potential clinical risk

  17. Lost in secular evolution: the case of a low mass classical bulge

    CERN Document Server

    Saha, Kanak

    2015-01-01

    The existence of a classical bulge in disk galaxies holds important clue to the assembly history of galaxies. Finding observational evidence of very low mass classical bulges particularly in barred galaxies including our Milky Way, is a challenging task as the bar driven secular evolution might bring significant dynamical change to these bulges alongside the stellar disk. Using high-resolution N-body simulation, we show that if a cool stellar disk is assembled around a non-rotating low-mass classical bulge, the disk rapidly grows a strong bar within a few rotation time scales. Later, the bar driven secular process transform the initial classical bulge into a flattened rotating stellar system whose central part also have grown a bar-like component rotating in sync with the disk bar. During this time, a boxy/peanut (hereafter, B/P) bulge is formed via the buckling instability of the disk bar and the vertical extent of this B/P bulge being slightly higher than that of the classical bulge, it encompasses the whol...

  18. Bulgeless Giant Galaxies Challenge Our Picture of Galaxy Formation by Hierarchical Clustering

    Science.gov (United States)

    Kormendy, John; Drory, Niv; Bender, Ralf; Cornell, Mark E.

    2010-11-01

    To better understand the prevalence of bulgeless galaxies in the nearby field, we dissect giant Sc-Scd galaxies with Hubble Space Telescope (HST) photometry and Hobby-Eberly Telescope (HET) spectroscopy. We use the HET High Resolution Spectrograph (resolution R ≡ λ/FWHM ~= 15, 000) to measure stellar velocity dispersions in the nuclear star clusters and (pseudo)bulges of the pure-disk galaxies M 33, M 101, NGC 3338, NGC 3810, NGC 6503, and NGC 6946. The dispersions range from 20 ± 1 km s-1 in the nucleus of M 33 to 78 ± 2 km s-1 in the pseudobulge of NGC 3338. We use HST archive images to measure the brightness profiles of the nuclei and (pseudo)bulges in M 101, NGC 6503, and NGC 6946 and hence to estimate their masses. The results imply small mass-to-light ratios consistent with young stellar populations. These observations lead to two conclusions. (1) Upper limits on the masses of any supermassive black holes are M • 150 km s-1, including M 101, NGC 6946, IC 342, and our Galaxy, show no evidence for a classical bulge. Four may contain small classical bulges that contribute 5%-12% of the light of the galaxy. Only four of the 19 giant galaxies are ellipticals or have classical bulges that contribute ~1/3 of the galaxy light. We conclude that pure-disk galaxies are far from rare. It is hard to understand how bulgeless galaxies could form as the quiescent tail of a distribution of merger histories. Recognition of pseudobulges makes the biggest problem with cold dark matter galaxy formation more acute: How can hierarchical clustering make so many giant, pure-disk galaxies with no evidence for merger-built bulges? Finally, we emphasize that this problem is a strong function of environment: the Virgo cluster is not a puzzle, because more than 2/3 of its stellar mass is in merger remnants. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford

  19. Nanodielectrics with giant permittivity

    Indian Academy of Sciences (India)

    S K Saha

    2008-06-01

    Nanodielectrics is an emerging area of research because of its potential application in energy storage and transducers. One-dimensional metallic nanostructures with localized electronic wave functions show giant dielectric constant. Following the prediction, during the last couple of years we have investigated the effect of giant permittivity in one-dimensional systems of conventional metals and conjugated polymer chains. In this article, we have tried to summarize the works on giant permittivity and finally the fabrication of nanocapacitor using metal nanowires, which shows giant permittivity is also discussed.

  20. Precise Black Hole Masses From Megamaser Disks: Black Hole-Bulge Relations at Low Mass

    CERN Document Server

    Greene, J E; Kim, M; Kuo, C Y; Braatz, J A; Impellizzeri, C M V; Condon, J J; Lo, K Y; Henkel, C; Reid, M J

    2010-01-01

    The black hole (BH)-bulge correlations have greatly influenced the last decade of effort to understand galaxy evolution. Current knowledge of these correlations is limited predominantly to high BH masses (M_BH> 10^8 M_sun) that can be measured using direct stellar, gas, and maser kinematics. These objects, however, do not represent the demographics of more typical L< L* galaxies. This study transcends prior limitations to probe BHs that are an order of magnitude lower in mass, using BH mass measurements derived from the dynamics of H_2O megamasers in circumnuclear disks. The masers trace the Keplerian rotation of circumnuclear molecular disks starting at radii of a few tenths of a pc from the central BH. Modeling of the rotation curves, presented by Kuo et al. (2010), yields BH masses with exquisite precision. We present stellar velocity dispersion measurements for a sample of nine megamaser disk galaxies based on long-slit observations using the B&C spectrograph on the Dupont telescope and the DIS spe...

  1. The chemical evolution of the Galactic Bulge seen through micro-lensing events

    Directory of Open Access Journals (Sweden)

    Lucatello S.

    2012-02-01

    Full Text Available Galactic bulges are central to understanding galaxy formation and evolution. Here we report on recent studies using micro-lensing events to obtain spectra of high resolution and moderately high signal-to-noise ratios of dwarf stars in the Galactic bulge. Normally this is not feasible for the faint turn-off stars in the Galactic bulge, but micro-lensing offers this possibility. Elemental abundance trends in the Galactic bulge as traced by dwarf stars are very similar to those seen for dwarf stars in the solar neighbourhood. We discuss the implications of the ages and metallicity distribution function derived for the micro-lensed dwarf stars in the Galactic bulge.

  2. Properties of Disks and Bulges of Spiral and Lenticular Galaxies in the Sloan Digital Sky Survey

    CERN Document Server

    Oohama, N; Fukugita, M; Yasuda, N; Nakamura, O

    2009-01-01

    A bulge-disk decomposition is made for 737 spiral and lenticular galaxies drawn from a SDSS galaxy sample for which morphological types are estimated. We carry out the bulge-disk decomposition using the growth curve fitting method. It is found that bulge properties, effective radius, effective surface brightness, and also absolute magnitude, change systematically with the morphological sequence; from early to late types, the size becomes somewhat larger, and surface brightness and luminosity fainter. In contrast disks are nearly universal, their properties remaining similar among disk galaxies irrespective of detailed morphologies from S0 to Sc. While these tendencies were often discussed in previous studies, the present study confirms them based on a large homogeneous magnitude-limited field galaxy sample with morphological types estimated. The systematic change of bulge-to-total luminosity ratio, $B/T$, along the morphological sequence is therefore not caused by disks but mostly by bulges. It is also shown ...

  3. Disk and Bulge Morphology of WFPC2 galaxies The HST Medium Deep Survey database

    CERN Document Server

    Ratnatunga, K U; Ostrander, E J; Ratnatunga, Kavan U.; Griffiths, Richard E.; Ostrander, Eric J.

    1999-01-01

    Quantitative morphological and structural parameters are estimated for galaxies detected in HST observations of WFPC2 survey fields. A modeling approach based on maximum likelihood has been developed for two-dimensional decomposition of faint under-sampled galaxy images into components of disk and bulge morphology. Decomposition can be achieved for images down to F814W (I) hour. We discuss details of the fitting procedure, and present the observed distributions of magnitude, color, effective half-light radius, disk and bulge axis ratios, bulge/(disk+bulge) flux ratio, bulge/disk half-light radius ratio and surface brightness. We also discuss the various selection limits on the measured parameters. The Medium Deep Survey catalogs and images of random pure parallel fields and other similar archival primary WFPC2 fields have been made available via the Internet with a searchable browser interface to the database at http://archive.stsci.edu/mds/

  4. The impact of bulges on the radial distribution of supernovae in disc galaxies

    CERN Document Server

    Hakobyan, A A; Barkhudaryan, L V; Mamon, G A; Kunth, D; Petrosian, A R; Adibekyan, V; Aramyan, L S; Turatto, M

    2016-01-01

    We present an analysis of the impact of bulges on the radial distributions of the different types of supernovae (SNe) in the stellar discs of host galaxies with various morphologies. We find that in Sa-Sm galaxies, all core-collapse (CC) and vast majority of SNe Ia belong to the disc, rather than the bulge component. The radial distribution of SNe Ia in S0-S0/a galaxies is inconsistent with their distribution in Sa-Sm hosts, which is probably due to the contribution of the outer bulge SNe Ia in S0-S0/a galaxies. The radial distributions of both types of SNe are similar in all the subsamples of Sa-Sbc and Sc-Sm galaxies. These results confirm that the old bulges of Sa-Sm galaxies are not significant producers of Type Ia SNe, while the bulge populations are significant for SNe Ia only in S0-S0/a galaxies.

  5. A TWO-PHASE SCENARIO FOR BULGE ASSEMBLY IN {Lambda}CDM COSMOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Obreja, A.; Dominguez-Tenreiro, R.; Brook, C. [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Cantoblanco Madrid (Spain); Martinez-Serrano, F. J.; Domenech-Moral, M.; Serna, A. [Departamento de Fisica y Arquitectura de Computadores, Universidad Miguel Hernandez, E-03202 Elche (Spain); Molla, M. [Departamento de Investigacion Basica, CIEMAT, E-28040 Madrid (Spain); Stinson, G., E-mail: aura.obreja@uam.es [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117, Heidelberg (Germany)

    2013-01-20

    We analyze and compare the bulges of a sample of L {sub *} spiral galaxies in hydrodynamical simulations in a cosmological context, using two different codes, P-DEVA and GASOLINE. The codes regulate star formation in very different ways, with P-DEVA simulations inputting low star formation efficiency under the assumption that feedback occurs on subgrid scales, while the GASOLINE simulations have feedback that drives large-scale outflows. In all cases, the marked knee shape in mass aggregation tracks, corresponding to the transition from an early phase of rapid mass assembly to a later slower one, separates the properties of two populations within the simulated bulges. The bulges analyzed show an important early starburst resulting from the collapse-like fast phase of mass assembly, followed by a second phase with lower star formation, driven by a variety of processes such as disk instabilities and/or mergers. Classifying bulge stellar particles identified at z = 0 into old and young according to these two phases, we found bulge stellar sub-populations with distinct kinematics, shapes, stellar ages, and metal contents. The young components are more oblate, generally smaller, more rotationally supported, with higher metallicity and less alpha-element enhanced than the old ones. These results are consistent with the current observational status of bulges, and provide an explanation for some apparently paradoxical observations, such as bulge rejuvenation and metal-content gradients observed. Our results suggest that bulges of L {sub *} galaxies will generically have two bulge populations that can be likened to classical and pseudo-bulges, with differences being in the relative proportions of the two, which may vary due to galaxy mass and specific mass accretion and merger histories.

  6. A TWO-PHASE SCENARIO FOR BULGE ASSEMBLY IN ΛCDM COSMOLOGIES

    International Nuclear Information System (INIS)

    We analyze and compare the bulges of a sample of L * spiral galaxies in hydrodynamical simulations in a cosmological context, using two different codes, P-DEVA and GASOLINE. The codes regulate star formation in very different ways, with P-DEVA simulations inputting low star formation efficiency under the assumption that feedback occurs on subgrid scales, while the GASOLINE simulations have feedback that drives large-scale outflows. In all cases, the marked knee shape in mass aggregation tracks, corresponding to the transition from an early phase of rapid mass assembly to a later slower one, separates the properties of two populations within the simulated bulges. The bulges analyzed show an important early starburst resulting from the collapse-like fast phase of mass assembly, followed by a second phase with lower star formation, driven by a variety of processes such as disk instabilities and/or mergers. Classifying bulge stellar particles identified at z = 0 into old and young according to these two phases, we found bulge stellar sub-populations with distinct kinematics, shapes, stellar ages, and metal contents. The young components are more oblate, generally smaller, more rotationally supported, with higher metallicity and less alpha-element enhanced than the old ones. These results are consistent with the current observational status of bulges, and provide an explanation for some apparently paradoxical observations, such as bulge rejuvenation and metal-content gradients observed. Our results suggest that bulges of L * galaxies will generically have two bulge populations that can be likened to classical and pseudo-bulges, with differences being in the relative proportions of the two, which may vary due to galaxy mass and specific mass accretion and merger histories.

  7. Detailed abundance analysis of a metal-poor giant in the Galactic Center

    CERN Document Server

    Ryde, N; Rich, R M; Thorsbro, B; Schultheis, M; Origlia, L; Chatzopoulos, S

    2016-01-01

    We report the first results from our program to examine the metallicity distribution of the Milky Way nuclear star cluster connected to SgrA*, with the goal of inferring the star formation and enrichment history of this system, as well as its connection and relationship with the central 100 pc of the bulge/bar system. We present the first high resolution (R~24,000), detailed abundance analysis of a K=10.2 metal-poor, alpha-enhanced red giant projected at 1.5 pc from the Galactic Center, using NIRSPEC on Keck II. A careful analysis of the dynamics and color of the star locates it at about 26 pc line-of-sight distance in front of the nuclear cluster. It probably belongs to one of the nuclear components (cluster or disk), not to the bar-bulge or classical disk. A detailed spectroscopic synthesis, using a new linelist in the K band, finds [Fe/H]~-1.0 and [alpha/Fe]~+0.4, consistent with stars of similar metallicity in the bulge. As known giants with comparable [Fe/H] and alpha enhancement are old, we conclude tha...

  8. Lensing of unresolved stars towards the Galactic Bulge

    CERN Document Server

    Alard, C

    1996-01-01

    Previous calculations of the rates and optical depths due to microlensing only considered resolved stars. However, if a faint unresolved star lens is close enough to a resolved star, the event will be seen by the microlensing experiments and attributed to the bighter star. The blending biases the duration, making the contribution of the unresolved stars very significant for short events. This contribution is confused with lensing by brown dwarfs. The exact rates of these blended events are extremly sensitive to the limiting magnitude achieved in the microlensing search. Appropriate calculations of the optical depth and rates are provided here, and illustrated in the case of the DUO and OGLE experiments. The additional contribution of unresolved stars is very significant and probably explains the high optical depth and rates observed towards the Galactic Bulge. The blended unresolved event can be identified using either the color shift or the light curve shape. However, neither of these two methods is apropria...

  9. Peripheral giant cell granuloma

    Directory of Open Access Journals (Sweden)

    Padam Narayan Tandon

    2012-01-01

    Full Text Available Peripheral giant cell granuloma or the so-called "giant cell epulis" is the most common oral giant cell lesion. It normally presents as a soft tissue purplish-red nodule consisting of multinucleated giant cells in a background of mononuclear stromal cells and extravasated red blood cells. This lesion probably does not represent a true neoplasm, but rather may be reactive in nature, believed to be stimulated by local irritation or trauma, but the cause is not certainly known. This article reports a case of peripheral giant cell granuloma arising at the maxillary anterior region in a 22-year-old female patient. The lesion was completely excised to the periosteum level and there is no residual or recurrent swelling or bony defect apparent in the area of biopsy after a follow-up period of 6 months.

  10. Mapping Directly Imaged Giant Exoplanets

    CERN Document Server

    Kostov, Veselin B

    2012-01-01

    With the increasing number of directly imaged giant exoplanets the current atmosphere models are often not capable of fully explaining the spectra and luminosity of the sources. A particularly challenging component of the atmosphere models is the formation and properties of condensate cloud layers, which fundamentally impact the energetics, opacity, and evolution of the planets. Here we present a suite of techniques that can be used to estimate the level of rotational modulations these planets may show. We propose that the time--resolved observations of such periodic photometric and spectroscopic variations of extrasolar planets due to their rotation can be used as a powerful tool to probe the heterogeneity of their optical surfaces. We address and discuss the following questions: a) what planet properties can be deduced from the light curve and/or spectra, and in particular can we determine rotation periods, spot--coverage, spot colors, spot spectra; b) what is the optimal configuration of instrument/wavelen...

  11. Bulge and Clump Evolution in Hubble Ultra Deep Field Clump Clusters, Chains and Spiral Galaxies

    CERN Document Server

    Elmegreen, Bruce G; Fernandez, Maria Ximena; Lemonias, Jenna Jo

    2008-01-01

    Clump clusters and chain galaxies in the Hubble Ultra Deep Field are examined for bulges in the NICMOS images. Approximately 50% of the clump clusters and 30% of the chains have relatively red and massive clumps that could be young bulges. Magnitudes and colors are determined for these bulge-like objects and for the bulges in spiral galaxies, and for all of the prominent star-formation clumps in these three galaxy types. The colors are fitted to population evolution models to determine the bulge and clump masses, ages, star-formation rate decay times, and extinctions. The results indicate that bulge-like objects in clump cluster and chain galaxies have similar ages and 2 to 5 times larger masses compared to the star-formation clumps, while the bulges in spirals have ~6 times larger ages and 20 to 30 times larger masses than the clumps. All systems appear to have an underlying red disk population. The masses of star-forming clumps are typically in a range from 10^7 to 10^8 Msun; their ages have a wide range ar...

  12. The Molecular Gas Density in Galaxy Centers and How It Connects to Bulges

    CERN Document Server

    Fisher, David B; Drory, Niv; Combes, Francoise; Blitz, Leo; Wong, Tony

    2012-01-01

    In this paper we present gas density, star formation rate, stellar masses, and bulge disk decompositions for a sample of 60 galaxies. Our sample is the combined sample of BIMA SONG, CARMA STING, and PdBI NUGA surveys. We study the effect of using CO-to-H_2 conversion factors that depend on the CO surface brightness, and also that of correcting star formation rates for diffuse emission from old stellar populations. We estimate that star formation rates in bulges are typically lower by 20% when correcting for diffuse emission. We find that over half of the galaxies in our sample have molecular gas surface density >100 M_sun pc^-2. We find a trend between gas density of bulges and bulge Sersic index; bulges with lower Sersic index have higher gas density. Those bulges with low Sersic index (pseudobulges) have gas fractions that are similar to that of disks. We also find that there is a strong correlation between bulges with the highest gas surface density and the galaxy being barred. However, we also find that c...

  13. Superplasticity and Superplastic Bulging Behavior of ZrO2/Ni Nanocomposite

    Institute of Scientific and Technical Information of China (English)

    DING Shui; LV Hongjun; ZHANG Kaifeng

    2011-01-01

    ZrO2/Ni nanocomposite was produced by pulse electrodeposition and its superplastic properties were investigated by the tensile and bulging tests. The as-deposited nickel matrix has a narrow grain size distribution with a mean grain size of 45 nm. A maximum elongation of 605% was observed at 723 K and a strain rate of 1.67 × 10-3s-1 by tensile test. Superplastic bulging tests were subsequently performed using dies with diameters of 1 mm and 5 mm respectively based on the optimal superplastic forming temperature. The effects of forming temperature and gas pressure on bulging process were experimentally investigated. The results indicated that ZrO2/Ni nanocomposite samples can be readily bulged at 723 K with H/d value (defined as dome apex height over the die diameter) larger than 0.5, indicating that the nanocomposite has good bulging ability. SEM and TEM were used to examine the microstructure of the as-deposited and bulged samples. The observations showed that significant grain coarsening occurs during superplastic bulging, and the microstructure is found to depend on the forming temperature.

  14. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff Mathiasen, Anne-Gitte;

    2013-01-01

    Mobile probing is a method, developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time and space...... to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face). The development...

  15. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff, Anne-Gitte;

    2012-01-01

    Mobile probing is a method, which has been developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time...... point to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face...

  16. Retrieving Bulge and Disk Parameters and Asymptotic Magnitudes from the Growth Curves of Galaxies

    CERN Document Server

    Okamura, S; Shimasaku, K; Yagi, M; Weinberg, D H; Okamura, Sadanori; Yasuda, Naoki; Shimasaku, Kazuhiro; Yagi, Masafumi; Weinberg, David H.

    1998-01-01

    We show that the growth curves of galaxies can be used to determine their bulge and disk parameters and bulge-to-total luminosity ratios, in addition to their conventional asymptotic magnitudes, provided that the point spread function is accurately known and signal-to-noise ratio is modest (S/N$\\gtrsim30$). The growth curve is a fundamental quantity that most future large galaxy imaging surveys will measure. Bulge and disk parameters retrieved from the growth curve will enable us to perform statistical studies of luminosity structure for a large number of galaxies.

  17. The Giraffe Inner Bulge Survey (GIBS) II. Metallicity distributions and alpha element abundances at fixed Galactic latitude

    CERN Document Server

    Gonzalez, O A; Vasquez, S; Hill, V; Rejkuba, M; Valenti, E; Rojas-Arriagada, A; Renzini, A; Babusiaux, C; Minniti, D; Brown, T M

    2015-01-01

    High resolution (R$\\sim$22,500) spectra for 400 red clump giants, in four fields within $\\rm -4.8^{\\circ} \\lesssim b \\lesssim -3.4^{\\circ}$ and $\\rm -10^{\\circ} \\lesssim l \\lesssim +10^{\\circ}$, were obtained within the GIRAFFE Inner Bulge Survey (GIBS) project. To this sample we added another $\\sim$ 400 stars in Baade's Window, observed with the identical instrumental configuration. We constructed the metallicity distributions for the entire sample, as well as for each field individually, in order to investigate the presence of gradients or field-to-field variations in the shape of the distributions. The metallicity distributions in the five fields are consistent with being drawn from a single parent population, indicating the absence of a gradient along the major axis of the Galactic bar. The global metallicity distribution is well fitted by two Gaussians. The metal poor component is rather broad, with a mean at $\\rm =-0.31$ dex and $\\sigma=0.31$ dex. The metal-rich one is narrower, with mean $\\rm =+0.26$ a...

  18. Symmetry Energy Constraints from Giant Resonances: A Theoretical Overview

    CERN Document Server

    Piekarewicz, J

    2013-01-01

    Giant resonances encapsulate the dynamic response of the nuclear ground state to external perturbations. As such, they offer a unique view of the nucleus that is often not accessible otherwise. Although interesting in their own right, giant resonances are also enormously valuable in providing stringent constraints on the equation of state of asymmetric matter. We this view in mind, we focus on two modes of excitation that are essential in reaching this goal: the isoscalar giant monopole resonance (GMR) and the isovector giant dipole resonance (GDR). GMR energies in heavy nuclei are sensitive to the symmetry energy because they probe the incompressibility of neutron-rich matter. Unfortunately, access to the symmetry energy is hindered by the relatively low neutron-proton asymmetry of stable nuclei. Thus, the measurement of GMR energies in exotic nuclei is strongly encouraged. In the case of the GDR, we find the electric dipole polarizability of paramount importance. Indeed, the electric dipole polarizability a...

  19. Giant distal humeral geode

    Energy Technology Data Exchange (ETDEWEB)

    Maher, M.M. [Department of Radiology, Mater Misericordiae Hospital, Dublin (Ireland); Department of Radiology, St. Vincent' s Hospital, Elm Park, Dublin 4 (Ireland); Kennedy, J.; Hynes, D. [Department of Orthopaedics, Mater Misericordiae Hospital, Dublin (Ireland); Murray, J.G.; O' Connell, D. [Department of Radiology, Mater Misericordiae Hospital, Dublin (Ireland)

    2000-03-30

    We describe the imaging features of a giant geode of the distal humerus in a patient with rheumatoid arthritis, which presented initially as a pathological fracture. The value of magnetic resonance imaging in establishing this diagnosis is emphasized. (orig.)

  20. The Giant Cell.

    Science.gov (United States)

    Stockdale, Dennis

    1998-01-01

    Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)

  1. Metaphyseal giant cell tumor

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed.

  2. Seismology of Giant Planets

    CERN Document Server

    Gaulme, Patrick; Schmider, Francois-Xavier; Guillot, Tristan

    2014-01-01

    Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light ref...

  3. Metaphyseal giant cell tumor

    International Nuclear Information System (INIS)

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed. (Author)

  4. Giants in Transmedia

    Directory of Open Access Journals (Sweden)

    Mare Kõiva

    2016-06-01

    Full Text Available The purpose of this article is to discuss transmedia narratives based on giant lore, which is described by means of examples from folkloristics and transmedia dissemination. Giant lore, particularly the epic Kalevipoeg, a core text of Estonian culture, has generated numerous transmedially circulating texts and various contemporary forms. Through their connections with media, texts about giants continue to participate in the national cultural space; in previous eras, they have been carriers of Estonian identity or, alternatively, have held an important place in the creation of local identities. The latter can be observed today in printed matter, advertisements, and products marketed to the homeland public. However, texts about giants can also be used as a self-characterising image directed beyond national space. The article provides a closer look at ways in which stories connected with Kalevipoeg and Suur Tõll are engaged in different levels of media, as well as necessary contextual cultural knowledge for understanding contemporary media clips.

  5. Nonlinear Local Bending Response and Bulging Factors for Longitudinal Cracks in Pressurized Cylindrical Shells

    Science.gov (United States)

    Rose, Cheryl A.; Young, Richard D.; Starnes, James H., Jr.

    1999-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or "bulging factors" that account for increased stresses due to curvature for longitudinal cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in graphs of the bulging factor as a function of the applied load and as a function of geometric parameters that include the shell radius, the shell thickness and the crack length. The computed bulging factors are compared with solutions based on linear shallow shell theory, and with semi-empirical solutions that approximately account for the nonlinear deformation in the vicinity of the crack. The effect of biaxial loads on the computed bulging factors is also discussed.

  6. APOGEE Kinematics I: Overview of the Kinematics of the Galactic Bulge as Mapped by APOGEE

    CERN Document Server

    Ness, M; Johnson, J A; Athanassoula, E; Majewski, S R; Perez, A E Garcia; Bird, J; Nidever, D; Schneider, Donald P; Sobeck, J; Frinchaboy, P; Pan, Kaike; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey

    2015-01-01

    We present the stellar kinematics across the Galactic bulge and into the disk at positive longitudes from the SDSS-III APOGEE spectroscopic survey of the Milky Way. APOGEE includes extensive coverage of the stellar populations of the bulge along the mid-plane and near-plane regions. From these data, we have produced kinematic maps of 10,000 stars across longitudes 0 deg -0.5 have dispersion and rotation profiles that are similar to that of N-body models of boxy/peanut bulges. There is a smooth kinematic transition from the thin bar and boxy bulge (l,|b|) -1.0, and the chemodynamics across (l,b) suggests the stars in the inner Galaxy with [Fe/H] > -1.0 have an origin in the disk.

  7. Before the Bar: Kinematic Detection of A Spheroidal Metal-Poor Bulge Component

    CERN Document Server

    Kunder, Andrea; Storm, J; Nataf, D M; De Propris, R; Walker, A R; Bono, G; Johnson, C I; Shen, J; Li, Z Y

    2016-01-01

    We present 947 radial velocities of RR Lyrae variable stars in four fields located toward the Galactic bulge, observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay (BRAVA-RR). We show that these RR Lyrae stars exhibit hot kinematics and null or negligible rotation and are therefore members of a separate population from the bar/pseudobulge that currently dominates the mass and luminosity of the inner Galaxy. Our RR Lyrae stars predate these structures, and have metallicities, kinematics, and spatial distribution that are consistent with a "classical" bulge, although we cannot yet completely rule out the possibility that they are the metal-poor tail of a more metal rich ([Fe/H] ~ -1 dex) halo-bulge population. The complete catalog of radial velocities for the BRAVA-RR stars is also published electronically.

  8. Accounting for selection effects in the BH-bulge relations: No evidence for cosmological evolution

    CERN Document Server

    Schulze, Andreas

    2013-01-01

    The redshift evolution of the black hole - bulge relations is an essential observational constraint for models of black hole - galaxy coevolution. In addition to the observational challenges for these studies, conclusions are complicated by the influence of selection effects. We demonstrate that there is presently no statistical significant evidence for cosmological evolution in the black hole-bulge relations, once these selection effects are taken into account and corrected for. We present a fitting method, based on the bivariate distribution of black hole mass and galaxy property, that accounts for the selection function in the fitting and is therefore able to recover the intrinsic black hole - bulge relation unbiased. While prior knowledge is restricted to a minimum, we at least require knowledge of either the sample selection function and the mass dependence of the active fraction, or the spheroid distribution function and the intrinsic scatter in the black hole - bulge relation. We employed our fitting r...

  9. Giant peritoneal loose bodies

    Directory of Open Access Journals (Sweden)

    Chris van Zyl

    2015-03-01

    Full Text Available Giant peritoneal loose bodies are rare lesions, originating from auto-amputated appendices epiploicae. They may cause urinary or gastrointestinal obstruction and, should the radiologist not be familiar with the entity, can potentially be confused with malignant or parasitic lesions.Familiarity with their characteristic computed tomographic features is essential to prevent unnecessary surgery in the asymptomatic patient. We present a case of a 70-year-old man diagnosed with two giant peritoneal loose bodies.

  10. Giant magnetostrictive materials

    Institute of Scientific and Technical Information of China (English)

    LIU JingHua; JIANG ChengBao; XU HuiBin

    2012-01-01

    Giant magnetostrictive materials are a kind of functional materials developed since 1970s,known as their large magnetostrain and high energy density.In this paper,an introduction of magnetosttiction and the history of magnetostrictive materials are described firstly.Then we review the recent developments of both rare earth and non-rare earth magnetostrictive materials.Finally,the tendency of developing new giant magnetostrictive materials is presented.

  11. Quasar feedback revealed by giant molecular outflows

    CERN Document Server

    Feruglio, Chiara; Piconcelli, Enrico; Menci, Nicola; Aussel, Herve'; Lamastra, Alessandra; Fiore, Fabrizio

    2010-01-01

    In the standard scenario for galaxy evolution the transformation of young star-forming galaxies into red bulge-dominated spheroids, where star formation has been quenched, is often explained by invoking a strong negative feedback generated by accretion onto a central super-massive black hole. The depletion of gas resulting from quasar-driven outflows should eventually stop star-formation across the host galaxy and lead to the black hole "suicide" for starvation. Direct observational evidence for a major quasar feedback onto the host galaxy is still missing, since outflows previously observed in quasars are associated with the ionized component of the gas, which only accounts for a minor fraction of the total gas content, and typically occur in the central regions. We used the IRAM PdBI to observe the CO(1-0) transition in Mrk 231, the closest quasar known. We detect broad wings of the CO line, with velocities up to 750 km/s and spatially resolved on the kpc scale. Such broad CO wings trace a giant molecular o...

  12. Star Clusters in Pseudo-Bulges of Spiral Galaxies

    CERN Document Server

    Di Nino, Daiana; Stiavelli, Massimo; Carollo, C Marcella; Scarlata, Claudia; Wyse, Rosemary F G

    2009-01-01

    We present a study of the properties of the star-cluster systems around pseudo-bulges of late-type spiral galaxies using a sample of 11 galaxies with distances from 17 to 37 Mpc. Star clusters are identified from multiband HST ACS and WFPC2 imaging data by combining detections in 3 bands (F435W and F814W with ACS and F606W with WFPC2). The photometric data are then compared to population synthesis models to infer the masses and ages of the star clusters. Photometric errors and completeness are estimated by means of artificial source Monte Carlo simulations. Dust extinction is estimated by considering F160W NICMOS observations of the central regions of the galaxies, augmenting our wavelength coverage. In all galaxies we identify star clusters with a wide range of ages, from young (age 100-250 Myr), more massive, red clusters. Some of the latter might likely evolve into objects similar to the Milky Way's globular clusters. We compute the specific frequencies for the older clusters with respect to the galaxy an...

  13. A Search for Novae in the Bulge of M31

    Science.gov (United States)

    Rector, T. A.; Jacoby, G. H.; Corbett, D. L.; Denham, M.; RBSE Nova Search Team

    1999-12-01

    We present the initial results of a program currently underway to search for nova in local group galaxies with the KPNO 0.9-meter telescope. The long-term goal is to accurately determine if the nova rate varies for galaxies of different Hubble type. Ciardullo et al. claim that nova rates are very similar when normalized to the total galaxy K-band luminosity. However, Della Valle et al. claim the rates are different by up to a factor of four, with early-type galaxies being deficient in novae. Here we present novae found from eighteen epochs of observations of the bulge of M31. The observations span from September 1995 to July 1999. The results presented here are part of an NSF-funded research-based science education program (RBSE) operated by NOAO, wherein middle- and high-school science students learn astronomy and inquiry-based learning skills by participating in actual research. The novae presented here were discovered by students participating in the RBSE program.

  14. Stellar populations in the bulges of isolated galaxies

    CERN Document Server

    Morelli, L; Corsini, E M; Costantin, L; Bontà, E Dalla; Mèndez-Abreu, J; Pizzella, A

    2016-01-01

    We present photometry and long-slit spectroscopy for 12 S0 and spiral galaxies selected from the Catalogue of Isolated Galaxies. The structural parameters of the sample galaxies are derived from the Sloan Digital Sky Survey i-band images by performing a two-dimensional photometric decomposition of the surface brightness distribution. This is assumed to be the sum of the contribution of a S\\`ersic bulge, an exponential disc, and a Ferrers bar characterized by elliptical and concentric isophotes with constant ellipticity and position angles. The rotation curves and velocity dispersion profiles of the stellar component are measured from the spectra obtained along the major axis of galaxies. The radial profiles of the H{\\beta}, Mg and Fe line-strength indices are derived too. Correlations between the central values of the Mg 2 and Fe line-strength indices and the velocity dispersion are found. The mean age, total metallicity and total {\\alpha}/Fe enhancement of the stellar population in the centre and at the radi...

  15. Elemental abundances in AGB stars and the formation of the Galactic bulge

    OpenAIRE

    Wood P.R.; Ryde N.; Lebzelter T.; Blommaert J.A.D.L.; Uttenthaler S.; Schultheis M.; Aringer B.

    2012-01-01

    We obtained high-resolution near-IR spectra of 45 AGB stars located in the Galactic bulge. The aim of the project is to determine key elemental abundances in these stars to help constrain the formation history of the bulge. A further aim is to link the photospheric abundances to the dust species found in the winds of the stars. Here we present a progress report of the analysis of the spectra.

  16. Mechanical Analysis of Dead Load Crown and Structure Parameter of Hydraulic Elastic Bulging Roll

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chang-cai; LI Wei-min; LIU Zhu-bai

    2003-01-01

    The dead load crown of hydraulic elastic bulging roll was discussed using the theory of elastically supported beam, and the dead load experiment was carried out. The theoretical calculation is consistent with the experimental result. The structure parameters for the thickness of roll sleeve, the length of the oil groove and the crown of roll were discussed. The fundamental principle of determining the parameters was put forward. The theoretical basis of the application of the hydraulic elastic bulging roll was established.

  17. Inverse Approach to Evaluate the Tubular Material Parameters Using the Bulging Test

    OpenAIRE

    Yulong Ge; Xiaoxing Li; Lihui Lang

    2015-01-01

    Tubular material parameters are required for both part manufactory process planning and finite element simulations. The bulging test is one of the most credible ways to detect the property parameters for tubular material. The inverse approach provides more effective access to the accurate material evaluation than with direct identifications. In this paper, a newly designed set of bulging test tools is introduced. An inverse procedure is adopted to determine the tubular material properties in ...

  18. Giant Low Surface Brightness Galaxies: Evolution in Isolation

    Indian Academy of Sciences (India)

    M. Das

    2013-03-01

    Giant Low Surface Brightness (GLSB) galaxies are amongst the most massive spiral galaxies that we know of in our Universe. Although they fall in the class of late type spiral galaxies, their properties are far more extreme. They have very faint stellar disks that are extremely rich in neutral hydrogen gas but low in star formation and hence low in surface brightness. They often have bright bulges that are similar to those found in early type galaxies. The bulges can host low luminosity Active Galactic Nuclei (AGN) that have relatively low mass black holes. GLSB galaxies are usually isolated systems and are rarely found to be interacting with other galaxies. In fact many GLSB galaxies are found under dense regions close to the edges of voids. These galaxies have very massive dark matter halos that also contribute to their stability and lack of evolution. In this paper we briefly review the properties of this unique class of galaxies and conclude that both their isolation and their massive dark matter halos have led to the low star formation rates and the slower rate of evolution in these galaxies.

  19. The Chemical Composition of the Galactic Bulge and Implications for its Evolution

    CERN Document Server

    McWilliam, Andrew

    2016-01-01

    The average bulge [Fe/H] and [Mg/H] are +0.06 and +0.17 dex, respectively, in Baade's Window, roughly 0.2 dex higher than the thin disk and ~0.7 dex higher than the local thick disk metallicity. This suggests a higher effective yield in the bulge, perhaps due to more efficient retention of supernova ejecta. The bulge vertical [Fe/H] gradient, at ~0.5 dex/kpc, appears to be due to a changing mixture of sub-populations (near +0.3 dex and -0.3 dex and one possibly near -0.7 dex) with latitude. The bulge is enhanced in O, Mg, Si, Ca, Ti, and Al relative to the sun, with [alpha/Fe]=+0.15 dex at [Fe/H]=0.0 dex. Below [Fe/H]~-0.5 dex, the bulge and local thick disk compositions are very similar, but small [Mg/Fe] and possibly [/Fe] enhancements, low [La/Eu] ratios and large [Cu/Fe], relative to the thick disk suggest slightly higher SFR in the bulge. However, these composition differences could simply be due to measurement errors and non-LTE effects. Unfortunately, comparison with the thick disk near solar [Fe/H] su...

  20. THE NUMBER OF TIDAL DWARF SATELLITE GALAXIES IN DEPENDENCE OF BULGE INDEX

    Energy Technology Data Exchange (ETDEWEB)

    López-Corredoira, Martín [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Kroupa, Pavel, E-mail: martinlc@iac.es, E-mail: pavel@astro.uni-bonn.de [Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, Nussallee 14-16, D-53115 Bonn (Germany)

    2016-01-20

    We show that a significant correlation (up to 5σ) emerges between the bulge index, defined to be larger for a larger bulge/disk ratio, in spiral galaxies with similar luminosities in the Galaxy Zoo 2 of the Sloan Digital Sky Survey and the number of tidal-dwarf galaxies in the catalog by Kaviraj et al. In the standard cold or warm dark matter cosmological models, the number of satellite galaxies correlates with the circular velocity of the dark matter host halo. In generalized gravity models without cold or warm dark matter, such a correlation does not exist, because host galaxies cannot capture infalling dwarf galaxies due to the absence of dark-matter-induced dynamical friction. However, in such models, a correlation is expected to exist between the bulge mass and the number of satellite galaxies because bulges and tidal-dwarf satellite galaxies form in encounters between host galaxies. This is not predicted by dark matter models in which bulge mass and the number of satellites are a priori uncorrelated because higher bulge/disk ratios do not imply higher dark/luminous ratios. Hence, our correlation reproduces the prediction of scenarios without dark matter, whereas an explanation is not found readily from the a priori predictions of the standard scenario with dark matter. Further research is needed to explore whether some application of the standard theory may explain this correlation.

  1. A new look at the kinematics of the bulge from an N-body model

    CERN Document Server

    Gomez, A; Stefanovitch, N; Haywood, M; Combes, F; Katz, D; Babusiaux, C

    2016-01-01

    (Abridged) By using an N-body simulation of a bulge that was formed via a bar instability mechanism, we analyse the imprints of the initial (i.e. before bar formation) location of stars on the bulge kinematics, in particular on the heliocentric radial velocity distribution of bulge stars. Four different latitudes were considered: $b=-4^\\circ$, $-6^\\circ$, $-8^\\circ$, and $-10^\\circ$, along the bulge minor axis as well as outside it, at $l=\\pm5^\\circ$ and $l=\\pm10^\\circ$. The bulge X-shaped structure comprises stars that formed in the disk at different locations. Stars formed in the outer disk, beyond the end of the bar, which are part of the boxy peanut-bulge structure may show peaks in the velocity distributions at positive and negative heliocentric radial velocities with high absolute values that can be larger than 100 $\\rm km$ $\\rm s^{-1}$, depending on the observed direction. In some cases the structure of the velocity field is more complex and several peaks are observed. Stars formed in the inner disk, t...

  2. Mergers and Bulge Formation in Lambda-CDM: Which Mergers Matter?

    CERN Document Server

    Hopkins, Philip F; Croton, Darren; Hernquist, Lars; Keres, Dusan; Khochfar, Sadegh; Stewart, Kyle; Wetzel, Andrew; Younger, Joshua D

    2009-01-01

    We use a suite of semi-empirical models to predict galaxy merger rates and contributions to bulge growth as functions of merger mass, redshift, and mass ratio. The models use empirical halo occupation constraints to identify mergers, together with high-resolution simulations to quantify how mergers with different properties contribute to the bulge population. We find good agreement with a variety of observational constraints, and provide fitting functions for merger rates and contributions to bulge growth. We identify several robust conclusions. (1) Major mergers dominate formation and assembly of L* bulges and the spheroid mass density, minor mergers contribute ~30%. (2) This is mass-dependent: bulge formation is dominated by more minor mergers in lower-mass systems. At higher masses, bulges form in major mergers near L*, but subsequently assemble in minor mergers. (3) The minor/major contribution is also morphology-dependent: higher B/T systems form in more major mergers, lower B/T systems form in situ from...

  3. The EMBLA Survey -- Metal-poor stars in the Galactic bulge

    CERN Document Server

    Howes, Louise M; Keller, Stefan C; Casey, Andrew R; Yong, David; Lind, Karin; Frebel, Anna; Hays, Austin; Alves-Brito, Alan; Bessell, Michael S; Casagrande, Luca; Marino, Anna F; Nataf, David M; Owen, Christopher I; Da Costa, Gary S; Schmidt, Brian P; Tisserand, Patrick

    2016-01-01

    Cosmological models predict the oldest stars in the Galaxy should be found closest to the centre of the potential well, in the bulge. The EMBLA Survey successfully searched for these old, metal-poor stars by making use of the distinctive SkyMapper photometric filters to discover candidate metal-poor stars in the bulge. Their metal-poor nature was then confirmed using the AAOmega spectrograph on the AAT. Here we present an abundance analysis of 10 bulge stars with -2.8<[Fe/H]<-1.7 from MIKE/Magellan observations, in total determining the abundances of 22 elements. Combining these results with our previous high-resolution data taken as part of the Gaia-ESO Survey, we have started to put together a picture of the chemical and kinematic nature of the most metal-poor stars in the bulge. The currently available kinematic data is consistent with the stars belonging to the bulge, although more accurate measurements are needed to constrain the stars' orbits. The chemistry of these bulge stars deviates from that ...

  4. The Number of Tidal Dwarf Satellite Galaxies in Dependence of Bulge Index

    Science.gov (United States)

    López-Corredoira, Martín; Kroupa, Pavel

    2016-01-01

    We show that a significant correlation (up to 5σ) emerges between the bulge index, defined to be larger for a larger bulge/disk ratio, in spiral galaxies with similar luminosities in the Galaxy Zoo 2 of the Sloan Digital Sky Survey and the number of tidal-dwarf galaxies in the catalog by Kaviraj et al. In the standard cold or warm dark matter cosmological models, the number of satellite galaxies correlates with the circular velocity of the dark matter host halo. In generalized gravity models without cold or warm dark matter, such a correlation does not exist, because host galaxies cannot capture infalling dwarf galaxies due to the absence of dark-matter-induced dynamical friction. However, in such models, a correlation is expected to exist between the bulge mass and the number of satellite galaxies because bulges and tidal-dwarf satellite galaxies form in encounters between host galaxies. This is not predicted by dark matter models in which bulge mass and the number of satellites are a priori uncorrelated because higher bulge/disk ratios do not imply higher dark/luminous ratios. Hence, our correlation reproduces the prediction of scenarios without dark matter, whereas an explanation is not found readily from the a priori predictions of the standard scenario with dark matter. Further research is needed to explore whether some application of the standard theory may explain this correlation.

  5. The origin of the split red clump in the Galactic bulge of the Milky Way

    CERN Document Server

    Ness, M; Athanassoula, E; Wylie-de-Boer, E; Bland-Hawthorn, J; Lewis, G F; Yong, D; Asplund, M; Lane, R R; Kiss, L L; Ibata, R

    2012-01-01

    Near the minor axis of the Galactic bulge, at latitudes b -0.5 in the two higher-latitude fields, but not in the field at b = -5 degrees. Stars with [Fe/H] < -0.5 do not show the split. We compare the spatial distribution and kinematics of the clump stars with predictions from an evolutionary N-body model of a bulge that grew from a disk via bar-related instabilities. The density distribution of the peanut-shaped model is depressed near its minor axis. This produces a bimodal distribution of stars along the line of sight through the bulge near its minor axis, very much as seen in our observations. The observed and modelled kinematics of the two groups of stars are also similar. We conclude that the split red clump of the bulge is probably a generic feature of boxy/peanut bulges that grew from disks, and that the disk from which the bulge grew had relatively few stars with [Fe/H] < -0.5

  6. Resonant Orbits and the High Velocity Peaks toward the Bulge

    Science.gov (United States)

    Molloy, Matthew; Smith, Martin C.; Evans, N. Wyn; Shen, Juntai

    2015-10-01

    We extract the resonant orbits from an N-body bar that is a good representation of the Milky Way, using the method recently introduced by Molloy et al. By decomposing the bar into its constituent orbit families, we show that they are intimately connected to the boxy-peanut shape of the density. We highlight the imprint due solely to resonant orbits on the kinematic landscape toward the Galactic center. The resonant orbits are shown to have distinct kinematic features and may be used to explain the cold velocity peak seen in the Apache Point Observatory Galactic Evolution Experiment commissioning data. We show that high velocity peaks are a natural consequence of the motions of stars in the 2:1 orbit family and that stars on other higher order resonances can contribute to the peaks. The locations of the peaks vary with bar angle and, with the tacit assumption that the observed peaks are due to the 2:1 family, we find that the locations of the high velocity peaks correspond to bar angles in the range {10}\\circ ≲ {θ }{bar}≲ 25^\\circ . However, some important questions about the nature of the peaks remain, such as their apparent absence in other surveys of the Bulge and the deviations from symmetry between equivalent fields in the north and south. We show that the absence of a peak in surveys at higher latitudes is likely due to the combination of a less prominent peak and a lower number density of bar supporting orbits at these latitudes.

  7. Characterizing the bending and flexibility induced by bulges in DNA duplexes

    Science.gov (United States)

    Schreck, John S.; Ouldridge, Thomas E.; Romano, Flavio; Louis, Ard A.; Doye, Jonathan P. K.

    2015-04-01

    Advances in DNA nanotechnology have stimulated the search for simple motifs that can be used to control the properties of DNA nanostructures. One such motif, which has been used extensively in structures such as polyhedral cages, two-dimensional arrays, and ribbons, is a bulged duplex, that is, two helical segments that connect at a bulge loop. We use a coarse-grained model of DNA to characterize such bulged duplexes. We find that this motif can adopt structures belonging to two main classes: one where the stacking of the helices at the center of the system is preserved, the geometry is roughly straight, and the bulge is on one side of the duplex and the other where the stacking at the center is broken, thus allowing this junction to act as a hinge and increasing flexibility. Small loops favor states where stacking at the center of the duplex is preserved, with loop bases either flipped out or incorporated into the duplex. Duplexes with longer loops show more of a tendency to unstack at the bulge and adopt an open structure. The unstacking probability, however, is highest for loops of intermediate lengths, when the rigidity of single-stranded DNA is significant and the loop resists compression. The properties of this basic structural motif clearly correlate with the structural behavior of certain nano-scale objects, where the enhanced flexibility associated with larger bulges has been used to tune the self-assembly product as well as the detailed geometry of the resulting nanostructures. We further demonstrate the role of bulges in determining the structure of a "Z-tile," a basic building block for nanostructures.

  8. Supermassive black holes and their host galaxies. I. Bulge luminosities from dedicated near-infrared data

    Energy Technology Data Exchange (ETDEWEB)

    Läsker, Ronald; Van de Ven, Glenn [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Ferrarese, Laura, E-mail: laesker@mpia.de [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E2E7 (Canada)

    2014-01-01

    In an effort to secure, refine, and supplement the relation between central supermassive black hole masses, M {sub •}, and the bulge luminosities of their host galaxies, L {sub bul}, we obtained deep, high spatial resolution K-band images of 35 nearby galaxies with securely measured M {sub •}, using the wide-field WIRCam imager at the Canada-France-Hawaii-Telescope. A dedicated data reduction and sky subtraction strategy was adopted to estimate the brightness and structure of the sky, a critical step when tracing the light distribution of extended objects in the near-infrared. From the final image product, bulge and total magnitudes were extracted via two-dimensional profile fitting. As a first order approximation, all galaxies were modeled using a simple Sérsic-bulge+exponential-disk decomposition. However, we found that such models did not adequately describe the structure that we observed in a large fraction of our sample galaxies which often include cores, bars, nuclei, inner disks, spiral arms, rings, and envelopes. In such cases, we adopted profile modifications and/or more complex models with additional components. The derived bulge magnitudes are very sensitive to the details and number of components used in the models, although total magnitudes remain almost unaffected. Usually, but not always, the luminosities and sizes of the bulges are overestimated when a simple bulge+disk decomposition is adopted in lieu of a more complex model. Furthermore, we found that some spheroids are not well fit when the ellipticity of the Sérsic model is held fixed. This paper presents the details of the image processing and analysis, while we discuss how model-induced biases and systematics in bulge magnitudes impact the M {sub •}-L {sub bul} relation in a companion paper.

  9. Giant star seismology

    CERN Document Server

    Hekker, S

    2016-01-01

    The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-interrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.

  10. Anisotropic Models for Globular Clusters, Galactic Bulges and Dark Halos

    CERN Document Server

    Nguyen, P H

    2013-01-01

    Spherical systems with a polytropic equation of state are of great interest in astrophysics. They are widely used to describe neutron stars, red giants, white dwarfs, brown dwarfs, main sequence stars, galactic halos and globular clusters of diverse sizes. In this paper we construct analytically a family of self-gravitating spherical models in the post-Newtonian approximation of general relativity. These models present interesting cusps in their density profiles which are appropriate for the modeling of galaxies and dark matter halos. The systems described here are anisotropic in the sense that their equiprobability surfaces in velocity space are non-spherical, leading to an overabundance of radial or circular orbits, depending on the parameters of the model in consideration. Among the family, we find the post-Newtonian generalization of the Plummer and Hernquist models. A close inspection of their equation of state reveals that these solutions interpolate smoothly between a polytropic sphere in the asymptoti...

  11. Superstars and Giant Gravitons

    CERN Document Server

    Myers, R C; Myers, Robert C.; Tafjord, Oyvind

    2001-01-01

    We examine a family of BPS solutions of ten-dimensional type IIb supergravity. These solutions asymptotically approach AdS_5 X S^5 and carry internal `angular' momentum on the five-sphere. While a naked singularity appears at the center of the anti-de Sitter space, we show that it has a natural physical interpretation in terms of a collection of giant gravitons. We calculate the distribution of giant gravitons from the dipole field induced in the Ramond-Ramond five-form, and show that these sources account for the entire internal momentum carried by the BPS solutions.

  12. Giant perigenital seborrheic keratosis.

    Science.gov (United States)

    Bandyopadhyay, Debabrata; Saha, Abanti; Mishra, Vivek

    2015-01-01

    Seborrheic keratosis (SK) is a very common benign epidermal proliferation that is prevalent in all races. Most commonly occurring on the trunk, face, scalp, and the extremities, they can occur anywhere on the body except the palms and soles. The most common appearance is that of a very superficial verrucous plaque which appears to be stuck on the surface. Giant lesions are very rare, and their location on the genital area is rarer still. We report here a case of multiple giant SK lesions in a 59-year-old man. PMID:25657917

  13. Giant perigenital seborrheic keratosis

    Directory of Open Access Journals (Sweden)

    Debabrata Bandyopadhyay

    2015-01-01

    Full Text Available Seborrheic keratosis (SK is a very common benign epidermal proliferation that is prevalent in all races. Most commonly occurring on the trunk, face, scalp, and the extremities, they can occur anywhere on the body except the palms and soles. The most common appearance is that of a very superficial verrucous plaque which appears to be stuck on the surface. Giant lesions are very rare, and their location on the genital area is rarer still. We report here a case of multiple giant SK lesions in a 59-year-old man.

  14. Giant perigenital seborrheic keratosis

    OpenAIRE

    Debabrata Bandyopadhyay; Abanti Saha; Vivek Mishra

    2015-01-01

    Seborrheic keratosis (SK) is a very common benign epidermal proliferation that is prevalent in all races. Most commonly occurring on the trunk, face, scalp, and the extremities, they can occur anywhere on the body except the palms and soles. The most common appearance is that of a very superficial verrucous plaque which appears to be stuck on the surface. Giant lesions are very rare, and their location on the genital area is rarer still. We report here a case of multiple giant SK lesions in a...

  15. Comparing the properties of the X-shaped bulges of NGC 4710 and the Milky Way with MUSE

    Science.gov (United States)

    Gonzalez, O. A.; Gadotti, D. A.; Debattista, V. P.; Rejkuba, M.; Valenti, E.; Zoccali, M.; Coccato, L.; Minniti, D.; Ness, M.

    2016-06-01

    Context. Our view of the structure of the Milky Way and, in particular, its bulge is obscured by the intervening stars, dust, and gas in the disc. While great progress in understanding the bulge has been achieved with past and ongoing observations, the comparison of its global chemodynamical properties with respect to those of bulges seen in external galaxies has yet to be accomplished. Aims: We used the Multi Unit Spectroscopic Explorer (MUSE) instrument installed on the Very Large Telescope (VLT) to obtain spectral and imaging coverage of NGC 4710. The wide area and excellent sampling of the MUSE integral field spectrograph allows us to investigate the dynamical properties of the X-shaped bulge of NGC 4710 and compare it with the properties of the X-shaped bulge of the Milky Way. Methods: We measured the radial velocities, velocity dispersion, and stellar populations using a penalised pixel full spectral fitting technique adopting simple stellar populations models, on a 1' × 1' area centred on the bulge of NGC 4710. We constructed the velocity maps of the bulge of NGC 4710 and investigated the presence of vertical metallicity gradients. These properties were compared to those of the Milky Way bulge and to a simulated galaxy with a boxy-peanut bulge. Results: We find the line-of-sight velocity maps and 1D rotation curves of the bulge of NGC 4710 to be remarkably similar to those of the Milky Way bulge. Some specific differences that were identified are in good agreement with the expectations from variations in the bar orientation angle. The bulge of NGC 4710 has a boxy-peanut morphology with a pronounced X-shape, showing no indication of any additional spheroidally distributed bulge population, in which we measure a vertical metallicity gradient of 0.35 dex/kpc. Conclusions: The general properties of NGC 4710 are very similar to those observed in the Milky Way bulge. However, it has been suggested that the Milky Way bulge has an additional component that is

  16. A new look at the kinematics of the bulge from an N-body model

    Science.gov (United States)

    Gómez, A.; Di Matteo, P.; Stefanovitch, N.; Haywood, M.; Combes, F.; Katz, D.; Babusiaux, C.

    2016-05-01

    By using an N-body simulation of a bulge that was formed via a bar instability mechanism, we analyse the imprints of the initial (i.e. before bar formation) location of stars on the bulge kinematics, in particular on the heliocentric radial velocity distribution of bulge stars. Four different latitudes were considered: b = -4°, -6°, -8°, and -10°, along the bulge minor axis as well as outside it, at l = ± 5° and l = ± 10°. The bulge X-shaped structure comprises stars that formed in the disk at different locations. Stars formed in the outer disk, beyond the end of the bar, which are part of the boxy peanut-bulge structure may show peaks in the velocity distributions at positive and negative heliocentric radial velocities with high absolute values that can be larger than 100 km s-1, depending on the observed direction. In some cases the structure of the velocity field is more complex and several peaks are observed. Stars formed in the inner disk, the most numerous, contribute predominantly to the X-shaped structure and present different kinematic characteristics. They display a rather symmetric velocity distribution and a smaller fraction of high-velocity stars. The stellar stream motion, which is induced by the bar changes with the star initial position, can reach more than 40 km s-1 for stars that originated in the external disk, depending on the observed direction. Otherwise it is smaller than approximately 20 km s-1. In all cases, it decreases from b = -4° to -10°. Our results may enable us to interpret the cold high-velocity peak observed in the APOGEE commissioning data, as well as the excess of high-velocity stars in the near and far arms of the X-shaped structure at l = 0° and b = -6°. When compared with real data, the kinematic picture becomes more complex due to the possible presence in the observed samples of classical bulge and/or thick disk stars. Overall, our results point to the existence of complex patterns and structures in the bulge

  17. The Hera Saturn entry probe mission

    Science.gov (United States)

    Mousis, O.; Atkinson, D. H.; Spilker, T.; Venkatapathy, E.; Poncy, J.; Frampton, R.; Coustenis, A.; Reh, K.; Lebreton, J.-P.; Fletcher, L. N.; Hueso, R.; Amato, M. J.; Colaprete, A.; Ferri, F.; Stam, D.; Wurz, P.; Atreya, S.; Aslam, S.; Banfield, D. J.; Calcutt, S.; Fischer, G.; Holland, A.; Keller, C.; Kessler, E.; Leese, M.; Levacher, P.; Morse, A.; Muñoz, O.; Renard, J.-B.; Sheridan, S.; Schmider, F.-X.; Snik, F.; Waite, J. H.; Bird, M.; Cavalié, T.; Deleuil, M.; Fortney, J.; Gautier, D.; Guillot, T.; Lunine, J. I.; Marty, B.; Nixon, C.; Orton, G. S.; Sánchez-Lavega, A.

    2016-10-01

    The Hera Saturn entry probe mission is proposed as an M-class mission led by ESA with a contribution from NASA. It consists of one atmospheric probe to be sent into the atmosphere of Saturn, and a Carrier-Relay spacecraft. In this concept, the Hera probe is composed of ESA and NASA elements, and the Carrier-Relay Spacecraft is delivered by ESA. The probe is powered by batteries, and the Carrier-Relay Spacecraft is powered by solar panels and batteries. We anticipate two major subsystems to be supplied by the United States, either by direct procurement by ESA or by contribution from NASA: the solar electric power system (including solar arrays and the power management and distribution system), and the probe entry system (including the thermal protection shield and aeroshell). Hera is designed to perform in situ measurements of the chemical and isotopic compositions as well as the dynamics of Saturn's atmosphere using a single probe, with the goal of improving our understanding of the origin, formation, and evolution of Saturn, the giant planets and their satellite systems, with extrapolation to extrasolar planets. Hera's aim is to probe well into the cloud-forming region of the troposphere, below the region accessible to remote sensing, to the locations where certain cosmogenically abundant species are expected to be well mixed. By leading to an improved understanding of the processes by which giant planets formed, including the composition and properties of the local solar nebula at the time and location of giant planet formation, Hera will extend the legacy of the Galileo and Cassini missions by further addressing the creation, formation, and chemical, dynamical, and thermal evolution of the giant planets, the entire solar system including Earth and the other terrestrial planets, and formation of other planetary systems.

  18. The visibility of the Galactic bulge in optical surveys. Application to the Gaia mission

    CERN Document Server

    Robin, A C; Picaud, Sylvain; Schultheis, M

    2004-01-01

    The bulge is a region of the Galaxy which is of tremendous interest for understanding Galaxy formation. However, measuring photometry and kinematics in it raises several inherent issues, like high extinction in the visible and severe crowding. Here we attempt to estimate the problem of the visibility of the bulge at optical wavelengths, where large CCD mosaics allow to easily cover wide regions from the ground, and where future astrometric missions are planned. Assuming the Besancon Galaxy model and high resolution extinction maps, we estimate the stellar density as a function of longitude, latitude and apparent magnitude and we deduce the possibility of reaching and measuring bulge stars. The method is applied to three Gaia instruments, the BBP and MBP photometers, and the RVS spectrograph. We conclude that, while in the BBP most of the bulge will be accessible, in the MBP there will be a small but significant number of regions where bulge stars will be detected and accurately measured in crowded fields. Ass...

  19. The number of tidal dwarf satellite galaxies in dependence of bulge index

    CERN Document Server

    Lopez-Corredoira, Martin

    2015-01-01

    We show that a significant correlation (up to 5sigma) emerges between the bulge index, defined to be larger for larger bulge/disk ratio, in spiral galaxies with similar luminosities in the Galaxy Zoo 2 of SDSS and the number of tidal-dwarf galaxies in the catalogue by Kaviraj et al. (2012). In the standard cold or warm dark-matter cosmological models the number of satellite galaxies correlates with the circular velocity of the dark matter host halo. In generalized-gravity models without cold or warm dark matter such a correlation does not exist, because host galaxies cannot capture in-falling dwarf galaxies due to the absence of dark-matter-induced dynamical friction. However, in such models a correlation is expected to exist between the bulge mass and the number of satellite galaxies, because bulges and tidal-dwarf satellite galaxies form in encounters between host galaxies. This is not predicted by dark matter models in which bulge mass and the number of satellites are a priori uncorrelated because higher b...

  20. Composite Stellar Populations and Element by Element Abundances in the Milky Way Bulge and Elliptical Galaxies

    CERN Document Server

    Tang, Baitian; Davis, A Bianca

    2014-01-01

    This paper explores the integrated-light characteristics of the Milky Way (MW) bulge and to what extent they match those of elliptical galaxies in the local universe. We model composite stellar populations with realistic abundance distribution functions (ADFs), tracking the trends of individual elements as a function of overall heavy element abundance as actually observed in MW bulge stars. The resultant predictions for absorption feature strengths from the MW bulge mimic elliptical galaxies better than solar neighborhood stars do, but the MW bulge does not match elliptical galaxies, either. Comparing bulge versus elliptical galaxies, Fe, Ti, and Mg trend about the same for both but C, Na, and Ca seem irreconcilably different. Exploring the behavior of abundance compositeness leads to the concepts of "red lean" where a narrower ADF appears more metal rich than a wide one, and "red spread" where the spectral difference between wide and narrow ADFs increases as the ADF peak is moved to more metal-rich values. T...

  1. Unifying the planar bar and the boxy bulge of the Milky Way

    Directory of Open Access Journals (Sweden)

    Martinez-Valpuesta I.

    2012-02-01

    Full Text Available For some time the Milky Way has been understood as a barred disk galaxy. Star count observations have provided evidence for two bars at apparently different orientations, the boxy bulge and a long planar bar. We report recent work in which we argued for a scenario where these observations can be reproduced with a single boxy bulge/bar: an evolved bar from the stellar disk and the corresponding boxy bulge generated from it through secular evolution and buckling instability. We calculated the star count distributions along different lines-of-sight for a simulated barred galaxy and an observer at the Sun position, and compared them with observations of red clump magnitude distributions. We found a good agreement between the model and the observations, even though the simulation has a single boxy bulge/bar. In this model, the different apparent orientations of the boxy bulge and planar bar are partially due to the volume effect and partially to the leading ends of the bar.

  2. Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way.

    Science.gov (United States)

    Howes, L M; Casey, A R; Asplund, M; Keller, S C; Yong, D; Nataf, D M; Poleski, R; Lind, K; Kobayashi, C; Owen, C I; Ness, M; Bessell, M S; Da Costa, G S; Schmidt, B P; Tisserand, P; Udalski, A; Szymański, M K; Soszyński, I; Pietrzyński, G; Ulaczyk, K; Wyrzykowski, Ł; Pietrukowicz, P; Skowron, J; Kozłowski, S; Mróz, P

    2015-11-26

    The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium ('metals') have been found in the outer regions ('halo') of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions ('bulges') of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that most of the metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon.

  3. Clues to the Formation of Lenticular Galaxies Using Spectroscopic Bulge-Disk Decomposition

    CERN Document Server

    Johnston, Evelyn J; Merrifield, Michael R; Bedregal, Alejandro G

    2013-01-01

    Lenticular galaxies have long been thought of as evolved spirals, but the processes involved to quench the star formation are still unclear. By studying the individual star formation histories of the bulges and disks of lenticulars, it is possible to look for clues to the processes that triggered their transformation from spirals. To accomplish this feat, we present a new method for spectroscopic bulge-disk decomposition, in which a long-slit spectrum is decomposed into two one-dimensional spectra representing purely the bulge and disk light. We present preliminary results from applying this method to lenticular galaxies in the Virgo and Fornax Clusters, in which we show that the most recent star formation activity in these galaxies occurred within the bulges. We also find that the star formation timescales of the bulges are longer than the disks, and that more massive galaxies take longer to lose their gas during the transformation. These results point towards slow processes, such as ram-pressure stripping o...

  4. A case against an X-shaped structure in the Milky Way young bulge

    CERN Document Server

    Lopez-Corredoira, Martin

    2016-01-01

    CONTEXT. A number of recent papers have claimed the discovery of an X-shape structure in the bulge of our Galaxy in the population of the red clumps. AIMS. We endeavor to analyze the stellar density of bulge stars in the same regions using a different stellar population that is characteristic of the young bulge ($\\lesssim 5$ Gyr). Particularly, we use F0-F5 main-sequence stars with distances derived through photometric parallax. METHODS. We extract these stars from extinction-corrected color-magnitude diagrams in the near-infrared of VISTA-VVV data in some bulge regions and calculate the densities along the line of sight. We take the uncertaintity in the photometric parallax and the contamination of other sources into account, and we see that these errors do not avoid the detection of a possible double peak along some lines of sight as expected for a X-shape bulge if it existed. RESULTS. Only a single peak in the density distribution along the line of sight is observed, so apparently there is no X-shape struc...

  5. Structural properties of disk galaxies I. The intrinsic ellipticity of bulges

    CERN Document Server

    Mendez-Abreu, J; Corsini, E M; Simonneau, E

    2007-01-01

    (Abridged) A variety of formation scenarios was proposed to explain the diversity of properties observed in bulges. Studying their intrinsic shape can help in constraining the dominant mechanism at the epochs of their assembly. The structural parameters of a magnitude-limited sample of 148 unbarred S0--Sb galaxies were derived in order to study the correlations between bulges and disks as well as the probability distribution function (PDF) of the intrinsic equatorial ellipticity of bulges. It is presented a new fitting algorithm (GASP2D) to perform the two-dimensional photometric decomposition of galaxy surface-brightness distribution. This was assumed to be the sum of the contribution of a bulge and disk component characterized by elliptical and concentric isophotes with constant (but possibly different) ellipticity and position angles. Bulge and disk parameters of the sample galaxies were derived from the J-band images which were available in the Two Micron All Sky Survey. The PDF of the equatorial elliptic...

  6. Bulges and disks in the local Universe. Linking the galaxy structure to star formation activity

    CERN Document Server

    Morselli, L; Erfanianfar, G; Concas, A

    2016-01-01

    Galaxy morphology and star formation activity are strictly linked, in the way that bulge-dominated galaxies are in general quiescent, while disk dominated galaxies are actively star-forming. In this paper, we study the properties of bulges and disks as a function of the position of galaxies in the star formation rate (SFR) - stellar mass ($M_{\\star}$) plane. Our sample is built on the SDSS DR7 catalogue, and the bulge-disk decomposition is the one of Simard et al. (2011). We find that at a given stellar mass the Main Sequence (MS) is populated by galaxies with the lowest B/T ratios. The B/T on the MS increases with increasing stellar mass, thus confirming previous results in literature. In the upper envelop of the MS, the average B/T is higher than that of MS counterparts at fixed stellar mass. This indicates that starburst galaxies have a significant bulge component. In addition, bulges above the MS are characterised by blue colours, whereas, if on the MS or below it, they are mostly red and dead. The disks ...

  7. VizieR Online Data Catalog: SDSS bulge, disk and total stellar mass estimates (Mendel+, 2014)

    Science.gov (United States)

    Mendel, J. T.; Simard, L.; Palmer, M.; Ellison, S. L.; Patton, D. R.

    2014-01-01

    We present a catalog of bulge, disk, and total stellar mass estimates for ~660000 galaxies in the Legacy area of the Sloan Digital Sky Survey Data (SDSS) Release 7. These masses are based on a homogeneous catalog of g- and r-band photometry described by Simard et al. (2011, Cat. J/ApJS/196/11), which we extend here with bulge+disk and Sersic profile photometric decompositions in the SDSS u, i, and z bands. We discuss the methodology used to derive stellar masses from these data via fitting to broadband spectral energy distributions (SEDs), and show that the typical statistical uncertainty on total, bulge, and disk stellar mass is ~0.15 dex. Despite relatively small formal uncertainties, we argue that SED modeling assumptions, including the choice of synthesis model, extinction law, initial mass function, and details of stellar evolution likely contribute an additional 60% systematic uncertainty in any mass estimate based on broadband SED fitting. We discuss several approaches for identifying genuine bulge+disk systems based on both their statistical likelihood and an analysis of their one-dimensional surface-brightness profiles, and include these metrics in the catalogs. Estimates of the total, bulge and disk stellar masses for both normal and dust-free models and their uncertainties are made publicly available here. (4 data files).

  8. Mira variables in the Galactic bulge with OGLE-II data

    CERN Document Server

    Matsunaga, N; Nakada, Y

    2005-01-01

    We have extracted a total of 1968 Mira variables from the OGLE-II data base in the Galactic bulge region. Among them, 1960 are associated with 2MASS sources, and 1541 are further identified with MSX point sources. Their photometric properties are compared with those of Mira variables in the Large and Small Magellanic Clouds. We have found that mass-losing stars with circumstellar matter are reddened such that the colour dependence of the absorption coefficient is similar to that of interstellar matter. We also discuss the structure of the bulge. The surface number density of the bulge Mira variables is well correlated with the 2.2-micron surface brightness obtained by the COBE satellite. Using this relation, the total number of Mira variables in the bulge is estimated to be about 600,000. The logP-K relation of the Mira variables gives their space distribution which supports the well-known asymmetry of the bar-like bulge.

  9. Giant urethral calculus

    OpenAIRE

    Kotkar, Kunal; Thakkar, Ravi; Songra, MC

    2011-01-01

    Primary urethral calculus is rarely seen and is usually encountered in men with urethral stricture or diverticulum. We present a case of giant urethral calculus secondary to a urethral stricture in a man. The patient was treated with calculus extraction with end to end urethroplasty.

  10. Finite Size Giant Magnon

    CERN Document Server

    Ramadanovic, Bojan

    2008-01-01

    The quantization of the giant magnon away from the infinite size limit is discussed. We argue that this quantization inevitably leads to string theory on a Z_M-orbifold of S^5. This is shown explicitly and examined in detail in the near plane-wave limit.

  11. Giant solitary trichoepithelioma

    DEFF Research Database (Denmark)

    Jemec, B; Løvgreen Nielsen, P; Jemec, G B;

    1999-01-01

    The giant solitary trichoepithelioma is a rare trichogenic tumor with potential for local recurrence. Only nine cases have been previously described in the literature, and one additional case without recurrence during the first 3.5 years of observation is presented stressing that the rate of...

  12. Chandra Studies of Unidentified X-ray Sources in the Galactic Bulge

    Science.gov (United States)

    Mori, Hideyuki

    2013-09-01

    We propose to study a complete X-ray sample in the luminosity range of > 10^34 erg s^-1 in the Galactic bulge, including 5 unidentified sources detected in the ROSAT All Sky Survey. Our goal is to obtain a clear picture about X-ray populations in the bulge, by utilizing the excellent Chandra position accuracy leading to unique optical identification together with the X-ray spectral properties. This is a new step toward understanding the formation history of the bulge. Furthermore, because the luminosity range we observe corresponds to a ``missing link'' region ever studied for a neutron star or blackhole X-ray binary, our results are also unique to test accretion disk theories at intermediate mass accretion rates.

  13. Analysis of materials properties of niobium tube from the results of a virtual bulge test

    Science.gov (United States)

    Kim, H. S.; Sumption, Michael; Lim, H.; Collings, E. W.

    2012-06-01

    Hydroforming has been selected as a technique for the seamless fabrication of multicell superconducting radiofrequency (SRF) cavities. For the successful application of this technique to cavity fabrication, it is essential to understand deformation behavior of tubes under hydroforming conditions. Input to the finite-element modeling (FEM) which generally precedes the actual hydroforming process requires the constitutive properties of the tube material. This information may be obtained from the results of hydraulic bulge testing. The present paper provides an example of this activity. In order to verify the steps to be taken in analyzing future bulge-test data a circular argument recovers the original constitutive properties from the results of an FEM-based "virtual bulge test".

  14. Long-Lived Spiral Structure for Galaxies with Intermediate Size Bulges

    CERN Document Server

    Saha, Kanak

    2016-01-01

    Spiral structure in disk galaxies is modeled with nine collisionless N-body simulations including live disks, halos, and bulges with a range of masses. Two of these simulations make long-lasting and strong two-arm spiral wave modes that last for $\\sim5$ Gyr with constant pattern speed. These two had a light stellar disk and the largest values of the Toomre $Q$ parameter in the inner region at the time the spirals formed, suggesting the presence of a Q-barrier to wave propagation resulting from the bulge. The relative bulge mass in these cases is about 10\\%. Models with weak two-arm spirals had pattern speeds that followed the radial dependence of the Inner Lindblad Resonance.

  15. Discovery of Five New R. Coronae Borealis Stars in the MACHO Galactic Bulge Database

    Energy Technology Data Exchange (ETDEWEB)

    Zaniewshi, A; Clayton, G C; Welch, D; Gordon, K D; Minniti, D; Cook, K

    2005-06-16

    We have identified five new R Coronae Borealis (RCB) stars in the Galactic bulge using the MACHO Project photometry database, raising the total number of known Galactic RCB stars to about 40. We have obtained spectra to confirm the identifications. The fact that four out of the five newly identified RCB stars are ''cool'' (T{sub eff} < 6000 K) rather than ''warm'' (T{sub eff} > 6000 K) suggests that the preponderance of warm RCB stars among the existing sample is a selection bias. These cool RCB stars are redder and fainter than their warm counterparts and may have been missed in surveys done with blue plates. Based on the number of new RCB stars discovered in the MACHO bulge fields, there may be {approx}250 RCB stars in the reddened ''exclusion'' zone toward the bulge.

  16. Stellar Population Gradients in Bulges along the Hubble Sequence: I. The Data

    CERN Document Server

    Gorgas, J; Goudfrooij, P

    2007-01-01

    This is the first paper presenting our long-term project aimed at studying the nature of bulges through the analysis of their stellar population gradients. We present deep spectroscopic observations along the minor axis and the data reduction for a sample of 32 bulges of edge-on spiral galaxies. We explain in detail our procedures to measure their dynamical parameters (rotation curves and velocity dispersion profiles) and line-strength indices, including the conversion to the Lick/IDS system. Tables giving the values of the dynamical parameters and line-strength indices at each galactocentric radius are presented (in electronic form) for each galaxy of the sample. The derived line-strength gradients from this dataset will be analyzed in a forthcoming paper to set constraints on the different scenarios for the formation of the bulges.

  17. Red Variables in Globular Clusters: Comparison with the Bulge and the LMC

    CERN Document Server

    Matsunaga, N; Tanabé, T; Fukushi, H; Ita, Y

    2005-01-01

    We are conducting a project aimed at surveys and repeated observations of red variables (or long-period variables) in globular clusters. Using the IRSF/SIRIUS near-infrared facility located at South Africa, we are observing 145 globular clusters that are accessible from the site. In this contribution, we present our observations and preliminary results. We have discovered many red variables, especially in the Bulge region, whose memberships to the clusters remain to be confirmed. Using a sample of all red variables (both already known and newly discovered ones) in globular clusters except those projected to the Bulge region, we produce a log P-K diagram and compare it with those for the Bulge and the Large Magellanic Cloud. A prominent feature is that the bright part of overtone-pulsators' sequence (B+ and C') is absent.

  18. Red variables in globular clusters . Comparison with the Bulge and the LMC

    Science.gov (United States)

    Matsunaga, N.; Nakada, Y.; Tanabé, T.; Fukushi, H.; Ita, Y.

    We are conducting a project aimed at surveys and repeated observations of red variables (or long-period variables) in globular clusters. Using the IRSF/SIRIUS near-infrared facility located at South Africa, we are observing 145 globular clusters that are accessible from the site. In this contribution, we present our observations and preliminary results. We have discovered many red variables, especially in the Bulge region, whose memberships to the clusters remain to be confirmed. Using a sample of all red variables (both already known and newly discovered ones) in globular clusters except those projected to the Bulge region, we produce a log P-K diagram and compare it with those for the Bulge and the Large Magellanic Cloud. A prominent feature is that the bright part of overtone-pulsators' sequence (B+ and C\\prime) is absent. We discuss its implication on the evolution of red variables.

  19. The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. III. The frequency of brown dwarfs and giant planets as companions to solar-type stars

    CERN Document Server

    Reggiani, M; Chauvin, G; Vigan, A; Quanz, S P; Biller, B; Bonavita, M; Desidera, S; Delorme, P; Hagelberg, J; Maire, A -L; Boccaletti, A; Beuzit, J -L; Buenzli, E; Carson, J; Covino, E; Feldt, M; Girard, J; Gratton, R; Henning, T; Kasper, M; Lagrange, A -M; Mesa, D; Messina, S; Montagnier, G; Mordasini, C; Mouillet, D; Schlieder, J E; Segransan, D; Thalmann, C; Zurlo, A

    2015-01-01

    In recent years there have been many attempts to characterize the occurrence of stellar, BD and planetary-mass companions to solar-type stars, with the aim of constraining formation mechanisms. From RV observations a dearth of companions with masses between 10-40 MJup has been noticed at close separations, suggesting the possibility of a distinct formation mechanism for objects above and below this range. We present a model for the substellar companion mass function (CMF). It consists of the superposition of the planet and BD companion mass distributions, assuming that we can extrapolate the RV measured companion mass function for planets to larger separations and the stellar companion mass-ratio distribution over all separations into the BD mass regime. By using both the results of the VLT/NaCo large program and the complementary archive datasets that probe the occurrence of planets and BDs on wide orbits around solar-type stars, we place some constraints on the planet and BD distributions. We developed a MC...

  20. A case against an X-shaped structure in the Milky Way young bulge

    Science.gov (United States)

    López-Corredoira, Martín

    2016-09-01

    Context. A number of recent papers have claimed the discovery of an X-shape structure in the bulge of our Galaxy in the population of the red clumps. Aims: We endeavor to analyze the stellar density of bulge stars in the same regions using a different stellar population that is characteristic of the young bulge (≲ 5 Gyr). Particularly, we use F0-F5 main-sequence stars with distances derived through photometric parallax. Methods: We extract these stars from extinction-corrected color-magnitude diagrams in the near-infrared of VISTA-VVV data in some bulge regions and calculate the densities along the line of sight. We take the uncertaintity in the photometric parallax and the contamination of other sources into account, and we see that these errors do not avoid the detection of a possible double peak along some lines of sight as expected for a X-shape bulge if it existed. Results: Only a single peak in the density distribution along the line of sight is observed, so apparently there is no X-shape structure for this population of stars. Nonetheless, the effects of the dispersion of absolute magnitudes in the selected population might be an alternative explanation, although in principle these effects are insufficient to explain this lack of double peak according to our calculations. Conclusions: The results of the present paper do not demonstrate that previous claims of X-shaped bulge using only red clump stars are incorrect, but there are apparently some puzzling questions if we want to maintain the validity of both the red-clump results and the results of this paper.

  1. Endoscopically removed giant submucosal lipoma

    Directory of Open Access Journals (Sweden)

    Jovanović Ivan

    2007-01-01

    Full Text Available Background. Although uncommon, giant submucosal colon lipomas merit attention as they are often presented with dramatic clinical features such as bleeding, acute bowel obstruction, perforation and sometimes may be mistaken for malignancy. There is a great debate in the literature as to how to treat them. Case report. A patient, 67-year old, was admitted to the Clinic due to a constipation over the last several months, increasing abdominal pain mainly localized in the left lower quadrant accompanied by nausea, vomiting and abdominal distension. Physical examination was unremarkable and the results of the detailed laboratory tests and carcinoembryonic antigen remained within normal limits. Colonoscopy revealed a large 10 cm long, and 4 to 5 cm in diameter, mobile lesion in his sigmoid colon. Conventional endoscopic ultrasound revealed 5 cm hyperechoic lesion of the colonic wall. Twenty MHz mini-probe examination showed that lesion was limited to the submucosa. Since polyp appeared too large for a single transaction, it was removed piecemeal. Once the largest portion of the polyp has been resected, it was relatively easy to place the opened snare loop around portions of the residual polyp. Endoscopic resection was carried out safely without complications. Histological examination revealed the common typical histological features of lipoma elsewhere. The patient remained stable and eventually discharged home. Four weeks later he suffered no recurrent symptoms. Conclusion. Colonic lipomas can be endoscopically removed safely eliminating unnecessary surgery.

  2. Mechanical problems of superplastic fill-forming bulge solved by one-dimensional tensile and two-dimensional free bulging constitutive equations

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Because of the strong structural sensitivity of superplasticity, the deformation rule must be affected by stress-state. It is necessary to prove whether one-dimensional tensile constitutive equation can be directly generalized to deal with the two-dimensional mechanical problems or not. In this paper, theoretical results of fill-forming bulge have been derived from both one-dimensional tensile and two-dimensional bulging constitutive equation with variable m value. By comparing theoretical analysis and experimental results made on typical superplastic alloy Zn-wt22%Al, it is shown that one-dimensional tensile constitutive equation cannot be directly generalized to deal with two-dimensional mechanical questions. A method to correct deviation between theoretical and experimental results is also proposed.

  3. Identification of a novel HIV-1 TAR RNA bulge binding protein.

    OpenAIRE

    B. Baker; Muckenthaler, M; Vives, E.; Blanchard, A.; Braddock, M; Nacken, W.; Kingsman, A J; Kingsman, S M

    1994-01-01

    The Tat protein binds to TAR RNA to stimulate the expression of the human immunodeficiency virus type 1 (HIV-1) genome. Tat is an 86 amino acid protein that contains a short region of basic residues (aa49-aa57) that are required for RNA binding and TAR is a 59 nucleotide stem-loop with a tripyrimidine bulge in the upper stem. TAR is located at the 5' end of all viral RNAs. In vitro, Tat specifically interacts with TAR by recognising the sequence of the bulge and upper stem, with no requiremen...

  4. Galactic Bulge Microlensing Events from the MACHO Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C L; Griest, K; Popowski, P; Cook, K H; Drake, A J; Minniti, D; Myer, D G; Alcock, C; Allsman, R A; Alves, D R; Axelrod, T S; Becker, A C; Bennett, D P; Freeman, K C; Geha, M; Lehner, M J; Marshall, S L; Nelson, C A; Peterson, B A; Quinn, P J; Stubbs, C W; Sutherland, W; Vandehei, T; Welch, D L

    2005-06-16

    The authors present a catalog of 450 relatively high signal-to-noise microlensing events observed by the MACHO collaboration between 1993 and 1999. The events are distributed throughout the fields and, as expected, they show clear concentration toward the Galactic center. No optical depth is given for this sample since no blending efficiency calculation has been performed, and they find evidence for substantial blending. In a companion paper they give optical depths for the sub-sample of events on clump giant source stars, where blending is a less significant effect. Several events with sources that may belong to the Sagittarius dwarf galaxy are identified. For these events even relatively low dispersion spectra could suffice to classify these events as either consistent with Sagittarius membership or as non-Sagittarius sources. Several unusual events, such as microlensing of periodic variable source stars, binary lens events, and an event showing extended source effects are identified. They also identify a number of contaminating background events as cataclysmic variable stars.

  5. Pixel Color Magnitude Diagrams for Semi-resolved Stellar Populations: The Star Formation History of Regions within the Disk and Bulge of M31

    Science.gov (United States)

    Conroy, Charlie; van Dokkum, Pieter G.

    2016-08-01

    The analysis of stellar populations has, by and large, been developed for two limiting cases: spatially resolved stellar populations in the color-magnitude diagram, and integrated light observations of distant systems. In between these two extremes lies the semi-resolved regime, which encompasses a rich and relatively unexplored realm of observational phenomena. Here we develop the concept of pixel color-magnitude diagrams (pCMDs) as a powerful technique for analyzing stellar populations in the semi-resolved regime. pCMDs show the distribution of imaging data in the plane of pixel luminosity versus pixel color. A key feature of pCMDs is that they are sensitive to all stars, including both the evolved giants and the unevolved main sequence stars. An important variable in this regime is the mean number of stars per pixel, {N}{{pix}}. Simulated pCMDs demonstrate a strong sensitivity to the star formation history (SFH) and have the potential to break degeneracies between age, metallicity and dust based on two filter data for values of {N}{{pix}} up to at least 104. We extract pCMDs from Hubble Space Telescope optical imaging of M31 and derive SFHs with seven independent age bins from 106 to 1010 year for both the crowded disk and bulge regions (where {N}{{pix}}≈ 30{--}{10}3). From analyzing a small region of the disk we find a SFH that is smooth and consistent with an exponential decay timescale of 4 Gyr. The bulge SFH is also smooth and consistent with a 2 Gyr decay timescale. pCMDs will likely play an important role in maximizing the science returns from next generation ground and space-based facilities.

  6. Saturn Probe: Revealing Solar System Origins

    Science.gov (United States)

    Spilker, T. R.

    2015-12-01

    Comparative studies of the gas giant and ice giant planets are needed to reliably discriminate among competing theories of the origin and evolution of giant planets and the solar system, but we lack critical measurements. A Saturn atmospheric entry probe mission would fill a vital part of that gap, allowing comparative studies of Jupiter and Saturn, providing the basis for later comparisons with the ice giants Uranus and Neptune, and informing studies of extrasolar planetary systems now being characterized. The Galileo Probe mission provided the first in situ studies of Jupiter's atmosphere. Similar measurements at Saturn, Uranus and Neptune would provide an important comparative planetology context for the Galileo results. Cassini's "Proximal Orbits" in 2017 will reveal Saturn's internal structure to complement the Juno mission's similar measurements at Jupiter. A Saturn entry probe, complementing the Galileo Probe investigations at Jupiter, would complete a solid basis for improved understanding of both Jupiter and Saturn, an important stepping stone to understanding Uranus and Neptune and solar system formation and evolution. The 2012 Decadal Survey ("DS") added Saturn Probe science objectives to NASA's New Frontiers Program: highest-priority Tier 1 objectives any New Frontiers implementation must achieve, and Tier 2, high priority but lower than Tier 1. A DS mission concept study using extremely conservative assumptions concluded that a Saturn Probe project could fit within New Frontiers resource constraints, giving a PI confidence that they could pursue some Tier 2 objectives, customizing for the proper balance of science return, science team composition, procured or contributed instruments, etc. Contributed instruments could significantly enhance the payload and the science team for greater science return. They also provide international collaboration opportunities, with science benefits well demonstrated by missions such as Cassini-Huygens and Rosetta.

  7. Bulge mass is king: The dominant role of the bulge in determining the fraction of passive galaxies in the Sloan Digital Sky Survey

    CERN Document Server

    Bluck, Asa F L; Ellison, Sara L; Moreno, Jorge; Simard, Luc; Patton, David R; Starkenburg, Else

    2014-01-01

    We investigate the origin of galaxy bimodality by quantifying the relative role of intrinsic and environmental drivers to the cessation (or `quenching') of star formation in over half a million local Sloan Digital Sky Survey (SDSS) galaxies. Our sample contains a wide variety of galaxies at z=0.02-0.2, with stellar masses of 8 < log(M*/M_sun) < 12, spanning the entire morphological range from pure disks to spheroids, and over four orders of magnitude in local galaxy density and halo mass. We utilise published star formation rates and add to this recent GIM2D photometric and stellar mass bulge + disk decompositions from our group. We find that the passive fraction of galaxies increases steeply with stellar mass, halo mass, and bulge mass, with a less steep dependence on local galaxy density and bulge-to-total stellar mass ratio (B/T). At fixed internal properties, we find that central and satellite galaxies have different passive fraction relationships. For centrals, we conclude that there is less variat...

  8. Comparing the properties of the X-shaped bulges of NGC 4710 and the Milky Way with MUSE

    CERN Document Server

    Gonzalez, O A; Debattista, V P; Rejkuba, M; Valenti, E; Zoccali, M; Coccato, L; Minniti, D; Ness, M

    2016-01-01

    We used the new ESO VLT instrument MUSE to obtain spectral and imaging coverage of NGC 4710. The wide area and excellent sampling of the MUSE integral field spectrograph allows us to investigate the dynamical properties of the X-shaped bulge of NGC 4710 and compare it with the properties of the Milky Way's own X-shaped bulge. We measured the radial velocities, velocity dispersion, and stellar populations using a penalized pixel full spectral fitting technique adopting simple stellar populations models, on a 1' x 1' area centred on the bulge of NGC 4710. We have constructed the velocity maps of the bulge of NGC 4710 and we investigated the presence of vertical metallicity gradients. These properties were compared to those of the Milky Way bulge and as well as to a simulated galaxy with boxy/peanut bulge. We find the line-of-sight velocity maps and 1D rotation curves of the bulge of NGC 4710 to be remarkably similar to those of the Milky Way bulge. Some specific differences that were identified are in good agre...

  9. Multispin giant magnons

    International Nuclear Information System (INIS)

    We investigate giant magnons from classical rotating strings in two different backgrounds. First we generalize the solution of Hofman and Maldacena and investigate new magnon excitations of a spin chain which are dual to a string on RxS5 with two nonvanishing angular momenta. Allowing string dynamics along the third angle in the five sphere, we find a dispersion relation that reproduces the Hofman and Maldacena one and the one found by Dorey for the two spin case. In the second part of the paper we generalize the two 'spin' giant magnon to the case of β-deformed AdS5xS5 background. We find agreement between the dispersion relation of the rotating string and the proposed dispersion relation of the magnon bound state on the spin chain

  10. Giant duodenal ulcers

    Institute of Scientific and Technical Information of China (English)

    Eric Benjamin Newton; Mark R Versland; Thomas E Sepe

    2008-01-01

    Giant duodenal ulcers (GDUs) are a subset of duodenal ulcers that have historically resulted in greater morbidity than usual duodenal ulcers. Until recently,few cases had been successfully treated with medical therapy. However, the widespread use of endoscopy,the introduction of H-2 receptor blockers and proton pump inhibitors, and the improvement in surgical techniques all have revolutionized the diagnosis,treatment and outcome of this condition. Nevertheless,GDUs are still associated with high rates of morbidity,mortality and complications. Thus, surgical evaluation of a patient with a GDU should remain an integral part of patient care. These giant variants, while usually benign, can frequently harbor malignancy. A careful review of the literature highlights the important differences when comparing GDUs to classical peptic ulcers and why they must be thought of differently than their more common counterpart.

  11. Intraoral giant condyloma acuminatum

    Directory of Open Access Journals (Sweden)

    Gupta R

    2001-09-01

    Full Text Available A case of intraoral giant condyloma acuminatum is reported in a 50- year- old Indian. He did not respond to topical application of podophyllin 20% but responded partially to electric cauterisation. Surgical excision was done to get rid of the warty growh completely. Since there were no skin or genital lesions and no history of marital or extramarital sexual contact the lesion was probably acquired from environmental sources. Nonsexual transmission should be considered especially when the lesions are extragenital.

  12. Giant Otters in Peru

    Directory of Open Access Journals (Sweden)

    Schenk C.

    1992-02-01

    Full Text Available We are in the second year of fieldwork surveying for Giant Otters in the southeastern rainforest of Peru, in three areas with differing levels of legal protection. While there is some illegal hunting still happening outside the protected areas, the main threat to the otters is badly-conducted tourism. Well-organised tourism can be a promising argument for establishing protected areas like national parks.

  13. Giant Mediastinal Teratoma

    OpenAIRE

    Ilkay Albayrak

    2013-01-01

    The most of mediastinal germ cell tumors are teratomas. The main purpose of the treatment of immature and mature teratomas is completly resection of the mass. However, surgical problems may be occur due to proximity with vital structures. In this case, subtotal resection can be performed. Recurrence is rare, and the prognosis is usually very good. In this report, a case of the giant mediastinal mature cystic teratoma that applied subtotal resection due to pericardial adhesions is presented.

  14. Ice Giant Exploration

    Science.gov (United States)

    Rymer, A. M.; Arridge, C. S.; Masters, A.; Turtle, E. P.; Simon, A. A.; Hofstadter, M. D.; Turrini, D.; Politi, R.

    2015-12-01

    The Ice Giants in our solar system, Uranus and Neptune, are fundamentally different from their Gas Giant siblings Jupiter and Saturn, from the different proportions of rock and ice to the configuration of their planetary magnetic fields. Kepler space telescope discoveries of exo-planets indicate that planets of this type are among the most ubiquitous universally and therefore a future mission to explore the nature of the Ice Giants in our own solar system will provide insights into the nature of extra-solar system objects in general. Uranus has the smallest self- luminosity of all the planets, potentially related to catastrophic events early in the planet's history, which also may explain Uranus' large obliquity. Uranus' atmosphere is subject to extreme seasonal forcing making it unique in the Solar System. Neptune is also unique in a number of ways, notably its large moon Triton which is likely a captured Kuiper Belt Object and one of only two moons in the solar system with a robustly collisional atmosphere. Similar to Uranus, the angle between the solar wind and the magnetic dipole axis is subject to large-amplitude variations on both diurnal and seasonal timescales, but peculiarly it has one of the quietest magnetospheres of the solar system, at least according to Voyager 2, the only spacecraft to encounter Neptune to date. A comprehensive mission, as advocated in the Decadal Survey, would provide enormous science return but is also challenging and expensive. In this presentation we will discuss mission scenarios and suggest how collaboration between disciplines and internationally can help us to pursue a mission that includes Ice Giant exploration.

  15. Lipomas gigantes Giants lipomas

    Directory of Open Access Journals (Sweden)

    Pietro Accetta

    1998-10-01

    Full Text Available The authors report two cases of giants lipomas in the gluteal region with 3,9 and 3,1 kg. They make a brief epidemiological presentation and consider diagnosis and treatment. They believe that CT scan is the best image method, as it provides more information about size and relationship with surrounding structures. They are against biopsies and lipoaspiration but stand up for the total exeresis as the best option of treatment.

  16. Probe Storage

    NARCIS (Netherlands)

    Gemelli, Marcellino; Abelmann, Leon; Engelen, Johan B.C.; Khatib, Mohammed G.; Koelmans, Wabe W.; Zaboronski, Olog; Campardo, Giovanni; Tiziani, Federico; Laculo, Massimo

    2011-01-01

    This chapter gives an overview of probe-based data storage research over the last three decades, encompassing all aspects of a probe recording system. Following the division found in all mechanically addressed storage systems, the different subsystems (media, read/write heads, positioning, data chan

  17. Giant prolactinomas in women

    DEFF Research Database (Denmark)

    Delgrange, Etienne; Raverot, Gerald; Bex, Marie;

    2014-01-01

    OBJECTIVE: To characterise distinctive clinical features of giant prolactinomas in women. DESIGN: A multicentre, retrospective case series and literature review. METHODS: We collected data from 15 female patients with a pituitary tumour larger than 4 cm and prolactin levels above 1000 μg/l and id......OBJECTIVE: To characterise distinctive clinical features of giant prolactinomas in women. DESIGN: A multicentre, retrospective case series and literature review. METHODS: We collected data from 15 female patients with a pituitary tumour larger than 4 cm and prolactin levels above 1000 μg....../l and identified 19 similar cases from the literature; a gender-based comparison of the frequency and age distribution was obtained from a literature review. RESULTS: The initial PubMed search using the term 'giant prolactinomas' identified 125 patients (13 women) responding to the inclusion criteria. The female......:male ratio was 1:9. Another six female patients were found by extending the literature search, while our own series added 15 patients. The median age at diagnosis was 44 years in women compared with 35 years in men (Pwomen (n=34), we...

  18. Kinetics of bulge bases in small RNAs and the effect of pressure on it.

    Science.gov (United States)

    Kumar, Pradeep; Lehmann, Jean; Libchaber, Albert

    2012-01-01

    Due to their self-catalytic properties, small RNAs with bulge bases are hypothesized to be primordial molecules which could form elementary translation systems. Using molecular dynamics simulations, we study the binding propensity of small RNAs by calculating the free energy barrier corresponding to the looped out conformations of bulge bases, which presumably act as the binding sites for ligands in these small RNAs. We find that base flipping kinetics can proceed at atmospheric pressure but with a very small propensity. Furthermore, the free energy barrier associated with base flipping depends on the stacking with neighboring bases. Next, we studied the base flipping kinetics with pressure. We find that the free energy associated with base looping out increases monotonically as the pressure is increased. Furthermore, we calculate the mean first-passage time of conformational looping out of the bulge base using the diffusion of reaction coordinate associated with the base flipping on the underlying free energy surface. We find that the mean first-passage time associated with bulge looping out increases slowly upon increasing pressures P up to 2000 atm but changes dramatically for P>2000 atm. Finally, we discuss our results in the light of the role of hydration shell of water around RNA. Our results are relevant for the RNA world hypothesis. PMID:22916118

  19. Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way

    CERN Document Server

    Howes, L M; Asplund, M; Keller, S C; Yong, D; Nataf, D M; Poleski, R; Lind, K; Kobayashi, C; Owen, C I; Ness, M; Bessell, M S; Da Costa, G S; Schmidt, B P; Tisserand, P; Udalski, A; Szymański, M K; Soszyński, I; Pietrzyński, G; Ulaczyk, K; Wyrzykowski, Ł; Pietrukowicz, P; Skowron, J; Kozłowski, S; Mróz, P

    2015-01-01

    The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium ('metals') have been found in the outer regions ('halo') of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions ('bulges') of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that the most metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through...

  20. Peanuts, brezels and bananas: food for thought on the orbital structure of the Galactic bulge

    Science.gov (United States)

    Portail, Matthieu; Wegg, Christopher; Gerhard, Ortwin

    2015-06-01

    Recent observations have discovered the presence of a box/peanut or X-shape structure in the Galactic bulge. Such box/peanut structures are common in external disc galaxies, and are well known in N-body simulations where they form following the buckling instability of a bar. From studies of analytical potentials and N-body models, it has been claimed in the past that box/peanut bulges are supported by `bananas', or x1v1 orbits. We present here a set of N-body models where instead the peanut bulge is mainly supported by brezel-like orbits, allowing strong peanuts to form with short extent relative to the bar length. This shows that stars in the X-shape do not necessarily stream along banana orbits which follow the arms of the X-shape. The brezel orbits are also found to be the main orbital component supporting the peanut shape in our recent made-to-measure dynamical models of the Galactic bulge. We also show that in these models the fraction of stellar orbits that contribute to the X-structure account for 40-45 per cent of the stellar mass.

  1. The growth of galactic bulges through mergers in LCDM haloes revisited. II. Morphological mix evolution

    CERN Document Server

    Avila-Reese, Vladimir; Lacerna, Ivan

    2013-01-01

    The mass aggregation and merger histories of present-day distinct haloes selected from the cosmological Millennium Simulations I and II are mapped into stellar mass aggregation and galaxy merger histories of central galaxies by using empirical stellar-to-halo and stellar-to-gas mass relations. The growth of bulges driven by the galaxy mergers/interactions is calculated using analytical recipes. The predicted bulge demographics at redshift z~0 is consistent with observations (Zavala+2012). Here we present the evolution of the morphological mix (traced by the bulge-to-total mass ratio, B/T) as a function of mass up to z=3. This mix remains qualitatively the same up to z~1: B/T0.45 at large masses. At z>1, the fractions of disc-dominated and bulgeless galaxies increase strongly, and by z~2 the era of pure disc galaxies is reached. Bulge-dominated galaxies acquire such a morphology, and most of their mass, following a downsizing trend. Since our results are consistent with several recent observational studies of ...

  2. Peanuts, brezels and bananas: food for thought on the orbital structure of the Galactic bulge

    CERN Document Server

    Portail, M; Gerhard, O

    2015-01-01

    Recent observations have discovered the presence of a Box/Peanut or X-shape structure in the Galactic bulge. Such Box/Peanut structures are common in external disc galaxies, and are well-known in N-body simulations where they form following the buckling instability of a bar. From studies of analytical potentials and N-body models it has been claimed in the past that Box/Peanut bulges are supported by "bananas", or x1v1 orbits. We present here a set of N-body models where instead the peanut bulge is mainly supported by brezel-like orbits, allowing strong peanuts to form with short extent relative to the bar length. This shows that stars in the X-shape do not necessarily stream along banana orbits which follow the arms of the X-shape. The brezel orbits are also found to be the main orbital component supporting the peanut shape in our recent Made-to-Measure dynamical models of the Galactic bulge. We also show that in these models the fraction of stellar orbits that contribute to the X-structure account for 40-45...

  3. Finite Element Analysis of Bulge Forming of Laser Welding Dimple Jacket

    Directory of Open Access Journals (Sweden)

    Peisi ZHONG

    2015-11-01

    Full Text Available The stress-strain states of the model of laser welded dimple jacket is analyzed using ANSYS/LS-DYNA in order to determine the relation between bulging height and pressure and to achieve the controllability of pressure distension of the jacket. It is shown that in the same conditions, the bulging height increases with the increasing of the bulging pressure and the space of honeycomb. And it will decrease when the thickness of jacket plate changing larger. A table showing the relation between bulging height and pressure is obtained. An experiment using a test panel is conducted to certify the reliability of finite element analysis. It turns out that the data of finite element analysis is coincident with experimental data, which support finite element method based ANSYS/LS-DYNA can be an efficient way to research the laser welded dimple jacket. The relation table is useful as guidance for the fabrication process.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9704

  4. A secularly evolved model for the Milky Way bar and bulge

    Science.gov (United States)

    Martinez-Valpuesta, Inma; Gerhard, Ortwin

    2015-03-01

    Bars are strong drivers of secular evolution in disk galaxies. Bars themselves can evolve secularly through angular momentum transport, producing different boxy/peanut and X-shaped bulges. Our Milky Way is an example of a barred galaxy with a boxy bulge. We present a self-consistent N-body simulation of a barred galaxy which matches remarkably well the structure of the inner Milky Way deduced from star counts. In particular, features taken as signatures of a second ``long bar`` can be explained by the interaction between the bar and the spiral arms of the galaxy (Martinez-Valpuesta & Gerhard 2011). Furthermore the structural change in the bulge inside l = 4° measured recently from VVV data can be explained by the high-density near-axisymmetric part of the inner boxy bulge (Gerhard & Martinez-Valpuesta 2012). We also compare this model with kinematic data from recent spectroscopic surveys. We use a modified version of the NMAGIC code (de Lorenzi et al. 2007) to study the properties of the Milky Way bar, obtaining an upper limit for the pattern speed of ~ 42 km/sec/kpc. See Fig. 1 for a comparison of one of our best models with BRAVA data (Kunder et al. 2012).

  5. Stellar density profile and mass of the Milky Way Bulge from VVV data

    CERN Document Server

    Valenti, E; Gonzalez, O A; Minniti, D; Alonso-Garcia, J; Marchetti, E; Hempel, M; Renzini, A; Rejkuba, M

    2015-01-01

    We present the first stellar density profile of the Milky Way bulge reaching latitude $b=0^\\circ$. It is derived by counting red clump stars within the colour\\--magnitude diagram constructed with the new PSF-fitting photometry from VISTA Variables in the V\\'\\i a L\\'actea (VVV) survey data. The new stellar density map covers the area between $|l|\\leq 10^\\circ$ and $|b|\\leq 4.5^\\circ$ with unprecedented accuracy, allowing to establish a direct link between the stellar kinematics from the Giraffe Inner Bulge Spectroscopic Survey (GIBS) and the stellar mass density distribution. In particular, the location of the central velocity dispersion peak from GIBS matches a high overdensity in the VVV star count map. By scaling the total luminosity function (LF) obtained from all VVV fields to the LF from Zoccali et al.(2003), we obtain the first fully empirical estimate of the mass in stars and remnants of the Galactic bulge. The Milky Way bulge stellar mass within ($|b|<9.5^\\circ$, $|l|<10^\\circ$) is $2.0\\pm0.3\\ti...

  6. Mapping the outer bulge with RRab stars from the VVV Survey

    CERN Document Server

    Gran, F; Saito, R K; Zoccali, M; Gonzalez, O A; Navarrete, C; Catelan, M; Ramos, R Contreras; Elorrieta, F; Eyheramendy, S; Jordán, A

    2016-01-01

    The VISTA Variables in the V\\'ia L\\'actea (VVV) is a near-IR time-domain survey of the Galactic bulge and southern plane. One of the main goals of this survey is to reveal the 3D structure of the Milky Way through their variable stars. Particularly the RR Lyrae stars have been massively discovered in the inner regions of the bulge ($-8^\\circ \\lesssim b \\lesssim -1^\\circ$) by optical surveys such as OGLE and MACHO but leaving an unexplored window of more than $\\sim 47$ sq deg ($-10.0^\\circ \\lesssim \\ell \\lesssim +10.7^\\circ$ and $-10.3^\\circ \\lesssim b \\lesssim -8.0^\\circ$) observed by the VVV Survey. Our goal is to characterize the RR Lyrae stars in the outer bulge in terms of their periods, amplitudes, Fourier coefficients, and distances, in order to evaluate the 3D structure of the bulge in this area. The distance distribution of RR Lyrae stars will be compared to the one of red clump stars that is known to trace a X-shaped structure in order to determine if these two different stellar populations share the...

  7. The growth of galactic bulges through mergers in LCDM haloes revisited. I. Present-day properties

    CERN Document Server

    Zavala, Jesus; Firmani, Claudio; Boylan-Kolchin, Michael

    2012-01-01

    (Abridged) We use the combined data-sets of the Millennium I and II N-body cosmological simulations to revisit the impact of mergers in the growth of bulges in central galaxies in the LCDM scenario. To do so, we seed galaxies within the growing CDM haloes at each epoch using empirical relations to assign stellar and gaseous masses, and an analytical treatment to estimate the transfer of stellar mass to the bulge after a galaxy merger. Our results show that this model roughly reproduces the observed correlation between the bulge-to-total (B/T) mass ratio and stellar mass in present-day central galaxies as well as their observed demographics, although low-mass B/T < 0.1 (bulgeless) galaxies might be scarce relative to the observed abundance. In our merger-driven scenario, bulges have a composite stellar population made of (i) stars acquired from infalling satellites, (ii) stars transferred from the primary disc due to the strong merger-induced perturbations, and (iii) newly formed stars in starbursts trigger...

  8. A two-phase scenario for bulge assembly in LCDM cosmologies

    CERN Document Server

    Obreja, A; Brook, C; Martínez-Serrano, F J; Doménech-Moral, M; Serna, A; Mollá, M; Stinson, G

    2012-01-01

    We analyze and compare the bulges of a sample of L* spiral galaxies in hydrodynamical simulations in a cosmological context, using two different codes, P-DEVA and GASOLINE. The codes regulate star formation in very different ways, with P-DEVA simulations inputing low star formation efficiency under the assumption that feedback occurs on subgrid scales, while the GASOLINE simulations have feedback which drives large scale outflows. In all cases, the marked knee-shape in mass aggregation tracks, corresponding to the transition from an early phase of rapid mass assembly to a later slower one, separates the properties of two populations within the simulated bulges. The bulges analyzed show an important early starburst resulting from the collapse-like fast phase of mass assembly, followed by a second phase with lower star formation, driven by a variety of processes such as disk instabilities and/or mergers. Classifying bulge stellar particles identified at z=0 into old and young according to these two phases, we f...

  9. Bulge formation and necking in a polymer tube under dynamic expansion

    DEFF Research Database (Denmark)

    Lindgreen, Britta; Tvergaard, Viggo; Needleman, Alan

    2008-01-01

    Bulging and necking in long thin polymer tubes subjected to increasing internal pressure are analysed numerically. The polymer is characterized by a finite strain elastic-viscoplastic constitutive relation and the calculations are carried out using a dynamic finite element program. Two types...

  10. The evolution of disc galaxies with and without classical bulges since z~1

    CERN Document Server

    Sachdeva, Sonali; Saha, Kanak; Singh, Harinder P

    2015-01-01

    Establishing the relative role of internally and externally driven mechanisms responsible for disc and bulge growth is essential to understand the evolution of disc galaxies. In this context, we have studied the physical properties of disc galaxies without classical bulges in comparison to those with classical bulges since z~0.9. Using images from the Hubble Space Telescope and Sloan Digital Sky Survey, we have computed both parametric and non-parametric measures, and examined the evolution in size, concentration, stellar mass, effective stellar mass density and asymmetry. We find that both disc galaxies with and without classical bulges have gained more than 50% of their present stellar mass over the last ~8 Gyrs. Also, the increase in disc size is found to be peripheral. While the average total (Petrosian) radius almost doubles from z~0.9 to z~0, the average effective radius undergoes a marginal increase in comparison. Additionally, increase in the density of the inner region is evident through the evolutio...

  11. The Kinematic Signature of Face-On Peanut-Shaped Bulges

    CERN Document Server

    Debattista, V P; Mayer, L; Moore, B; Debattista, Victor P.; Mayer, Lucio

    2005-01-01

    We present a kinematic diagnostic for peanut-shaped bulges in nearly face-on galaxies. The face-on view provides a novel perspective on peanuts which would allow study of their relation to bars and disks in greater detail than hitherto possible. The diagnostic is based on the fact that peanut shapes are associated with a flat density distribution in the vertical direction. We show that the kinematic signature corresponding to such a distribution is a minimum in the fourth-order Gauss-Hermite moment $s_4$. We demonstrate our method on $N$-body simulations of varying peanut strength, showing that strong peanuts can be recognized to inclinations $i \\simeq 30\\degrees$, regardless of the strength of the bar. We also consider compound systems in which a bulge is present in the initial conditions as may happen if bulges form at high redshift through mergers. We show that in this case, because the vertical structure of the bulge is not derived from that of the disk, that the signature of a peanut in $s_4$ is weakened...

  12. Isovector giant dipole resonance in relativistic Thomas-Fermi formalism

    International Nuclear Information System (INIS)

    Symmetry energy plays a crucial role in study of nuclear structure. As we know, only in the light mass region the nucleus with the same number of proton and neutron are stable, but as the mass number increases the stability of the nucleus favor for a more asymmetric system. So symmetry energy plays a vital role in the nuclear structure. There is no direct way to measure the symmetry energy in a precise manner, so we need indirect way like giant resonance to the measure the symmetry energy. Also various theoretical models give a wide range of uncertainty in estimation of symmetry energy (J) and its slope (L). Symmetry energy has not only central role in infinite nuclei but it has a significant role in infinite nuclear matter system. Giant dipole resonance is one of the most powerful probe to study the nuclear structure physics. Specifically Isovector modes of the giant resonance gives an unique way to study the symmetry energy, because this mode of the giant resonance concerned to the vibration of proton and neutron in out of phase. We can put constraint on the nuclear symmetry energy coefficient by measuring the Isovector giant dipole excitation energy

  13. The Chemical Composition of Red Giant Branch Stars in the Galactic Globular Clusters NGC 6342 and NGC 6366

    OpenAIRE

    Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael; Pilachowski, Catherine A.; Hsyu, Tiffany

    2016-01-01

    We present radial velocities and chemical abundances for red giant branch stars in the Galactic bulge globular clusters NGC 6342 and NGC 6366. The velocities and abundances are based on measurements of high resolution (R > 20,000) spectra obtained with the MMT-Hectochelle and WIYN-Hydra spectrographs. We find that NGC 6342 has a heliocentric radial velocity of +112.5 km/s (sigma = 8.6 km/s), NGC 6366 has a heliocentric radial velocity of -122.3 km/s (sigma = 1.5 km/s), and that both clusters ...

  14. Identification of a novel HIV-1 TAR RNA bulge binding protein.

    Science.gov (United States)

    Baker, B; Muckenthaler, M; Vives, E; Blanchard, A; Braddock, M; Nacken, W; Kingsman, A J; Kingsman, S M

    1994-08-25

    The Tat protein binds to TAR RNA to stimulate the expression of the human immunodeficiency virus type 1 (HIV-1) genome. Tat is an 86 amino acid protein that contains a short region of basic residues (aa49-aa57) that are required for RNA binding and TAR is a 59 nucleotide stem-loop with a tripyrimidine bulge in the upper stem. TAR is located at the 5' end of all viral RNAs. In vitro, Tat specifically interacts with TAR by recognising the sequence of the bulge and upper stem, with no requirement for the loop. However, in vivo the loop sequence is critical for activation, implying a requirement for accessory cellular TAR RNA binding factors. A number of TAR binding cellular factors have been identified in cell extracts and various models for the function of these factors have been suggested, including roles as coactivators and inhibitors. We have now identified a novel 38 kD cellular factor that has little general, single-stranded or double-stranded RNA binding activity, but that specifically recognises the bulge and upper stem region of TAR. The protein, referred to as BBP (bulge binding protein), is conserved in mammalian and amphibian cells and in Schizosaccharomyces pombe but is not found in Saccharomyces cerevisiae. BBP is an effective competitive inhibitor of Tat binding to TAR in vitro. Our data suggest that the bulge-stem recognition motif in TAR is used to mediate cellular factor/RNA interactions and indicates that Tat action might be inhibited by such competing reactions in vivo. PMID:8078772

  15. One-dimensional tensile constitutive equation cannot be directly generalized to deal with two-dimensional bulging mechanical problems

    Institute of Scientific and Technical Information of China (English)

    SONG; Yuquan(宋玉泉); LIU; Shumei(刘术梅)

    2002-01-01

    Superplastic forming has been extensively applied to manufacture parts and components with complex shapes or high-precisions. However, superplastic formation is in multi-stress state. In a long time, uniaxial tensile constitutive equation has been directly generalized to deal with multi-stress state. Whether so doing is feasible or not needs to be proved in theory. This paper first summarizes the establishing processes of superplastic tensile and bulging constitutive equation with variable m, and, using the analytical expressions of equivalent stress ? and equivalent strain rateof free bulge based on the fundamentals of continuum medium plastic mechanics, derives the analytical expressions of optimum loading rules for superplastic free bulge. By comparing the quantitative results on typical superplastic alloy ZnAl22, it is shown that one-dimensional tensile constitutive equations cannot be directly generalized to deal with two-dimensional bulging quantitative mechanical problems; only superplastic bulging constitutive equation based on bulging stress state can be used to treat the quantitative mechanical problems of bulge.

  16. Galaxy And Mass Assembly (GAMA): understanding the wavelength dependence of galaxy structure with bulge-disc decompositions

    Science.gov (United States)

    Kennedy, Rebecca; Bamford, Steven P.; Häußler, Boris; Baldry, Ivan; Bremer, Malcolm; Brough, Sarah; Brown, Michael J. I.; Driver, Simon; Duncan, Kenneth; Graham, Alister W.; Holwerda, Benne W.; Hopkins, Andrew M.; Kelvin, Lee S.; Lange, Rebecca; Phillipps, Steven; Vika, Marina; Vulcani, Benedetta

    2016-08-01

    With a large sample of bright, low-redshift galaxies with optical-near-IR imaging from the GAMA survey we use bulge-disc decompositions to understand the wavelength-dependent behaviour of single-Sérsic structural measurements. We denote the variation in single-Sérsic index with wavelength as {N}, likewise for effective radius we use {R}. We find that most galaxies with a substantial disc, even those with no discernable bulge, display a high value of {N}. The increase in Sérsic index to longer wavelengths is therefore intrinsic to discs, apparently resulting from radial variations in stellar population and/or dust reddening. Similarly, low values of {R} (< 1) are found to be ubiquitous, implying an element of universality in galaxy colour gradients. We also study how bulge and disc colour distributions vary with galaxy type. We find that, rather than all bulges being red and all discs being blue in absolute terms, both components become redder for galaxies with redder total colours. We even observe that bulges in bluer galaxies are typically bluer than discs in red galaxies, and that bulges and discs are closer in colour for fainter galaxies. Trends in total colour are therefore not solely due to the colour or flux dominance of the bulge or disc.

  17. Electrodynamics on extrasolar giant planets

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, T. T.; Yelle, R. V. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Lavvas, P. [Groupe de Spectroscopie Moléculaire et Atmosphérique UMR CNRS 7331, Université Reims Champagne-Ardenne, F-51687 Reims (France); Cho, J. Y-K., E-mail: tommi@lpl.arizona.edu [Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)

    2014-11-20

    Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially

  18. Multispin Giant Magnons

    OpenAIRE

    Bobev, N. P.; Rashkov, R. C.

    2006-01-01

    We investigate giant magnons from classical rotating strings in two different backgrounds. First we generalize the solution of Hofman and Maldacena and investigate new magnon excitations of a spin chain which are dual to a string on $R\\times S^5$ with two non-vanishing angular momenta. Alowing string dynamics along the third angle in the five sphere, we find a dispersion relation that reproduces the Hofman and Maldacena and the one found by Dorey for the two spin case. In the second part of t...

  19. Giant Cardiac Cavernous Hemangioma.

    Science.gov (United States)

    Unger, Eric; Costic, Joseph; Laub, Glenn

    2015-07-01

    We report the case of an asymptomatic giant cardiac cavernous hemangioma in a 71-year-old man. The intracardiac mass was discovered incidentally during surveillance for his prostate cancer; however, the patient initially declined intervention. On presentation to our institution 7 years later, the lesion had enlarged significantly, and the patient consented to excision. At surgery, an 8 × 6.5 × 4.8 cm intracardiac mass located on the inferior heart border was excised with an intact capsule through a median sternotomy approach. The patient had an uneventful postoperative course. We discuss the diagnostic workup, treatment, and characteristics of this rare cardiac tumor. PMID:26140782

  20. Rotation of Giant Stars

    OpenAIRE

    Kissin, Yevgeni; Thompson, Christopher

    2015-01-01

    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5 and $5\\,M_\\odot$, taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the exc...

  1. GIANT PROSTHETIC VALVE THROMBUS

    Directory of Open Access Journals (Sweden)

    Prashanth Kumar

    2015-04-01

    Full Text Available Mechanical prosthetic valves are predisposed to bleeding, thrombosis & thromboembolic complications. Overall incidence of thromboembolic complications is 1% per year who are on oral anticoagulants, whereas bleeding complications incidence is 0.5% to 6.6% per year. 1, 2 Minimization of Scylla of thromboembolic & Charybdis of bleeding complication needs a balancing act of optimal antithrombotic therapy. We are reporting a case of middle aged male patient with prosthetic mitral valve presenting in heart failure. Patient had discontinued anticoagulants, as he had subdural hematoma in the past. He presented to our institute with a giant prosthetic valve thrombus.

  2. Giant Ulcerative Dermatofibroma

    Directory of Open Access Journals (Sweden)

    Turgut Karlidag

    2013-01-01

    Full Text Available Dermatofibroma is a slowly growing common benign cutaneous tumor characterized by hard papules and nodules. The rarely seen erosions and ulcerations may cause difficulties in the diagnosis. Dermatofibrosarcoma protuberans, which is clinically and histopathologically of malignant character, displays difficulties in the diagnosis since it has similarities with basal cell carcinoma, epidermoid carcinoma, and sarcomas. Head and neck involvement is very rare. In this study, a giant dermatofibroma case, which is histopathologically, ulcerative dermatofibroma, the biggest lesion of the head and neck region and seen rarely in the literature that has characteristics similar to dermatofibrosarcoma protuberans, has been presented.

  3. Famine Threatens the Giant Panda

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Large swathes of arrow bamboo groves at and above 2,700 meters in the Piankou Nature Reserve in Sichuan's Mianyang are producing purple blooms, and some groves have started to wither and die. An absence of bamboo means famine for giant pandas living there. Sichuan has consequently activated its giant panda contingency plan.

  4. Giant Pandas and Their Conservation

    Institute of Scientific and Technical Information of China (English)

    GarethDavey

    2004-01-01

    IT is paradoxical that themost well-known conservation symbol in the world,the giant panda, is a criti-cally endangered species.The estimated 1,600 thatremain live in the high-altitude for-ests of southwest China (within theprovinces of Sichuan, Gansu andShaanxi). Giant pandas are popularand elicit affection and admiration

  5. Rapidly Evolving Giant Dermatofibroma

    Directory of Open Access Journals (Sweden)

    K. J. Lang

    2010-01-01

    Full Text Available Dermatofibroma, also known as “fibrous histiocytoma”, is a benign dermal or subcutaneous poorly circumscribed proliferation of spindle-shaped fibroblasts and macrophages in the dermis. Although it is commonly present as a brownish nodule the legs of females, it may also arise on the upper extremities, trunk, and rarely on the head. The exact pathogenesis is unclear. However, it is widely believed that the originating insult to the dermis is a folliculitis, an arthropod bite, or an unspecified initial inflammatory condition. Giant dermatofibromas of greater than 5 cm in diameter are rare, with only 22 cases reported in the literature. We present a case of a rapidly evolving pedunculated mass in the groin of a male patient. Histological examination confirmed this to be a giant dermatofibroma. Though this specimen cannot is not confirmed as such, the cellular subtype is sometimes present as a larger lesion with anecdotal reports of local recurrence and distant metastases. The clinical and radiological features which were somewhat suspicious of malignancy are considered in the context of the definitive pathological diagnosis of a benign lesion.

  6. Probing Capacity

    CERN Document Server

    Asnani, Himanshu; Weissman, Tsachy

    2010-01-01

    We consider the problem of optimal probing of states of a channel by transmitter and receiver for maximizing rate of reliable communication. The channel is discrete memoryless (DMC) with i.i.d. states. The encoder takes probing actions dependent on the message. It then uses the state information obtained from probing causally or non-causally to generate channel input symbols. The decoder may also take channel probing actions as a function of the observed channel output and use the channel state information thus acquired, along with the channel output, to estimate the message. We refer to the maximum achievable rate for reliable communication for such systems as the 'Probing Capacity'. We characterize this capacity when the encoder and decoder actions are cost constrained. To motivate the problem, we begin by characterizing the trade-off between the capacity and fraction of channel states the encoder is allowed to observe, while the decoder is aware of channel states. In this setting of 'to observe or not to o...

  7. DNA probes

    International Nuclear Information System (INIS)

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with 32P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism's genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens

  8. Inverse Approach to Evaluate the Tubular Material Parameters Using the Bulging Test

    Directory of Open Access Journals (Sweden)

    Yulong Ge

    2015-01-01

    Full Text Available Tubular material parameters are required for both part manufactory process planning and finite element simulations. The bulging test is one of the most credible ways to detect the property parameters for tubular material. The inverse approach provides more effective access to the accurate material evaluation than with direct identifications. In this paper, a newly designed set of bulging test tools is introduced. An inverse procedure is adopted to determine the tubular material properties in Krupkowski-Swift constitutive model of material deformation using a hybrid algorithm that combines the differential evolution and Levenberg-Marquardt algorithms. The constitutive model’s parameters obtained from the conventional and inverse methods are compared, and this comparison shows that the inverse approach is able to offer more information with higher reliability and can simplify the test equipment.

  9. Mechanical properties measurement of silicon nitride thin films using the bulge test

    Science.gov (United States)

    Lee, Hun Kee; Ko, Seong Hyun; Han, Jun Soo; Park, HyunChul

    2007-12-01

    The mechanical properties of silicon nitride films are investigated. Freestanding films of silicon nitride are fabricated using the MEMS technique. The films were deposited onto (100) silicon wafers by LPCVD (Low Pressure Chemical Vapor Deposition). Square and rectangular membranes are made by anisotropic etching of the silicon substrates. Then the bulge test for silicon nitride film was carried out. The thickness of specimens was 0.5, 0.75 and 1μm respectively. By testing both square and rectangular membranes, the reliability and valiant-ness of bulge test with regard to the shape of specimens was investigated. Also considering residual stress in the films, one can evaluate the Young's modulus from experimental load-deflection curves. Young's modulus of the silicon nitride films was about 232GPa. The residual stress is below 100MPa.

  10. Deformation behavior of A6063 tube with initial thickness deviation in free hydraulic bulging

    Institute of Scientific and Technical Information of China (English)

    YANG Lian-fa; GUO Cheng; DENG Yang

    2006-01-01

    Experiment on seamless tubes of aluminum alloy A6063 with initial thickness deviation of 0-20% was conducted through a free hydraulic bulging with tube ends free. The influence of initial thickness deviation on the cross-section profile, thickness distribution, maximum internal pressure and maximum radial expansion was investigated. FEM simulation was also performed in order to examine and help explaining the experimental results. The results indicate that the internal pressure and maximum internal pressure appear to be little influenced by the initial thickness deviation, and that the cross-section profile of the bulged tube changes diversely and can not be a perfect circle. The results also suggest that the increase in initial thickness deviation may lead to a remarkable decrease in maximum radial expansion, and a rapid increase in thickness deviation and the center eccentricity of the inner and outer profiles.

  11. VVV: The near-IR Milky Way bulge and plane survey*

    Directory of Open Access Journals (Sweden)

    Lucas P.

    2012-02-01

    Full Text Available The ESO public survey “VISTA Variables in the Via Lactea” (VVV started mapping the inner disk and bulge of our Galaxy with the VISTA 4m telescope in the near-IR in 2010. The planned survey area of 520 deg2 is observed in the Z, Y, J, H and Ks filters, and in addition more than 100 epochs of repeated imaging in Ks will be collected over ∼5 years. The final products will be a deep near-IR atlas in five passbands, and catalogue of more than a million variable sources. This public survey will provide data available to the whole community and therefore will enable further studies of the history of the Milky Way, its star cluster evolution, and the population census of the Galactic Bulge and center, as well as the investigations of the star formation regions in the disk.

  12. Bladder Bulge: Unifying Old and New Sonographic Bladder Wall Abnormalities in Ureterolithiasis

    Directory of Open Access Journals (Sweden)

    Scott Bomann

    2012-12-01

    Full Text Available As long as CT remains the first line imaging modality in suspected ureterolithiasis, emergency physicians will continue to perform the majority of renal colic ultrasound studies in a search for hydronephrosis. Hydronephrosis, however, is not always present and emergency physicians may not find it as useful as would be expected. Through this case series of seven patients, we present what we believe to be commonly present and easily acquired sonographic bladder wall findings in ureterolithiasis. These abnormalities are not routinely taught in emergency ultrasound and have not been reported in the emergency medicine literature. One variant, in fact, may be a novel finding unto itself. Due to their similar appearance, we propose to unify these findings under the name “bladder bulge.” This sign can be seen on axial views as an inward bulging or focal thickening of the bladder wall on the affected side, at the uretovesical junction.

  13. The Millennium Galaxy Catalogue: The severe attenuation of bulge flux by dusty spiral discs

    CERN Document Server

    Driver, Simon P

    2007-01-01

    Using the Millennium Galaxy Catalogue we quantify the dependency of the disc and bulge luminosity functions on galaxy inclination. Using a contemporary dust model we show that our results are consistent with galaxy discs being optically thick in their central regions (tau_B^f=3.8+/-0.7). As a consequence the measured B-band fluxes of bulges can be severely attenuated by 50% to 95% depending on disc inclination. We argue that a galaxy's optical appearance can be radically transformed by simply removing the dust, e.g. during cluster infall, with mid-type galaxies becoming earlier, redder, and more luminous. Finally we derive the mean photon escape fraction from the integrated galaxy population over the 0.1micron to 2.1 micron range, and use this to show that the energy of starlight absorbed by dust (in our model) is in close agreement with the total far-IR emission.

  14. Structure of the Galactic Bulge: Is the Milky Way a Double-barred Galaxy?

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Shogo [National Astronomical Observatory of Japan, Mitaka, Tokyo (Japan); Nagata, Tetsuya [Department of Astronomy, Kyoto University, Kyoto (Japan)

    2006-12-15

    Using the data of the IRSF/SIRIUS infrared survey along the Galactic plane ( l {<=} 10.{sup 0}5 at b = +1{sup 0}), we find a distinct structure, which is probably a secondary bar, inside the primary bar of our Galaxy. The apparent magnitude peak of Bulge red clump stars changes continuously from K{sub S} {approx} 13.5 (l = -10{sup 0}) to K{sub S} {approx} 12.3 (l = +10{sup 0}), and this can be explained by the bar structure of the Galactic Bulge. However, the apparent magnitude changes by only {approx} 0.1 mag over the central 8{sup 0}, and this indicates that there is a distinct structure inside the primary bar. In the process of the distance derivation, we have used the infrared extinction law in the J, H, and K{sub S} bands toward the Galactic center newly determined from our survey.

  15. Structure of the Galactic Bulge: Is the Milky Way a Double-barred Galaxy?

    International Nuclear Information System (INIS)

    Using the data of the IRSF/SIRIUS infrared survey along the Galactic plane ( l ≤ 10.05 at b = +10), we find a distinct structure, which is probably a secondary bar, inside the primary bar of our Galaxy. The apparent magnitude peak of Bulge red clump stars changes continuously from KS ∼ 13.5 (l = -100) to KS ∼ 12.3 (l = +100), and this can be explained by the bar structure of the Galactic Bulge. However, the apparent magnitude changes by only ∼ 0.1 mag over the central 80, and this indicates that there is a distinct structure inside the primary bar. In the process of the distance derivation, we have used the infrared extinction law in the J, H, and KS bands toward the Galactic center newly determined from our survey

  16. Pulsating variable stars in the MACHO bulge database: the semiregular variables

    Energy Technology Data Exchange (ETDEWEB)

    Minniti, D.; Alcock, C.; Allsman, R.A. [and others

    1997-11-01

    We review the pulsating stars contained in the top 24 fields of the MACHO bulge database, with special emphasis on the red semireg-ular stars. Based on period, amplitude and color cuts, we have selected a sample of 2000 semireguku variables with 15 < P < 100 days. Their period-luminosity relation is studied, as well ss their spatial distribution. We find that they follow the bar, unlike the RR Lyrae in these fields.

  17. Black hole starvation and bulge evolution in a Milky Way-like galaxy

    Science.gov (United States)

    Bonoli, Silvia; Mayer, Lucio; Kazantzidis, Stelios; Madau, Piero; Bellovary, Jillian; Governato, Fabio

    2016-07-01

    We present a new zoom-in hydrodynamical simulation, `ErisBH', which features the same initial conditions, resolution, and sub-grid physics as the close Milky Way-analogue `Eris' (Guedes et al. 2011), but it also includes prescriptions for the formation, growth and feedback of supermassive black holes. This enables a detailed study of black hole evolution and the impact of active galactic nuclei (AGN) feedback in a late-type galaxy. At z = 0, the main galaxy of ErisBH hosts a central black hole of 2.6 × 106 M⊙, which correlates to the bulge mass and the galaxy's central velocity dispersion similarly to what is observed in the Milky Way and in pseudobulges. During its evolution, the black hole grows mostly through mergers with black holes brought in by accreted satellite galaxies and very little by gas accretion (due to the modest amount of gas that reaches the central regions). AGN feedback is weak and it affects only the central 1-2 kpc. Yet, it limits the growth of the bulge, which results in a rotation curve that, in the inner ˜ 10 kpc, is flatter than that of Eris. We find that ErisBH is more prone to instabilities than Eris, due to its smaller bulge and larger disc. At z ˜ 0.3, an initially small bar grows to be of a few disc scalelengths in size. The formation of the bar causes a small burst of star formation in the inner few hundred pc, provides new gas to the central black hole and causes the bulge to have a boxy/peanut morphology by z = 0.

  18. Chemical abundances in a high-velocity RR Lyrae star near the bulge

    Science.gov (United States)

    Hansen, C. J.; Rich, R. M.; Koch, A.; Xu, S.; Kunder, A.; Ludwig, H.-G.

    2016-05-01

    Low-mass variable high-velocity stars are interesting study cases for many aspects of Galactic structure and evolution. Until recently, the only known high- or hyper-velocity stars were young stars thought to originate from the Galactic center. Wide-area surveys such as APOGEE and BRAVA have found several low-mass stars in the bulge with Galactic rest-frame velocities higher than 350 km s-1. In this study we present the first abundance analysis of a low-mass RR Lyrae star that is located close to the Galactic bulge, with a space motion of ~-400 km s-1. Using medium-resolution spectra, we derived abundances (including upper limits) of 11 elements. These allowed us to chemically tag the star and discuss its origin, although our derived abundances and metallicity, at [Fe/H] =-0.9 dex, do not point toward one unambiguous answer. Based on the chemical tagging, we cannot exclude that it originated in the bulge. However, its retrograde orbit and the derived abundances combined suggest that the star was accelerated from the outskirts of the inner (or even outer) halo during many-body interactions. Other possible origins include the bulge itself, or the star might have been stripped from a stellar cluster or the Sagittarius dwarf galaxy when it merged with the Milky Way. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  19. Red Variables in Globular Clusters: Comparison with the Bulge and the LMC

    OpenAIRE

    Matsunaga, N; Nakada, Y; Tanabe, T; Fukushi, H.; Ita, Y.

    2005-01-01

    We are conducting a project aimed at surveys and repeated observations of red variables (or long-period variables) in globular clusters. Using the IRSF/SIRIUS near-infrared facility located at South Africa, we are observing 145 globular clusters that are accessible from the site. In this contribution, we present our observations and preliminary results. We have discovered many red variables, especially in the Bulge region, whose memberships to the clusters remain to be confirmed. Using a samp...

  20. Genetically Induced Cell Death in Bulge Stem Cells Reveals Their Redundancy for Hair and Epidermal Regeneration

    OpenAIRE

    Driskell, Iwona; Oeztuerk-Winder, Feride; Humphreys, Peter; Frye, Michaela

    2014-01-01

    Adult mammalian epidermis contains multiple stem cell populations in which quiescent and more proliferative stem and progenitor populations coexist. However, the precise interrelation of these populations in homeostasis remains unclear. Here, we blocked the contribution of quiescent keratin 19 (K19)-expressing bulge stem cells to hair follicle formation through genetic ablation of the essential histone methyltransferase Setd8 that is required for the maintenance of adult skin. Deletion of Set...

  1. The Black Hole–Bulge Mass Relation in Megamaser Host Galaxies

    Science.gov (United States)

    Läsker, Ronald; Greene, Jenny E.; Seth, Anil; van de Ven, Glenn; Braatz, James A.; Henkel, Christian; Lo, K. Y.

    2016-07-01

    We present Hubble Space Telescope (HST) images for nine megamaser disk galaxies with the primary goal of studying photometric BH-galaxy scaling relations. The megamaser disks provide the highest-precision extragalactic BH mass measurements, while our high-resolution HST imaging affords us the opportunity to decompose the complex nuclei of their late-type hosts in detail. Based on the morphologies and shapes of the galaxy nuclei, we argue that most of these galaxies’ central regions contain secularly evolving components (pseudo-bulges), and in many cases we photometrically identify co-existing “classical” bulge components as well. Using these decompositions, we draw the following conclusions. (1) The megamaser BH masses span two orders of magnitude (106–{10}8 {M}ȯ ) while the stellar mass of their spiral host galaxies are all ˜ {10}11 {M}ȯ within a factor of three. (2) The BH masses at a given bulge mass or total stellar mass in the megamaser host spiral galaxies tend to be lower than expected when compared to an extrapolation of the BH-bulge relation based on early-type galaxies. (3) The observed large intrinsic scatter of BH masses in the megamaser host galaxies raises the question of whether scaling relations exist in spiral galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 12185.

  2. Orientation-specific cis complementation by bulge- and loop-mutated human immunodeficiency virus type 1 TAR RNAs.

    OpenAIRE

    Braddock, M; Powell, R; Sutton, J.; Kingsman, A J; Kingsman, S M

    1994-01-01

    Tat activates human immunodeficiency type 1 gene expression by binding to TAR RNA. TAR comprises a partially base paired stem and hexanucleotide loop with a tripyrimidine bulge in the upper stem. In vitro, Tat binds to the bulge and upper stem, with no requirement for the loop. However, in vivo, loop sequences are critical for activation, implying that a loop binding cellular factor may be involved in the activation pathway. Given that activation appears to be a two-component system comprisin...

  3. A Radiation-Hydrodynamical Model for Supermassive Black Hole-to-Bulge Mass Relation and Quasar Formation

    OpenAIRE

    Umemura, Masayuki

    2001-01-01

    As a potential mechanism to build up supermassive black holes (BHs) in a spheroidal system, we consider the radiation drag effect by bulge stars, which extracts angular momentum from interstellar gas and thus allows the gas to accrete onto the galactic center. With incorporating radiation hydrodynamical equation with simple stellar evolution, it is shown that the BH-to-bulge mass ratio, $f_{BH}$, is basically determined by a fundamental constant, that is, the energy conversion efficiency for ...

  4. Mapping the Three-Dimensional "X-Shaped Structure" in Models of the Galactic Bulge

    CERN Document Server

    Li, Zhao-Yu

    2015-01-01

    Numerical simulations have shown that the X-shaped structure in the Milky Way bulge can naturally arise from the bar instability and buckling instability. To understand the influence of the buckling amplitude on the morphology of the X-shape, we analyze three self-consistent numerical simulations of barred galaxies with different buckling amplitudes (strong, intermediate and weak). We derive the three-dimensional density with an adaptive kernel smoothing technique. The face-on iso-density surfaces are all elliptical, while in the edge-on view, the morphology of buckled bars transitions with increasing radius, from a central boxy core to a peanut bulge and then to an extended thin bar. Based on these iso-density surfaces at different density levels, we find no clear evidence for a well-defined structure shaped like a letter X. The X-shaped structure is more peanut-like, whose visual perception is probably enhanced by the pinched inner concave iso-density contours. The peanut bulge can reproduce qualitatively t...

  5. Brightness variations of the northern 630nm intertropical arc and the midnight pressure bulge over Eritrea

    Directory of Open Access Journals (Sweden)

    R. H. Wiens

    2004-09-01

    Full Text Available The nightglow brightness at 630nm from the thermospheric O(1D layer was monitored nightly at Asmara, Eritrea (15.4° N, 39.9° E, 7° N dip with an all-sky imager. Averages of north-south strips of the images enabled contour plots of brightness on a latitude vs. local time grid. The contours show the movement of the intertropical arc southward before midnight, staying just north of Asmara after midnight, and gradually brightening to a maximum at 02:00h local civil time, 02:00 LT, after which it disappears before dawn. It is argued that all features of the plots can be explained by known mechanisms capable of driving ions along magnetic field lines, including the fountain effect, summer to winter transequatorial winds, and the midnight pressure bulge.

    The 02:00 LT brightness maximum is the most striking and the most persistent feature in the data. The persistence of the location of the 02:00 LT brightening is attributed to a pressure bulge centered on the geographic equator at midnight and extending to higher latitudes with increasing local time in both the winter and the summer hemispheres. The bulge is shown to be stronger near solstice than near equinox, confirming earlier work.

  6. The WFC3 Galactic Bulge Treasury Program: A First Look at Resolved Stellar Population Tools

    CERN Document Server

    Brown, Thomas M; Zoccali, Manuela; Renzini, Alvio; Ferguson, Henry C; Anderson, Jay; Smith, Ed; Bond, Howard E; Minniti, Dante; Valenti, Jeff A; Casertano, Stefano; Livio, Mario; Panagia, Nino; VandenBerg, Don A; Valenti, Elena

    2008-01-01

    [Abridged] When WFC3 is installed on HST, the community will have powerful new tools for investigating resolved stellar populations. The WFC3 Galactic Bulge Treasury program will obtain deep imaging on 4 low-extinction fields. These non-proprietary data will enable a variety of science investigations not possible with previous data sets. To aid in planning for the use of these data and for future proposals, we provide an introduction to the program, its photometric system, and the associated calibration effort. The observing strategy is based upon a new 5-band photometric system spanning the UV, optical, and near-infrared. With these broad bands, one can construct reddening-free indices of Teff and [Fe/H]. Besides the 4 bulge fields, the program will target 6 fields in well-studied star clusters, spanning a wide range of [Fe/H]. The cluster data serve to calibrate the indices, provide population templates, and correct the transformation of isochrones into the WFC3 photometric system. The bulge data will shed ...

  7. Nonlinear Local Bending Response and Bulging Factors for Longitudinal and Circumferential Cracks in Pressurized Cylindrical Shells

    Science.gov (United States)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2000-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.

  8. DISCOVERY OF A PAIR OF CLASSICAL CEPHEIDS IN AN INVISIBLE CLUSTER BEYOND THE GALACTIC BULGE

    Energy Technology Data Exchange (ETDEWEB)

    Dékány, I.; Palma, T. [Millennium Institute of Astrophysics, Santiago (Chile); Minniti, D. [Departamento de Ciencias Físicas, Universidad Andres Bello, República 220, Santiago (Chile); Hajdu, G.; Alonso-García, J.; Hempel, M.; Catelan, M. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago (Chile); Gieren, W. [Departamento de Astronomía, Universidad de Concepción, Casilla 160 C, Concepción (Chile); Majaess, D. [Department of Astronomy and Physics, Saint Mary’s University, Halifax, NS B3H 3C3 (Canada)

    2015-01-20

    We report the discovery of a pair of extremely reddened classical Cepheid variable stars located in the Galactic plane behind the bulge, using near-infrared (NIR) time-series photometry from the VISTA Variables in the Vía Láctea Survey. This is the first time that such objects have ever been found in the opposite side of the Galactic plane. The Cepheids have almost identical periods, apparent brightnesses, and colors. From the NIR Leavitt law, we determine their distances with ∼1.5% precision and ∼8% accuracy. We find that they have a same total extinction of A(V)≃32 mag, and are located at the same heliocentric distance of 〈d〉=11.4±0.9 kpc, and less than 1 pc from the true Galactic plane. Their similar periods indicate that the Cepheids are also coeval, with an age of ∼48±3 Myr, according to theoretical models. They are separated by an angular distance of only 18.″3, corresponding to a projected separation of ∼1 pc. Their position coincides with the expected location of the Far 3 kpc Arm behind the bulge. Such a tight pair of similar classical Cepheids indicates the presence of an underlying young open cluster that is both hidden behind heavy extinction and disguised by the dense stellar field of the bulge. All our attempts to directly detect this “invisible cluster” have failed, and deeper observations are needed. (letters)

  9. The Formation of Bulges, Discs and Two Component Galaxies in the CANDELS Survey at z < 3

    CERN Document Server

    Margalef-Bentabol, Berta; Mortlock, Alice; Hartley, Will; Duncan, Kenneth; Ferguson, Harry C; Koekemoer, Anton M; Dekel, Avishai; Primack, Joel R

    2016-01-01

    We examine a sample of 1495 galaxies in the CANDELS fields to determine the evolution of two component galaxies, including bulges and discs, within massive galaxies at the epoch 1 < z < 3 when the Hubble sequence forms. We fit all of our galaxies' light profiles with a single S\\'ersic fit, as well as with a combination of exponential and S\\'ersic profiles. The latter is done in order to describe a galaxy with an inner and an outer component, or bulge and disc component. We develop and use three classification methods (visual, F-test and the RFF) to separate our sample into 1-component galaxies (disc/spheroids-like galaxies) and 2-component galaxies (galaxies formed by an 'inner part' or bulge and an 'outer part' or disc). We then compare the results from using these three different ways to classify our galaxies. We find that the fraction of galaxies selected as 2-component galaxies increases on average 50 per cent from the lowest mass bin to the most massive galaxies, and decreases with redshift by a fa...

  10. Stellar variability in low-extinction regions towards the Galactic Bulge

    CERN Document Server

    Dominici, T P; Medina-Tanco, G A; Teixeira, R G; Benevides-Soares, P

    1999-01-01

    Intensive monitoring of low-extinction windows towards the galactic bulge has provided in the last years valuable information for studies about the dynamics, kinematics and formation history of this part of the galaxy, mainly by characterizing the bulge stellar populations (Paczy\\'nski, 1996). Since 1997, we have been conducting an intensive photometric-astrometric survey of the galactic bulge, with the monitoring of about 120000 stars in 12 windows uniformly distributed in galactic latitude and longitude (Blanco & Terndrup, 1989 e Blanco, 1988) never before submitted to this kind of survey. For this purpose, we have used the IAG/USP CCD Meridian Circle of the Abrahão de Moraes Observatory. The main objective of this work is the identification and classification of variable objects. In this work we present the set up and development of the necessary tools for a project like this and the posterior analysis of our data. We briefly describe the construction of a program to organize and detect variables amon...

  11. Polar bulges and polar nuclear discs: the case of NGC 4698

    CERN Document Server

    Corsini, E M; Pastorello, N; Bontà, E Dalla; Morelli, L; Beifiori, A; Pizzella, A; Bertola, F

    2012-01-01

    The early-type spiral NGC 4698 is known to host a nuclear disc of gas and stars which is rotating perpendicularly with respect to the galaxy main disc. In addition, the bulge and main disc are characterised by a remarkable geometrical decoupling. Indeed they appear elongated orthogonally to each other. In this work the complex structure of the galaxy is investigated by a detailed photometric decomposition of optical and near-infrared images. The intrinsic shape of the bulge was constrained from its apparent ellipticity, its twist angle with respect to the major axis of the main disc, and the inclination of the main disc. The bulge is actually elongated perpendicular to the main disc and it is equally likely to be triaxial or axisymmetric. The central surface brightness, scalelength, inclination, and position angle of the nuclear disc were derived by assuming it is infinitesimally thin and exponential. Its size, orientation, and location do not depend on the observed passband. These findings support a scenario...

  12. Supermassive Black Holes and Their Host Galaxies - I. Bulge luminosities from dedicated near-infrared data

    CERN Document Server

    Läsker, Ronald; van de Ven, Glenn

    2013-01-01

    In an effort to secure, refine and supplement the relation between central Supermassive Black Hole masses (Mbh), and the bulge luminosities of their host galaxies, (Lbul), we obtained deep, high spatial resolution K-band images of 35 nearby galaxies with securely measured Mbh, using the wide-field WIRCam imager at the Canada-France-Hawaii-Telescope (CFHT). A dedicated data reduction and sky subtraction strategy was adopted to estimate the brightness and structure of the sky, a critical step when tracing the light distribution of extended objects in the near-infrared. From the final image product, bulge and total magnitudes were extracted via two-dimensional profile fitting. As a first order approximation, all galaxies were modeled using a simple Sersic-bulge + exponential-disk decomposition. However, we found that such models did not adequately describe the structure that we observe in a large fraction of our sample galaxies which often include cores, bars, nuclei, inner disks, spiral arms, rings and envelope...

  13. The Large-Scale Extinction Map of the Galactic Bulge from the MACHO Project Photometry

    CERN Document Server

    Popowski, P; Becker, A; Popowski, Piotr; Cook, Kem; Becker, Andrew

    2003-01-01

    We present a (V-R)-based reddening map of about 43 square degrees of the Galactic bulge/bar. The map is constructed using template image photometry from the MACHO microlensing survey, contains 9717 resolution elements, and is based on (V-R)-color averages of the entire color-magnitude diagrams (CMDs) in 4 by 4 arc-minute tiles. The conversion from the observed color to the reddening follows from an assumption that CMDs of all bulge fields would look similar in the absence of extinction. Consequently, the difference in observed color between various fields originates from varying contribution of the disk extinction summed along different lines of sight. We check that our (V-R) colors correlate very well with visual extinction derived by Stanek in Baade's Window. We show that a dusty disk obeying a cosec|b| extinction law, E(V-R) = 0.0274 cosec|b|, provides a good approximation to the extinction toward the MACHO bulge/bar fields. The large-scale (V-R)-color and visual extinction map presented here will be made ...

  14. The morphologies of massive galaxies from z~3 - Witnessing the 2 channels of bulge growth

    CERN Document Server

    Huertas-Company, Marc; Mei, Simona; Shankar, Francesco; Bernardi, Mariangela; Daddi, Emanuele; Barro, Guillermo; Cabrera-Vives, Guillermo; Cattaneo, Andrea; Dimauro, Paola; Gravet, Romaric

    2015-01-01

    [abridged] We quantify the morphological evolution of z~0 massive galaxies ($M*/M_\\odot\\sim10^{11}$) from z~3 in the 5 CANDELS fields. The progenitors are selected using abundance matching techniques to account for the mass growth. The morphologies strongly evolve from z~3. At z3-4) and small effective radii ($R_e$~1 kpc) pointing towards an early formation through gas-rich mergers or VDI. Between z~ 2.5 and z~0, they rapidly increase their size by a factor of ~4-5, become all passive but their global morphology remains unaltered. The structural evolution is independent of the gas fractions, suggesting that it is driven by ex-situ events. The remaining 60% experience a gradual morphological transformation, from clumpy disks to more regular bulge+disks systems, essentially happening at z>1. It results in the growth of a significant bulge component (n~3) for 2/3 of the systems possibly through the migration of clumps while the remaining 1/3 keeps a rather small bulge (n~1.5-2). The transition phase between dist...

  15. Chemical abundances in a high velocity RR Lyrae star near the bulge

    CERN Document Server

    Hansen, Camilla Juul; Koch, Andreas; Xu, Siyi; Kunder, Andrea; Ludwig, Hans-Guenter

    2016-01-01

    Low-mass, variable, high-velocity stars are interesting study cases for many aspects of Galactic structure and evolution. Until recently, the only known high- or hyper-velocity stars were young stars thought to originate from the Galactic centre. Wide-area surveys like APOGEE and BRAVA have found several low-mass stars in the bulge with Galactic rest-frame velocities larger than 350 km/s. In this study we present the first abundance analysis of a low-mass, RR Lyrae star, located close to the Galactic bulge, with a space motion of ~ -400 km/s. Using medium-resolution spectra, we derive abundances (including upper limits) of 11 elements. These allow us to chemically tag the star and discuss its origin, although our derived abundances and metallicity, at [Fe/H] =-0.9 dex, do not point toward one unambiguous answer. Based on the chemical tagging, we cannot exclude that it originated in the bulge. However, combining its retrograde orbit and the derived abundances suggests that the star was accelerated from the out...

  16. Bulge Growth and Quenching since z = 2.5 in CANDELS/3D-HST

    CERN Document Server

    Lang, Philipp; Somerville, Rachel; Schreiber, Natascha M Forster; Genzel, Reinhard; Bell, Eric F; Brammer, Gabe; Dekel, Avishai; Faber, Sandra M; Ferguson, Henry C; Grogin, Norman A; Kocevski, Dale D; Koekemoer, Anton M; Lutz, Dieter; McGrath, Elizabeth J; Momcheva, Ivelina; Nelson, Erica J; Primack, Joel R; Rosario, David J; Skelton, Rosalind E; Tacconi, Linda J; van Dokkum, Pieter G; Whitaker, Katherine E

    2014-01-01

    Exploiting the deep high-resolution imaging of all 5 CANDELS fields, and accurate redshift information provided by 3D-HST, we investigate the relation between structure and stellar populations for a mass-selected sample of 6764 galaxies above 10^10 Msun, spanning the redshift range 0.5 < z < 2.5. For the first time, we fit 2-dimensional models comprising a single Sersic fit and two-component (i.e., bulge + disk) decompositions not only to the H-band light distributions, but also to the stellar mass maps reconstructed from resolved stellar population modeling. We confirm that the increased bulge prominence among quiescent galaxies, as reported previously based on rest-optical observations, remains in place when considering the distributions of stellar mass. Moreover, we observe an increase of the typical Sersic index and bulge-to-total ratio (with median B/T reaching 40-50%) among star-forming galaxies above 10^11 Msun. Given that quenching for these most massive systems is likely to be imminent, our fin...

  17. Optical Gravitational Lensing Experiment. The Distance Scale Galactic Bulge - LMC - SMC

    CERN Document Server

    Udalski, A

    1998-01-01

    We analyze the mean luminosity of three samples of field RRab Lyr stars observed in the course of the OGLE microlensing experiment: 73 stars from the Galactic bulge and 110 and 128 stars from selected fields in the LMC and SMC, respectively. The fields are the same as in the recent distance determination to the Magellanic Clouds with the red clump stars method by Udalski et al (1998). We determine the relative distance scale d_{GB}:d_{LMC}:d_{SMC} equal to: (0.194+/-0.010):1.00:(1.30+/-0.08). We calibrate our RR Lyr distance scale with the recent calibration of Gould and Popowski (1998) based on statistical parallaxes. We obtain the following distance moduli to the Galactic bulge, LMC and SMC: m-M=14.53+/-0.15, m-M=18.09+/-0.16 and m-M=18.66+/-0.16 mag. We use the RR Lyr mean V-band luminosity at the Galactic bulge metallicity as the reference brightness and analyze the mean, I-band luminosity of the red clump stars in objects with different ages and metallicities. We add to our analysis the metal poor Carina...

  18. The influence of mergers and ram-pressure stripping on black hole-bulge correlations

    Science.gov (United States)

    Ginat, Yonadav Barry; Meiron, Yohai; Soker, Noam

    2016-10-01

    We analyse the scatter in the correlation between supermassive black hole (SMBH) mass and bulge stellar mass of the host galaxy, and infer that it cannot be accounted for by mergers alone. The merger-only scenario, where small galaxies merge to establish a proportionality relation between the SMBH and bulge masses, leads to a scatter around the linear proportionality line that increases with the square root of the SMBH (or bulge) mass. By examining a sample of 103 galaxies, we find that the intrinsic scatter increases more rapidly than expected from the merger-only scenario. The correlation between SMBH masses and their host galaxy properties is therefore more likely to be determined by a negative feedback mechanism that is driven by an active galactic nucleus. We find, a hint, that some galaxies with missing stellar mass reside close to the centre of clusters and speculate that ram-pressure stripping of gas off the young galaxy as it moves near the cluster centre, might explain the missing stellar mass at later times.

  19. The Growth of Black Holes and Bulges at the Cores of Cooling Flows

    CERN Document Server

    Rafferty, D A; Nulsen, P E J; Wise, M W

    2006-01-01

    Central cluster galaxies (cDs) in cooling flows are growing rapidly through gas accretion and star formation. At the same time, AGN outbursts fueled by accretion onto supermassive black holes are generating X-ray cavity systems and driving outflows that exceed those in powerful quasars. We show that the resulting bulge and black hole growth follows a trend that is roughly consistent with the slope of the local (Magorrian) relation between bulge and black hole mass for nearby quiescent ellipticals. However, a large scatter suggests that cD bulges and black holes do not always grow in lock-step. New measurements made with XMM, Chandra, and FUSE of the condensation rates in cooling flows are now approaching or are comparable to the star formation rates, alleviating the need for an invisible sink of cold matter. We show that the remaining radiation losses can be offset by AGN outbursts in more than half of the systems in our sample, indicating that the level of cooling and star formation is regulated by AGN feedb...

  20. The Battle of the Bulge: Decay of the Thin, False Cosmic String

    CERN Document Server

    Lee, Bum-Hoon; MacKenzie, Richard; Paranjape, M B; Yajnik, U A; Yeom, Dong-han

    2013-01-01

    We consider the decay of cosmic strings that are trapped in the false vacuum in a theory of scalar electrodynamics in 3+1 dimensions. We restrict our analysis to the case of thin-walled cosmic strings which occur when large magnetic flux trapped inside the string. Thus the string looks like a tube of fixed radius, at which it is classically stable. The core of the string contains magnetic flux in the true vacuum, while outside the string, separated by a thin wall, is the false vacuum. The string decays by tunnelling to a configuration which is represented by a bulge, where the region of true vacuum within, is ostensibly enlarged. The bulge can be described as the meeting, of a kink soliton anti-soliton pair, along the length of the string. It can be described as a bulge appearing in the initial string, starting from the string of small, classically stable radius, expanding to a fat string of large, classically unstable (to expansion) radius and then returning back to the string of small radius along its lengt...

  1. Pygmies, Giants, and Skins

    Science.gov (United States)

    Piekarewicz, J.

    2013-03-01

    Understanding the equation of state (EOS) of neutron-rich matter is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of energetic heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova all depend critically on the nuclear-matter EOS. In this contribution I focus on the EOS of cold baryonic matter with special emphasis on its impact on the structure, dynamics, and composition of neutron stars. In particular, I discuss how laboratory experiments on neutron skins as well as on Pygmy and Giant resonances can help us elucidate the structure of these fascinating objects.

  2. Pygmies, Giants, and Skins

    CERN Document Server

    Piekarewicz, J

    2012-01-01

    Understanding the equation of state (EOS) of neutron-rich matter is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of energetic heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova all depend critically on the nuclear-matter EOS. In this contribution I focus on the EOS of cold baryonic matter with special emphasis on its impact on the structure, dynamics, and composition of neutron stars. In particular, I discuss how laboratory experiments on neutron skins as well as on Pygmy and Giant resonances can help us elucidate the structure of these fascinating objects.

  3. Two giant stellar complexes

    Science.gov (United States)

    Efremov, Yu. N.; Efremov, E. Yu.

    Common star complexes are huge (0.3-1 kpc in diameter) groups of relatively young stars, associations and clusters. The complexes usually form regular chains along spiral arms of grand design galaxies, being evidently formed and supported by magneto- gravitational instability developing along an arm. Special attention is given to a few large complexes which have signatures of gravitational boundness, such as round shape and high central density. Concentrations of stars and clusters in such a complex in M51 galaxy were found in this paper; we concluded it is possible to suggest that the complex is gravitationally bound. It is also stressed that some properties of the giant complex in NGC 6946 (such as its semicircular and sharp Western edge) are still enigmatic.

  4. Giant Congenital Melanocytic Nevus

    DEFF Research Database (Denmark)

    Rasmussen, Bo Sonnich; Henriksen, Trine Foged; Kølle, Stig-Frederik Trojahn;

    2015-01-01

    % versus 44% required unplanned additional surgery, respectively. Complications were noted in 25% and 67% of the patients, respectively. Cosmetic result was satisfying in 76% of patients without difference between the groups. No malignant transformation was found during a mean follow-up of 11 years......Giant congenital melanocytic nevi (GCMN) occur in 1:20,000 livebirths and are associated with increased risk of malignant transformation. The treatment of GCMN from 1981 to 2010 in a tertiary referral center was reviewed evaluating the modalities used, cosmetic results, associated complications......, and malignant transformation. Of 35 patients, 25 underwent surgery. Curettage was most frequently used (64%) followed by excision and tissue expansion (20%). Six percent of the patients treated with curettage, and 78% of the patients who received excision surgery required more than 1 planned procedure, and 25...

  5. A close look at secular evolution: Boxy/peanut bulges reduce gas inflow to the central kiloparsec

    CERN Document Server

    Fragkoudi, F; Bosma, A

    2016-01-01

    In this letter we investigate the effect of boxy/peanut (b/p) bulges on bar-induced gas inflow to the central kiloparsec, which plays a crucial role on the evolution of disc galaxies. We carry out hydrodynamic gas response simulations in realistic barred galaxy potentials, including or not the geometry of a b/p bulge, to investigate the amount of gas inflow induced in the different models. We find that b/p bulges can reduce the gas inflow rate to the central kiloparsec by more than an order of magnitude, which leads to a reduction in the amount of gas available in the central regions. We also investigate the effect of the dark matter halo concentration on these results, and find that for maximal discs, the effect of b/p bulges on gas inflow remains significant. The reduced amount of gas reaching the central regions due to the presence of b/p bulges could have significant repercussions on the formation of discy- (pseudo-) bulges, on the amount of nuclear star formation and feedback, on the fuel reservoir for A...

  6. A close look at secular evolution: boxy/peanut bulges reduce gas inflow to the central kiloparsec

    Science.gov (United States)

    Fragkoudi, F.; Athanassoula, E.; Bosma, A.

    2016-10-01

    In this Letter we investigate the effect of boxy/peanut (b/p) bulges on bar-induced gas inflow to the central kiloparsec, which plays a crucial role on the evolution of disc galaxies. We carry out hydrodynamic gas response simulations in realistic barred galaxy potentials, including or not the geometry of a b/p bulge, to investigate the amount of gas inflow induced in the different models. We find that b/p bulges can reduce the gas inflow rate to the central kiloparsec by more than an order of magnitude, which leads to a reduction in the amount of gas available in the central regions. We also investigate the effect of the dark matter halo concentration on these results, and find that for maximal discs, the effect of b/p bulges on gas inflow remains significant. The reduced amount of gas reaching the central regions due to the presence of b/p bulges could have significant repercussions on the formation of discy- (pseudo-) bulges, on the amount of nuclear star formation and feedback, on the fuel reservoir for AGN activity, and on the overall secular evolution of the galaxy.

  7. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis.

    Science.gov (United States)

    Ito, Mayumi; Liu, Yaping; Yang, Zaixin; Nguyen, Jane; Liang, Fan; Morris, Rebecca J; Cotsarelis, George

    2005-12-01

    The discovery of long-lived epithelial stem cells in the bulge region of the hair follicle led to the hypothesis that epidermal renewal and epidermal repair after wounding both depend on these cells. To determine whether bulge cells are necessary for epidermal renewal, here we have ablated these cells by targeting them with a suicide gene encoding herpes simplex virus thymidine kinase (HSV-TK) using a Keratin 1-15 (Krt1-15) promoter. We show that ablation leads to complete loss of hair follicles but survival of the epidermis. Through fate-mapping experiments, we find that stem cells in the hair follicle bulge do not normally contribute cells to the epidermis which is organized into epidermal proliferative units, as previously predicted. After epidermal injury, however, cells from the bulge are recruited into the epidermis and migrate in a linear manner toward the center of the wound, ultimately forming a marked radial pattern. Notably, although the bulge-derived cells acquire an epidermal phenotype, most are eliminated from the epidermis over several weeks, indicating that bulge stem cells respond rapidly to epidermal wounding by generating short-lived 'transient amplifying' cells responsible for acute wound repair. Our findings have implications for both gene therapy and developing treatments for wounds because it will be necessary to consider epidermal and hair follicle stem cells as distinct populations.

  8. Giant clumps in the FIRE simulations: a case study of a massive high-redshift galaxy

    CERN Document Server

    Oklopcic, Antonija; Feldmann, Robert; Keres, Dusan; Faucher-Giguere, Claude-Andre; Murray, Norman

    2016-01-01

    The morphology of massive star-forming galaxies at high redshift is often dominated by giant clumps of mass ~10^8-10^9 Msun and size ~100-1000 pc. Previous studies have proposed that giant clumps might have an important role in the evolution of their host galaxy, particularly in building the central bulge. However, this depends on whether clumps live long enough to migrate from their original location in the disc or whether they get disrupted by their own stellar feedback before reaching the centre of the galaxy. We use cosmological hydrodynamical simulations from the FIRE (Feedback in Realistic Environments) project that implement explicit treatments of stellar feedback and ISM physics to study the properties of these clumps. We follow the evolution of giant clumps in a massive (stellar mass ~10^10.8 Msun at z=1), discy, gas-rich galaxy from redshift z>2 to z=1. Even though the clumpy phase of this galaxy lasts over a gigayear, individual gas clumps are short-lived, with mean lifetime of massive clumps of ~2...

  9. Giant pulses from the Crab pulsar: A wide-band study

    CERN Document Server

    Karuppusamy, R; van Straten, W

    2010-01-01

    The Crab pulsar is well-known for its anomalous giant radio pulse emission. Past studies have concentrated only on the very bright pulses or were insensitive to the faint end of the giant pulse luminosity distribution. With our new instrumentation offering a large bandwidth and high time resolution combined with the narrow radio beam of the Westerbork Synthesis Radio Telescope (WSRT), we seek to probe the weak giant pulse emission regime. The WSRT was used in a phased array mode, resolving a large fraction of the Crab nebula. The resulting pulsar signal was recorded using the PuMa II pulsar backend and then coherently dedispersed and searched for giant pulse emission. After careful flux calibration, the data were analysed to study the giant pulse properties. The analysis includes the distributions of the measured pulse widths, intensities, energies, and scattering times. The weak giant pulses are shown to form a separate part of the intensity distribution. The large number of giant pulses detected were used t...

  10. Landscape of the lost giants

    Science.gov (United States)

    2013-09-01

    The Pleistocene megafauna extinction erased a group of remarkable animals. Whether humans had a prominent role in the extinction remains controversial, but it is emerging that the disappearance of the giants has markedly affected the environment.

  11. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

    DEFF Research Database (Denmark)

    Bedding, Timothy R.; Mosser, Benoit; Huber, Daniel;

    2011-01-01

    . Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high...

  12. Giant Magnetized Outflows from the Centre of the Milky Way

    CERN Document Server

    Carretti, E; Staveley-Smith, L; Haverkorn, M; Purcell, C; Gaensler, B M; Bernardi, G; Kesteven, M J; Poppi, S; 10.1038/nature11734

    2013-01-01

    The nucleus of the Milky Way is known to harbour regions of intense star formation activity as well as a super-massive black hole. Recent Fermi space telescope observations have revealed regions of \\gamma-ray emission reaching far above and below the Galactic Centre, the so-called Fermi bubbles. It is uncertain whether these were generated by nuclear star formation or by quasar-like outbursts of the central black hole and no information on the structures' magnetic field has been reported. Here we report on the detection of two giant, linearly-polarized radio Lobes, containing three ridge-like sub-structures, emanating from the Galactic Centre. The Lobes each extend ~60 deg, bear a close correspondence to the Fermi bubbles, are located in the Galactic bulge, and are permeated by strong magnetic fields of up to 15 \\mu G. Our data signal that the radio Lobes originate in a bi-conical, star-formation (rather than black hole) driven outflow from the Galaxy's central 200 pc that transports a massive magnetic energy...

  13. Giant high occipital encephalocele

    Directory of Open Access Journals (Sweden)

    Agrawal Amit

    2016-03-01

    Full Text Available Encephaloceles are rare embryological mesenchymal developmental anomalies resulting from inappropriate ossification in skull through with herniation of intracranial contents of the sac. Encephaloceles are classified based on location of the osseous defect and contents of sac. Convexity encephalocele with osseous defect in occipital bone is called occipital encephalocele. Giant occipital encephaloceles can be sometimes larger than the size of baby skull itself and they pose a great surgical challenge. Occipital encephaloceles (OE are further classified as high OE when defect is only in occipital bone above the foramen magnum, low OE when involving occipital bone and foramen magnum and occipito-cervical when there involvement of occipital bone, foramen magnum and posterior upper neural arches. Chiari III malformation can be associated with high or low occipital encephaloceles. Pre-operatively, it is essential to know the size of the sac, contents of the sac, relation to the adjacent structures, presence or absence of venous sinuses/vascular structures and osseous defect size. Sometimes it becomes imperative to perform both CT and MRI for the necessary information. Volume rendered CT images can depict the relation of osseous defect to foramen magnum and provide information about upper neural arches which is necessary in classifying these lesions.

  14. Rotation of Giant Stars

    CERN Document Server

    Kissin, Yevgeni

    2015-01-01

    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5 and $5\\,M_\\odot$, taking into account mass loss on the giant branches and the partitioning of angular momentum between the outer and inner envelope. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag as well as the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles $\\Omega(r)$ is considered in the deep convective envelope, ranging from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force on the inward pumping of angular momentum, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core ro...

  15. Recurrent renal giant leiomyosarcoma.

    Science.gov (United States)

    Öziş, Salih Erpulat; Gülpınar, Kamil; Şahlı, Zafer; Konak, Baha Burak; Keskin, Mete; Özdemir, Süleyman; Ataoğlu, Ömür

    2016-01-01

    Primary renal leiomyosarcomas are rare, aggressive tumors. They constitute 1-2% of adult malignant renal tumors. Although leiomyosarcomas are the most common histological type (50-60%) of renal sarcomas, information on renal leiomyosarcoma is limited. Local or systemic recurrences are common. The radiological appearance of renal leiomyosarcomas is not specific, therefore renal leiomyosarcoma cannot be distinguished from renal cell carcinoma by imaging methods in all patients. A 74-year-old female patient presented to our clinic complaining of a palpable mass on the right side of her abdomen in November 2012. The abdominal magnetic resonance imaging revealed a mass, 25 × 24 × 23 cm in size. Her past medical history revealed that she has undergone right radical nephrectomy in 2007, due to a 11 × 12 × 13 cm renal mass that was then reported as renal cell carcinoma on abdominal magnetic resonance imaging, but the pathological diagnosis was low-grade renal leiomyosarcoma. The most recent follow-up of the patient was in 2011, with no signs of local recurrence or distant metastases within this four-year period. The patient underwent laparotomy on November 2012, and a 35 cm retroperitoneal mass was excised. The pathological examination of the mass was reported as high-grade leiomyosarcoma. The formation of this giant retroperitoneal mass in 1 year can be explained by the transformation of the lesion's pathology from low-grade to a high-grade tumor. PMID:27436926

  16. Bringing Low the Giants

    CERN Multimedia

    2001-01-01

    Their work goes on unseen, because they a hundred metres beneath your feet. But while the race against the clock to build the LHC has begun on the surface, teams underground are feverishly engaged to dismantle LEP and its experiments. Four months after the start of dismantling, the technical coordinators of the different experiments discuss the progress of work. Little men attack the giant ALEPH. The barrel and its two endcaps have been removed to the end of the cavern and stripped of their cables. The breaking up of the detector can now begin. At ALEPH, counting rooms removed all in one go Jean-Paul Fabre, technical coordinator at ALEPH:'After making safe the structure, the first step was to remove the wiring and cables. Some 210 cubic metres were brought out. Then the counting rooms all round the detector were taken out. They were brought up from the cavern all in one go, up through the shaft, which is 10 metres wide and 150 metres deep. They made it with 15 centimetres to spare. They have been emptied of...

  17. Mapping the outer bulge with RRab stars from the VVV Survey

    Science.gov (United States)

    Gran, F.; Minniti, D.; Saito, R. K.; Zoccali, M.; Gonzalez, O. A.; Navarrete, C.; Catelan, M.; Contreras Ramos, R.; Elorrieta, F.; Eyheramendy, S.; Jordán, A.

    2016-07-01

    Context. The VISTA Variables in the Vía Láctea (VVV) is a near-IR time-domain survey of the Galactic bulge and southern plane. One of the main goals of this survey is to reveal the 3D structure of the Milky Way through their variable stars. In particular, enormous numbers of RR Lyrae stars have been discovered in the inner regions of the bulge (-8° ≲ b ≲ -1°) by optical surveys such as OGLE and MACHO, but leaving an unexplored window of more than ~47 sq deg (-10.0° ≲ ℓ ≲ + 10.7° and - 10.3° ≲ b ≲ -8.0°) observed by the VVV Survey. Aims: Our goal is to characterize the RR Lyrae stars in the outer bulge in terms of their periods, amplitudes, Fourier coefficients, and distances in order to evaluate the 3D structure of the bulge in this area. The distance distribution of RR Lyrae stars will be compared to that of red clump stars, which is known to trace a X-shaped structure, in order to determine whether these two different stellar populations share the same Galactic distribution. Methods: A search for RR Lyrae stars was performed in more than ~47 sq deg at low Galactic latitudes (-10.3° ≲ b ≲ -8.0°). In the procedure the χ2 value and analysis of variance (AoV) statistic methods were used to determine the variability and periodic features of the light curves, respectively. To prevent misclassifications, the analysis was performed only on the fundamental mode RR Lyrae stars (RRab) owing to similarities found in the near-IR light curve shapes of contact eclipsing binaries (W UMa) and first overtone RR Lyrae stars (RRc). On the other hand, the red clump stars of the same analyzed tiles were selected, and cuts in the color-magnitude diagram were applied and the maximum distance restricted to ~20 kpc in order to construct a similar catalog in terms of distances and covered area compared to the RR Lyrae stars. Results: We report the detection of more than 1000 RR Lyrae ab-type stars in the VVV Survey located in the outskirts of the Galactic bulge

  18. NoSOCS in SDSS - V. Red disc and blue bulge galaxies across different environments

    Science.gov (United States)

    Lopes, P. A. A.; Rembold, S. B.; Ribeiro, A. L. B.; Nascimento, R. S.; Vajgel, B.

    2016-09-01

    We investigated the typical environment and physical properties of `red discs' and `blue bulges', comparing those to the `normal' objects in the blue cloud and red sequence. Our sample is composed of cluster members and field galaxies at z ≤ 0.1, so that we can assess the impact of the local and global environment. We find that disc galaxies display a strong dependence on environment, becoming redder for higher densities. This effect is more pronounced for objects within the virial radius, being also strong related to the stellar mass. We find that local and global environment affect galaxy properties, but the most effective parameter is stellar mass. We find evidence for a scenario where `blue discs' are transformed into `red discs' as they grow in mass and move to the inner parts of clusters. From the metallicity differences of red and blue discs, and the analysis of their star formation histories, we suggest the quenching process is slow. We estimate a quenching time-scale of ˜2-3 Gyr. We also find from the sSFR-M* plane that `red discs' gradually change as they move into clusters. The `blue bulges' have many similar properties than `blue discs', but some of the former show strong signs of asymmetry. The high asymmetry `blue bulges' display enhanced recent star formation compared to their regular counterparts. That indicates some of these systems may have increased their star formation due to mergers. None the less, there may not be a single evolutionary path for these blue early-type objects.

  19. Chemical and Kinematical Properties of Galactic Bulge Stars Surrounding the Stellar System Terzan 5

    Science.gov (United States)

    Massari, D.; Mucciarelli, A.; Ferraro, F. R.; Origlia, L.; Rich, R. M.; Lanzoni, B.; Dalessandro, E.; Ibata, R.; Lovisi, L.; Bellazzini, M.; Reitzel, D.

    2014-08-01

    As part of a study aimed at determining the kinematical and chemical properties of Terzan 5, we present the first characterization of the bulge stars surrounding this puzzling stellar system. We observed 615 targets located well beyond the tidal radius of Terzan 5 and found that their radial velocity distribution is well described by a Gaussian function peaked at langv radrang = +21.0 ± 4.6 km s-1 with dispersion σ v = 113.0 ± 2.7 km s-1. This is one of the few high-precision spectroscopic surveys of radial velocities for a large sample of bulge stars in such a low and positive latitude environment (b = +1.°7). We found no evidence of the peak at langv radrang ~ +200 km s-1 found in Nidever et al. Strong contamination of many observed spectra by TiO bands prevented us from deriving the iron abundance for the entire spectroscopic sample, introducing a selection bias. The metallicity distribution was finally derived for a subsample of 112 stars in a magnitude range where the effect of the selection bias is negligible. The distribution is quite broad and roughly peaked at solar metallicity ([Fe/H] sime +0.05 dex) with a similar number of stars in the super-solar and in the sub-solar ranges. The population number ratios in different metallicity ranges agree well with those observed in other low-latitude bulge fields, suggesting (1) the possible presence of a plateau for |b| Observatory, proposal numbers 087.D-0716(B), 087.D-0748(A), and 283.D-5027(A), and at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  20. Stochastic Correlation Model of Galactic Bulge Velocity Dispersions and Central Black Holes Masses

    OpenAIRE

    Dokuchaev, V. I.; Eroshenko, Yu. N.

    2002-01-01

    We consider the cosmological model in which a part of the Universe \\Omega_h\\sim 10^-5 is in the form of primordial black holes with mass \\sim 10^5M_\\odot. These primordial black holes would be centers for growing protogalaxies which experienced multiple mergers with ordinary galaxies. This process of galaxies formation is accompanied by the merging of central black holes in the galactic nuclei. It is shown that recently discovered correlations between the central black holes and bulges of gal...

  1. Bulge, Bubble, and Y: How a RNA Exonuclease Repairs DNA, in Detail

    OpenAIRE

    Yu-Yuan Hsiao; Woei-Horng Fang; Chia-Chia Lee; Yi-Ping Chen; Yuan, Hanna S.

    2014-01-01

    DNA repair mechanisms are essential for preservation of genome integrity. However, it is not clear how DNA are selected and processed at broken ends by exonucleases during repair pathways. Here we show that the DnaQ-like exonuclease RNase T is critical for Escherichia coli resistance to various DNA-damaging agents and UV radiation. RNase T specifically trims the 3' end of structured DNA, including bulge, bubble, and Y-structured DNA, and it can work with Endonuclease V to restore the deaminat...

  2. On the Black Hole - Bulge Mass Ratios in Narrow-Line Seyfert 1 Galaxies

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We present estimated ratios of the central black hole mass to the bulgemass (Mbh/Mbulge) for 15 Narrow Line Seyfert 1 galaxies (NLS1s). It is found thatNLS1s apparently have lower mass ratios: the average mass ratio is about 1 × 10-4with a spread of 2, which is one order of magnitude lower than for Broad Line AGNsand quiescent galaxies. This lower value, as compared to that established essentiallyfor all other types of galaxies, can be accounted for by an underestimation of theblack hole masses and an overestimation of the bulge masses in the NLS1s.

  3. Bulge-Disk Decompositions and Structural Bimodality of Ursa Major Cluster Spiral Galaxies

    OpenAIRE

    McDonald, Michael; Courteau, Stephane; Tully, R. Brent

    2008-01-01

    We present bulge and disk (B/D) decompositions of existing K'-band surface brightness profiles for 65 Ursa Major cluster spiral galaxies. This improves upon the disk-only fits of Tully et al. (1996). The 1996 disk fits were used by Tully & Verheijen (1997) for their discovery of the bimodality of structural parameters in the UMa cluster galaxies. It is shown that our new 1D B/D decompositions yield disk structural parameters that differ only slightly from the basic fits of Tully et al. and ev...

  4. Characterization of Friction Stir Welded Tubes by Means of Tube Bulge Test

    International Nuclear Information System (INIS)

    Mechanical properties of friction stir welded joints are generally evaluated by means of conventional tensile test. This testing method might provide insufficient information because maximum strain obtained in tensile test before necking is small; moreover, the application of tensile test is limited when the joint path is not linear or even when the welds are executed on curved surfaces. Therefore, in some cases, it would be preferable to obtain the joints properties from other testing methods. Tube bulge test can be a valid solution for testing circumferential or longitudinal welds executed on tubular workpieces. The present work investigates the mechanical properties and the formability of friction stir welded tubes by means of tube bulge tests. The experimental campaign was performed on tubular specimens having a thickness of 3 mm and an external diameter of 40 mm, obtained starting from two semi-tubes longitudinally friction stir welded. The first step, regarding the fabrication of tubes, was performed combining a conventional forming process and friction stir welding. Sheets in Al-Mg-Si-Cu alloy AA6060 T6 were adopted for this purpose. Plates having a dimension of 225x60 mm were bent (with a bending axis parallel to the main dimension) in order to obtain semi-tubes. A particular care was devoted to the fabrication of forming devices (punch and die) in order to minimize the springback effects. Semi-tubes were then friction stir welded by means of a CNC machine tool. Some preliminary tests were carried out by varying the welding parameters, namely feed rate and rotational speed. A very simple tool having flat shoulder and cylindrical pin was used. The second step of the research was based on testing the welded tubes by means of tube bulge test. A specific equipment having axial actuators with a conical shape was adopted for this study. Some analyses were carried out on the tubes bulged up to a certain pressure level. In particular, the burst pressure and the

  5. Characterization of Friction Stir Welded Tubes by Means of Tube Bulge Test

    Science.gov (United States)

    D'Urso, G.; Longo, M.; Giardini, C.

    2011-05-01

    Mechanical properties of friction stir welded joints are generally evaluated by means of conventional tensile test. This testing method might provide insufficient information because maximum strain obtained in tensile test before necking is small; moreover, the application of tensile test is limited when the joint path is not linear or even when the welds are executed on curved surfaces. Therefore, in some cases, it would be preferable to obtain the joints properties from other testing methods. Tube bulge test can be a valid solution for testing circumferential or longitudinal welds executed on tubular workpieces. The present work investigates the mechanical properties and the formability of friction stir welded tubes by means of tube bulge tests. The experimental campaign was performed on tubular specimens having a thickness of 3 mm and an external diameter of 40 mm, obtained starting from two semi-tubes longitudinally friction stir welded. The first step, regarding the fabrication of tubes, was performed combining a conventional forming process and friction stir welding. Sheets in Al-Mg-Si-Cu alloy AA6060 T6 were adopted for this purpose. Plates having a dimension of 225×60 mm were bent (with a bending axis parallel to the main dimension) in order to obtain semi-tubes. A particular care was devoted to the fabrication of forming devices (punch and die) in order to minimize the springback effects. Semi-tubes were then friction stir welded by means of a CNC machine tool. Some preliminary tests were carried out by varying the welding parameters, namely feed rate and rotational speed. A very simple tool having flat shoulder and cylindrical pin was used. The second step of the research was based on testing the welded tubes by means of tube bulge test. A specific equipment having axial actuators with a conical shape was adopted for this study. Some analyses were carried out on the tubes bulged up to a certain pressure level. In particular, the burst pressure and the

  6. A Vertical Resonance Heating Model for X- or Peanut-Shaped Galactic Bulges

    OpenAIRE

    Quillen, Alice C.; Minchev, Ivan; Sharma, Sanjib; Qin, Yu-Jing; Di Matteo, Paola

    2013-01-01

    We explore a second order Hamiltonian vertical resonance model for X-shaped or peanut-shaped galactic bulges. The X-shape is caused by the 2:1 vertical Lindblad resonance with the bar, with two vertical oscillation periods per orbital period in the bar frame. We examine N-body simulations and find that due to the bar slowing down and disk thickening during bar buckling, the resonance and associated peanut-shape moves outward. The peanut-shape is consistent with the location of the vertical re...

  7. New Planetary Nebulae in the Galactic Bulge region with l>0deg - II

    CERN Document Server

    Boumis, P; Xilouris, E M; Mavromatakis, F; Kapakos, E; Papamastorakis, J; Goudis, C D

    2006-01-01

    The presentation of new results from an [O III] 5007 A survey in a search for planetary nebulae (PNe) in the galactic bulge is continued. A total of 60 objects, including 19 new PNe, have been detected in the remaining 34 per cent of the survey area, while 41 objects are already known. Deep Halpha+[N II] CCD images as well as low resolution spectra have been acquired for these objects. Their spectral signatures suggest that the detected emission originates from photoionized nebulae. In addition, absolute line fluxes have been measured and the electron densities are given. Accurate optical positions and optical diameters are also determined.

  8. Structure of the Galactic Bulge: Is the Milky Way a Double-barred Galaxy?

    Science.gov (United States)

    Nishiyama, Shogo; Nagata, Tetsuya; IRSF/SIRIUS Team

    2006-12-01

    Using the data of the IRSF/SIRIUS infrared survey along the Galactic plane (| l | red clump stars changes continuously from KS ~ 13.5 (l = -10°) to KS ~ 12.3 (l = +10°), and this can be explained by the bar structure of the Galactic Bulge. However, the apparent magnitude changes by only ~ 0.1 mag over the central 8°, and this indicates that there is a distinct structure inside the primary bar. In the process of the distance derivation, we have used the infrared extinction law in the J, H, and KS bands toward the Galactic center newly determined from our survey.

  9. The Distance to the Galactic Center Derived From Infrared Photometry of Bulge Red Clump Stars

    OpenAIRE

    Nishiyama, Shogo; Nagata, Tetsuya; Sato, Shuji; Kato, Daisuke; Nagayama, Takahiro; Kusakabe, Nobuhiko; Matsunaga, Noriyuki; Naoi, Takahiro; Sugitani, Koji; Tamura, Motohide

    2006-01-01

    On the basis of the near infrared observations of bulge red clump stars near the Galactic center, we have determined the galactocentric distance to be R_0 = 7.52 +- 0.10 (stat) +- 0.35 (sys) kpc. We observed the red clump stars at |l| < 1.0 deg and 0.7 deg < |b| < 1.0 deg with the IRSF 1.4 m telescope and the SIRIUS camera in the H and Ks bands. After extinction and population corrections, we obtained (m - M)_0 = 14.38 +- 0.03 (stat) +- 0.10 (sys). The statistical error is dominated by the un...

  10. Sub-Saturn Planet MOA-2008-BLG-310Lb: Likely To Be In The Galactic Bulge

    OpenAIRE

    Janczak, Julia; Fukui, A; Dong, Subo; Monard, B.; Kozlowski, Szymon; Gould, A.; Beaulieu, J.P.; Kubas, Daniel; Marquette, J. B.; Sumi, T.; Bond, I. A.; Bennett, D.P.; Collaboration, the MOA; Collaboration, the MicroFUN; collaboration, the MiNDSTEp

    2009-01-01

    We report the detection of sub-Saturn-mass planet MOA-2008-BLG-310Lb and argue that it is the strongest candidate yet for a bulge planet. Deviations from the single-lens fit are smoothed out by finite-source effects and so are not immediately apparent from the light curve. Nevertheless, we find that a model in which the primary has a planetary companion is favored over the single-lens model by \\Delta\\chi^2 ~ 880 for an additional three degrees of freedom. Detailed analysis yields a planet/sta...

  11. Structure and dynamics of galaxies with a low surface-brightness disc - II. Stellar populations of bulges

    CERN Document Server

    Morelli, L; Pizzella, A; Bontà, E Dalla; Coccato, L; Méndez-Abreu, J; Cesetti, M

    2012-01-01

    The radial profiles of the Hb, Mg, and Fe line-strength indices are presented for a sample of eight spiral galaxies with a low surface-brightness stellar disc and a bulge. The correlations between the central values of the line-strength indices and velocity dispersion are consistent to those known for early-type galaxies and bulges of high surface-brightness galaxies. The age, metallicity, and alpha/Fe enhancement of the stellar populations in the bulge-dominated region are obtained using stellar population models with variable element abundance ratios. Almost all the sample bulges are characterized by a young stellar population, on-going star formation, and a solar alpha/Fe enhancement. Their metallicity spans from high to sub-solar values. No significant gradient in age and alpha/Fe enhancement is measured, whereas only in a few cases a negative metallicity gradient is found. These properties suggest that a pure dissipative collapse is not able to explain formation of all the sample bulges and that other ph...

  12. Orientation-specific cis complementation by bulge- and loop-mutated human immunodeficiency virus type 1 TAR RNAs.

    Science.gov (United States)

    Braddock, M; Powell, R; Sutton, J; Kingsman, A J; Kingsman, S M

    1994-12-01

    Tat activates human immunodeficiency type 1 gene expression by binding to TAR RNA. TAR comprises a partially base paired stem and hexanucleotide loop with a tripyrimidine bulge in the upper stem. In vitro, Tat binds to the bulge and upper stem, with no requirement for the loop. However, in vivo, loop sequences are critical for activation, implying that a loop binding cellular factor may be involved in the activation pathway. Given that activation appears to be a two-component system comprising a Tat-bulge interaction and a cellular factor-loop interaction, we considered that it might be possible to spatially separate the two components and retain activation. We have constructed a series of double TAR elements comprising various combinations of mutated TAR structures. Defective TARs with nucleotide substitutions in either the bulge or the loop complemented each other to give wild-type activation. However, the complementation was orientation specific, requiring the intact Tat binding site to reside on the 5'-proximal TAR. These data suggest that provided the wild-type orientation of the bulge and loop elements is retained, there is no requirement for them to coexist on the same TAR structure. PMID:7966633

  13. Dissecting the Red Sequence: The Bulge and Disc Colours of Early-Type Galaxies in the Coma Cluster

    CERN Document Server

    Head, Jacob T C G; Hudson, Micheal J; Smith, Russel J

    2014-01-01

    We explore the internal structure of red sequence galaxies in the Coma cluster across a wide range of luminosities ($-17>M_g>-22$) and cluster-centric radii ($0bulge-disc decomposition of galaxies in deep Canada-France-Hawaii Telescope $u,g,i$ imaging using GALFIT. Rigorous filtering is applied to identify an analysis sample of 200 galaxies which are well described by an `archetypal' S0 structure (central bulge + outer disc). We consider internal bulge and/or disc colour gradients by allowing component sizes to vary between bands. Gradients are required for $30\\%$ of analysis sample galaxies. Bulge half-light radii are found to be uncorrelated with galaxy luminosity ($R_e \\sim 1$ kpc, $n\\sim2$) for all but the brightest galaxies ($M_g<-20.5$). The S0 discs are brighter (at fixed size, or smaller at fixed luminosity) than those of star-forming spirals. A similar colour-magnitude relation is found for both bulges and discs. The global red sequence for ...

  14. Giant Magellan Telescope: overview

    Science.gov (United States)

    Johns, Matt; McCarthy, Patrick; Raybould, Keith; Bouchez, Antonin; Farahani, Arash; Filgueira, Jose; Jacoby, George; Shectman, Steve; Sheehan, Michael

    2012-09-01

    The Giant Magellan Telescope (GMT) is a 25-meter optical/infrared extremely large telescope that is being built by an international consortium of universities and research institutions. It will be located at the Las Campanas Observatory, Chile. The GMT primary mirror consists of seven 8.4-m borosilicate honeycomb mirror segments made at the Steward Observatory Mirror Lab (SOML). Six identical off-axis segments and one on-axis segment are arranged on a single nearly-paraboloidal parent surface having an overall focal ratio of f/0.7. The fabrication, testing and verification procedures required to produce the closely-matched off-axis mirror segments were developed during the production of the first mirror. Production of the second and third off-axis segments is underway. GMT incorporates a seven-segment Gregorian adaptive secondary to implement three modes of adaptive-optics operation: natural-guide star AO, laser-tomography AO, and ground-layer AO. A wide-field corrector/ADC is available for use in seeing-limited mode over a 20-arcmin diameter field of view. Up to seven instruments can be mounted simultaneously on the telescope in a large Gregorian Instrument Rotator. Conceptual design studies were completed for six AO and seeing-limited instruments, plus a multi-object fiber feed, and a roadmap for phased deployment of the GMT instrument suite is being developed. The partner institutions have made firm commitments for approximately 45% of the funds required to build the telescope. Project Office efforts are currently focused on advancing the telescope and enclosure design in preparation for subsystem- and system-level preliminary design reviews which are scheduled to be completed in the first half of 2013.

  15. Giant myoma and erythrocytosis syndrome.

    Science.gov (United States)

    Ozsaran, A A; Itil, I M; Terek, C; Kazandi, M; Dikmen, Y

    1999-08-01

    The objective of this study is to discuss the myomatous erythrocytosis syndrome in a patient with a giant subserous uterine myoma. She presented with plethora and an abdominal mass. After venesection of 4 units of blood, the preoperative haematocrit value of 53.3% and haemoglobin value of 17.5 g/dL had decreased to 48.6% and 16.8 g/dL levels, respectively. After the operative extraction of the giant subserous myoma with attached uterus weighing 14.2 kg, the haematocrit and the haemoglobin values had regressed to 40.3% and 14.3 g/dL levels, respectively. The findings indicated that the giant subserous myoma was the cause of the myomatous erythrocytosis syndrome in this patient. PMID:10554963

  16. Reinforcing the link between the double red clump and the X-shaped bulge of the Milky Way

    CERN Document Server

    Gonzalez, O A; Debattista, Victor P; Alonso-García, J; Valenti, E; Minniti, D

    2015-01-01

    The finding of a double red clump in the luminosity function of the Milky Way bulge has been interpreted as evidence for an X-shaped structure. Recently, an alternative explanation has been suggested, where the double red clump is an effect of multiple stellar populations in a classical spheroid. In this letter we provide an observational assessment of this scenario and show that it is not consistent with the behaviour of the red clump across different lines of sight, particularly at high distances from the Galactic plane. Instead, we confirm that the shape of the red clump magnitude distribution closely follows the distance distribution expected for an X-shaped bulge at critical Galactic latitudes. We also emphasize some key observational properties of the bulge red clump that should not be neglected in the search for alternative scenarios.

  17. What Do Statistics Reveal About the Black Hole versus the Bulge Mass Correlation and Co-evolution?

    CERN Document Server

    Peng, Chien Y

    2010-01-01

    Observational data show that the correlation between supermassive black holes (MBH) and galaxy bulge (Mbulge) masses follows a nearly linear trend, and that the correlation is strongest with the bulge rather than the total stellar mass (Mgal). With increasing redshift, the ratio Gamma=MBH/Mbulge relative to z=0 also seems to be larger for MBH >~ 10^{8.5} Msol. This study looks more closely at statistics to better understand the creation and observations of the MBH-Mbulge correlation. It is possible to show that if galaxy merging statistics can drive the correlation, minor mergers are responsible for causing a *convergence to linearity* most evident at high masses, whereas major mergers have a central limit convergence that more strongly *reduces the scatter*. This statistical reasoning is agnostic about galaxy morphology. Therefore, combining statistical prediction (more major mergers ==> tighter correlation) with observations (bulges = tightest correlation), would lead one to conclude that more major mergers...

  18. Classical bulges, supermassive blackholes and AGN feedback: Extension to low-mass galaxies

    CERN Document Server

    Lu, Zhankui

    2014-01-01

    The empirical model of Lu et al. 2014a for the relation between star formation rate and halo mass growth is adopted to predict the classical bulge mass ($M_{\\rm cb}$) - total stellar mass ($M_\\star$) relation for central galaxies. The assumption that the supermassive black hole (SMBH) mass ($M_{\\rm BH}$) is directly proportional to the classical bulge mass, with the proportionality given by that for massive galaxies, predicts a $M_{\\rm BH}$ - $M_\\star$ relation that matches well the observed relation for different types of galaxies. In particular, the model reproduces the strong transition at $M_\\star=10^{10.5}$ - $10^{11}M_{\\odot}$, below which $M_{\\rm BH}$ drops rapidly with decreasing $M_\\star$. Our model predicts a new sequence at $M_\\star 10^{11}M_{\\odot}$. If all SMBH grow through similar quasar modes with a feedback efficiency of a few percent, the energy produced in low-mass galaxies at redshift $z\\gtrsim 2$ can heat the circum-galactic medium up to a specific entropy level that is required to prevent...

  19. An X-ray Spectroscopic Study of the Hot Interstellar Medium Toward the Galactic Bulge

    CERN Document Server

    Hagihara, Toshishige; Mitsuda, Kazuhisa; Takei, Yoh; Sakai, Kazuhiro; Yao, Yangsen; Wang, Q Daniel; McCammon, Dan

    2011-01-01

    We present a detailed spectroscopic study of the hot gas toward the Galactic bulge along the 4U 1820-303 sight line by a combination analysis of emission and absorption spectra. In addition to the absorption lines of OVII Kalpha, OVII Kbeta, OVIII Kalpha and NeIX Kalpha by Chandra LTGS as shown by previous works, Suzaku detected clearly the emission lines of OVII, OVIII, NeIX and NeX from the vicinity. We used simplified plasma models with constant temperature and density. Evaluation of the background and foreground emission was performed carefully, including stellar X-ray contribution based on the recent X-ray observational results and stellar distribution simulator. If we assume that one plasma component exists in front of 4U1820-303 and the other one at the back, the obtained temperatures are T= 1.7 +/- 0.2 MK for the front-side plasma and T=3.9(+0.4-0.3) MK for the backside. This scheme is consistent with a hot and thick ISM disk as suggested by the extragalactic source observations and an X-ray bulge aro...

  20. Discovery of RR Lyrae Stars in the Nuclear Bulge of the Milky Way

    CERN Document Server

    Minniti, D; Zoccali, M; Rejkuba, M; Gonzalez, O A; Valenti, E; Gran, F

    2016-01-01

    Galactic nuclei, like the one of the Milky Way, are extreme places with high stellar densities and, in most cases, hosting a supermassive black hole. One of the scenarios proposed for the formation of the Galactic nucleus is by merging of primordial globular clusters (Capuzzo-Dolcetta 1993). An implication of this model is that this region should host stars characteristically found in old Milky Way globular clusters. RR Lyrae stars are primary distance indicators, well known representatives of old and metal-poor stellar populations, and therefore regularly found in globular clusters. Here we report the discovery of a dozen RR Lyrae ab-type stars in the vicinity of the Galactic center, i.e. in the so-called nuclear stellar bulge of the Milky Way. This discovery provides the first direct observational evidence that the Galactic nuclear stellar bulge contains ancient stars (>10 Gyr old). Based on this we conclude that merging globular clusters likely contributed to building-up the high stellar density in the nuc...

  1. Bulge-Disk Decompositions and Structural Bimodality of Ursa Major Cluster Spiral Galaxies

    CERN Document Server

    McDonald, Michael; Tully, R Brent

    2008-01-01

    We present bulge and disk (B/D) decompositions of existing K'-band surface brightness profiles for 65 Ursa Major cluster spiral galaxies. This improves upon the disk-only fits of Tully et al. (1996). The 1996 disk fits were used by Tully & Verheijen (1997) for their discovery of the bimodality of structural parameters in the UMa cluster galaxies. It is shown that our new 1D B/D decompositions yield disk structural parameters that differ only slightly from the basic fits of Tully et al. and evidence for structural bimodality of UMa galaxies is maintained. Our B/D software for the decomposition of 1D surface brightness profiles of galaxies uses a non-linear minimization scheme to recover the best fitting Sersic bulge and exponential disk while accounting for the possible presence of a compact nucleus and spiral arms and for the effects of seeing and disk truncations. In agreement with Tully & Verheijen, we find that the distribution of near-infrared disk central surface brightnesses is bimodal with an F...

  2. Bulge-disc decompositions and structural bimodality of Ursa Major cluster spiral galaxies

    Science.gov (United States)

    McDonald, Michael; Courteau, Stéphane; Tully, R. Brent

    2009-02-01

    We present bulge and disc (B/D) decompositions of existing K' surface brightness profiles for 65 Ursa Major (UMa) cluster spiral galaxies. This improves upon the disc-only fits of Tully et al. The 1996 disc fits were used by Tully & Verheijen for their discovery of the bimodality of structural parameters in the UMa cluster galaxies. It is shown that our new one-dimensional B/D decompositions yield disc structural parameters that differ only slightly from the basic fits of Tully et al. and evidence for structural bimodality of UMa galaxies is maintained. Our B/D software for the decomposition of one-dimensional surface brightness profiles of galaxies uses a non-linear minimization scheme to recover the best-fitting Sérsic bulge and the exponential disc while accounting for the possible presence of a compact nucleus and spiral arms and for the effects of seeing and disc truncations. In agreement with Tully & Verheijen, we find that the distribution of near-infrared disc central surface brightnesses is bimodal with an F-test confidence of 80 per cent. There is also strong evidence for a local minimum in the luminosity function at . A connection between the brightness bimodality and a dynamical bimodality, based on new HI linewidths, is identified. The B/D parameters are presented in Table 1.

  3. TR3 is preferentially expressed by bulge epithelial stem cells in human hair follicles

    Science.gov (United States)

    Xie, Lin; Yang, Ruifeng; Liu, Shujing; Lyle, Stephen; Cotsarelis, George; Xiang, Leihong; Zhang, Litao; Li, Bin; Wan, Miaojian; Xu, Xiaowei

    2016-01-01

    TR3 is an orphan member of the steroid/thyroid/retinoid nuclear receptor superfamily of transcription factors and it plays a pivotal role in regulating cell growth and apoptosis. The expression and function of TR3 in skin have not been well investigated. Using a cDNA expression assay, we discover that TR3 is significantly enriched in human telogen bulge compared with anagen bulb. Immunohistochemical staining confirms that TR3 is highly expressed in the bulge region of human hair follicles and it colocalizes with cytokeratin 15 (K15), an epithelial stem cell marker. To study the function of TR3 in the effect of androgens in keratinocytes, we treat HaCaT keratinocytes and primary human keratinocytes with dihydrotestosterone (DHT) and testosterone (T). The treated keratinocytes show a dose-dependent growth reduction to DHT and T. DHT increases the expression of TR3 in keratinocytes, associated with a concomitant increase of BAD and decrease of Bcl-2 expression. Knockdown TR3 expression by siRNA blocks the inhibitory effect of DHT on keratinocyte proliferation. Our results demonstrate that TR3 is localized to the stem cell compartment in the human hair follicles. Androgen increases TR3 expression in cultured keratinocytes. Our data suggest that TR3 mediates at least part of the inhibitory effect of androgens on keratinocytes. PMID:26707825

  4. R Coronae Borealis stars in the Galactic Bulge discovered by EROS-2

    CERN Document Server

    Tisserand, P; Wood, P R; Lesquoy, E; Beaulieu, J P; Milsztajn, A; Hamadache, C; Afonso, C; Albert, J N; Andersen, J; Ansari, R; Aubourg, E; Bareyre, P; Charlot, X; Coutures, C; Ferlet, R; Fouqué, P; Glicenstein, J F; Goldman, B; Gould, A; Gros, M; Haïssinski, J; De Kat, J; Guillou, L Le; Loup, C; Magneville, C; Maurice, E; Maury, A; Moniez, M; Palanque-Delabrouille, Nathalie; Perdereau, O; Rahal, Y; Rich, J; Spiro, M; Vidal-Madjar, A; Zylberajch, S

    2008-01-01

    Rare types of variable star may give unique insight into short-lived stages of stellar evolution. The systematic monitoring of millions of stars and advanced light curve analysis techniques of microlensing surveys make them ideal for discovering also such rare variable stars. One example is the R Coronae Borealis (RCB) stars, a rare type of evolved carbon-rich supergiant. We have conducted a systematic search of the EROS-2 database for the Galactic catalogue Bulge and spiral arms to find Galactic RCB stars. The light curves of $\\sim$100 million stars, monitored for 6.7 years (from July 1996 to February 2003), have been analysed to search for the main signature of RCB stars, large and rapid drops in luminosity. Follow-up spectroscopy has been used to confirm the photometric candidates. We have discovered 14 new RCB stars, all in the direction of the Galactic Bulge, bringing the total number of confirmed Galactic RCB stars to about 51. After reddening correction, the colours and absolute magnitudes of at least ...

  5. Population synthesis of ultracompact X-ray binaries in the Galactic Bulge

    CERN Document Server

    van Haaften, L M; Voss, R; Toonen, S; Zwart, S F Portegies; Yungelson, L R; van der Sluys, M V

    2013-01-01

    [abridged] Aims. We model the number and properties of ultracompact X-ray binaries (UCXBs) in the Galactic Bulge. The objective is to learn about the formation of UCXBs and their evolution, such as the onset of mass transfer and late-time behavior. Methods. The binary population synthesis code SeBa and stellar evolutionary tracks are used to model the UCXB population. The luminosity behavior of UCXBs is predicted using long-term X-ray observations of the known UCXBs and the thermal-viscous disk instability model. Results. In our model, the majority of UCXBs initially have a helium burning star donor. In the absence of a mechanism that destroys old UCXBs, we predict (0.2 - 1.9) x 10^5 UCXBs in the Galactic Bulge, mostly at orbital periods longer than 60 min (a large number of long-period systems also follows from the observed short-period UCXB population). About 5 - 50 UCXBs should be brighter than 10^35 erg/s, mostly persistent sources with orbital periods shorter than 30 min and with degenerate helium and ca...

  6. The VST Photometric Halpha Survey of the Southern Galactic Plane and Bulge (VPHAS+)

    CERN Document Server

    Drew, J E; Greimel, R; Irwin, M J; Yoldas, A Kupcu; Lewis, J; Barentsen, G; Eisloeffel, J; Farnhill, H J; Martin, W E; Walsh, J R; Walton, N A; Mohr-Smith, M; Raddi, R; Sale, S E; Wright, N J; Groot, P; Barlow, M J; Corradi, R L M; Drake, J J; Fabregat, J; Frew, D J; Gaensicke, B T; Knigge, C; Mampaso, A; Morris, R A H; Naylor, T; Parker, Q A; Phillipps, S; Ruhland, C; Steeghs, D; Unruh, Y C; Vink, J S; Wesson, R; Zijlstra, A A

    2014-01-01

    The VST Photometric Halpha Survey of the Southern Galactic Plane and Bulge (VPHAS+) is surveying the southern Milky Way in u, g, r, i and Halpha at 1 arcsec angular resolution. Its footprint spans the Galactic latitude range -5 < b < +5 at all longitudes south of the celestial equator. Extensions around the Galactic Centre to Galactic latitudes +/-10 bring in much of the Galactic Bulge. This ESO public survey, begun on 28th December 2011, reaches down to 20th magnitude (10-sigma) and will provide single-epoch digital optical photometry for around 300 million stars. The observing strategy and data pipelining is described, and an appraisal of the segmented narrowband Halpha filter in use is presented. Using model atmospheres and library spectra, we compute main-sequence (u - g), (g - r), (r - i) and (r - Halpha) stellar colours in the Vega system. We report on a preliminary validation of the photometry using test data obtained from two pointings overlapping the Sloan Digital Sky Survey. An example of the ...

  7. Variations of the selective extinction across the galactic bulge implications for the galactic bar

    CERN Document Server

    Wozniak, P R

    1995-01-01

    We propose a new method to investigate the coefficient of the selective extinction, based on two band photometry. This method uses red clump stars as a means to construct the reddening curve. We apply this method to the OGLE color-magnitude diagrams to investigate the variations of the selective extinction towards various parts of the Galactic bulge. We find that A_{_V}/E_{_{V-I}} coefficient is within the errors the same for l=\\pm 5\\deg OGLE fields. Therefore, the difference of \\sim 0.37\\;mag in the extinction adjusted apparent magnitude of the red clump stars in these fields (Stanek et al.~1994, 1995) cannot be assigned to a large-scale gradient of the selective extinction coefficient. This strengthens the implication of this difference as indicator of the presence of the bar in our Galaxy. However using present data we cannot entirely exclude the possibility of \\sim 0.2\\;mag/mag variations of the selective extinction coefficient on the large scales across the bulge.

  8. Characterizing liver capsule microstructure via in situ bulge test coupled with multiphoton imaging.

    Science.gov (United States)

    Jayyosi, C; Coret, M; Bruyère-Garnier, K

    2016-02-01

    The characterization of biological tissue at the microscopic scale is the starting point of many applications in tissue engineering and especially in the development of structurally based constitutive models. In the present study, focus is made on the liver capsule, the membrane encompassing hepatic parenchyma, which takes a huge part in liver mechanical properties. An in situ bulge test experiment under a multiphoton microscope has been developed to assess the microstructure changes that arise with biaxial loading. Multiphoton microscopy allows to observe the elastin and collagen fiber networks simultaneously. Thus a description of the microstructure organization of the capsule is given, characterizing the shapes, geometry and arrangement of fibers. The orientation of fibers is calculated and orientation distribution evolution with loading is given, in the case of an equibiaxial and two non equibiaxial loadings, thanks to a circular and elliptic set up of the bulge test. The local strain fields have also been computed, by the mean of a photobleaching grid, to get an idea of what the liver capsule might experience when subjected to internal pressure. Results show that strain fields present some heterogeneity due to anisotropy. Reorientation occurs in non equibiaxial loadings and involves fibers layers from the inner to the outer surface as expected. Although there is a fiber network rearrangement to accommodate with loading in the case of equibiaxial loading, there is no significant reorientation of the main fibers direction of the different layers.

  9. Looking for imprints of the first stellar generations in metal-poor bulge field stars

    CERN Document Server

    Siqueira-Mello, C; Barbuy, B; Freeman, K; Ness, M; Depagne, E; Cantelli, E; Pignatari, M; Hirschi, R; Frischknecht, U; Meynet, G; Maeder, A

    2016-01-01

    Context. Efforts to look for signatures of the first stars have concentrated on metal-poor halo objects. However, the low end of the bulge metallicity distribution has been shown to host some of the oldest objects in the Milky Way and hence this Galactic component potentially offers interesting targets to look at imprints of the first stellar generations. As a pilot project, we selected bulge field stars already identified in the ARGOS survey as having [Fe/H] ~ -1 and oversolar [alpha/Fe] ratios, and we used FLAMES-UVES to obtain detailed abundances of key elements that are believed to reveal imprints of the first stellar generations. Aims. The main purpose of this study is to analyse selected ARGOS stars using new high-resolution (R~45,000) and high-signal-to-noise (S/N >100) spectra. We aim to derive their stellar parameters and elemental ratios, in particular the abundances of C, N, the alpha-elements O, Mg, Si, Ca, and Ti, the odd-Z elements Na and Al, the neutron-capture s-process dominated elements Y, Z...

  10. Constitutive modeling of a commercially pure titanium: validation using bulge tests

    Science.gov (United States)

    Revil-Baudard, Benoit; Massoni, Elisabeth

    2016-08-01

    In this paper, mechanical tests aimed at characterizing the plastic anisotropy of a commercially pure α-titanium sheet are presented. Hemispheric and elliptic bulge tests conducted to investigate the forming properties of the material are also reported. To model the particularities of the plastic response of the material the classical Hill [1] yield criterion, and Cazacu et al. [2] yield criterion are used. Identification of the material parameters involved in both criteria is based only on uniaxial test data, while their predictive capabilities are assessed through comparison with the bulge tests data. Both models reproduce qualitatively the experimental plastic strain distribution and the final thickness of the sheet. However, only Cazacu et al. [2] yield criterion, which accounts for both the anisotropy and tension-compression asymmetry of the material captures correctly plastic strain localization, in particular its directionality. Furthermore, it is shown that accounting for the strong tension-compression asymmetry in the model formulation improves numerical predictions regarding the mechanical behavior close to fracture of a commercially pure titanium alloy under sheet metal forming processes.

  11. High-Resolution Mapping of Dust via Extinction in the M31 Bulge

    CERN Document Server

    Dong, Hui; Wang, Q D; Lauer, Tod R; Olsen, Knut A G; Saha, Abhijit; Dalcanton, Julianne J; Groves, Brent A

    2016-01-01

    We map the dust distribution in the central 180" (~680 pc) region of the M31 bulge, based on HST/WFC3 and ACS observations in ten bands from near-ultraviolet (2700 A) to near-infrared (1.5 micron). This large wavelength coverage gives us great leverage to detect not only dense dusty clumps, but also diffuse dusty molecular gas. We fit a pixel-by-pixel spectral energy distributions to construct a high-dynamic-range extinction map with unparalleled angular resolution (~0.5" , i.e., ~2 pc) and sensitivity (the extinction uncertainty, \\delta A_V~0.05). In particular, the data allow to directly fit the fractions of starlight obscured by individual dusty clumps, and hence their radial distances in the bulge. Most of these clumps seem to be located in a thin plane, which is tilted with respect to the M31 disk and appears face-on. We convert the extinction map into a dust mass surface density map and compare it with that derived from the dust emission as observed by Herschel . The dust masses in these two maps are co...

  12. Bulge RR Lyrae stars in the VVV tile $\\textit{b201}$

    CERN Document Server

    Gran, F; Saito, R K; Navarrete, C; Dékány, I; McDonald, I; Ramos, R Contreras; Catelan, M

    2015-01-01

    The VISTA Variables in the V\\'ia L\\'actea (VVV) Survey is one of the six ESO public surveys currently ongoing at the VISTA telescope on Cerro Paranal, Chile. VVV uses near-IR ($ZYJHK_{\\rm s}$) filters that at present provide photometry to a depth of $K_{\\rm s} \\sim 17.0$ mag in up to 36 epochs spanning over four years, and aim at discovering more than 10$^6$ variable sources as well as trace the structure of the Galactic bulge and part of the southern disk. A variability search was performed to find RR Lyrae variable stars. The low stellar density of the VVV tile $\\textit{b201}$, which is centered at ($\\ell, b$) $\\sim$ ($-9^\\circ, -9^\\circ$), makes it suitable to search for variable stars. Previous studies have identified some RR Lyrae stars using optical bands that served to test our search procedure. The main goal is to measure the reddening, interstellar extinction, and distances of the RR Lyrae stars and to study their distribution on the Milky Way bulge. A total of 1.5 sq deg were analyzed, and we found ...

  13. An observer's view of simulated galaxies: disc-to-total ratios, bars, and (pseudo-)bulges

    CERN Document Server

    Scannapieco, Cecilia; Jonsson, Patrik; White, Simon D M

    2010-01-01

    We use cosmological hydrodynamical simulations of the formation of Milky Way mass galaxies to study the relative importance of the main stellar components, discs, bulges, and bars, at z=0. The main aim of this work is to understand if estimates of the structural parameters of these components determined from kinematics (as usually done in simulations) agree well with those obtained using a photometric bulge/disc/bar decomposition (as done in observations). To perform such a comparison, we produced synthetic observations of the simulation outputs with the Monte-Carlo radiative transfer code SUNRISE and used the BUDDA code to make 2D photometric decompositions of the resulting images. We find that the kinematic disc-to-total ratio (D/T) estimates are systematically and significantly lower than the photometric ones. While the maximum D/T ratios obtained with the former method are of the order of 0.2, they are typically >0.4, and can be as high as 0.7, according to the latter. The photometric decomposition shows ...

  14. From Discs to Bulges: effect of mergers on the morphology of galaxies

    CERN Document Server

    Kannan, Rahul; Fontanot, Fabio; Moster, Benjamin P; Karman, Wouter; Somerville, Rachel S

    2015-01-01

    We study the effect of mergers on the morphology of galaxies by means of the simulated merger tree approach first proposed by Moster et al. This method combines N-body cosmological simulations and semi-analytic techniques to extract realistic initial conditions for galaxy mergers. These are then evolved using high resolution hydrodynamical simulations, which include dark matter, stars, cold gas in the disc and hot gas in the halo. We show that the satellite mass accretion is not as effective as previously thought, as there is substantial stellar stripping before the final merger. The fraction of stellar disc mass transferred to the bulge is quite low, even in the case of a major merger, mainly due to the dispersion of part of the stellar disc mass into the halo. We confirm the findings of Hopkins et al., that a gas rich disc is able to survive major mergers more efficiently. The enhanced star formation associated with the merger is not localised to the bulge of galaxy, but a substantial fraction takes place i...

  15. Bulges versus disks: the evolution of angular momentum in cosmological simulations of galaxy formation

    CERN Document Server

    Zavala, J; Frenk, Carlos S

    2007-01-01

    We investigate the evolution of angular momentum in simulations of galaxy formation in a cold dark matter universe. We analyse two model galaxies produced in the N-body/hydrodynamic simulations of Okamoto et al. Starting from identical initial conditions, but using different assumptions for the baryonic physics, one of the simulations produced a bulge-dominated galaxy and the other one a disk-dominated galaxy. The main difference is the treatment of star formation and feedback, both of which were designed to be more efficient in the disk-dominated object. We find that the specific angular momentum of the disk-dominated galaxy tracks the evolution of the angular momentum of the dark matter halo very closely: the angular momentum grows as predicted by linear theory until the epoch of maximum expansion and remains constant thereafter. By contrast, the evolution of the angular momentum of the bulge-dominated galaxy resembles that of the central, most bound halo material: it also grows at first according to linear...

  16. GHOSTS | Bulges, Halos, and the Resolved Stellar Outskirts of Massive Disk Galaxies

    Science.gov (United States)

    de Jong, R. S.; Radburn-Smith, D. J.; Sick, J. N.

    2008-10-01

    In hierarchical galaxy formation the stellar halos of galaxies are formed by the accretion of minor satellites and therefore contain valuable information about the (early) assembly process of galaxies. Our GHOSTS survey measures the stellar envelope properties of 14 nearby disk galaxies by imaging their resolved stellar populations with HST/ACS and WFPC2. Most of the massive galaxies in the sample (V_{rot}>200 km s^{-1}) have very extended stellar envelopes with μ(r) ˜ r^{-2.5} power law profiles in the outer regions. For these massive galaxies there is some evidence that the stellar surface density of the profiles correlates with Hubble type and bulge-to-disk ratio, begging the question whether these envelopes are more related to bulges than to a Milky Way-type stellar halo. Smaller galaxies (V_{rot}˜100 km s^{-1}) have much smaller stellar envelopes, but depending on geometry, they could still be more luminous than expected from satellite remnants in hierarchical galaxy formation models. Alternatively, they could be created by disk heating through the bombardment of small dark matter sub-halos. We find that galaxies show varying amounts of halo substructure.

  17. GHOSTS | Bulges, Halos, and the Resolved Stellar Outskirts of Massive Disk Galaxies

    CERN Document Server

    de Jong, Roelof S; Sick, Jonathan N

    2007-01-01

    In hierarchical galaxy formation the stellar halos of galaxies are formed by the accretion of minor satellites and therefore contain valuable information about the (early) assembly process of galaxies. Our GHOSTS survey measures the stellar envelope properties of 14 nearby disk galaxies by imaging their resolved stellar populations with HST/ACS&WFPC2. Most of the massive galaxies in the sample (Vrot>200 km/s) have very extended stellar envelopes with mu(r) ~ r^{-2.5} power law profiles in the outer regions. For these massive galaxies there is some evidence that the stellar surface density of the profiles correlates with Hubble type and bulge-to-disk ratio, begging the question whether these envelopes are more related to bulges than to a Milky Way-type stellar halo. Smaller galaxies (Vrot 100 km/s) have much smaller stellar envelopes, but depending on geometry, they could still be more luminous than expected from satellite remnants in hierarchical galaxy formation models. Alternatively, they could be creat...

  18. The stellar metallicity distribution of disc galaxies and bulges in cosmological simulations

    CERN Document Server

    Calura, F; Michel-Dansac, L; Stinson, G S; Pilkington, K; House, E L; Brook, C B; Few, C G; Bailin, J; Couchman, H M P; Wadsley, J; .,

    2012-01-01

    By means of high-resolution cosmological hydrodynamical simulations of Milky Way-like disc galaxies, we conduct an analysis of the associated stellar metallicity distribution functions (MDFs). After undertaking a kinematic decomposition of each simulation into spheroid and disc sub-components, we compare the predicted MDFs to those observed in the solar neighbourhood and the Galactic bulge. The effects of the star formation density threshold are visible in the star formation histories, which show a modulation in their behaviour driven by the threshold. The derived MDFs show median metallicities lower by 0.2-0.3 dex than the MDF observed locally in the disc and in the Galactic bulge. Possible reasons for this apparent discrepancy include the use of low stellar yields and/or centrally-concentrated star formation. The dispersions are larger than the one of the observed MDF; this could be due to simulated discs being kinematically hotter relative to the Milky Way. The fraction of low metallicity stars is largely ...

  19. Deformation Characterization of Friction-Stir-Welded Tubes by Hydraulic Bulge Testing

    Science.gov (United States)

    Pang, Q.; Hu, Z. L.; Pan, X.; Zuo, X. Q.

    2014-10-01

    In this article, the large-diameter thin-walled aluminum alloy tubes were produced using a hybrid process combining friction-stir welding (FSW) and spinning. For this novel process, rolled aluminum alloy sheets with a thickness about 2-3 times the wall thickness of target tube, were FSW to form cylinders, and then the cylinders were subjected to spinning to get thin-walled aluminum alloy tubes. Both experimental and simulation study were conducted to investigate the deformation characterization of the FSW tube during hydraulic bulge testing, and the stress and strain states and thickness distribution of the FSW tube were investigated. It was found that the common defects of FSW tube can be significantly improved by specific welding devices. The ductility of the tube is considerably improved with nearly two times higher bulge ratio than as-spun tube after annealing treatment at 300°C. But the annealed tube still shows a high nonuniform wall thickness distribution due to the inhomogeneous deformation characteristics. With increasing deformation of the tube, the gap between the hoop and axial stress for the weld and base metal (BM) decreases. However, the hoop and axial stress of the weld are always greater than those of the BM at the same pressure.

  20. SDSS-IV MaNGA: Bulge-Disc Decomposition of IFU Datacubes (BUDDI)

    CERN Document Server

    Johnston, Evelyn J; Aragon-Salamanca, Alfonso; Merrifield, Michael R; Bamford, Steven; Bershady, Matthew A; Bundy, Kevin; Drory, Niv; Fu, Hai; Law, David; Nitschelm, Christian; Thomas, Daniel; Lopes, Alexandre Roman; Wake, David; Yan, Renbin

    2016-01-01

    With the availability of large integral-field unit (IFU) spectral surveys of nearby galaxies, there is now the potential to extract spectral information from across the bulges and discs of galaxies in a systematic way. This information can address questions such as how these components built up with time, how galaxies evolve and whether their evolution depends on other properties of the galaxy such as its mass or environment. We present BUDDI, a new approach to fit the two-dimensional light profiles of galaxies as a function of wavelength to extract the spectral properties of these galaxies' discs and bulges. The fitting is carried out using GalfitM, a modified form of Galfit which can fit multi-waveband images simultaneously. The benefit of this technique over traditional multi-waveband fits is that the stellar populations of each component can be constrained using knowledge over the whole image and spectrum available. The decomposition has been developed using commissioning data from the SDSS-IV Mapping Nea...

  1. Giant pulses in Millisecond Pulsars

    CERN Document Server

    Joshi, B C; Lyne, A G; McLaughlin, M; Stairs, I H

    2003-01-01

    Giant pulses (GPs), occasional individual pulses with an intensity 100 times the average intensity, have been detected in four pulsars todate. Their origin is not well understood, but studies suggest a connection between the strength of magnetic field at the light cylinder B_lc and the existence of GPs. Here, we report on detection of significant Large Amplitude Pulses (LAPs) in two more pulsars with high values of B_lc, PSRs J0218+4232 and B1957+20, observed using Giant Meterwave Radio Telescope (GMRT).

  2. Imaging of giant pituitary adenomas

    International Nuclear Information System (INIS)

    We present five proven giant pituitary adenomas studied by CT and MRI, and review the clinical and imaging findings. Our aim was to examine the radiologic appearances and to search for criteria useful in distinguishing these tumors from other sellar and suprasellar tumours, mainly craniopharyngioma. The main differences from small adenomas were high prevalence of macrocysts, a more invasive behaviour and a clinical picture dominated by mass effect rather than endocrine disturbance. Factors supporting the diagnosis of pituitary adenoma in a giant intra- and suprasellar mass include: infrasellar extension, absence of calcification and presence of low-signal cysts on T1-weighted images. (orig.) (orig.)

  3. Cabergoline Treatment in Invasive Giant Prolactinoma

    OpenAIRE

    Sadeem Alsubaie; Almalki, Mussa H.

    2014-01-01

    Patients with invasive giant prolactinoma suffer from a constellation of symptoms including headache, blurred vision, lethargy, and sexual dysfunction. Cabergoline, a potent dopamine agonist, is a known medication prescribed for the treatment of invasive giant prolactinoma. Here, we report a case of invasive giant prolactinoma in a 52-year-old Saudi male with dramatic response to cabergoline treatment clinically, biochemically, and radiologically.

  4. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Verne V.; Cunha, Katia [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Shetrone, Matthew D. [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Meszaros, Szabolcs; Allende Prieto, Carlos [Instituto d' Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain); Bizyaev, Dmitry [Apache Point Observatory, Sunspot, NM 88349 (United States); Garcia Perez, Ana; Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Schiavon, Ricardo [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5UX (United Kingdom); Holtzman, Jon [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Johnson, Jennifer A., E-mail: vsmith@noao.edu [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States)

    2013-03-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants ({alpha} Boo and {mu} Leo), two M-giants ({beta} And and {delta} Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes {sup 12}C, {sup 13}C, {sup 14}N, and {sup 16}O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of {sup 12}C synthesized during {sup 4}He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to {approx}0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  5. The Black Hole Mass-Bulge Luminosity Relationship for Active Galactic Nuclei From Reverberation Mapping and Hubble Space Telescope Imaging

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.;

    2009-01-01

    We investigate the relationship between black hole mass and bulge luminosity for active galactic nuclei (AGNs) with reverberation-based black hole mass measurements and bulge luminosities from two-dimensional decompositions of Hubble Space Telescope host galaxy images. We find that the slope...... of the relationship for AGNs is 0.76-0.85 with an uncertainty of ~0.1, somewhat shallower than the M BH vprop L 1.0±0.1 relationship that has been fit to nearby quiescent galaxies with dynamical black hole mass measurements. This difference is somewhat perplexing, as the AGN black hole masses include an overall...

  6. The MANIFEST fibre positioning system for the Giant Magellan Telescope

    Science.gov (United States)

    Lawrence, Jon S.; Brown, David M.; Brzeski, Jurek; Case, Scott; Colless, Matthew; Farrell, Tony; Gers, Luke; Gilbert, James; Goodwin, Michael; Jacoby, George; Hopkins, Andrew M.; Ireland, Michael; Kuehn, Kyler; Lorente, Nuria P. F.; Miziarski, Stan; Muller, Rolf; Nichani, Vijay; Rakman, Azizi; Richards, Samuel; Saunders, Will; Staszak, Nick F.; Tims, Julia; Vuong, Minh; Waller, Lew

    2014-08-01

    MANIFEST is a fibre feed system for the Giant Magellan Telescope that, coupled to the seeing-limited instruments GMACS and G-CLEF, offers qualitative and quantitative gains over each instrument's native capabilities in terms of multiplex, field of view, and resolution. The MANIFEST instrument concept is based on a system of semi-autonomous probes called "Starbugs" that hold and position hundreds of optical fibre IFUs under a glass field plate placed at the GMT Cassegrain focal plane. The Starbug probes feature co-axial piezoceramic tubes that, via the application of appropriate AC waveforms, contract or bend, providing a discrete stepping motion. Simultaneous positioning of all Starbugs is achieved via a closed-loop metrology system.

  7. Oxygen isotopic ratios in intermediate-mass red giants

    CERN Document Server

    Lebzelter, Thomas; Hinkle, Kenneth; Nowotny, Walter; Aringer, Bernhard

    2015-01-01

    Context. The abundances of the three main isotopes of oxygen are altered in the course of the CNO-cycle. When the first dredge-up mixes the burning products to the surface, the nucleosynthesis processes can be probed by measuring oxygen isotopic ratios. Aims. By measuring 16O/17O and 16O/18O in red giants of known mass we compare the isotope ratios with predictions from stellar and galactic evolution modelling. Methods. Oxygen isotopic ratios were derived from the K-band spectra of six red giants. The sample red giants are open cluster members with known masses of between 1.8 and 4.5 Msun . The abundance determination employs synthetic spectra calculated with the COMARCS code. The effect of uncertainties in the nuclear reaction rates, the mixing length, and of a change in the initial abundance of the oxygen isotopes was determined by a set of nucleosynthesis and mixing models using the FUNS code. Results. The observed 16O/17O ratios are in good agreement with the model results, even if the measured values do ...

  8. Giant lipomas of the hand

    Directory of Open Access Journals (Sweden)

    Gokce Yildiran

    2015-04-01

    Conclusion: Giant lipomas of the hand are very rare and may cause compressions and other complications. Thus, they require a careful preoperative evaluation in order to make a proper differential diagnosis. [Hand Microsurg 2015; 4(1.000: 8-11

  9. A Giant or a Dwarf?

    DEFF Research Database (Denmark)

    Schmid, Herman

    2005-01-01

    EU may appear to be a giant when it can act on behalf of a united Europe, but usually it is hampered by conflicting member state interests. The EU economic and administrative resources for foreign and trade policy are quite small (on level with one of its major member states) and the hopes in man...

  10. Michigan has a sleeping giant

    CERN Multimedia

    Brock, Raymond; Nichols, Sue

    2007-01-01

    "That giant is 750 miles of fiber optic cable that lassoes its three biggest research universities and Van Andel Institute to the future. Its mission: to uncover the nature of the Big Bang by connecton U.S. physicists to their huge experiment ATLAS in Geneva.." (4 pages)

  11. Damping of multiphonon giant resonances

    CERN Document Server

    Dinh Dang, N; Arima, A

    2000-01-01

    The phonon damping model (PDM) is applied to derive the equations that describe the damping of three-, and n -phonon giant resonances. As examples of the application of this approach, the results of numerical calculations for the double giant resonance (DGDR) (n=2) and triple giant dipole resonance (TGDR) (n=3) in sup 9 sup 0 Zr, sup 1 sup 2 sup 0 Sn and sup 2 sup 0 sup 8 Pb are discussed and compared with those obtained by folding independent giant dipole resonances (GDRs) (the folding results). For the DGDR in the double magic nucleus sup 2 sup 0 sup 8 Pb, we found that these results are very close to the folding results. In the open-shell nuclei sup 9 sup 0 Zr and sup 1 sup 2 sup 0 Sn, a clear deviation from the folding results is observed in calculations in agreement with the experimental trend. The results for the integrated strength and energy of TGDR are found to be much closer to the folding results in all three nuclei. The TGDR widths in the open shell nuclei are found to be larger than the folding r...

  12. Besan\\c{c}on Galactic model analysis of MOA-II microlensing: evidence for a mass deficit in the inner bulge

    CERN Document Server

    Awiphan, Supachai; Robin, Annie

    2015-01-01

    Galactic bulge microlensing surveys provide a probe of Galactic structure. We present the first field-by-field comparison between microlensing observations and the Besan\\c{c}on population synthesis Galactic model. Using an updated version of the model we provide maps of optical depth, average event duration and event rate for resolved source populations and for difference imaging (DIA) events. We also compare the predicted event timescale distribution to that observed. The simulation follows the selection criteria of the MOA-II survey (Sumi et al. 2013). We modify the Besan\\c{c}on model to include M dwarfs and brown dwarfs. Our best fit model requires a brown dwarf mass function slope of $-0.4$. The model provides good agreement with the observed average duration, and respectable consistency with the shape of the timescale distribution (reduced $\\chi^2 \\simeq 2.2$). The DIA and resolved source limiting yields bracket the observed number of events by MOA-II ($2.17\\times$ and $0.83\\times$ the number observed, r...

  13. Radio Wave Reflections from Magnetized Plasma Bulges in the Martian Ionosphere

    Science.gov (United States)

    Zhang, Z.; Nielsen, E.; Xiao, L.; Liang, Y.

    2011-12-01

    In this paper we propose a quantitative explanation of a special type of radio wave reflection phenomena observed by MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding), in light of the cold plasma theory. The phenomena in question appear as a type of traces in the AIS (Active Ionosphere Sounding) ionograms. The traces show the following characteristics: (1) They may appear only when the spacecraft is near to a magnetic cusp region (around 300km altitude) on dayside; (2) They are "C"-shaped curves, with their open ends pointing to the increasing frequency direction. Obviously, these traces represent 'reflection pairs' (two echoes corresponding to one transmission from the antenna). The two echoes of a 'pair' have approximately the same time delay at the lowest propagating frequency, and have increasing time delay separation with increasing wave frequency; (3) Their positions and sizes in ionograms (i.e., their frequency ranges and time delay ranges) change regularly with spacecraft motion; (4) They represent quite rare events, since they are clearly observed only in a few orbit segments among thousands of orbits of Mars Express. In order to investigate the origin of these features, we employ a 2D spatial configuration model of the magnetized plasma bulge to simulate the behavior of the AIS radio waves. In the model the magnetic field is assumed to be a deformed vertical cylinder (corresponding to the patched crustal field of Mars), with its transverse size expanding upward. Magnetic flux density decreases upward and sideward continuously into a low background field value (while the total flux is conserved). Electron density is positively related to the field flux density, meanwhile decreases upward in an exponential manner. Equilibrium between magnetic pressure and plasma pressure is assumed to hold the density bulge. A ray tracing method based on the cold plasma dispersion relation is used to produce artificial ionograms. We find that under some

  14. Red Giants in Eclipsing Binaries as a Benchmark for Asteroseismology

    Science.gov (United States)

    Rawls, Meredith L.

    2016-04-01

    Red giants with solar-like oscillations are astrophysical laboratories for probing the Milky Way. The Kepler Space Telescope revolutionized asteroseismology by consistently monitoring thousands of targets, including several red giants in eclipsing binaries. Binarity allows us to directly measure stellar properties independently of asteroseismology. In this dissertation, we study a subset of eight red giant eclipsing binaries observed by Kepler with a range of orbital periods, oscillation behavior, and stellar activity. Two of the systems do not show solar-like oscillations at all. We use a suite of modeling tools to combine photometry and spectroscopy into a comprehensive picture of each star's life. One noteworthy case is a double red giant binary. The two stars are nearly twins, but have one main set of solar-like oscillations with unusually low-amplitude, wide modes, likely due to stellar activity and modest tidal forces acting over the 171 day eccentric orbit. Mixed modes indicate the main oscillating star is on the secondary red clump (a core-He-burning star), and stellar evolution modeling supports this with a coeval history for a pair of red clump stars. The other seven systems are all red giant branch stars (shell-H-burning) with main sequence companions. The two non-oscillators have the strongest magnetic signatures and some of the strongest lifetime tidal forces with nearly-circular 20–34 day orbits. One system defies this trend with oscillations and a 19 day orbit. The four long-period systems (>100 days) have oscillations, more eccentric orbits, and less stellar activity. They are all detached binaries consistent with coevolution. We find the asteroseismic scaling laws are approximately correct, but fail the most for stars that are least like the Sun by systematically overestimating both mass and radius. Strong magnetic activity and tidal effects often occur in tandem and act to suppress solar-like oscillations. These red giant binaries offer an

  15. The Origin of S0s in Clusters: evidence from the bulge and disc star formation histories

    CERN Document Server

    Johnston, Evelyn J; Merrifield, Michael R

    2014-01-01

    The individual star formation histories of bulges and discs of lenticular (S0) galaxies can provide information on the processes involved in the quenching of their star formation and subsequent transformation from spirals. In order to study this transformation in dense environments, we have decomposed long-slit spectroscopic observations of a sample of 21 S0s from the Virgo Cluster to produce one-dimensional spectra representing purely the bulge and disc light for each galaxy. Analysis of the Lick indices within these spectra reveals that the bulges contain consistently younger and more metal-rich stellar populations than their surrounding discs, implying that the final episode of star formation within S0s occurs in their central regions. Analysis of the $\\alpha$-element abundances in these components further presents a picture in which the final episode of star formation in the bulge is fueled using gas that has previously been chemically enriched in the disc, indicating the sequence of events in the transfo...

  16. Theoretical reevaluations of black hole mass -- bulge mass relation - I. Influences of the seed black hole mass

    CERN Document Server

    Shirakata, Hikari; Okamoto, Takashi; Makiya, Ryu; Ishiyama, Tomoaki; Matsuoka, Yoshiki; Nagashima, Masahiro; Enoki, Motohiro; Oogi, Taira; Kobayashi, Masakazu A R

    2016-01-01

    We show influences of the mass of seed black holes on black hole mass -- bulge mass relation at z ~ 0 by using a semi-analytic model of galaxy formation combined with large cosmological N-body simulations. We constrain our model to reproduce observed properties of galaxies at z ~ 0. Similar to other semi-analytic models, we place a seed black hole immediately after a galaxy forms. When we set the seed black hole mass to 10^5 M_sun, we find that the model result becomes inconsistent with recent observational results of black hole mass -- bulge mass relation for dwarf galaxies. Namely, the model predicts that bulges with ~ 10^9 M_sun harbor black holes more massive than observed. On the other hand, when we employ seed black holes with 10^3 M_sun or randomly choose their masses in the range of 10^{3-5} M_sun, the black hole mass -- bulge mass relation obtained from these models are consistent with observational results including dispersions. We find that to obtain more stringent restrictions of the mass of seed ...

  17. Theoretical re-evaluations of the black hole mass-bulge mass relation - I. Effect of seed black hole mass

    Science.gov (United States)

    Shirakata, Hikari; Kawaguchi, Toshihiro; Okamoto, Takashi; Makiya, Ryu; Ishiyama, Tomoaki; Matsuoka, Yoshiki; Nagashima, Masahiro; Enoki, Motohiro; Oogi, Taira; Kobayashi, Masakazu A. R.

    2016-10-01

    We explore the effect of varying the mass of a seed black hole on the resulting black hole mass-bulge mass relation at z ˜ 0, using a semi-analytic model of galaxy formation combined with large cosmological N-body simulations. We constrain our model by requiring that the observed properties of galaxies at z ˜ 0 are reproduced. In keeping with previous semi-analytic models, we place a seed black hole immediately after a galaxy forms. When the mass of the seed is set at 105 M⊙, we find that the model results become inconsistent with recent observational results of the black hole mass-bulge mass relation for dwarf galaxies. In particular, the model predicts that bulges with ˜109 M⊙ harbour larger black holes than observed. On the other hand, when we employ seed black holes of 103 M⊙ or select their mass randomly within a 103-5 M⊙ range, the resulting relation is consistent with observation estimates, including the observed dispersion. We find that, to obtain stronger constraints on the mass of seed black holes, observations of less massive bulges at z ˜ 0 are a more powerful comparison than the relations at higher redshifts.

  18. Galaxy And Mass Assembly (GAMA): Understanding the wavelength dependence of galaxy structure with bulge-disc decompositions

    CERN Document Server

    Kennedy, Rebecca; Häußler, Boris; Baldry, Ivan; Bremer, Malcolm; Brough, Sarah; Brown, Michael J I; Driver, Simon; Duncan, Kenneth; Graham, Alister W; Holwerda, Benne W; Hopkins, Andrew M; Kelvin, Lee S; Lange, Rebecca; Phillipps, Steven; Vika, Marina; Vulcani, Benedetta

    2016-01-01

    With a large sample of bright, low-redshift galaxies with optical$-$near-IR imaging from the GAMA survey we use bulge-disc decompositions to understand the wavelength-dependent behavior of single-S\\'ersic structural measurements. We denote the variation in single-S\\'ersic index with wavelength as $\\mathcal{N}$, likewise for effective radius we use $\\mathcal{R}$. We find that most galaxies with a substantial disc, even those with no discernable bulge, display a high value of $\\mathcal{N}$. The increase in S\\'ersic index to longer wavelengths is therefore intrinsic to discs, apparently resulting from radial variations in stellar population and/or dust reddening. Similarly, low values of $\\mathcal{R}$ ($<$ 1) are found to be ubiquitous, implying an element of universality in galaxy colour gradients. We also study how bulge and disc colour distributions vary with galaxy type. We find that, rather than all bulges being red and all discs being blue in absolute terms, both components become redder for galaxies wi...

  19. Stochastic Noncircular Motion and Outflows Driven by Magnetic Activity in the Galactic Bulge Region

    CERN Document Server

    Suzuki, Takeru K; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji

    2015-01-01

    By performing a global magneto-hydrodynamical simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic center region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches >~ 0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. In addition, the magnetic pressure-gradient force also drives radial flows in a similar manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the i...

  20. VizieR Online Data Catalog: Metal-poor stars towards the Galactic bulge (Koch+, 2016)

    Science.gov (United States)

    Koch, A.; McWilliam, A.; Preston, G. W.; Thompson, I. B.

    2015-11-01

    The stars studied here were identified in a search for EMP stars in the Galactic bulge (Preston et al. unpublished), near b=-10°, employing the 2.5-m du Pont and 1-m Swope telescopes at Las Campanas Observatory. Observations of seven EMP candidates presented here were taken spread over six nights in July 2007 with a median seeing of 0.95", while individual exposures reached as high as 2" and notably better conditions (~0.6") during several nights. Our chosen set-up included a 0.5" slit, 2x1 binning in spectral and spatial dimensions and resulted in a resolving power of R~45000. An observing log is given in Table 1. (3 data files).

  1. Redshift Evolution in Black Hole-Bulge Relations: Testing CIV-based Black Hole Masses

    CERN Document Server

    Greene, Jenny E; Ludwig, Randi R

    2009-01-01

    We re-examine claims of redshift evolution in black hole-bulge scaling relations based on lensed quasars. In particular, we refine the black hole mass estimates using measurements of Balmer lines from near-infrared spectroscopy obtained with Triplespec at Apache Point Observatory. In support of previous work, we find a large scatter between Balmer and UV line widths, both MgII 2796, 2803 and CIV 1548, 1550. There is tentative evidence that CIII] 1909, despite being a blend of multiple transitions, may correlate well with MgII, although a larger sample is needed for a real calibration. Most importantly, we find no systematic changes in the estimated BH masses for the lensed sample based on Balmer lines, providing additional support to the interpretation that black holes were overly massive compared to their host galaxies at high redshift.

  2. Low temperature deformation behavior of an electromagnetically bulged 5052 aluminum alloy

    Science.gov (United States)

    Li, Zu; Li, Ning; Wang, Duzhen; Ouyang, Di; Liu, Lin

    2016-07-01

    The fundamental understanding of the deformation behavior of electromagnetically formed metallic components under extreme conditions is important. Here, the effect of low temperature on the deformation behavior of an electromagnetically-bulged 5052 aluminum alloy was investigated through uniaxial tension. We found that the Portevin-Le Chatelier Effect, designated by the serrated characteristic in stress-strain curves, continuously decays until completely disappears with decreasing temperature. The physical origin of the phenomenon is rationalized on the basis of the theoretical analysis and the Monte Carlo simulation, which reveal an increasing resistance to dislocation motion imposed by lowering temperature. The dislocations are captured completely by solute atoms at ‑50 °C, which results in the extinction of Portevin-Le Chatelier. The detailed mechanism responsible for this process is further examined through Monte Carlo simulation.

  3. The core mass-radius relation for giants - A new test of stellar evolution theory

    Science.gov (United States)

    Joss, P. C.; Rappaport, S.; Lewis, W.

    1987-01-01

    It is demonstrated here that the measurable properties of systems containing degenerate dwarfs can be used as a direct test of the core mass-radius relation for moderate-mass giants if the final stages of the loss of the envelope of the progenitor giant occurred via stable critical lobe overflow. This relation directly probes the internal structure of stars at a relatively advanced evolutionary state and is only modestly influenced by adjustable parameters. The measured properties of six binary systems, including such diverse systems as Sirius and Procyon and two millisecond pulsars, are utilized to derive constraints on the empirical core mass-radius relation, and the constraints are compared to the theoretical relation. The possibility that the final stages of envelope ejection of the giant progenitor of Sirius B occurred via critical lobe overflow in historical times is considered.

  4. Variability of Optical Counterparts to X-ray Selected Sources in the Galactic Bulge Survey

    Science.gov (United States)

    Johnson, Christopher; Hynes, Robert I.; Jonker, Peter; Torres, Manuel; Maccarone, Thomas J.; Britt, Christopher; Steeghs, Danny; Galactic Bulge Survey Collaboration

    2016-01-01

    The Galactic Bulge Survey (GBS) is a wide-field, multi-wavelength survey of new X-ray sources in the Galactic Bulge detected with the Chandra X-ray Observatory. The goals of the GBS are to test binary population models by uncovering quiescent Low-Mass X-Ray Binaries (LMXB), and to identify suitable systems for follow-up mass determination using multi-wavelength observations. This follow-up is essential to better determine black hole and neutron star mass distributions. We present preliminary results from the southernmost portion of the GBS positioned 1.5-2.0 degrees below the Galactic Center which contains 424 unique X-ray sources. The optical photometry presented here were acquired using the DECam imager and the previous Mosaic-II imager on the 4m Blanco telescope at Cerro-Tololo Inter-American Observatory (CTIO). We combine photometry with optical spectroscopy from several different telescopes to help characterize the detected X-ray sources. To accomplish this goal, we analyze the light curve morphology and the spectroscopic features of the optical counterparts to classify these binary systems. I will describe the technique for determining the correct optical counterpart within the error circle using image subtraction and report on the statistics of the sample. I will then summarize the candidate LMXBs we have identified so far and highlight other interesting sources. This work was supported by the National Science Foundation under Grant No. AST-0908789 and by NASA through Chandra Award Number AR3-14002X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. We also acknowledge support from a Graduate Student Research Award administered by the Louisiana Space Grant Consortium (LaSPACE).

  5. Proximal Probes Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Proximal Probes Facility consists of laboratories for microscopy, spectroscopy, and probing of nanostructured materials and their functional properties. At the...

  6. [Giant intradiploic infratentorial epidermoid cyst].

    Science.gov (United States)

    Alberione, F; Caire, F; Fischer-Lokou, D; Gueye, M; Moreau, J J

    2007-10-01

    Epidermoid cysts are benign, uncommon lesions (1% of all intracranial tumors). Their localization is intradiploic in 25% of cases, and exceptionally subtentorial. We report here a rare case of giant intradiploic infratentorial epidermoid cyst. A 74-year old patient presented with recent diplopia and sindrome cerebellar. CT scan and MR imaging revealed a giant osteolytic extradural lesion of the posterior fossa (5.2 cm x 3.8 cm) with a small area of peripheral enhancement after contrast injection. Retrosigmoid suboccipital craniectomy allowed a satisfactory removal of the tumor, followed by an acrylic cranioplasty. The outcome was good. Neuropathological examination confirmed an epidermoid cyst. We review the literature and discuss our case. PMID:18008017

  7. Idiopathic giant right atrial aneurysm

    International Nuclear Information System (INIS)

    A 2-year-old boy with an incidental finding of massive cardiomegaly on a chest X-ray was diagnosed with a giant right atrial aneurysm upon further investigation with echocardiography. The patient underwent successful surgical reduction of the right atrium and closure of the patent foramen ovale to prevent thromboembolic complications and to lower the risk of atrial arrhythmias. The resected atrium had paper-thin walls and pathological features of interstitial fibrosis with endocardial thickening

  8. Observed Properties of Giant Cells

    Science.gov (United States)

    Hathaway, David H.; Upton, Lisa; Colegrove, Owen

    2014-01-01

    The existence of Giant Cells has been suggested by both theory and observation for over 45 years. We have tracked the motions of supergranules in SDO/HMI Doppler velocity data and find larger (Giant Cell) flows that persist for months. The flows in these cells are clockwise around centers of divergence in the north and counter-clockwise in the south. Equatorward flows are correlated with prograde flows - giving the transport of angular momentum toward the equator that is needed to maintain the Sun's rapid equatorial rotation. The cells are most pronounced at mid- and high-latitudes where they exhibit the rotation rates representative of those latitudes. These are clearly large, long-lived, cellular features, with the dynamical characteristics expected from the effects of the Sun's rotation, but the shapes of the cells are not well represented in numerical models. While the Giant Cell flow velocities are small (<10 m/s), their long lifetimes should nonetheless substantially impact the transport of magnetic flux in the Sun's near surface layers.

  9. KEPLER RAPIDLY ROTATING GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.; Paz-Chinchón, F.; Chagas, M. L. das; Leão, I. C.; Oliveira, G. Pereira de; Silva, R. Rodrigues da; Roque, S.; Oliveira, L. L. A. de; Silva, D. Freire da; De Medeiros, J. R., E-mail: renan@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal RN (Brazil)

    2015-07-10

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surface rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.

  10. Kepler rapidly rotating giant stars

    CERN Document Server

    Costa, A D; Bravo, J P; Paz-Chinchón, F; Chagas, M L das; Leão, I C; de Oliveira, G Pereira; da Silva, R Rodrigues; Roque, S; de Oliveira, L L A; da Silva, D Freire; De Medeiros, J R

    2015-01-01

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of sub-stellar companions by their hosting stars. In the present letter we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting very short rotation period with values ranging from 13 to 55 days. This finding points for remarkable surface rotation rates, up to 18 times the Sun rotation. These giants are combined with 6 other recently listed in the literature for mid-IR diagnostic based on WISE information, from which a trend for an infrared excess is revealed for at least a half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.

  11. Testing planet formation theories with Giant stars

    OpenAIRE

    Pasquini, Luca; Doellinger, M. P.; Hatzes, A.; Setiawan, J.; Girardi, L.; Da Silva, L.; de Medeiros, J. R.

    2008-01-01

    Planet searches around evolved giant stars are bringing new insights to planet formation theories by virtue of the broader stellar mass range of the host stars compared to the solar-type stars that have been the subject of most current planet searches programs. These searches among giant stars are producing extremely interesting results. Contrary to main sequence stars planet-hosting giants do not show a tendency of being more metal rich. Even if limited, the statistics also suggest a higher ...

  12. Rapid Formation of Ice Giant Planets

    CERN Document Server

    Boss, A P; Haghighipour, N; Boss, Alan P.; Wetherill, George W.; Haghighipour, Nader

    2002-01-01

    The existence of Uranus and Neptune presents severe difficulties for the core accretion model for the formation of ice giant planets. We suggest an alternative mechanism, namely disk instability leading to the formation of gas giant protoplanets, coagulation and settling of dust grains to form ice/rock cores at their centers, and photoevaporation of their gaseous envelopes by a nearby OB star, as a possible means of forming ice giant planets.

  13. Solitary ulcerated congenital giant juvenile xanthogranuloma

    Directory of Open Access Journals (Sweden)

    Su Yuen Ng

    2015-01-01

    Full Text Available A 3-month-old female patient with a giant ulcerated nodule over the back since birth was diagnosed as congenital giant juvenile xanthogranuloma (JXG based on clinical and histopathological examination. Congenital giant JXG with ulceration at birth is a rare presentation of JXG and commonly misdiagnosed. This case emphasizes the importance of being aware of the myriad presentations of JXG in order to make a correct diagnosis and avoid unnecessary investigations or treatment.

  14. Probe tip heating assembly

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Roger William; Oh, Yunje

    2016-10-25

    A heating assembly configured for use in mechanical testing at a scale of microns or less. The heating assembly includes a probe tip assembly configured for coupling with a transducer of the mechanical testing system. The probe tip assembly includes a probe tip heater system having a heating element, a probe tip coupled with the probe tip heater system, and a heater socket assembly. The heater socket assembly, in one example, includes a yoke and a heater interface that form a socket within the heater socket assembly. The probe tip heater system, coupled with the probe tip, is slidably received and clamped within the socket.

  15. Gaps in globular cluster streams: giant molecular clouds can cause them too

    OpenAIRE

    Amorisco, Nicola C.; Gòmez, Facundo A.; Vegetti, Simona; White, Simon D. M.

    2016-01-01

    As a result of their internal dynamical coherence, thin stellar streams formed by disrupting globular clusters (GCs) can act as detectors of dark matter (DM) substructure in the Galactic halo. Perturbations induced by close flybys amplify into detectable density gaps, providing a probe both of the abundance and of the masses of DM subhaloes. Here, we use N-body simulations to show that the Galactic population of giant molecular clouds (GMCs) can also produce gaps (and clumps) in GC streams, a...

  16. Giant-dipole Resonance and the Deformation of Hot, Rotating Nuclei

    OpenAIRE

    Kusnezov, Dimitri; Ormand, W. Erich

    2003-01-01

    The development of nuclear shapes under the extreme conditions of high spin and/or temperature is examined. Scaling properties are used to demonstrate universal properties of both thermal expectation values of nuclear shapes as well as the minima of the free energy, which can be used to understand the Jacobi transition. A universal correlation between the width of the giant dipole resonance and quadrupole deformation is found, providing a novel probe to measure the nuclear deformation in hot ...

  17. CHARACTERIZATION OF A SAMPLE OF INTERMEDIATE-TYPE ACTIVE GALACTIC NUCLEI. II. HOST BULGE PROPERTIES AND BLACK HOLE MASS ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Erika; Cruz-Gonzalez, Irene; Martinez, Benoni; Jimenez-Bailon, Elena [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-264, Mexico D.F. 04510 (Mexico); Mendez-Abreu, Jairo; Lopez-Martin, Luis [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Fuentes-Carrera, Isaura [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional (ESFM-IPN), U.P. Adolfo Lopez Mateos, Mexico D.F. 07730 (Mexico); Chavushyan, Vahram [Instituto Nacional de Astrofisica, Optica y Electronica, Apdo. Postal 51-216, 72000 Puebla (Mexico); Leon-Tavares, Jonathan, E-mail: erika@astro.unam.mx [Aalto University Metsaehovi Radio Observatory, Metsaehovintie 114, 02540 Kylmaelae (Finland)

    2013-02-15

    We present a study of the host bulge properties and their relations with the black hole mass for a sample of 10 intermediate-type active galactic nuclei (AGNs). Our sample consists mainly of early-type spirals, four of them hosting a bar. For 70{sup +10} {sub -17}% of the galaxies, we have been able to determine the type of the bulge, and find that these objects probably harbor a pseudobulge or a combination of classical bulge/pseudobulge, suggesting that pseudobulges might be frequent in intermediate-type AGNs. In our sample, 50% {+-} 14% of the objects show double-peaked emission lines. Therefore, narrow double-peaked emission lines seem to be frequent in galaxies harboring a pseudobulge or a combination of classical bulge/pseudobulge. Depending on the bulge type, we estimated the black hole mass using the corresponding M {sub BH}-{sigma}* relation and found them within a range of 5.69 {+-} 0.21 < log M {sup {sigma}}*{sub BH} < 8.09 {+-} 0.24. Comparing these M {sup {sigma}}*{sub BH} values with masses derived from the FWHM of H{beta} and the continuum luminosity at 5100 A from their SDSS-DR7 spectra (M {sub BH}), we find that 8 out of 10 (80{sup +7} {sub -17}%) galaxies have black hole masses that are compatible within a factor of 3. This result would support that M {sub BH} and M {sup {sigma}}*{sub BH} are the same for intermediate-type AGNs, as has been found for type 1 AGNs. However, when the type of the bulge is taken into account, only three out of the seven (43{sup +18} {sub -15}%) objects of the sample have their M {sup {sigma}}*{sub BH} and M {sub BH} compatible within 3{sigma} errors. We also find that estimations based on the M {sub BH}-{sigma}* relation for pseudobulges are not compatible in 50% {+-} 20% of the objects.

  18. The Orbital Evolution of Gas Giant Planets around Giant Stars

    OpenAIRE

    Villaver, Eva; Livio, Mario

    2009-01-01

    Recent surveys have revealed a lack of close-in planets around evolved stars more massive than 1.2 Msun. Such planets are common around solar-mass stars. We have calculated the orbital evolution of planets around stars with a range of initial masses, and have shown how planetary orbits are affected by the evolution of the stars all the way to the tip of the Red Giant Branch (RGB). We find that tidal interaction can lead to the engulfment of close-in planets by evolved stars. The engulfment is...

  19. A Radiation-Hydrodynamical Model for Supermassive Black Hole-to-Bulge Mass Relation and Quasar Formation

    CERN Document Server

    Umemura, M

    2001-01-01

    As a potential mechanism to build up supermassive black holes (BHs) in a spheroidal system, we consider the radiation drag effect by bulge stars, which extracts angular momentum from interstellar gas and thus allows the gas to accrete onto the galactic center. With incorporating radiation hydrodynamical equation with simple stellar evolution, it is shown that the BH-to-bulge mass ratio, $f_{BH}$, is basically determined by a fundamental constant, that is, the energy conversion efficiency for nuclear fusion of hydrogen to helium, $\\epsilon=0.007$. More specifically, $f_{BH}$ is predicted to be $0.3\\epsilon -0.5\\epsilon$. Based on the present model for BH growth, a scenario for quasar formation is addressed in relation to ultraluminous infrared galaxies.

  20. The Interstellar Extinction Toward the Milky Way Bulge with Planetary Nebulae, Red Clump, and RR Lyrae stars

    CERN Document Server

    Nataf, David M

    2016-01-01

    I review the literature covering the issue of interstellar extinction toward the Milky Way bulge, with emphasis placed on findings from planetary nebulae, RR Lyrae, and red clump stars. I also report on observations from HI gas and globular clusters. I show that there has been substantial progress in this field in recent decades, most particularly from red clump stars. The spatial coverage of extinction maps has increased by a factor $\\sim 100 \\times$ in the past twenty years, and the total-to-selective extinction ratios reported have shifted by $\\sim$20-25\\%, indicative of the improved accuracy and separately, of a steeper-than-standard extinction curve. Problems remain in modelling differential extinction, explaining anomalies involving the planetary nebulae, and understanding the difference between bulge extinction coefficients and "standard" literature values.

  1. The Interstellar Extinction Towards the Milky Way Bulge with Planetary Nebulae, Red Clump, and RR Lyrae Stars

    Science.gov (United States)

    Nataf, David M.

    2016-06-01

    I review the literature covering the issue of interstellar extinction towards the Milky Way bulge, with emphasis placed on findings from planetary nebulae, RR Lyrae, and red clump stars. I also report on observations from HI gas and globular clusters. I show that there has been substantial progress in this field in recent decades, most particularly from red clump stars. The spatial coverage of extinction maps has increased by a factor ~ 100 × in the past 20 yr, and the total-to-selective extinction ratios reported have shifted by ~ 20-25%, indicative of the improved accuracy and separately, of a steeper-than-standard extinction curve. Problems remain in modelling differential extinction, explaining anomalies involving the planetary nebulae, and understanding the difference between bulge extinction coefficients and `standard' literature values.

  2. Survey of the Galactic center with IRSF/SIRIUS - near-infrared extinction law and bulge structure

    Science.gov (United States)

    Nishiyama, Shogo

    2005-04-01

    Since 2001, we have observed the central region of our Galaxy with the near-infrared (J, H, and Ks) camera SIRIUS and the 1.4 m telescope IRSF. Here I present the results about the infrared extinction law and the structure of the Galactic Bulge with bulge red clump stars. From the observation of the red clump stars, we have determined directly the ratios of extinction to color-excess (AKs/E(H-Ks) and AKs/E(J-Ks), which are clearly less than the ratios determined by previous color-differences methods. We also find a smaller structure (|l| <~ 4°) inside the Galactic bar although its exact nature is as yet uncertain.

  3. Giant magneto-resistance devices

    CERN Document Server

    Hirota, Eiichi; Inomata, Koichiro

    2002-01-01

    This book deals with the application of giant magneto-resistance (GMR) effects to electronic devices. It will appeal to engineers and graduate students in the fields of electronic devices and materials. The main subjects are magnetic sensors with high resolution and magnetic read heads with high sensitivity, required for hard-disk drives with recording densities of several gigabytes. Another important subject is novel magnetic random-access memories (MRAM) with non-volatile non-destructive and radiation-resistant characteristics. Other topics include future GMR devices based on bipolar spin transistors, spin field-effect transistors (FETs) and double-tunnel junctions.

  4. Giant bubble pinch-off

    OpenAIRE

    Bergmann, Raymond; Meer, Van Der; Stijnman, Mark; Sandtke, Marijn; Prosperetti, Andrea; Lohse, Detlef

    2006-01-01

    Self-similarity has been the paradigmatic picture for the pinch-off of a drop. Here we will show through high-speed imaging and boundary integral simulations that the inverse problem, the pinch-off of an air bubble in water, is not self-similar in a strict sense: A disk is quickly pulled through a water surface, leading to a giant, cylindrical void which after collapse creates an upward and a downward jet. Only in the limiting case of large Froude numbers does the purely inertial scaling h(-l...

  5. Energy Landscapes of Dynamic Ensembles of Rolling Triplet Repeat Bulge Loops: Implications for DNA Expansion Associated with Disease States

    OpenAIRE

    Völker, Jens; Gindikin, Vera; Klump, Horst H.; Plum, G. Eric; Breslauer, Kenneth J.

    2012-01-01

    DNA repeat domains can form ensembles of canonical and noncanonical states, including stable and metastable DNA secondary structures. Such sequence-induced structural diversity creates complex conformational landscapes for DNA processing pathways, including those triplet expansion events that accompany replication, recombination, and/or repair. Here we demonstrate further levels of conformational complexity within repeat domains. Specifically, we show that bulge loop structures within an exte...

  6. River bulge evolution and dynamics in a non-tidal sea – Daugava River plume in the Gulf of Riga, Baltic Sea

    Directory of Open Access Journals (Sweden)

    E. Soosaar

    2015-10-01

    Full Text Available Satellite remote sensing imagery and numerical modelling were used for the study of river bulge evolution and dynamics in a non-tidal sea, the Gulf of Riga (GoR in the Baltic Sea. Total suspended matter (TSM images showed a clearly formed anti-cyclonically rotating river bulge from Daugava River discharge during the studied low wind period. In about 7–8 days the bulge grew up to 20 km in diameter, before being diluted. Bulge growth rate was estimated as rb ~ t 0.31± 0.23 (R2 = 0.87. A high resolution (horizontal grid step of 125 m General Estuarine Transport Model (GETM was used for detailed description of the development of the river plume in the southern GoR over the period when satellite images were acquired. In the model simulation, the rb ~ t 0.5± 0.04 (R2 = 0.90. Both the model simulation and the satellite images showed that river water was mainly contained in the bulge and there were numerous intrusions at the outer perimeter of the bulge. We made numerical sensitivity tests with actual bathymetry and measured river runoff without wind forcing: (1 having initial 3-dimensional density distribution, (2 using initially a homogeneous ambient density field. In the first case, the anti-cyclonic bulge did not develop within the course of the model simulation and coastal current was kept offshore due to ambient density-driven circulation. In the second case, the river plume developed steadily into an anti-cyclonically recirculating bulge and a coastal current. This showed a significant effect of the wind in the evolution of the river bulge, even if the wind speed was moderate (3–4 m s−1. In the second case, rb ~ t 0.28± 0.01 (R2 = 0.98. While previous studies conclude that mid-field bulge region is governed by balance between centrifugal, Coriolis and pressure gradient terms, our study showed that geostrophic balance is valid for the entire mid-field of the bulge. In addition, while there is discharge into the homogenous GoR in case of

  7. Enhanced recovery after giant ventral hernia repair

    DEFF Research Database (Denmark)

    Jensen, K K; Brøndum, T L; Harling, H.;

    2016-01-01

    PURPOSE: Giant ventral hernia repair is associated with a high risk of postoperative morbidity and prolonged length of stay (LOS). Enhanced recovery (ERAS) measures have proved to lead to decreased morbidity and LOS after various surgical procedures, but never after giant hernia repair. The curre...

  8. Giant Rings in the CMB Sky

    CERN Document Server

    Kovetz, Ely D; Itzhaki, Nissan

    2010-01-01

    We find a unique direction in the CMB sky around which giant rings have an anomalous mean temperature profile. This direction is in very close alignment with the afore measured anomalously large bulk flow direction. We argue that a cosmic defect seeded by a pre-inflationary particle could explain the giant rings, the large bulk flow and their alignment.

  9. Totally thrombosed giant anterior communicating artery aneurysm

    Directory of Open Access Journals (Sweden)

    V R Roopesh Kumar

    2015-01-01

    Full Text Available Giant anterior communicating artery aneurysmsarerare. Apatient presented with visual dysfunction, gait ataxia and urinary incontinence. MRI showed a giant suprasellar mass.At surgery, the lesion was identified as being an aneurysm arising from the anterior communicating artery.The difficulty in preoperative diagnosis and relevant literature are reviewed.

  10. Internal rotation of red giants by asteroseismology

    Directory of Open Access Journals (Sweden)

    Christensen-Dalsgaard J.

    2013-03-01

    Full Text Available We present an asteroseismic approach to study the dynamics of the stellar interior in red giant stars by asteroseismic inversion of the splittings induced by the stellar rotation on the oscillation frequencies. We show preliminary results obtained for the red giant KIC4448777 observed by the space mission Kepler.

  11. THE ORNL ATOM PROBE

    OpenAIRE

    Miller, M

    1986-01-01

    The ORNL Atom Probe is a microanalytical tool for studies in materials science. The instrument is a combination of a customized version of the vacuum system of the VG FIM-100 atom probe, an ORNL-designed microcomputer-controlled digital timing system, and a double curved CEMA Imaging Atom Probe detector. The atom probe combines four instruments into one - namely a field ion microscope, an energy compensated time-of-flight mass spectrometer, an imaging atom probe, and a pulsed laser atom probe.

  12. Mobile Game Probes

    DEFF Research Database (Denmark)

    Borup Lynggaard, Aviaja

    2006-01-01

    This paper will examine how probes can be useful for game designers in the preliminary phases of a design process. The work is based upon a case study concerning pervasive mobile phone games where Mobile Game Probes have emerged from the project. The new probes are aimed towards a specific target...... group and the goal is to specify the probes so they will cover the most relevant areas for our project. The Mobile Game Probes generated many interesting results and new issues occurred, since the probes came to be dynamic and favorable for the process in new ways....

  13. Discovery of a high state AM CVn binary in the Galactic Bulge Survey

    Science.gov (United States)

    Wevers, T.; Torres, M. A. P.; Jonker, P. G.; Wetuski, J. D.; Nelemans, G.; Steeghs, D.; Maccarone, T. J.; Heinke, C.; Hynes, R. I.; Udalski, A.; Kostrzewa-Rutkowska, Z.; Groot, P. J.; Gazer, R.; Szymański, M. K.; Britt, C. T.; Wyrzykowski, Ł.; Poleski, R.

    2016-10-01

    We report on the discovery of a hydrogen-deficient compact binary (CXOGBS J175107.6-294037) belonging to the AM CVn class in the Galactic Bulge Survey. Deep archival X-ray observations constrain the X-ray positional uncertainty of the source to 0.57 arcsec, and allow us to uniquely identify the optical and UV counterpart. Optical spectroscopic observations reveal the presence of broad, shallow He I absorption lines while no sign of hydrogen is present, consistent with a high state system. We present the optical light curve from Optical Gravitational Lensing Experiment monitoring, spanning 15 yr. It shows no evidence for outbursts; variability is present at the 0.2 mag level on time-scales ranging from hours to weeks. A modulation on a time-scale of years is also observed. A Lomb-Scargle analysis of the optical light curves shows two significant periodicities at 22.90 and 23.22 min. Although the physical interpretation is uncertain, such time-scales are in line with expectations for the orbital and superhump periods. We estimate the distance to the source to be between 0.5 and 1.1 kpc. Spectroscopic follow-up observations are required to establish the orbital period, and to determine whether this source can serve as a verification binary for the eLISA gravitational wave mission.

  14. MOA 2011-BLG-028Lb: a Neptune-mass Microlensing Planet in the Galactic Bulge

    CERN Document Server

    Skowron, J; Poleski, R; Kozłowski, S; Szymański, M K; Wyrzykowski, Ł; Ulaczyk, K; Pietrukowicz, P; Pietrzyński, G; Soszyński, I; Abe, F; Bennett, D P; Bhattacharya, A; Bond, I A; Freeman, M; Fukui, A; Hirao, Y; Itow, Y; Koshimoto, N; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Nagakane, M; Ohnishi, K; Rattenbury, N; Saito, To; Sullivan, D J; Sumi, T; Suzuki, D; Tristram, P J; Yonehara, A; Dominik, M; Jørgensen, U G; Bozza, V; Harpsøe, K; Hundertmark, M; Skottfelt, J

    2015-01-01

    We present the discovery of a Neptune-mass planet orbiting a 0.8 +- 0.3 M_Sun star in the Galactic bulge. The planet manifested itself during the microlensing event MOA 2011-BLG-028/OGLE-2011-BLG-0203 as a low-mass companion to the lens star. The analysis of the light curve provides the measurement of the mass ratio: (1.2 +- 0.2) x 10^-4, which indicates the mass of the planet to be 12-60 Earth masses. The lensing system is located at 7.3 +- 0.7 kpc away from the Earth near the direction to Baade's Window. The projected separation of the planet, at the time of the microlensing event, was 3.1-5.2 AU. Although the "microlens parallax" effect is not detected in the light curve of this event, preventing the actual mass measurement, the uncertainties of mass and distance estimation are narrowed by the measurement of the source star proper motion on the OGLE-III images spanning eight years, and by the low amount of blended light seen, proving that the host star cannot be too bright and massive. We also discuss the ...

  15. The Acceleration of the Nebular Shells in Planetary Nebulae in the Milky Way Bulge

    CERN Document Server

    Richer, Michael G; Pereyra, Margarita; Riesgo, Hortensia; Diaz, Maria Teresa Garcia; Baez, Sol-Haret

    2008-01-01

    We present a systematic study of line widths in the [\\ion{O}{3}]$\\lambda$5007 and H$\\alpha$ lines for a sample of 86 planetary nebulae in the Milky Way bulge based upon spectroscopy obtained at the \\facility{Observatorio Astron\\'omico Nacional in the Sierra San Pedro M\\'artir (OAN-SPM)} using the Manchester Echelle Spectrograph. The planetary nebulae were selected with the intention of simulating samples of bright extragalactic planetary nebulae. We separate the planetary nebulae into two samples containing cooler and hotter central stars, defined by the absence or presence, respectively, of the \\ion{He}{2} $\\lambda$6560 line in the H$\\alpha$ spectra. This division separates samples of younger and more evolved planetary nebulae. The sample of planetary nebulae with hotter central stars has systematically larger line widths, larger radii, lower electron densities, and lower H$\\beta$ luminosities. The distributions of these parameters in the two samples all differ at significance levels exceeding 99%. These dif...

  16. Masses of star clusters in the nuclei of bulge-less spiral galaxies

    CERN Document Server

    Walcher, C J; McLaughlin, D; Rix, H W; Böker, T; Haering, N; Ho, L C; Sarzi, M; Shields, J C

    2004-01-01

    In the last decade star clusters have been found in the centers of spiral galaxies across all Hubble types. We here present a spectroscopic study of the exceptionally bright (10^6 - 10^8 Lsun) but compact (Re ~ 5 pc) nuclear star clusters in very late type spirals with UVES at the VLT. We find the velocity dispersions of the nine clusters in our sample to range from 13 to 34 km/s. Using photometric data from the HST/WFPC2 and spherically symmetric dynamical models we determine masses between 8*10^5 and 6*10^7 Msun. The mass to light ratios range from 0.2 to 1.5 in the I band. This indicates a young mean age for most clusters, in agreement with previous studies. Given their high masses and small sizes we find that nuclear clusters are among the objects with the highest mean surface density known (up to 10^5 Msun pc^-2). From their dynamical properties we infer that, rather than small bulges, the closest structural kin of nuclear clusters appear to be massive compact star clusters. This includes such different ...

  17. Barlenses and X-shape features compared: different manifestations of Boxy/Peanut bulges

    CERN Document Server

    Laurikainen, E

    2016-01-01

    Morphological characteristics of the vertically thick inner bar components are studied. At high galaxy inclinations they manifest as Boxy/Peanut/X-shape features, and near to face-on view as barlenses. Using the Spitzer Survey of Stellar Structure in Galaxies (S4G) and the Near-IR S0 galaxy Survey (NIRS0S), we compared the properties of 88 X-shape features, 85 barlenses, and the photometric bulges of 41 non-barred galaxies. Sizes and minor-to-major axis ratios (b/a) of these structures are compared, and interpreted by means of synthetic images using N-body simulation models. Barlenses and their parent galaxies are also divided into different sub-groups. The synthetic images are analyzed in a similar manner as the observations. This is the first time that the observed properties of barlenses and X-shape features are compared, over a large range of galaxy inclinations. Our analysis are consistent with the idea that barlenses and X-shape features are physically the same phenomenon. However, which of the two feat...

  18. BLACK-HOLE-BULGE RELATIONSHIP OF POST-STARBURST QUASARS AT z ∼ 0.3

    International Nuclear Information System (INIS)

    The MBH-σ* relation has been studied extensively for local galaxies, but to date there have been scarce few direct measurements of stellar velocity dispersions for systems beyond the local universe. We investigate black hole and host galaxy properties of six 'post-starburst quasars' (PSQs) at z ∼ 0.3. Spectra of these objects simultaneously display features from the active nucleus including broad emission lines and a host galaxy Balmer absorption series indicative of the post-starburst stellar population. These are the first measurements of σ* in such objects, and we significantly increase the number of directly measured non-local objects on the MBH-σ* diagram. The 'PSQs' of our sample fall on or above the locally defined MBH-σ* relation, a result that is consistent with previous MBH-σ* studies of samples at z > 0.1. However, they are generally consistent with the MBH-Lbulge relation. Furthermore, their location on the Faber-Jackson relation suggests that some of the bulges may be dynamically peculiar.

  19. New insight on the origin of the double red clump in the Milky Way bulge

    CERN Document Server

    Joo, Seok-Joo; Chung, Chul

    2016-01-01

    The double red clump (RC) observed in the Milky Way bulge is widely interpreted as evidence for an X-shaped structure. We have recently suggested, however, an alternative interpretation based on the multiple population phenomenon, where the bright RC is from helium enhanced second-generation stars (G2), while the faint RC is representing first-generation stars (G1) with normal helium abundance. Here our RC models are constructed in a large parameter space to see the effects of metallicity, age, and helium abundance on the double RC feature. Our models show that the luminosity of RC stars is mainly affected by helium abundance, while the RC color is primarily affected by metallicity. The effect of age is relatively small, unless it is older than 12 Gyr or much younger than 6 Gyr. The observed double RC feature can therefore be reproduced in a relatively large parameter space, once {\\Delta}Y between G2 and G1 is assumed to be greater than $\\sim$0.10. We further show that the longitude dependence of the double R...

  20. Extension of Tycho catalog for low-extinction windows in the galactic bulge

    CERN Document Server

    Dominici, T P; Horváth, J E; Medina-Tanco, G A; Benevides-Soares, P

    1999-01-01

    We present in this work secondary catalogs up to $m_{Val} \\sim 13$ based on the Tycho reference frame (ESA, 1997) for 12 selected low-extinction fields towards the galactic bulge. The observations have been performed with the Askania-Zeiss Meridian Circle equiped with a CCD camera, located at the Abrahão de Moraes Observatory (Valinhos, Brazil) and operated by the Institute of Astronomy and Geophysics, São Paulo University. The presented catalog, though not complete, has been designed to help in intensive search programmes (e.g. microlensing and variable searches) and therefore the selected standards have a high astrometric and photometric ($V$ band, approximately) quality. The mean precisions obtained were $0.0018^{s}$ in $\\alpha$, 0.013'' in magnitude when weighted with the error bars in each night (in the mean, 42 stars for the catalog of each window). Tables B.1 to B.12 are also available in eletronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg....

  1. Bulge-forming galaxies with an extended rotating disk at z~2

    CERN Document Server

    Tadaki, Ken-ichi; Kodama, Tadayuki; Wuyts, Stijn; Wisnioski, Emily; Schreiber, Natascha M Förster; Burkert, Andreas; Lang, Philipp; Tacconi, Linda J; Lutz, Dieter; Belli, Sirio; Davies, Richard I; Hatsukade, Bunyo; Hayashi, Masao; Herrera-Camus, Rodrigo; Ikarashi, Soh; Inoue, Shigeki; Kohno, Kotaro; Koyama, Yusei; Mendel, J Trevor; Nakanishi, Kouichiro; Shimakawa, Rhythm; Suzuki, Tomoko L; Tamura, Yoichi; Tanaka, Ichi; Übler, Hannah; Wilman, Dave J

    2016-01-01

    We present 0".2-resolution Atacama Large Millimeter/submillimeter Array observations at 870 um for 25 Halpha-seleced star-forming galaxies (SFGs) around the main-sequence at z=2.2-2.5. We detect significant 870 um continuum emission in 16 (64%) of these SFGs. The high-resolution maps reveal that the dust emission is mostly radiated from a single region close to the galaxy center. Exploiting the visibility data taken over a wide $uv$ distance range, we measure the half-light radii of the rest-frame far-infrared emission for the best sample of 12 SFGs. We find nine galaxies to be associated with extremely compact dust emission with R_{1/2,870um}1e10 Msol/kpc^2 in several hundred Myr, i.e. by z~2. Moreover, ionized gas kinematics reveal that they are rotation-supported with an angular momentum as large as that of typical SFGs at z=1-3. Our results suggest bulges are commonly formed in extended rotating disks by internal processes, not involving major mergers.

  2. Alignment of the Angular Momentum Vectors of Planetary Nebulae in the Galactic Bulge

    CERN Document Server

    Rees, B

    2013-01-01

    We use high-resolution H {\\alpha} images of 130 planetary nebulae (PNe) to investigate whether there is a preferred orientation for PNe within the Galactic Bulge. The orientations of the full sample have an uniform distribution. However, at a significance level of 0.01, there is evidence for a non-uniform distribution for those planetary nebulae with evident bipolar morphology. If we assume that the bipolar PNe have an unimodal distribution of the polar axis in Galactic coordinates, the mean Galactic position angle is consistent with 90{\\deg}, i.e. along the Galactic plane, and the significance level is better than 0.001 (the equivalent of a 3.7{\\sigma} significance level for a Gaussian distribution). The shapes of PNe are related to angular momentum of the original star or stellar system, where the long axis of the nebula measures the angular momentum vector. In old, low-mass stars, the angular momentum is largely in binary orbital motion. Consequently, the alignment of bipolar nebulae that we have found ind...

  3. Cytosolic Ca(2+) Signals Enhance the Vacuolar Ion Conductivity of Bulging Arabidopsis Root Hair Cells.

    Science.gov (United States)

    Wang, Yi; Dindas, Julian; Rienmüller, Florian; Krebs, Melanie; Waadt, Rainer; Schumacher, Karin; Wu, Wei-Hua; Hedrich, Rainer; Roelfsema, M Rob G

    2015-11-01

    Plant cell expansion depends on the uptake of solutes across the plasma membrane and their storage within the vacuole. In contrast to the well-studied plasma membrane, little is known about the regulation of ion transport at the vacuolar membrane. We therefore established an experimental approach to study vacuolar ion transport in intact Arabidopsis root cells, with multi-barreled microelectrodes. The subcellular position of electrodes was detected by imaging current-injected fluorescent dyes. Comparison of measurements with electrodes in the cytosol and vacuole revealed an average vacuolar membrane potential of -31 mV. Voltage clamp recordings of single vacuoles resolved the activity of voltage-independent and slowly deactivating channels. In bulging root hairs that express the Ca(2+) sensor R-GECO1, rapid elevation of the cytosolic Ca(2+) concentration was observed, after impalement with microelectrodes, or injection of the Ca(2+) chelator BAPTA. Elevation of the cytosolic Ca(2+) level stimulated the activity of voltage-independent channels in the vacuolar membrane. Likewise, the vacuolar ion conductance was enhanced during a sudden increase of the cytosolic Ca(2+) level in cells injected with fluorescent Ca(2+) indicator FURA-2. These data thus show that cytosolic Ca(2+) signals can rapidly activate vacuolar ion channels, which may prevent rupture of the vacuolar membrane, when facing mechanical forces. PMID:26232520

  4. Colors of barlenses: evidence for connecting them to boxy/peanut bulges

    CERN Document Server

    Endoqui, M Herrera; Laurikainen, E; Knapen, J H

    2016-01-01

    We study the colors and orientations of structures in low and intermediate inclination barred galaxies. We test the hypothesis that barlenses, roundish central components embedded in bars, could form a part of the bar in a similar manner to boxy/peanut bulges in the edge-on view. A sample of 79 barlens galaxies was selected from the S$^4$G and the NIRS0S surveys. The sizes, ellipticities, and orientations of barlenses were measured and used to define the barlens regions in the color measurements. The orientations of barlenses were studied with respect to those of the "thin bars" and the line-of-nodes of the disks. For 47 galaxies color maps were constructed using the SDSS images in five optical bands, u, g, r, i, and z. Colors of bars, barlenses, disks, and central regions of the galaxies were measured using two different approaches and color-color diagrams sensitive to metallicity, stellar surface gravity, and short lived stars were constructed. Color differences between the structure components were calcula...

  5. The Width of the 511 KeV Line from the Bulge of the Galaxy

    CERN Document Server

    Zhitnitsky, A

    2006-01-01

    This is a comment on a recent criticism by Cumberbatch, Silk and Starkman (CSS), astro-ph/0606429. CSS criticize our proposal suggesting that the 511 keV \\gamma rays from the galactic bulge can be naturally explained by the supermassive Compact Composite Objects (CCO) of dark matter. In this comment I present the detail estimations supporting the original claim that the width of the 511 KeV line produced by such a mechanism is very narrow and in a few KeV range for incoming non relativistic electron with typical velocity v_e\\sim 10^{-3}c. The dominant mechanism of the annihilation in this case is the positronium formation e^+e^-\\to ~ ^1S_0 \\to 2\\gamma rather than a direct e^+e^-\\to 2\\gamma annihilation. This is in contrast with analysis of astro-ph/0606429 where a broad MeV distribution is expected as a result of annihilation within CCO framework. I also discuss some general features of the $\\gamma$ rays spectrum (in few MeV region) resulting from the CCO based mechanism.

  6. OGLE-III MICROLENSING EVENTS AND THE STRUCTURE OF THE GALACTIC BULGE

    International Nuclear Information System (INIS)

    We present and study the largest and most comprehensive catalog of microlensing events ever constructed. The sample of standard microlensing events comprises 3718 unique events from 2001-2009 with 1409 events that had not been detected before in real-time by the Early Warning System of the Optical Gravitational Lensing Experiment. The search pipeline uses machine learning algorithms to help find rare phenomena among 150 million objects and to derive the detection efficiency. Applications of the catalog can be numerous, from analyzing individual events to large statistical studies of the Galactic mass, kinematics distributions, and planetary abundances. We derive maps of the mean Einstein ring crossing time of events spanning 31 deg2 toward the Galactic center and compare the observed distributions with the most recent models. We find good agreement within the observed region and we see the signature of the tilt of the bar in the microlensing data. However, the asymmetry of the mean timescales seems to rise more steeply than predicted, indicating either a somewhat different orientation of the bar or a larger bar width. The map of events with sources in the Galactic bulge shows a dependence of the mean timescale on the Galactic latitude, signaling an increasing contribution from disk lenses closer to the plane relative to the height of the disk. Our data present a perfect set for comparing and enhancing new models of the central parts of the Milky Way and creating a three-dimensional picture of the Galaxy

  7. The Distance to the Galactic Center Derived From Infrared Photometry of Bulge Red Clump Stars

    CERN Document Server

    Nishiyama, S; Sato, S; Kato, D; Nagayama, T; Kusakabe, N; Matsunaga, N; Naoi, T; Sugitani, K; Tamura, M; Nishiyama, Shogo; Nagata, Tetsuya; Sato, Shuji; Kato, Daisuke; Nagayama, Takahiro; Kusakabe, Nobuhiko; Matsunaga, Noriyuki; Naoi, Takahiro; Sugitani, Koji; Tamura, Motohide

    2006-01-01

    On the basis of the near infrared observations of bulge red clump stars near the Galactic center, we have determined the galactocentric distance to be R_0 = 7.52 +- 0.10 (stat) +- 0.35 (sys) kpc. We observed the red clump stars at |l| < 1.0 deg and 0.7 deg < |b| < 1.0 deg with the IRSF 1.4 m telescope and the SIRIUS camera in the H and Ks bands. After extinction and population corrections, we obtained (m - M)_0 = 14.38 +- 0.03 (stat) +- 0.10 (sys). The statistical error is dominated by the uncertainty of the intrinsic local red clump stars' luminosity. The systematic error is estimated to be +- 0.10 including uncertainties in extinction and population correction, zero-point of photometry, and the fitting of the luminosity function of the red clump stars. Our result, R_0 = 7.52 kpc, is in excellent agreement with the distance determined geometrically with the star orbiting the massive black hole in the Galactic center. The recent result based on the spatial distribution of globular clusters is also co...

  8. The Distance to the Galactic Center Derived from Infrared Photometry of Bulge Red Clump Stars

    Science.gov (United States)

    Nishiyama, Shogo; Nagata, Tetsuya; Sato, Shuji; Kato, Daisuke; Nagayama, Takahiro; Kusakabe, Nobuhiko; Matsunaga, Noriyuki; Naoi, Takahiro; Sugitani, Koji; Tamura, Motohide

    2006-08-01

    On the basis of the near-infrared observations of bulge red clump stars near the Galactic center, we have determined the galactocentric distance to be R0=7.52+/-0.10 (stat) +/-0.35 (sys) kpc. We observed the red clump stars at |l|SIRIUS camera in the H and KS bands. After extinction and population corrections, we obtained (m-M)0=14.38+/-0.03 (stat) +/- 0.10 (sys). The statistical error is dominated by the uncertainty of the intrinsic local red clump stars' luminosity. The systematic error is estimated to be +/-0.10, including uncertainties in extinction and population correction, zero point of photometry, and the fitting of the luminosity function of the red clump stars. Our result, R0=7.52 kpc, is in excellent agreement with the distance determined geometrically with the star orbiting the massive black hole in the Galactic center. The recent result based on the spatial distribution of globular clusters is also consistent with our result. In addition, our study exhibits that the distance determination to the Galactic center with the red clump stars, even if the error of the population correction is taken into account, can achieve an uncertainty of about 5%, which is almost the same level as that in recent geometrical determinations.

  9. Evolution in the Disks and Bulges of Group Galaxies since z=0.4

    CERN Document Server

    McGee, Sean L; Henderson, Robert D E; Wilman, David J; Bower, Richard G; Mulchaey, John S; Oemler, Augustus

    2008-01-01

    We present quantitative morphology measurements of a sample of optically selected group galaxies at 0.3 < z < 0.55 using the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and the GIM2D surface brightness--fitting software package. The group sample is derived from the Canadian Network for Observational Cosmology Field Redshift survey (CNOC2) and follow-up Magellan spectroscopy. We compare these measurements to a similarly selected group sample from the Millennium Galaxy Catalogue (MGC) at 0.05 < z < 0.12. We find that, at both epochs, the group and field fractional bulge luminosity (B/T) distributions differ significantly, with the dominant difference being a deficit of disk--dominated (B/T < 0.2) galaxies in the group samples. At fixed luminosity, z=0.4 groups have ~ 5.5 +/- 2 % fewer disk--dominated galaxies than the field, while by z=0.1 this difference has increased to ~ 19 +/- 6 %. Despite the morphological evolution we see no evidence that the group environment is actively...

  10. NoSOCS in SDSS. V. Red Disc and Blue Bulge Galaxies Across Different Environments

    CERN Document Server

    Lopes, P A A; Ribeiro, A L B; Nascimento, R S; Vajgel, B

    2016-01-01

    We investigated the typical environment and physical properties of "red discs" and "blue bulges", comparing those to the "normal" objects in the blue cloud and red sequence. Our sample is composed of cluster members and field galaxies at $z \\le 0.1$, so that we can assess the impact of the local and global environment. We find that disc galaxies display a strong dependence on environment, becoming redder for higher densities. This effect is more pronounced for objects within the virial radius, being also strong related to the stellar mass. We find that local and global environment affect galaxy properties, but the most effective parameter is stellar mass. We find evidence for a scenario where "blue discs" are transformed into "red discs" as they grow in mass and move to the inner parts of clusters. From the metallicity differences of red and blue discs, and the analysis of their star formation histories, we suggest the quenching process is slow. We estimate a quenching time scale of $\\sim $ 2$-$3 Gyr. We also...

  11. Identification of twenty-three accreting binaries in the Galactic Bulge Survey

    CERN Document Server

    Torres, M A P; Britt, C T; Johnson, C B; Hynes, R I; Greiss, S; Steeghs, D; Maccarone, T J; Ozel, F; Bassa, C; Nelemans, G

    2013-01-01

    (Abridged:) We present the identification of optical counterparts to 23 Galactic Bulge Survey X-ray sources. We report their accurate coordinates and optical spectra acquired at the VLT and Magellan. All sources are classified as accreting binaries according to their emission line characteristics. To distinguish accreting binaries from chromospherically active objects we develop and explain criteria based on Halpha and HeI 5786,6678 emission line properties available in the literature. The spectroscopic properties and photometric variability of all the objects are discussed and a classification of the source is given where possible. Among the 23 systems, at least 9 of them show an accretion-dominated optical spectrum (CX28, CX63, CX70, CX128, CX142, CX207, CX522, CX794, CX1011) and another 6 show photospheric lines from a late-type donor star in addition to accretion disc emission (CX44, CX93, CX137, CX154, CX377 and CX1004) indicating that they are probably accreting binaries in quiescence or in a low accret...

  12. Discovery of a high state AM CVn binary in the Galactic Bulge Survey

    CERN Document Server

    Wevers, T; Jonker, P G; Wetuski, J D; Nelemans, G; Steeghs, D; Maccarone, T J; Heinke, C; Hynes, R I; Udalski, A; Kostrzewa-Rutkowska, Z; Groot, P J; Gazer, R; Szymanski, M K; Britt, C T; Wyrzykowski, L; Poleski, R

    2016-01-01

    We report on the discovery of a hydrogen-deficient compact binary (CXOGBS J175107.6-294037) belonging to the AM CVn class in the Galactic Bulge Survey. Deep archival X-ray observations constrain the X-ray positional uncertainty of the source to 0.57 arcsec, and allow us to uniquely identify the optical and UV counterpart. Optical spectroscopic observations reveal the presence of broad, shallow He i absorption lines while no sign of hydrogen is present, consistent with a high state system. We present the optical lightcurve from Optical Gravitational Lensing Experiment monitoring, spanning 15 years. It shows no evidence for outbursts; variability is present at the 0.2 mag level on timescales ranging from hours to weeks. A modulation on a timescale of years is also observed. A Lomb-Scargle analysis of the optical lightcurves shows two significant periodicities at 22.90 and 23.22 min. Although the physical interpretation is uncertain, such timescales are in line with expectations for the orbital and superhump per...

  13. Mechanical assessment of suspended ALD thin films by bulge and shaft-loading techniques

    International Nuclear Information System (INIS)

    We assessed mechanical properties of free-standing atomic-layer-deposited (ALD) Al2O3 thin films, mixed oxide (AlxTiyOz) films and Al2O3/TiO2 nanolaminates (75 and 200 nm). Using bulge and microelectromechanical system shaft-loading techniques, we evaluated the Young’s modulus, residual stress and ultimate tensile stress of these films and laminates. Fits to the load–displacement curves provided estimates for the residual stress and Young’s modulus. We extracted a residual stress of 347–403 MPa for Al2O3, 365–389 MPa for AlxTiyOz and 450–455 MPa for the nanolaminate. The Young’s modulus was 164–165 GPa for Al2O3, 151–154 GPa for mixed oxide and 148–169 GPa for the nanolaminate. Thin membranes exhibited an ultimate tensile strength of 1.57–2.56 GPa for Al2O3, 1.17–2.09 GPa for AlxTiyOz and 1.23–2.26 GPa for the nanolaminate. The ability to make thin, yet mechanically strong, suspended membranes is useful in micro- and nanosystem applications ranging from thermally insulated devices to large stroke mechanical actuators

  14. Ultra-deep GEMINI near-infrared observations of the bulge globular cluster NGC 6624

    CERN Document Server

    Saracino, S; Ferraro, F R; Geisler, D; Mauro, F; Lanzoni, B; Origlia, L; Miocchi, P; Cohen, R E; Villanova, S; Bidin, C Moni

    2016-01-01

    We used ultra-deep $J$ and $K_s$ images secured with the near-infrared GSAOI camera assisted by the multi-conjugate adaptive optics system GeMS at the GEMINI South Telescope in Chile, to obtain a ($K_s$, $J-K_s$) color-magnitude diagram (CMD) for the bulge globular cluster NGC 6624. We obtained the deepest and most accurate near-infrared CMD from the ground for this cluster, by reaching $K_s$ $\\sim$ 21.5, approximately 8 magnitudes below the horizontal branch level. The entire extension of the Main Sequence (MS) is nicely sampled and at $K_s$ $\\sim$ 20 we detected the so-called MS "knee" in a purely near-infrared CMD. By taking advantage of the exquisite quality of the data, we estimated the absolute age of NGC 6624 ($t_{age}$ = 12.0 $\\pm$ 0.5 Gyr), which turns out to be in good agreement with previous studies in the literature. We also analyzed the luminosity and mass functions of MS stars down to M $\\sim$ 0.45 M$_{\\odot}$ finding evidence of a significant increase of low-mass stars at increasing distances f...

  15. The Impact of the Uncertainty in Single-Epoch Virial Black Hole Mass Estimates on the Observed Evolution of the Black Hole - Bulge Scaling Relations

    OpenAIRE

    SHEN Yue; Kelly, Brandon C.

    2009-01-01

    Recent observations of the black hole (BH) - bulge scaling relations usually report positive redshift evolution, with higher redshift galaxies harboring more massive BHs than expected from the local relations. All of these studies focus on broad line quasars with BH mass estimated from virial estimators based on single-epoch spectra. Since the sample selection is largely based on quasar luminosity, the cosmic scatter in the BH-bulge relation introduces a statistical bias leading to on average...

  16. Kinematic Evaluation of Association between Disc Bulge Migration, Lumbar Segmental Mobility, and Disc Degeneration in the Lumbar Spine Using Positional Magnetic Resonance Imaging

    OpenAIRE

    Hu, Jonathan K.; Morishita, Yuichiro; Montgomery, Scott R.; Hymanson, Henry; Taghavi, Cyrus E.; Do, Duc; Wang, Jeff C.

    2011-01-01

    Degenerative disc disease and disc bulge in the lumbar spine are common sources of lower back pain. Little is known regarding disc bulge migration and lumbar segmental mobility as the lumbar spine moves from flexion to extension. In this study, 329 symptomatic (low back pain with or without neurological symptoms) patients with an average age of 43.5 years with varying degrees of disc degeneration were examined to characterize the kinematics of the lumbar intervertebral discs through flexion, ...

  17. New galactic star clusters discovered in the VVV survey. Candidates projected on the inner disk and bulge

    CERN Document Server

    Borissova, J; Alegría, S Ramírez; Sharma, Saurabh; Clarke, J R A; Kurtev, R; Negueruela, I; Marco, A; Amigo, P; Minniti, D; Bica, E; Bonatto, C; Catelan, M; Fierro, C; Geisler, D; Gromadzki, M; Hempel, M; Hanson, M M; Ivanov, V D; Lucas, P; Majaess, D; Bidin, C Moni; Popescu, B; Saito, R K

    2014-01-01

    VISTA Variables in the V\\'ia L\\'actea (VVV) is one of six ESO Public Surveys using the 4 meter Visible and Infrared Survey Telescope for Astronomy (VISTA). The VVV survey covers the Milky Way bulge and an adjacent section of the disk, and one of the principal objectives is to search for new star clusters within previously unreachable obscured parts of the Galaxy. The primary motivation behind this work is to discover and analyze obscured star clusters in the direction of the inner Galactic disk and bulge. Regions of the inner disk and bulge covered by the VVV survey were visually inspected using composite JHKs color images to select new cluster candidates on the basis of apparent overdensities. DR1, DR2, CASU, and PSF photometry of 10x10 arcmin fields centered on each candidate cluster were used to construct color-magnitude and color-color diagrams. Follow-up spectroscopy of the brightest members of several cluster candidates was obtained in order to clarify their nature. We report the discovery of 58 new inf...

  18. Bars in Disk-Dominated and Bulge-Dominated Galaxies at z~0: New Insights from ~3600 SDSS Galaxies

    CERN Document Server

    Barazza, Fabio D; Marinova, Irina

    2007-01-01

    We present a study of large-scale bars in the local Universe, based on a large sample of ~3692 galaxies, with -18.5 60^{\\circ}$) systems, we find the following results. (1) The optical r-band fraction (f_opt-r) of barred galaxies, when averaged over the whole sample, is ~48%-52%. (2)~When galaxies are separated according to half light radius (r_e), or normalized r_e/R_24, which is a measure of the bulge-to-disk (B/D) ratio, a remarkable result is seen: f_opt-r rises sharply, from ~40% in galaxies that have small r_e/R_24 and visually appear to host prominent bulges, to ~70% for galaxies that have large r_e/R_24 and appear disk-dominated. (3)~f_opt-r rises for galaxies with bluer colors, lower masses, or fainter luminosities. (4) While hierarchical $\\Lambda$CDM models of galaxy evolution models fail to produce galaxies without classical bulges, our study finds that ~20% of disk galaxies appear to be ``quasi-bulgeless''. (5) After applying the same cutoffs in magnitude (M_V= 1.5 kpc), and bar ellipticity (e_bar...

  19. Common Origin of Two RR Lyrae Populations and the Double Red Clump in the Milky Way Bulge

    CERN Document Server

    Lee, Young-Wook

    2016-01-01

    A recent survey toward the Milky Way bulge has discovered two sequences of RR Lyrae stars on the period-amplitude diagram with a maximum period-shift of {\\Delta}log P = 0.015 between the two populations. Here we show, from our synthetic horizontal-branch models, that this period-shift is most likely due to the small difference in helium abundance ({\\Delta}Y = 0.012) between the first and second-generation stars (G1 and G2), as is the case in our models for the inner halo globular clusters with similar metallicity ([Fe/H] = -1.1). We further show that the observed double red clump (RC) in the bulge is naturally reproduced when these models are extended to solar metallicity following {\\Delta}Y/{\\Delta}Z = 6 for G2, as would be expected from the chemical evolution models. Therefore, the two populations of RR Lyrae stars and the double RC observed in the bulge appear to be different manifestations of the same multiple population phenomenon in the metal-poor and metal-rich regimes respectively.

  20. Tidal radii and destruction rates of globular clusters in the Milky Way due to bulge-bar and disk shocking

    CERN Document Server

    Moreno, Edmundo; Velazquez, Hector

    2014-01-01

    We calculate orbits, tidal radii, and bulge-bar and disk shocking destruction rates for 63 globular clusters in our Galaxy. Orbits are integrated in both an axisymmetric and a non-axisymmetric Galactic potential that includes a bar and a 3D model for the spiral arms. With the use of a Monte Carlo scheme, we consider in our simulations observational uncertainties in the kinematical data of the clusters. In the analysis of destruction rates due to the bulge-bar, we consider the rigorous treatment of using the real Galactic cluster orbit, instead of the usual linear trajectory employed in previous studies. We compare results in both treatments. We ?nd that the theoretical tidal radius computed in the nonaxisymmetric Galactic potential compares better with the observed tidal radius than that obtained in the axisymmetric potential. In both Galactic potentials, bulge-shocking destruction rates computed with a linear trajectory of a cluster at its perigalacticons give a good approximation to the result obtained with...