WorldWideScience

Sample records for bulge giants probing

  1. Galactic bulge giants: probing stellar and galactic evolution I. Catalogue of Spitzer IRAC and MIPS sources

    CERN Document Server

    Uttenthaler, Stefan; Sahai, Raghvendra; Blommaert, Joris A D L; Schultheis, Mathias; Kraemer, Kathleen E; Groenewegen, Martin A T; Price, Stephan D

    2010-01-01

    Aims: We aim at measuring mass-loss rates and the luminosities of a statistically large sample of Galactic bulge stars at several galactocentric radii. The sensitivity of previous infrared surveys of the bulge has been rather limited, thus fundamental questions for late stellar evolution, such as the stage at which substantial mass-loss begins on the red giant branch and its dependence on fundamental stellar properties, remain unanswered. We aim at providing evidence and answers to these questions. Methods: To this end, we observed seven 15 times 15 arcmin^2 fields in the nuclear bulge and its vicinity with unprecedented sensitivity using the IRAC and MIPS imaging instruments on-board the Spitzer Space Telescope. In each of the fields, tens of thousands of point sources were detected. Results: In the first paper based on this data set, we present the observations, data reduction, the final catalogue of sources, and a detailed comparison to previous mid-IR surveys of the Galactic bulge, as well as to theoretic...

  2. Galactic Bulge Giants: Probing Stellar and Galactic Evolution. 1. Catalogue of Spitzer IRAC and MIPS Sources (PREPRINT)

    Science.gov (United States)

    Uttenthaler, Stefan; Stute, Matthias; Sahai, Raghvendra; Blommaert, Joris A.; Schultheis, Mathias; Kraemer, Kathleen E.; Groenewegen, Martin A.; Price, Stephan D.

    2010-01-01

    Aims. We aim at measuring mass-loss rates and the luminosities of a statistically large sample of Galactic bulge stars at several galactocentric radii. The sensitivity of previous infrared surveys of the bulge has been rather limited, thus fundamental questions for late stellar evolution, such as the stage at which substantial mass-loss begins on the red giant branch and its dependence on fundamental stellar properties, remain unanswered. We aim at providing evidence and answers to these questions. Methods. To this end, we observed seven 15 15 arcmin2 fields in the nuclear bulge and its vicinity with unprecedented sensitivity using the IRAC and MIPS imaging instruments on-board the Spitzer Space Telescope. In each of the fields, tens of thousands of point sources were detected. Results. In the first paper based on this data set, we present the observations, data reduction, the final catalogue of sources, and a detailed comparison to previous mid-IR surveys of the Galactic bulge, as well as to theoretical isochrones. We find in general good agreement with other surveys and the isochrones, supporting the high quality of our catalogue.

  3. Galactic Bulge Giants: Probing Stellar and Galactic Evolution. 1. Catalogue of Spitzer IRAC and MIPS Sources (PREPRINT)

    Science.gov (United States)

    2010-12-29

    wavelength 7.844 µm; Hora et al. 2008). For IRAC 4, we have overlap with ISOGAL in the fields Bulge 2, Bulge 4, N 1, and NGC 6522. The number of...6522 field. The data points do not scatter randomly around zero . Rather, faint sources tend to be brighter in the ISO 7 µm band, whereas bright...slopes and zero points of this linear fit are similar for all fields, with a cross-over (Spitzer IRAC 4 equal to ISO 7 µm mag- nitude) between 6.m0 and 7

  4. Manganese abundances in Galactic bulge red giants

    Science.gov (United States)

    Barbuy, B.; Hill, V.; Zoccali, M.; Minniti, D.; Renzini, A.; Ortolani, S.; Gómez, A.; Trevisan, M.; Dutra, N.

    2013-11-01

    Context. Manganese is mainly produced in type II SNe during explosive silicon burning, in incomplete Si-burning regions, and depends on several nucleosynthesis environment conditions, such as mass cut between the matter ejected and falling back onto the remnant, electron and neutron excesses, mixing fallback, and explosion energy. Manganese is also produced in type Ia SNe. Aims: The aim of this work is the study of abundances of the iron-peak element Mn in 56 bulge giants, among which 13 are red clump stars. Four bulge fields along the minor axis are inspected. The study of abundances of Mn-over-Fe as a function of metallicity in the Galactic bulge may shed light on its production mechanisms. Methods: High-resolution spectra were obtained using the FLAMES+UVES spectrograph on the Very Large Telescope. The spectra were obtained within a program to observe 800 stars using the GIRAFFE spectrograph, together with the present UVES spectra. Results: We aim at identifying the chemical evolution of manganese, as a function of metallicity, in the Galactic bulge. We find [Mn/Fe] ~ -0.7 at [Fe/H] ~ -1.3, increasing to a solar value at metallicities close to solar, and showing a spread around - 0.7 ≲ [Fe/H] ≲ -0.2, in good agreement with other work on Mn in bulge stars. There is also good agreement with chemical evolution models. We find no clear difference in the behaviour of the four bulge fields. Whereas [Mn/Fe] vs. [Fe/H] could be identified with the behaviour of the thick disc stars, [Mn/O] vs. [O/H] has a behaviour running parallel, at higher metallicities, compared to thick disc stars, indicating that the bulge enrichment might have proceeded differently from that of the thick disc. Observations collected at the European Southern Observatory, Paranal, Chile (ESO programmes 71.B-0617A, 73.B0074A, and GTO 71.B-0196).Tables 1-6 and Figs. 1-6 are available in electronic form at http://www.aanda.org

  5. Manganese abundances in Galactic bulge red giants

    CERN Document Server

    Barbuy, B; Zoccali, M; Minniti, D; Renzini, A; Ortolani, S; Gomez, A; Trevisan, M; Dutra, N

    2013-01-01

    Manganese is mainly produced in type II SNe during explosive silicon burning, in incomplete Si-burning regions, and depends on several nucleosynthesis environment conditions, such as mass cut beween the matter ejected and falling back onto the remnant, electron and neutron excesses, mixing fallback, and explosion energy. Manganese is also produced in type Ia SNe. The aim of this work is the study of abundances of the iron-peak element Mn in 56 bulge giants, among which 13 are red clump stars. Four bulge fields along the minor axis are inspected. The study of abundances of Mn-over-Fe as a function of metallicity in the Galactic bulge may shed light on its production mechanisms. High-resolution spectra were obtained using the FLAMES+UVES spectrograph on the Very Large Telescope. The spectra were obtained within a program to observe 800 stars using the GIRAFFE spectrograph, together with the present UVES spectra. We aim at identifying the chemical evolution of manganese, as a function of metallicity, in the Gala...

  6. Chemical Evolution of the Galactic Bulge as Derived from High-Resolution Infrared Spectroscopy of K and M Red Giants

    CERN Document Server

    Cunha, K; Cunha, Katia; Smith, Verne V.

    2006-01-01

    We present chemical abundances in K and M red-giant members of the Galactic bulge derived from high-resolution infrared spectra obtained with the Phoenix spectrograph on Gemini-South. The elements studied are carbon, nitrogen, oxygen, sodium, titanium, and iron. The evolution of C and N abundances in the studied red-giants show that their oxygen abundances represent the original values with which the stars were born. Oxygen is a superior element for probing the timescale of bulge chemical enrichment via [O/Fe] versus [Fe/H]. The [O/Fe]-[Fe/H] relation in the bulge does not follow the disk relation, with [O/Fe] values falling above those of the disk. Titanium also behaves similarly to oxygen with respect to iron. Based on these elevated values of [O/Fe] and [Ti/Fe] extending to large Fe abundances, it is suggested that the bulge underwent a more rapid chemical enrichment than the halo. In addition, there are declines in both [O/Fe] and [Ti/Fe] in those bulge targets with the largest Fe abundances, signifying a...

  7. Heavy elements Ba, La, Ce, Nd, and Eu in 56 Galactic bulge red giants

    CERN Document Server

    Van der Swaelmen, M; Hill, V; Zoccali, M; Minniti, D; Ortolani, S; Gomez, A

    2016-01-01

    Aims. The aim of this work is the study of abundances of the heavy elements Ba, La, Ce, Nd, and Eu in 56 bulge giants (red giant branch and red clump) with metallicities ranging from -1.3 dex to 0.5 dex. Methods. We obtained high-resolution spectra of our giant stars using the FLAMES-UVES spectrograph on the Very Large Telescope. We inspected four bulge fields along the minor axis. Results. We measure the chemical evolution of heavy elements, as a function of metallicity, in the Galactic bulge. Conclusions. The [Ba, La, Ce, Nd/Fe] vs. [Fe/H] ratios decrease with increasing metallicity, in which aspect they differ from disc stars. In our metal-poor bulge stars, La and Ba are enhanced relative to their thick disc counterpart, while in our metal-rich bulge stars La and Ba are underabundant relative to their disc counterpart. Therefore, this contrast between bulge and discs trends indicates that bulge and (solar neighbourhood) thick disc stars could behave differently. An increase in [La, Nd/Eu] with increasing m...

  8. Abundances of disk and bulge giants from hi-res optical spectra: II. O, Mg, Ca, and Ti in the bulge sample

    CERN Document Server

    Jönsson, H; Schultheis, M; Zoccali, M

    2016-01-01

    Determining elemental abundances of bulge stars can, via chemical evolution modeling, help to understand the formation and evolution of the bulge. Recently there have been claims both for and against the bulge having a different [$\\alpha$/Fe] vs. [Fe/H]-trend as compared to the local thick disk possibly meaning a faster, or at least different, formation time scale of the bulge as compared to the local thick disk. We aim to determine the abundances of oxygen, magnesium, calcium, and titanium in a sample of 46 bulge K-giants, 35 of which have been analyzed for oxygen and magnesium in previous works, and compare them to homogeneously determined elemental abundances of a local disk sample of 291 K-giants. We use spectral synthesis to determine both the stellar parameters as well as the elemental abundances of the bulge stars analyzed here. The method is exactly the same as was used for analyzing the comparison sample of 291 local K-giants in Paper I of this series. Compared to the previous analysis of the 35 star...

  9. High resolution spectroscopic analysis of seven giants in the bulge globular cluster NGC 6723

    Science.gov (United States)

    Rojas-Arriagada, A.; Zoccali, M.; Vásquez, S.; Ripepi, V.; Musella, I.; Marconi, M.; Grado, A.; Limatola, L.

    2016-03-01

    Context. Globular clusters associated with the Galactic bulge are important tracers of stellar populations in the inner Galaxy. High resolution analysis of stars in these clusters allows us to characterize them in terms of kinematics, metallicity, and individual abundances, and to compare these fingerprints with those characterizing field populations. Aims: We present iron and element ratios for seven red giant stars in the globular cluster NGC 6723, based on high resolution spectroscopy. Methods: High resolution spectra (R ~ 48 000) of seven K giants belonging to NGC 6723 were obtained with the FEROS spectrograph at the MPG/ESO 2.2 m telescope. Photospheric parameters were derived from ~130 Fe i and Fe ii transitions. Abundance ratios were obtained from line-to-line spectrum synthesis calculations on clean selected features. Results: An intermediate metallicity of [Fe/H] = -0.98 ± 0.08 dex and a heliocentric radial velocity of vhel = -96.6 ± 1.3 km s-1 were found for NGC 6723. Alpha-element abundances present enhancements of [O/Fe] = 0.29 ± 0.18 dex, [Mg/Fe] = 0.23 ± 0.10 dex, [Si/Fe] = 0.36 ± 0.05 dex, and [Ca/Fe] = 0.30 ± 0.07 dex. Similar overabundance is found for the iron-peak Ti with [Ti/Fe] = 0.24 ± 0.09 dex. Odd-Z elements Na and Al present abundances of [Na/Fe] = 0.00 ± 0.21 dex and [Al/Fe] = 0.31 ± 0.21 dex, respectively. Finally, the s-element Ba is also enhanced by [Ba/Fe] = 0.22 ± 0.21 dex. Conclusions: The enhancement levels of NGC 6723 are comparable to those of other metal-intermediate bulge globular clusters. In turn, these enhancement levels are compatible with the abundance profiles displayed by bulge field stars at that metallicity. This hints at a possible similar chemical evolution with globular clusters and the metal-poor of the bulge going through an early prompt chemical enrichment.

  10. CHEMICAL ABUNDANCE ANALYSIS OF A NEUTRON-CAPTURE ENHANCED RED GIANT IN THE BULGE PLAUT FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian I.; Rich, R. Michael [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); McWilliam, Andrew, E-mail: cijohnson@astro.ucla.edu, E-mail: rmr@astro.ucla.edu, E-mail: cjohnson@cfa.harvard.edu, E-mail: andy@obs.carnegiescience.edu [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States)

    2013-09-20

    We present chemical abundances for 27 elements ranging from oxygen to erbium in the metal-poor ([Fe/H] = –1.67) bulge red giant branch star 2MASS 18174532-3353235. The results are based on equivalent width and spectrum synthesis analyses of a high-resolution (R ∼ 30, 000) spectrum obtained with the Magellan-MIKE spectrograph. While the light (Z ∼< 30) element abundance patterns match those of similar metallicity bulge and halo stars, the strongly enhanced heavy element abundances are more similar to 'r-II' halo stars (e.g., CS 22892-052) typically found at [Fe/H] ∼< – 2.5. We find that the heaviest elements (Z ≥ 56) closely follow the scaled-solar r-process abundance pattern. We do not find evidence supporting significant s-process contributions; however, the intermediate mass elements (e.g., Y and Zr) appear to have been produced through a different process than the heaviest elements. The light and heavy element abundance patterns of 2MASS 18174532-3353235 are in good agreement with the more metal-poor r-process enhanced stars CS 22892-052 and BD +17{sup o}3248. 2MASS 18174532-3353235 also shares many chemical characteristics with the similar metallicity but comparatively α-poor Ursa Minor dwarf galaxy giant COS 82. Interestingly, the Mo and Ru abundances of 2MASS 18174532-3353235 are also strongly enhanced and follow a similar trend recently found to be common in moderately metal-poor main-sequence turn-off halo stars.

  11. Abundances of disk and bulge giants from high-resolution optical spectra. I. O, Mg, Ca, and Ti in the solar neighborhood and Kepler field samples

    Science.gov (United States)

    Jönsson, H.; Ryde, N.; Nordlander, T.; Pehlivan Rhodin, A.; Hartman, H.; Jönsson, P.; Eriksson, K.

    2017-02-01

    Context. The Galactic bulge is an intriguing and significant part of our Galaxy, but it is hard to observe because it is both distant and covered by dust in the disk. Therefore, there are not many high-resolution optical spectra of bulge stars with large wavelength coverage, whose determined abundances can be compared with nearby, similarly analyzed stellar samples. Aims: We aim to determine the diagnostically important alpha elements of a sample of bulge giants using high-resolution optical spectra with large wavelength coverage. The abundances found are compared to similarly derived abundances from similar spectra of similar stars in the local thin and thick disks. In this first paper we focus on the solar neighborhood reference sample. Methods: We used spectral synthesis to derive the stellar parameters as well as the elemental abundances of both the local and bulge samples of giants. We took special care to benchmark our method of determining stellar parameters against independent measurements of effective temperatures from angular diameter measurements and surface gravities from asteroseismology. Results: In this first paper we present the method used to determine the stellar parameters and elemental abundances, evaluate them, and present the results for our local disk sample of 291 giants. Conclusions: When comparing our determined spectroscopic temperatures to those derived from angular diameter measurements, we reproduce these with a systematic difference of +10 K and a standard deviation of 53 K. The spectroscopic gravities reproduce those determined from asteroseismology with a systematic offset of +0.10 dex and a standard deviation of 0.12 dex. When it comes to the abundance trends, our sample of local disk giants closely follows trends found in other works analyzing solar neighborhood dwarfs, showing that the much brighter giant stars are as good abundance probes as the often used dwarfs. Based on observations made with the Nordic Optical Telescope

  12. High resolution spectroscopic analysis of seven giants in the bulge globular cluster NGC 6723

    CERN Document Server

    Rojas-Arriagada, A; Vásquez, S; Ripepi, V; Musella, I; Marconi, M; Grado, A; Limatola, L

    2016-01-01

    Globular clusters associated with the Galactic bulge are important tracers of stellar populations in the inner Galaxy. High resolution analysis of stars in these clusters allows us to characterize them in terms of kinematics, metallicity, and individual abundances, and to compare these fingerprints with those characterizing field populations. We present iron and element ratios for seven red giant stars in the globular cluster NGC~6723, based on high resolution spectroscopy. High resolution spectra ($R\\sim48~000$) of seven K giants belonging to NGC 6723 were obtained with the FEROS spectrograph at the MPG/ESO 2.2m telescope. Photospheric parameters were derived from $\\sim130$ FeI and FeII transitions. Abundance ratios were obtained from line-to-line spectrum synthesis calculations on clean selected features. An intermediate metallicity of [Fe/H]$=-0.98\\pm0.08$ dex and a heliocentric radial velocity of $v_{hel}=-96.6\\pm1.3~km s^{-1}$ were found for NGC 6723. Alpha-element abundances present enhancements of $[O/...

  13. Gastric lipoma presenting as a giant bulging mass in an oligosymptomatic patient: a case report

    Directory of Open Access Journals (Sweden)

    Neto Francisco Américo

    2012-09-01

    Full Text Available Abstract Introduction Lipomas of the gastrointestinal tract are a rare condition. Only 5% are of gastric origin, and this corresponds to 2% to 3% of all benign tumors of the stomach and less than 1% of all gastric neoplasms. It is our purpose to report an unusual presentation of a giant gastric lipoma in an oligosymptomatic patient and highlight the importance of discussing differential diagnosis in this situation. A review of the literature has shown that this is one of the largest gastric lipomas described. Case presentation We describe a rare case of a benign gastric tumor with uncommon features in a 63-year-old Caucasian woman. She was admitted with abdominal discomfort, nausea, and upper abdominal fullness after eating. The lesion was suspicious of malignancy because of its dimension and central contrast enhancement on computed tomography. Conventional upper digestive endoscopy revealed a large bulging mass in the gastric posterior wall and three ulcerated areas. In this procedure, a technical limitation due to the location of the mass in the submucosa prevented an adequate biopsy from being obtained. The fragments obtained from the ulcers revealed nothing but necrotic mucosa. Our patient underwent a subtotal gastrectomy and D1 lymphadenectomy with a Roux-en-Y reconstruction. Macroscopic findings revealed a 12 × 8 × 6cm mass with a volume of 576cm3, and the histological pattern demonstrated well-differentiated mature adipose tissue surrounded by a fibrous capsule, confirming the diagnosis of gastric submucosal lipoma. Conclusions Gastric lipoma is a rare benign disease that eventually simulates a malignant tumor.

  14. Temperatures and metallicities of M giants in the galactic Bulge from low-resolution K-band spectra

    CERN Document Server

    Schultheis, M; Nandakumar, G

    2016-01-01

    With the existing and upcoming large multi-fibre low-resolution spectrographs, the question arises how precise stellar parameters such as Teff and [Fe/H] can be obtained from low-resolution K-band spectra with respect to traditional photometric temperature measurements. Until now, most of the effective temperatures in galactic Bulge studies come directly from photometric techniques. Uncertainties in interstellar reddening and in the assumed extinction law could lead to large systematic errors. We aim to obtain and calibrate the relation between Teff and the $\\rm ^{12}CO$ first overtone bands for M giants in the galactic Bulge covering a wide range in metallicity. We use low-resolution spectra for 20 M giants with well-studied parameters from photometric measurements covering the temperature range 3200 < Teff < 4500 K and a metallicity range from 0.5 dex down to -1.2 dex and study the behaviour of Teff and [Fe/H] on the spectral indices. We find a tight relation between Teff and the $\\rm ^{12}CO(2-0)$ ba...

  15. Temperatures and metallicities of M giants in the Galactic bulge from low-resolution K-band spectra

    Science.gov (United States)

    Schultheis, M.; Ryde, N.; Nandakumar, G.

    2016-05-01

    Context. With the existing and upcoming large multifibre low-resolution spectrographs, the question arises of how precise stellar parameters such as Teff and [Fe/H] can be obtained from low-resolution K-band spectra with respect to traditional photometric temperature measurements. Until now, most of the effective temperatures in Galactic bulge studies come directly from photometric techniques. Uncertainties in interstellar reddening and in the assumed extinction law could lead to large systematic errors (>200 K). Aims: We obtain and calibrate the relation between Teff and the 12CO first overtone bands for M giants in the Galactic bulge covering a wide range in metallicity. Methods: We used low-resolution spectra for 20 M giants with well-studied parameters from photometric measurements covering the temperature range 3200 behaviour of Teff and [Fe/H] on the spectral indices. Results: We find a tight relation between Teff and the 12CO(2-0) band with a dispersion of 95 K and between Teff and the 12CO(3-1) with a dispersion of 120 K. We do not find any dependence of these relations on the metallicity of the star, which makes them attractive for Galactic bulge studies. This relation is also not sensitive to the spectral resolution, which allows this relation to be applied in a more general way. We also find a correlation between the combination of the Na i, Ca i, and the 12CO band with the metallicity of the star. However, this relation is only valid for subsolar metallicities. Conclusions: We show that low-resolution spectra provide a powerful tool for obtaining effective temperatures of M giants. We show that this relation does not depend on the metallicity of the star within the investigated range and is also applicable to different spectral resolutions making this relation in general useful for deriving effective temperatures in high-extinction regions where photometric temperatures are not reliable. Based on observations collected at the European Southern

  16. Abundances of disk and bulge giants from hi-res optical spectra: I. O, Mg, Ca, and Ti in the Solar neighborhood and Kepler field samples

    CERN Document Server

    Jönsson, H; Nordlander, T; Pehlivan, A; Hartman, H; Jönsson, P; Eriksson, K

    2016-01-01

    The galactic bulge is a significant part of our galaxy, but it is hard to observe, being both distant and covered by dust in the disk. Therefore there do not exist many hi-res optical spectra of bulge stars with large wavelength coverage, whose determined abundances can be compared with nearby, similarly analyzed stellar samples. We aim to determine the, for chemical evolution models, so important alpha elements of a sample of bulge giants using hi-res optical spectra with large wavelength coverage. The abundances found will be compared to similarly derived abundances from similar spectra of similar stars in the local thin and thick disks. In this first paper we focus on the Solar neighborhood reference sample. We use spectral synthesis to derive the stellar parameters as well as the elemental abundances of both the local as well as the bulge samples of giants. Special care is taken to benchmark our method of determining stellar parameters against independent measurements of effective temperatures from angula...

  17. High-resolution abundance analysis of red giants in the metal-poor bulge globular cluster HP~1

    CERN Document Server

    Barbuy, B; Vemado, A; Ernandes, H; Ortolani, S; Saviane, I; Bica, E; Minniti, D; Dias, B; Momany, Y; Hill, V; Zoccali, M; Siqueira-Mello, C

    2016-01-01

    The globular cluster HP~1 is projected at only 3.33 degrees from the Galactic center. Together with its distance, this makes it one of the most central globular clusters in the Milky Way. It has a blue horizontal branch (BHB) and a metallicity of [Fe/H]~-1.0. This means that it probably is one of the oldest objects in the Galaxy. Abundance ratios can reveal the nucleosynthesis pattern of the first stars as well as the early chemical enrichment and early formation of stellar populations. High-resolution spectra obtained for six stars were analyzed to derive the abundances of the light elements C, N, O, Na, and Al, the alpha-elements Mg, Si, Ca, and Ti, and the heavy elements Sr, Y , Zr, Ba, La, and Eu.} High-resolution spectra of six red giants that are confirmed members of the bulge globular cluster HP~1 were obtained with the 8m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. The spectroscopic parameter derivation was based on the excitation and ionization equilibrium of FeI...

  18. The SLUGGS survey: Probing the supermassive black hole connection with bulges and haloes using red and blue globular cluster systems

    CERN Document Server

    Pota, Vincenzo; Forbes, Duncan A; Romanowsky, Aaron J; Brodie, Jean P; Strader, Jay

    2013-01-01

    Understanding whether the bulge or the halo provides the primary link to the growth of supermassive black holes has strong implications for galaxy evolution and supermassive black hole formation itself. In this paper, we approach this issue by investigating extragalactic globular cluster (GC) systems, which can be used to probe the physics of both the bulge and the halo of the host galaxy. We study the relation between the supermassive black hole masses M_BH and the globular cluster system velocity dispersions sigma_GC using an updated and improved sample of 21 galaxies. We exploit the dichotomy of globular cluster system colours, to test if the blue and red globular clusters correlate differently with black hole mass. This may be expected if they trace the potentially different formation history of the halo and of the bulge of the host galaxy respectively. We find that M_BH correlates with the total GC system velocity dispersion, although not as strongly as claimed by recent work of Sadoun & Colin. We al...

  19. Null-Wave Giant Gravitons from Thermal Spinning Brane Probes

    CERN Document Server

    Armas, Jay; Pedersen, Andreas Vigand

    2013-01-01

    We construct and analyze thermal spinning giant gravitons in type II/M-theory based on spherically wrapped black branes, using the method of thermal probe branes originating from the blackfold approach. These solutions generalize in different directions recent work in which the case of thermal (non-spinning) D3-brane giant gravitons was considered, and reveal a rich phase structure with various new properties. First of all, we extend the construction to M-theory, by constructing thermal giant graviton solutions using spherically wrapped M2- and M5-branes. More importantly, we switch on new quantum numbers, namely internal spins on the sphere, which are not present in the usual extremal limit for which the brane world volume stress tensor is Lorentz invariant. We examine the effect of this new type of excitation and in particular analyze the physical quantities in various regimes, including that of small temperatures as well as low/high spin. As a byproduct we find new stationary dipole-charged black hole solu...

  20. Two Groups of Red Giants with Distinct Chemical Abundances in the Bulge Globular Cluster NGC 6553 Through the Eyes of APOGEE

    CERN Document Server

    Tang, Baitian; Geisler, Doug; Schiavon, Ricardo; Majewski, Steven R; Villanova, Sandro; Carrera, Ricardo; Zamora, Olga; Garcia-Hernandez, D A; Shetrone, Matthew; Frinchaboy, Peter; Meza, Andres; Fernández-Trincado, J G; Muñoz, Ricardo R; Lin, Chien-Cheng; Lane, Richard R; Nitschelm, Christian; Pan, Kaike; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey

    2016-01-01

    Multiple populations revealed in globular clusters (GCs) are important windows to the formation and evolution of these stellar systems. The metal-rich GCs in the Galactic bulge are an indispensable part of this picture, but the high optical extinction in this region has prevented extensive research. In this work, we use the high resolution near-infrared (NIR) spectroscopic data from APOGEE to study the chemical abundances of NGC 6553, which is one of the most metal-rich bulge GCs. We identify ten red giants as cluster members using their positions, radial velocities, iron abundances, and NIR photometry. Our sample stars show a mean radial velocity of $-0.14\\pm5.47$ km s$^{-1}$, and a mean [Fe/H] of $-0.15\\pm 0.05$. We clearly separate two populations of stars in C and N in this GC for the first time. NGC 6553 is the most metal-rich GC where the multiple stellar population phenomenon is found until now. Substantial chemical variations are also found in Na, O, and Al. However, the two populations show similar S...

  1. Bulge growth through disk instabilities in high-redshift galaxies

    CERN Document Server

    Bournaud, Frederic

    2015-01-01

    The role of disk instabilities, such as bars and spiral arms, and the associated resonances, in growing bulges in the inner regions of disk galaxies have long been studied in the low-redshift nearby Universe. There it has long been probed observationally, in particular through peanut-shaped bulges. This secular growth of bulges in modern disk galaxies is driven by weak, non-axisymmetric instabilities: it mostly produces pseudo-bulges at slow rates and with long star-formation timescales. Disk instabilities at high redshift (z>1) in moderate-mass to massive galaxies (10^10 to a few 10^11 Msun of stars) are very different from those found in modern spiral galaxies. High-redshift disks are globally unstable and fragment into giant clumps containing 10^8-10^9 Msun of gas and stars each, which results in highly irregular galaxy morphologies. The clumps and other features associated to the violent instability drive disk evolution and bulge growth through various mechanisms, on short timescales. The giant clumps can...

  2. Two Groups of Red Giants with Distinct Chemical Abundances in the Bulge Globular Cluster NGC 6553 Through the Eyes of APOGEE

    Science.gov (United States)

    Tang, Baitian; Cohen, Roger; Geisler, Douglas; Schiavon, Ricardo P.; Majewski, Steven R.; Villanova, Sandro; Carrera, Ricardo; Zamora, Olga; Garcia-Hernandez, D.; Shetrone, Matthew D.; Frinchaboy, Peter M.; Fernandez Trincado, Jose Gregorio; APOGEE Team

    2017-01-01

    Multiple populations revealed in globular clusters (GCs) are important windows to the formation and evolution of these stellar systems. The metal-rich GCs in the Galactic bulge are an indispensable part of this picture, but the high optical extinction in this region has prevented extensive research. In this work, we use the high resolution near-infrared (NIR) spectroscopic data from APOGEE to study the chemical abundances of NGC 6553, which is one of the most metal-rich bulge GCs. We identify ten red giants as cluster members using their positions, radial velocities, iron abundances, and NIR photometry. Our sample stars show a mean radial velocity of -0.14 km/s, and a mean [Fe/H] of -0.15. We clearly separate two populations of stars in C and N in this GC for the first time. NGC 6553 is the most metal-rich GC where the multiple stellar population phenomenon is found until now. Substantial chemical variations are also found in Na, O, and Al. However, the two populations show similar Si, Ca, and iron-peak element abundances. Therefore, we infer that the CNO, NeNa, and MgAl cycles have been activated, but the MgAl cycle is too weak to show its effect on Mg. The Si leakage from the MgAl cycle is negligible. Type Ia and Type II supernovae do not seem to have significantly polluted the second generation stars. Comparing the APOGEE results with other GC studies, we find that NGC 6553 shows similar chemical variations as other relatively metal-rich GCs. We also confront current GC formation theories with our results, and suggest possible avenues for improvement in the models.

  3. Two groups of red giants with distinct chemical abundances in the bulge globular cluster NGC 6553 through the eyes of APOGEE

    Science.gov (United States)

    Tang, Baitian; Cohen, Roger E.; Geisler, Doug; Schiavon, Ricardo P.; Majewski, Steven R.; Villanova, Sandro; Carrera, Ricardo; Zamora, Olga; Garcia-Hernandez, D. A.; Shetrone, Matthew; Frinchaboy, Peter; Meza, Andres; Fernández-Trincado, J. G.; Muñoz, Ricardo R.; Lin, Chien-Cheng; Lane, Richard R.; Nitschelm, Christian; Pan, Kaike; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey

    2017-02-01

    Multiple populations revealed in globular clusters (GCs) are important windows to the formation and evolution of these stellar systems. The metal-rich GCs in the Galactic bulge are an indispensable part of this picture, but the high optical extinction in this region has prevented extensive research. In this work, we use the high-resolution near-infrared (NIR) spectroscopic data from Apache Point Observatory Galactic Evolution Experiment (APOGEE) to study the chemical abundances of NGC 6553, which is one of the most metal-rich bulge GCs. We identify 10 red giants as cluster members using their positions, radial velocities, iron abundances, and NIR photometry. Our sample stars show a mean radial velocity of -0.14 ± 5.47 km s-1, and a mean [Fe/H] of -0.15 ± 0.05. We clearly separate two populations of stars in C and N in this GC for the first time. NGC 6553 is the most metal-rich GC where the multiple stellar population phenomenon is found until now. Substantial chemical variations are also found in Na, O, and Al. However, the two populations show similar Si, Ca, and iron-peak element abundances. Therefore, we infer that the CNO, NeNa, and MgAl cycles have been activated, but the MgAl cycle is too weak to show its effect on Mg. Type Ia and Type II supernovae do not seem to have significantly polluted the second generation stars. Comparing with other GC studies, NGC 6553 shows similar chemical variations as other relatively metal-rich GCs. We also confront current GC formation theories with our results, and suggest possible avenues for improvement in the models.

  4. Eyes - bulging

    Science.gov (United States)

    ... emotional support is important. When to Contact a Medical Professional Call your health care provider if: You have bulging eyes and the cause has not yet been diagnosed. Bulging eyes are accompanied by other symptoms. ... The provider will ask about your medical history and do a physical exam. Some questions ...

  5. Galactic bulges

    NARCIS (Netherlands)

    Wyse, RFG; Gilmore, G; Franx, M

    1997-01-01

    We discuss the present observational and theoretical understanding of the stellar populations of bulges and their implications for galaxy formation and evolution. The place of bulges as key to the Hubble Sequence remains secure, but some old paradigms are giving way to new ones as observations devel

  6. Galactic bulges

    CERN Document Server

    Peletier, Reynier; Gadotti, Dimitri

    2016-01-01

    This book consists of invited reviews on Galactic Bulges written by experts in the field. A central point of the book is that, while in the standard picture of galaxy formation a significant amount of the baryonic mass is expected to reside in classical bulges, the question what is the fraction of galaxies with no classical bulges in the local Universe has remained open. The most spectacular example of a galaxy with no significant classical bulge is the Milky Way. The reviews of this book attempt to clarify the role of the various types of bulges during the mass build-up of galaxies, based on morphology, kinematics, and stellar populations, and connecting their properties at low and high redshifts. The observed properties are compared with the predictions of the theoretical models, accounting for the many physical processes leading to the central mass concentration and their destruction in galaxies. This book serves as an entry point for PhD students and non-specialists and as a reference work for researchers...

  7. Probing the Deep End of the Milky Way with New Oscillating Kepler Giants

    CERN Document Server

    Mathur, Savita; Huber, Daniel; Regulo, Clara; Stello, Dennis; Beck, Paul G; Houmani, Kenza; Salabert, David

    2016-01-01

    The Kepler mission has been a success in both exoplanet search and stellar physics studies. Red giants have actually been quite a highlight in the Kepler scene. The Kepler long and almost continuous four-year observations allowed us to detect oscillations in more than 15,000 red giants targeted by the mission. However by looking at the power spectra of 45,000 stars classified as dwarfs according to the Q1-16 Kepler star properties catalog, we detected red-giant like oscillations in 850 stars. Even though this is a small addition to the known red-giant sample, these misclassified stars represent a goldmine for galactic archeology studies. Indeed they happen to be fainter (down to Kp~16) and more distant (d>10kpc) than the known red giants, opening the possibility to probe unknown regions of our Galaxy. The faintness of these red giants with detected oscillations is very promising for detecting acoustic modes in red giants observed with K2 and TESS. In this talk, I will present this new sample of red giants wit...

  8. Giant machine set to probe secrets of the universe

    CERN Multimedia

    2006-01-01

    "Deep underground on the Franco-Swiss border someone will throw a switch next year to start one of the most ambitious experiments in history, probing the secrets of the universe and possibly finding new dimensions." (2/3 page)

  9. Giant machine set to probe secrets of the universe

    CERN Multimedia

    2006-01-01

    "Deep underground on the Franco-Swiss border someone will throw a switch next year to start one of the most ambitious experiments in history, probing the secrets of the universe and possibly finding new dimensions." (1 page)

  10. Constraining the structure and formation of the Galactic bulge from a field in its outskirts. FLAMES-GIRAFFE spectra of $\\sim400$ red giants around $(l,b)=(0\\degr,-10\\degr)$

    CERN Document Server

    Uttenthaler, Stefan; Nataf, David M; Robin, Annie C; Lebzelter, Thomas; Chen, B

    2012-01-01

    The presence of two stellar populations in the Milky Way bulge has been reported recently. We aim at studying the abundances and kinematics of stars in the outer bulge, thereby providing additional constraints on models of its formation. Spectra of 401 red giant stars in a field at (l,b)=(0{\\deg},-10{\\deg}) were obtained with FLAMES at the VLT. Stars of luminosities down to below the two bulge red clumps (RCs) are included. From these spectra we measure general metallicities, abundances of Fe and the alpha-elements, and radial velocities (RV) of the stars. These measurements as well as photometric data are compared to simulations with the Besancon and TRILEGAL models of the Galaxy. We confirm the presence of two populations among our sample stars: i) a metal-rich one at [M/H] ~+0.3, comprising about 30% of the sample, with low RV dispersion and low alpha-abundance, and ii) a metal-poor population at [M/H] ~-0.6 with high RV dispersion and high alpha-abundance. The metal-rich population could be connected to t...

  11. Probing Magnetic Fields using the Giant Metrewave Radio Telescope

    CERN Document Server

    Farnes, J S; Kantharia, N G

    2013-01-01

    We present the first spectropolarimetric radio observations that apply Rotation Measure (RM) Synthesis to interferometric data from the Giant Metrewave Radio Telescope (GMRT) at 610 MHz. Spectropolarimetry requires measurement of a large number of instrumental systematics so that their effects can be calibrated - a technical problem that is currently being faced by the upcoming SKA pathfinders. Our fully-calibrated data allow for the peak Faraday depth and polarisation fraction to be measured for sub-mJy compact sources in the field of M51 at 610 MHz. The diffuse extended emission in the interacting galaxy pair is shown to be depolarised below the sensitivity limit. A survey of linear polarisation with the GMRT is now feasible and could be used to place constraints on the prevailing depolarisation mechanisms at low frequencies - improving polarised source count estimates and constraining the RM-grid observable with next generation facilities such as the SKA.

  12. The Asymptotic Giant Branch and the Tip of the Red Giant Branch as Probes of Star Formation History: The Nearby Dwarf Irregular Galaxy KKH 98

    OpenAIRE

    Melbourne, J; Williams, B.; Dalcanton, J.; Ammons, S. M.; Max, C.; Koo, D.C.; Girardi, Leo; Dolphin, A.

    2010-01-01

    We investigate the utility of the asymptotic giant branch (AGB) and the red giant branch (RGB) as probes of the star formation history (SFH) of the nearby (D=2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (IR) Keck Laser Guide Star Adaptive Optics (AO) images resolve 592 IR bright stars reaching over 1 magnitude below the Tip of the Red Giant Branch. Significantly deeper optical (F475W and F814W) Hubble Space Telescope images of the same field contain over 2500 stars, reaching to the ...

  13. Stars and Planetary Nebulae in the Galactic Bulge

    CERN Document Server

    Cuisinier, F; Acker, A; Maciel, W J

    2000-01-01

    We compare the populations of Red Giant stars and Planetary Nebulae in the Galactic Bulge, in the light of recent determinations of their abundances patterns. We find both populations to be compatible. From the planetary nebulae, we find evidences that the Bulge did not form stars recently. The whole abundances pattern remains however puzzling, some elements favoring a quick evolution of the Galactic Bulge (Mg and Ti), and others a much slower one (He, O, Si, S, Ar and Ca).

  14. OGLE-2015-BLG-0051/KMT-2015-BLG-0048Lb: A Giant Planet Orbiting a Low-mass Bulge Star Discovered by High-cadence Microlensing Surveys

    Science.gov (United States)

    Han, C.; Udalski, A.; Gould, A.; Bozza, V.; Jung, Y. K.; Albrow, M. D.; Kim, S.-L.; Lee, C.-U.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; Park, B.-G.; Shin, I.-G.; KMTNet Collaboration; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Wyrzykowski, Ł.; Pawlak, M.; OGLE Collaboration

    2016-10-01

    We report the discovery of an extrasolar planet detected from the combined data of a microlensing event OGLE-2015-BLG-0051/KMT-2015-BLG-0048 acquired by two microlensing surveys. Despite the fact that the short planetary signal occurred in the very early Bulge season during which the lensing event could be seen for just about an hour, the signal was continuously and densely covered. From the Bayesian analysis using models of the mass function, and matter and velocity distributions, combined with information on the angular Einstein radius, it is found that the host of the planet is located in the Galactic bulge. The planet has a mass {0.72}-0.07+0.65 {M}{{J}} and it is orbiting a low-mass M-dwarf host with a projected separation {d}\\perp =0.73+/- 0.08 {{au}}. The discovery of the planet demonstrates the capability of the current high-cadence microlensing lensing surveys in detecting and characterizing planets.

  15. OGLE-2015-BLG-0051/KMT-2015-BLG-0048Lb: a Giant Planet Orbiting a Low-mass Bulge Star Discovered by High-cadence Microlensing Surveys

    CERN Document Server

    Han, C; Gould, A; Bozza, V; Jung, Y K; Albrow, M D; Kim, S -L; Lee, C -U; Cha, S -M; Kim, D -J; Lee, Y; Park, B -G; Shin, I -G; Szymański, M K; Soszyński, I; Skowron, J; Mróz, P; Poleski, R; Pietrukowicz, P; Kozłowski, S; Ulaczyk, K; Wyrzykowski, Ł; Pawlak, M

    2016-01-01

    We report the discovery of an extrasolar planet detected from the combined data of a microlensing event OGLE-2015-BLG-0051/KMT-2015-BLG-0048 acquired by two microlensing surveys. Despite that the short planetary signal occurred in the very early Bulge season during which the lensing event could be seen for just about an hour, the signal was continuously and densely covered. From the Bayesian analysis using models of the mass function, matter and velocity distributions combined with the information of the angular Einstein radius, it is found that the host of the planet is located in the Galactic bulge. The planet has a mass $0.72_{-0.07}^{+0.65}\\ M_{\\rm J}$ and it is orbiting a low-mass M-dwarf host with a projected separation $d_\\perp=0.73 \\pm 0.08$ AU. The discovery of the planet demonstrates the capability of the current high-cadence microlensing lensing surveys in detecting and characterizing planets.

  16. Characterizing Uranus with an Ice giant Planetary Origins Probe (Ice-POP)

    Science.gov (United States)

    Marley, Mark S.; Fortney, Jonathan; Nettelmann, Nadine; Zahnle, Kevin J.

    2013-01-01

    We now know from studies of planetary transits and microlensing that Neptune-mass planets are ubitquitous and may be the most common class of planets in the Galaxy. As such it is crucial that we understand the formation and evolution of the ice giant planets in our own solar system so that we can better understand planet formation throughout the galaxy. An entry probe mission to Uranus would help accomplish this goal. In fact the Planetary Decadal Survey recommended a Uranus orbiter with entry probe but did not explore in detail the specifications for the entry probe. NASA Ames is currently studying thermal protection system requirements for such a mission and this has led to questions regarding the minimum interesting science payload of such an entry probe. The single most important in-situ measurement for an ice giant entry probe is a measurement of atmospheric composition. For Uranus this would specifically include the methane and noble gas abundances. An in situ measurement of the methane abundance, from below the methane cloud, would constrain the atmospheric carbon abundance, which is believed to be roughly 30 to 50 times solar. There are hints from the transiting planets that extrasolar ice giants show comparable or even greater enhancements of heavy elements compared to their primary stars. However the origin of this carbon enhancement is controversial. Is Uranus a "failed core" of a larger gas giant or was the atmosphere enhanced by accretion of icy planetesimals' Constraining atmospheric abundances of C and perhaps S or even N from below 5 bars would provide badly needed data to address such issues. A measurement of the N abundance would provide clues on the origin of the planetesimals that formed Uranus. Low N-abundance indicates planetesimals from 'warmer' regions where N was mainly in form of NH3, whereas a strong enrichment could indicate planetesimals / cometary material from the colder outer regions of the nebula. Furthermore CO and HCN have been

  17. Giant Radio Halos in Galaxy Clusters as Probes of Particle Acceleration in Turbulent Regions

    Indian Academy of Sciences (India)

    G. Brunetti

    2011-12-01

    Giant radio halos in galaxy clusters probe mechanisms of particle acceleration connected with cluster merger events. Shocks and turbulence are driven in the inter-galactic medium (IGM) during clusters mergers and may have a deep impact on the non-thermal properties of galaxy clusters. Models of turbulent (re)acceleration of relativistic particles allow good correspondence with present observations, from radio halos to -ray upper limits, although several aspects of this complex scenario still remain poorly understood. After providing basic motivations for turbulent acceleration in galaxy clusters, we discuss relevant aspects of the physics of particle acceleration by MHD turbulence and the expected broad-band non-thermal emission from galaxy clusters. We discuss (in brief) the most important results of turbulent (re)acceleration models, the open problems, and the possibilities to test models with future observations. In this respect, further constraints on the origin of giant nearby radio halos can also be obtained by combining their (spectral and morphological) properties with the constraints from -ray observations of their parent clusters.

  18. Analysis of the distribution of magnetic fluid inside tumors by a giant magnetoresistance probe

    KAUST Repository

    Gooneratne, Chinthaka P.

    2013-11-29

    Magnetic fluid hyperthermia (MFH) therapy uses the magnetic component of electromagnetic fields in the radiofrequency spectrum to couple energy to magnetic nanoparticles inside tumors. In MFH therapy, magnetic fluid is injected into tumors and an alternating current (AC) magnetic flux is applied to heat the magnetic fluid- filled tumor. If the temperature can be maintained at the therapeutic threshold of 42C for 30 minutes or more, the tumor cells can be destroyed. Analyzing the distribution of the magnetic fluid injected into tumors prior to the heating step in MFH therapy is an essential criterion for homogenous heating of tumors, since a decision can then be taken on the strength and localization of the applied external AC magnetic flux density needed to destroy the tumor without affecting healthy cells. This paper proposes a methodology for analyzing the distribution of magnetic fluid in a tumor by a specifically designed giant magnetoresistance (GMR) probe prior to MFH heat treatment. Experimental results analyzing the distribution of magnetic fluid suggest that different magnetic fluid weight densities could be estimated inside a single tumor by the GMR probe. 2013 Gooneratne et al.

  19. Analysis of the distribution of magnetic fluid inside tumors by a giant magnetoresistance probe.

    Directory of Open Access Journals (Sweden)

    Chinthaka P Gooneratne

    Full Text Available Magnetic fluid hyperthermia (MFH therapy uses the magnetic component of electromagnetic fields in the radiofrequency spectrum to couple energy to magnetic nanoparticles inside tumors. In MFH therapy, magnetic fluid is injected into tumors and an alternating current (AC magnetic flux is applied to heat the magnetic fluid- filled tumor. If the temperature can be maintained at the therapeutic threshold of 42 °C for 30 minutes or more, the tumor cells can be destroyed. Analyzing the distribution of the magnetic fluid injected into tumors prior to the heating step in MFH therapy is an essential criterion for homogenous heating of tumors, since a decision can then be taken on the strength and localization of the applied external AC magnetic flux density needed to destroy the tumor without affecting healthy cells. This paper proposes a methodology for analyzing the distribution of magnetic fluid in a tumor by a specifically designed giant magnetoresistance (GMR probe prior to MFH heat treatment. Experimental results analyzing the distribution of magnetic fluid suggest that different magnetic fluid weight densities could be estimated inside a single tumor by the GMR probe.

  20. Can giant radio halos probe the merging rate of galaxy clusters?

    CERN Document Server

    Cassano, R; Giocoli, C; Ettori, S

    2016-01-01

    Radio and X-ray observations of galaxy clusters probe a direct link between cluster mergers and giant radio halos (RH), suggesting that these sources can be used as probes of the cluster merging rate with cosmic time. In this paper we carry out an explorative study that combines the observed fractions of merging clusters (fm) and RH (fRH) with the merging rate predicted by cosmological simulations and attempt to infer constraints on merger properties of clusters that appear disturbed in X-rays and of clusters with RH. We use morphological parameters to identify merging systems and analyze the currently largest sample of clusters with radio and X-ray data (M500>6d14 Msun, and 0.2

  1. OGLE 2008--BLG--290: An accurate measurement of the limb darkening of a Galactic Bulge K Giant spatially resolved by microlensing

    CERN Document Server

    Fouque, P; Dong, S; Gould, A; Udalski, A; Albrow, M D; Batista, V; Beaulieu, J -P; Bennett, D P; Bond, I A; Bramich, D M; Novati, S Calchi; Cassan, A; Coutures, C; Dieters, S; Dominik, M; Prester, D Dominis; Greenhill, J; Horne, K; Jorgensen, U G; Kozlowski, S; Kubas, D; Lee, C -H; Marquette, J -B; Mathiasen, M; Menzies, J; Monard, L A G; Nishiyama, S; Papadakis, I; Street, R; Sumi, T; Williams, A; Yee, J C; Brillant, S; Caldwell, J A R; Cole, A; Cook, K H; Donatowicz, J; Kains, N; Kane, S R; Martin, R; Pollard, K R; Sahu, K C; Tsapras, Y; Wambsganss, J; Zub, M; DePoy, D L; Gaudi, B S; Han, C; Lee, C -U; Park, B -G; Pogge, R W; Kubiak, M; Szymanski, M K; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; Abe, F; Fukui, A; Furusawa, K; Gilmore, A C; Hearnshaw, J B; Itow, Y; ~Kamiya, K; Kilmartin, P M; Korpela, A V; Lin, W; Ling, C H; Masuda, K; Matsubara, Y; Miyake, N; Muraki, Y; Nagaya, M; Ohnishi, K; Okumura, T; Perrott, Y; Rattenbury, N J; Saito, To; Sako, T; Sato, S; Skuljan, L; Sullivan, D; Sweatman, W; Tristram, P J; Yock, P C M; Allan, A; Bode, M F; Burgdorf, M J; Clay, N; Fraser, S N; Hawkins, E; Kerins, E; Lister, T A; Mottram, C J; Saunders, E S; Snodgrass, C; Steele, I A; Wheatley, P J; Anguita, T; Bozza, V; Harpsoe, K; Hinse, T C; Hundertmark, M; Kjaergaard, P; Liebig, C; Mancini, L; Masi, G; Rahvar, S; Ricci, D; Scarpetta, G; Southworth, J; Surdej, J; Thone, C C; Riffeser, A; ~Seitz, S; Bender, R

    2015-01-01

    Gravitational microlensing is not only a successful tool for discovering distant exoplanets, but it also enables characterization of the lens and source stars involved in the lensing event. In high magnification events, the lens caustic may cross over the source disk, which allows a determination of the angular size of the source and additionally a measurement of its limb darkening. When such extended-source effects appear close to maximum magnification, the resulting light curve differs from the characteristic Paczynski point-source curve. The exact shape of the light curve close to the peak depends on the limb darkening of the source. Dense photometric coverage permits measurement of the respective limb-darkening coefficients. In the case of microlensing event OGLE 2008-BLG-290, the K giant source star reached a peak magnification of about 100. Thirteen different telescopes have covered this event in eight different photometric bands. Subsequent light-curve analysis yielded measurements of linear limb-darke...

  2. The Asymptotic Giant Branch and the Tip of the Red Giant Branch as Probes of Star Formation History: The Nearby Dwarf Irregular Galaxy KKH 98

    CERN Document Server

    Melbourne, J; Dalcanton, J; Ammons, S M; Max, C; Koo, D C; Girardi, Leo; Dolphin, A

    2010-01-01

    We investigate the utility of the asymptotic giant branch (AGB) and the red giant branch (RGB) as probes of the star formation history (SFH) of the nearby (D=2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (IR) Keck Laser Guide Star Adaptive Optics (AO) images resolve 592 IR bright stars reaching over 1 magnitude below the Tip of the Red Giant Branch. Significantly deeper optical (F475W and F814W) Hubble Space Telescope images of the same field contain over 2500 stars, reaching to the Red Clump and the Main Sequence turn-off for 0.5 Gyr old populations. Compared to the optical color magnitude diagram (CMD), the near-IR CMD shows significantly tighter AGB sequences, providing a good probe of the intermediate age (0.5 - 5 Gyr) populations. We match observed CMDs with stellar evolution models to recover the SFH of KKH 98. On average, the galaxy has experienced relatively constant low-level star formation (5 x 10^-4 Mo yr^-1) for much of cosmic time. Except for the youngest main sequence populations (age &...

  3. MOA-2011-BLG-262Lb: A sub-Earth-mass moon orbiting a gas giant primary or a high velocity planetary system in the galactic Bulge

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Batista, V. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Bond, I. A.; Ling, C. H. [Institute of Natural and Mathematical Sciences, Massey University, Auckland 0745 (New Zealand); Bennett, C. S. [Department of Physics, Massachussets Institute of Technology, Cambridge, MA 02139 (United States); Suzuki, D.; Koshimoto, N. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Beaulieu, J.-P. [UPMC-CNRS, UMR 7095, Institut d' Astrophysique de Paris, 98bis Boulevard Arago, F-75014 Paris (France); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Donatowicz, J. [Technische Universität Wien, Wieder Hauptst. 8-10, A-1040 Vienna (Austria); Bozza, V. [Dipartimento di Fisica, Università di Salerno, Via Ponte Don Melillo 132, I-84084 Fisciano (Italy); Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K.; Matsubara, Y.; Muraki, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Fukui, A., E-mail: bennett@nd.edu [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Okayama 719-0232 (Japan); Collaboration: MOA Collaboration; PLANET Collaboration; μFUN Collaboration; OGLE Collaboration; RoboNet Collaboration; and others

    2014-04-20

    We present the first microlensing candidate for a free-floating exoplanet-exomoon system, MOA-2011-BLG-262, with a primary lens mass of M {sub host} ∼ 4 Jupiter masses hosting a sub-Earth mass moon. The argument for an exomoon hinges on the system being relatively close to the Sun. The data constrain the product M{sub L} π{sub rel} where M{sub L} is the lens system mass and π{sub rel} is the lens-source relative parallax. If the lens system is nearby (large π{sub rel}), then M{sub L} is small (a few Jupiter masses) and the companion is a sub-Earth-mass exomoon. The best-fit solution has a large lens-source relative proper motion, μ{sub rel} = 19.6 ± 1.6 mas yr{sup –1}, which would rule out a distant lens system unless the source star has an unusually high proper motion. However, data from the OGLE collaboration nearly rule out a high source proper motion, so the exoplanet+exomoon model is the favored interpretation for the best fit model. However, there is an alternate solution that has a lower proper motion and fits the data almost as well. This solution is compatible with a distant (so stellar) host. A Bayesian analysis does not favor the exoplanet+exomoon interpretation, so Occam's razor favors a lens system in the bulge with host and companion masses of M{sub host}=0.12{sub −0.06}{sup +0.19} M{sub ⊙} and m{sub comp}=18{sub −10}{sup +28} M{sub ⊕}, at a projected separation of a{sub ⊥}=0.84{sub −0.14}{sup +0.25} AU. The existence of this degeneracy is an unlucky accident, so current microlensing experiments are in principle sensitive to exomoons. In some circumstances, it will be possible to definitively establish the mass of such lens systems through the microlensing parallax effect. Future experiments will be sensitive to less extreme exomoons.

  4. Discovery in the Galactic Bulge

    Science.gov (United States)

    Kohler, Susanna

    2015-11-01

    In our efforts to map our galaxys structure, one region has remained very difficult to probe: the galactic center. A new survey, however, uses infrared light to peer through the gas and dust in the galactic plane, searching for variable stars in the bulge of the galaxy. This study has discovered a population of very young stars in a thin disk in the galactic center, providing clues to the star formation history of the Milky Way over the last 100 million years.Obscured CenterThe center of the Milky Way is dominated by a region known as the galactic bulge. Efforts to better understand this region in particular, its star formation history have been hindered by the stars, gas, and dust of the galactic disk, which prevent us from viewing the galactic bulge at low latitudes in visible light.The positions of the 35 classical Cepheids discovered in VVV data, projected onto an image of the galactic plane. Click for a better look! The survey area is bounded by the blue lines, and the galactic bar is marked with a red curve. The bottom panel shows the position of the Cepheids overlaid on the VVV bulge extinction map. [Dkny et al. 2015]Infrared light, however, can be used to probe deeper through the dust than visible-light searches. A new survey called VISTA Variables in the Via Lactea (VVV) uses the VISTA telescope in Chile to search, in infrared, for variable stars in the inner part of the galaxy. The VVV survey area spans the Milky Way bulge and an adjacent section of the mid-plane where star formation activity is high.Led by Istvn Dkny, a researcher at the Millennium Institute of Astrophysics and the Pontifical Catholic University of Chile, a team has now used VVV data to specifically identify classical Cepheid variable stars in the bulge. Why? Cepheids are pulsating stars with a very useful relation between their periods and luminosities that allows them to be used as distance indicators. Moreover, classical Cepheids are indicators of young stellar populations which can

  5. A Sub-Earth-Mass Moon Orbiting a Gas Giant Primary or a High Velocity Planetary System in the Galactic Bulge

    CERN Document Server

    Bennett, D P; Bond, I A; Bennett, C S; Suzuki, D; Beaulieu, J -P; Udalski, A; Donatowicz, J; Abe, F; Botzler, C S; Freeman, M; Fukunaga, D; Fukui, A; Itow, Y; Koshimoto, N; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Sumi, T; Sweatman, W L; Tristram, P J; Tsurumi, N; Wada, K; Yock, P C M; Albrow, M D; Bachelet, E; Brillant, S; Caldwell, J A R; Cassan, A; Cole, A A; Corrales, E; Coutures, C; Dieters, S; Prester, D Dominis; Fouque, P; Greenhill, J; Horne, K; Koo, J -R; Kubas, D; Marquette, J -B; Martin, R; Menzies, J W; Sahu, K C; Wambsganss, J; Williams, A; Choi, M Zub J Y; DePoy, D L; Dong, Subo; Gaudi, B S; Gould, A; Han, C; Henderson, C B; McGregor, D; Lee, C -U; Pogge, R W; Shin, I -G; Yee, J C; Szymaski, M K; Skowron, J; Poleski, R; Kozowski, S; Wyrzykowski, L; Kubiak, M; Pietrukowicz, P; Pietrzyski, G; Soszyski, I; Ulaczyk, K; Tsapras, Y; Street, R A; Dominik, M; Bramich, D M; Browne, P; Hundertmark, M; Kains, N; Snodgrass, C; Steele, I A; Dekany, I; Gonzalez, O A; Heyrovsky, D; Kandori, R; Kerins, E; Lucas, P W; Minniti, D; Nagayama, T; Rejkuba, M; Robin, A C; Saito, R

    2013-01-01

    We present the first microlensing candidate for a free-floating exoplanet-exomoon system, MOA-2011-BLG-262, with a primary lens mass of M_host ~ 4 Jupiter masses hosting a sub-Earth mass moon. The data are well fit by this exomoon model, but an alternate star+planet model fits the data almost as well. Nevertheless, these results indicate the potential of microlensing to detect exomoons, albeit ones that are different from the giant planet moons in our solar system. The argument for an exomoon hinges on the system being relatively close to the Sun. The data constrain the product M pi_rel, where M is the lens system mass and pi_rel is the lens-source relative parallax. If the lens system is nearby (large pi_rel), then M is small (a few Jupiter masses) and the companion is a sub-Earth-mass exomoon. The best-fit solution has a large lens-source relative proper motion, mu_rel = 19.6 +- 1.6 mas/yr, which would rule out a distant lens system unless the source star has an unusually high proper motion. However, data f...

  6. Eyes, Bulging (Proptosis)

    Science.gov (United States)

    ... a disorder causing overactivity of the thyroid gland ( hyperthyroidism ). Bulging eyes are not the same as prominent ... or pain Whether the person has symptoms of hyperthyroidism, such as inability to tolerate heat, increased sweating, ...

  7. Table of Contents of: "Red Giants as Probes of the Structure and Evolution of the Milky Way"

    CERN Document Server

    Miglio, Andrea; Noels, Arlette

    2011-01-01

    We give here the Table of Contents of the proceedings from the workshop "Red Giants as Probes of the Structure and Evolution of the Milky Way", held in Roma, 15-17 November 2010. Exciting results are blooming, thanks to a convergence between unprecedented asteroseismic data obtained by the satellites CoRoT and Kepler, and state-of-the-art models of the internal structure of red giants and of galactic evolution. The pulsation properties now available for thousands of red giants promise to add valuable and independent constraints to current models of structure and evolution of our galaxy. Such a close connection between these domains opens a new very promising gate in our understanding of stars and galaxies. Scientists specialised in galactic evolution, in stellar structure, and in asteroseismology, gathered together in this workshop to discuss the current status and uncertainties involved in modelling the structure and evolution of red giants, as well as open questions regarding the study of stellar population...

  8. Rejuvenation of spiral bulges

    CERN Document Server

    Thomas, D; Thomas, Daniel; Davies, Roger L.

    2006-01-01

    We seek to understand whether the stellar populations of galactic bulges show fingerprints of secular evolution triggered by the presence of the disc. For this purpose we re-analyse the sample of Proctor and Sansom, deriving stellar population ages and element abundances from absorption line indices. We obtain very consistent constraints on ages from the three Balmer indices Hbeta, Hgamma, and Hdelta, in good agreement with those of Proctor and Sansom based on a completely different method. Like other studies in the literature, we find that bulges have relatively low luminosity weighted ages, the lowest age derived for the smallest bulges being 1.3 Gyr. Hence bulges are not generally old but actually rejuvenated systems. We discuss evidence that this might be true also for the bulge of the Milky Way. We show that the smallest bulges, being the youngest with the lowest alpha/Fe ratios, must have experienced star formation events involving 10-30 per cent of their total mass in the past 1-2 Gyr. No significant c...

  9. The GIRAFFE Inner Bulge Survey (GIBS) III. Metallicity distributions and kinematics of 26 Galactic bulge fields

    CERN Document Server

    Zoccali, M; Gonzalez, O A; Valenti, E; Rojas-Arriagada, A; Minniti, J; Rejkuba, M; Minniti, D; McWilliam, A; Babusiaux, C; Hill, V; Renzini, A

    2016-01-01

    Several recent studies have demonstrated that the Galactic bulge hosts two components with different mean metallicities, and possibly different spatial distribution and kinematics. As a consequence, both the metallicity distribution and the radial velocity of bulge stars vary across different line of sights. We present here the metallicity distribution function of red clump stars in 26 fields spread across a wide area of the bulge, with special emphasis on fields close to Galactic plane, at latitudes b=-2 and b=-1, that were not explored before. This paper includes new metallicities from a sample of about 5000 K giant stars, observed at spectral resolution R=6500, in the Calcium II Triplet region. They are the main dataset of the GIRAFFE Inner Bulge Survey. As part of the same survey we have previously published results for a sample of about 600 K giant stars, at latitude b=-4 , derived from higher resolution spectra (R=22,500). Results. The combined sample allows us to trace and characterize the metal poor a...

  10. Visualization of lipid domains in giant unilamellar vesicles using an environment-sensitive membrane probe based on 3-hydroxyflavone.

    Science.gov (United States)

    Klymchenko, Andrey S; Oncul, Sule; Didier, Pascal; Schaub, Emmanuel; Bagatolli, Luis; Duportail, Guy; Mély, Yves

    2009-02-01

    We characterized the recently introduced environment-sensitive fluorescent membrane probe based on 3-hydroxyflavone, F2N12S, in model lipid membranes displaying liquid disordered (Ld) phase, liquid ordered (Lo) phase, or their coexistence. Steady-state fluorescence studies in large unilamellar vesicles show that the probe dual emission drastically changes with the lipid bilayer phase, which can be correlated with the difference in their hydration. Using two-photon excitation microscopy on giant unilamellar vesicles, the F2N12S probe was found to bind both Ld and Lo phases, allowing visualization of the individual phases from the fluorescence intensity ratio of its two emission bands. By using a linearly polarized excitation light, a strong photoselection was observed for F2N12S in the Lo phase, indicating that its fluorophore is nearly parallel to the lipid chains of the bilayer. In contrast, the absence of the photoselection with the Ld phase indicated no predominant orientation of the probe in the Ld phase. Comparison of the present results with those reported previously for F2N12S in living cells suggests a high content of the Lo phase in the outer leaflet of the cell plasma membranes. Taking into account the high selectivity of F2N12S for the cell plasma membranes and its suitability for both single- and two-photon excitation, applications of this probe to study membrane lateral heterogeneity in biological membranes are foreseen.

  11. The formation of the Galactic bulge of the Milky Way

    Directory of Open Access Journals (Sweden)

    Freeman K.

    2012-02-01

    Full Text Available We aim to determine if the bulge formed via mergers as predicted by Cold Dark Matter (CDM theory, or from disk instabilities, as suggested by its boxy shape, or both processes. We are observing about 28,000 bulge stars in fields that span longitudes of − 31 to + 26° and latitudes of − 5° to − 10°, targeting mostly red clump giants and we are measuring stellar velocities and chemical abundances. We have almost concluded our observations and have analysed data of 23,000 stars. We find a cylindrical rotation profile for the bulge which blends smoothly out into the disk and from the [Fe/H] results we find the bulge to be comprised of separate components, with an underlying slowly rotating metal poor subsample which we believe to be the inner halo stars and metal weak thick disk. We find only a small [Fe/H] gradient with latitude in the bulge, of − 0.07dex/kpc. This weak gradient does not necessarily support a merger origin for our bulge and the composite nature of the bulge is consistent with formation out of the thin disk as per instability formation models.

  12. Does the Galactic Bulge Have Fewer Planets?

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    The Milky Ways dense central bulge is a very different environment than the surrounding galactic disk in which we live. Do the differences affect the ability of planets to form in the bulge?Exploring Galactic PlanetsSchematic illustrating how gravitational microlensing by an extrasolar planet works. [NASA]Planet formation is a complex process with many aspects that we dont yet understand. Do environmental properties like host star metallicity, the density of nearby stars, or the intensity of the ambient radiation field affect the ability of planets to form? To answer these questions, we will ultimately need to search for planets around stars in a large variety of different environments in our galaxy.One way to detect recently formed, distant planets is by gravitational microlensing. In this process, light from a distant source star is bent by a lens star that is briefly located between us and the source. As the Earth moves, this momentary alignment causes a blip in the sources light curve that we can detect and planets hosted by the lens star can cause an additional observable bump.Artists impression of the Milky Way galaxy. The central bulge is much denserthan the surroundingdisk. [ESO/NASA/JPL-Caltech/M. Kornmesser/R. Hurt]Relative AbundancesMost source stars reside in the galactic bulge, so microlensing events can probe planetary systems at any distance between the Earth and the galactic bulge. This means that planet detections from microlensing could potentially be used to measure the relative abundances of exoplanets in different parts of our galaxy.A team of scientists led by Matthew Penny, a Sagan postdoctoral fellow at Ohio State University, set out to do just that. The group considered a sample of 31 exoplanetary systems detected by microlensing and asked the following question: are the planet abundances in the galactic bulge and the galactic disk the same?A Paucity of PlanetsTo answer this question, Penny and collaborators derived the expected

  13. The GIRAFFE Inner Bulge Survey (GIBS). III. Metallicity distributions and kinematics of 26 Galactic bulge fields

    Science.gov (United States)

    Zoccali, M.; Vasquez, S.; Gonzalez, O. A.; Valenti, E.; Rojas-Arriagada, A.; Minniti, J.; Rejkuba, M.; Minniti, D.; McWilliam, A.; Babusiaux, C.; Hill, V.; Renzini, A.

    2017-02-01

    Context. Several recent studies have demonstrated that the Galactic bulge hosts two components with different mean metallicities, and possibly different spatial distribution and kinematics. As a consequence, both the metallicity distribution and the radial velocity of bulge stars vary across different lines of sight. Aims: We present here the metallicity distribution function of red clump stars in 26 fields spread across a wide area of the bulge, with special emphasis on fields close to Galactic plane, at latitudes b = -2° and b = -1°, that have not been explored before. Methods: This paper includes new metallicities from a sample of approximately 5000 K giant stars, observed at spectral resolution R 6500, in the Calcium II Triplet region. These represent the main dataset from the GIRAFFE Inner Bulge Survey. As part of the same survey we have previously published results for a sample of approximately 600 K giant stars, at latitude b -4°, derived from higher resolution spectra (R = 22 500). Results: The combined sample allows us to trace and characterize the metal poor and metal rich bulge populations down to the inner bulge. We present a density map for each of the two components. Contrary to expectations from previous works, we found the metal poor population to be more centrally concentrated than the metal rich one, and with a more axisymmetric spatial distribution. The metal rich population, on the other hand, is arranged in a boxy distribution, consistent with an edge-on bar. By coupling metallicities and radial velocities we show that the metal poor population has a velocity dispersion that varies rather mildly with latitude. On the contrary, the metal rich population has a low velocity dispersion far from the plane (b = -8.5°), yet has a steeper gradient with latitude, becoming higher than the metal poor one in the innermost field (b = -1°). Conclusions: This work provides new observational constraints on the actual chemodynamical properties of the

  14. The lack of carbon stars in the Galactic bulge

    Institute of Scientific and Technical Information of China (English)

    Zhu Chun-Hua; Lv Guo-Liang; Wang Zhao-Jun; Zhang Jun

    2008-01-01

    In order to explain the lack of carbon stars in the Galactic bulge, we have made a detailed study of thermal pulseasymptotic giant branch (TP-AGB) stars by using a population synthesis code. The effects of the oxygen overabundance and the mass loss rate on the ratio of the number of carbon stars to that of oxygen stars in the Galactic bulge are discussed. We find that the oxygen overabundance which is about twice as large as that in the solar neighbourhood (close to the present observations) is insufficient to explain the rareness of carbon stars in the bulge. We suggest that the large mass loss rate may serve as a controlling factor in the ratio of the number of carbon stars to that of oxygen stars.

  15. Non-nearest-neighbor dependence of stability for group III RNA single nucleotide bulge loops.

    Science.gov (United States)

    Kent, Jessica L; McCann, Michael D; Phillips, Daniel; Panaro, Brandon L; Lim, Geoffrey F S; Serra, Martin J

    2014-06-01

    Thirty-five RNA duplexes containing single nucleotide bulge loops were optically melted and the thermodynamic parameters for each duplex determined. The bulge loops were of the group III variety, where the bulged nucleotide is either a AG/U or CU/G, leading to ambiguity to the exact position and identity of the bulge. All possible group III bulge loops with Watson-Crick nearest-neighbors were examined. The data were used to develop a model to predict the free energy of an RNA duplex containing a group III single nucleotide bulge loop. The destabilization of the duplex by the group III bulge could be modeled so that the bulge nucleotide leads to the formation of the Watson-Crick base pair rather than the wobble base pair. The destabilization of an RNA duplex caused by the insertion of a group III bulge is primarily dependent upon non-nearest-neighbor interactions and was shown to be dependent upon the stability of second least stable stem of the duplex. In-line structure probing of group III bulge loops embedded in a hairpin indicated that the bulged nucleotide is the one positioned further from the hairpin loop irrespective of whether the resulting stem formed a Watson-Crick or wobble base pair. Fourteen RNA hairpins containing group III bulge loops, either 3' or 5' of the hairpin loop, were optically melted and the thermodynamic parameters determined. The model developed to predict the influence of group III bulge loops on the stability of duplex formation was extended to predict the influence of bulge loops on hairpin stability.

  16. The Chandra Galactic Bulge Survey

    NARCIS (Netherlands)

    Hynes, Robert I.; Jonker, P.G.; Bassa, C. G.; Dieball, A.; Greiss, S.; Maccarone, T. J.; Nelemans, G.; Steeghs, D.; Torres, M. A. P.; Britt, C. T.; Clem, J. L.; Gossen, L.; Grindlay, J. E.; Groot, P.J.; Kuiper, L.; Kuulkers, E.; Mendez, M.; Mikles, V. J.; Ratti, E. M.; Rea, N.; van Haaften, L.; Wijnands, R.; in't Zand, J. J. M.

    2011-01-01

    The Chandra Galactic Bulge Survey (CGBS) is a shallow but wide survey of two approximately 6x1 degree strips of the Galactic Bulge about a degree above and below the plane. The survey by design targets regions where extinction and crowding are manageable and optical counterparts are accessible to de

  17. The Chandra Galactic Bulge Survey

    NARCIS (Netherlands)

    Hynes, Robert I.; Jonker, P. G.; Bassa, C. G.; Nelemans, G.; Steeghs, D.; Torres, M. A. P.; Maccarone, T. J.; Greiss, S.; Clem, J.; Dieball, A.; Mikles, V. J.; Britt, C. T.; Gossen, L.; Collazzi, A. C.; Wijnands, R.; In't Zand, J. J. M.; Mendez, M.; Rea, N.; Kuulkers, E.; Ratti, E. M.; van Haaften, L. M.; Heinke, C.; Ozel, F.; Groot, P. J.; Verbunt, F.

    2012-01-01

    The Chandra Galactic Bulge Survey (GBS) is a shallow but wide survey of two approximately 6x1 degree strips of the Galactic Bulge about a degree above and below the plane. The survey by design targets regions where extinction and crowding are manageable and optical counterparts are accessible to det

  18. The Gaia-ESO Survey: the most metal-poor stars in the Galactic bulge

    CERN Document Server

    Howes, L; Casey, A R; Keller, S C; Yong, D; Gilmore, G; Lind, K; Worley, C; Bessell, M S; Casagrande, L; Marino, A F; Nataf, D M; Owen, C I; Da Costa, G S; Schmidt, B P; Tisserand, P; Randich, S; Feltzing, S; Vallenari, A; Prieto, C Allende; Bensby, T; Flaccomio, E; Korn, A J; Pancino, E; Recio-Blanco, A; Smiljanic, R; Bergemann, M; Costado, M T; Damiani, F; Heiter, U; Hill, V; Hourihane, A; Jofré, P; Lardo, C; de Laverny, P; Magrini, L; Maiorca, E; Masseron, T; Morbidelli, L; Sacco, G G; Minniti, D; Zoccali, M

    2014-01-01

    We present the first results of the EMBLA survey (Extremely Metal-poor BuLge stars with AAOmega), aimed at finding metal-poor stars in the Milky Way bulge, where the oldest stars should now preferentially reside. EMBLA utilises SkyMapper photometry to pre-select metal-poor candidates, which are subsequently confirmed using AAOmega spectroscopy. We describe the discovery and analysis of four bulge giants with -2.72<=[Fe/H]<=-2.48, the lowest metallicity bulge stars studied with high-resolution spectroscopy to date. Using FLAMES/UVES spectra through the Gaia-ESO Survey we have derived abundances of twelve elements. Given the uncertainties, we find a chemical similarity between these bulge stars and halo stars of the same metallicity, although the abundance scatter may be larger, with some of the stars showing unusual [{\\alpha}/Fe] ratios.

  19. Signature of clustering in quantum many-body systems probed by the giant dipole resonance

    Science.gov (United States)

    Pandit, Deepak; Mondal, Debasish; Dey, Balaram; Bhattacharya, Srijit; Mukhopadhyay, S.; Pal, Surajit; De, A.; Banerjee, S. R.

    2017-03-01

    The present experimental study illustrates how large deformations attained by nuclei due to cluster formation are perceived through the giant dipole resonance (GDR) strength function. The high energy GDR γ rays have been measured from 32S at different angular momenta (J ) but similar temperatures in the reactions 4He(Elab=45 MeV )+28Si and 20Ne(Elab=145 MeV )+12C . The experimental data at lower J (˜10 ℏ ) suggests a normal deformation, similar to the ground state value, showing no potential signature of clustering. However, it is found that the GDR lineshape is fragmented into two prominent peaks at high J (˜20 ℏ ) providing a direct measurement of the large deformation developed in the nucleus. The observed lineshape is also completely different from the ones seen for Jacobi shape transition at high J pointing towards the formation of cluster structure in superdeformed states of 32S at such high spin. Thus, the GDR can be regarded as a unique tool to study cluster formation at high excitation energies and angular momenta.

  20. Probing interstellar extinction near the 30 Doradus nebula with red giant stars

    CERN Document Server

    De Marchi, Guido; Girardi, Leo

    2013-01-01

    We have studied the interstellar extinction in a field of 3' x 3' located about 6' SW of 30 Doradus in the Large Magellanic Cloud (LMC). Hubble Space Telescope observations in the U, B, V, I and Halpha bands reveal patchy extinction in this field. The colour-magnitude diagram (CMD) shows an elongated stellar sequence, almost parallel to the main sequence (MS), which is in reality made up of stars of the red giant clump (RC) spread across the CMD by the uneven levels of extinction in this region. Since these objects are all at the same distance from us and share very similar physical properties, we can derive quantitatively both the extinction law in the range 3000 - 8000 Angstrom and the absolute extinction towards about 100 objects, setting statistically significant constraints on the dust grains properties in this area. We find an extinction curve considerably flatter than the standard Galactic one and than those obtained before for the LMC. The derived value of Rv = 5.6 +/- 0.3 implies that in this region ...

  1. Probing the clumping structure of Giant Molecular Clouds through the spectrum, polarisation and morphology of X-ray Reflection Nebulae

    CERN Document Server

    Molaro, Margherita; Sunyaev, Rashid

    2015-01-01

    We suggest a method for probing global properties of clump populations in Giant Molecular Clouds (GMCs) in the case where these act as X-ray reflection nebulae (XRNe), based on the study of the clumping's overall effect on the reflected X-ray signal, in particular on the Fe K-alpha line's shoulder. We consider the particular case of Sgr B2, one of the brightest and most massive XRN in our Galaxy. We parametrise the gas distribution inside the cloud using a simple clumping model, with the slope of the clump mass function (alpha), the minimum clump mass (m_{min}), the fraction of the cloud's mass contained in clumps (f_{DGMF}), and the mass-size relation of individual clumps as free parameters, and investigate how these affect the reflected X-ray spectrum. In the case of very dense clumps, similar to those presently observed in Sgr B2, these occupy a small volume of the cloud and present a small projected area to the incoming X-ray radiation. We find that these contribute negligibly to the scattered X-rays. Clu...

  2. Visualization of lipid domains of lipid domains in giant unilamellar vesicles using an environment-sensitive membrane probe based on 3-hydroxyflavone

    DEFF Research Database (Denmark)

    Klymchenko, Andrey; Oncul, Sule; Didier, Pascal;

    2009-01-01

    We characterized the recently introduced environment-sensitive fluorescent membrane probe based on 3-hydroxyflavone, F2N12S, in model lipid membranes displaying liquid disordered (Ld) phase, liquid ordered (Lo) phase, or their coexistence. Steady-state fluorescence studies in large unilamellar...... vesicles show that the probe dual emission drastically changes with the lipid bilayer phase, which can be correlated with the difference in their hydration. Using two-photon excitation microscopy on giant unilamellar vesicles, the F2N12S probe was found to bind both Ld and Lo phases, allowing visualization...... of the photoselection with the Ld phase indicated no predominant orientation of the probe in the Ld phase. Comparison of the present results with those reported previously for F2N12S in living cells suggests a high content of the Lo phase in the outer leaflet of the cell plasma membranes. Taking into account the high...

  3. 3D kinematics through the X-shaped Milky Way bulge

    CERN Document Server

    Vásquez, S; Hill, V; Renzini, A; González, O A; Gardner, E; Debattista, Victor P; Robin, A C; Rejkuba, M; Baffico, M; Monelli, M; Motta, V; Minniti, D

    2013-01-01

    It has recently been discovered that the Galactic bulge is X-shaped, with the two southern arms of the X both crossing the lines of sight at l=0 and |b|>4, hence producing a double red clump (RC) in the bulge CMD. Dynamical models predict the formation of X-shaped bulges, as extreme cases of boxy-peanut bulges. However, since X-shaped bulges were known to be present only in external galaxies, models have never been compared to 3D kinematical data for individual stars. We study the orbital motion of Galactic bulge stars, in the two arms of the X in the southern hemisphere. The goal is to provide observational constraints to bulge formation models that predict the formation of X-shapes through bar dynamical instabilities. Radial velocities have been obtained for a sample of 454 bulge giants, roughly equally distributed between the bright and faint RC, in a field at (l,b)=(0,-6). Proper motions were derived for all RC stars in the same field by combining images from two epochs obtained 11 years apart. The proper...

  4. Polarization in microlensing towards the Galactic bulge

    CERN Document Server

    Ingrosso, G; De Paolis, F; Jetzer, Ph; Nucita, A A; Strafella, F; Zakharov, A F

    2012-01-01

    Gravitational microlensing, when finite size source effects are relevant, provides an unique tool for the study of source star stellar atmospheres through an enhancement of a characteristic polarization signal. This is due to the differential magnification induced during the crossing of the source star. In this paper we consider a specific set of reported highly magnified, both single and binary exoplanetary systems, microlensing events towards the Galactic bulge and evaluate the expected polarization signal. To this purpose, we consider several polarization models which apply to different types of source stars: hot, late type main sequence and cool giants. As a result we compute the polarization signal P,which goes up to P=0.04% for late type stars and up to a few percent for cool giants, depending on the underlying physical polarization processes and atmosphere model parameters. Given a I band magnitude at maximum magnification of about 12, and a typical duration of the polarization signal up to 1 day, we c...

  5. PROPER MOTIONS IN THE GALACTIC BULGE: PLAUT'S WINDOW

    Directory of Open Access Journals (Sweden)

    K. Vieira

    2009-01-01

    Full Text Available A proper motion study of a eld of 20' x20' inside Plaut's low extinction window (l,b=(0 ;-8 , has been completed. Relative proper motions and photographic BV photometry have been derived for -21; 000 stars reaching to V - 20:5 mag, based on the astrometric reduction of 43 photographic plates, spanning over 21 years of epoch di erence. Proper motion errors are typically 1 mas yr-1. Cross-referencing with the 2MASS catalog yielded a sample of - 8700 stars, from which predominantly disk and bulge subsamples were selected photometrically from the JH color-magnitude diagram. The two samples exhibited di erent proper-motion distributions, with the disk displaying the expected re ex solar motion. Galactic rotation was also detected for stars between -2 and -3 kpc from us. The bulge sample, represented by red giants, has an intrinsic proper motion dispersion of (l; b = (3:39; 2:91 = (0:11; 0:09 mas yr-1, which is in good agreement with previous results. A mean distance of 6:37+0:87 -0:77 kpc has been estimated for the bulge sample, based on the observed K magnitude of the horizontal branch red clump. The metallicity [M=H] distribution was also obtained for a subsample of 60 bulge giants stars, based on calibrated photometric indices. The observed [M=H] shows a peak value at [M=H]-0:1 with an extended metal poor tail and around 30% of the stars with supersolar metallicity. No change in proper motion dispersion was observed as a function of [M=H]. We are currently in the process of obtaining CCD UBV RI photometry for the entire proper-motion sample of - 21; 000 stars.

  6. The Formation of Galactic Bulges

    NARCIS (Netherlands)

    Peletier, R.; Balcells, M.; Falcon-Barroso, J.; Graham, A.

    2005-01-01

    We summarise some recent results about nearby galactic bulges that are relevant to their formation. We highlight a number of significant advances in our understanding of the surface brightness profiles, stellar populations, and especially the very centers of spiral galaxies. We also view our own Mil

  7. A High-velocity Bulge RR Lyrae Variable on a Halo-like Orbit

    Science.gov (United States)

    Kunder, Andrea; Rich, R. M.; Hawkins, K.; Poleski, R.; Storm, J.; Johnson, C. I.; Shen, J.; Li, Z.-Y.; Cordero, M. J.; Nataf, D. M.; Bono, G.; Walker, A. R.; Koch, A.; De Propris, R.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Pietrzyński, G.; Ulaczyk, K.; Wyrzykowski, Ł.; Pietrukowicz, P.; Skowron, J.; Kozłowski, S.; Mróz, P.

    2015-07-01

    We report on the RR Lyrae variable star, MACHO 176.18833.411, located toward the Galactic bulge and observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay, which has the unusual radial velocity of -372 ± 8 km s-1 and true space velocity of -482 ± 22 km s-1 relative to the Galactic rest frame. Located less than 1 kpc from the Galactic center and toward a field at (l, b) = (3, -2.5), this pulsating star has properties suggesting it belongs to the bulge RR Lyrae star population, yet a velocity indicating it is abnormal, at least with respect to bulge giants and red clump stars. We show that this star is most likely a halo interloper and therefore suggest that halo contamination is not insignificant when studying metal-poor stars found within the bulge area, even for stars within 1 kpc of the Galactic center. We discuss the possibility that MACHO 176.18833.411 is on the extreme edge of the bulge RR Lyrae radial velocity distribution, and also consider a more exotic scenario in which it is a runaway star moving through the Galaxy.

  8. A HIGH-VELOCITY BULGE RR LYRAE VARIABLE ON A HALO-LIKE ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Kunder, Andrea; Storm, J. [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Rich, R. M. [Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA 90095-1562 (United States); Hawkins, K. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Poleski, R. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Johnson, C. I. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Shen, J.; Li, Z.-Y. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Cordero, M. J. [Astronomisches Rechen-Institut: Zentrum für Astronomie, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Nataf, D. M. [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Bono, G. [Dipartimento di Fisica, Universita di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma (Italy); Walker, A. R. [Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena (Chile); Koch, A. [Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, D-69117 Heidelberg (Germany); De Propris, R. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Turku (Finland); Udalski, A.; Szymanski, M. K.; Soszynski, I.; Pietrzynski, G.; Ulaczyk, K.; Wyrzykowski, Ł. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); and others

    2015-07-20

    We report on the RR Lyrae variable star, MACHO 176.18833.411, located toward the Galactic bulge and observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay, which has the unusual radial velocity of −372 ± 8 km s{sup −1} and true space velocity of −482 ± 22 km s{sup −1} relative to the Galactic rest frame. Located less than 1 kpc from the Galactic center and toward a field at (l, b) = (3, −2.5), this pulsating star has properties suggesting it belongs to the bulge RR Lyrae star population, yet a velocity indicating it is abnormal, at least with respect to bulge giants and red clump stars. We show that this star is most likely a halo interloper and therefore suggest that halo contamination is not insignificant when studying metal-poor stars found within the bulge area, even for stars within 1 kpc of the Galactic center. We discuss the possibility that MACHO 176.18833.411 is on the extreme edge of the bulge RR Lyrae radial velocity distribution, and also consider a more exotic scenario in which it is a runaway star moving through the Galaxy.

  9. Clumpy Disc and Bulge Formation

    CERN Document Server

    Perez, J; Tissera, P; Michel-Dansac, L

    2013-01-01

    We present a set of hydrodynamical/Nbody controlled simulations of isolated gas rich galaxies that self-consistently include SN feedback and a detailed chemical evolution model, both tested in cosmological simulations. The initial conditions are motivated by the observed star forming galaxies at z ~ 2-3. We find that the presence of a multiphase interstellar media in our models promotes the growth of disc instability favouring the formation of clumps which in general, are not easily disrupted on timescales compared to the migration time. We show that stellar clumps migrate towards the central region and contribute to form a classical-like bulge with a Sersic index, n > 2. Our physically-motivated Supernova feedback has a mild influence on clump survival and evolution, partially limiting the mass growth of clumps as the energy released per Supernova event is increased, with the consequent flattening of the bulge profile. This regulation does not prevent the building of a classical-like bulge even for the most ...

  10. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Perez, Ana E.; Majewski, Steven R.; Hearty, Fred R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Cunha, Katia [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Shetrone, Matthew [McDonald Observatory, University of Texas at Austin, Fort Davis, TX 79734 (United States); Johnson, Jennifer A.; Zasowski, Gail [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Smith, Verne V.; Beers, Timothy C. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Schiavon, Ricardo P. [Gemini Observatory, 670 N. A' Ohoku Place, Hilo, HI 96720 (United States); Holtzman, Jon [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Nidever, David [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Allende Prieto, Carlos [Departamento de Astrofisica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Bizyaev, Dmitry; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Eisenstein, Daniel J. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Frinchaboy, Peter M. [Department of Physics and Astronomy, Texas Christian University, 2800 South University Drive, Fort Worth, TX 76129 (United States); Girardi, Leo [Laboratorio Interinstitucional de e-Astronomia - LIneA, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ - 20921-400 (Brazil); and others

    2013-04-10

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403 giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] {<=} -1.7), including two that are very metal-poor [Fe/H] {approx} -2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the {alpha}-elements O, Mg, and Si without significant {alpha}-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.

  11. Elliptical Galaxies and Bulges of Disc Galaxies: Summary of Progress and Outstanding Issues

    Science.gov (United States)

    Kormendy, John

    Bulge components of disc galaxies are the high-density centers interior to their outer discs. Once thought to be equivalent to elliptical galaxies, their observed properties and formation histories turn out to be richer and more varied than those of ellipticals. This book reviews progress in many areas of bulge studies. Two advances deserve emphasis: (1) Observations divide bulges into "classical bulges" that look indistinguishable from ellipticals and "pseudobulges" that are discier and (except in S0s) more actively star-forming than are ellipticals. Classical bulges and ellipticals are thought to form by major galaxy mergers. Discy pseudobulges are a product of the slow ("secular") evolution of galaxy discs. Nonaxisymmetries such as bars and oval distortions transport some disc gas toward the center, where it starbursts and builds a dense central component that is discier in structure than are classical bulges. Secular evolution explains many regular structures (e.g., rings) seen in galaxy discs. It is a new area of galaxy evolution work that complements hierarchical clustering. (2) Studies of high-redshift galaxies reveal that their discs are so gas-rich that they are violently unstable to the formation of mass clumps that sink to the center and merge. This is an alternative channel for the formation of classical bulges. This chapter summarizes big-picture successes and unsolved problems in the formation of bulges and ellipticals and their coevolution (or not) with supermassive black holes. I present an observer's perspective on simulations of cold dark matter galaxy formation including baryonic physics. Our picture of the quenching of star formation is becoming general and secure at redshifts z 1000 in mass but that differ from each other as we observe over that whole range. A related difficulty is how hierarchical clustering makes so many giant, bulgeless galaxies in field but not cluster environments. I present arguments that we rely too much on star

  12. The stellar population and luminosity function in M31 bulge and Inner Disk Fields

    Science.gov (United States)

    Rich, R. Michael; Mould, J. R.; Graham, James R.

    1993-01-01

    We report infrared photometry and stellar identifications for stars in five fields in the M31 bulge located from 2 to 11 arcmin from the nucleus. These fields have been chosen such that the bulge/disk star ratio predicted from Kent's (1989) small bulge model varies from 7:1 to 1:5, allowing a study of near pure disk and near pure bulge stellar populations. We reject the hypothesis of Davies et al. (1991) that luminous stars found within 500 pc of the nucleus are due to a contaminating disk population. We find that the bulge contains stars in excess of M(sub bol) = -5 mag and that the bulge luminosity function has a distinct shape different from the disk fields. We find many stars redder than (J-K) = 2 mag, and suggest that these stars may be the counterparts of the IRAS-selected Galactic bulge Miras studied by Whitelock et at. (1991). The number of bright stars (M(sub bol) is less than -5 mag) falls off more rapidly than the r band surface brightness. By building model fields out of a bulge luminosity function and artificial stars, we are able to show that the change in the luminosity function toward the center cannot be explained simply by the mismeasurement of overcrowded star images. However, these tests also raise the possibility that the asymptotic giant branch (AGB) tip may be approximately equal to 1 mag fainter than actually measured in our most crowded field, reaching only M(sub bol) = -5. We compare observed counts of AGB stars with those predicted from theoretical lifetimes using a technique of general interest for this problem, the Fuel Consumption Theorem of Renzini & Buzzoni (1986) Spectral Evolution of Galaxies (Reidel, Dordrecht). Our methodology is generally applicable to the study of other resolved extragalactic stellar populations. The number of observed stars per magnitude up to a luminosity of M(bol) = -5.5 mag is consistent with AGB evolution of the whole population of the innermost bulge field with the standard lifetime on the AGB of 1.3 Myr

  13. Stellar Sources in the ISOGAL Inner Galactic Bulge Field (=00, =-10)

    Indian Academy of Sciences (India)

    D. Κ. Ojha; A. Omont; S. Ganesh; G. Simon; Μ. Schultheis

    2000-06-01

    ISOGAL is a survey at 7 and 15 μm with ISOCAM of the inner galactic disk and bulge of our Galaxy. The survey covers ∼ 22 deg2 in selected areas of the central = ± 30 degree of the inner Galaxy. In this paper, we report the study of a small ISOGAL field in the inner galactic bulge (=0°, =-1°, area = 0.033deg2). Using the multicolor near-infrared data (IJK) of DENIS (DEep Near Infrared Southern Sky Survey) and mid-infrared ISOGAL data, we discuss the nature of the ISOGAL sources. The various color-color and color-magnitude diagrams are discussed in the paper. While most of the detected sources are red giants (RGB tip stars), a few of them show an excess in J-K and K-[15] colors with respect to the red giant sequence. Most of them are probably AGB stars with large mass-loss rates.

  14. Ultrasonographic findings in patients with peristomal bulging

    DEFF Research Database (Denmark)

    Sjödahl, Rune I; Thorelius, Lars; Hallböök, Olof J

    2011-01-01

    The aim of this study was to obtain a classification of peristomal bulging based on findings at ultrasonography in patients with a sigmoid colostomy.......The aim of this study was to obtain a classification of peristomal bulging based on findings at ultrasonography in patients with a sigmoid colostomy....

  15. Dust properties in the Galactic bulge

    NARCIS (Netherlands)

    Pottasch, S. R.; Bernard-Salas, J.

    2013-01-01

    Context. It has been suggested that the ratio of total-to-selective extinction RV in dust in the interstellar medium differs in the Galactic bulge from its value in the local neighborhood. Aims: We attempt to test this suggestion. Methods: The mid-infrared hydrogen lines in 16 Galactic bulge PNe mea

  16. 3-Dimensional dynamics of the galactic bulge

    NARCIS (Netherlands)

    Soto Vicencio, Mario Humberto

    2010-01-01

    This thesis is part of a project which attempts to unveil the structure of the galactic bulge of our galaxy through the study of the kinematics of stars in low foreground extinction windows.Thus, in order to effectively constraint the phase-space distribution function of the galactic bulge, we have

  17. FAILURE ANALYSIS: WASTEWATER DRUM BULGING

    Energy Technology Data Exchange (ETDEWEB)

    Vormelker, P

    2008-09-15

    A 55 gallon wastewater drum lid was found to be bulged during storage in a remote area. Drum samples were obtained for analysis. The interior surface of these samples revealed blistering and holes in the epoxy phenolic drum liner and corrosion of the carbon steel drum. It is suspected that osmotic pressure drove permeation of the water through the epoxy phenolic coating which was weakened from exposure to low pH water. The coating failed at locations throughout the drum interior. Subsequent corrosion of the carbon steel released hydrogen which pressurized the drum causing deformation of the drum lid. Additional samples from other wastewater drums on the same pallet were also evaluated and limited corrosion was visible on the interior surfaces. It is suspected that, with time, the corrosion would have advanced to cause pressurization of these sealed drums.

  18. Dynamical modelling of the galactic bulge and bar: the Milky Way's pattern speed, stellar and dark matter mass distribution

    Science.gov (United States)

    Portail, Matthieu; Gerhard, Ortwin; Wegg, Christopher; Ness, Melissa

    2017-02-01

    We construct a large set of dynamical models of the galactic bulge, bar and inner disc using the made-to-measure method. Our models are constrained to match the red clump giant density from a combination of the VVV, UKIDSS and 2MASS infrared surveys together with stellar kinematics in the bulge from the BRAVA and OGLE surveys, and in the entire bar region from the ARGOS Survey. We are able to recover the bar pattern speed and the stellar and dark matter mass distributions in the bar region, thus recovering the entire galactic effective potential. We find a bar pattern speed of 39.0 ± 3.5 km s- 1 kpc- 1, placing the bar corotation radius at 6.1 ± 0.5 kpc and making the Milky Way bar a typical fast rotator. We evaluate the stellar mass of the long bar and bulge structure to be Mbar/bulge = 1.88 ± 0.12 × 1010 M⊙, larger than the mass of disc in the bar region, Minner disc = 1.29 ± 0.12 × 1010 M⊙. The total dynamical mass in the bulge volume is 1.85 ± 0.05 × 1010 M⊙. Thanks to more extended kinematic data sets and recent measurement of the bulge initial mass function, our models have a low dark matter fraction in the bulge of 17 ± 2 per cent. We find a dark matter density profile which flattens to a shallow cusp or core in the bulge region. Finally, we find dynamical evidence for an extra central mass of ∼ 0.2 × 1010 M⊙, probably in a nuclear disc or discy pseudo-bulge.

  19. The age of the young bulge-like population in the stellar system Terzan5: linking the Galactic bulge to the high-z Universe

    CERN Document Server

    Ferraro, F R; Dalessandro, E; Lanzoni, B; Origlia, L; Rich, R M; Mucciarelli, A; -,

    2016-01-01

    The Galactic bulge is dominated by an old, metal rich stellar population. The possible presence and the amount of a young (a few Gyr old) minor component is one of the major issues debated in the literature. Recently, the bulge stellar system Terzan 5 was found to harbor three sub-populations with iron content varying by more than one order of magnitude (from 0.2 up to 2 times the solar value), with chemical abundance patterns strikingly similar to those observed in bulge field stars. Here we report on the detection of two distinct main sequence turn-off points in Terzan 5, providing the age of the two main stellar populations: 12 Gyr for the (dominant) sub-solar component and 4.5 Gyr for the component at super-solar metallicity. This discovery classifies Terzan 5 as a site in the Galactic bulge where multiple bursts of star formation occurred, thus suggesting a quite massive progenitor possibly resembling the giant clumps observed in star forming galaxies at high redshifts. This connection opens a new route ...

  20. Dusty Mass Loss from Galactic Asymptotic Giant Branch Stars

    Science.gov (United States)

    Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel H.

    2016-06-01

    We are probing how mass loss from Asymptotic Giant Branch (AGB) stars depends upon their metallicity. Asymptotic giant branch (AGB) stars are evolved stars that eject large parts of their mass in outflows of dust and gas in the final stages of their lives. Our previous studies focused on mass loss from AGB stars in lower metallicity galaxies: the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). In our present study, we analyze AGB star mass loss in the Galaxy, with special attention to the Bulge, to investigate how mass loss differs in an overall higher metallicity environment. We construct radiative transfer models of the spectral energy distributions (SEDs) of stars in the Galaxy identified as AGB stars from infrared and optical surveys. Our Magellanic Cloud studies found that the AGB stars with the highest mass loss rates tended to have outflows with carbon-rich dust, and that overall more carbon-rich (C-rich) dust than oxygen-rich (O-rich) was produced by AGB stars in both LMC and SMC. Our radiative transfer models have enabled us to determine reliably the dust chemistry of the AGB star from the best-fit model. For our Galactic sample, we are investigating both the dust chemistries of the AGB stars and their mass-loss rates, to compare the balance of C-rich dust to O-rich dust between the Galactic bulge and the Magellanic Clouds. We are also constructing detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra; e.g., from the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed dust modeling of spectra informs our choice of dust properties to use in radiative transfer modeling of SEDs of Galactic AGB stars. BAS acknowledges funding from NASA ADAP grant NNX15AF15G.

  1. Proper Motions in the Galactic Bulge: Plaut's Window

    CERN Document Server

    Vieira, Katherine; Mendez, Rene A; Rich, R Michael; Girard, Terrence M; Korchagin, Vladimir I; van Altena, William; Majewski, Steven R; Bergh, Sidney van den

    2007-01-01

    A proper motion study of a field of 20' x 20' inside Plaut's low extinction window (l,b)=(0 deg,-8 deg), has been completed. Relative proper motions and photographic BV photometry have been derived for ~21,000 stars reaching to V~20.5 mag, based on the astrometric reduction of 43 photographic plates, spanning over 21 years of epoch difference. Proper motion errors are typically 1 mas/yr and field dependent systematics are below 0.2 mas/yr. Cross-referencing with the 2MASS catalog yielded a sample of ~8,700 stars, from which predominantly disk and bulge subsamples were selected photometrically from the JH color-magnitude diagram. The two samples exhibited different proper-motion distributions, with the disk displaying the expected reflex solar motion as a function of magnitude. Galactic rotation was also detected for stars between ~2 and ~3 kpc from us. The bulge sample, represented by red giants, has an intrinsic proper motion dispersion of (sigma_l,sigma_b)=(3.39, 2.91)+/-(0.11,0.09) mas/yr, which is in good...

  2. Realistic Stellar Feedback & Bulge Formation in Clumpy Disks

    CERN Document Server

    Hopkins, Philip F; Murray, Norman; Quataert, Eliot; Hernquist, Lars

    2012-01-01

    We use numerical simulations of isolated galaxies to study the effects of realistic stellar feedback on the formation and evolution of giant star-forming gas 'clumps' in high-redshift, gas-rich galaxies. Such galactic disks are unstable to the formation of bound gas-rich clumps whose properties initially depend only on global disk properties, not the microphysics of feedback. In simulations without stellar feedback, clumps turn an order-unity fraction of their mass into stars and sink to the center, forming a large bulge and kicking most of the stars out into a much more extended stellar envelope. By contrast, stellar feedback disrupts even the most massive clumps after they turn ~10-20% of their mass into stars, in a timescale of ~10-100 Myr, ejecting some material into a super-wind and recycling the rest of the gas into the diffuse ISM. This suppresses the bulge formation rate by direct 'clump coalescence' by a factor of several. However, the galactic disks do undergo significant secular evolution in the ab...

  3. CHEMICAL EVOLUTION OF THE INNER 2 DEGREES OF THE MILKY WAY BULGE: [α/Fe] TRENDS AND METALLICITY GRADIENTS

    Energy Technology Data Exchange (ETDEWEB)

    Ryde, N. [Department of Astronomy and Theoretical Physics, Lund Observatory, Lund University, Box 43, SE-221 00, Lund (Sweden); Schultheis, M. [Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Blvd de l’Observatoire, F-06304 Nice (France); Grieco, V.; Matteucci, F. [Dipartimento di Fisica, Sezione di Astronomia, Università di Trieste, via G.B. Tiepolo 11, I-34131, Trieste (Italy); Rich, R. M. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Uttenthaler, S., E-mail: ryde@astro.lu.se [University of Vienna, Department of Astrophysics, Türkenschanzstraße 17, A-1180 Vienna (Austria)

    2016-01-15

    The structure, formation, and evolution of the Milky Way bulge is a matter of debate. Important diagnostics for discriminating between models of bulge formation and evolution include α-abundance trends with metallicity, and spatial abundance and metallicity gradients. Due to the severe optical extinction in the inner Bulge region, only a few detailed investigations of this region have been performed. Here we aim at investigating the inner 2 degrees of the Bulge (projected galactocentric distance of approximately 300 pc), rarely investigated before, by observing the [α/Fe] element trends versus metallicity, and by trying to derive the metallicity gradient in the b < 2° region. [α/Fe] and metallicities have been determined by spectral synthesis of 2 μm spectra of 28 M-giants in the Bulge, lying along the southern minor axis at (l, b) = (0, 0), (0, −1°), and (0, −2°). These were observed with the CRIRES spectrometer at the Very Large Telescope, (VLT) at high spectral resolution. Low-resolution K-band spectra, observed with the ISAAC spectrometer at the VLT, are used to determine the effective temperature of the stars. We present the first connection between the Galactic center (GC) and the Bulge using similar stars, high spectral resolution, and analysis techniques. The [α/Fe] trends in all our three fields show a large similarity among each other and with trends further out in the Bulge. All point to a rapid star formation episode in the Bulge. We find that there is a lack of an [α/Fe] gradient in the Bulge all the way into the center, suggesting a homogeneous Bulge when it comes to the enrichment process and star formation history. We find a large range of metallicities from −1.2 < [Fe/H] < +0.3, with a lower dispersion in the GC: −0.2 < [Fe/H] < +0.3. The derived metallicities of the stars in the three fields get, in the mean, progressively higher the closer to the Galactic plane they lie. We could interpret this as a continuation of the

  4. Theoretical Models of the Galactic Bulge

    CERN Document Server

    Shen, Juntai

    2015-01-01

    Near infrared images from the COBE satellite presented the first clear evidence that our Milky Way galaxy contains a boxy shaped bulge. Recent years have witnessed a gradual paradigm shift in the formation and evolution of the Galactic bulge. Bulges were commonly believed to form in the dynamical violence of galaxy mergers. However, it has become increasingly clear that the main body of the Milky Way bulge is not a classical bulge made by previous major mergers, instead it appears to be a bar seen somewhat end-on. The Milky Way bar can form naturally from a precursor disk and thicken vertically by the internal firehose/buckling instability, giving rise to the boxy appearance. This picture is supported by many lines of evidence, including the asymmetric parallelogram shape, the strong cylindrical rotation (i.e., nearly constant rotation regardless of the height above the disk plane), the existence of an intriguing X-shaped structure in the bulge, and perhaps the metallicity gradients. We review the major theor...

  5. Is the Galactic Bulge Devoid of Planets?

    Science.gov (United States)

    Penny, Matthew T.; Henderson, Calen B.; Clanton, Christian

    2016-10-01

    We consider a sample of 31 exoplanetary systems detected by gravitational microlensing and investigate whether or not the estimated distances to these systems conform to the Galactic distribution of planets expected from models. We derive the expected distribution of distances and relative proper motions from a simulated microlensing survey, correcting for the dominant selection effects that affect the sensitivity of planet detection as a function of distance, and compare it to the observed distribution using Anderson-Darling (AD) hypothesis testing. Taking the relative abundance of planets in the bulge to that in the disk, {f}{bulge}, as a model parameter, we find that our model is consistent with the observed distribution only for {f}{bulge}\\lt 0.54 (for a p-value threshold of 0.01) implying that the bulge may be devoid of planets relative to the disk. Allowing for a dependence of planet abundance on metallicity and host mass, or an additional dependence of planet sensitivity on event timescale, does not restore consistency for {f}{bulge}=1. We examine the distance estimates of some events in detail, and conclude that some parallax-based estimates could be significantly in error. Only by combining the removal of one problematic event from our sample and the inclusion of strong dependences of planet abundance or detection sensitivity on host mass, metallicity, and event timescale are we able to find consistency with the hypothesis that the bulge and disk have equal planet abundance.

  6. The Gaia-ESO Survey: Metal-rich Bananas in the Bulge

    Science.gov (United States)

    Williams, Angus A.; Evans, N. W.; Molloy, Matthew; Kordopatis, Georges; Smith, M. C.; Shen, J.; Gilmore, G.; Randich, S.; Bensby, T.; Francois, P.; Koposov, S. E.; Recio-Blanco, A.; Bayo, A.; Carraro, G.; Casey, A.; Costado, T.; Franciosini, E.; Hourihane, A.; de Laverny, P.; Lewis, J.; Lind, K.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Worley, C.; Zaggia, S.; Mikolaitis, Š.

    2016-06-01

    We analyze the kinematics of ˜2000 giant stars in the direction of the Galactic bulge, extracted from the Gaia-ESO survey in the region -10^\\circ ≲ {\\ell }≲ 10^\\circ and -11^\\circ ≲ b≲ -3^\\circ . We find distinct kinematic trends in the metal-rich ([{{M}}/{{H}}]\\gt 0) and metal-poor ([{{M}}/{{H}}]\\lt 0) stars in the data. The velocity dispersion of the metal-rich stars drops steeply with latitude, compared to a flat profile in the metal-poor stars, as has been seen previously. We argue that the metal-rich stars in this region are mostly on orbits that support the boxy-peanut shape of the bulge, which naturally explains the drop in their velocity dispersion profile with latitude. The metal-rich stars also exhibit peaky features in their line of sight velocity histograms, particularly along the minor axis of the bulge. We propose that these features are due to stars on resonant orbits supporting the boxy-peanut bulge. This conjecture is strengthened through the comparison of the minor axis data with the velocity histograms of resonant orbits generated in simulations of buckled bars. The “banana” or 2:1:2 orbits provide strongly bimodal histograms with narrow velocity peaks that resemble the Gaia-ESO metal-rich data.

  7. Dynamical Modelling of the Galactic Bulge and Bar: Pattern Speed, Stellar, and Dark Matter Mass Distributions

    CERN Document Server

    Portail, Matthieu; Wegg, Christopher; Ness, Melissa

    2016-01-01

    We construct a large set of dynamical models of the galactic bulge, bar and inner disk using the Made-to-Measure method. Our models are constrained to match the red clump giant density from a combination of the VVV, UKIDSS and 2MASS infrared surveys together with stellar kinematics in the bulge from the BRAVA and OGLE surveys, and in the entire bar region from the ARGOS survey. We are able to recover the bar pattern speed and the stellar and dark matter mass distributions in the bar region, thus recovering the entire galactic effective potential. We find a bar pattern speed of $39.0 \\pm 3.5 \\,\\rm{km\\,s^{-1}\\,kpc^{-1}}$, placing the bar corotation radius at $6.1 \\pm 0.5 \\, \\rm{kpc}$ and making the Milky Way bar a typical fast rotator. We evaluate the stellar mass of the long bar and bulge structure to be $M_{\\rm{bar/bulge}} = 1.88 \\pm 0.12 \\times 10^{10} \\, \\rm{M}_{\\odot}$, larger than the mass of disk in the bar region, $M_{\\rm{inner\\ disk}} = 1.29\\pm0.12 \\times 10^{10} \\, \\rm{M}_{\\odot}$. The total dynamical...

  8. The Gaia-ESO survey: Metal-rich bananas in the bulge

    CERN Document Server

    Williams, Angus A; Molloy, Matthew; Kordopatis, Georges; Smith, M C; Shen, J; Gilmore, G; Randich, S; Bensby, T; Francois, P; Koposov, S E; Recio-Blanco, A; Bayo, A; Carraro, G; Casey, A; Costado, T; Franciosini, E; Hourihane, A; de Laverny, P; Lewis, J; Lind, K; Magrini, L; Monaco, L; Morbidelli, L; Sacco, G G; Worley, C; Zaggia, S; Mikolaitis, S

    2016-01-01

    We analyse the kinematics of $\\sim 2000$ giant stars in the direction of the Galactic bulge, extracted from the Gaia-ESO survey in the region $-10^\\circ \\lesssim \\ell \\lesssim 10^\\circ$ and $-11^\\circ \\lesssim b \\lesssim -3^\\circ$. We find distinct kinematic trends in the metal rich ($\\mathrm{[M/H]}>0$) and metal poor ($\\mathrm{[M/H]}<0$) stars in the data. The velocity dispersion of the metal-rich stars drops steeply with latitude, compared to a flat profile in the metal-poor stars, as has been seen previously. We argue that the metal-rich stars in this region are mostly on orbits that support the boxy-peanut shape of the bulge, which naturally explains the drop in their velocity dispersion profile with latitude. The metal rich stars also exhibit peaky features in their line-of-sight velocity histograms, particularly along the minor axis of the bulge. We propose that these features are due to stars on resonant orbits supporting the boxy-peanut bulge. This conjecture is strengthened through the comparison ...

  9. The Chandra Galactic Bulge Survey

    Science.gov (United States)

    Britt, C. T.; Hynes, R. I.; Jonker, P. G.; Maccarone, T.; Torres, M. A. P.; Steeghs, D.; Nelemans, G.; Johnson, C.; Greiss, S.

    2015-05-01

    The Chandra Galactic Bulge Survey (GBS) is a multi-wavelength survey of two 6×1 degree strips above and below the Galactic plane, including deep r' and i' imaging and time domain photometry from CTIO and shallow, wide-field X-ray imaging with Chandra. Targeting fields above |b|=1 avoids most of the copious extinction along the Galactic plane while maintaining high source density. This results in targets that are accessible to follow up in optical and NIR wavelengths. The X-ray observations are shallow to maximize the number of quiescent Low Mass X-ray Binaries (LMXBs) relative to Cataclysmic Variables (CVs). The goals of the GBS are to conduct a census of Low Mass X-ray Binaries in the Milky Way in order to constrain models of binary evolution, the common envelope phase in particular, and to expand the number of known LMXBs for optical follow up. Mass measurements in particular will help constrain the black hole (BH) mass distribution and the equation of state for neutron stars (NS). Constraining the BH mass distribution will constrain models of their formation in supernovae. The current population of Galactic BHs suffers from selection effects, which the GBS avoids by finding new objects while still in quiescence. We expect to find qLMXBs, magnetic CVs, RS CVn stars, and smaller numbers of other types of sources. After removing duplicates, there are 1640 unique X-ray sources in the 12 square degree survey area, which closely matches the predicted number of 1648. We are currently matching X-ray sources to counterparts in other wavelengths using new photometric and spectroscopic observations as well as in archival data where it exists, and searching for variability and periodicity in the counterparts in photometric data. So far, we have spectroscopically identified 27 interacting binaries including promising candidates for quiescent black holes.

  10. Evidence for a metal-poor population in the inner Galactic Bulge

    CERN Document Server

    Schultheis, M; Zasowski, G; Pérez, A E García; Sellgren, K; Smith, V; García-Hernández, D A; Zamora, O; Fritz, T K; Anders, F; Prieto, C Allende; Bizyaev, D; Kinemuchi, K; Pan, K; Malanushenko, E; Malanushenko, V; Shetrone, M D

    2015-01-01

    The inner Galactic Bulge has, until recently, been avoided in chemical evolution studies due to extreme extinction and stellar crowding. Large, near-IR spectroscopic surveys, such as APOGEE, allow for the first time the measurement of metallicities in the inner region of our Galaxy. We study metallicities of 33 K/M giants situated in the Galactic Center region from observations obtained with the APOGEE survey. We selected K/M giants with reliable stellar parameters from the APOGEE/ASPCAP pipeline. Distances, interstellar extinction values, and radial velocities were checked to confirm that these stars are indeed situated in the inner Galactic Bulge. We find a metal-rich population centered at [M/H] = +0.4 dex, in agreement with earlier studies of other bulge regions, but also a peak at low metallicity around $\\rm [M/H] = -1.0\\,dex$, suggesting the presence of a metal-poor population which has not previously been detected in the central region. Our results indicate a dominant metal-rich population with a metal...

  11. The Demographics of galactic bulges in the SDSS database

    CERN Document Server

    Kim, Keunho; Jeong, Hyunjin; Aragon-Salamanca, Alfonso; Smith, Rory; Yi, Sukyoung K

    2016-01-01

    We present a new database of our two-dimensional bulge-disk decompositions for 14,233 galaxies drawn from SDSS DR12 in order to examine the properties of bulges residing in the local universe ($0.005 < z < 0.05$). We performed decompositions in $g$ and $r$ bands by utilizing the {\\sc{galfit}} software. The bulge colors and bulge-to-total ratios are found to be sensitive to the details in the decomposition technique, and hence we hereby provide full details of our method. The $g-r$ colors of bulges derived are almost constantly red regardless of bulge size except for the bulges in the low bulge-to-total ratio galaxies ($B/T_{\\rm r} \\lesssim 0.3$). Bulges exhibit similar scaling relations to those followed by elliptical galaxies, but the bulges in galaxies with lower bulge-to-total ratios clearly show a gradually larger departure in slope from the elliptical galaxy sequence. The scatters around the scaling relations are also larger for the bulges in galaxies with lower bulge-to-total ratios. Both the depa...

  12. Thermal Giant Gravitons

    CERN Document Server

    Armas, Jay; Obers, Niels A; Orselli, Marta; Pedersen, Andreas Vigand

    2012-01-01

    We study the giant graviton solution as the AdS_5 X S^5 background is heated up to finite temperature. The analysis employs the thermal brane probe technique based on the blackfold approach. We focus mainly on the thermal giant graviton corresponding to a thermal D3-brane probe wrapped on an S^3 moving on the S^5 of the background at finite temperature. We find several interesting new effects, including that the thermal giant graviton has a minimal possible value for the angular momentum and correspondingly also a minimal possible radius of the S^3. We compute the free energy of the thermal giant graviton in the low temperature regime, which potentially could be compared to that of a thermal state on the gauge theory side. Moreover, we analyze the space of solutions and stability of the thermal giant graviton and find that, in parallel with the extremal case, there are two available solutions for a given temperature and angular momentum, one stable and one unstable. In order to write down the equations of mot...

  13. Observations of planetary nebulae in the Galactic Bulge

    CERN Document Server

    Cuisinier, F; Köppen, J; Acker, A; Stenholm, B

    2000-01-01

    High quality spectrophotometric observations of 30 Planetary Nebulae in the Galactic Bulge have been made. Accurate reddenings, plasma parameters, and abundances of He,O,N,S,Ar,Cl are derived. We find the abundances of O,S,Ar in the Planetary Nebulae in the Galactic Bulge to be comparable with the abundances of the Planetary Nebulae in the Disk, high abundances being maybe slightly more frequent in the Bulge. The distribution of the N/O ratio does not present in the Galactic Bulge Planetary Nebulae the extension to high values that it presents in the Disk Planetary Nebulae. We interpret this as a signature of the greater age of Bulge Planetary Nebulae. We thus find the Bulge Planetary Nebulae to be an old population, slightly more metal-rich than the Disk Planetary Nebulae. The population of the Bulge Planetary Nebulae shows hence the same characteristics than the Bulge stellar population.

  14. Red giant seismology: Observations

    Directory of Open Access Journals (Sweden)

    Mosser B.

    2013-03-01

    Full Text Available The CoRoT and Kepler missions provide us with thousands of red-giant light curves that allow a very precise asteroseismic study of these objects. Before CoRoT and Kepler, the red-giant oscillation patterns remained obscure. Now, these spectra are much more clear and unveil many crucial interior structure properties. For thousands of red giants, we can derive from seismic data precise estimates of the stellar mass and radius, the evolutionary status of the giants (with a clear difference between clump and RGB stars, the internal differential rotation, the mass loss, the distance of the stars... Analyzing this amount of information is made easy by the identification of the largely homologous red-giant oscillation patterns. For the first time, both pressure and mixed mode oscillation patterns can be precisely depicted. The mixed-mode analysis allows us, for instance, to probe directly the stellar core. Fine details completing the red-giant oscillation pattern then provide further information on the interior structure, including differential rotation.

  15. Are Bulges and Disks Real? Decomposing Spectral Data Cubes Into Their Astrophysical Components

    Science.gov (United States)

    Merrifield, Michael; Tabor, Martha; Aragon-Salamanca, Alfonso; Cappellari, Michele; Johnston, Evelyn

    2016-01-01

    Decomposing galaxies photometrically into bulge and disk components is now a well-established technique, but it remains unclear how distinct and real these components are, and how they relate to each other. To address these questions, we have been developing novel techniques to extract the various structural components from integral field unit (IFU) spectral observations of galaxies, in order to study simultaneously their spectral and spatial properties.As a first approach, by spatially decomposing each wavelength in a spectral data cube, we can discover how much light comes from the separate components as a function of wavelength, and hence derive unprecedentedly high quality spectra of bulge and disk for detailed analysis of their stellar populations.In addition, we have decomposed spectral data cubes by fitting the spectrum at each location with the sum of two components, with the spectral properties left entirely free to fit both kinematic and stellar population properties, subject only to the constraint that the relative flux contributions match those of a conventional bulge-disk decomposition.Initial results applied to MaNGA and other IFU surveys show the power of these techniques when applied to such high quality data. The first method allows us to understand the formation sequence of bulges and disks, with, for example, bulges showing the younger stellar populations in S0 galaxies, implying that this was where the last gasp of star formation occurred. The second technique reveals subtle population gradients within individual components, but also confirms that the decomposition into separate components is a credible procedure, as the resulting bulges and disks have entirely plausible kinematic properties that are in no way imposed by the decomposition.Although our initial application of these decomposition techniques has been to studying bulges and disks in S0 galaxies, the methods have much wider application to the spectral data cubes that MaNGA and other

  16. Functional myelographic differentiation of lumbar bulging annulus

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choong Ki; Kim, Hong Kil; Park, Sang Gyu; Lee, Young Jung; Yoon, Jong Sup [Hallym University College of Medicine, Seoul (Korea, Republic of)

    1988-08-15

    Herniated disk and bulging annulus are the major causes of lower back pain. It is necessary to differentiate bulging annulus from herniated disk because of their different methods of treatment. Myelography is one of the useful diagnostic methods for disk diseases even though advanced diagnostic modalities such as CT and MRI are more accurate. Functional myelography is not a new technology expect for two additional views, flexion and extension, are obtained with conventional myelography. Differentiation between bulging annulus and herniated disk by conventional myelography is based on the extent and multiplicity of extradural deformity of the contrast filled dural sac and neural sleeve as well as the changes of nerve root. There is no previous report about differential points between bulging annulus and herniated disk according to functional myelography. It is the purpose of this study to find any additional differential points on functional myelography between bulging annulus and herniated disk over convectional myelography. Authors analysed functional myelographic findings of 152 cases from July 1986 to July 1987. Among them, 22 cases who had been suffered from cervical abnormality or vague lower back pain were diagnosed as normal by myelography, and 30 cases of L4-5 herniated disk and 21 cases of L4-5 bulging annulus which had been finally diagnosed by operation were studied. The results were as follows. 1. In normal group, anterior epidural space was gradually widened from the upper lumbar vertebra downward. And anterior epidural space was more sidened at the disk level in extension view than in flexion except for L5-S1 lever. 2. In bulging annulus group, the shape of anterior epidural space in flexion state was as similar as normal. Anoterior epidural space in extension state was more sidened at the buldging annulus than normal, but lesser than herniated disk. 3. In herniated disk group, widening of anterior epidural space at the herniated disk level was

  17. The Demographics of Galactic Bulges in the SDSS Database

    Science.gov (United States)

    Kim, Keunho; Oh, Sree; Jeong, Hyunjin; Aragón-Salamanca, Alfonso; Smith, Rory; Yi, Sukyoung K.

    2016-07-01

    We present a new database of our two-dimensional bulge-disk decompositions for 14,233 galaxies drawn from Sloan Digital Sky Survey DR12 in order to examine the properties of bulges residing in the local universe (0.005 originate from the presence of young stars. The bulges in galaxies with low bulge-to-total ratios show signs of a frosting of young stars so substantial that their luminosity-weighted Balmer-line ages are as small as 1 Gyr in some cases. While bulges seem largely similar in optical properties to elliptical galaxies, they do show clear and systematic departures as a function of bulge-to-total ratio. The stellar properties and perhaps associated formation processes of bulges seem much more diverse than those of elliptical galaxies.

  18. Dust Attenuation in Late-Type Galaxies. I. Effects on Bulge and Disk Components

    CERN Document Server

    Pierini, D; Witt, A N; Madsen, G J

    2004-01-01

    We present results of new Monte Carlo calculations made with the DIRTY code of radiative transfer of stellar and scattered radiation for a dusty giant late-type galaxy like the Milky Way, which illustrate the effect of the attenuation of stellar light by internal dust on the integrated photometry of the individual bulge and disk components. Here we focus on the behavior of the attenuation function, the color excess, and the fraction of light scattered or directly transmitted towards the outside observer as a function of the total amount of dust and the inclination of the galaxy, and the structure of the dusty interstellar medium (ISM) of the disk. We confirm that dust attenuation produces qualitatively and quantitatively different effects on the integrated photometry of bulge and disk, whatever the wavelength. In addition, we find that the structure of the dusty ISM affects more sensitively the observed magnitudes than the observed colors of both bulge and disk. Finally, we show that the contribution of the s...

  19. Rapidly rotating red giants

    CERN Document Server

    Gehan, Charlotte; Michel, Eric

    2016-01-01

    Stellar oscillations give seismic information on the internal properties of stars. Red giants are targets of interest since they present mixed modes, which behave as pressure modes in the convective envelope and as gravity modes in the radiative core. Mixed modes thus directly probe red giant cores, and allow in particular the study of their mean core rotation. The high-quality data obtained by CoRoT and Kepler satellites represent an unprecedented perspective to obtain thousands of measurements of red giant core rotation, in order to improve our understanding of stellar physics in deep stellar interiors. We developed an automated method to obtain such core rotation measurements and validated it for stars on the red giant branch. In this work, we particularly focus on the specific application of this method to red giants having a rapid core rotation. They show complex spectra where it is tricky to disentangle rotational splittings from mixed-mode period spacings. We demonstrate that the method based on the id...

  20. Composite Bulges: The Coexistence of Classical Bulges and Disky Pseudobulges in S0 and Spiral Galaxies

    CERN Document Server

    Erwin, Peter; Fabricius, Maximilian; Thomas, Jens; Nowak, Nina; Rusli, Stephanie; Bender, Ralf; Beltran, Juan Carlos Vega; Beckman, John E

    2014-01-01

    We study nine S0-Sb galaxies with (photometric) bulges consisting of two distinct components. The outer component is a flattened, kinematically cool, disklike structure: a "disky pseudobulge". Embedded inside is a rounder, kinematically hot spheroid: a "classical bulge". This indicates that pseudobulges and classical bulges are not mutually exclusive: some galaxies have both. The disky pseudobulges almost always have an exponential disk (scale lengths = 125-870 pc, mean $\\sim 440$ pc) with disk-related subcomponents: nuclear rings, bars, and/or spiral arms. They constitute 11-59% of the galaxy stellar mass (mean PB/T = 0.33), with stellar masses $\\sim 7 \\times 10^{9}$-$9 \\times 10^{10} M_{\\odot}$. Classical-bulge components have Sersic indices of 0.9-2.2, effective radii of 25-430 pc and stellar masses of $5 \\times 10^{8}$-$3 \\times 10^{10} M_{\\odot}$ (usually < 10% of the galaxy's stellar mass; mean B/T = 0.06). The classical bulges show rotation, but are kinematically hotter than the disky pseudobulges. ...

  1. Are there carbon stars in the Bulge?

    CERN Document Server

    Ng, Y K

    1998-01-01

    The bulge carbon stars have been a mystery since their discovery, because they are about 2.5mag too faint to be regarded as genuine AGB stars, if located inside the metal-rich bulge (m-M=14.5mag). Part of the mystery can be solved if these carbon stars are related to the Sagittarius dwarf galaxy (SDG; m-M=17.0mag). They are in that case not old and metal-rich, but young, ~0.1 Gyr, with SMC-like metallicity. The sigma_RV=113+/-14 km/s radial velocity dispersion of the stars appears to be consistent with bulge membership. On the other hand, a similar velocity dispersion could be the result from an induced star formation event when the SDG crosses the galactic midplane. It is suggested that the carbon stars are tracers of such an event and that they therefore are located at distances related to the SDG. However, the majority of the carbon stars are not member of the SDG, nor are they similar to the C-stars which are member of the SDG. The radial velocities can be used to determine a possible membership to the SD...

  2. Secular- and merger-built bulges in barred galaxies

    CERN Document Server

    Mendez-Abreu, J; Corsini, E M; Aguerri, J A L

    2014-01-01

    (Abridged) We study the incidence, as well as the nature, of composite bulges in a sample of 10 face-on barred galaxies to constrain the formation and evolutionary processes of the central regions of disk galaxies. We analyze the morphological, photometric, and kinematic properties of each bulge. Then, by using a case-by-case analysis we identify composite bulges and classify every component into a classical or pseudobulge. In addition, bar-related boxy/peanut (B/P) structures were also identified and characterised. We find only three galaxies hosting a single-component bulge (two pseudobulges and one classical bulge). We find evidence of composite bulges coming in two main types based on their formation: secular-built and merger- and secular-built. We call secular-built to composite bulges made of entirely by structures associated with secular processes such as pseudo bulges, central disks, or B/P bulges. We find four composite bulges of this kind in our sample. On the other hand, merger- and secular-built b...

  3. Central Star Formation in Pseudobulges and Classical Bulges

    CERN Document Server

    Fisher, D B

    2006-01-01

    I use Spitzer 3.6-8.0 \\mu m color profiles to compare the radial structure of star formation in pseudobulges and classical bulges. Pseudobulges are ``bulges'' which form through secular evolution, rather than mergers. In this study, pseudobulges are identified using the presence of disk-like structure in the center of the galaxy (nuclear spiral, nuclear bar, and/or high ellipticity in bulge); classical bulges are those galaxy bulges with smooth isophotes which are round compared to the outer disk, and show no disky structure in their bulge. I show that galaxies structurally identified as having pseudobulges have higher central star formation rates than those of classical bulges. Further, I also show that galaxies identified as having classical bulges have remarkably regular star formation profiles. The color profiles of galaxies with classical bulges show a star forming outer disk with a sharp change, consistent with a decline in star formation rates, toward the center of the galaxy. Classical bulges have a n...

  4. The contrasting structures of mismatched DNA sequences containing looped-out bases (bulges) and multiple mismatches (bubbles).

    Science.gov (United States)

    Bhattacharyya, A; Lilley, D M

    1989-09-12

    We have studied the structure and reactivities of two kinds of mismatched DNA sequences--unopposed bases, or bulges, and multiple mismatched pairs of bases. These were generated in a constant sequence environment, in relatively long DNA fragments, using a technique based on heteroduplex formation between sequences cloned into single-stranded M13 phage. The mismatched sequences were studied from two points of view, viz 1. The mobility of the fragments on gel electrophoresis in polyacrylamide was studied in order to examine possible bending of the DNA due to the presence of the mismatch defect. Such bending would constitute a global effect on the conformation of the molecule. 2. Sequences in and around the mismatches were studied using enzyme and chemical probes of DNA structure. This would reveal more local structural effects of the mismatched sequences. We observed that the structures of the bulges and the multiple mismatches appear to be fundamentally different. The bulged sequences exhibited a large gel retardation, consistent with a significant bending of the DNA at the bulge, and whose magnitude depends on the number of mismatched bases. The larger bulges were sensitive to cleavage by single-strand specific nucleases, and modified by diethyl pyrocarbonate (adenines) or osmium tetroxide (thymines) in a non-uniform way, suggesting that the bulges have a precise structure that leads to exposure of some, but not all, of the bases. In contrast the multiple mismatches ('bubbles') cause very much less bending of the DNA fragment in which they occur, and uniform patterns of chemical reactivity along the length of the mismatched sequences, suggesting a less well defined, and possibly flexible, structure. The precise structure of the bulges suggests that such features may be especially significant for recognition by proteins.

  5. Chemical evolution of the inner 2 degrees of the Milky Way bulge: [alpha/Fe] trends and metallicity gradients

    CERN Document Server

    Ryde, N; Grieco, V; Matteucci, F; Rich, R M; Uttenthaler, S

    2015-01-01

    The structure, formation, and evolution of the Milky Way bulge is a matter of debate. Important diagnostics for discriminating between bulge models include alpha-abundance trends with metallicity, and spatial abundance and metallicity gradients. Due to the severe optical extinction in the inner Bulge region, only a few detailed investigations have been performed of this region. Here we aim at investigating the inner 2 degrees by observing the [alpha/Fe] element trends versus metallicity, and by trying to derive the metallicity gradient. [alpha/Fe] and metallicities have been determined by spectral synthesis of 2 micron spectra observed with VLT/CRIRES of 28 M-giants, lying along the Southern minor axis at (l,b)=(0,0), (0,-1), and (0,-2). VLT/ISAAC spectra are used to determine the effective temperature of the stars. We present the first connection between the Galactic Center and the Bulge using similar stars, high spectral resolution, and analysis techniques. The [alpha/Fe] trends in all our 3 fields show a l...

  6. Which bulges are favoured by barred S0 galaxies?

    CERN Document Server

    Barway, Sudhanshu; Vaghmare, Kaustubh; Kembhavi, Ajit K

    2016-01-01

    S0 galaxies are known to host classical bulges with a broad range of size and mass, while some such S0s are barred and some not. The origin of the bars has remained as a long-standing problem -- what made bar formation possible in certain S0s? By analysing a large sample of S0s with classical bulges observed by the Spitzer space telescope, we find that most of our barred S0s host comparatively low-mass classical bulges, typically with bulge-to-total ratio ($B/T$) less than $0.5$; whereas S0s with more massive classical bulges than these do not host any bar. Furthermore, we find that amongst the barred S0s, there is a trend for the longer and massive bars to be associated with comparatively bigger and massive classical bulges -- possibly suggesting bar growth being facilitated by these classical bulges. In addition, we find that the bulge effective radius is always less than the bar effective radius --indicating an interesting synergy between the host classical bulge and bars being maintained while bar growth ...

  7. Trajectories of Cepheid variable stars in the Galactic nuclear bulge

    Science.gov (United States)

    Matsunaga, Noriyuki

    2012-06-01

    The central region of our Galaxy provides us with a good opportunity to study the evolution of galactic nuclei and bulges because we can observe various phenomena in detail at the proximity of 8 kpc. There is a hierarchical alignment of stellar systems with different sizes; from the extended bulge, the nuclear bulge, down to the compact cluster around the central supermassive blackhole. The nuclear bulge contains stars as young as a few Myr, and even hosts the ongoing star formation. These are in contrast to the more extended bulge which are dominated by old stars, ~10Gyr. It is considered that the star formation in the nuclear bulge is caused by fresh gas provided from the inner disk. In this picture, the nuclear bulge plays an important role as the interface between the gas supplier, the inner disk, and the galactic nucleus. Kinematics of young stars in the nuclear bulge is important to discuss the star forming process and the gas circulation in the Galactic Center. We here propose spectroscopic observations of Cepheid variable stars, ~25 Myr, which we recently discovered in the nuclear bulge. The spectra taken in this proposal will allow timely estimates of the systemic velocities of the variable stars.

  8. Giant Planets

    CERN Document Server

    Guillot, Tristan

    2014-01-01

    We review the interior structure and evolution of Jupiter, Saturn, Uranus and Neptune, and giant exoplanets with particular emphasis on constraining their global composition. Compared to the first edition of this review, we provide a new discussion of the atmospheric compositions of the solar system giant planets, we discuss the discovery of oscillations of Jupiter and Saturn, the significant improvements in our understanding of the behavior of material at high pressures and the consequences for interior and evolution models. We place the giant planets in our Solar System in context with the trends seen for exoplanets.

  9. T-bulge-shaped quantum router

    Science.gov (United States)

    Liu, Lin; Lu, Jing

    2017-01-01

    The transport properties of a single photon scattered by a two-level system (TLS) in a T-bulge-shaped waveguide have been studied, which is made of two coupled-resonator waveguides (CRWs), an infinite CRW and a semi-infinite CRW with N-1 FP cavities below the node. The spontaneous emission of the TLS directs single photons from one CRW to the other. The N-1 FP cavities effect the extreme point's value and location of the propagation coefficient and incident energy curve.

  10. Bulge-driven Fueling of Seed Black Holes

    CERN Document Server

    Park, KwangHo; Natarajan, Priyamvada; Bogdanović, Tamara; Wise, John H

    2015-01-01

    We examine radiation-regulated accretion onto intermediate-mass and massive black holes (BHs) embedded in a bulge component. Using spherically symmetric one-dimensional radiation-hydrodynamics simulations, we track the growth of BHs accreting from a cold, neutral gas reservoir with temperature T=10^4 K. We find that the accretion rate of BHs embedded in bulges is proportional to r_{B,eff}/r_B, where r_{B,eff} is the increased effective Bondi radius that includes the gravitational potential of the bulge, and r_B is the Bondi radius of the BH. The radiative feedback from the BH suppresses the cold accretion rate to ~1 percent of the Bondi rate when a bulge is not considered. However, we find that the BH fueling rate increases rapidly when the bulge mass M_bulge is greater than the critical value of 10^6 M_sun and is proportional to M_bulge. Since the critical bulge mass is independent of the central BH mass M_{BH}, the growth rate of BHs with masses of 10^2, 10^4, and 10^6 M_sun exhibits distinct dependencies o...

  11. Surface photometry of bulge dominated low surface brightness galaxies

    NARCIS (Netherlands)

    Beijersbergen, M; de Blok, WJG; van der Hulst, JM

    1999-01-01

    We present results of broad band BVRI observations of a sample of galaxies with a low surface brightness (LSB) disk and a bulge. These galaxies are well described as exponential disks and exponential bulges with no preferred value for either scale length or central surface brightness. The median B b

  12. The Galactic Bulge The Stellar and Planetary Nebulae Populations

    CERN Document Server

    Cuisinier, F; Acker, A; Maciel, W J

    2001-01-01

    We compare abundances patterns in the Bulge for elements observed in stars and in planetary nebulae. Some alpha elements, like Mg and Ti, are overabundant respect to Fe, and others are not, like He, O, Si, S, Ar, Ca. The first ones favor a quick evolution of the Galactic Bulge, and the seconds a much slower one.

  13. Natures of a clump-origin bulge: a pseudobulge-like but old metal-rich bulge

    CERN Document Server

    Inoue, Shigeki

    2011-01-01

    Bulges in spiral galaxies have been supposed to be classified into two types: classical bulges or pseudobulges. Classical bulges are thought to form by galactic merger with bursty star formation, whereas pseudobulges are suggested to form by secular evolution due to spiral arms and a barred structure funneling gas into the galactic centre. Noguchi (1998, 1999) suggested another bulge formation scenario, `clump-origin bulge'. He demonstrated using a numerical simulation that a galactic disc suffers dynamical instability to form clumpy structures in the early stage of disc formation since the premature disc is expected to be highly gas-rich, then the clumps are sucked into the galactic centre by dynamical friction and merge into a single bulge at the centre. This bulge formation scenario expected happen only at the high-redshift is different from the galactic merger and the secular evolution. Therefore, clump-origin bulges may have their own unique properties. We perform a high-resolution N-body/smoothed partic...

  14. Precise Black Hole Masses From Megamaser Disks: Black Hole-Bulge Relations at Low Mass

    OpenAIRE

    Greene, J. E.; Peng, C. Y.; Kim, M.; Kuo, C. Y.; Braatz, J. A.; Impellizzeri, C. M. V.; Condon, J. J.; Lo, K. Y.; Henkel, C; Reid, M J

    2010-01-01

    The black hole (BH)-bulge correlations have greatly influenced the last decade of effort to understand galaxy evolution. Current knowledge of these correlations is limited predominantly to high BH masses (M_BH> 10^8 M_sun) that can be measured using direct stellar, gas, and maser kinematics. These objects, however, do not represent the demographics of more typical L< L* galaxies. This study transcends prior limitations to probe BHs that are an order of magnitude lower in mass, using BH mass m...

  15. A Connection Between Bulge Properties and the Bimodality of Galaxies

    CERN Document Server

    Drory, Niv

    2007-01-01

    The global colors of galaxies have recently been shown to follow bimodal distributions. Galaxies separate into a ``red sequence'', populated prototypically by early-type galaxies, and a ``blue cloud'', whose typical objects are late-type disk galaxies. Intermediate-type (Sa-Sbc) galaxies populate both regions. It has been suggested that this bimodality reflects the two-component nature of disk-bulge galaxies. However, it has now been established that there are two types of bulges: ``classical bulges'' that are dynamically hot systems resembling (little) ellipticals, and ``pseudobulges'', dynamically cold, flattened, disk-like structures that could not have formed via violent relaxation. Therefore thee question is whether at types Sa-Sbc, where both bulge types are found, the red-blue dichotomy separates galaxies at some value of disk-to-bulge ratio, $B/T$, or, whether it separates galaxies of different bulge type, irrespective of their $B/T$. We identify classical bulges and pseudobulges morphologically with ...

  16. The density of dark matter in the Galactic bulge and implications for indirect detection

    Science.gov (United States)

    Hooper, Dan

    2017-03-01

    A recent study by Portail et al., which made use of the number of horizontal branch stars observed in infrared photometric surveys and kinematic measurements of M-giant stars from the BRAVA survey combined with N-body simulations of stellar populations, has presented a new determination of the dark matter mass within the bulge-bar region of the Milky Way. That study constrains the total mass within the ± 2 . 2 × ± 1 . 4 × ± 1 . 2 kpc volume of the bulge-bar region to be (1 . 84 ± 0 . 07) × 1010M⊙, of which 9%-30% is made up of dark matter. Here, we use this result to constrain the Milky Way's dark matter density profile, and discuss the implications for indirect dark matter searches. Although uncertainties remain significant, these results are consistent with and generally favor dark matter distributions with a cusped density profile. For example, for a scale radius of 20 kpc and a local dark matter density of 0.4 GeV/cm3, density profiles with an inner slope of 0.69 to 1.40 are favored, approximately centered around the standard NFW value. In contrast, profiles with large (multi-kiloparsec) flat-density cores are disfavored by this information.

  17. The Panchromatic Hubble Andromeda Treasury I: Bright UV Stars in the Bulge of M31

    CERN Document Server

    Rosenfield, Philip; Girardi, Léo; Dalcanton, Julianne J; Bressan, Alessandro; Lang, Dustin; Williams, Benjamin F; Guhathakurta, Puragra; Howley, Kirsten M; Lauer, Tod R; Bell, Eric F; Bianchi, Luciana; Caldwell, Nelson; Dolphin, Andrew; Dorman, Claire E; Gilbert, Karoline M; Kalirai, Jason; Larsen, Søren S; Olsen, Knut A G; Rix, Hans-Walter; Seth, Anil C; Skillman, Evan D; Weisz, Daniel R

    2012-01-01

    As part of the Panchromatic Hubble Andromeda Treasury (PHAT) multi-cycle program, we observed a 12' \\times 6.5' area of the bulge of M31 with the WFC3/UVIS filters F275W and F336W. From these data we have assembled a sample of \\sim4000 UV-bright, old stars, vastly larger than previously available. We use updated Padova stellar evolutionary tracks to classify these hot stars into three classes: Post-AGB stars (P-AGB), Post-Early AGB (PE-AGB) stars and AGB-manqu\\'e stars. P-AGB stars are the end result of the asymptotic giant branch (AGB) phase and are expected in a wide range of stellar populations, whereas PE-AGB and AGB-manqu\\'e (together referred to as the hot post-horizontal branch; HP-HB) stars are the result of insufficient envelope masses to allow a full AGB phase, and are expected to be particularly prominent at high helium or {\\alpha} abundances when the mass loss on the RGB is high. Our data support previous claims that most UV-bright sources in the bulge are likely hot (extreme) horizontal branch st...

  18. Near-Infrared Photometry of Globular Clusters Towards the Galactic Bulge: Observations and Photometric Metallicity Indicators

    CERN Document Server

    Cohen, Roger E; Mauro, Francesco; Bonatto, Charles; Geisler, Douglas

    2016-01-01

    We present wide field JHKs photometry of 16 Galactic globular clusters located towards the Galactic bulge, calibrated on the 2MASS photometric system. Differential reddening corrections and statistical field star decontamination are employed for all of these clusters before fitting fiducial sequences to the cluster red giant branches (RGBs). Observed values and uncertainties are reported for several photometric features, including the magnitude of the RGB bump, tip, the horizontal branch (HB) and the slope of the upper RGB. The latest spectroscopically determined chemical abundances are used to build distance- and reddening-independent relations between observed photometric features and cluster metallicity, optimizing the sample size and metallicity baseline of these relations by supplementing our sample with results from the literature. We find that the magnitude different between the HB and the RGB bump can be used to predict metallicities, in terms of both iron abundance [Fe/H] and global metallicity [M/H]...

  19. Probing the deep end of the Milky Way with \\emph{Kepler}: Asteroseismic analysis of 854 faint Red Giants misclassified as Cool Dwarfs

    CERN Document Server

    Mathur, S; Huber, D; Regulo, C; Stello, D; Beck, P G; Houmani, K; Salabert, D

    2016-01-01

    Asteroseismology has proven to be an excellent tool to determine not only the global stellar properties with a good precision but also to infer stellar structure, dynamics, and evolution for a large sample of Kepler stars. Prior to the launch of the mission the properties of Kepler targets were inferred from broadband photometry, leading to the Input Catalog (KIC Brown et al. 2011). The KIC was later revised in the Kepler Star Properties Catalog (Huber et al. 2014), based on literature values and an asteroseismic analysis of stars which were unclassified in the KIC. Here we present an asteroseismic analysis of 45,400 stars which were classified as dwarfs in the Kepler Star Properties Catalog. We found that around 2% of the sample shows acoustic modes in the typical frequency range that put them in the red-giant category rather than cool dwarfs. We analyse the asteroseismic properties of these stars, derive their surface gravities, masses, and radii and present updated effective temperatures and distances. We ...

  20. SO and SO2 in mass-loss envelopes of red giants - Probes of nonequilibrium circumstellar chemistry and mass-loss rates

    Science.gov (United States)

    Sahai, Raghvendra; Wannier, Peter G.

    1992-01-01

    SO emission was searched for in one or more of four transitions toward 23 oxygen-rich red giant or supergiant stars and one S star, selected primarily on the basis of their nonmaser SiO emission. SO was detected in a total of 14 circumstellar envelopes, 13 of which are new detections. The circumstellar abundance of SO (and SO2) is significantly enhanced over the equilibrium value achieved in the photospheres of these stars. In general, the SO abundances are significantly larger than predicted by nonequilibrium circumstellar chemistry models. Sulfur cannot be significantly depleted onto circumstellar grains, and probably exists as H2S (and/or SH) in the inner regions of the envelopes. The SO rotational-level population in most circumstellar envelopes observed is characterized by excitation temperatures less than or approximately equal to 50 K. The circumstellar abundance of SO2 is comparable to, or larger than, that of SO, ruling out the 'large' value adopted for the unshielded photodissociation rate for SO2 in recent models.

  1. 'Giant' multishell CdSe nanocrystal quantum dots with supporessed blinking: novel fluorescent probes for real-time detection of single-molecule events

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, Jennifer A [Los Alamos National Laboratory; Vela, Javier [Los Alamos National Laboratory; Htoon, Han [Los Alamos National Laboratory; Klimov, Victor I [Los Alamos National Laboratory; Casson, Amy R [Los Alamos National Laboratory; Chen, Yongfen [NON LANL

    2009-01-01

    We reported for the first time that key nanocrystal quantum dot (NQD) optical properties-quantum yield, photobleaching and blinking-can be rendered independent ofNQD surface chemistry and environment by growth of a very thick, defect-free inorganic shell. Here, we show the precise shell-thickness dependence of these effects. We demonstrate that 'giant-shell' NQDs can be largely non-blinking for observation times as long as 54 minutes and lhat on-time fractions are independent of experimental time-resolution from 1-200 ms. These effects are primarily demonstrated on (CdSe)CdS (core)shell NQDs, but we also show that alloyed shells comprising Cd.Znl.'S and terminated with a non-cytotoxic ZnS layer exhibit similar properties. The mechanism for suppressed blinking and dramatically enhanced stability is attributed to both effective isolation of the NQD core excitonic wavefunction from the NQD surface, as well as a quasi-Type II electronic structure. The unusual electronic structure provides for effective spatial separation of the electron and hole into the shell and core, respectively, and, thereby, for reduced efficiencies in non-radiative Auger recombination.

  2. Planetary nebulae and the chemical evolution of the galactic bulge

    CERN Document Server

    Costa, R D D; Maciel, W J; Costa, Roberto D.D.; Escudero, Andre V.; Maciel, Walter J.

    2005-01-01

    Electron temperatures, densities, ionic and elemental abundances of helium, nitrogen, oxygen, argon, sulfur and neon were derived for a sample of bulge planetary nebulae, representative of its intermediate mass population. Using these results as constraints, a model for the chemical evolution of the galactic bulge was developed. The results indicate that the best fit is achieved using a double-infall model, where the first one is a fast collapse of primordial gas and the second is slower and enriched by material ejected by the bulge itself during the first episode.

  3. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. I. BRIGHT UV STARS IN THE BULGE OF M31

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfield, Philip; Johnson, L. Clifton; Dalcanton, Julianne J.; Williams, Benjamin F.; Gilbert, Karoline M. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Girardi, Leo [Osservatorio Astronomico di Padova-INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Bressan, Alessandro [SISSA, Via Bonomea 265, 34136 Trieste (Italy); Lang, Dustin [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Guhathakurta, Puragra; Dorman, Claire E. [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Howley, Kirsten M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Lauer, Tod R.; Olsen, Knut A. G. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Bianchi, Luciana [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Caldwell, Nelson [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street Cambridge, MA 02138 (United States); Dolphin, Andrew [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Kalirai, Jason [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Larsen, Soren S. [Astronomical Institute, University of Utrecht, Princetonplein 5, 3584 CC Utrecht (Netherlands); Rix, Hans-Walter [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); and others

    2012-08-20

    As part of the Panchromatic Hubble Andromeda Treasury multi-cycle program, we observed a 12' Multiplication-Sign 6.'5 area of the bulge of M31 with the WFC3/UVIS filters F275W and F336W. From these data we have assembled a sample of {approx}4000 UV-bright, old stars, vastly larger than previously available. We use updated Padova stellar evolutionary tracks to classify these hot stars into three classes: Post-AGB stars (P-AGB), Post-Early AGB (PE-AGB) stars, and AGB-manque stars. P-AGB stars are the end result of the asymptotic giant branch (AGB) phase and are expected in a wide range of stellar populations, whereas PE-AGB and AGB-manque (together referred to as the hot post-horizontal branch; HP-HB) stars are the result of insufficient envelope masses to allow a full AGB phase, and are expected to be particularly prominent at high helium or {alpha} abundances when the mass loss on the red giant branch is high. Our data support previous claims that most UV-bright sources in the bulge are likely hot (extreme) horizontal branch (EHB) stars and their progeny. We construct the first radial profiles of these stellar populations and show that they are highly centrally concentrated, even more so than the integrated UV or optical light. However, we find that this UV-bright population does not dominate the total UV luminosity at any radius, as we are detecting only the progeny of the EHB stars that are the likely source of the UV excess. We calculate that only a few percent of main-sequence stars in the central bulge can have gone through the HP-HB phase and that this percentage decreases strongly with distance from the center. We also find that the surface density of hot UV-bright stars has the same radial variation as that of low-mass X-ray binaries. We discuss age, metallicity, and abundance variations as possible explanations for the observed radial variation in the UV-bright population.

  4. Looking for imprints of the first stellar generations in metal-poor bulge field stars

    Science.gov (United States)

    Siqueira-Mello, C.; Chiappini, C.; Barbuy, B.; Freeman, K.; Ness, M.; Depagne, E.; Cantelli, E.; Pignatari, M.; Hirschi, R.; Frischknecht, U.; Meynet, G.; Maeder, A.

    2016-09-01

    Context. Efforts to look for signatures of the first stars have concentrated on metal-poor halo objects. However, the low end of the bulge metallicity distribution has been shown to host some of the oldest objects in the Milky Way and hence this Galactic component potentially offers interesting targets to look at imprints of the first stellar generations. As a pilot project, we selected bulge field stars already identified in the ARGOS survey as having [Fe/H] ≈-1 and oversolar [α/Fe] ratios, and we used FLAMES-UVES to obtain detailed abundances of key elements that are believed to reveal imprints of the first stellar generations. Aims: The main purpose of this study is to analyse selected ARGOS stars using new high-resolution (R ~ 45 000) and high-signal-to-noise (S/N> 100) spectra. We aim to derive their stellar parameters and elemental ratios, in particular the abundances of C, N, the α-elements O, Mg, Si, Ca, and Ti, the odd-Z elements Na and Al, the neutron-capture s-process dominated elements Y, Zr, La, and Ba, and the r-element Eu. Methods: High-resolution spectra of five field giant stars were obtained at the 8 m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. Spectroscopic parameters were derived based on the excitation and ionization equilibrium of Fe i and Fe ii. The abundance analysis was performed with a MARCS LTE spherical model atmosphere grid and the Turbospectrum spectrum synthesis code. Results: We confirm that the analysed stars are moderately metal-poor (-1.04 ≤ [Fe/H] ≤-0.43), non-carbon-enhanced (non-CEMP) with [C/Fe] ≤ + 0.2, and α-enhanced. We find that our three most metal-poor stars are nitrogen enhanced. The α-enhancement suggests that these stars were formed from a gas enriched by core-collapse supernovae, and that the values are in agreement with results in the literature for bulge stars in the same metallicity range. No abundance anomalies (Na - O, Al - O, Al - Mg anti-correlations) were

  5. Hiding its age: the case for a younger bulge

    CERN Document Server

    Haywood, M; Snaith, O; Calamida, A

    2016-01-01

    The determination of the age of the bulge has led to two contradictory results. On the one side, the color-magnitude diagrams in different bulge fields seem to indicate a uniformly old ($>$10 Gyr) population. On the other side, individual ages derived from dwarfs observed through microlensing events seem to indicate a large spread, from $\\sim$ 2 to $\\sim$ 13 Gyr. Because the bulge is now recognised as being mainly a boxy peanut-shaped bar, it is suggested that disk stars are one of its main constituents, and therefore also stars with ages significantly younger than 10 Gyr. Other arguments as well point to the fact that the bulge cannot be exclusively old, and in particular cannot be a burst population, as it is usually expected if the bulge was the fossil remnant of a merger phase in the early Galaxy. In the present study, we show that given the range of metallicities observed in the bulge, a uniformly old population would be reflected into a significant spread in color at the turn-off which is not observed. ...

  6. Stellar populations of the bulges of four spiral galaxies

    CERN Document Server

    Morelli, L; Corsini, E M; Bontà, E Dalla; Coccato, L; Méndez-Abreu, J; Parmiggiani, M

    2015-01-01

    Key information to understand the formation and evolution of disk galaxies are imprinted in the stellar populations of their bulges. This paper has the purpose to make available new measurements of the stellar population properties of the bulges of four spiral galaxies. Both the central values and radial profiles of the line strength of some of the most common Lick indices are measured along the major- and minor- axis of the bulge-dominated region of the sample galaxies. The corresponding age, metallicity, and {\\alpha}/Fe ratio are derived by using the simple stellar population synthesis model predictions. The central values and the gradients of the stellar population properties of ESO-LV1890070, ESO-LV4460170, and ESO-LV 5140100 are consistent with previous findings for bulges of spiral galaxies. On the contrary, the bulge of ESO-LV 4500200 shows peculiar chemical properties possibly due to the presence of a central kinematically-decoupled component. The negative metallicity gradient found in our bulges samp...

  7. Chemodynamical analysis of bulge stars for simulated disc galaxies

    Science.gov (United States)

    Rahimi, A.; Kawata, D.; Brook, Chris B.; Gibson, Brad K.

    2010-01-01

    We analyse the kinematics and chemistry of the bulge stars of two simulated disc galaxies using our chemodynamical galaxy evolution code GCD+. First, we compare stars that are born inside the galaxy with those that are born outside the galaxy and are accreted into the centre of the galaxy. Stars that originate outside the bulge are accreted into it early in its formation within 3 Gyr so that these stars have high [α/Fe] as well as a high total energy reflecting their accretion to the centre of the galaxy. Therefore, higher total energy is a good indicator for finding accreted stars. The bulges of the simulated galaxies formed through multiple mergers separated by about a Gyr. Since [α/Fe] is sensitive to the first few Gyr of star formation history, stars that formed during mergers at different epochs show different [α/Fe]. We show that the [Mg/Fe] against star formation time relation can be very useful to identify a multiple merger bulge formation scenario, provided there is sufficiently good age information available. Our simulations also show that stars formed during one of the merger events retain a systematically prograde rotation at the final time. This demonstrates that the orbit of the ancient merger that helped to form the bulge could still remain in the kinematics of bulge stars.

  8. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    Energy Technology Data Exchange (ETDEWEB)

    Schultheis, M. [Université de Nice Sophia-Antipolis, CNRS, Observatoire de Côte d' Azur, Laboratoire Lagrange, 06304 Nice Cedex 4 (France); Zasowski, G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Allende Prieto, C. [Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Anders, F.; Chiappini, C. [Leibniz-Institut für Astrophysik Potsdam (AIP), D-14482 Potsdam (Germany); Beaton, R. L.; García Pérez, A. E.; Majewski, S. R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Beers, T. C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Bizyaev, D. [Apache Point Observatory, Sunspot, NM 88349 (United States); Frinchaboy, P. M. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); Ge, J. [Astronomy Department, University of Florida, Gainesville, FL 32611 (United States); Hearty, F.; Schneider, D. P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Holtzman, J. [New Mexico State University, Las Cruces, NM 88003 (United States); Muna, D. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Nidever, D. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Shetrone, M., E-mail: mathias.schultheis@oca.eu, E-mail: gail.zasowski@gmail.com [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States)

    2014-07-01

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.

  9. The Star-Forming Histories of the Nucleus, Bulge, and Inner Disk of NGC 5102: Clues to the Evolution of a Nearby Lenticular Galaxy

    CERN Document Server

    Davidge, T J

    2014-01-01

    Long slit spectra recorded with GMOS on Gemini South are used to examine the star-forming history of the lenticular galaxy NGC 5102. Structural and supplemental photometric information are obtained from archival Spitzer [3.6] images. Comparisons with model spectra point to luminosity-weighted metallicities that are consistent with the colors of resolved red giant branch stars in the disk. The nucleus has a luminosity-weighted age at visible wavelengths of ~1 Gyr, and the integrated light is dominated by stars that formed over a time period of only a few hundred Myr. For comparison, the luminosity-weighted ages of the bulge and disk are ~2 Gyr and ~10 Gyr, respectively. The g'-[3.6] colors of the nucleus and bulge are consistent with the spectroscopically-based ages. In contrast to the nucleus, models that assume star-forming activity spanning many Gyr provide a better match to the spectra of the bulge and disk than simple stellar population models. Isophotes in the bulge have a disky shape, hinting that the b...

  10. Metallicity Distribution Functions, Radial Velocities, and Alpha Element Abundances in Three Off-Axis Bulge Fields

    CERN Document Server

    Johnson, Christian I; Kobayashi, Chiaki; Kunder, Andrea; Pilachowski, Catherine A; Koch, Andreas; De Propris, Roberto

    2013-01-01

    We present radial velocities and chemical abundance ratios of [Fe/H], [O/Fe], [Si/Fe], and [Ca/Fe] for 264 red giant branch (RGB) stars in three Galactic bulge off-axis fields located near (l,b)=(-5.5,-7), (-4,-9), and (+8.5,+9). The results are based on equivalent width and spectrum synthesis analyses of moderate resolution (R~18,000), high signal-to-noise ratio (S/N~75-300) spectra obtained with the Hydra spectrographs on the Blanco 4m and WIYN 3.5m telescopes. The targets were selected from the blue side of the giant branch to avoid cool stars that would be strongly affected by CN and TiO; however, a comparison of the color-metallicity distribution in literature samples suggests our selection of bluer targets should not present a significant bias against metal-rich stars. We find a full range in metallicity that spans [Fe/H]\\approx-1.5 to +0.5, and that, in accordance with the previously observed minor-axis vertical metallicity gradient, the median [Fe/H] also declines with increasing Galactic latitude in ...

  11. Probing Milky Way Structure with Near-Infrared Diffuse Interstellar Bands

    Science.gov (United States)

    Zasowski, Gail; Ménard, Brice; Bizyaev, Dmitry; Garcia-Hernandez, D.; García Pérez, Ana; Hayden, Michael R.; Hearty, Fred; Holtzman, Jon A.; Johnson, Jennifer; Kinemuchi, Karen; Majewski, Steven R.; Nidever, David L.; Sellgren, Kristen; Shetrone, Matthew D.; Whelan, David G.; Wilson, John C.

    2015-01-01

    Astronomers have studied the set of interstellar absorption features known as the diffuse interstellar bands (DIBs) for nearly a century, characterizing them into families and using them as probes of local interstellar medium (ISM) conditions even while trying to understand their origin. Though most DIB studies have focused on the optical features, recent DIB identifications at infrared (IR) wavelengths -- where extinction by interstellar dust is significantly decreased -- provide us with tracers of ISM along heavily extincted, previously inaccessible sightlines. This talk will briefly summarize results from a project using the strongest of these IR DIBs (detected in more than 60,000 sightlines towards cool, distant giant stars observed as part of the SDSS-III/APOGEE survey) to characterize the large-scale distribution and properties of the Galactic ISM, including in the heavily reddened bulge and inner disk. The DIB absorption's tight correlation with foreground reddening makes it a powerful, independent probe of line-of-sight dust extinction. For the first time, we map the velocity field of a DIB on large scales and find that it displays the signature of the rotating Galactic disk. Three-dimensional modeling of the carrier distribution reveals not only large-scale gradients consistent with other ISM components, but also substructures that coincide with particular Galactic bulge and disk features. Finally, we find that features that are outliers in the distribution of DIB profile shapes may have an origin in circumstellar, rather than interstellar, environments along these particular sightlines, and the properties of these atypical features may contain clues towards identifying the currently-unknown carrier molecule of this DIB.

  12. Pseudo bulges in galaxy groups: the role of environment in secular evolution

    Science.gov (United States)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2017-01-01

    We examine the dependence of the fraction of galaxies containing pseudo bulges on environment for a flux limited sample of ˜5000 SDSS galaxies. We have separated bulges into classical and pseudo bulge categories based on their position on the Kormendy diagram. Pseudo bulges are thought to be formed by internal processes and are a result of secular evolution in galaxies. We attempt to understand the dependence of secular evolution on environment and morphology. Dividing our sample of disc+bulge galaxies based on group membership into three categories: central and satellite galaxies in groups and isolated field galaxies, we find that pseudo bulge fraction is almost equal for satellite and field galaxies. Fraction of pseudo bulge hosts in central galaxies is almost half of the fraction of pseudo bulges in satellite and field galaxies. This trend is also valid when only galaxies are considered only spirals or S0. Using the projected fifth nearest neighbour density as measure of local environment, we look for the dependence of pseudo bulge fraction on environmental density. Satellite and field galaxies show very weak or no dependence of pseudo bulge fraction on environment. However, fraction of pseudo bulges hosted by central galaxies decreases with increase in local environmental density. We do not find any dependence of pseudo bulge luminosity on environment. Our results suggest that the processes that differentiate the bulge types are a function of environment while processes responsible for the formation of pseudo bulges seem to be independent of environment.

  13. Fracture and springback on Double Bulge Tube Hydro-Forming

    Directory of Open Access Journals (Sweden)

    F. Djavanroodi

    2008-01-01

    Full Text Available This research aims to establish a basic understanding of Double Bulge Tube Hydro-Form processing of stainless steel deep drawn cups. The method is briefly reviewed by carrying out experimental tests and Finite element analysis. By measuring bulge height in both formed curves by Coordinate measuring machine (CMM and thickness variation specimen by Ulterasonic thickness measurment device (UTM, it has been shown that maximum thinness occured where the bending is maximized. A finite element model is constructed to simulate the Double Bulge Tube Hydro Forming process and asses the influence of friction cofficient, tube Material properties and springback. It has been shown that material hardening coefficient had the most significant influence on formability characteristics during double bulge tube hydroforming. Also it is shown that springback has significant effect on tolerances of formed tube. Finally fracture strain was estimated by analytical method and compared with simulation results, also fracture location was predicted on Double Bulge Tube Hydro-Forming (DBTHF by simulating the process.

  14. Imaging Extrasolar Giant Planets

    Science.gov (United States)

    Bowler, Brendan P.

    2016-10-01

    High-contrast adaptive optics (AO) imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order AO systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young (≈5-300 Myr) stars spanning stellar masses between 0.1 and 3.0 M ⊙, the overall occurrence rate of 5-13 M Jup companions at orbital distances of 30-300 au is {0.6}-0.5+0.7 % assuming hot-start evolutionary models. The most massive giant planets regularly accessible to direct imaging are about as rare as hot Jupiters are around Sun-like stars. Dividing this sample into individual stellar mass bins does not reveal any statistically significant trend in planet frequency with host mass: giant planets are found around {2.8}-2.3+3.7 % of BA stars, planets spanning a broad range of masses and ages.

  15. Near-Infrared Bulge-Disk Correlations of Lenticular Galaxies

    CERN Document Server

    Barway, Sudhanshu; Kembhavi, Ajit K; Mayya, Y D

    2008-01-01

    We consider the luminosity and environmental dependence of structural parameters of lenticular galaxies in the near-infrared K band. Using a two-dimensional galaxy image decomposition technique, we extract bulge and disk structural parameters for a sample of 36 lenticular galaxies observed by us in the K band. By combining data from the literature for field and cluster lenticulars with our data, we study correlations between parameters that characterise the bulge and the disk as a function of luminosity and environment. We find that scaling relations such as the Kormendy relation, photometric plane and other correlations involving bulge and disk parameters show a luminosity dependence. This dependence can be explained in terms of galaxy formation models in which faint lenticulars (M_T > -24.5) formed via secular formation processes that likely formed the pseudobulges of late-type disk galaxies, while brighter lenticulars (M_T < -24.5) formed through a different formation mechanism most likely involving maj...

  16. Galactic Rotation Described with Bulge+Disk Gravitational Models

    CERN Document Server

    Gallo, C F

    2008-01-01

    Observations reveal that mature spiral galaxies consist of stars, gases and plasma approximately distributed in a thin disk of circular shape, usually with a central bulge. The rotation velocities quickly increase from the galactic center and then achieve a constant velocity from the core to the periphery. The basic dynamic behavior of a mature spiral galaxy, such as the Milky Way, is well described by simple models balancing Newtonian gravitational forces against the centrifugal forces associated with a rotating thin axisymmetric disk. In this research, we investigate the effects of adding central bulges to thin disk gravitational models. Even with the addition of substantial central bulges, all the critical essential features of our thin disk gravitational models are preserved. (1) Balancing Newtonian gravitational and centrifugal forces at every point within the disk yields computed radial mass distributions that describe the measured rotation velocity profiles of mature spiral galaxies successfully. (2) T...

  17. The Metallicity Gradient of the Old Galactic Bulge Population

    CERN Document Server

    Fuentes, Sara Alejandra Sans

    2014-01-01

    Understanding the structure, formation and evolution of the Galactic Bulge requires the proper determination of spatial metallicity gradients in both the radial and vertical directions. RR Lyrae pulsators, known to be excellent distance indicators, may hold the key to determining these gradients. Jurcsik & Kovacs (1996) has shown that RR Lyrae light curves and the phase difference of their Fourier decomposition, {\\phi}31, can be used to estimate photometric metallicities. The existence of galactic bulge metallicity gradients is a currently debated topic that would help pinpoint the Galaxy's formation and evolution. A recent study of the OGLE-III Galactic Bulge RR Lyrae Population by Pietrukowicz et al. (2012) suggests that the spatial distribution is uniform. We investigate how small a gradient would be detectable within the current S/N levels of the present data set, given the random and systematic errors associated with the derivation of a photometric metallicity versus spatial position relationship.

  18. The nuclear bulge. I. K band observations of the central 30 PC

    Science.gov (United States)

    Philipp, S.; Zylka, R.; Mezger, P. G.; Duschl, W. J.; Herbst, T.; Tuffs, R. J.

    1999-08-01

    Out of ~ 500 individual source images we have constructed a mosaic map of the K band surface brightness in an area Delta alphax Delta delta ~ 650''x710'' (R_equiv ~ 15.8 pc for R_0 = 8.5 kpc) centered approximately on Sgr A*. An observing technique was used which allows us to recover an extended background emission. To separate sources from an unresolved background continuum we fitted Lorentzian distributions to the sources and find that about one half of an integrated, not dereddened K band flux density of 752 Jy is contributed by ~ 6*E(4) stars with flux densities S_K(') >~ 100 mu Jy and the remainder is contributed by an extended continuum provided by about 6*E(8) stars too weak to be observed as individual sources. We estimate that >~ 80% of the integrated flux density of the mosaic is contributed by stars in the Nuclear Bulge (NB; R 3 kpc). We determine the K band luminosity functions (KLF) of the mosaic and of subareas dominated by Nuclear Bulge, Galactic Bulge and Disk stars, respectively, and construct difference KLFs which relate to the specific stellar populations of these regions. The detection limit is S_K(') ~ 100 mu Jy, for the completeness limit we estimate S_K(') ~ 2 000 mu Jy. We find that the stellar population of the Nuclear Bulge contains considerably more bright stars (i.e. with reddened K band flux densities S_K(') >~ 5*E(3 mu ) Jy), most of which are probably early O stars, Giants and Supergiants. The stellar population of the Galactic Bulge on the other hand is dominated by stars which appear to be lower mass (Main Sequence (MS) stars. A model KLF constructed with a Salpeter Initial Mass Function (IMF) for stars of spectral type O9 or later (S_K(') masses ranging from 0.06 to 6 M_sun account for the unresolved continuum. Combining observed and model KLF we obtain a mosaic KLF which increases ~ S_K({') - 1} for 10(6) >~ S_K('/mu ) Jy >~ 10(3) and ~ S_K({') - 0.6} for 10(3) >~ S_K('/mu ) Jy >~ 3*E(-3) . For radii R relatively young generation

  19. Optimum Location of Tube Blank in Electromagnetic Bulging

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using analytical method, this paper gets the mutual inductance between coil and workpiece in tube blank electromagnetic bulging. According to this, we obtain the optimum locations of tube blank with different length of coil and workpiece. There is a good agreement between results calculated and the experimental data.

  20. The disc origin of the Milky Way bulge

    CERN Document Server

    Di Matteo, P

    2016-01-01

    The Galactic bulge, that is the prominent out-of-plane over-density present in the inner few kiloparsecs of the Galaxy, is a complex structure, as the morphology, kinematics, chemistry and ages of its stars indicate. To understand the nature of its main components -- those at [Fe/H] >~ -1 dex -- it is necessary to make an inventory of the stellar populations of the Galactic disc(s), and of their borders : the chemistry of the disc at the solar vicinity, well known from detailed studies of stars over many years, is not representative of the whole disc. This finding, together with the recent revisions of the mass and sizes of the thin and thick discs, constitutes a major step in understanding the bulge complexity. N-body models of a boxy/peanut-shaped bulge formed from a thin disc through the intermediary of a bar have been successful in interpreting a number of global properties of the Galactic bulge, but they fail in reproducing the detailed chemo-kinematic relations satisfied by its components and their morp...

  1. New insights on the Galactic Bulge Initial Mass Function

    CERN Document Server

    Calamida, A; Casertano, S; Anderson, J; Cassisi, S; Gennaro, M; Cignoni, M; Brown, T M; Kains, N; Ferguson, H; Livio, M; Bond, H E; Buonanno, R; Clarkson, W; Ferraro, I; Pietrinferni, A; Salaris, M; Valenti, J

    2015-01-01

    We have derived the Galactic bulge initial mass function of the SWEEPS field down to 0.15 $M_{\\odot}$, using deep photometry collected with the Advanced Camera for Surveys on the Hubble Space Telescope. Observations at several epochs, spread over 9 years, allowed us to separate the disk and bulge stars down to very faint magnitudes, $F814W \\approx$ 26 mag, with a proper-motion accuracy better than 0.5 mas/yr (20 km/s). This allowed us to determine the initial mass function of the pure bulge component uncontaminated by disk stars for this low-reddening field in the Sagittarius window. In deriving the mass function, we took into account the presence of unresolved binaries, errors in photometry, distance modulus and reddening, as well as the metallicity dispersion and the uncertainties caused by adopting different theoretical color-temperature relations. We found that the Galactic bulge initial mass function can be fitted with two power laws with a break at $M \\sim$ 0.56 $M_{\\odot}$, the slope being steeper ($\\a...

  2. Ongoing massive star formation in the bulge of M51

    NARCIS (Netherlands)

    Lamers, HJGLM; Panagia, N; Scuderi, S; Romaniello, M; Spaans, M; Kirshner, R

    2002-01-01

    We present a study of Hubble Space Telescope Wide Field Planetary Camera 2 observations of the inner kiloparsec of the interacting galaxy M51 in six bands from 2550 to 8140 Angstrom. The images show an oval-shaped area (which we call the "bulge") of about 11" x 16", or 450 x 650 pc, around the nucle

  3. Meso-scale aurora within the expansion phase bulge

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2006-09-01

    Full Text Available We present ground-based optical, riometer and magnetometer recordings together with Polar UVI and GOES magnetic field observations of a substorm that occurred over Canada on 24 November 1997. This event involved a clear optical onset followed by poleward motion of the aurora as a signature of an expanding auroral bulge. During the expansion phase, there were three distinct types of meso-scale (10–1000 km auroral structures embedded in the bulge: at first a series of equatorward moving auroral arcs, followed by a well-defined spiral pair, and finally north-south directed aurora (a streamer. The spirals occurred several minutes after the onset, and indicate a shear in the field-aligned current. The north-south aligned aurora that formed about 10 min after the onset suggest bursty bulk flow type flows taking place in the central plasma sheet. Polar UVI observations of the polar cap location indicate that the southward drifting arcs were associated with magnetospheric activity within closed field lines, while the auroral streamer was launched by the bulge reaching the polar cap boundary, i.e. the mid-tail reconnection starting on the open field lines. The riometer data imply high energy electron precipitation in the vicinity of the the poleward moving edge of the auroral bulge, starting at the onset and continuing until the formation of the north-south structure. In this paper, we examine this evolving auroral morphology within the context of substorm theories.

  4. Relation between $M_{BH}$ and $M_{bulge}

    CERN Document Server

    Fu Yan Ning; Deng, Z G

    2001-01-01

    The dynamical evolution of super star clusters (SSCs) moving in the background of dark matter halo has been investigated as a possible event causing the observed correlation between the mass of galactic bulge, $M_{bulge}$, and the mass of its central black hole, $M_{BH}$. The involved physical processes are the sinking of SSCs due to the dynamical friction, and the stripping of SSCs on their way to the center. Model calculations show that only sinking of circumnuclear SSCs contribute to both the growth of the central object and the formation of the galactic bulge at the early stage. On the assumption of a universal density profile for the dark matter halo, and an isothermal model for the SSCs, our simulations have yielded the mass ratio of the central objects to the bulges formed this way to be about a few times $10^{-4}$, less than the observed median value for early type galaxies. It is, however, consistent with the observed mass ratio for disk spirals, implying that the proposed scenario might be a possibl...

  5. Bulge and Halo Kinematics Across the Hubble Sequence

    CERN Document Server

    Ho, Luis C

    2007-01-01

    The correlation between the maximum rotational velocity of the disk (v_m) and the central stellar velocity dispersion of the bulge (sigma) offers insights into the relationship between the halo and the bulge. We have assembled integrated H I line widths and central stellar velocity dispersions to study the v_m-sigma relation for 792 galaxies spanning a broad range of Hubble types. Contrary to earlier studies based on much smaller samples, we find that the v_m-sigma relation exhibits significant intrinsic scatter and that its zeropoint varies systematically with galaxy morphology, bulge-to-disk ratio, and light concentration, as expected from basic dynamical considerations. Nucleated but bulgeless late-type spiral galaxies depart significantly from the v_m-sigma relation. While these results render questionable any attempt to supplant the bulge with the halo as the fundamental determinant of the central black hole mass in galaxies, the observed distribution of v_m/sigma, which depends on both the density profi...

  6. Type-Ia Supernova-driven Galactic Bulge Wind

    CERN Document Server

    Tang, Shikui; Mac Low, Mordecai-Mark; Joung, M Ryan

    2009-01-01

    Stellar feedback in galactic bulges plays an essential role in shaping the evolution of galaxies. To quantify this role and facilitate comparisons with X-ray observations, we conduct 3D hydrodynamical simulations with the adaptive mesh refinement code, FLASH, to investigate the physical properties of hot gas inside a galactic bulge, similar to that of our Galaxy or M31. We assume that the dynamical and thermal properties of the hot gas are dominated by mechanical energy input from SNe, primarily Type Ia, and mass injection from evolved stars as well as iron enrichment from SNe. We study the bulge-wide outflow as well as the SN heating on scales down to ~4 pc. An embedding scheme that is devised to plant individual SNR seeds, allows to examine, for the first time, the effect of sporadic SNe on the density, temperature, and iron ejecta distribution of the hot gas as well as the resultant X-ray morphology and spectrum. We find that the SNe produce a bulge wind with highly filamentary density structures and patch...

  7. The X-shaped Bulge of the Milky Way revealed by WISE

    CERN Document Server

    Ness, Melissa

    2016-01-01

    The Milky Way bulge has a boxy/peanut morphology and an X-shaped structure. This X-shape has been revealed by the `split in the red clump' from star counts along the line of sight toward the bulge, measured from photometric surveys. This boxy, X-shaped bulge morphology is not unique to the Milky Way and such bulges are observed in other barred spiral galaxies. N-body simulations show that boxy and X-shaped bulges are formed from the disk via dynamical instabilities. It has also been proposed that the Milky Way bulge is not X-shaped, but rather, the apparent split in the red clump stars is a consequence of different stellar populations, in an old classical spheroidal bulge. We present a WISE image of the Milky Way bulge, produced by downsampling the publicly available "unWISE" coadds. The WISE image of the Milky Way bulge shows that the X-shaped nature of the Milky Way bulge is self-evident and irrefutable. The X-shape morphology of the bulge in itself and the fraction of bulge stars that comprise orbits withi...

  8. Transforming giants.

    Science.gov (United States)

    Kanter, Rosabeth Moss

    2008-01-01

    Large corporations have long been seen as lumbering, inflexible, bureaucratic--and clueless about global developments. But recently some multinationals seem to be transforming themselves: They're engaging employees, moving quickly, and introducing innovations that show true connection with the world. Harvard Business School's Kanter ventured with a research team inside a dozen global giants--including IBM, Procter & Gamble, Omron, CEMEX, Cisco, and Banco Real--to discover what has been driving the change. After conducting more than 350 interviews on five continents, she and her colleagues came away with a strong sense that we are witnessing the dawn of a new model of corporate power: The coordination of actions and decisions on the front lines now appears to stem from widely shared values and a sturdy platform of common processes and technology, not from top-down decrees. In particular, the values that engage the passions of far-flung workforces stress openness, inclusion, and making the world a better place. Through this shift in what might be called their guidance systems, the companies have become as creative and nimble as much smaller ones, even while taking on social and environmental challenges of a scale that only large enterprises could attempt. IBM, for instance, has created a nonprofit partnership, World Community Grid, through which any organization or individual can donate unused computing power to research projects and see what is being done with the donation in real time. IBM has gained an inspiring showcase for its new technology, helped business partners connect with the company in a positive way, and offered individuals all over the globe the chance to contribute to something big.

  9. Chemical Abundances and Dust in Planetary Nebulae in the Galactic Bulge

    CERN Document Server

    Gutenkunst, S; Pottasch, S R; Sloan, G C; Houck, J R

    2008-01-01

    We present mid-infrared Spitzer spectra of eleven planetary nebulae in the Galactic Bulge. We derive argon, neon, sulfur, and oxygen abundances for them using mainly infrared line fluxes combined with some optical line fluxes from the literature. Due to the high extinction toward the Bulge, the infrared spectra allow us to determine abundances for certain elements more accurately that previously possible with optical data alone. Abundances of argon and sulfur (and in most cases neon and oxygen) in planetary nebulae in the Bulge give the abundances of the interstellar medium at the time their progenitor stars formed; thus these abundances give information about the formation and evolution of the Bulge. The abundances of Bulge planetary nebulae tend to be slightly higher than those in the Disk on average, but they do not follow the trend of the Disk planetary nebulae, thus confirming the difference between Bulge and Disk evolution. Additionally, the Bulge planetary nebulae show peculiar dust properties compared...

  10. Giant Cell Arteritis

    Science.gov (United States)

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  11. Metal-poor stars towards the Galactic bulge - a population potpourri

    CERN Document Server

    Koch, Andreas; Preston, George W; Thompson, Ian B

    2015-01-01

    We present a comprehensive chemical abundance analysis of five red giants and two horizontal branch (HB) stars towards the southern Galactic bulge, at (l,b)$\\sim$(0$^{\\rm o}$,-11$^{\\rm o}$). Based on high-resolution spectroscopy obtained with the Magellan/MIKE spectrograph, we derived up to 23 chemical element abundances and identify a mixed bag of stars, representing various populations in the central regions of the Galaxy. Although cosmological simulations predict that the inner Galaxy was host to the first stars in the Universe, we see no chemical evidence of the ensuing massive supernova explosions: all of our targets exhibit halo-like, solar [Sc/Fe] ratios, which is in contrast to the low values predicted from Population III nucleosynthesis. One of the targets is a CEMP-s star at [Fe/H]=-2.52 dex, and another one is a moderately metal-poor ([Fe/H]=-1.53 dex) CH star with strong enrichment in s-process elements (e.g., [Ba/Fe]=1.35). These individuals provide the first contenders of these classes of stars ...

  12. On the age of Galactic bulge microlensed dwarf and subgiant stars

    CERN Document Server

    Valle, G; Moroni, P G Prada; Degl'Innocenti, S

    2015-01-01

    Recent results by Bensby and collaborators on the ages of microlensed stars in the Galactic bulge have challenged the picture of an exclusively old stellar population. However, these age estimates have not been independently confirmed. In this paper we verify these results by means of a grid-based method and quantify the systematic biases that might be induced by some assumptions adopted to compute stellar models. We explore the impact of increasing the initial helium abundance, neglecting the element microscopic diffusion, and changing the mixing-length calibration in theoretical stellar track computations. We adopt the SCEPtER pipeline with a novel stellar model grid for metallicities [Fe/H] from -2.00 to 0.55 dex, and masses in the range [0.60; 1.60] Msun from the ZAMS to the helium flash at the red giant branch tip. We show for the considered evolutionary phases that our technique provides unbiased age estimates. Our age results are in good agreement with Bensby and collaborators findings and show 16 star...

  13. Effect of tube size on electromagnetic tube bulging

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The commercial finite code ANSYS was employed for the simulation of the electromagnetic tube bulging process. The finite element model and boundary conditions were thoroughly discussed. ANSYS/EMAG was used to model the time varying electromagnetic field in order to obtain the radial and axial magnetic pressure acting on the tube. The magnetic pressure was then used as boundary conditions to model the high velocity deformation of various length tube with ANSYS/LSDYNA. The time space distribution of magnetic pressure on various length tubes was presented. Effect of tube size on the distribution of radial magnetic pressure and axial magnetic pressure and high velocity deformation were discussed. According to the radial magnetic pressure ratio of tube end to tube center and corresponding dimensionless length ratio of tube to coil, the free electromagnetic tube bulging was studied in classification. The calculated results show good agreements with practice.

  14. Orientation of Galactic Bulge Planetary Nebulae toward the Galactic Center

    CERN Document Server

    Danehkar, A

    2014-01-01

    We have used the Wide Field Spectrograph on the Australian National University 2.3-m telescope to perform the integral field spectroscopy for a sample of the Galactic planetary nebulae. The spatially resolved velocity distributions of the H$\\alpha$ emission line were used to determine the kinematic features and nebular orientations. Our findings show that some bulge planetary nebulae toward the Galactic center have a particular orientation.

  15. Central Stars of Planetary Nebulae in the Galactic Bulge

    CERN Document Server

    Hultzsch, P J N; Méndez, R H; Pauldrach, A W A; Kudritzki, R P; Hoffmann, T L; McCarthy, J K

    2007-01-01

    Optical high-resolution spectra of five central stars of planetary nebulae (CSPN) in the Galactic Bulge have been obtained with Keck/HIRES in order to derive their parameters. Since the distance of the objects is quite well known, such a method has the advantage that stellar luminosities and masses can in principle be determined without relying on theoretical relations between both quantities. By alternatively combining the results of our spectroscopic investigation with evolutionary tracks, we obtain so-called spectroscopic distances, which can be compared with the known (average) distance of the Bulge-CSPN. This offers the possibility to test the validity of model atmospheres and present date post-AGB evolution. We analyze optical H/He profiles of five Galactic Bulge CSPN (plus one comparison object) by means of profile fitting based on state of the art non-LTE modeling tools, to constrain their basic atmospheric parameters (Teff, log g, helium abundance and wind strength). Masses and other stellar radius d...

  16. ISO Mid-Infrared spectroscopy of Galactic Bulge AGB stars

    CERN Document Server

    Blommaert, J A D L; Okumura, K; Ganesh, S; Omont, A; Cami, J; Glass, I S; Habing, H J; Schultheis, M; Simon, G; Van Loon, J T; Blommaert, Joris A.D.L.; Groenewegen, Martin A.T.; Okumura, Koryo; Ganesh, Shashikiran; Omont, Alain; Cami, Jan; Glass, Ian S.; Habing, Harm J.; Schultheis, Mathias; Simon, Guy; Loon, Jacco Th. van

    2006-01-01

    To study the nature of Bulge AGB stars and in particular their circumstellar dust, we have analysed mid-infrared spectra obtained with the ISOCAM CVF spectrometer in three Bulge fields. The ISOCAM 5-16.5 micron CVF spectra were obtained as part of the ISOGAL infrared survey of the inner Galaxy. A classification of the shape of the 10 micron dust feature was made for each case. The spectra of the individual sources were modelled using a radiative transfer model. Different combinations of amorphous silicates and aluminium-oxide dust were used in the modelling. Spectra were obtained for 29 sources of which 26 are likely to be Bulge AGB stars. Our modelling shows that the stars suffer mass loss rates in the range of 10^{-8} - 5 x 10^{-7} Msun / yr, which is at the low end of the mass-loss rates experienced on the Thermally Pulsing AGB. The luminosities range from 1,700 to 7,700 Lsun as expected for a population of AGB stars with Minit of 1.5 - 2Msun. In agreement with the condensation sequence scenario, we find t...

  17. Research on bulging plate of scaler for horizontal pendulum tiltmeter

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-zhong; ZHU Hu; WU Jian

    2005-01-01

    @@ After the horizontal pendulum is used in ground-tilt measurement, its scaling has drawn great attentions from the people, because without a correct calibration of scale value, the observation is of little application significance. From the 1920's, quite a few scholars were engaged in the researches in this respect. And this question was satisfactorily solved until 1962 when Verbaandert (1962) invented the bulging plate, i.e., mercury-cup scaler.After further improvement, the V-M quartz horizontal pendulum tiltmeter was used globally in observation and great success was achieved (Melchior, 1966, 1978). In China, the quartz horizontal pendulum tiltmeter as well as the bulging-plate scaler were developed at the beginning of 1970's and then put into use after some improvements (ZHU and FENG, 1980). The successful observation by SQ quartz horizontal pendulum tiltmeter should be related not only to the excellent performance of horizontal pendulum, but also to its accurate calibration. The bulging plate plays an important role in calibration, because it is the critical component of scaler.

  18. Study of extremely reddened AGB stars in the Galactic bulge

    CERN Document Server

    Jiménez-Esteban, F M

    2015-01-01

    Context. Extremely reddened AGB stars lose mass at high rates of >10^-5 Msun/yr. This is the very last stage of AGB evolution, in which stars in the mass range 2.0--4.0 Msun (for solar metallicity) should have been converted to C stars already. The extremely reddened AGB stars in the Galactic bulge are however predominantly O-rich, implying that they might be either low-mass stars or stars at the upper end of the AGB mass range. Aims. To determine the mass range of the most reddened AGB stars in the Galactic bulge. Methods. Using Virtual Observatory tools, we constructed spectral energy distributions of a sample of 37 evolved stars in the Galactic bulge with extremely red IRAS colours. We fitted DUSTY models to the observational data to infer the bolometric fluxes. Applying individual corrections for interstellar extinction and adopting a common distance, we determined luminosities and mass-loss rates, and inferred the progenitor mass range from comparisons with AGB evolutionary models. Results. The observed ...

  19. The Black Hole - Bulge Mass Relation in Megamaser Host Galaxies

    CERN Document Server

    Läsker, Ronald; Seth, Anil; van de Ven, Glenn; Braatz, James A; Henkel, Christian; Lo, K Y

    2016-01-01

    We present HST images for nine megamaser disk galaxies with the primary goal of studying photometric BH-galaxy scaling relations. The megamaser disks provide the highest-precision extragalactic BH mass measurements, while our high-resolution HST imaging affords us the opportunity to decompose the complex nuclei of their late-type hosts in detail. Based on the morphologies and shapes of the galaxy nuclei, we argue that most of these galaxies' central regions contain secularly evolving components (pseudo-bulges), and in many cases we photometrically identify co-existing "classical" bulge components as well. Using these decompositions, we draw the following conclusions: (1) The megamaser BH masses span two orders of magnitude ($10^6$ -- $10^8 M_\\odot$) while the stellar mass of their spiral host galaxies are all $\\sim 10^{11} M_\\odot$ within a factor of three; (2) the BH masses at a given bulge mass or total stellar mass in the megamaser host spiral galaxies tend to be lower than expected, when compared to an ex...

  20. NGC 6388: Chemical Composition of Its Eight Cool Giants

    Science.gov (United States)

    Wallerstein, G.; Kovtyukh, V. V.; Andrievsky, S. M.

    2007-04-01

    Eight cool giants in the unusual globular cluster NGC 6388 have been investigated in order to derive their elemental abundances. Effective temperatures from 3500 to 3850 K were derived using the method of line-depth ratios. Surface gravities were derived in two ways. Spectroscopic gravities, derived by the requirement that the abundance of iron be the same from Fe I and Fe II lines, were rather low, ranging from -0.3 to 0.0. Photometric gravities, derived from the assumed stellar mass of 0.7 Modot and the luminosity and Teff of the stars, fell between +0.25 and +0.70. Mean [Fe/H] values were -0.8 for spectroscopic gravities and -0.6 for photometric gravities. A test using spectra of the same resolution of the two coolest red giants in the globular cluster M4 obtained at the Apache Point Observatory were analyzed for comparison with the definitive analysis of Ivans et al. (1999). The very cool metal-poor red giant HD 232078 was also analyzed for comparison with the analysis of Gonzalez & Wallerstein (1998). Both comparisons showed that our methods yield the same abundance scale as previous works. We have compared the composition of stars in NGC 6388 with those of K giants with similar [Fe/H] in 47 Tuc and the Galactic bulge. The observed value of [O/Fe] is near zero, which is less than in 47 Tuc and bulge stars of similar metallicity. The α-elements behave similarly to oxygen and show only small excesses at about the same level as do the α-elements in the globular clusters associated with the Sgr system. It is unclear whether these differences are responsible for the unusual color-magnitude diagram of NGC 6388.

  1. Imaging Extrasolar Giant Planets

    CERN Document Server

    Bowler, Brendan P

    2016-01-01

    High-contrast adaptive optics imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order adaptive optics systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young ($\\approx$5--300~Myr) stars spanning stellar masses between 0.1--3.0~\\Msun, the overall occurrence rate of 5--13~\\Mjup \\ companions at orbital distances ...

  2. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge.

    Science.gov (United States)

    Liu, Yaping; Lyle, Stephen; Yang, Zaixin; Cotsarelis, George

    2003-11-01

    Putative epithelial stem cells in the hair follicle bulge are thought to play pivotal roles in the homeostasis, aging, and carcinogenesis of the cutaneous epithelium. Elucidating the role of bulge cells in these processes has been hampered by the lack of gene promoters that target this area with specificity. Here we describe the isolation of the mouse keratin 15 (K15) promoter and demonstrate its utility for preferentially targeting hair follicle bulge cells in adult K15/lacZ transgenic mice. We found that patterns of K15 expression and promoter activity changed with age and correlated with levels of differentiation within the cutaneous epithelium; less differentiated keratinocytes in the epidermis of the neonatal mouse and in the bulge area of the adult mouse preferentially expressed K15. These findings demonstrate the utility of the K15 promoter for targeting epithelial stem cells in the hair follicle bulge and set the stage for elucidating the role of bulge cells in skin biology.

  3. Effect of temperature on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Temperature is one of the key parameters for BT20 titanium alloy cylindrical workpiece manufactured by vacuum hot bulge forming. A two-dimensional nonlinear thermo-mechanical coupled FE model was established. Numerical simulation of vacuum hot bulge forming process of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC Marc. The effects of temperature on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece were analyzed by numerical simulation.The simulated results show that the Y-direction displacement and the equivalent plastic strain of the workpiece increase with increasing bulge temperature. The residual stress decreases with increasing bulge temperature. The optimal temperature range of BT20 titanium alloy during vacuum hot bulge forming is 750-850 ℃. The corresponding experiments were carried out. The simulated results agreed well with the experimental results.

  4. Correlations between Kinematics and Metallicity in the Galactic Bulge: A Review

    Science.gov (United States)

    Babusiaux, Carine

    2016-06-01

    Recent large-scale surveys of galactic bulge stars allowed to build a detailed map of the bulge kinematics. The bulge exhibits cylindrical rotation consistent with a disky origin which evolved through bar-driven secular evolution. However, correlations between metallicity and kinematics complicate this picture. In particular a metal-poor component with distinct kinematic signatures has been detected. Its origin, density profile and link with the other Milky Way stellar populations are currently still poorly constrained.

  5. The growth of disks and bulges during hierarchical galaxy formation. I: fast evolution vs secular processes

    CERN Document Server

    Tonini, Chiara; Croton, Darren J; Wyithe, J Stuart B

    2016-01-01

    We present a theoretical model for the evolution of mass, angular momentum and size of galaxy disks and bulges, and we implement it into the semi-analytic galaxy formation code SAGE. The model follows both secular and violent evolutionary channels, including smooth accretion, disk instabilities, minor and major mergers. We find that the combination of our recipe with hierarchical clustering produces two distinct populations of bulges: merger-driven bulges, akin to classical bulges and ellipticals, and instability-driven bulges, akin to secular (or pseudo-)bulges. The model can successfully reproduce the mass-size relation of gaseous and stellar disks, the evolution of the mass-size relation of ellipticals, the Faber-Jackson relation, and the magnitude-colour diagram of classical and secular bulges. The model predicts only a small overlap of merger-driven and instability-driven components in the same galaxy, and predicts different bulge types as a function of galaxy mass and disk fraction. Bulge type also affe...

  6. Role of the CCA Bulge of Prohead RNA of Bacteriophage ø29 in DNA Packaging

    OpenAIRE

    Zhao, Wei; Morais, Marc C.; Anderson, Dwight L.; Jardine, Paul J.; Grimes, Shelley

    2008-01-01

    The oligomeric ring of prohead RNA (pRNA) is an essential component of the ATP-driven DNA packaging motor of bacteriophage ø29. The A-helix of pRNA binds the DNA translocating ATPase gp16 (gene product 16) and the CCA bulge in this helix is essential for DNA packaging in vitro. Mutation of the bulge by base substitution or deletion showed that the size of the bulge, rather than its sequence, is primary in DNA packaging activity. Proheads reconstituted with CCA bulge mutant pRNAs bound the pac...

  7. On The Linearity of The Black Hole - Bulge Mass Relation in Active and in Nearby Galaxies

    OpenAIRE

    Laor, Ari

    2001-01-01

    Analysis of PG quasar observations suggests a nonlinear relation between the black hole mass, M_BH, and the bulge mass, M_bulge, although a linear relation, as proposed for nearby galaxies, cannot be ruled out. New M_BH values for nearby galaxies from Gebhardt et al., and L_bulge measurements for Seyfert 1 galaxies from Virani et al., are used here to obtain a more accurate value for the slope of the M_BH-M_bulge relation. The combined sample of 40 active and non-active galaxies suggests a si...

  8. Free Bulging at Constant Pressure of Superplastic Sheet Metal

    Directory of Open Access Journals (Sweden)

    Costanzo Bellini

    2015-08-01

    Full Text Available This work intends to establish, by means of analytical modelling, a practical definition of the superplastic behaviour by using the results of the free bulging of sheet metal instead of the results of the traditional tensile test. In particular this paper analyses the superplastic flow of PbSn60 alloy and it focuses the attention on the value of H parameter corresponding to the maximum value of dt/dH, never considered in the literature. This parameter can represent a practical tool in industrial applications to establish the superplastic behaviour of a sheet metal.

  9. Extended X-ray Objects in the Galactic Bulge Survey

    Science.gov (United States)

    Matthews, Brandon

    2017-01-01

    The goal of this project was to locate extended X-ray objects in the galactic bulge. Data was taken from the Chandra X-ray Observatory and analyzed using vtpdetect, a program that scans for overdensities of photons in FITS files. The regions flagged by the program were further investigated to determine whether the sources were real extended objects. The original list of detected sources was narrowed down to 7 candidates which are now being further analyzed to determine what specifically the objects are. For this poster I will describe the elimination process for each flagged object and discuss future analysis techniques to determine the identity of the remaining candidates.

  10. Simulations of joule effect heating in a bulge test

    Science.gov (United States)

    Demazel, Nathan; Laurent, Hervé; Carin, Muriel; Coër, Jérémy; Le Masson, Philippe; Favero, Jérôme; Canivenc, Romain; Graveleau, Stéphane

    2016-10-01

    This work focuses on the integration of an electrical conduction heating of circular blank in a bulge test device. This device will be used to characterize the thermomechanical behaviour of Usibor®1500 under biaxial deformation at very high temperature (to 930°C). First a thermoelectric model using COMSOL Multiphysics® was developed to study the heating of a rectangular blank. This model is validated by comparing the calculated temperatures with thermocouples measurements. Secondly electrical field optimization is approached to obtain a fast and uniform heating of a circular blank.

  11. Nanodielectrics with giant permittivity

    Indian Academy of Sciences (India)

    S K Saha

    2008-06-01

    Nanodielectrics is an emerging area of research because of its potential application in energy storage and transducers. One-dimensional metallic nanostructures with localized electronic wave functions show giant dielectric constant. Following the prediction, during the last couple of years we have investigated the effect of giant permittivity in one-dimensional systems of conventional metals and conjugated polymer chains. In this article, we have tried to summarize the works on giant permittivity and finally the fabrication of nanocapacitor using metal nanowires, which shows giant permittivity is also discussed.

  12. Joint Cosmological Formation of QSOs and Bulge-dominated Galaxies

    CERN Document Server

    Monaco, P; Danese, L; Monaco, Pierluigi; Salucci, Paolo; Danese, Luigi

    1999-01-01

    Older and more recent pieces of observational evidence suggest a strong connection between QSOs and galaxies; in particular, the recently discovered correlation between black hole and galactic bulge masses suggests that QSO activity is directly connected to the formation of galactic bulges. The cosmological problem of QSO formation is analyzed in the framework of an analytical model for galaxy formation; for the first time a joint comparison with galaxy and QSO observables is performed. In this model it is assumed that the same physical variable which determines galaxy morphology is able to modulate the mass of the black hole responsible for QSO activity. Both halo spin and the occurence of a major merger are considered as candidates to this role. The predictions of the model are compared to available data for the type-dependent galaxy mass functions, the star-formation history of elliptical galaxies, the QSO luminosity function and its evolution (including the obscured objects contributing to the hard-X-ray ...

  13. The mechanics of decompressive craniectomy: Bulging in idealized geometries

    Science.gov (United States)

    Weickenmeier, Johannes; Kuhl, Ellen; Goriely, Alain

    2016-11-01

    In extreme cases of traumatic brain injury or a stroke, the resulting uncontrollable swelling of the brain may lead to a harmful increase of the intracranial pressure. As a common measure for immediate release of pressure on the brain, part of the skull is surgically removed allowing for the brain to bulge outwards, a procedure known as a decompressive craniectomy. During this excessive brain swelling, the affected tissue typically undergoes large deformations resulting in a complex three-dimensional mechanical loading state with several important implications on optimal treatment strategies and outcome. Here, as a first step towards a better understanding of the mechanics of a decompressive craniectomy, we consider simple models for the bulging of elastic solids under geometric constraints representative of the surgical intervention. In small deformations and simple geometries, the exact solution of this problem is derived from the theory of contact mechanics. The analysis of these solutions reveals a number of interesting generic features relevant for the mechanics of craniectomy.

  14. On the bar formation mechanism in galaxies with cuspy bulges

    Science.gov (United States)

    Polyachenko, E. V.; Berczik, P.; Just, A.

    2016-11-01

    We show by numerical simulations that a purely stellar dynamical model composed of an exponential disc, a cuspy bulge, and a Navarro-Frenk-White halo with parameters relevant to the Milky Way is subject to bar formation. Taking into account the finite disc thickness, the bar formation can be explained by the usual bar instability, in spite of the presence of an inner Lindblad resonance, that is believed to damp any global modes. The effect of replacing the live halo and bulge by a fixed external axisymmetric potential (rigid models) is studied. It is shown that while the e-folding time of bar instability increases significantly (from 250 to 500 Myr), the bar pattern speed remains almost the same. For the latter, our average value of 55 km s-1 kpc-1 agrees with the assumption that the Hercules stream in the solar neighbourhood is an imprint of the bar-disc interaction at the outer Lindblad resonance of the bar. Vertical averaging of the radial force in the central disc region comparable to the characteristic scale length allows us to reproduce the bar pattern speed and the growth rate of the rigid models, using normal mode analysis of linear perturbation theory in a razor-thin disc. The strong increase of the e-folding time with decreasing disc mass predicted by the mode analysis suggests that bars in galaxies similar to the Milky Way have formed only recently.

  15. Dynamics of the Galactic Bulge using Planetary Nebulae

    CERN Document Server

    Beaulieu, S F; Kálnay, A J; Saha, P; Zhao, H S; Beaulieu, Sylvie F.; Freeman, Kenneth C.; Kalnajs, Agris J.; Saha, Prasenjit; Zhao, HongSheng

    2000-01-01

    Evidence for a bar at the center of the Milky Way triggered a renewed enthusiasm for dynamical modelling of the Galactic bar-bulge. Our goal is to compare the kinematics of a sample of tracers, planetary nebulae, widely distributed over the bulge with the corresponding kinematics for a range of models of the inner Galaxy. Three of these models are N-body barred systems arising from the instabilities of a stellar disk (Sellwood, Fux and Kalnajs), and one is a Schwarzschild system constructed to represent the 3D distribution of the COBE/DIRBE near-IR light and then evolved as an N-body system for a few dynamical times (Zhao). For the comparison of our data with the models, we use a new technique developed by Saha (1998). The procedure finds the parameters of each model, i.e. the solar galactocentric distance R_o in model units, the orientation angle phi, the velocity scale (in km/s per model unit), and the solar tangential velocity which best fit the data.

  16. 2D kinematic signatures of boxy/peanut bulges

    CERN Document Server

    Iannuzzi, Francesca

    2015-01-01

    We study the imprints of boxy/peanut structures on the 2D line-of-sight kinematics of simulated disk galaxies. The models under study belong to a family with varying initial gas fraction and halo triaxiality, plus few other control runs with different structural parameters; the kinematic information was extracted using the Voronoi-binning technique and parametrised up to the fourth order of a Gauss-Hermite series. Building on a previous work for the long-slit case, we investigate the 2D kinematic behaviour in the edge-on projection as a function of the boxy/peanut strength and position angle; we find that for the strongest structures the highest moments show characteristic features away from the midplane in a range of position angles. We also discuss the masking effect of a classical bulge and the ambiguity in discriminating kinematically this spherically-symmetric component from a boxy/peanut bulge seen end-on. Regarding the face-on case, we extend existing results to encompass the effect of a second bucklin...

  17. Molecular Gas in the Bulge and Ring of NGC 7331

    CERN Document Server

    Israel, F P

    1999-01-01

    Maps of the J=2-1 12CO emission from the SbII galaxy NGC 7331 show a low-contrast ring at a radius of about 3.5 kpc. There is no evidence for a pronounced central hole in the CO distribution as claimed by others. The molecular ring is just outside the radius of peak emission from warm dust, but coincides with the peak of colder dust emission. Various 12CO and 13CO transitions have been observed from three positions including the center, which was also observed in the 492 GHz transition. The line measurements have been modelled by emission from a clumpy mixture of low-density molecular gas at about T(kin) = 10 K and high-density molecular gas at temperatures of 10 K and 20 K. The CO to H2 conversion factor in NGC 7331 is lower than that in the Milky Way, and lowest in the center of NGC 7331. The total interstellar gas mass is dominated by molecular hydrogen in the bulge and in the ring, and by atomic hydrogen outside the ring. Total hydrogen mass densities in the ring are about twice those in the bulge. Total ...

  18. Planetary Nebulae towards the Galactic bulge. I. [OIII] fluxes

    CERN Document Server

    Kovacevic, Anna V; Jacoby, George H; Sharp, Rob; Miszalski, Brent; Frew, David J

    2010-01-01

    We present [OIII]{\\lambda}5007 fluxes and angular diameters for 435 Planetary Nebulae (PN) in the central 10' x 10' region towards the Galactic bulge. Our sample is taken from the new discoveries of the MASH PN surveys as well as previously known PN. This sample accounts for 80% of known PN in this region. Fluxes and diameters are measured from narrow-band imaging with the MOSAIC-II camera on the 4-m Blanco telescope at the Cerro-Tololo Inter-American Observatory. This is the largest (~60 square degrees), uniform [OIII]{\\lambda}5007 survey of the inner Galactic bulge ever undertaken. 104 of the objects have measured [OIII]{\\lambda}5007, [OIII]{\\lambda}4959, H{\\alpha} or H{\\beta} fluxes from the literature, which we use to undertake a detailed comparison to demonstrate the integrity of our new fluxes. Our independent measurements are in excellent agreement with the very best literature sources over two orders of magnitude, while maintaining good consistency over five orders of magnitude. The excellent resoluti...

  19. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    2013-01-01

    Mobile probing is a method, developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time and space......). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings point...... to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face). The development...

  20. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    2012-01-01

    Mobile probing is a method, which has been developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time...... and space). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings...... point to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face...

  1. Near-infrared photometry of globular clusters towards the Galactic bulge: observations and photometric metallicity indicators

    Science.gov (United States)

    Cohen, Roger E.; Moni Bidin, Christian; Mauro, Francesco; Bonatto, Charles; Geisler, Douglas

    2017-01-01

    We present wide-field JHKS photometry of 16 Galactic globular clusters located towards the Galactic bulge, calibrated on the Two Micron All-Sky Survey photometric system. Differential reddening corrections and statistical field star decontamination are employed for all of these clusters before fitting fiducial sequences to the cluster red giant branches (RGBs). Observed values and uncertainties are reported for several photometric features, including the magnitude of the RGB bump, tip, the horizontal branch (HB) and the slope of the upper RGB. The latest spectroscopically determined chemical abundances are used to build distance- and reddening-independent relations between observed photometric features and cluster metallicity, optimizing the sample size and metallicity baseline of these relations by supplementing our sample with results from the literature. We find that the magnitude difference between the HB and the RGB bump can be used to predict metallicities, in terms of both iron abundance [Fe/H] and global metallicity [M/H], with a precision of better than 0.1 dex in all three near-IR bandpasses for relatively metal-rich ([M/H] ≳ -1) clusters. Meanwhile, both the slope of the upper RGB and the magnitude difference between the RGB tip and bump are useful metallicity indicators over the entire sampled metallicity range (-2 ≲ [M/H] ≲ 0) with a precision of 0.2 dex or better, despite model predictions that the RGB slope may become unreliable at high (near-solar) metallicities. Our results agree with previous calibrations in light of the relevant uncertainties, and we discuss implications for clusters with controversial metallicities as well as directions for further investigation.

  2. Detailed abundance analysis of a metal-poor giant in the Galactic Center

    CERN Document Server

    Ryde, N; Rich, R M; Thorsbro, B; Schultheis, M; Origlia, L; Chatzopoulos, S

    2016-01-01

    We report the first results from our program to examine the metallicity distribution of the Milky Way nuclear star cluster connected to SgrA*, with the goal of inferring the star formation and enrichment history of this system, as well as its connection and relationship with the central 100 pc of the bulge/bar system. We present the first high resolution (R~24,000), detailed abundance analysis of a K=10.2 metal-poor, alpha-enhanced red giant projected at 1.5 pc from the Galactic Center, using NIRSPEC on Keck II. A careful analysis of the dynamics and color of the star locates it at about 26 pc line-of-sight distance in front of the nuclear cluster. It probably belongs to one of the nuclear components (cluster or disk), not to the bar-bulge or classical disk. A detailed spectroscopic synthesis, using a new linelist in the K band, finds [Fe/H]~-1.0 and [alpha/Fe]~+0.4, consistent with stars of similar metallicity in the bulge. As known giants with comparable [Fe/H] and alpha enhancement are old, we conclude tha...

  3. Peripheral giant cell granuloma

    Directory of Open Access Journals (Sweden)

    Padam Narayan Tandon

    2012-01-01

    Full Text Available Peripheral giant cell granuloma or the so-called "giant cell epulis" is the most common oral giant cell lesion. It normally presents as a soft tissue purplish-red nodule consisting of multinucleated giant cells in a background of mononuclear stromal cells and extravasated red blood cells. This lesion probably does not represent a true neoplasm, but rather may be reactive in nature, believed to be stimulated by local irritation or trauma, but the cause is not certainly known. This article reports a case of peripheral giant cell granuloma arising at the maxillary anterior region in a 22-year-old female patient. The lesion was completely excised to the periosteum level and there is no residual or recurrent swelling or bony defect apparent in the area of biopsy after a follow-up period of 6 months.

  4. Chemical abundances and dust in planetary nebulae in the Galactic bulge

    NARCIS (Netherlands)

    Gutenkunst, S.; Bernard-Salas, J.; Pottasch, S. R.; Sloan, G. C.; Houck, J. R.

    2008-01-01

    We present mid-infrared Spitzer spectra of 11 planetary nebulae in the Galactic bulge. We derive argon, neon, sulfur, and oxygen abundances for them using mainly infrared line fluxes combined with some optical line fluxes from the literature. Due to the high extinction toward the bulge, the infrared

  5. An Experimental Study of Bulge-Forming Polycarbonate (PC)Semisphere Shell Parts

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, a new bulge-forming technology is described to manufacture a polycarbonate semisphere shell. Some experiments have been done, and the experimental results show that this technique is feasible to form polycarbonate part. But the wall thickness distribution of the bulged specimen by this method is not so even.

  6. Battle for the bulge: directing small molecules to DNA and RNA defects.

    Science.gov (United States)

    Bevilacqua, Philip C

    2002-08-01

    Small molecules were tailored to specifically bind bulged DNA by complementing the geometry and nucleotide size of the bulge site. The prospect of generating small molecules that influence the secondary structure of DNA and RNA holds great promise for clinical applications.

  7. New Breakthroughs in the Battle of the Bulge Using Globular Clusters

    Science.gov (United States)

    Geisler, D.; Mauro, F.; Bidin, C. M.; Cohen, R.; Chené, A.; Villanova, S.; Cummings, J.; Gormaz, A.; Minniti, D.; Alonso-García, J.; Hempel, M.; VVV Team

    2015-05-01

    We present some recent work undertaken mostly at the Universidad de Concepción using bulge globular clusters to better understand this important but poorly studied Galactic component, especially based on data from the VVV Survey. This includes discovering new bulge globulars, investigating dual HBs, and obtaining Ca triplet metallicities and velocities.

  8. The INTEGRAL Galactic bulge monitoring program: the first 1.5 years

    NARCIS (Netherlands)

    Kuulkers, E.; Shaw, S.E.; Paizis, A.; Chenevez, J.; Brandt, S.; Courvoisier, T.J.L.; Domingo, A.; Ebisawa, K.; Kretschmar, P.; Markwardt, C.B.; Mowlavi, N.; Oosterbroek, T.; Orr, A.; Rísquez, D.; Sanchez-Fernandez, C.; Wijnands, R.

    2007-01-01

    Aims.The Galactic bulge region is a rich host of variable high-energy point sources. Since 2005, February 17 we are monitoring the source activity in the Galactic bulge region regularly and frequently, i.e., about every three days, with the instruments onboard INTEGRAL. Thanks to the large field of

  9. Lost in secular evolution: the case of a low mass classical bulge

    CERN Document Server

    Saha, Kanak

    2015-01-01

    The existence of a classical bulge in disk galaxies holds important clue to the assembly history of galaxies. Finding observational evidence of very low mass classical bulges particularly in barred galaxies including our Milky Way, is a challenging task as the bar driven secular evolution might bring significant dynamical change to these bulges alongside the stellar disk. Using high-resolution N-body simulation, we show that if a cool stellar disk is assembled around a non-rotating low-mass classical bulge, the disk rapidly grows a strong bar within a few rotation time scales. Later, the bar driven secular process transform the initial classical bulge into a flattened rotating stellar system whose central part also have grown a bar-like component rotating in sync with the disk bar. During this time, a boxy/peanut (hereafter, B/P) bulge is formed via the buckling instability of the disk bar and the vertical extent of this B/P bulge being slightly higher than that of the classical bulge, it encompasses the whol...

  10. The maximum optical depth toward bulge stars from axisymmetric models of the Milky Way

    NARCIS (Netherlands)

    Kuijken, K

    1997-01-01

    It has been known that recent microlensing results toward the bulge imply mass densities that are surprisingly high, given dynamical constraints on the Milky Way mass distribution. We derive the maximum optical depth toward the bulge that may be generated by axisymmetric structures in the Milky Way,

  11. Galactic bulges from Hubble Space Telescope NICMOS observations : Global scaling relations

    NARCIS (Netherlands)

    Balcells, Marc; Graham, Alister W.; Peletier, Reynier F.

    2007-01-01

    We investigate bulge and disk scaling relations using a volume-corrected sample of early-to intermediate-type disk galaxies in which, importantly, the biasing flux from additional nuclear components has been modeled and removed. Structural parameters are obtained from a seeing-convolved, bulge + dis

  12. Precise Black Hole Masses From Megamaser Disks: Black Hole-Bulge Relations at Low Mass

    CERN Document Server

    Greene, J E; Kim, M; Kuo, C Y; Braatz, J A; Impellizzeri, C M V; Condon, J J; Lo, K Y; Henkel, C; Reid, M J

    2010-01-01

    The black hole (BH)-bulge correlations have greatly influenced the last decade of effort to understand galaxy evolution. Current knowledge of these correlations is limited predominantly to high BH masses (M_BH> 10^8 M_sun) that can be measured using direct stellar, gas, and maser kinematics. These objects, however, do not represent the demographics of more typical L< L* galaxies. This study transcends prior limitations to probe BHs that are an order of magnitude lower in mass, using BH mass measurements derived from the dynamics of H_2O megamasers in circumnuclear disks. The masers trace the Keplerian rotation of circumnuclear molecular disks starting at radii of a few tenths of a pc from the central BH. Modeling of the rotation curves, presented by Kuo et al. (2010), yields BH masses with exquisite precision. We present stellar velocity dispersion measurements for a sample of nine megamaser disk galaxies based on long-slit observations using the B&C spectrograph on the Dupont telescope and the DIS spe...

  13. Over 38000 RR Lyrae Stars in the OGLE Galactic Bulge Fields

    CERN Document Server

    Soszynski, I; Szymanski, M K; Pietrukowicz, P; Mroz, P; Skowron, J; Kozlowski, S; Poleski, R; Skowron, D; Pietrzynski, G; Wyrzykowski, L; Ulaczyk, K; Kubiak, M

    2014-01-01

    We present the most comprehensive picture ever obtained of the central parts of the Milky Way probed with RR Lyrae variable stars. This is a collection of 38257 RR Lyr stars detected over 182 square degrees monitored photometrically by the Optical Gravitational Lensing Experiment (OGLE) in the most central regions of the Galactic bulge. The sample consists of 16804 variables found and published by the OGLE collaboration in 2011 and 21453 RR Lyr stars newly detected in the photometric databases of the fourth phase of the OGLE survey (OGLE-IV). 93% of the OGLE-IV variables were previously unknown. The total sample consists of 27258 RRab, 10825 RRc, and 174 RRd stars. We provide OGLE-IV I- and V-band light curves of the variables along with their basic parameters. About 300 RR Lyr stars in our collection are plausible members of 15 globular clusters. Among others, we found the first pulsating variables that may belong to the globular cluster Terzan 1 and the first RRd star in the globular cluster M54. Our survey...

  14. The impact of bulges on the radial distribution of supernovae in disc galaxies

    CERN Document Server

    Hakobyan, A A; Barkhudaryan, L V; Mamon, G A; Kunth, D; Petrosian, A R; Adibekyan, V; Aramyan, L S; Turatto, M

    2016-01-01

    We present an analysis of the impact of bulges on the radial distributions of the different types of supernovae (SNe) in the stellar discs of host galaxies with various morphologies. We find that in Sa-Sm galaxies, all core-collapse (CC) and vast majority of SNe Ia belong to the disc, rather than the bulge component. The radial distribution of SNe Ia in S0-S0/a galaxies is inconsistent with their distribution in Sa-Sm hosts, which is probably due to the contribution of the outer bulge SNe Ia in S0-S0/a galaxies. The radial distributions of both types of SNe are similar in all the subsamples of Sa-Sbc and Sc-Sm galaxies. These results confirm that the old bulges of Sa-Sm galaxies are not significant producers of Type Ia SNe, while the bulge populations are significant for SNe Ia only in S0-S0/a galaxies.

  15. Elliptical Galaxies and Bulges of Disk Galaxies: Summary of Progress and Outstanding Issues

    CERN Document Server

    Kormendy, John

    2015-01-01

    This is the summary chapter of a review book on galaxy bulges. Bulge properties and formation histories are more varied than those of ellipticals. I emphasize two advances: 1 - "Classical bulges" are observationally indistinguishable from ellipticals, and like them, are thought to form by major galaxy mergers. "Disky pseudobulges" are diskier and more actively star-forming (except in S0s) than are ellipticals. Theys are products of the slow ("secular") evolution of galaxy disks: bars and other nonaxisymmetries move disk gas toward the center, where it starbursts and builds relatively flat, rapidly rotating components. This secular evolution is a new area of galaxy evolution work that complements hierarchical clustering. 2 - Disks of high-redshift galaxies are unstable to the formation of mass clumps that sink to the center and merge - an alternative channel for the formation of classical bulges. I review successes and unsolved problems in the formation of bulges+ellipticals and their coevolution (or not) with...

  16. A TWO-PHASE SCENARIO FOR BULGE ASSEMBLY IN {Lambda}CDM COSMOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Obreja, A.; Dominguez-Tenreiro, R.; Brook, C. [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Cantoblanco Madrid (Spain); Martinez-Serrano, F. J.; Domenech-Moral, M.; Serna, A. [Departamento de Fisica y Arquitectura de Computadores, Universidad Miguel Hernandez, E-03202 Elche (Spain); Molla, M. [Departamento de Investigacion Basica, CIEMAT, E-28040 Madrid (Spain); Stinson, G., E-mail: aura.obreja@uam.es [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117, Heidelberg (Germany)

    2013-01-20

    We analyze and compare the bulges of a sample of L {sub *} spiral galaxies in hydrodynamical simulations in a cosmological context, using two different codes, P-DEVA and GASOLINE. The codes regulate star formation in very different ways, with P-DEVA simulations inputting low star formation efficiency under the assumption that feedback occurs on subgrid scales, while the GASOLINE simulations have feedback that drives large-scale outflows. In all cases, the marked knee shape in mass aggregation tracks, corresponding to the transition from an early phase of rapid mass assembly to a later slower one, separates the properties of two populations within the simulated bulges. The bulges analyzed show an important early starburst resulting from the collapse-like fast phase of mass assembly, followed by a second phase with lower star formation, driven by a variety of processes such as disk instabilities and/or mergers. Classifying bulge stellar particles identified at z = 0 into old and young according to these two phases, we found bulge stellar sub-populations with distinct kinematics, shapes, stellar ages, and metal contents. The young components are more oblate, generally smaller, more rotationally supported, with higher metallicity and less alpha-element enhanced than the old ones. These results are consistent with the current observational status of bulges, and provide an explanation for some apparently paradoxical observations, such as bulge rejuvenation and metal-content gradients observed. Our results suggest that bulges of L {sub *} galaxies will generically have two bulge populations that can be likened to classical and pseudo-bulges, with differences being in the relative proportions of the two, which may vary due to galaxy mass and specific mass accretion and merger histories.

  17. Central stars of planetary nebulae in the Galactic bulge

    Science.gov (United States)

    Hultzsch, P. J. N.; Puls, J.; Méndez, R. H.; Pauldrach, A. W. A.; Kudritzki, R.-P.; Hoffmann, T. L.; McCarthy, J. K.

    2007-06-01

    Context: Optical high-resolution spectra of five central stars of planetary nebulae (CSPN) in the Galactic bulge have been obtained with Keck/HIRES in order to derive their parameters. Since the distance of the objects is quite well known, such a method has the advantage that stellar luminosities and masses can in principle be determined without relying on theoretical relations between both quantities. Aims: By alternatively combining the results of our spectroscopic investigation with evolutionary tracks, we obtain so-called spectroscopic distances, which can be compared with the known (average) distance of the bulge-CSPN. This offers the possibility to test the validity of model atmospheres and present date post-AGB evolution. Methods: We analyze optical H/He profiles of five Galactic bulge CSPN (plus one comparison object) by means of profile fitting based on state of the art non-LTE modeling tools, to constrain their basic atmospheric parameters (Teff, log g, helium abundance and wind strength). Masses and other stellar radius dependent quantities are obtained from both the known distances and from evolutionary tracks, and the results from both approaches are compared. Results: The major result of the present investigation is that the derived spectroscopic distances depend crucially on the applied reddening law. Assuming either standard reddening or values based on radio-Hβ extinctions, we find a mean distance of 9.0±1.6 kpc and 12.2±2.1 kpc, respectively. An “average extinction law” leads to a distance of 10.7±1.2 kpc, which is still considerably larger than the Galactic center distance of 8 kpc. In all cases, however, we find a remarkable internal agreement of the individual spectroscopic distances of our sample objects, within ±10% to ±15% for the different reddening laws. Conclusions: Due to the uncertain reddening correction, the analysis presented here cannot yet be regarded as a consistency check for our method, and a rigorous test of the CSPN

  18. 3 CFR 8465 - Proclamation 8465 of December 15, 2009. 65th Anniversary of the Battle of the Bulge, 2009

    Science.gov (United States)

    2010-01-01

    ... Anniversary of the Battle of the Bulge, 2009 8465 Proclamation 8465 Presidential Documents Proclamations Proclamation 8465 of December 15, 2009 Proc. 8465 65th Anniversary of the Battle of the Bulge, 2009By the... the Bulge, a grateful Nation remembers the fallen who gave their lives in that critical battle, and...

  19. Lithium abundances in Bulge-like SMR stars

    Science.gov (United States)

    Barbuy, Beatriz; Trevisan, M.; Gustafsson, B.; Eriksson, K.; Grenon, M.; Pompéia, L.

    2010-04-01

    We analyze a sample of 21 super-metal-rich (SMR) stars, using high-resolution échelle spectra obtained with the FEROS Spectrograph at the 1.5m ESO telescope. The metallicities are in the range 0.15 < [Fe/H] < 0.5, 3 of them in common with Pompéia et al. (2002). Geneva photometry, astrometric data from Hipparcos, and radial velocities from CORAVEL are available for these stars. The peculiar kinematics suggests the thin disk close to the bulge as the probable birthplace of these stars (Grenon 1999). From Hipparcos data, it appears that the turnoff of this population indicates an age of 10-11 Gyr (Grenon 1999). Detailed analysis of the sample stars is carried out. Lithium abundances of these stars were derived, and their behaviour with effective temperature is shown.

  20. Evidence for the Galactic X-ray Bulge, 2

    CERN Document Server

    Park, S; Dame, T M

    1998-01-01

    A mosaic of 5 \\ros~PSPC pointed observations in the Galactic plane ($l\\sim25^{\\circ}$) reveals X-ray shadows in the $0.5-2.0$ keV band cast by distant molecular clouds. The observed on-cloud and off-cloud X-ray fluxes indicate that $\\sim15$% and $\\sim37$% of the diffuse X-ray background in this direction in the \\tq~keV and 1.5 keV bands, respectively, originates behind the molecular gas which is located at $\\sim$3 kpc from the Sun. The implication of the derived background X-ray flux beyond the absorbing molecular cloud is consistent with, and lends further support to recent observations of a Galactic X-ray bulge.

  1. Variability of Optical Counterparts in the Chandra Galactic Bulge Survey

    CERN Document Server

    Britt, Christopher T; Johnson, C B; Baldwin, A; Jonker, P G; Nelemans, G; Torres, M A P; Maccarone, T; Steeghs, D; Greiss, S; Heinke, C; Bassa, C G; Collazzi, A; Villar, A; Gabb, M; Gossen, L

    2014-01-01

    We present optical lightcurves of variable stars consistent with the positions of X-ray sources identified with the Chandra X-ray Observatory for the Chandra Galactic Bulge Survey. Using data from the Mosaic-II instrument on the Blanco 4m Telescope at CTIO, we gathered time-resolved photometric data on timescales from $\\sim2$ hr to 8 days over the $\\frac{3}{4}$ of the X-ray survey containing sources from the initial GBS catalog. Among the lightcurve morphologies we identify are flickering in interacting binaries, eclipsing sources, dwarf nova outbursts, ellipsoidal variations, long period variables, spotted stars, and flare stars. $87\\%$ of X-ray sources have at least one potential optical counterpart. $24\\%$ of these candidate counterparts are detectably variable; a much greater fraction than expected for randomly selected field stars, which suggests that most of these variables are real counterparts. We discuss individual sources of interest, provide variability information on candidate counterparts, and di...

  2. Quantum Giant Magnons

    CERN Document Server

    Zarembo, K

    2008-01-01

    The giant magnons are classical solitons of the O(N) sigma-model, which play an important role in the AdS/CFT correspondence. We study quantum giant magnons first at large N and then exactly using Bethe Ansatz, where giant magnons can be interpreted as holes in the Fermi sea. We also identify a solvable limit of Bethe Ansatz in which it describes a weakly-interacting Bose gas at zero temperature. The examples include the O(N) model at large N, weakly interacting non-linear Schrodinger model, and nearly isotropic XXZ spin chain in the magnetic field.

  3. Giant Cell Fibroma

    OpenAIRE

    Tahere Nosratzehi; Lale Maleki

    2013-01-01

    Giant cell fibroma is a fibrous tumor which represents about 2 to 5% of all oral fibrotic proliferations. Compared to traumatic fibroma, giant (traumatic fibroma or irritation fibroma) cell fibroma occurs at a younger age. In about 60% of the cases the lesion is diagnosed within the first three decades of life and is slightly more in women. 50% of the cases is observed in the gum and will appear as a nodule with a papillary surface [1]. The giant cell fibroma is treated by conservative excisi...

  4. Dynamos of giant planets

    CERN Document Server

    Busse, F H; 10.1017/S1743921307000920

    2009-01-01

    Possibilities and difficulties of applying the theory of magnetic field generation by convection flows in rotating spherical fluid shells to the Giant Planets are outlined. Recent progress in the understanding of the distribution of electrical conductivity in the Giant Planets suggests that the dynamo process occurs predominantly in regions of semiconductivity. In contrast to the geodynamo the magnetic field generation in the Giant Planets is thus characterized by strong radial conductivity variations. The importance of the constraint on the Ohmic dissipation provided by the planetary luminosity is emphasized. Planetary dynamos are likely to be of an oscillatory type, although these oscillations may not be evident from the exterior of the planets.

  5. Bulging Behavior of Thin-walled Welded Low Carbon Steel Tubes

    Directory of Open Access Journals (Sweden)

    XIE Wen-cai

    2017-01-01

    Full Text Available In order to investigate the deformation behaviour of welded tubes during hydraulic bulging process,the hydraulic bulging tests of thin-walled welded low carbon steel tubes (STKM11A were conducted on the tube hydroformability testing unit.The thickness distribution,profiles of bulging area and the strain distribution were all obtained.Results show that the thickness reduction of weld zone is just 2.4%-5.5% while its effective strain is just 0.05-0.10,which is very small and negligible compared with the parent material and means that just the geometric position of weld zone is changed with the continuous bulging.The thinnest points are located on the both sides of weld seam symmetrically and the angle between the thinnest point and weld seam is about 30°,at which the necking has been occurred.When the length of bulging area increases,the fracture pressure,the thickness reduction and the ultimate expansion ratio all decrease,and the profile of the bulging area gradually steps away from the elliptical model which is powerless for the ratio of length to diameter up to 2.0.Moreover,the strain state of the tube is transformed from biaxial tension to plane strain state with the increasing length of bulging area,on the basis of this the forming limit diagram of welded STKM11A steel tubes can be established.

  6. Bulge and Clump Evolution in Hubble Ultra Deep Field Clump Clusters, Chains and Spiral Galaxies

    CERN Document Server

    Elmegreen, Bruce G; Fernandez, Maria Ximena; Lemonias, Jenna Jo

    2008-01-01

    Clump clusters and chain galaxies in the Hubble Ultra Deep Field are examined for bulges in the NICMOS images. Approximately 50% of the clump clusters and 30% of the chains have relatively red and massive clumps that could be young bulges. Magnitudes and colors are determined for these bulge-like objects and for the bulges in spiral galaxies, and for all of the prominent star-formation clumps in these three galaxy types. The colors are fitted to population evolution models to determine the bulge and clump masses, ages, star-formation rate decay times, and extinctions. The results indicate that bulge-like objects in clump cluster and chain galaxies have similar ages and 2 to 5 times larger masses compared to the star-formation clumps, while the bulges in spirals have ~6 times larger ages and 20 to 30 times larger masses than the clumps. All systems appear to have an underlying red disk population. The masses of star-forming clumps are typically in a range from 10^7 to 10^8 Msun; their ages have a wide range ar...

  7. The Giant Cell.

    Science.gov (United States)

    Stockdale, Dennis

    1998-01-01

    Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)

  8. Metaphyseal giant cell tumor

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed.

  9. Giant distal humeral geode

    Energy Technology Data Exchange (ETDEWEB)

    Maher, M.M. [Department of Radiology, Mater Misericordiae Hospital, Dublin (Ireland); Department of Radiology, St. Vincent' s Hospital, Elm Park, Dublin 4 (Ireland); Kennedy, J.; Hynes, D. [Department of Orthopaedics, Mater Misericordiae Hospital, Dublin (Ireland); Murray, J.G.; O' Connell, D. [Department of Radiology, Mater Misericordiae Hospital, Dublin (Ireland)

    2000-03-30

    We describe the imaging features of a giant geode of the distal humerus in a patient with rheumatoid arthritis, which presented initially as a pathological fracture. The value of magnetic resonance imaging in establishing this diagnosis is emphasized. (orig.)

  10. Seismology of Giant Planets

    CERN Document Server

    Gaulme, Patrick; Schmider, Francois-Xavier; Guillot, Tristan

    2014-01-01

    Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light ref...

  11. Giant magnetostrictive materials

    Institute of Scientific and Technical Information of China (English)

    LIU JingHua; JIANG ChengBao; XU HuiBin

    2012-01-01

    Giant magnetostrictive materials are a kind of functional materials developed since 1970s,known as their large magnetostrain and high energy density.In this paper,an introduction of magnetosttiction and the history of magnetostrictive materials are described firstly.Then we review the recent developments of both rare earth and non-rare earth magnetostrictive materials.Finally,the tendency of developing new giant magnetostrictive materials is presented.

  12. Quasar feedback revealed by giant molecular outflows

    CERN Document Server

    Feruglio, Chiara; Piconcelli, Enrico; Menci, Nicola; Aussel, Herve'; Lamastra, Alessandra; Fiore, Fabrizio

    2010-01-01

    In the standard scenario for galaxy evolution the transformation of young star-forming galaxies into red bulge-dominated spheroids, where star formation has been quenched, is often explained by invoking a strong negative feedback generated by accretion onto a central super-massive black hole. The depletion of gas resulting from quasar-driven outflows should eventually stop star-formation across the host galaxy and lead to the black hole "suicide" for starvation. Direct observational evidence for a major quasar feedback onto the host galaxy is still missing, since outflows previously observed in quasars are associated with the ionized component of the gas, which only accounts for a minor fraction of the total gas content, and typically occur in the central regions. We used the IRAM PdBI to observe the CO(1-0) transition in Mrk 231, the closest quasar known. We detect broad wings of the CO line, with velocities up to 750 km/s and spatially resolved on the kpc scale. Such broad CO wings trace a giant molecular o...

  13. Giant Low Surface Brightness Galaxies: Evolution in Isolation

    Indian Academy of Sciences (India)

    M. Das

    2013-03-01

    Giant Low Surface Brightness (GLSB) galaxies are amongst the most massive spiral galaxies that we know of in our Universe. Although they fall in the class of late type spiral galaxies, their properties are far more extreme. They have very faint stellar disks that are extremely rich in neutral hydrogen gas but low in star formation and hence low in surface brightness. They often have bright bulges that are similar to those found in early type galaxies. The bulges can host low luminosity Active Galactic Nuclei (AGN) that have relatively low mass black holes. GLSB galaxies are usually isolated systems and are rarely found to be interacting with other galaxies. In fact many GLSB galaxies are found under dense regions close to the edges of voids. These galaxies have very massive dark matter halos that also contribute to their stability and lack of evolution. In this paper we briefly review the properties of this unique class of galaxies and conclude that both their isolation and their massive dark matter halos have led to the low star formation rates and the slower rate of evolution in these galaxies.

  14. The Giraffe Inner Bulge Survey (GIBS) II. Metallicity distributions and alpha element abundances at fixed Galactic latitude

    CERN Document Server

    Gonzalez, O A; Vasquez, S; Hill, V; Rejkuba, M; Valenti, E; Rojas-Arriagada, A; Renzini, A; Babusiaux, C; Minniti, D; Brown, T M

    2015-01-01

    High resolution (R$\\sim$22,500) spectra for 400 red clump giants, in four fields within $\\rm -4.8^{\\circ} \\lesssim b \\lesssim -3.4^{\\circ}$ and $\\rm -10^{\\circ} \\lesssim l \\lesssim +10^{\\circ}$, were obtained within the GIRAFFE Inner Bulge Survey (GIBS) project. To this sample we added another $\\sim$ 400 stars in Baade's Window, observed with the identical instrumental configuration. We constructed the metallicity distributions for the entire sample, as well as for each field individually, in order to investigate the presence of gradients or field-to-field variations in the shape of the distributions. The metallicity distributions in the five fields are consistent with being drawn from a single parent population, indicating the absence of a gradient along the major axis of the Galactic bar. The global metallicity distribution is well fitted by two Gaussians. The metal poor component is rather broad, with a mean at $\\rm =-0.31$ dex and $\\sigma=0.31$ dex. The metal-rich one is narrower, with mean $\\rm =+0.26$ a...

  15. Discovery of Gamma-Ray Emission from the X-shaped Bulge of the Milky Way

    CERN Document Server

    Macias, Oscar; Crocker, Roland M; Coleman, Brendan; Paterson, Dylan; Horiuchi, Shunsaku; Pohl, Martin

    2016-01-01

    An anomalous signal has been found in Fermi Gamma-Ray Large Area Telescope data covering the center of the Galaxy. Given its morphological and spectral characteristics, this "Galactic Center Excess" is ascribable to self-annihilation of dark matter particles. We report on an analysis that exploits hydrodynamical modeling to register the position of interstellar gas associated with diffuse Galactic $\\gamma$-ray emission. Our improved analysis reveals that the excess $\\gamma$-rays are spatially correlated with both the X-shaped stellar over-density in the Galactic bulge and the nuclear stellar bulge. Given these correlations, we argue that the excess is not a dark matter phenomenon but rather associated with the stellar population of the X-bulge and the nuclear bulge.

  16. Accounting for selection effects in the BH-bulge relations: No evidence for cosmological evolution

    CERN Document Server

    Schulze, Andreas

    2013-01-01

    The redshift evolution of the black hole - bulge relations is an essential observational constraint for models of black hole - galaxy coevolution. In addition to the observational challenges for these studies, conclusions are complicated by the influence of selection effects. We demonstrate that there is presently no statistical significant evidence for cosmological evolution in the black hole-bulge relations, once these selection effects are taken into account and corrected for. We present a fitting method, based on the bivariate distribution of black hole mass and galaxy property, that accounts for the selection function in the fitting and is therefore able to recover the intrinsic black hole - bulge relation unbiased. While prior knowledge is restricted to a minimum, we at least require knowledge of either the sample selection function and the mass dependence of the active fraction, or the spheroid distribution function and the intrinsic scatter in the black hole - bulge relation. We employed our fitting r...

  17. Before the Bar: Kinematic Detection of a Spheroidal Metal-poor Bulge Component

    Science.gov (United States)

    Kunder, Andrea; Rich, R. M.; Koch, A.; Storm, J.; Nataf, D. M.; De Propris, R.; Walker, A. R.; Bono, G.; Johnson, C. I.; Shen, Juntai; Li, Z.-Y.

    2016-04-01

    We present 947 radial velocities of RR Lyrae variable stars in four fields located toward the Galactic bulge, observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay (BRAVA-RR). We show that these RR Lyrae stars (RRLs) exhibit hot kinematics and null or negligible rotation and are therefore members of a separate population from the bar/pseudobulge that currently dominates the mass and luminosity of the inner Galaxy. Our RRLs predate these structures and have metallicities, kinematics, and spatial distribution that are consistent with a “classical” bulge, although we cannot yet completely rule out the possibility that they are the metal-poor tail of a more metal-rich ([{Fe}/{{H}}]˜ -1 dex) halo-bulge population. The complete catalog of radial velocities for the BRAVA-RR stars is also published electronically.

  18. Nonlinear Local Bending Response and Bulging Factors for Longitudinal Cracks in Pressurized Cylindrical Shells

    Science.gov (United States)

    Rose, Cheryl A.; Young, Richard D.; Starnes, James H., Jr.

    1999-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or "bulging factors" that account for increased stresses due to curvature for longitudinal cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in graphs of the bulging factor as a function of the applied load and as a function of geometric parameters that include the shell radius, the shell thickness and the crack length. The computed bulging factors are compared with solutions based on linear shallow shell theory, and with semi-empirical solutions that approximately account for the nonlinear deformation in the vicinity of the crack. The effect of biaxial loads on the computed bulging factors is also discussed.

  19. A Population Synthesis Study of the White Dwarf Cooling Sequence of the Galactic Bulge

    Science.gov (United States)

    Torres, S.; García-Berro, E. G.; Cojocaru, R. E.; Calamida, A.

    2017-03-01

    Recent Hubble Space Telescope observations have allowed to determine, for the first time, the white dwarf cooling sequence of the Galactic bulge. However, observations show systematically redder objects than those predicted by the theoretical cooling tracks of carbon-oxygen white dwarfs. Here we present a population synthesis study of the white dwarf cooling sequence of the galactic bulge including both single white dwarfs and binary systems. These calculations incorporate the most up-to-date cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, for both white dwarfs with carbon-oxygen and helium cores, and also take into account detailed prescriptions of the evolution of binary systems and of the observational biases. This allows us to model with a high degree of realism the white dwarf population of the Galactic bulge. Among other interesting results we estimate the fraction of binaries and double degenerate systems of the Galactic bulge.

  20. Planetary Nebula Velocities in the Disk and Bulge of M31

    CERN Document Server

    Halliday, C; Carter, D; Douglas, N G; Evans, N W; Irwin, M J; Jackson, Z C; Kuijken, K; Merrett, H R; Merrifield, M R; Quinn, D P; Romanowsky, A J; Wilkinson, M I

    2006-01-01

    We present radial velocities for a sample of 723 planetary nebulae (PNe) in the disk and bulge of M31, measured using the WYFFOS fibre spectrograph on the William Herschel telescope. Velocities are determined using the [OIII] 5007 Angstrom emission line. Rotation and velocity dispersion are measured to a radius of 50 arcminutes (11.5 kpc), the first stellar rotation curve and velocity dispersion profile for M31 to such a radius. Our kinematics are consistent with rotational support at radii well beyond the bulge effective radius of 1.4kpc, although our data beyond a radius of 5kpc are limited. We present tentative evidence for kinematic substructure in the bulge of M31 to be studied fully in a later work. This paper is part of an ongoing project to constrain the total mass, mass distribution and velocity anisotropy of the disk, bulge and halo of M31.

  1. Mechanical Analysis of Dead Load Crown and Structure Parameter of Hydraulic Elastic Bulging Roll

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chang-cai; LI Wei-min; LIU Zhu-bai

    2003-01-01

    The dead load crown of hydraulic elastic bulging roll was discussed using the theory of elastically supported beam, and the dead load experiment was carried out. The theoretical calculation is consistent with the experimental result. The structure parameters for the thickness of roll sleeve, the length of the oil groove and the crown of roll were discussed. The fundamental principle of determining the parameters was put forward. The theoretical basis of the application of the hydraulic elastic bulging roll was established.

  2. Bulge growth and quenching since z = 2.5 in CANDELS/3D-HST

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Philipp; Wuyts, Stijn; Schreiber, Natascha M. Förster; Genzel, Reinhard; Lutz, Dieter; Rosario, David J. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Somerville, Rachel S. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Brammer, Gabe [European Southern Observatory, Alonson de Córdova 3107, Casilla 19001, Vitacura, Santiago (Chile); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem, 91904 (Israel); Faber, Sandra M.; Momcheva, Ivelina [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Kocevski, Dale D. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); McGrath, Elizabeth J. [Department of Physics and Astronomy, Colby College, Waterville, ME 0490 (United States); Nelson, Erica J. [Astronomy Department, Yale University, New Haven, CT 06511 (United States); Primack, Joel R. [Department of Physics, University of California at SantaCruz, Santa Cruz, CA 95064 (United States); Skelton, Rosalind E. [South African Astronomical Observatory, Observatory Road, 7925 Cape Town (South Africa); and others

    2014-06-10

    Exploiting the deep high-resolution imaging of all five CANDELS fields, and accurate redshift information provided by 3D-HST, we investigate the relation between structure and stellar populations for a mass-selected sample of 6764 galaxies above 10{sup 10} M {sub ☉}, spanning the redshift range 0.5 < z < 2.5. For the first time, we fit two-dimensional models comprising a single Sérsic fit and two-component (i.e., bulge + disk) decompositions not only to the H-band light distributions, but also to the stellar mass maps reconstructed from resolved stellar population modeling. We confirm that the increased bulge prominence among quiescent galaxies, as reported previously based on rest-optical observations, remains in place when considering the distributions of stellar mass. Moreover, we observe an increase of the typical Sérsic index and bulge-to-total ratio (with median B/T reaching 40%-50%) among star-forming galaxies above 10{sup 11} M {sub ☉}. Given that quenching for these most massive systems is likely to be imminent, our findings suggest that significant bulge growth precedes a departure from the star-forming main sequence. We demonstrate that the bulge mass (and ideally knowledge of the bulge and total mass) is a more reliable predictor of the star-forming versus quiescent state of a galaxy than the total stellar mass. The same trends are predicted by the state-of-the-art, semi-analytic model by Somerville et al. In this model, bulges and black holes grow hand in hand through merging and/or disk instabilities, and feedback from active galactic nuclei shuts off star formation. Further observations will be required to pin down star formation quenching mechanisms, but our results imply that they must be internal to the galaxies and closely associated with bulge growth.

  3. Calibrating a large slab vessel: A battle of the bulge

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, I.R. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States). Safeguards and Security Section

    1993-12-31

    The accurate measurement of volume in slab vessels can be difficult because slab vessels expand--in spite of internal or external supports--as they are filled. One form of bulging is elastic deflection, a gradual expansion of the vessel wall resulting from an increased weight of contained solution. As part of an upgrade to the Idaho Chemical Processing Plant, slab tanks were proposed as accountability measurement vessels. A 1960 liter slab tank prototype was set up for preliminary calibrations. Two series of calibrations were conducted: the first using water, and the second using aluminum nitrate. It was conjectured that the increased weight of aluminum nitrate would cause the vessel walls to deflect more than they did for an equal level of water, resulting in a greater volume. As expected, a significant expansion was observed with the aluminum nitrate, but some of the deflection proved to be permanent rather than elastic. The consequence is that considerably more effort will be required to calibrate slab vessels for uranium accountability. Not only must a calibration curve (or family of curves) be developed giving volume as a function of both liquid level and density, but, if possible, a determination must be made as to when the deflection is no longer temporary.

  4. The Luminosity Function and Mass Function in the Galactic Bulge

    CERN Document Server

    Holtzmann, J A; Baum, W A; Grillmair, C J; Groth, E J; Light, R M; Lynds, R; O'Neil, E J; Holtzman, Jon A.; Watson, Alan M.; Baum, William A.; Grillmair, Carl J.; Groth, Edward J.; Light, Robert M.; Lynds, Roger; Neil, Earl J. O'

    1998-01-01

    We present deep photometry obtained with the Hubble Space Telescope (HST) in a field in Baade's Window in the Galactic bulge. We derive a luminosity function down to I ~ 24.3, or V ~ 27.5, corresponding to M ~ 0.3 Msun. The luminosity function from the turnoff down to this level appears remarkably similar to that observed in the solar neighborhood. We derive a mass function using both an empirical local mass-luminosity relation and a mass-luminosity relation from recent stellar model calculations, allowing for the presence of binaries and photometric errors. The mass function has a power law form with dN/dM proportional to M^{-2.2} for M >~ 0.7 Msun. However, we find strong evidence for a break in the mass function slope around 0.5-0.7 Msun, with a significantly shallower slope at lower masses. The value of the slope for the low masses depends on the assumed binary fraction and the accuracy of our completeness correction. This mass function should directly reflect the initial mass function.

  5. Stellar populations in the bulges of isolated galaxies

    CERN Document Server

    Morelli, L; Corsini, E M; Costantin, L; Bontà, E Dalla; Mèndez-Abreu, J; Pizzella, A

    2016-01-01

    We present photometry and long-slit spectroscopy for 12 S0 and spiral galaxies selected from the Catalogue of Isolated Galaxies. The structural parameters of the sample galaxies are derived from the Sloan Digital Sky Survey i-band images by performing a two-dimensional photometric decomposition of the surface brightness distribution. This is assumed to be the sum of the contribution of a S\\`ersic bulge, an exponential disc, and a Ferrers bar characterized by elliptical and concentric isophotes with constant ellipticity and position angles. The rotation curves and velocity dispersion profiles of the stellar component are measured from the spectra obtained along the major axis of galaxies. The radial profiles of the H{\\beta}, Mg and Fe line-strength indices are derived too. Correlations between the central values of the Mg 2 and Fe line-strength indices and the velocity dispersion are found. The mean age, total metallicity and total {\\alpha}/Fe enhancement of the stellar population in the centre and at the radi...

  6. VARIABILITY OF OPTICAL COUNTERPARTS IN THE CHANDRA GALACTIC BULGE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Britt, C. T.; Hynes, R. I.; Johnson, C. B.; Baldwin, A.; Collazzi, A.; Gossen, L. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Jonker, P. G.; Torres, M. A. P. [SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Nelemans, G. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen (Netherlands); Maccarone, T. [Department of Physics, Texas Tech University, Box 41051, Science Building, Lubbock, TX 79409-1051 (United States); Steeghs, D.; Greiss, S. [Astronomy and Astrophysics, Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Heinke, C. [Department of Physics, University of Alberta, CCIS 4-183, Edmonton, AB T6G 2E1 (Canada); Bassa, C. G. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Villar, A. [Department of Physics, Massachussettes Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Gabb, M. [Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991 (United States)

    2014-09-01

    We present optical light curves of variable stars consistent with the positions of X-ray sources identified with the Chandra X-ray Observatory for the Chandra Galactic Bulge Survey (GBS). Using data from the Mosaic-II instrument on the Blanco 4 m Telescope at CTIO, we gathered time-resolved photometric data on timescales from ∼2 hr to 8 days over the 3/4 of the X-ray survey containing sources from the initial GBS catalog. Among the light curve morphologies we identify are flickering in interacting binaries, eclipsing sources, dwarf nova outbursts, ellipsoidal variations, long period variables, spotted stars, and flare stars. Eighty-seven percent of X-ray sources have at least one potential optical counterpart. Twenty-seven percent of these candidate counterparts are detectably variable; a much greater fraction than expected for randomly selected field stars, which suggests that most of these variables are real counterparts. We discuss individual sources of interest, provide variability information on candidate counterparts, and discuss the characteristics of the variable population.

  7. Transiting extrasolar planetary candidates in the Galactic bulge

    CERN Document Server

    Sahu, K C; Bond, H E; Valenti, J; Smith, T E; Minniti, D; Zoccali, M; Livio, M; Panagia, N; Piskunov, N; Brown, T M; Brown, T; Renzini, A; Rich, R M; Clarkson, W; Lubow, S; Sahu, Kailash C.; Casertano, Stefano; Bond, Howard E.; Valenti, Jeff; Minniti, Dante; Zoccali, Manuela; Livio, Mario; Panagia, Nino; Piskunov, Nikolai; Brown, Thomas M.; Brown, Timothy; Renzini, Alvio; Clarkson, Will; Lubow, Stephen

    2006-01-01

    More than 200 extrasolar planets have been discovered around relatively nearby stars, primarily through the Doppler line shifts owing to the reflex motions of their host stars, and more recently through transits of some planets across the face of the host stars. The detection of planets with the shortest known periods, 1.2 to 2.5 days, has mainly resulted from transit surveys which have generally targeted stars more massive than 0.75 M_sun. Here we report the results from a planetary transit search performed in a rich stellar field towards the Galactic bulge. We discovered 16 candidates with orbital periods between 0.4 and 4.2 days, five of which orbit stars of 0.44 to 0.75 M_sun. In two cases, radial-velocity measurements support the planetary nature of the companions. Five candidates have orbital periods below 1.0 day, constituting a new class of ultra-short-period planets (USPPs), which occur only around stars of less than 0.88 M_sun. This indicates that those orbiting very close to more luminous stars mig...

  8. The mixed chemistry phenomenon in Galactic Bulge PNe

    CERN Document Server

    Perea-Calderón, J V; García-Lario, P; Szczerba, R; Bobrowsky, M

    2009-01-01

    We investigate the dual-dust chemistry (DDC) phenomenon in PNe and discuss reasons for its occurrence, by analyzing Spitzer/IRS spectra of a sample of 40 Galactic PNe among which 26 belong to the Galactic Bulge (GB). The mixed chemistry is derived from the simultaneous detection of PAH features in the 6-14 micron range and crystalline silicates (CS) beyond 20 microns in the Spitzer/IRS spectra. Out of the 26 PNe observed in the GB, 21 show signatures of DDC. Our observations reveal that the simultaneous presence of O- and C-rich dust features in the IR spectra of [WC]-type PNe is not restricted to late/cool [WC]-type stars, as previously suggested in the literature, but is a common feature associated with all [WC]-type PNe. Surprisingly, we found that the DDC is seen also in all observed wels, as well as in other PNe with central stars being neither [WC] nor wels. Most sources observed display CS features in their spectra, with only a few PNe exhibiting, in addition, amorphous silicate bands. We appear to det...

  9. Spectroscopic bulge-disc decomposition: a new method to study the evolution of lenticular galaxies

    CERN Document Server

    Johnston, E J; Merrifield, M R; Bedregal, A G

    2012-01-01

    A new method for spectroscopic bulge-disc decomposition is presented, in which the spatial light profile in a two-dimensional spectrum is decomposed wavelength-by-wavelength into bulge and disc components, allowing separate one-dimensional spectra for each component to be constructed. This method has been applied to observations of a sample of nine S0s in the Fornax Cluster in order to obtain clean high-quality spectra of their individual bulge and disc components. So far this decomposition has only been fully successful when applied to galaxies with clean light profiles, consequently limiting the number of galaxies that could be separated into bulge and disc components. Lick index stellar population analysis of the component spectra reveals that in those galaxies where the bulge and disc could be distinguished, the bulges have systematically higher metallicities and younger stellar populations than the discs. This correlation is consistent with a picture in which S0 formation comprises the shutting down of s...

  10. The effects of gas on morphological transformation in mergers: implications for bulge and disc demographics

    Science.gov (United States)

    Hopkins, Philip F.; Somerville, Rachel S.; Cox, Thomas J.; Hernquist, Lars; Jogee, Shardha; Kereš, Dusan; Ma, Chung-Pei; Robertson, Brant; Stewart, Kyle

    2009-08-01

    Transformation of discs into spheroids via mergers is a well-accepted element of galaxy formation models. However, recent simulations have shown that the bulge formation is suppressed in increasingly gas-rich mergers. We investigate the global implications of these results in a cosmological framework, using independent approaches: empirical halo-occupation models (where galaxies are populated in haloes according to observations) and semi-analytic models. In both, ignoring the effects of gas in mergers leads to the overproduction of spheroids: low- and intermediate-mass galaxies are predicted to be bulge-dominated (B/T ~ 0.5 at physical behaviour of gas in mergers immediately leads to a dramatic change: bulge formation is suppressed in low-mass galaxies, observed to be gas-rich (giving B/T ~ 0.1 at galaxies in good agreement with observations). Simulations and analytic models which neglect the similarity-breaking behaviour of gas have difficulty reproducing the strong observed morphology-mass relation. However, the observed dependence of gas fractions on mass, combined with suppression of bulge formation in gas-rich mergers, naturally leads to the observed trends. Discrepancies between observations and models that ignore the role of gas increase with redshift; in models that treat gas properly, galaxies are predicted to be less bulge-dominated at high redshifts, in agreement with the observations. We discuss implications for the global bulge mass density and future observational tests.

  11. Mergers and Bulge Formation in Lambda-CDM: Which Mergers Matter?

    CERN Document Server

    Hopkins, Philip F; Croton, Darren; Hernquist, Lars; Keres, Dusan; Khochfar, Sadegh; Stewart, Kyle; Wetzel, Andrew; Younger, Joshua D

    2009-01-01

    We use a suite of semi-empirical models to predict galaxy merger rates and contributions to bulge growth as functions of merger mass, redshift, and mass ratio. The models use empirical halo occupation constraints to identify mergers, together with high-resolution simulations to quantify how mergers with different properties contribute to the bulge population. We find good agreement with a variety of observational constraints, and provide fitting functions for merger rates and contributions to bulge growth. We identify several robust conclusions. (1) Major mergers dominate formation and assembly of L* bulges and the spheroid mass density, minor mergers contribute ~30%. (2) This is mass-dependent: bulge formation is dominated by more minor mergers in lower-mass systems. At higher masses, bulges form in major mergers near L*, but subsequently assemble in minor mergers. (3) The minor/major contribution is also morphology-dependent: higher B/T systems form in more major mergers, lower B/T systems form in situ from...

  12. Role of the CCA bulge of prohead RNA of bacteriophage ø29 in DNA packaging.

    Science.gov (United States)

    Zhao, Wei; Morais, Marc C; Anderson, Dwight L; Jardine, Paul J; Grimes, Shelley

    2008-11-14

    The oligomeric ring of prohead RNA (pRNA) is an essential component of the ATP-driven DNA packaging motor of bacteriophage ø29. The A-helix of pRNA binds the DNA translocating ATPase gp16 (gene product 16) and the CCA bulge in this helix is essential for DNA packaging in vitro. Mutation of the bulge by base substitution or deletion showed that the size of the bulge, rather than its sequence, is primary in DNA packaging activity. Proheads reconstituted with CCA bulge mutant pRNAs bound the packaging ATPase gp16 and the packaging substrate DNA-gp3, although DNA translocation was not detected with several mutants. Prohead/bulge-mutant pRNA complexes with low packaging activity had a higher rate of ATP hydrolysis per base pair of DNA packaged than proheads with wild-type pRNA. Cryoelectron microscopy three-dimensional reconstruction of proheads reconstituted with a CCA deletion pRNA showed that the protruding pRNA spokes of the motor occupy a different position relative to the head when compared to particles with wild-type pRNA. Therefore, the CCA bulge seems to dictate the orientation of the pRNA spokes. The conformational changes observed for this mutant pRNA may affect gp16 conformation and/or subsequent ATPase-DNA interaction and, consequently, explain the decreased packaging activity observed for CCA mutants.

  13. A new look at the kinematics of the bulge from an N-body model

    CERN Document Server

    Gomez, A; Stefanovitch, N; Haywood, M; Combes, F; Katz, D; Babusiaux, C

    2016-01-01

    (Abridged) By using an N-body simulation of a bulge that was formed via a bar instability mechanism, we analyse the imprints of the initial (i.e. before bar formation) location of stars on the bulge kinematics, in particular on the heliocentric radial velocity distribution of bulge stars. Four different latitudes were considered: $b=-4^\\circ$, $-6^\\circ$, $-8^\\circ$, and $-10^\\circ$, along the bulge minor axis as well as outside it, at $l=\\pm5^\\circ$ and $l=\\pm10^\\circ$. The bulge X-shaped structure comprises stars that formed in the disk at different locations. Stars formed in the outer disk, beyond the end of the bar, which are part of the boxy peanut-bulge structure may show peaks in the velocity distributions at positive and negative heliocentric radial velocities with high absolute values that can be larger than 100 $\\rm km$ $\\rm s^{-1}$, depending on the observed direction. In some cases the structure of the velocity field is more complex and several peaks are observed. Stars formed in the inner disk, t...

  14. The Chemical Composition of the Galactic Bulge and Implications for its Evolution

    CERN Document Server

    McWilliam, Andrew

    2016-01-01

    The average bulge [Fe/H] and [Mg/H] are +0.06 and +0.17 dex, respectively, in Baade's Window, roughly 0.2 dex higher than the thin disk and ~0.7 dex higher than the local thick disk metallicity. This suggests a higher effective yield in the bulge, perhaps due to more efficient retention of supernova ejecta. The bulge vertical [Fe/H] gradient, at ~0.5 dex/kpc, appears to be due to a changing mixture of sub-populations (near +0.3 dex and -0.3 dex and one possibly near -0.7 dex) with latitude. The bulge is enhanced in O, Mg, Si, Ca, Ti, and Al relative to the sun, with [alpha/Fe]=+0.15 dex at [Fe/H]=0.0 dex. Below [Fe/H]~-0.5 dex, the bulge and local thick disk compositions are very similar, but small [Mg/Fe] and possibly [/Fe] enhancements, low [La/Eu] ratios and large [Cu/Fe], relative to the thick disk suggest slightly higher SFR in the bulge. However, these composition differences could simply be due to measurement errors and non-LTE effects. Unfortunately, comparison with the thick disk near solar [Fe/H] su...

  15. 3-D Simulations of the Chemical and Dynamical Evolution of the Galactic Bulge

    CERN Document Server

    Nakasato, N; Nakasato, Naohito; Nomoto, Ken'ichi

    2003-01-01

    A three-dimensional hydrodynamical N-body model for the formation of the Galaxy is presented with special attention to the formation of the bulge component. Starting with cosmologically motivated initial conditions, we obtain a qualitatively similar stellar system to the Galaxy. Then we analyze the chemical and kinematic properties of the bulge stars in our model and find qualitative agreement with observational data. The early evolution of our model has revealed that most bulge stars form during the sub-galactic merger (merger component of the bulge stars). Because of the strong star burst induced by the merger, the metallicity distribution function of such stars becomes as wide as observed. We find that another group of the bulge stars forms later in the inner region of the disk (non-merger component of the bulge stars). Because of the difference in the formation epoch, the main source of iron for this group of stars is different from the merger component. Iron in the merger and non-merger components comes ...

  16. The Milky Way Bulge: Observed properties and a comparison to external galaxies

    CERN Document Server

    Gonzalez, Oscar A

    2015-01-01

    The Milky Way bulge offers a unique opportunity to investigate in detail the role that different processes such as dynamical instabilities, hierarchical merging, and dissipational collapse may have played in the history of the Galaxy formation and evolution based on its resolved stellar population properties. Large observation programmes and surveys of the bulge are providing for the first time a look into the global view of the Milky Way bulge that can be compared with the bulges of other galaxies, and be used as a template for detailed comparison with models. The Milky Way has been shown to have a box/peanut (B/P) bulge and recent evidence seems to suggest the presence of an additional spheroidal component. In this review we summarise the global chemical abundances, kinematics and structural properties that allow us to disentangle these multiple components and provide constraints to understand their origin. The investigation of both detailed and global properties of the bulge now provide us with the opportu...

  17. THE NUMBER OF TIDAL DWARF SATELLITE GALAXIES IN DEPENDENCE OF BULGE INDEX

    Energy Technology Data Exchange (ETDEWEB)

    López-Corredoira, Martín [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Kroupa, Pavel, E-mail: martinlc@iac.es, E-mail: pavel@astro.uni-bonn.de [Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, Nussallee 14-16, D-53115 Bonn (Germany)

    2016-01-20

    We show that a significant correlation (up to 5σ) emerges between the bulge index, defined to be larger for a larger bulge/disk ratio, in spiral galaxies with similar luminosities in the Galaxy Zoo 2 of the Sloan Digital Sky Survey and the number of tidal-dwarf galaxies in the catalog by Kaviraj et al. In the standard cold or warm dark matter cosmological models, the number of satellite galaxies correlates with the circular velocity of the dark matter host halo. In generalized gravity models without cold or warm dark matter, such a correlation does not exist, because host galaxies cannot capture infalling dwarf galaxies due to the absence of dark-matter-induced dynamical friction. However, in such models, a correlation is expected to exist between the bulge mass and the number of satellite galaxies because bulges and tidal-dwarf satellite galaxies form in encounters between host galaxies. This is not predicted by dark matter models in which bulge mass and the number of satellites are a priori uncorrelated because higher bulge/disk ratios do not imply higher dark/luminous ratios. Hence, our correlation reproduces the prediction of scenarios without dark matter, whereas an explanation is not found readily from the a priori predictions of the standard scenario with dark matter. Further research is needed to explore whether some application of the standard theory may explain this correlation.

  18. The EMBLA Survey -- Metal-poor stars in the Galactic bulge

    CERN Document Server

    Howes, Louise M; Keller, Stefan C; Casey, Andrew R; Yong, David; Lind, Karin; Frebel, Anna; Hays, Austin; Alves-Brito, Alan; Bessell, Michael S; Casagrande, Luca; Marino, Anna F; Nataf, David M; Owen, Christopher I; Da Costa, Gary S; Schmidt, Brian P; Tisserand, Patrick

    2016-01-01

    Cosmological models predict the oldest stars in the Galaxy should be found closest to the centre of the potential well, in the bulge. The EMBLA Survey successfully searched for these old, metal-poor stars by making use of the distinctive SkyMapper photometric filters to discover candidate metal-poor stars in the bulge. Their metal-poor nature was then confirmed using the AAOmega spectrograph on the AAT. Here we present an abundance analysis of 10 bulge stars with -2.8<[Fe/H]<-1.7 from MIKE/Magellan observations, in total determining the abundances of 22 elements. Combining these results with our previous high-resolution data taken as part of the Gaia-ESO Survey, we have started to put together a picture of the chemical and kinematic nature of the most metal-poor stars in the bulge. The currently available kinematic data is consistent with the stars belonging to the bulge, although more accurate measurements are needed to constrain the stars' orbits. The chemistry of these bulge stars deviates from that ...

  19. Giant star seismology

    CERN Document Server

    Hekker, S

    2016-01-01

    The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-interrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.

  20. Exploring the unusually high black hole-to-bulge mass ratios in NGC4342 and NGC4291: the asynchronous growth of bulges and black holes

    CERN Document Server

    Bogdan, Akos; Zhuravleva, Irina; Mihos, J Christopher; Kraft, Ralph P; Harding, Paul; Guo, Qi; Li, Zhiyuan; Churazov, Eugene; Vikhlinin, Alexey; Nulsen, Paul E J; Schindler, Sabine; Jones, Christine

    2012-01-01

    We study two nearby, early-type galaxies, NGC4342 and NGC4291, that host unusually massive black holes relative to their low stellar mass. The observed black hole-to-bulge mass ratios of NGC4342 and NGC4291 are ~6.9% and ~1.9%, respectively, which significantly exceed the typical observed ratio of ~0.2%. As a consequence of the exceedingly large black hole-to-bulge mass ratios, NGC4342 and NGC4291 are ~5.1 sigma and ~3.4 sigma outliers from the M_BH - M_bulge scaling relation, respectively. In this paper we explore the origin of the unusually high black hole-to-bulge mass ratio. Based on Chandra X-ray observations of the hot gas content of NGC4342 and NGC4291, we compute gravitating mass profiles, and conclude that both galaxies reside in massive dark matter halos, which extend well beyond the stellar light. The presence of dark matter halos around NGC4342 and NGC4291 and a deep optical image of the environment of NGC4342 indicate that tidal stripping, in which >90% of the stellar mass was lost, cannot explai...

  1. Giant Congenital Melanocytic Nevus

    DEFF Research Database (Denmark)

    Rasmussen, Bo Sonnich; Henriksen, Trine Foged; Kølle, Stig-Frederik Trojahn

    2015-01-01

    Giant congenital melanocytic nevi (GCMN) occur in 1:20,000 livebirths and are associated with increased risk of malignant transformation. The treatment of GCMN from 1981 to 2010 in a tertiary referral center was reviewed evaluating the modalities used, cosmetic results, associated complications...

  2. Giant prolactinomas in women

    DEFF Research Database (Denmark)

    Delgrange, Etienne; Raverot, Gerald; Bex, Marie

    2014-01-01

    OBJECTIVE: To characterise distinctive clinical features of giant prolactinomas in women. DESIGN: A multicentre, retrospective case series and literature review. METHODS: We collected data from 15 female patients with a pituitary tumour larger than 4 cm and prolactin levels above 1000 μg/l and id......OBJECTIVE: To characterise distinctive clinical features of giant prolactinomas in women. DESIGN: A multicentre, retrospective case series and literature review. METHODS: We collected data from 15 female patients with a pituitary tumour larger than 4 cm and prolactin levels above 1000 μg....../l and identified 19 similar cases from the literature; a gender-based comparison of the frequency and age distribution was obtained from a literature review. RESULTS: The initial PubMed search using the term 'giant prolactinomas' identified 125 patients (13 women) responding to the inclusion criteria. The female...... in only 4/18 patients, and 7/18 patients were resistant to weekly doses ranging from 3.0 to 7.0 mg. CONCLUSION: Giant prolactinomas are rare in women, often resistant to dopamine agonists and seem to be distributed in two age groups, with a larger late-onset peak....

  3. [Giant retroperitoneal liposarcoma].

    Science.gov (United States)

    Mezzour, Mohamed Hicham; El Messaoudi, Yasser Arafat; Fekak, Hamid; Rabii, Redouane; Marnissi, Farida; Karkouri, Mehdi; Salam, Siham; Iraki, Moulay Ahmed; Joual, Abdenbi; Meziane, Fathi

    2006-02-01

    The authors report a case of giant retroperitoneal liposarcoma. The diagnosis was suspected after scanography and magnetic resonance imaging and confirmed by the histological analysis of the extracted piece after surgical treatment. Postoperative evolution was favourable after one year without recurrence or distant metastasis. The authors discuss the pathologic and therapeutic aspects and the prognosis of retroperitoneal liposarcoma.

  4. Juvenile giant fibroadenoma

    Directory of Open Access Journals (Sweden)

    Vipul Yagnik

    2011-07-01

    Full Text Available Fibroadenomas are benign solid tumor associated with aberration of normal lobular development. Juvenile giant fibroadenoma is usually single and >5 cm in size /or >500 gms in weight. Important differential diagnoses are: phyllodes tumor and juvenile gigantomastia. Simple excision is the treatment of choice.

  5. The Hera Saturn entry probe mission

    Science.gov (United States)

    Mousis, O.; Atkinson, D. H.; Spilker, T.; Venkatapathy, E.; Poncy, J.; Frampton, R.; Coustenis, A.; Reh, K.; Lebreton, J.-P.; Fletcher, L. N.; Hueso, R.; Amato, M. J.; Colaprete, A.; Ferri, F.; Stam, D.; Wurz, P.; Atreya, S.; Aslam, S.; Banfield, D. J.; Calcutt, S.; Fischer, G.; Holland, A.; Keller, C.; Kessler, E.; Leese, M.; Levacher, P.; Morse, A.; Muñoz, O.; Renard, J.-B.; Sheridan, S.; Schmider, F.-X.; Snik, F.; Waite, J. H.; Bird, M.; Cavalié, T.; Deleuil, M.; Fortney, J.; Gautier, D.; Guillot, T.; Lunine, J. I.; Marty, B.; Nixon, C.; Orton, G. S.; Sánchez-Lavega, A.

    2016-10-01

    The Hera Saturn entry probe mission is proposed as an M-class mission led by ESA with a contribution from NASA. It consists of one atmospheric probe to be sent into the atmosphere of Saturn, and a Carrier-Relay spacecraft. In this concept, the Hera probe is composed of ESA and NASA elements, and the Carrier-Relay Spacecraft is delivered by ESA. The probe is powered by batteries, and the Carrier-Relay Spacecraft is powered by solar panels and batteries. We anticipate two major subsystems to be supplied by the United States, either by direct procurement by ESA or by contribution from NASA: the solar electric power system (including solar arrays and the power management and distribution system), and the probe entry system (including the thermal protection shield and aeroshell). Hera is designed to perform in situ measurements of the chemical and isotopic compositions as well as the dynamics of Saturn's atmosphere using a single probe, with the goal of improving our understanding of the origin, formation, and evolution of Saturn, the giant planets and their satellite systems, with extrapolation to extrasolar planets. Hera's aim is to probe well into the cloud-forming region of the troposphere, below the region accessible to remote sensing, to the locations where certain cosmogenically abundant species are expected to be well mixed. By leading to an improved understanding of the processes by which giant planets formed, including the composition and properties of the local solar nebula at the time and location of giant planet formation, Hera will extend the legacy of the Galileo and Cassini missions by further addressing the creation, formation, and chemical, dynamical, and thermal evolution of the giant planets, the entire solar system including Earth and the other terrestrial planets, and formation of other planetary systems.

  6. The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. III. The frequency of brown dwarfs and giant planets as companions to solar-type stars

    CERN Document Server

    Reggiani, M; Chauvin, G; Vigan, A; Quanz, S P; Biller, B; Bonavita, M; Desidera, S; Delorme, P; Hagelberg, J; Maire, A -L; Boccaletti, A; Beuzit, J -L; Buenzli, E; Carson, J; Covino, E; Feldt, M; Girard, J; Gratton, R; Henning, T; Kasper, M; Lagrange, A -M; Mesa, D; Messina, S; Montagnier, G; Mordasini, C; Mouillet, D; Schlieder, J E; Segransan, D; Thalmann, C; Zurlo, A

    2015-01-01

    In recent years there have been many attempts to characterize the occurrence of stellar, BD and planetary-mass companions to solar-type stars, with the aim of constraining formation mechanisms. From RV observations a dearth of companions with masses between 10-40 MJup has been noticed at close separations, suggesting the possibility of a distinct formation mechanism for objects above and below this range. We present a model for the substellar companion mass function (CMF). It consists of the superposition of the planet and BD companion mass distributions, assuming that we can extrapolate the RV measured companion mass function for planets to larger separations and the stellar companion mass-ratio distribution over all separations into the BD mass regime. By using both the results of the VLT/NaCo large program and the complementary archive datasets that probe the occurrence of planets and BDs on wide orbits around solar-type stars, we place some constraints on the planet and BD distributions. We developed a MC...

  7. Anisotropic Models for Globular Clusters, Galactic Bulges and Dark Halos

    CERN Document Server

    Nguyen, P H

    2013-01-01

    Spherical systems with a polytropic equation of state are of great interest in astrophysics. They are widely used to describe neutron stars, red giants, white dwarfs, brown dwarfs, main sequence stars, galactic halos and globular clusters of diverse sizes. In this paper we construct analytically a family of self-gravitating spherical models in the post-Newtonian approximation of general relativity. These models present interesting cusps in their density profiles which are appropriate for the modeling of galaxies and dark matter halos. The systems described here are anisotropic in the sense that their equiprobability surfaces in velocity space are non-spherical, leading to an overabundance of radial or circular orbits, depending on the parameters of the model in consideration. Among the family, we find the post-Newtonian generalization of the Plummer and Hernquist models. A close inspection of their equation of state reveals that these solutions interpolate smoothly between a polytropic sphere in the asymptoti...

  8. Endoscopically removed giant submucosal lipoma

    Directory of Open Access Journals (Sweden)

    Jovanović Ivan

    2007-01-01

    Full Text Available Background. Although uncommon, giant submucosal colon lipomas merit attention as they are often presented with dramatic clinical features such as bleeding, acute bowel obstruction, perforation and sometimes may be mistaken for malignancy. There is a great debate in the literature as to how to treat them. Case report. A patient, 67-year old, was admitted to the Clinic due to a constipation over the last several months, increasing abdominal pain mainly localized in the left lower quadrant accompanied by nausea, vomiting and abdominal distension. Physical examination was unremarkable and the results of the detailed laboratory tests and carcinoembryonic antigen remained within normal limits. Colonoscopy revealed a large 10 cm long, and 4 to 5 cm in diameter, mobile lesion in his sigmoid colon. Conventional endoscopic ultrasound revealed 5 cm hyperechoic lesion of the colonic wall. Twenty MHz mini-probe examination showed that lesion was limited to the submucosa. Since polyp appeared too large for a single transaction, it was removed piecemeal. Once the largest portion of the polyp has been resected, it was relatively easy to place the opened snare loop around portions of the residual polyp. Endoscopic resection was carried out safely without complications. Histological examination revealed the common typical histological features of lipoma elsewhere. The patient remained stable and eventually discharged home. Four weeks later he suffered no recurrent symptoms. Conclusion. Colonic lipomas can be endoscopically removed safely eliminating unnecessary surgery.

  9. The influence of changes in cervical lordosis on bulging disk and spinal stenosis: functional MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Joon; Eun, Choong Ki [Pusan Paik Hospital, Inje Univ. College of Medicine, Pusan (Korea, Republic of)

    2001-05-01

    To assess the effect of lordotic curve change of the cervical spine on disk bulging and spinal stenosis by means of functional cervical MR imaging at the flexion and extension position. Using a 1.5T imager, kinematic MR examinations of 25 patients with degenerative spondylosis (average age, 41 years) were performed at the neutral, flexed and extended position of the cervical spine. Sagittal T2-weighted turbo spin-echo images were obtained during each of the three phases. Lordotic angle, bulging thickness of the disk, AP diameter of the spinal canal, and distance between the disk and spinal cord were measured on the workstation at each disk level. After qualitative independent observation of disk bulging, one of four grades(0, normal; 1, mild; 2, moderate; 3, marked) was assigned at each phase, and after further comparative observation, one of five scores (-2, prominent decrease; -1, mild decrease; 0, no change; 1, notable increase; 2 prominent increase) was also assigned. In addition, bulging thickness of the disk was measured and compared at the neutral, flexed, and extended positions. Average angles of the cervical spine were 160.5{+-}5.9 deg (neutral position, lordotic angle); 185.4{+-}8.5 deg (flexion, kyphotic angle); and 143.7{+-}6.7 deg (extension, lordotic angle). Average grades of disk bulging were 0.55 at the neutral position. 0.16 at flexion, and 0.7 at extension. Comparative observation showed that average scores of disk bulging were -0.39 at flexion and 0.31 at extension. The bulging thickness of the disk decreased by 24.2% at flexion and increased by 30.3% at extension, while the diameter of the spinal canal increased by 4.5% at flexion and decreased by 3.6% at extension. The distance from the posterior margin of the disk to the anterior margin of the spinal cord decreased at both flexion(6.6%) and extension(19.1%). Functional MRI showed that compared with the neutral position, disk bulging and spinal stenosis are less prominent at flexion and

  10. Clues to the Formation of Lenticular Galaxies Using Spectroscopic Bulge-Disk Decomposition

    CERN Document Server

    Johnston, Evelyn J; Merrifield, Michael R; Bedregal, Alejandro G

    2013-01-01

    Lenticular galaxies have long been thought of as evolved spirals, but the processes involved to quench the star formation are still unclear. By studying the individual star formation histories of the bulges and disks of lenticulars, it is possible to look for clues to the processes that triggered their transformation from spirals. To accomplish this feat, we present a new method for spectroscopic bulge-disk decomposition, in which a long-slit spectrum is decomposed into two one-dimensional spectra representing purely the bulge and disk light. We present preliminary results from applying this method to lenticular galaxies in the Virgo and Fornax Clusters, in which we show that the most recent star formation activity in these galaxies occurred within the bulges. We also find that the star formation timescales of the bulges are longer than the disks, and that more massive galaxies take longer to lose their gas during the transformation. These results point towards slow processes, such as ram-pressure stripping o...

  11. Composite Stellar Populations and Element by Element Abundances in the Milky Way Bulge and Elliptical Galaxies

    CERN Document Server

    Tang, Baitian; Davis, A Bianca

    2014-01-01

    This paper explores the integrated-light characteristics of the Milky Way (MW) bulge and to what extent they match those of elliptical galaxies in the local universe. We model composite stellar populations with realistic abundance distribution functions (ADFs), tracking the trends of individual elements as a function of overall heavy element abundance as actually observed in MW bulge stars. The resultant predictions for absorption feature strengths from the MW bulge mimic elliptical galaxies better than solar neighborhood stars do, but the MW bulge does not match elliptical galaxies, either. Comparing bulge versus elliptical galaxies, Fe, Ti, and Mg trend about the same for both but C, Na, and Ca seem irreconcilably different. Exploring the behavior of abundance compositeness leads to the concepts of "red lean" where a narrower ADF appears more metal rich than a wide one, and "red spread" where the spectral difference between wide and narrow ADFs increases as the ADF peak is moved to more metal-rich values. T...

  12. Bulges and disks in the local Universe. Linking the galaxy structure to star formation activity

    CERN Document Server

    Morselli, L; Erfanianfar, G; Concas, A

    2016-01-01

    Galaxy morphology and star formation activity are strictly linked, in the way that bulge-dominated galaxies are in general quiescent, while disk dominated galaxies are actively star-forming. In this paper, we study the properties of bulges and disks as a function of the position of galaxies in the star formation rate (SFR) - stellar mass ($M_{\\star}$) plane. Our sample is built on the SDSS DR7 catalogue, and the bulge-disk decomposition is the one of Simard et al. (2011). We find that at a given stellar mass the Main Sequence (MS) is populated by galaxies with the lowest B/T ratios. The B/T on the MS increases with increasing stellar mass, thus confirming previous results in literature. In the upper envelop of the MS, the average B/T is higher than that of MS counterparts at fixed stellar mass. This indicates that starburst galaxies have a significant bulge component. In addition, bulges above the MS are characterised by blue colours, whereas, if on the MS or below it, they are mostly red and dead. The disks ...

  13. The number of tidal dwarf satellite galaxies in dependence of bulge index

    CERN Document Server

    Lopez-Corredoira, Martin

    2015-01-01

    We show that a significant correlation (up to 5sigma) emerges between the bulge index, defined to be larger for larger bulge/disk ratio, in spiral galaxies with similar luminosities in the Galaxy Zoo 2 of SDSS and the number of tidal-dwarf galaxies in the catalogue by Kaviraj et al. (2012). In the standard cold or warm dark-matter cosmological models the number of satellite galaxies correlates with the circular velocity of the dark matter host halo. In generalized-gravity models without cold or warm dark matter such a correlation does not exist, because host galaxies cannot capture in-falling dwarf galaxies due to the absence of dark-matter-induced dynamical friction. However, in such models a correlation is expected to exist between the bulge mass and the number of satellite galaxies, because bulges and tidal-dwarf satellite galaxies form in encounters between host galaxies. This is not predicted by dark matter models in which bulge mass and the number of satellites are a priori uncorrelated because higher b...

  14. Unifying the planar bar and the boxy bulge of the Milky Way

    Directory of Open Access Journals (Sweden)

    Martinez-Valpuesta I.

    2012-02-01

    Full Text Available For some time the Milky Way has been understood as a barred disk galaxy. Star count observations have provided evidence for two bars at apparently different orientations, the boxy bulge and a long planar bar. We report recent work in which we argued for a scenario where these observations can be reproduced with a single boxy bulge/bar: an evolved bar from the stellar disk and the corresponding boxy bulge generated from it through secular evolution and buckling instability. We calculated the star count distributions along different lines-of-sight for a simulated barred galaxy and an observer at the Sun position, and compared them with observations of red clump magnitude distributions. We found a good agreement between the model and the observations, even though the simulation has a single boxy bulge/bar. In this model, the different apparent orientations of the boxy bulge and planar bar are partially due to the volume effect and partially to the leading ends of the bar.

  15. Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way.

    Science.gov (United States)

    Howes, L M; Casey, A R; Asplund, M; Keller, S C; Yong, D; Nataf, D M; Poleski, R; Lind, K; Kobayashi, C; Owen, C I; Ness, M; Bessell, M S; Da Costa, G S; Schmidt, B P; Tisserand, P; Udalski, A; Szymański, M K; Soszyński, I; Pietrzyński, G; Ulaczyk, K; Wyrzykowski, Ł; Pietrukowicz, P; Skowron, J; Kozłowski, S; Mróz, P

    2015-11-26

    The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium ('metals') have been found in the outer regions ('halo') of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions ('bulges') of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that most of the metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon.

  16. Mira variables in the Galactic bulge with OGLE-II data

    CERN Document Server

    Matsunaga, N; Nakada, Y

    2005-01-01

    We have extracted a total of 1968 Mira variables from the OGLE-II data base in the Galactic bulge region. Among them, 1960 are associated with 2MASS sources, and 1541 are further identified with MSX point sources. Their photometric properties are compared with those of Mira variables in the Large and Small Magellanic Clouds. We have found that mass-losing stars with circumstellar matter are reddened such that the colour dependence of the absorption coefficient is similar to that of interstellar matter. We also discuss the structure of the bulge. The surface number density of the bulge Mira variables is well correlated with the 2.2-micron surface brightness obtained by the COBE satellite. Using this relation, the total number of Mira variables in the bulge is estimated to be about 600,000. The logP-K relation of the Mira variables gives their space distribution which supports the well-known asymmetry of the bar-like bulge.

  17. ARGOS III: Stellar Populations in the Galactic Bulge of the Milky Way

    CERN Document Server

    Ness, M; Athanassoula, E; de Boer, E Wylie; Hawthorn, J Bland; Asplund, M; Lewis, G F; Yong, D; Lane, R R; Kiss, L L

    2012-01-01

    We present the metallicity results from the ARGOS spectroscopic survey of the Galactic bulge. Our aim is to understand the formation of the Galactic bulge: did it form via mergers, as expected from Lambda CDM theory, or from disk instabilities, as suggested by its boxy/peanut shape, or both? We have obtained spectra for 28,000 stars at a spectral resolution of R = 11,000. From these spectra, we have determined stellar parameters and distances to an accuracy of -0.5 are part of the boxy/peanut bar/bulge. We associate the lower metallicity stars ([Fe/H] -0.5, we find two discrete populations; (i) stars with [Fe/H] ~ -0.25 which provide a roughly constant fraction of the stars in the latitude interval b = -5 deg to -10 deg, and (ii) a kinematically colder, more metal-rich population with mean [Fe/H] ~ +0.15 which is more prominent closer to the plane. The changing ratio of these components with latitude appears as a vertical abundance gradient of the bulge. We attribute both of these bulge components to instab...

  18. A case against an X-shaped structure in the Milky Way young bulge

    CERN Document Server

    Lopez-Corredoira, Martin

    2016-01-01

    CONTEXT. A number of recent papers have claimed the discovery of an X-shape structure in the bulge of our Galaxy in the population of the red clumps. AIMS. We endeavor to analyze the stellar density of bulge stars in the same regions using a different stellar population that is characteristic of the young bulge ($\\lesssim 5$ Gyr). Particularly, we use F0-F5 main-sequence stars with distances derived through photometric parallax. METHODS. We extract these stars from extinction-corrected color-magnitude diagrams in the near-infrared of VISTA-VVV data in some bulge regions and calculate the densities along the line of sight. We take the uncertaintity in the photometric parallax and the contamination of other sources into account, and we see that these errors do not avoid the detection of a possible double peak along some lines of sight as expected for a X-shape bulge if it existed. RESULTS. Only a single peak in the density distribution along the line of sight is observed, so apparently there is no X-shape struc...

  19. VizieR Online Data Catalog: SDSS bulge, disk and total stellar mass estimates (Mendel+, 2014)

    Science.gov (United States)

    Mendel, J. T.; Simard, L.; Palmer, M.; Ellison, S. L.; Patton, D. R.

    2014-01-01

    We present a catalog of bulge, disk, and total stellar mass estimates for ~660000 galaxies in the Legacy area of the Sloan Digital Sky Survey Data (SDSS) Release 7. These masses are based on a homogeneous catalog of g- and r-band photometry described by Simard et al. (2011, Cat. J/ApJS/196/11), which we extend here with bulge+disk and Sersic profile photometric decompositions in the SDSS u, i, and z bands. We discuss the methodology used to derive stellar masses from these data via fitting to broadband spectral energy distributions (SEDs), and show that the typical statistical uncertainty on total, bulge, and disk stellar mass is ~0.15 dex. Despite relatively small formal uncertainties, we argue that SED modeling assumptions, including the choice of synthesis model, extinction law, initial mass function, and details of stellar evolution likely contribute an additional 60% systematic uncertainty in any mass estimate based on broadband SED fitting. We discuss several approaches for identifying genuine bulge+disk systems based on both their statistical likelihood and an analysis of their one-dimensional surface-brightness profiles, and include these metrics in the catalogs. Estimates of the total, bulge and disk stellar masses for both normal and dust-free models and their uncertainties are made publicly available here. (4 data files).

  20. Bulge formation and necking in a polymer tube under dynamic expansion

    DEFF Research Database (Denmark)

    Lindgreen, Britta; Tvergaard, Viggo; Needleman, Alan

    2008-01-01

    Bulging and necking in long thin polymer tubes subjected to increasing internal pressure are analysed numerically. The polymer is characterized by a finite strain elastic-viscoplastic constitutive relation and the calculations are carried out using a dynamic finite element program. Two types...... of imposed loading are prescribed: (i) a pressure that increases linearly with time and (ii) a change in enclosed volume that increases linearly with time. For both loading conditions, an axisymmetric bulge develops on the tube followed by necking in the bulge. The necks propagate in both the circumferential...... and the axial directions. Multiple necks form at locations given by the thin points associated with the wave number of the prescribed initial thickness imperfection. When a change in enclosed volume is prescribed, the pressure reaches a maximum, decreases and then stays approximately constant. One neck...

  1. Chandra Studies of Unidentified X-ray Sources in the Galactic Bulge

    Science.gov (United States)

    Mori, Hideyuki

    2013-09-01

    We propose to study a complete X-ray sample in the luminosity range of > 10^34 erg s^-1 in the Galactic bulge, including 5 unidentified sources detected in the ROSAT All Sky Survey. Our goal is to obtain a clear picture about X-ray populations in the bulge, by utilizing the excellent Chandra position accuracy leading to unique optical identification together with the X-ray spectral properties. This is a new step toward understanding the formation history of the bulge. Furthermore, because the luminosity range we observe corresponds to a ``missing link'' region ever studied for a neutron star or blackhole X-ray binary, our results are also unique to test accretion disk theories at intermediate mass accretion rates.

  2. Long-Lived Spiral Structure for Galaxies with Intermediate Size Bulges

    CERN Document Server

    Saha, Kanak

    2016-01-01

    Spiral structure in disk galaxies is modeled with nine collisionless N-body simulations including live disks, halos, and bulges with a range of masses. Two of these simulations make long-lasting and strong two-arm spiral wave modes that last for $\\sim5$ Gyr with constant pattern speed. These two had a light stellar disk and the largest values of the Toomre $Q$ parameter in the inner region at the time the spirals formed, suggesting the presence of a Q-barrier to wave propagation resulting from the bulge. The relative bulge mass in these cases is about 10\\%. Models with weak two-arm spirals had pattern speeds that followed the radial dependence of the Inner Lindblad Resonance.

  3. What drives the M*-SFR relation turning over at high masses? The role of bulges

    CERN Document Server

    Pan, Zhizheng; Lin, Weipeng; Li, Jinrong; Wang, Jing; Fan, Lulu; Kong, Xu

    2015-01-01

    It is unclear whether bulge growth is responsible for the flattening of the star formation main sequence (MS) at the high mass end. To investigate the role of bulges in shaping the MS, we compare the NUV$-r$ color between the central ($r2.0 tend to be redder in the central NUV$-r$ color than those with $n$2.0 rapidly increases with $M_{\\ast}$ at $M_{\\ast}>10^{10.2}M_{\\sun}$, which is consistent with the turning over of the MS at the same transition mass. We conclude that the increasing fraction of low-sSFR dense bulges in $M_{\\ast}>10^{10.2}M_{\\sun}$ galaxies, rather than increasing B/T, is responsible for the flattened slope of the $M_{\\ast}$$-$SFR relation at high masses.

  4. Discovery of Five New R. Coronae Borealis Stars in the MACHO Galactic Bulge Database

    Energy Technology Data Exchange (ETDEWEB)

    Zaniewshi, A; Clayton, G C; Welch, D; Gordon, K D; Minniti, D; Cook, K

    2005-06-16

    We have identified five new R Coronae Borealis (RCB) stars in the Galactic bulge using the MACHO Project photometry database, raising the total number of known Galactic RCB stars to about 40. We have obtained spectra to confirm the identifications. The fact that four out of the five newly identified RCB stars are ''cool'' (T{sub eff} < 6000 K) rather than ''warm'' (T{sub eff} > 6000 K) suggests that the preponderance of warm RCB stars among the existing sample is a selection bias. These cool RCB stars are redder and fainter than their warm counterparts and may have been missed in surveys done with blue plates. Based on the number of new RCB stars discovered in the MACHO bulge fields, there may be {approx}250 RCB stars in the reddened ''exclusion'' zone toward the bulge.

  5. Giant Cell Arteritis.

    Science.gov (United States)

    Hoffman, Gary S

    2016-11-01

    This issue provides a clinical overview of giant cell arteritis, focusing on diagnosis, treatment, and practice improvement. The content of In the Clinic is drawn from the clinical information and education resources of the American College of Physicians (ACP), including MKSAP (Medical Knowledge and Self-Assessment Program). Annals of Internal Medicine editors develop In the Clinic in collaboration with the ACP's Medical Education and Publishing divisions and with the assistance of additional science writers and physician writers.

  6. Giant Otters in Peru

    Directory of Open Access Journals (Sweden)

    Schenk C.

    1992-02-01

    Full Text Available We are in the second year of fieldwork surveying for Giant Otters in the southeastern rainforest of Peru, in three areas with differing levels of legal protection. While there is some illegal hunting still happening outside the protected areas, the main threat to the otters is badly-conducted tourism. Well-organised tourism can be a promising argument for establishing protected areas like national parks.

  7. A giant graviton genealogy

    CERN Document Server

    Lozano, Yolanda; Prinsloo, Andrea

    2013-01-01

    In this article we extend the construction of giant gravitons from holomorphic surfaces [arXiv:hep-th/0010206] to the ABJM correspondence. We construct a new class of 1/6-BPS M5-branes wrapping 5-manifolds in S^7/Z_k and supported by a large angular momentum in the orbifold space. These orbifold giant gravitons undergo a supersymmetry enhancement to 1/3-BPS and 1/2-BPS configurations in special cases. The compactification of M-theory on AdS_4 x S^7/Z_k to type IIA superstring theory on AdS_4 x CP^3 then gives rise to another new class of 1/6-BPS D4 and NS5-branes wrapping 4 and 5-manifolds in CP^3. The D4-branes carry a combination of D0-brane charge and angular momentum in the complex projective space, while the NS5-branes are supported only by D0-brane charge. Finally, we present a detailed analysis of a one-parameter family of 1/2-BPS M5-brane orbifold giant gravitons, and their D4 and NS5-brane CP^3 descendants.

  8. A case against an X-shaped structure in the Milky Way young bulge

    Science.gov (United States)

    López-Corredoira, Martín

    2016-09-01

    Context. A number of recent papers have claimed the discovery of an X-shape structure in the bulge of our Galaxy in the population of the red clumps. Aims: We endeavor to analyze the stellar density of bulge stars in the same regions using a different stellar population that is characteristic of the young bulge (≲ 5 Gyr). Particularly, we use F0-F5 main-sequence stars with distances derived through photometric parallax. Methods: We extract these stars from extinction-corrected color-magnitude diagrams in the near-infrared of VISTA-VVV data in some bulge regions and calculate the densities along the line of sight. We take the uncertaintity in the photometric parallax and the contamination of other sources into account, and we see that these errors do not avoid the detection of a possible double peak along some lines of sight as expected for a X-shape bulge if it existed. Results: Only a single peak in the density distribution along the line of sight is observed, so apparently there is no X-shape structure for this population of stars. Nonetheless, the effects of the dispersion of absolute magnitudes in the selected population might be an alternative explanation, although in principle these effects are insufficient to explain this lack of double peak according to our calculations. Conclusions: The results of the present paper do not demonstrate that previous claims of X-shaped bulge using only red clump stars are incorrect, but there are apparently some puzzling questions if we want to maintain the validity of both the red-clump results and the results of this paper.

  9. Pixel Color Magnitude Diagrams for Semi-resolved Stellar Populations: The Star Formation History of Regions within the Disk and Bulge of M31

    Science.gov (United States)

    Conroy, Charlie; van Dokkum, Pieter G.

    2016-08-01

    The analysis of stellar populations has, by and large, been developed for two limiting cases: spatially resolved stellar populations in the color-magnitude diagram, and integrated light observations of distant systems. In between these two extremes lies the semi-resolved regime, which encompasses a rich and relatively unexplored realm of observational phenomena. Here we develop the concept of pixel color-magnitude diagrams (pCMDs) as a powerful technique for analyzing stellar populations in the semi-resolved regime. pCMDs show the distribution of imaging data in the plane of pixel luminosity versus pixel color. A key feature of pCMDs is that they are sensitive to all stars, including both the evolved giants and the unevolved main sequence stars. An important variable in this regime is the mean number of stars per pixel, {N}{{pix}}. Simulated pCMDs demonstrate a strong sensitivity to the star formation history (SFH) and have the potential to break degeneracies between age, metallicity and dust based on two filter data for values of {N}{{pix}} up to at least 104. We extract pCMDs from Hubble Space Telescope optical imaging of M31 and derive SFHs with seven independent age bins from 106 to 1010 year for both the crowded disk and bulge regions (where {N}{{pix}}≈ 30{--}{10}3). From analyzing a small region of the disk we find a SFH that is smooth and consistent with an exponential decay timescale of 4 Gyr. The bulge SFH is also smooth and consistent with a 2 Gyr decay timescale. pCMDs will likely play an important role in maximizing the science returns from next generation ground and space-based facilities.

  10. Mechanical problems of superplastic fill-forming bulge solved by one-dimensional tensile and two-dimensional free bulging constitutive equations

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Because of the strong structural sensitivity of superplasticity, the deformation rule must be affected by stress-state. It is necessary to prove whether one-dimensional tensile constitutive equation can be directly generalized to deal with the two-dimensional mechanical problems or not. In this paper, theoretical results of fill-forming bulge have been derived from both one-dimensional tensile and two-dimensional bulging constitutive equation with variable m value. By comparing theoretical analysis and experimental results made on typical superplastic alloy Zn-wt22%Al, it is shown that one-dimensional tensile constitutive equation cannot be directly generalized to deal with two-dimensional mechanical questions. A method to correct deviation between theoretical and experimental results is also proposed.

  11. The black hole - bulge mass relation in active and inactive galaxies

    OpenAIRE

    McLure, R. J.; Dunlop, J. S.

    2002-01-01

    New virial black-hole mass estimates are presented for a sample of 72 AGN covering three decades in optical luminosity. Using a model in which the AGN broad-line region (BLR) has a flattened geometry, we investigate the M_{bh)-L_{bulge} relation for a combined 90-object sample, consisting of the AGN plus a sample of 18 nearby inactive elliptical galaxies with dynamical black-hole mass measurements. It is found that, for all reasonable mass-to-light ratios, the M_{bh}-L_{bulge} relation is equ...

  12. Probe Storage

    NARCIS (Netherlands)

    Gemelli, Marcellino; Abelmann, Leon; Engelen, Johan B.C.; Khatib, Mohammed G.; Koelmans, Wabe W.; Zaboronski, Olog; Campardo, Giovanni; Tiziani, Federico; Laculo, Massimo

    2011-01-01

    This chapter gives an overview of probe-based data storage research over the last three decades, encompassing all aspects of a probe recording system. Following the division found in all mechanically addressed storage systems, the different subsystems (media, read/write heads, positioning, data chan

  13. Cultural probes

    DEFF Research Database (Denmark)

    Madsen, Jacob Østergaard

    2016-01-01

    The aim of this study was thus to explore cultural probes (Gaver, Boucher et al. 2004), as a possible methodical approach, supporting knowledge production on situated and contextual aspects of occupation.......The aim of this study was thus to explore cultural probes (Gaver, Boucher et al. 2004), as a possible methodical approach, supporting knowledge production on situated and contextual aspects of occupation....

  14. Mass loss from red giants - Results from ultraviolet spectroscopy

    Science.gov (United States)

    Linsky, J. L.

    1985-01-01

    New instrumentation in space, primarily the IUE spacecraft, has enabled the application of ultraviolet spectroscopic techniques to the determination of physical properties and reliable mass loss rates for red giant winds. One important result is the determination of where in the H-R diagram are found stars with hot outer atmospheres and with cool winds. So far it appears that single cool stars, except perhaps the so-called hybrid stars, have either hot outer atmospheres or cool winds but not both. The C II resonance (1335 A) and intersystem (2325 A) multiplets have been used to derive temperatures, densities, and geometrical extents for the chromospheric portions of red giant winds, with the result that the red giants and the earlier giants with hot coronae have qualitatively different chromospheres. Mass loss rates can now be derived accurately from the analysis of asymmetric emission lines, such as the Mg II resonance lines, and from P Cygni profile lines of atoms in the dominant ionization stage when a hot star is available to probe the wind of a red giant. The Zeta Aur systems, consisting of a K-M supergiant and a main sequence B star are important systems for reliable mass loss rates for the red supergiant components are becoming available.

  15. Galactic Bulge Microlensing Events from the MACHO Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C L; Griest, K; Popowski, P; Cook, K H; Drake, A J; Minniti, D; Myer, D G; Alcock, C; Allsman, R A; Alves, D R; Axelrod, T S; Becker, A C; Bennett, D P; Freeman, K C; Geha, M; Lehner, M J; Marshall, S L; Nelson, C A; Peterson, B A; Quinn, P J; Stubbs, C W; Sutherland, W; Vandehei, T; Welch, D L

    2005-06-16

    The authors present a catalog of 450 relatively high signal-to-noise microlensing events observed by the MACHO collaboration between 1993 and 1999. The events are distributed throughout the fields and, as expected, they show clear concentration toward the Galactic center. No optical depth is given for this sample since no blending efficiency calculation has been performed, and they find evidence for substantial blending. In a companion paper they give optical depths for the sub-sample of events on clump giant source stars, where blending is a less significant effect. Several events with sources that may belong to the Sagittarius dwarf galaxy are identified. For these events even relatively low dispersion spectra could suffice to classify these events as either consistent with Sagittarius membership or as non-Sagittarius sources. Several unusual events, such as microlensing of periodic variable source stars, binary lens events, and an event showing extended source effects are identified. They also identify a number of contaminating background events as cataclysmic variable stars.

  16. Comparing the properties of the X-shaped bulges of NGC 4710 and the Milky Way with MUSE

    CERN Document Server

    Gonzalez, O A; Debattista, V P; Rejkuba, M; Valenti, E; Zoccali, M; Coccato, L; Minniti, D; Ness, M

    2016-01-01

    We used the new ESO VLT instrument MUSE to obtain spectral and imaging coverage of NGC 4710. The wide area and excellent sampling of the MUSE integral field spectrograph allows us to investigate the dynamical properties of the X-shaped bulge of NGC 4710 and compare it with the properties of the Milky Way's own X-shaped bulge. We measured the radial velocities, velocity dispersion, and stellar populations using a penalized pixel full spectral fitting technique adopting simple stellar populations models, on a 1' x 1' area centred on the bulge of NGC 4710. We have constructed the velocity maps of the bulge of NGC 4710 and we investigated the presence of vertical metallicity gradients. These properties were compared to those of the Milky Way bulge and as well as to a simulated galaxy with boxy/peanut bulge. We find the line-of-sight velocity maps and 1D rotation curves of the bulge of NGC 4710 to be remarkably similar to those of the Milky Way bulge. Some specific differences that were identified are in good agre...

  17. Bulge mass is king: The dominant role of the bulge in determining the fraction of passive galaxies in the Sloan Digital Sky Survey

    CERN Document Server

    Bluck, Asa F L; Ellison, Sara L; Moreno, Jorge; Simard, Luc; Patton, David R; Starkenburg, Else

    2014-01-01

    We investigate the origin of galaxy bimodality by quantifying the relative role of intrinsic and environmental drivers to the cessation (or `quenching') of star formation in over half a million local Sloan Digital Sky Survey (SDSS) galaxies. Our sample contains a wide variety of galaxies at z=0.02-0.2, with stellar masses of 8 < log(M*/M_sun) < 12, spanning the entire morphological range from pure disks to spheroids, and over four orders of magnitude in local galaxy density and halo mass. We utilise published star formation rates and add to this recent GIM2D photometric and stellar mass bulge + disk decompositions from our group. We find that the passive fraction of galaxies increases steeply with stellar mass, halo mass, and bulge mass, with a less steep dependence on local galaxy density and bulge-to-total stellar mass ratio (B/T). At fixed internal properties, we find that central and satellite galaxies have different passive fraction relationships. For centrals, we conclude that there is less variat...

  18. Giant Goos-Hänchen shift via spontaneous generated coherence

    Science.gov (United States)

    Ziauddin

    2015-11-01

    The influence of spontaneous generated coherence (SGC) on the Goos-Hänchen (GH) shift in the reflected light is presented. A weak probe light is incident on a cavity containing three-level gaseous atomic medium consist of 85Rb atoms. The atom-field interaction follows electromagnetically induced transparency configuration, and the SGC modifies the dispersion and absorption properties of a system [Y. Niu and S. Gong, Phys. Rev. A 73, 053811 (2006)]. The SGC enhances the Kerr nonlinearity which leads to giant negative and positive GH shifts in the reflected light. Further, the control of negative and positive GH shifts is achieved via manipulation of probe field detuning.

  19. A Giant Urethral Calculus.

    Science.gov (United States)

    Sigdel, G; Agarwal, A; Keshaw, B W

    2014-01-01

    Urethral calculi are rare forms of urolithiasis. Majority of the calculi are migratory from urinary bladder or upper urinary tract. Primary urethral calculi usually occur in presence of urethral stricture or diverticulum. In this article we report a case of a giant posterior urethral calculus measuring 7x3x2 cm in a 47 years old male. Patient presented with acute retention of urine which was preceded by burning micturition and dribbling of urine for one week. The calculus was pushed in to the bladder through the cystoscope and was removed by suprapubic cystolithotomy.

  20. GIANT PROSTHETIC VALVE THROMBUS

    Directory of Open Access Journals (Sweden)

    Prashanth Kumar

    2015-04-01

    Full Text Available Mechanical prosthetic valves are predisposed to bleeding, thrombosis & thromboembolic complications. Overall incidence of thromboembolic complications is 1% per year who are on oral anticoagulants, whereas bleeding complications incidence is 0.5% to 6.6% per year. 1, 2 Minimization of Scylla of thromboembolic & Charybdis of bleeding complication needs a balancing act of optimal antithrombotic therapy. We are reporting a case of middle aged male patient with prosthetic mitral valve presenting in heart failure. Patient had discontinued anticoagulants, as he had subdural hematoma in the past. He presented to our institute with a giant prosthetic valve thrombus.

  1. Peanuts, brezels and bananas: food for thought on the orbital structure of the Galactic bulge

    Science.gov (United States)

    Portail, Matthieu; Wegg, Christopher; Gerhard, Ortwin

    2015-06-01

    Recent observations have discovered the presence of a box/peanut or X-shape structure in the Galactic bulge. Such box/peanut structures are common in external disc galaxies, and are well known in N-body simulations where they form following the buckling instability of a bar. From studies of analytical potentials and N-body models, it has been claimed in the past that box/peanut bulges are supported by `bananas', or x1v1 orbits. We present here a set of N-body models where instead the peanut bulge is mainly supported by brezel-like orbits, allowing strong peanuts to form with short extent relative to the bar length. This shows that stars in the X-shape do not necessarily stream along banana orbits which follow the arms of the X-shape. The brezel orbits are also found to be the main orbital component supporting the peanut shape in our recent made-to-measure dynamical models of the Galactic bulge. We also show that in these models the fraction of stellar orbits that contribute to the X-structure account for 40-45 per cent of the stellar mass.

  2. The growth of galactic bulges through mergers in LCDM haloes revisited. II. Morphological mix evolution

    CERN Document Server

    Avila-Reese, Vladimir; Lacerna, Ivan

    2013-01-01

    The mass aggregation and merger histories of present-day distinct haloes selected from the cosmological Millennium Simulations I and II are mapped into stellar mass aggregation and galaxy merger histories of central galaxies by using empirical stellar-to-halo and stellar-to-gas mass relations. The growth of bulges driven by the galaxy mergers/interactions is calculated using analytical recipes. The predicted bulge demographics at redshift z~0 is consistent with observations (Zavala+2012). Here we present the evolution of the morphological mix (traced by the bulge-to-total mass ratio, B/T) as a function of mass up to z=3. This mix remains qualitatively the same up to z~1: B/T0.45 at large masses. At z>1, the fractions of disc-dominated and bulgeless galaxies increase strongly, and by z~2 the era of pure disc galaxies is reached. Bulge-dominated galaxies acquire such a morphology, and most of their mass, following a downsizing trend. Since our results are consistent with several recent observational studies of ...

  3. Peanuts, brezels and bananas: food for thought on the orbital structure of the Galactic bulge

    CERN Document Server

    Portail, M; Gerhard, O

    2015-01-01

    Recent observations have discovered the presence of a Box/Peanut or X-shape structure in the Galactic bulge. Such Box/Peanut structures are common in external disc galaxies, and are well-known in N-body simulations where they form following the buckling instability of a bar. From studies of analytical potentials and N-body models it has been claimed in the past that Box/Peanut bulges are supported by "bananas", or x1v1 orbits. We present here a set of N-body models where instead the peanut bulge is mainly supported by brezel-like orbits, allowing strong peanuts to form with short extent relative to the bar length. This shows that stars in the X-shape do not necessarily stream along banana orbits which follow the arms of the X-shape. The brezel orbits are also found to be the main orbital component supporting the peanut shape in our recent Made-to-Measure dynamical models of the Galactic bulge. We also show that in these models the fraction of stellar orbits that contribute to the X-structure account for 40-45...

  4. A secularly evolved model for the Milky Way bar and bulge

    Science.gov (United States)

    Martinez-Valpuesta, Inma; Gerhard, Ortwin

    2015-03-01

    Bars are strong drivers of secular evolution in disk galaxies. Bars themselves can evolve secularly through angular momentum transport, producing different boxy/peanut and X-shaped bulges. Our Milky Way is an example of a barred galaxy with a boxy bulge. We present a self-consistent N-body simulation of a barred galaxy which matches remarkably well the structure of the inner Milky Way deduced from star counts. In particular, features taken as signatures of a second ``long bar`` can be explained by the interaction between the bar and the spiral arms of the galaxy (Martinez-Valpuesta & Gerhard 2011). Furthermore the structural change in the bulge inside l = 4° measured recently from VVV data can be explained by the high-density near-axisymmetric part of the inner boxy bulge (Gerhard & Martinez-Valpuesta 2012). We also compare this model with kinematic data from recent spectroscopic surveys. We use a modified version of the NMAGIC code (de Lorenzi et al. 2007) to study the properties of the Milky Way bar, obtaining an upper limit for the pattern speed of ~ 42 km/sec/kpc. See Fig. 1 for a comparison of one of our best models with BRAVA data (Kunder et al. 2012).

  5. Stellar density profile and mass of the Milky Way Bulge from VVV data

    CERN Document Server

    Valenti, E; Gonzalez, O A; Minniti, D; Alonso-Garcia, J; Marchetti, E; Hempel, M; Renzini, A; Rejkuba, M

    2015-01-01

    We present the first stellar density profile of the Milky Way bulge reaching latitude $b=0^\\circ$. It is derived by counting red clump stars within the colour\\--magnitude diagram constructed with the new PSF-fitting photometry from VISTA Variables in the V\\'\\i a L\\'actea (VVV) survey data. The new stellar density map covers the area between $|l|\\leq 10^\\circ$ and $|b|\\leq 4.5^\\circ$ with unprecedented accuracy, allowing to establish a direct link between the stellar kinematics from the Giraffe Inner Bulge Spectroscopic Survey (GIBS) and the stellar mass density distribution. In particular, the location of the central velocity dispersion peak from GIBS matches a high overdensity in the VVV star count map. By scaling the total luminosity function (LF) obtained from all VVV fields to the LF from Zoccali et al.(2003), we obtain the first fully empirical estimate of the mass in stars and remnants of the Galactic bulge. The Milky Way bulge stellar mass within ($|b|<9.5^\\circ$, $|l|<10^\\circ$) is $2.0\\pm0.3\\ti...

  6. Mapping the outer bulge with RRab stars from the VVV Survey

    CERN Document Server

    Gran, F; Saito, R K; Zoccali, M; Gonzalez, O A; Navarrete, C; Catelan, M; Ramos, R Contreras; Elorrieta, F; Eyheramendy, S; Jordán, A

    2016-01-01

    The VISTA Variables in the V\\'ia L\\'actea (VVV) is a near-IR time-domain survey of the Galactic bulge and southern plane. One of the main goals of this survey is to reveal the 3D structure of the Milky Way through their variable stars. Particularly the RR Lyrae stars have been massively discovered in the inner regions of the bulge ($-8^\\circ \\lesssim b \\lesssim -1^\\circ$) by optical surveys such as OGLE and MACHO but leaving an unexplored window of more than $\\sim 47$ sq deg ($-10.0^\\circ \\lesssim \\ell \\lesssim +10.7^\\circ$ and $-10.3^\\circ \\lesssim b \\lesssim -8.0^\\circ$) observed by the VVV Survey. Our goal is to characterize the RR Lyrae stars in the outer bulge in terms of their periods, amplitudes, Fourier coefficients, and distances, in order to evaluate the 3D structure of the bulge in this area. The distance distribution of RR Lyrae stars will be compared to the one of red clump stars that is known to trace a X-shaped structure in order to determine if these two different stellar populations share the...

  7. Stellar Kinematics of Boxy Bulges: Large-Scale Bars and Inner Disks

    CERN Document Server

    Chung, A

    2004-01-01

    Major-axis long-slit stellar kinematics was obtained for 30 edge-on spiral galaxies, 24 with a boxy/peanut-shaped (B/PS) bulge. B/PS bulges are present in >45% of highly inclined systems and much work suggests that they are the edge-on projection of thick bars. Profiles of the mean stellar velocity V, the velocity dispersion sigma, and the asymmetric (h3) and symmetric (h4) deviations from a Gaussian are presented. Comparing those with N-body bar diagnostics, we find bar signatures in 80% of our sample. B/PS bulge galaxies typically show a double-hump rotation curve with an intermediate dip or plateau. They often show a flat central velocity dispersion profile accompanied by a secondary peak or plateau and >=40% have a local central sigma minimum. The h3 profiles display up to 3 slope reversals and h3 is normally correlated with V over the presumed bar length, contrary to expectations from axisymmetric disks. Those characteristic bar signatures strengthen the case for a close link between B/PS bulges and bars...

  8. An estimate of the DM profile in the Galactic bulge region

    CERN Document Server

    Iocco, Fabio

    2016-01-01

    We present an analysis of the mass distribution in the region of the Galactic bulge, which leads to constraints on the total amount and distribution of Dark Matter (DM) therein. Our results -based on the dynamical measurement of the BRAVA collaboration- are quantitatively compatible with those of a recent analysis, and generalised to a vaste sample of observationally inferred morphologies of the stellar components in the region of the Galactic bulge. By fitting the inferred DM mass to a generalised NFW profile, we find that cores (index gamma smaller than 0.6) are forbidden only for very light configurations of the bulge, and that cusps (index gamma bigger than 1.2) are allowed, but not necessarily preferred. Interestingly, we find that the results for the bulge region are compatible with those obtained with dynamical methods (based on the rotation curve) applied to outer regions of the Milky Way, for all morphologies adopted. We find that the uncertainty on the shape of the stellar morphology heavily affects...

  9. Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way

    CERN Document Server

    Howes, L M; Asplund, M; Keller, S C; Yong, D; Nataf, D M; Poleski, R; Lind, K; Kobayashi, C; Owen, C I; Ness, M; Bessell, M S; Da Costa, G S; Schmidt, B P; Tisserand, P; Udalski, A; Szymański, M K; Soszyński, I; Pietrzyński, G; Ulaczyk, K; Wyrzykowski, Ł; Pietrukowicz, P; Skowron, J; Kozłowski, S; Mróz, P

    2015-01-01

    The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium ('metals') have been found in the outer regions ('halo') of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions ('bulges') of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that the most metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through...

  10. The Mid-Infrared Colours of Galactic Bulge, Disk and Magellanic Planetary Nebulae

    CERN Document Server

    Phillips, J P; 10.1111/j.1365-2966.2009.14846.x

    2009-01-01

    We present mid-infrared (MIR) photometry for 367 Galactic disk, bulge and Large Magellanic Cloud (LMC) planetary nebulae, determined using GLIMPSE II and SAGE data acquired using the Spitzer Space Telescope. This has permitted us to make a comparison between the luminosity functions of bulge and LMC planetary nebulae, and between the MIR colours of all three categories of source. It is determined that whilst the 3.6 microns luminosity function of the LMC and bulge sources are likely to be closely similar, the [3.6]-[5.8] and [5.8]-[8-0] indices of LMC nebulae are different from those of their disk and bulge counterparts. This may arise because of enhanced 6.2 microns PAH emission within the LMC sources, and/or as a result of differences between the spectra of LMC PNe and those of their Galactic counterparts. We also determine that the more evolved disk sources listed in the MASH catalogues of Parker et al. and Miszalski et al. (2008) have similar colours to those of the less evolved (and higher surface bright...

  11. Finite Element Analysis of Bulge Forming of Laser Welding Dimple Jacket

    Directory of Open Access Journals (Sweden)

    Peisi ZHONG

    2015-11-01

    Full Text Available The stress-strain states of the model of laser welded dimple jacket is analyzed using ANSYS/LS-DYNA in order to determine the relation between bulging height and pressure and to achieve the controllability of pressure distension of the jacket. It is shown that in the same conditions, the bulging height increases with the increasing of the bulging pressure and the space of honeycomb. And it will decrease when the thickness of jacket plate changing larger. A table showing the relation between bulging height and pressure is obtained. An experiment using a test panel is conducted to certify the reliability of finite element analysis. It turns out that the data of finite element analysis is coincident with experimental data, which support finite element method based ANSYS/LS-DYNA can be an efficient way to research the laser welded dimple jacket. The relation table is useful as guidance for the fabrication process.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9704

  12. Two Populations of SiO Masers in the Galactic Bulge

    Science.gov (United States)

    Trapp, Adam; Rich, Robert Michael; Morris, Mark; Pihlstrom, Ylva; Sjouwerman, Lorant; Claussen, Mark J.; Stroh, Michael

    2017-01-01

    We present a summary of the kinematics of stellar SiO masers observed in the direction of the galactic bulge with ALMA (885 sources), and the JVLA (2,479 sources). These objects are selected by color from the MSX point source catalog, which has given an SiO detection rate of ~70%. The presented sample, along with the ~24,000 sources still being observed and reduced, enable radial velocity measurements even in regions with extreme optical extinction. These maser stars are compared to the known bulge surveys: APOGEE (~25,000 sources), BRAVA (~8000 sources), and GIBS (~6,400 sources). We have found that BAaDE stars in the direction of the bulge exist in two subpopulations: (1) A kinematically hot population exhibiting cylindrical rotation consistent with the other bulge surveys, and (2) a kinematically cold population more consistent with a disk population. In the ALMA data, we find evidence for a -200 km/s feature at (l,b) = (-9,0), possibly the symmetric complement to a previously proposed +200 km/s feature (Nidever 2012), that we do not confirm with our data.

  13. SDSS-IV MaNGA: bulge-disc decomposition of IFU data cubes (BUDDI)

    Science.gov (United States)

    Johnston, Evelyn J.; Häußler, Boris; Aragón-Salamanca, Alfonso; Merrifield, Michael R.; Bamford, Steven; Bershady, Matthew A.; Bundy, Kevin; Drory, Niv; Fu, Hai; Law, David; Nitschelm, Christian; Thomas, Daniel; Roman Lopes, Alexandre; Wake, David; Yan, Renbin

    2017-02-01

    With the availability of large integral field unit (IFU) spectral surveys of nearby galaxies, there is now the potential to extract spectral information from across the bulges and discs of galaxies in a systematic way. This information can address questions such as how these components built up with time, how galaxies evolve and whether their evolution depends on other properties of the galaxy such as its mass or environment. We present bulge-disc decomposition of IFU data cubes (BUDDI), a new approach to fit the two-dimensional light profiles of galaxies as a function of wavelength to extract the spectral properties of these galaxies' discs and bulges. The fitting is carried out using GALFITM, a modified form of GALFIT which can fit multiwaveband images simultaneously. The benefit of this technique over traditional multiwaveband fits is that the stellar populations of each component can be constrained using knowledge over the whole image and spectrum available. The decomposition has been developed using commissioning data from the Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at APO (MaNGA) survey with redshifts z 22 arcsec, but can be applied to any IFU data of a nearby galaxy with similar or better spatial resolution and coverage. We present an overview of the fitting process, the results from our tests, and we finish with example stellar population analyses of early-type galaxies from the MaNGA survey to give an indication of the scientific potential of applying bulge-disc decomposition to IFU data.

  14. Near-Infrared Surface Photometry of Bulges and Disks of Spiral Galaxies : The Data

    NARCIS (Netherlands)

    Peletier, R. F.; Balcells, M.

    1997-01-01

    Abstract: We present optical and near-infrared (NIR) surface brightness and colour profiles,in bands ranging from U to K, for the disk and bulge components of a complete sample of 30 nearby S0 to Sbc galaxies with inclinations larger than 50 degrees. We describe in detail the observations and the de

  15. COSMIC-LAB: Terzan 5 as a fossil remnant of the Galactic bulge formation epoch

    CERN Document Server

    Massari, Davide

    2014-01-01

    The formation and evolution of galaxy bulges is one of the most debated topics in the modern astrophysics. One approach to address this issue is to look at the Galactic bulge since it is the closest. According to some theoretical models, our bulge may have built up from the merger of substructures formed from the fragmentation of a gaseous disk in the early phases of Galactic evolution. We may have discovered the remnant of one of these substructures in the stellar system Terzan 5. In fact, Terzan 5 hosts two stellar populations with quite different iron abundances, thus suggesting it once was far more massive than today. Moreover, its peculiar chemistry strikingly resembles that observed in the Galactic bulge. In this Thesis we performed a detailed photometric and spectroscopic analysis of this cluster to determine its formation and evolution. Form the photometric point of view we built a high-resolution differential reddening map in the direction of the system and we measured relative proper motions to sepa...

  16. The Kinematic Signature of Face-On Peanut-Shaped Bulges

    CERN Document Server

    Debattista, V P; Mayer, L; Moore, B; Debattista, Victor P.; Mayer, Lucio

    2005-01-01

    We present a kinematic diagnostic for peanut-shaped bulges in nearly face-on galaxies. The face-on view provides a novel perspective on peanuts which would allow study of their relation to bars and disks in greater detail than hitherto possible. The diagnostic is based on the fact that peanut shapes are associated with a flat density distribution in the vertical direction. We show that the kinematic signature corresponding to such a distribution is a minimum in the fourth-order Gauss-Hermite moment $s_4$. We demonstrate our method on $N$-body simulations of varying peanut strength, showing that strong peanuts can be recognized to inclinations $i \\simeq 30\\degrees$, regardless of the strength of the bar. We also consider compound systems in which a bulge is present in the initial conditions as may happen if bulges form at high redshift through mergers. We show that in this case, because the vertical structure of the bulge is not derived from that of the disk, that the signature of a peanut in $s_4$ is weakened...

  17. Ongoing Formation of Bulges and Black Holes in the Local Universe: New Insights from GALEX

    CERN Document Server

    Kauffmann, G; Budavari, T; Charlot, S; Hoopes, C G; Martin, D C; Seibert, M; Barlow, T A; Bianchi, L; Conrow, T; Donas, J; Forster, K; Friedman, P G; Lee, Y W; Madore, B F; Milliard, B; Morrissey, P F; Neff, S G; Rich, R M; Schiminovich, D; Small, T; Szalay, A S; Wyder, T K; Yi, S K; Kauffmann, Guinevere; Heckman, Timothy M.; Budavari, Tamas; Charlot, Stephane; Hoopes, Charles G.; Seibert, Mark; Barlow, Tom A.; Bianchi, Luciana; Conrow, Tim; Donas, Jose; Forster, Karl; Friedman, Peter G.; Lee, Young-Wook; Madore, Barry F.; Milliard, Bruno; Morrissey, Patrick F.; Neff, Susan G.; Schiminovich, David; Small, Todd; Szalay, Alex S.; Wyder, Ted K.

    2006-01-01

    We analyze a volume-limited sample of massive bulge-dominated galaxies with data from both the Sloan Digital Sky Survey and the Galaxy Evolution Explorer (GALEX) satellite. The galaxies have central velocity dispersions greater than 100 km/s and stellar surface mass densities that lie above the value where galaxies transition from actively star forming to passive systems. The sample is limited to redshifts 0.03bulge-dominated central regions of the galaxies. The GALEX NUV data provide high sensitivity to low rates of global star formation in these systems. Our sample of bulge-dominated galaxies exhibits a much larger dispersion in NUV-r colour than in optical g-r colour. Nearly all of the galaxies with bluer NUV-r colours are AGN. Both GALEX images and SDSS colour profiles demonstrate that the excess UV light is associated with an extended disk. We find that galaxies with red outer regions almost never have a young bulge or a strong...

  18. The evolution of disc galaxies with and without classical bulges since z~1

    CERN Document Server

    Sachdeva, Sonali; Saha, Kanak; Singh, Harinder P

    2015-01-01

    Establishing the relative role of internally and externally driven mechanisms responsible for disc and bulge growth is essential to understand the evolution of disc galaxies. In this context, we have studied the physical properties of disc galaxies without classical bulges in comparison to those with classical bulges since z~0.9. Using images from the Hubble Space Telescope and Sloan Digital Sky Survey, we have computed both parametric and non-parametric measures, and examined the evolution in size, concentration, stellar mass, effective stellar mass density and asymmetry. We find that both disc galaxies with and without classical bulges have gained more than 50% of their present stellar mass over the last ~8 Gyrs. Also, the increase in disc size is found to be peripheral. While the average total (Petrosian) radius almost doubles from z~0.9 to z~0, the average effective radius undergoes a marginal increase in comparison. Additionally, increase in the density of the inner region is evident through the evolutio...

  19. First Detection of the White-Dwarf Cooling Sequence of the Galactic Bulge

    CERN Document Server

    Calamida, A; Anderson, J; Casertano, S; Cassisi, S; Salaris, M; Brown, T; Sokol, J; Bond, H E; Ferraro, I; Ferguson, H; Livio, M; Valenti, J; Buonanno, R; Clarkson, W; Pietrinferni, A

    2014-01-01

    We present Hubble Space Telescope data of the low-reddening Sagittarius window in the Galactic bulge. The Sagittarius Window Eclipsing Extrasolar Planet Search field (3'x3'), together with three more Advanced Camera for Surveys and eight Wide Field Camera 3 fields, were observed in the F606W and F814W filters, approximately every two weeks for two years, with the principal aim of detecting a hidden population of isolated black holes and neutron stars through astrometric microlensing. Proper motions were measured with an accuracy of ~0.1 mas/yr (~4 km/s) at F606W~25.5 mag, and better than ~0.5 mas/yr (20 km/s) at F606W~28 mag, in both axes. Proper-motion measurements allowed us to separate disk and bulge stars and obtain a clean bulge color-magnitude diagram. We then identified for the first time a white dwarf (WD) cooling sequence in the Galactic bulge, together with a dozen candidate extreme horizontal branch stars. The comparison between theory and observations shows that a substantial fraction of the WDs (...

  20. A catalog of bulge, disk, and total stellar mass estimates for the Sloan Digital Sky Survey

    CERN Document Server

    Mendel, J Trevor; Palmer, Michael; Ellison, Sara L; Patton, David R

    2013-01-01

    We present a catalog of bulge, disk, and total stellar mass estimates for ~660,000 galaxies in the Legacy area of the Sloan Digital Sky Survey Data Release 7. These masses are based on a homogeneous catalog of g- and r-band photometry described by Simard et al. (2011), which we extend here with bulge+disk and Sersic profile photometric decompositions in the SDSS u, i, and z bands. We discuss the methodology used to derive stellar masses from these data via fitting to broadband spectral energy distributions (SEDs), and show that the typical statistical uncertainty on total, bulge, and disk stellar mass is ~0.15 dex. Despite relatively small formal uncertainties, we argue that SED modeling assumptions, including the choice of synthesis model, extinction law, initial mass function, and details of stellar evolution likely contribute an additional 60% systematic uncertainty in any mass estimate based on broadband SED fitting. We discuss several approaches for identifying genuine bulge+disk systems based on both th...

  1. Electrodynamics on extrasolar giant planets

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, T. T.; Yelle, R. V. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Lavvas, P. [Groupe de Spectroscopie Moléculaire et Atmosphérique UMR CNRS 7331, Université Reims Champagne-Ardenne, F-51687 Reims (France); Cho, J. Y-K., E-mail: tommi@lpl.arizona.edu [Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)

    2014-11-20

    Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially

  2. Giant Pandas and Their Conservation

    Institute of Scientific and Technical Information of China (English)

    GarethDavey

    2004-01-01

    IT is paradoxical that themost well-known conservation symbol in the world,the giant panda, is a criti-cally endangered species.The estimated 1,600 thatremain live in the high-altitude for-ests of southwest China (within theprovinces of Sichuan, Gansu andShaanxi). Giant pandas are popularand elicit affection and admiration

  3. Famine Threatens the Giant Panda

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Large swathes of arrow bamboo groves at and above 2,700 meters in the Piankou Nature Reserve in Sichuan's Mianyang are producing purple blooms, and some groves have started to wither and die. An absence of bamboo means famine for giant pandas living there. Sichuan has consequently activated its giant panda contingency plan.

  4. First detection of the white dwarf cooling sequence of the galactic bulge

    Energy Technology Data Exchange (ETDEWEB)

    Calamida, A.; Sahu, K. C.; Anderson, J.; Casertano, S.; Brown, T.; Sokol, J.; Bond, H. E.; Ferguson, H.; Livio, M.; Valenti, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cassisi, S.; Buonanno, R.; Pietrinferni, A. [Osservatorio Astronomico di Teramo—INAF, Via M. Maggini, I-64100 Teramo (Italy); Salaris, M. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Ferraro, I. [Osservatorio Astronomico di Roma—INAF, Via Frascati 33, I-00040 Monte Porzio Catone (Italy); Clarkson, W., E-mail: calamida@stsci.edu [University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128 (United States)

    2014-08-01

    We present Hubble Space Telescope data of the low-reddening Sagittarius window in the Galactic bulge. The Sagittarius Window Eclipsing Extrasolar Planet Search field (∼3'× 3'), together with three more Advanced Camera for Surveys and eight Wide-Field Camera 3 fields, were observed in the F606W and F814W filters, approximately every two weeks for 2 yr, with the principal aim of detecting a hidden population of isolated black holes and neutron stars through astrometric microlensing. Proper motions were measured with an accuracy of ≈0.1 mas yr{sup –1} (≈4 km s{sup –1}) at F606W ≈ 25.5 mag, and better than ≈0.5 mas yr{sup –1} (≈20 km s{sup –1}) at F606W ≈ 28 mag, in both axes. Proper-motion measurements allowed us to separate disk and bulge stars and obtain a clean bulge color-magnitude diagram. We then identified for the first time a white dwarf (WD) cooling sequence in the Galactic bulge, together with a dozen candidate extreme horizontal branch stars. The comparison between theory and observations shows that a substantial fraction of the WDs (≈30%) are systematically redder than the cooling tracks for CO-core H-rich and He-rich envelope WDs. This evidence would suggest the presence of a significant number of low-mass WDs and WD-main-sequence binaries in the bulge. This hypothesis is further supported by the finding of two dwarf novae in outburst, two short-period (P ≲ 1 day) ellipsoidal variables, and a few candidate cataclysmic variables in the same field.

  5. Giant Intradiverticular Bladder Tumor

    Science.gov (United States)

    Noh, Mohamad Syafeeq Faeez Md; Aziz, Ahmad Fuad Abdul; Ghani, Khairul Asri Mohd; Siang, Christopher Lee Kheng; Yunus, Rosna; Yusof, Mubarak Mohd

    2017-01-01

    Patient: Male, 74 Final Diagnosis: Giant intradiverticular bladder tumor with metastasis Symptoms: Hematuria Medication:— Clinical Procedure: — Specialty: Urology Objective: Rare disease Background: Intradiverticular bladder tumors are rare. This renders diagnosis of an intradiverticular bladder tumor difficult. Imaging plays a vital role in achieving the diagnosis, and subsequently staging of the disease. Case Report: A 74-year-old male presented to our center with a few months history of constitutional symptoms. Upon further history, he reported hematuria two months prior to presentation, which stopped temporarily, only to recur a few days prior to coming to the hospital. The patient admitted to having lower urinary tract symptoms. However, there was no dysuria, no sandy urine, and no fever. Palpation of his abdomen revealed a vague mass at the suprapubic region, which was non tender. In view of his history and the clinical examination findings, an ultrasound of the abdomen and computed tomography (CT) was arranged. These investigations revealed a giant tumor that seemed to be arising from a bladder diverticulum, with a mass effect and hydronephrosis. He later underwent operative intervention. Conclusions: Intradiverticular bladder tumors may present a challenge to the treating physician in an atypical presentation; thus requiring a high index of suspicion and knowledge of tumor pathophysiology. As illustrated in our case, CT with its wide availability and multiplanar imaging capabilities offers a useful means for diagnosis, disease staging, operative planning, and follow-up. PMID:28246375

  6. Rapidly Evolving Giant Dermatofibroma

    Directory of Open Access Journals (Sweden)

    K. J. Lang

    2010-01-01

    Full Text Available Dermatofibroma, also known as “fibrous histiocytoma”, is a benign dermal or subcutaneous poorly circumscribed proliferation of spindle-shaped fibroblasts and macrophages in the dermis. Although it is commonly present as a brownish nodule the legs of females, it may also arise on the upper extremities, trunk, and rarely on the head. The exact pathogenesis is unclear. However, it is widely believed that the originating insult to the dermis is a folliculitis, an arthropod bite, or an unspecified initial inflammatory condition. Giant dermatofibromas of greater than 5 cm in diameter are rare, with only 22 cases reported in the literature. We present a case of a rapidly evolving pedunculated mass in the groin of a male patient. Histological examination confirmed this to be a giant dermatofibroma. Though this specimen cannot is not confirmed as such, the cellular subtype is sometimes present as a larger lesion with anecdotal reports of local recurrence and distant metastases. The clinical and radiological features which were somewhat suspicious of malignancy are considered in the context of the definitive pathological diagnosis of a benign lesion.

  7. Reinflating Giant Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-01-01

    Two new, large gas-giant exoplanets have been discovered orbiting close to their host stars. A recent study examining these planets and others like them may help us to better understand what happens to close-in hot Jupiters as their host stars reach the end of their main-sequence lives.OversizedGiantsUnbinned transit light curves for HAT-P-65b. [Adapted from Hartman et al. 2016]The discovery of HAT-P-65b and HAT-P-66b, two new transiting hot Jupiters, is intriguing. These planets have periods of just under 3 days and masses of roughly 0.5 and 0.8 times that of Jupiter, but their sizes are whats really interesting: they have inflated radii of 1.89 and 1.59 times that of Jupiter.These two planets, discovered using the Hungarian-made Automated Telescope Network (HATNet) in Arizona and Hawaii, mark the latest in an ever-growing sample of gas-giant exoplanets with radii larger than expected based on theoretical planetary structure models.What causes this discrepancy? Did the planets just fail to contract to the expected size when they were initially formed, or were they reinflated later in their lifetimes? If the latter, how? These are questions that scientists are only now starting to be able to address using statistics of the sample of close-in, transiting planets.Unbinned transit light curves for HAT-P-66b. [Hartman et al. 2016]Exploring Other PlanetsLed by Joel Hartman (Princeton University), the team that discovered HAT-P-65b and HAT-P-66b has examined these planets observed parameters and those of dozens of other known close-in, transiting exoplanets discovered with a variety of transiting exoplanet missions: HAT, WASP, Kepler, TrES, and KELT. Hartman and collaborators used this sample to draw conclusions about what causes some of these planets to have such large radii.The team found that there is a statistically significant correlation between the radii of close-in giant planets and the fractional ages of their host stars (i.e., the stars age divided by its full

  8. One-dimensional tensile constitutive equation cannot be directly generalized to deal with two-dimensional bulging mechanical problems

    Institute of Scientific and Technical Information of China (English)

    SONG; Yuquan(宋玉泉); LIU; Shumei(刘术梅)

    2002-01-01

    Superplastic forming has been extensively applied to manufacture parts and components with complex shapes or high-precisions. However, superplastic formation is in multi-stress state. In a long time, uniaxial tensile constitutive equation has been directly generalized to deal with multi-stress state. Whether so doing is feasible or not needs to be proved in theory. This paper first summarizes the establishing processes of superplastic tensile and bulging constitutive equation with variable m, and, using the analytical expressions of equivalent stress ? and equivalent strain rateof free bulge based on the fundamentals of continuum medium plastic mechanics, derives the analytical expressions of optimum loading rules for superplastic free bulge. By comparing the quantitative results on typical superplastic alloy ZnAl22, it is shown that one-dimensional tensile constitutive equations cannot be directly generalized to deal with two-dimensional bulging quantitative mechanical problems; only superplastic bulging constitutive equation based on bulging stress state can be used to treat the quantitative mechanical problems of bulge.

  9. VIMOS-VLT Integral Field Kinematics of the Giant Low Surface Brightness Galaxy ESO 323-G064

    CERN Document Server

    Coccato, L; Rubin, V C; D'Odorico, S; McGaugh, S S

    2008-01-01

    Aims:We have studied the bulge and the disk kinematics of the giant low surface brightness galaxy ESO 323-G064 in order to investigate its dynamical properties and the radial mass profile of the dark matter (DM) halo. Methods:We observed the galaxy with integral field spectroscopy (VLT/VIMOS, in IFU configuration), measured the positions of the ionized gas by fitting Gaussian functions to the O[III] and Hbeta emission lines, and fit stellar templates to the galaxy spectra to determine velocity and velocity dispersions. We modeled the stellar kinematics in the bulge with spherical isotropic Jeans models and explored the implications of self consistent and dark matter scenarios for NFW and pseudo isothermal halos. Results:In the bulge-dominated region, r<5", the emission lines show multi-peaked profiles. The disk dominated region of the galaxy, 13"

  10. [Giant esophageal fibrovascular polyp].

    Science.gov (United States)

    Palacios, Fernando; Contardo, Carlos; Guevara, Jorge; Vera, Augusto; Aguilar, Luis; Huamán, Manuel; Palomino, Américo; Yabar, Alejandro

    2003-01-01

    Fibrovascular polyps are extremely rare benign neoplasias of the esophagus, which usually originate in the lower cricoid area. They do not produce any discomfort in the patient for a long time, however it may make itself evident by the patient's regurgitation of the polyp, producing asphyxia or, more frequently, dysphagia. The case of a 58 year old male patient is presented herein, with a 9 month record of dysphagia, weight loss and intermittent melena. The barium x-ray showed a distended esophagus, with a tumor running from the upper esophageal sphincter to the cardia. The endoscopy confirmed the presence of a pediculated tumor, implanted in the cervical esophagus. Surgeons suspected the potential malignancy of the tumor and performed a transhiatal esophagectomy. The final pathologic diagnosis was giant fibrovascular esophageal polyp.

  11. Pygmies, Giants, and Skins

    CERN Document Server

    Piekarewicz, J

    2012-01-01

    Understanding the equation of state (EOS) of neutron-rich matter is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of energetic heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova all depend critically on the nuclear-matter EOS. In this contribution I focus on the EOS of cold baryonic matter with special emphasis on its impact on the structure, dynamics, and composition of neutron stars. In particular, I discuss how laboratory experiments on neutron skins as well as on Pygmy and Giant resonances can help us elucidate the structure of these fascinating objects.

  12. Giant clumps in the FIRE simulations: a case study of a massive high-redshift galaxy

    Science.gov (United States)

    Oklopčić, Antonija; Hopkins, Philip F.; Feldmann, Robert; Kereš, Dušan; Faucher-Giguère, Claude-André; Murray, Norman

    2017-02-01

    The morphology of massive star-forming galaxies at high redshift is often dominated by giant clumps of mass ˜108-109 M⊙ and size ˜100-1000 pc. Previous studies have proposed that giant clumps might have an important role in the evolution of their host galaxy, particularly in building the central bulge. However, this depends on whether clumps live long enough to migrate from their original location in the disc or whether they get disrupted by their own stellar feedback before reaching the centre of the galaxy. We use cosmological hydrodynamical simulations from the FIRE (Feedback in Realistic Environments) project which implement explicit treatments of stellar feedback and interstellar medium physics to study the properties of these clumps. We follow the evolution of giant clumps in a massive (M* ˜ 1010.8 M⊙ at z = 1), discy, gas-rich galaxy from redshift z ≳ 2 to z = 1. Even though the clumpy phase of this galaxy lasts over a gigayear, individual gas clumps are short-lived, with mean lifetime of massive clumps of ˜20 Myr. During that time, they turn between 0.1 per cent and 20 per cent of their gas into stars before being disrupted, similar to local giant molecular clouds. Clumps with M ≳ 107 M⊙ account for ˜20 per cent of the total star formation in the galaxy during the clumpy phase, producing ˜1010 M⊙ of stars. We do not find evidence for net inward migration of clumps within the galaxy. The number of giant clumps and their mass decrease at lower redshifts, following the decrease in the overall gas fraction and star formation rate.

  13. A giant Ordovician anomalocaridid.

    Science.gov (United States)

    Van Roy, Peter; Briggs, Derek E G

    2011-05-26

    Anomalocaridids, giant lightly sclerotized invertebrate predators, occur in a number of exceptionally preserved early and middle Cambrian (542-501 million years ago) biotas and have come to symbolize the unfamiliar morphologies displayed by stem organisms in faunas of the Burgess Shale type. They are characterized by a pair of anterior, segmented appendages, a circlet of plates around the mouth, and an elongate segmented trunk lacking true tergites with a pair of flexible lateral lobes per segment. Disarticulated body parts, such as the anterior appendages and oral circlet, had been assigned to a range of taxonomic groups--but the discovery of complete specimens from the middle Cambrian Burgess Shale showed that these disparate elements all belong to a single kind of animal. Phylogenetic analyses support a position of anomalocaridids in the arthropod stem, as a sister group to the euarthropods. The anomalocaridids were the largest animals in Cambrian communities. The youngest unequivocal examples occur in the middle Cambrian Marjum Formation of Utah but an arthropod retaining some anomalocaridid characteristics is present in the Devonian of Germany. Here we report the post-Cambrian occurrence of anomalocaridids, from the Early Ordovician (488-472 million years ago) Fezouata Biota in southeastern Morocco, including specimens larger than any in Cambrian biotas. These giant animals were an important element of some marine communities for about 30 million years longer than previously realized. The Moroccan specimens confirm the presence of a dorsal array of flexible blades attached to a transverse rachis on the trunk segments; these blades probably functioned as gills.

  14. The Giant Magnetocaloric Effect

    Science.gov (United States)

    Pecharsky, Vitalij K.

    1998-03-01

    Since the discovery of the magnetocaloric effect in pure iron by E.Warburg in 1881, it has been measured experimentally on many magnetic metals and compounds. The majority of the materials studied order magnetically undergoing a second order phase transformation. The magnetocaloric effect, typically peaking near the Curie or the Néel temperature, generally ranges from 0.5 to 2 K (in terms of adiabatic temperature change) or at 1 to 4 J/kg K (in terms of isothermal magnetic entropy change) per 1 T magnetic field change. The giant magnetocaloric effect recently discovered in Gd_5(Si_xGe_1-x)4 alloys, where x refrigerant capacity, which is the measure of how much heat can be transferred from a cold to a hot reservoir in one ideal thermodynamic cycle, is larger than that of the best second order phase transition materials by 25 to 100%. When the Gd_5(Si_xGe_1-x)4 alloys are compared with other known materials, which show first order magnetic phase transition, such as Dy, Ho, Er, HoCo_2, NdMn_2Si_2, Fe_0.49Rh_0.51, and (Hf_0.83Ta_0.17)Fe_2+x, only Fe_0.49Rh_0.51 has comparable magnetocaloric properties. However, the first order magnetic phase transition in Fe_0.49Rh_0.51 is irreversible, and the magnetocaloric effect disappears after one magnetizing/demagnetizing cycle. A study of the crystal structure, thermodynamics, and magnetism of the Gd_5(Si_xGe_1-x)4 alloys, where 0 basic relations between the composition, the crystal structure, and the change in thermodynamics and magnetocaloric properties, which occur in the Gd_5(Si_xGe_1-x)4 system, and which brings about the giant magnetocaloric effect when x <= 0.5.

  15. Conductivity Probe

    Science.gov (United States)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air. The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air. The needles on the probe are 15 millimeters (0.6 inch) long. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Solving the long-standing discrepancy in the Microlensing Optical Depth Toward the Galactic Bulge by correcting the stellar number count

    CERN Document Server

    Sumi, T

    2016-01-01

    We find that significant incompleteness in stellar number counts results in a significant overestimate of the microlensing optical depth $\\tau$ and event rate per star per year $\\Gamma$ toward the Galactic bulge from the first two years of MOA-II survey. We find that the completeness in Red Clump Giant (RCG) counts $f_{\\rm RC}$ decreases proportional to the galactic latitude $b$, as $f_{\\rm RC}=(0.63\\pm0.11)-(0.052\\pm0.028)\\times b$, ranging 1-0.7 at $b=-6^\\circ\\sim-1.5^\\circ$. This caused overestimates in $\\tau$ and $\\Gamma$. The previous measurements with all source by Difference Image Analysis (DIA) by MACHO and MOA-I suffer the same bias due to their relatively poor seeing. On the other hand, the measurements with RCG sample by OGLE-II, MACHO and EROS were free from this bias because they seldomected only the events associated to the resolved stars. Thus, the incompleteness both in the number of events and stellar number count cancel out. We estimate $\\tau$ and $\\Gamma$ by correcting this incompleteness. ...

  17. Giant clumps in the FIRE simulations: a case study of a massive high-redshift galaxy

    CERN Document Server

    Oklopcic, Antonija; Feldmann, Robert; Keres, Dusan; Faucher-Giguere, Claude-Andre; Murray, Norman

    2016-01-01

    The morphology of massive star-forming galaxies at high redshift is often dominated by giant clumps of mass ~10^8-10^9 Msun and size ~100-1000 pc. Previous studies have proposed that giant clumps might have an important role in the evolution of their host galaxy, particularly in building the central bulge. However, this depends on whether clumps live long enough to migrate from their original location in the disc or whether they get disrupted by their own stellar feedback before reaching the centre of the galaxy. We use cosmological hydrodynamical simulations from the FIRE (Feedback in Realistic Environments) project that implement explicit treatments of stellar feedback and ISM physics to study the properties of these clumps. We follow the evolution of giant clumps in a massive (stellar mass ~10^10.8 Msun at z=1), discy, gas-rich galaxy from redshift z>2 to z=1. Even though the clumpy phase of this galaxy lasts over a gigayear, individual gas clumps are short-lived, with mean lifetime of massive clumps of ~2...

  18. Atmospheres of Extrasolar Giant Planets

    Science.gov (United States)

    Marley, Mark

    2006-01-01

    The next decade will almost certainly see the direct imaging of extrasolar giant planets around nearby stars. Unlike purely radial velocity detections, direct imaging will open the door to characterizing the atmosphere and interiors of extrasola planets and ultimately provide clues on their formation and evolution through time. This process has already begun for the transiting planets, placing new constraints on their atmospheric structure, composition, and evolution. Indeed the key to understanding giant planet detectability, interpreting spectra, and constraining effective temperature and hence evolution-is the atmosphere. I will review the universe of extrasolar giant planet models, focusing on what we have already learned from modeling and what we will likely be able to learn from the first generation of direct detection data. In addition to these theoretical considerations, I will review the observations and interpretation of the - transiting hot Jupiters. These objects provide a test of our ability to model exotic atmospheres and challenge our current understanding of giant planet evolution.

  19. Atmospheres of Extrasolar Giant Planets

    CERN Document Server

    Marley, M S; Seager, S; Barman, T; Marley, Mark S.; Fortney, Jonathan; Seager, Sara; Barman, Travis

    2006-01-01

    The key to understanding an extrasolar giant planet's spectrum--and hence its detectability and evolution--lies with its atmosphere. Now that direct observations of thermal emission from extrasolar giant planets are in hand, atmosphere models can be used to constrain atmospheric composition, thermal structure, and ultimately the formation and evolution of detected planets. We review the important physical processes that influence the atmospheric structure and evolution of extrasolar giant planets and consider what has already been learned from the first generation of observations and modeling. We pay particular attention to the roles of cloud structure, metallicity, and atmospheric chemistry in affecting detectable properties through Spitzer Space Telescope observations of the transiting giant planets. Our review stresses the uncertainties that ultimately limit our ability to interpret EGP observations. Finally we will conclude with a look to the future as characterization of multiple individual planets in a ...

  20. Landscape of the lost giants

    Science.gov (United States)

    2013-09-01

    The Pleistocene megafauna extinction erased a group of remarkable animals. Whether humans had a prominent role in the extinction remains controversial, but it is emerging that the disappearance of the giants has markedly affected the environment.

  1. Pollution Probe.

    Science.gov (United States)

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  2. Deformation behavior of A6063 tube with initial thickness deviation in free hydraulic bulging

    Institute of Scientific and Technical Information of China (English)

    YANG Lian-fa; GUO Cheng; DENG Yang

    2006-01-01

    Experiment on seamless tubes of aluminum alloy A6063 with initial thickness deviation of 0-20% was conducted through a free hydraulic bulging with tube ends free. The influence of initial thickness deviation on the cross-section profile, thickness distribution, maximum internal pressure and maximum radial expansion was investigated. FEM simulation was also performed in order to examine and help explaining the experimental results. The results indicate that the internal pressure and maximum internal pressure appear to be little influenced by the initial thickness deviation, and that the cross-section profile of the bulged tube changes diversely and can not be a perfect circle. The results also suggest that the increase in initial thickness deviation may lead to a remarkable decrease in maximum radial expansion, and a rapid increase in thickness deviation and the center eccentricity of the inner and outer profiles.

  3. X-ray bursters and the X-ray sources of the galactic bulge

    Science.gov (United States)

    Lewin, W. H. G.; Joss, P. C.

    1981-01-01

    An attempt is made to distill from observational and theoretical information on the galactic bulge X-ray sources in general, and on the X-ray burst sources in particular, those aspects which seem to have the greatest relevance to the understanding of these sources. Galactic bulge sources appear to be collapsed objects of roughly solar mass, in most cases neutron stars, which are accreting matter from low-mass stellar companions. Type I bursts seem to result from thermonuclear flashes in the surface layers of some of these neutron stars, while the type II bursts from the Rapid Burster are almost certainly due to an instability in the accretion flow onto a neutron star. It is concluded that the studies cited offer a new and powerful observational handle on the fundamental properties of neutron stars and of the interacting binary systems in which they are often contained.

  4. Forming limit diagram of aluminum AA6063 tubes at high temperatures by bulge tests

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, Seyed Jalal; Naeini, Hassan Moslemi; Liaghat, Gholamhossein [Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Tafti, Rooholla Azizi [Yazd University, Yazd (Iran, Islamic Republic of); Rahmani, Farzad [Kar Higher Education Institute, Qazvin (Iran, Islamic Republic of)

    2014-11-15

    A free bulge test and ductile fracture criteria were used to obtain the forming limit diagrams (FLD) of aluminum alloy AA6063 tubes at high temperatures. Ductile fracture criteria were calibrated using the results of uniaxial tension tests at various elevated temperatures and different strain rates through adjusting the Zener-Holloman parameter. High temperature free bulge test of tubes was simulated in finite element software Abaqus, and tube bursting was predicted using ductile fracture criteria under different loading paths. FLDs which were obtained from finite element simulation were compared to experimental results to select the most accurate criterion for prediction of forming limit diagram. According to the results, all studied ductile fracture criteria predict similarly when forming condition is close to the uniaxial tension, while Ayada criterion predicts the FLD at 473 K and 573 K very well.

  5. Inverse Approach to Evaluate the Tubular Material Parameters Using the Bulging Test

    Directory of Open Access Journals (Sweden)

    Yulong Ge

    2015-01-01

    Full Text Available Tubular material parameters are required for both part manufactory process planning and finite element simulations. The bulging test is one of the most credible ways to detect the property parameters for tubular material. The inverse approach provides more effective access to the accurate material evaluation than with direct identifications. In this paper, a newly designed set of bulging test tools is introduced. An inverse procedure is adopted to determine the tubular material properties in Krupkowski-Swift constitutive model of material deformation using a hybrid algorithm that combines the differential evolution and Levenberg-Marquardt algorithms. The constitutive model’s parameters obtained from the conventional and inverse methods are compared, and this comparison shows that the inverse approach is able to offer more information with higher reliability and can simplify the test equipment.

  6. The battle of the bulge: re-evaluating hair follicle stem cells in wound repair.

    Science.gov (United States)

    Garcin, Clare L; Ansell, David M

    2017-02-01

    The hair follicle has an established role in wound re-epithelialisation, a phenomenon that has been appreciated since at least the first half of the last century. The bulge niche, one location of hair follicle epithelial stem cells has been of particular interest to researchers over recent years, with numerous studies showing its ability to directly contribute to epidermal repair. However, recent work has highlighted other progenitor regions of the hair follicle that appear to act as stem cells during epidermal repair. In addition, several studies within the last 12 months have questioned the importance of the bulge during re-epithelialisation, producing conflicting literature. Here we provide a new model to demonstrate how several important differences in experimental design between studies could account for these seemingly opposing findings, which may have implications for how future studies are conducted.

  7. VVV: The near-IR Milky Way bulge and plane survey*

    Directory of Open Access Journals (Sweden)

    Lucas P.

    2012-02-01

    Full Text Available The ESO public survey “VISTA Variables in the Via Lactea” (VVV started mapping the inner disk and bulge of our Galaxy with the VISTA 4m telescope in the near-IR in 2010. The planned survey area of 520 deg2 is observed in the Z, Y, J, H and Ks filters, and in addition more than 100 epochs of repeated imaging in Ks will be collected over ∼5 years. The final products will be a deep near-IR atlas in five passbands, and catalogue of more than a million variable sources. This public survey will provide data available to the whole community and therefore will enable further studies of the history of the Milky Way, its star cluster evolution, and the population census of the Galactic Bulge and center, as well as the investigations of the star formation regions in the disk.

  8. The kinematics of the bulge and the disc of NGC 7331

    CERN Document Server

    Bottema, R

    1999-01-01

    Presented are spectroscopic emission and absorption line observations along the major axis of the Sb galaxy NGC 7331. The kinematics of the ionized gas and the stars appears to be regular, but contrary to what one might expect, the emission line gas rotates slower than the stars in the inner regions. This may be caused by an inner inclined and warped gas layer. In the bulge region the absorption line profiles have a shallow extension towards the systemic velocity, but no counterrotation is observed which is contrary to previous claims. These claims might have been based on a wrong interpretation of the employed analysis method. A kinematical model has been made in order to explain the observed sizes and shapes of the absorption line profiles. It appeared necessary to combine a rapidly rotating disc having a radially decreasing velocity dispersion with a slowly rotating constant dispersion bulge. Then, simultaneously, the observed stellar radial velocities, the velocity dispersions and the observed asymmetry o...

  9. The BRAVE Program. I. Improved Bulge Stellar Velocity Dispersion Estimates for a Sample of Active Galaxies

    Science.gov (United States)

    Batiste, Merida; Bentz, Misty C.; Manne-Nicholas, Emily R.; Onken, Christopher A.; Bershady, Matthew A.

    2017-02-01

    We present new bulge stellar velocity dispersion measurements for 10 active galaxies with secure MBH determinations from reverberation mapping. These new velocity dispersion measurements are based on spatially resolved kinematics from integral-field (IFU) spectroscopy. In all but one case, the field of view of the IFU extends beyond the effective radius of the galaxy, and in the case of Mrk 79 it extends to almost one half the effective radius. This combination of spatial resolution and field of view allows for secure determinations of stellar velocity dispersion within the effective radius for all 10 target galaxies. Spatially resolved maps of the first (V) and second (σ⋆) moments of the line of sight velocity distribution indicate the presence of kinematic substructure in most cases. In future projects we plan to explore methods of correcting for the effects of kinematic substructure in the derived bulge stellar velocity dispersion measurements.

  10. Giant pulses from the Crab pulsar: A wide-band study

    CERN Document Server

    Karuppusamy, R; van Straten, W

    2010-01-01

    The Crab pulsar is well-known for its anomalous giant radio pulse emission. Past studies have concentrated only on the very bright pulses or were insensitive to the faint end of the giant pulse luminosity distribution. With our new instrumentation offering a large bandwidth and high time resolution combined with the narrow radio beam of the Westerbork Synthesis Radio Telescope (WSRT), we seek to probe the weak giant pulse emission regime. The WSRT was used in a phased array mode, resolving a large fraction of the Crab nebula. The resulting pulsar signal was recorded using the PuMa II pulsar backend and then coherently dedispersed and searched for giant pulse emission. After careful flux calibration, the data were analysed to study the giant pulse properties. The analysis includes the distributions of the measured pulse widths, intensities, energies, and scattering times. The weak giant pulses are shown to form a separate part of the intensity distribution. The large number of giant pulses detected were used t...

  11. Annular Elastolytic Giant Cell Granuloma

    Directory of Open Access Journals (Sweden)

    Khandpur Sujay

    2001-01-01

    Full Text Available The clinical and histopathological features of annular elastolytic giant cell granuloma in a 42â€"year-old female patient are described. The condition presented as annular erythematous plaques over sun- exposed skin sparing the face. Histopathology revealed dense granulomatous infiltrate consisting of numerous giant cells and lymphohistiocytes without any palisading arrangement or necrobiosis. The features differentiating it from other similar granulomatous disorders are discussed.

  12. Clinical relevance of "bulging eyes" for the differential diagnosis of spinocerebellar ataxias

    OpenAIRE

    Adriana Moro; Renato Puppi Munhoz; Walter Oleschko Arruda; Salmo Raskin; Hélio Afonso Ghizoni Teive

    2013-01-01

    Objective To investigate the relevance of the clinical finding of bulging eyes (BE) in a large Brazilian cohort of spinocerebellar ataxias (SCA), to assess its importance in clinical differential diagnosis among SCA. Methods Three hundred sixty-nine patients from 168 Brazilian families with SCA were assessed with neurological examination and molecular genetic testing. BE was characterized by the presence of eyelid retraction. Genetically ascertained SCA3 was detected in 167 patients, SCA10 ...

  13. Bulges and discs in the local Universe. Linking the galaxy structure to star formation activity

    Science.gov (United States)

    Morselli, L.; Popesso, P.; Erfanianfar, G.; Concas, A.

    2017-01-01

    We use a sample built on the SDSS DR7 catalogue and the bulge-disc decomposition of Simard et al. (2011, ApJS, 196, 11) to study how the bulge and disc components contribute to the parent galaxy's star formation activity, by determining its position in the star formation rate (SFR) - stellar mass (M⋆) plane at 0.02 age or metallicity content, suggesting different evolutionary paths for bulges on the MS and green valley with respect to those in the quiescence region. The disc g-r colour anti-correlates at any mass with the distance from the MS, getting redder when approaching the MS lower envelope and the quiescence region. The anti-correlation flattens as a function of the stellar mass, likely due to a higher level of dust obscuration in massive SF galaxies. We conclude that the position of a galaxy in the Log SFR - Log M⋆ plane depends on the star formation activity of its components: above the MS both bulge and disc are actively star forming. The nuclear activity is the first to be suppressed, moving the galaxies on the MS. Once the disc stops forming stars as well, the galaxy moves below the MS and eventually to the quiescence region. This is confirmed by a significant percentage ( 45%) of passive galaxies with a secure two component morphology, coexisting with a population of pure spheroidals. Our findings are qualitatively in agreement with the compaction-depletion scenario, in which subsequent phases of gas inflow in the centre of a galaxy and depletion due to high star formation activity move the galaxy across the MS before the final quenching episode takes place.

  14. The Black Hole-Bulge Mass Relation in Megamaser Host Galaxies

    Science.gov (United States)

    Läsker, Ronald; Greene, Jenny E.; Seth, Anil; van de Ven, Glenn; Braatz, James A.; Henkel, Christian; Lo, K. Y.

    2016-07-01

    We present Hubble Space Telescope (HST) images for nine megamaser disk galaxies with the primary goal of studying photometric BH-galaxy scaling relations. The megamaser disks provide the highest-precision extragalactic BH mass measurements, while our high-resolution HST imaging affords us the opportunity to decompose the complex nuclei of their late-type hosts in detail. Based on the morphologies and shapes of the galaxy nuclei, we argue that most of these galaxies’ central regions contain secularly evolving components (pseudo-bulges), and in many cases we photometrically identify co-existing “classical” bulge components as well. Using these decompositions, we draw the following conclusions. (1) The megamaser BH masses span two orders of magnitude (106-{10}8 {M}⊙ ) while the stellar mass of their spiral host galaxies are all ˜ {10}11 {M}⊙ within a factor of three. (2) The BH masses at a given bulge mass or total stellar mass in the megamaser host spiral galaxies tend to be lower than expected when compared to an extrapolation of the BH-bulge relation based on early-type galaxies. (3) The observed large intrinsic scatter of BH masses in the megamaser host galaxies raises the question of whether scaling relations exist in spiral galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 12185.

  15. Black hole starvation and bulge evolution in a Milky Way-like galaxy

    Science.gov (United States)

    Bonoli, Silvia; Mayer, Lucio; Kazantzidis, Stelios; Madau, Piero; Bellovary, Jillian; Governato, Fabio

    2016-07-01

    We present a new zoom-in hydrodynamical simulation, `ErisBH', which features the same initial conditions, resolution, and sub-grid physics as the close Milky Way-analogue `Eris' (Guedes et al. 2011), but it also includes prescriptions for the formation, growth and feedback of supermassive black holes. This enables a detailed study of black hole evolution and the impact of active galactic nuclei (AGN) feedback in a late-type galaxy. At z = 0, the main galaxy of ErisBH hosts a central black hole of 2.6 × 106 M⊙, which correlates to the bulge mass and the galaxy's central velocity dispersion similarly to what is observed in the Milky Way and in pseudobulges. During its evolution, the black hole grows mostly through mergers with black holes brought in by accreted satellite galaxies and very little by gas accretion (due to the modest amount of gas that reaches the central regions). AGN feedback is weak and it affects only the central 1-2 kpc. Yet, it limits the growth of the bulge, which results in a rotation curve that, in the inner ˜ 10 kpc, is flatter than that of Eris. We find that ErisBH is more prone to instabilities than Eris, due to its smaller bulge and larger disc. At z ˜ 0.3, an initially small bar grows to be of a few disc scalelengths in size. The formation of the bar causes a small burst of star formation in the inner few hundred pc, provides new gas to the central black hole and causes the bulge to have a boxy/peanut morphology by z = 0.

  16. Gas giants in hot water: inhibiting giant planet formation and planet habitability in dense star clusters through cosmic time

    Science.gov (United States)

    Thompson, Todd A.

    2013-05-01

    I show that the temperature of nuclear star clusters, starburst clusters in M82, compact high-z galaxies and some globular clusters of the Galaxy likely exceeded the ice-line temperature (TIce ≈ 150-170 K) during formation for a time comparable to the planet formation time-scale. The protoplanetary discs within these systems will thus, not have an ice line, decreasing the total material available for building protoplanetary embryos, inhibiting the formation of gas- and ice-giants if they form by core accretion, and prohibiting habitability. Planet formation by gravitational instability is similarly suppressed because Toomre's Q > 1 in all but the most massive discs. I show that cluster irradiation can in many cases dominate the thermodynamics and structure of passive and active protoplanetary discs for semi-major axes larger than ˜1-5 au. I discuss these results in the context of the observed lack of planets in 47 Tuc. I predict that a similar search for planets in the globular cluster NGC 6366 ([Fe/H] = -0.82) should yield detections, whereas (counterintuitively) the relatively metal-rich globular clusters NGC 6440, 6441 and 6388 should be devoid of giant planets. The characteristic stellar surface density above which TIce is exceeded in star clusters is ˜ 6 × 103 M⊙ pc- 2 f- 1/2dg, MW, where fdg, MW is the dust-to-gas ratio of the embedding material, normalized to the Milky Way value. Simple estimates suggest that ˜5-50 per cent of the stars in the universe formed in an environment exceeding this surface density. Future microlensing planet searches that directly distinguish between the bulge and disc planet populations of the Galaxy and M31 can test these predictions. Caveats and uncertainties are detailed.

  17. MAPPING DIRECTLY IMAGED GIANT EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Kostov, Veselin [Department of Physics and Astronomy, Johns Hopkins University, 366 Bloomberg Center, 3400 North Charles Street, Baltimore, MD 21218 (United States); Apai, Daniel, E-mail: vkostov@pha.jhu.edu [Department of Astronomy, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85718 (United States)

    2013-01-01

    With the increasing number of directly imaged giant exoplanets, the current atmosphere models are often not capable of fully explaining the spectra and luminosity of the sources. A particularly challenging component of the atmosphere models is the formation and properties of condensate cloud layers, which fundamentally impact the energetics, opacity, and evolution of the planets. Here we present a suite of techniques that can be used to estimate the level of rotational modulations these planets may show. We propose that the time-resolved observations of such periodic photometric and spectroscopic variations of extrasolar planets due to their rotation can be used as a powerful tool to probe the heterogeneity of their optical surfaces. In this paper, we develop simulations to explore the capabilities of current and next-generation ground- and space-based instruments for this technique. We address and discuss the following questions: (1) what planet properties can be deduced from the light curve and/or spectra, and in particular can we determine rotation periods, spot coverage, spot colors, and spot spectra?; (2) what is the optimal configuration of instrument/wavelength/temporal sampling required for these measurements?; and (3) can principal component analysis be used to invert the light curve and deduce the surface map of the planet? Our simulations describe the expected spectral differences between homogeneous (clear or cloudy) and patchy atmospheres, outline the significance of the dominant absorption features of H{sub 2}O, CH{sub 4}, and CO, and provide a method to distinguish these two types of atmospheres. Assuming surfaces with and without clouds for most currently imaged planets the current models predict the largest variations in the J band. Simulated photometry from current and future instruments is used to estimate the level of detectable photometric variations. We conclude that future instruments will be able to recover not only the rotation periods

  18. The Formation of Bulges, Discs and Two Component Galaxies in the CANDELS Survey at z < 3

    CERN Document Server

    Margalef-Bentabol, Berta; Mortlock, Alice; Hartley, Will; Duncan, Kenneth; Ferguson, Harry C; Koekemoer, Anton M; Dekel, Avishai; Primack, Joel R

    2016-01-01

    We examine a sample of 1495 galaxies in the CANDELS fields to determine the evolution of two component galaxies, including bulges and discs, within massive galaxies at the epoch 1 < z < 3 when the Hubble sequence forms. We fit all of our galaxies' light profiles with a single S\\'ersic fit, as well as with a combination of exponential and S\\'ersic profiles. The latter is done in order to describe a galaxy with an inner and an outer component, or bulge and disc component. We develop and use three classification methods (visual, F-test and the RFF) to separate our sample into 1-component galaxies (disc/spheroids-like galaxies) and 2-component galaxies (galaxies formed by an 'inner part' or bulge and an 'outer part' or disc). We then compare the results from using these three different ways to classify our galaxies. We find that the fraction of galaxies selected as 2-component galaxies increases on average 50 per cent from the lowest mass bin to the most massive galaxies, and decreases with redshift by a fa...

  19. The Effects of Gas on Morphological Transformation in Mergers: Implications for Bulge and Disk Demographics

    CERN Document Server

    Hopkins, Philip F; Cox, Thomas J; Hernquist, Lars; Jogee, Shardha; Keres, Dusan; Ma, Chung-Pei; Robertson, Brant; Stewart, Kyle

    2009-01-01

    Transformation of disks into spheroids via mergers is a well-accepted element of galaxy formation models. However, recent simulations have shown that bulge formation is suppressed in increasingly gas-rich mergers. We investigate the global implications of these results in a cosmological framework, using independent approaches: empirical halo-occupation models (where galaxies are populated in halos according to observations) and semi-analytic models. In both, ignoring the effects of gas in mergers leads to the well-known over-production of spheroids at low masses: low and intermediate-mass galaxies are inescapably predicted to be bulge-dominated (B/T~0.5 at <10^10 M_sun, with almost no 'bulgeless' systems), even if they have avoided major mergers. Including the different physical behavior of gas in mergers immediately leads to a dramatic change: bulge formation is suppressed in low-mass galaxies, which are observed to be gas-rich (giving B/T~0.1 at <10^10 M_sun, with a number of bulgeless galaxies in goo...

  20. The INTEGRAL Galactic bulge monitoring program: the first 1.5 years

    DEFF Research Database (Denmark)

    Kuulkers, E.; Shaw, S.E.; Paizis, A.;

    2007-01-01

    Aims. The Galactic bulge region is a rich host of variable high-energy point sources. Since 2005, February 17 we are monitoring the source activity in the Galactic bulge region regularly and frequently, i.e., about every three days, with the instruments onboard INTEGRAL. Thanks to the large field...... of view, the imaging capabilities and the sensitivity at hard X-rays, we are able to present for the first time a detailed homogeneous (hard) X-ray view of a sample of 76 sources in the Galactic bulge region. Methods. We describe the successful monitoring program and show the first results from the start......-2901b, IGR J17536-2339, and IGR J17541-2252. We report here on some of the high-energy properties of these sources. Conclusions. The high-energy light curves of all the sources in the field of view, and the high-energy images of the region, are made available through the WWW, as soon as possible after...

  1. Chemical abundances in a high velocity RR Lyrae star near the bulge

    CERN Document Server

    Hansen, Camilla Juul; Koch, Andreas; Xu, Siyi; Kunder, Andrea; Ludwig, Hans-Guenter

    2016-01-01

    Low-mass, variable, high-velocity stars are interesting study cases for many aspects of Galactic structure and evolution. Until recently, the only known high- or hyper-velocity stars were young stars thought to originate from the Galactic centre. Wide-area surveys like APOGEE and BRAVA have found several low-mass stars in the bulge with Galactic rest-frame velocities larger than 350 km/s. In this study we present the first abundance analysis of a low-mass, RR Lyrae star, located close to the Galactic bulge, with a space motion of ~ -400 km/s. Using medium-resolution spectra, we derive abundances (including upper limits) of 11 elements. These allow us to chemically tag the star and discuss its origin, although our derived abundances and metallicity, at [Fe/H] =-0.9 dex, do not point toward one unambiguous answer. Based on the chemical tagging, we cannot exclude that it originated in the bulge. However, combining its retrograde orbit and the derived abundances suggests that the star was accelerated from the out...

  2. The old and heavy bulge of M31 I. Kinematics and stellar populations

    CERN Document Server

    Saglia, R P; Bender, R; Montalto, M; Lee, C -H; Riffeser, A; Seitz, S; Morganti, L; Gerhard, O; Hopp, U

    2009-01-01

    We present new optical long-slit data along 6 position angles of the bulge region of M31. We derive accurate stellar and gas kinematics reaching 5 arcmin from the center, where the disk light contribution is always less than 30%, and out to 8 arcmin along the major axis, where the disk makes 55% of the total light. We show that the velocity dispersions of McElroy (1983) are severely underestimated (by up to 50 km/s) and previous dynamical models have underestimated the stellar mass of M31's bulge by a factor 2. Moreover, the light-weighted velocity dispersion of the galaxy grows to 166 km/s, thus reducing the discrepancy between the predicted and measured mass of the black hole at the center of M31. The kinematic position angle varies with distance, pointing to triaxiality. We detect gas counterrotation near the bulge minor axis. We measure eight emission-corrected Lick indices. They are approximately constant on circles. We derive the age, metallicity and alpha-element overabundance profiles. Except for the ...

  3. DISCOVERY OF A PAIR OF CLASSICAL CEPHEIDS IN AN INVISIBLE CLUSTER BEYOND THE GALACTIC BULGE

    Energy Technology Data Exchange (ETDEWEB)

    Dékány, I.; Palma, T. [Millennium Institute of Astrophysics, Santiago (Chile); Minniti, D. [Departamento de Ciencias Físicas, Universidad Andres Bello, República 220, Santiago (Chile); Hajdu, G.; Alonso-García, J.; Hempel, M.; Catelan, M. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago (Chile); Gieren, W. [Departamento de Astronomía, Universidad de Concepción, Casilla 160 C, Concepción (Chile); Majaess, D. [Department of Astronomy and Physics, Saint Mary’s University, Halifax, NS B3H 3C3 (Canada)

    2015-01-20

    We report the discovery of a pair of extremely reddened classical Cepheid variable stars located in the Galactic plane behind the bulge, using near-infrared (NIR) time-series photometry from the VISTA Variables in the Vía Láctea Survey. This is the first time that such objects have ever been found in the opposite side of the Galactic plane. The Cepheids have almost identical periods, apparent brightnesses, and colors. From the NIR Leavitt law, we determine their distances with ∼1.5% precision and ∼8% accuracy. We find that they have a same total extinction of A(V)≃32 mag, and are located at the same heliocentric distance of 〈d〉=11.4±0.9 kpc, and less than 1 pc from the true Galactic plane. Their similar periods indicate that the Cepheids are also coeval, with an age of ∼48±3 Myr, according to theoretical models. They are separated by an angular distance of only 18.″3, corresponding to a projected separation of ∼1 pc. Their position coincides with the expected location of the Far 3 kpc Arm behind the bulge. Such a tight pair of similar classical Cepheids indicates the presence of an underlying young open cluster that is both hidden behind heavy extinction and disguised by the dense stellar field of the bulge. All our attempts to directly detect this “invisible cluster” have failed, and deeper observations are needed. (letters)

  4. On black hole masses, radio-loudness and bulge luminosities of Seyfert galaxies

    CERN Document Server

    Wu, X B; Wu, Xue-Bing

    2001-01-01

    We estimated black hole masses for 9 Seyfert 1 and 13 Seyfert 2 galaxies in the Palomar and CfA bright Seyfert samples using the tight correlation between black hole mass and bulge velocity dispersion. Combining other 13 Seyfert 1s and 2 Seyfert 2s in these samples but with black hole masses measured recently by reverberation mapping and stellar/gas dynamics, we studied the correlations of black hole masses with radio loudness and bulge luminosities for a sample of 37 Seyfert galaxies. We found that if radio-loudness is measured using the optical and radio luminosities of the nuclear components, the black hole masses of radio-loud Seyfert 1s tend to increase with the radio-loudness. The black hole masses of all Seyfert galaxies increase with the radio power, but Seyfert galaxies have larger radio powers than nearby galaxies with the same black hole masses. In addition, the correlation between black hole masses and bulge V-band luminosities for Seyfert galaxies is consistent with that found for quasars and nor...

  5. Milky Way mass galaxies with X-shaped bulges are not rare in the local Universe

    CERN Document Server

    Laurikainen, E; Athanassoula, E; Bosma, A; Herrera-Endoqui, M

    2014-01-01

    Boxy/Peanut/X-shaped (B/P/X) bulges are studied using the 3.6 micron images from the Spitzer Survey of Stellar Structure in Galaxies (S4G), and the Ks-band images from the Near-IR S0 galaxy Survey (NIRS0S). They are compared with the properties of barlenses, defined as lens-like structures embedded in bars. Based on observations and recent simulation models we show evidence that barlenses are the more face-on counterparts of B/P/X-shaped bulges. Using unsharp masks 18 new X-shaped structures were identified, covering a large range of galaxy inclinations. The similar masses and red B-3.6 micron colors of the host galaxies, and the fact that the combined axial ratio distribution of the host galaxy disks is flat, supports the interpretation that barlenses and X-shapes are physically the same phenomenon. Our detailed 2D multi-component decompositions for 30 galaxies, fitting the barlens/X-shape with a separate component indicate very small or non-existent classical bulges. Taking into account that the structures ...

  6. The Battle of the Bulge: Decay of the Thin, False Cosmic String

    CERN Document Server

    Lee, Bum-Hoon; MacKenzie, Richard; Paranjape, M B; Yajnik, U A; Yeom, Dong-han

    2013-01-01

    We consider the decay of cosmic strings that are trapped in the false vacuum in a theory of scalar electrodynamics in 3+1 dimensions. We restrict our analysis to the case of thin-walled cosmic strings which occur when large magnetic flux trapped inside the string. Thus the string looks like a tube of fixed radius, at which it is classically stable. The core of the string contains magnetic flux in the true vacuum, while outside the string, separated by a thin wall, is the false vacuum. The string decays by tunnelling to a configuration which is represented by a bulge, where the region of true vacuum within, is ostensibly enlarged. The bulge can be described as the meeting, of a kink soliton anti-soliton pair, along the length of the string. It can be described as a bulge appearing in the initial string, starting from the string of small, classically stable radius, expanding to a fat string of large, classically unstable (to expansion) radius and then returning back to the string of small radius along its lengt...

  7. The morphologies of massive galaxies from z~3 - Witnessing the 2 channels of bulge growth

    CERN Document Server

    Huertas-Company, Marc; Mei, Simona; Shankar, Francesco; Bernardi, Mariangela; Daddi, Emanuele; Barro, Guillermo; Cabrera-Vives, Guillermo; Cattaneo, Andrea; Dimauro, Paola; Gravet, Romaric

    2015-01-01

    [abridged] We quantify the morphological evolution of z~0 massive galaxies ($M*/M_\\odot\\sim10^{11}$) from z~3 in the 5 CANDELS fields. The progenitors are selected using abundance matching techniques to account for the mass growth. The morphologies strongly evolve from z~3. At z3-4) and small effective radii ($R_e$~1 kpc) pointing towards an early formation through gas-rich mergers or VDI. Between z~ 2.5 and z~0, they rapidly increase their size by a factor of ~4-5, become all passive but their global morphology remains unaltered. The structural evolution is independent of the gas fractions, suggesting that it is driven by ex-situ events. The remaining 60% experience a gradual morphological transformation, from clumpy disks to more regular bulge+disks systems, essentially happening at z>1. It results in the growth of a significant bulge component (n~3) for 2/3 of the systems possibly through the migration of clumps while the remaining 1/3 keeps a rather small bulge (n~1.5-2). The transition phase between dist...

  8. Hunting for accretors towards the bulge with the Chandra and Hubble Space Telescopes

    Science.gov (United States)

    Howard, Brittany; Aufdemberge, Emily; Hong, JaeSub; Clarkson, William I.; Van Den Berg, Maureen; Sahu, Kailash C.; Grindlay, Jonanthan; Rich, Robert Michael; Calamida, Annalisa

    2017-01-01

    We are undertaking a deep X-ray/optical observational campaign of a well-studied low-extinction region towards the Galactic Bulge. Crucially, we have chosen a field for which very high-quality proper motions already exist from Hubble Space Telescope (HST) observations (or can be produced from a combination of archival and new observations covering much of the large Chandra ACIS-I field of view), allowing kinematic population membership constraints for X-ray point sources. While the ultimate scientific goal is to provide a new constraint on bulge formation models by tracing the accreting binary population that can be kinematically identified with the bulge, a large number of science investigations will ultimately be enabled by this initiative.Here we report on our search for accreting binaries within the Sagittarius Window. The deep Chandra observations provide a rich catalog of X-ray point sources, while the new HST observations allow a sensitive search for Hα emission-line objects including the accreting binaries we seek. We present the techniques used to uncover accretors, and outline progress towards a catalog of X-ray point sources with kinematic and Hα identifications.

  9. Nonlinear Local Bending Response and Bulging Factors for Longitudinal and Circumferential Cracks in Pressurized Cylindrical Shells

    Science.gov (United States)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2000-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.

  10. The cluster Terzan 5 as a remnant of a primordial building block of the Galactic bulge

    CERN Document Server

    Ferraro, F R; Mucciarelli, A; Beccari, G; Rich, R M; Origlia, L; Lanzoni, B; Rood, R T; Valenti, E; Bellazzini, M; Ransom, S M; Cocozza, G; 10.1038/nature08581

    2009-01-01

    Globular star clusters are compact and massive stellar systems old enough to have witnessed the entire history of our Galaxy, the Milky Way. Although recent results suggest that their formation may have been more complex than previously thought, they still are the best approximation to a stellar population formed over a relatively short time scale (less than 1 Gyr) and with virtually no dispersion in the iron content. Indeed, only one cluster-like system (omega Centauri) in the Galactic halo is known to have multiple stellar populations with a significant spread in iron abundance and age4,5. Similar findings in the Galactic bulge have been hampered by the obscuration arising from thick and varying layers of interstellar dust. Here we report that Terzan 5, a globular-cluster-like system in the Galactic bulge, has two stellar populations with different iron content and ages. Terzan 5 could be the surviving remnant of one of the primordial building blocks that are thought to merge and form galaxy bulges.

  11. A new [Oiii] \\lamda5007 {\\AA} Galactic Bulge Planetary Nebula Luminosity Function

    CERN Document Server

    Kovacevic, A V; Jacoby, G H; Miszalski, B

    2010-01-01

    The Planetary Nebulae Luminosity Function (PNLF) describes the collective luminosity evolution for a given population of Planetary Nebulae (PN). A major paradox in current PNLF studies is in the universality of the absolute magnitude of the brightest PNe with galaxy type and age. The progenitor central-star mass required to produce such bright PNe should have evolved beyond the PNe phase in old, red elliptical galaxies whose stellar populations are ~10~Gyr. Only by dissecting this resolved population in detail can we attempt to address this conundrum. The Bulge of our Galaxy is predominantly old \\citep{Z03} and can therefore be used as a proxy for an elliptical galaxy, but with the significant advantage that the population is resolvable from ground based telescopes. We have used the MOSAIC-II camera on the Blanco 4-m at CTIO to carefully target ~80 square degrees of the Galactic Bulge and establish accurate [Oiii] fluxes for 80% of Bulge PNe currently known from the Acker and MASH catalogues. Construction of ...

  12. Powerful Radio Emission From Low-mass Supermassive Black Holes Favors Disk-like Bulges

    CERN Document Server

    Wang, J; Xu, D W; Wei, J Y

    2016-01-01

    The origin of spin of low-mass supermassive black hole (SMBH) is still a puzzle at present. We here report a study on the host galaxies of a sample of radio-selected nearby ($z<0.05$) Seyfert 2 galaxies with a BH mass of $10^{6-7} M_\\odot$. By modeling the SDSS $r$-band images of these galaxies through a 2-dimensional bulge+disk decomposition, we identify a new dependence of SMBH's radio power on host bulge surface brightness profile, in which more powerful radio emission comes from a SMBH associated with a more disk-like bulge. This result means low-mass and high-mass SMBHs are spun up by two entirely different modes that correspond to two different evolutionary paths. A low-mass SMBH is spun up by a gas accretion with significant disk-like rotational dynamics of the host galaxy in the secular evolution, while a high-mass one by a BH-BH merger in the merger evolution.

  13. Bulge Growth and Quenching since z = 2.5 in CANDELS/3D-HST

    CERN Document Server

    Lang, Philipp; Somerville, Rachel; Schreiber, Natascha M Forster; Genzel, Reinhard; Bell, Eric F; Brammer, Gabe; Dekel, Avishai; Faber, Sandra M; Ferguson, Henry C; Grogin, Norman A; Kocevski, Dale D; Koekemoer, Anton M; Lutz, Dieter; McGrath, Elizabeth J; Momcheva, Ivelina; Nelson, Erica J; Primack, Joel R; Rosario, David J; Skelton, Rosalind E; Tacconi, Linda J; van Dokkum, Pieter G; Whitaker, Katherine E

    2014-01-01

    Exploiting the deep high-resolution imaging of all 5 CANDELS fields, and accurate redshift information provided by 3D-HST, we investigate the relation between structure and stellar populations for a mass-selected sample of 6764 galaxies above 10^10 Msun, spanning the redshift range 0.5 < z < 2.5. For the first time, we fit 2-dimensional models comprising a single Sersic fit and two-component (i.e., bulge + disk) decompositions not only to the H-band light distributions, but also to the stellar mass maps reconstructed from resolved stellar population modeling. We confirm that the increased bulge prominence among quiescent galaxies, as reported previously based on rest-optical observations, remains in place when considering the distributions of stellar mass. Moreover, we observe an increase of the typical Sersic index and bulge-to-total ratio (with median B/T reaching 40-50%) among star-forming galaxies above 10^11 Msun. Given that quenching for these most massive systems is likely to be imminent, our fin...

  14. The Growth of Black Holes and Bulges at the Cores of Cooling Flows

    CERN Document Server

    Rafferty, D A; Nulsen, P E J; Wise, M W

    2006-01-01

    Central cluster galaxies (cDs) in cooling flows are growing rapidly through gas accretion and star formation. At the same time, AGN outbursts fueled by accretion onto supermassive black holes are generating X-ray cavity systems and driving outflows that exceed those in powerful quasars. We show that the resulting bulge and black hole growth follows a trend that is roughly consistent with the slope of the local (Magorrian) relation between bulge and black hole mass for nearby quiescent ellipticals. However, a large scatter suggests that cD bulges and black holes do not always grow in lock-step. New measurements made with XMM, Chandra, and FUSE of the condensation rates in cooling flows are now approaching or are comparable to the star formation rates, alleviating the need for an invisible sink of cold matter. We show that the remaining radiation losses can be offset by AGN outbursts in more than half of the systems in our sample, indicating that the level of cooling and star formation is regulated by AGN feedb...

  15. Mapping the Three-Dimensional "X-Shaped Structure" in Models of the Galactic Bulge

    CERN Document Server

    Li, Zhao-Yu

    2015-01-01

    Numerical simulations have shown that the X-shaped structure in the Milky Way bulge can naturally arise from the bar instability and buckling instability. To understand the influence of the buckling amplitude on the morphology of the X-shape, we analyze three self-consistent numerical simulations of barred galaxies with different buckling amplitudes (strong, intermediate and weak). We derive the three-dimensional density with an adaptive kernel smoothing technique. The face-on iso-density surfaces are all elliptical, while in the edge-on view, the morphology of buckled bars transitions with increasing radius, from a central boxy core to a peanut bulge and then to an extended thin bar. Based on these iso-density surfaces at different density levels, we find no clear evidence for a well-defined structure shaped like a letter X. The X-shaped structure is more peanut-like, whose visual perception is probably enhanced by the pinched inner concave iso-density contours. The peanut bulge can reproduce qualitatively t...

  16. Supermassive Black Holes and Their Host Galaxies - I. Bulge luminosities from dedicated near-infrared data

    CERN Document Server

    Läsker, Ronald; van de Ven, Glenn

    2013-01-01

    In an effort to secure, refine and supplement the relation between central Supermassive Black Hole masses (Mbh), and the bulge luminosities of their host galaxies, (Lbul), we obtained deep, high spatial resolution K-band images of 35 nearby galaxies with securely measured Mbh, using the wide-field WIRCam imager at the Canada-France-Hawaii-Telescope (CFHT). A dedicated data reduction and sky subtraction strategy was adopted to estimate the brightness and structure of the sky, a critical step when tracing the light distribution of extended objects in the near-infrared. From the final image product, bulge and total magnitudes were extracted via two-dimensional profile fitting. As a first order approximation, all galaxies were modeled using a simple Sersic-bulge + exponential-disk decomposition. However, we found that such models did not adequately describe the structure that we observe in a large fraction of our sample galaxies which often include cores, bars, nuclei, inner disks, spiral arms, rings and envelope...

  17. The influence of mergers and ram-pressure stripping on black hole-bulge correlations

    Science.gov (United States)

    Ginat, Yonadav Barry; Meiron, Yohai; Soker, Noam

    2016-10-01

    We analyse the scatter in the correlation between supermassive black hole (SMBH) mass and bulge stellar mass of the host galaxy, and infer that it cannot be accounted for by mergers alone. The merger-only scenario, where small galaxies merge to establish a proportionality relation between the SMBH and bulge masses, leads to a scatter around the linear proportionality line that increases with the square root of the SMBH (or bulge) mass. By examining a sample of 103 galaxies, we find that the intrinsic scatter increases more rapidly than expected from the merger-only scenario. The correlation between SMBH masses and their host galaxy properties is therefore more likely to be determined by a negative feedback mechanism that is driven by an active galactic nucleus. We find, a hint, that some galaxies with missing stellar mass reside close to the centre of clusters and speculate that ram-pressure stripping of gas off the young galaxy as it moves near the cluster centre, might explain the missing stellar mass at later times.

  18. Optical Gravitational Lensing Experiment. The Distance Scale Galactic Bulge - LMC - SMC

    CERN Document Server

    Udalski, A

    1998-01-01

    We analyze the mean luminosity of three samples of field RRab Lyr stars observed in the course of the OGLE microlensing experiment: 73 stars from the Galactic bulge and 110 and 128 stars from selected fields in the LMC and SMC, respectively. The fields are the same as in the recent distance determination to the Magellanic Clouds with the red clump stars method by Udalski et al (1998). We determine the relative distance scale d_{GB}:d_{LMC}:d_{SMC} equal to: (0.194+/-0.010):1.00:(1.30+/-0.08). We calibrate our RR Lyr distance scale with the recent calibration of Gould and Popowski (1998) based on statistical parallaxes. We obtain the following distance moduli to the Galactic bulge, LMC and SMC: m-M=14.53+/-0.15, m-M=18.09+/-0.16 and m-M=18.66+/-0.16 mag. We use the RR Lyr mean V-band luminosity at the Galactic bulge metallicity as the reference brightness and analyze the mean, I-band luminosity of the red clump stars in objects with different ages and metallicities. We add to our analysis the metal poor Carina...

  19. Spontaneous rupture of giant gastric stromal tumor into gastric lumen

    Directory of Open Access Journals (Sweden)

    Dhar Puneet S

    2005-02-01

    Full Text Available Abstract Background Gastrointestinal stromal tumors (GIST constitute a large majority of mesenchymal tumors of the gastrointestinal (GI tract, which express the c-kit proto-oncogene protein, a cell membrane receptor with tyrosine kinase activity. GI stromal tumors of the stomach are usually associated with bleeding, abdominal pain or a palpable mass. Case presentation A 75-year-old male presented with upper abdominal pain and palpable mass. Computed tomographic (CT scan of the abdomen showed a large mass arising in the posterior aspect of fundus, body, and greater curvature of the stomach. Second day after the admission, there was significant reduction in the size of the tumor, clinically as well as radiologically. Endoscopic biopsy showed large bulge in fundus and corpus of the stomach posteriorly with an opening in the posterior part of the corpus, and biopsy from the edge of the opening reveled GIST. Patient underwent curative resection. Conclusion Spontaneous ruptured of giant gastric stromal tumor is very rare presentation of stomach GIST. Thorough clinical examination and timely investigation can diagnose rare complication.

  20. A close look at secular evolution: boxy/peanut bulges reduce gas inflow to the central kiloparsec

    Science.gov (United States)

    Fragkoudi, F.; Athanassoula, E.; Bosma, A.

    2016-10-01

    In this Letter we investigate the effect of boxy/peanut (b/p) bulges on bar-induced gas inflow to the central kiloparsec, which plays a crucial role on the evolution of disc galaxies. We carry out hydrodynamic gas response simulations in realistic barred galaxy potentials, including or not the geometry of a b/p bulge, to investigate the amount of gas inflow induced in the different models. We find that b/p bulges can reduce the gas inflow rate to the central kiloparsec by more than an order of magnitude, which leads to a reduction in the amount of gas available in the central regions. We also investigate the effect of the dark matter halo concentration on these results, and find that for maximal discs, the effect of b/p bulges on gas inflow remains significant. The reduced amount of gas reaching the central regions due to the presence of b/p bulges could have significant repercussions on the formation of discy- (pseudo-) bulges, on the amount of nuclear star formation and feedback, on the fuel reservoir for AGN activity, and on the overall secular evolution of the galaxy.

  1. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis.

    Science.gov (United States)

    Ito, Mayumi; Liu, Yaping; Yang, Zaixin; Nguyen, Jane; Liang, Fan; Morris, Rebecca J; Cotsarelis, George

    2005-12-01

    The discovery of long-lived epithelial stem cells in the bulge region of the hair follicle led to the hypothesis that epidermal renewal and epidermal repair after wounding both depend on these cells. To determine whether bulge cells are necessary for epidermal renewal, here we have ablated these cells by targeting them with a suicide gene encoding herpes simplex virus thymidine kinase (HSV-TK) using a Keratin 1-15 (Krt1-15) promoter. We show that ablation leads to complete loss of hair follicles but survival of the epidermis. Through fate-mapping experiments, we find that stem cells in the hair follicle bulge do not normally contribute cells to the epidermis which is organized into epidermal proliferative units, as previously predicted. After epidermal injury, however, cells from the bulge are recruited into the epidermis and migrate in a linear manner toward the center of the wound, ultimately forming a marked radial pattern. Notably, although the bulge-derived cells acquire an epidermal phenotype, most are eliminated from the epidermis over several weeks, indicating that bulge stem cells respond rapidly to epidermal wounding by generating short-lived 'transient amplifying' cells responsible for acute wound repair. Our findings have implications for both gene therapy and developing treatments for wounds because it will be necessary to consider epidermal and hair follicle stem cells as distinct populations.

  2. Giant Molecular Clouds in NGC5128 (Centaurus A)

    Science.gov (United States)

    Bialetski, Y.; Bender, R.; Alves, J.

    2005-12-01

    The physics of the formation of Giant Molecular Clouds (GMC) is one of the major unsolved problems of the interstellar medium. A study of GMCs in external galaxies can address the fundamental questions of whether the molecular ISM in external galaxies is organized differently than in the Milky Way and whether GMCs play the same central role in massive star formation as in the Milky Way, and are then responsible for galaxy evolution. We report the results of our study of 436 giant molecular clouds in NGC5128 using dust extinction. The proposed technique allows us to probe the extinction up to 10m in this galaxy. The clump mass spectrum, derived by a clumpfind algorithm, is consistent with a power law with the index of 2.3.

  3. Rotation of Giant Stars

    CERN Document Server

    Kissin, Yevgeni

    2015-01-01

    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5 and $5\\,M_\\odot$, taking into account mass loss on the giant branches and the partitioning of angular momentum between the outer and inner envelope. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag as well as the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles $\\Omega(r)$ is considered in the deep convective envelope, ranging from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force on the inward pumping of angular momentum, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core ro...

  4. Giant high occipital encephalocele

    Directory of Open Access Journals (Sweden)

    Agrawal Amit

    2016-03-01

    Full Text Available Encephaloceles are rare embryological mesenchymal developmental anomalies resulting from inappropriate ossification in skull through with herniation of intracranial contents of the sac. Encephaloceles are classified based on location of the osseous defect and contents of sac. Convexity encephalocele with osseous defect in occipital bone is called occipital encephalocele. Giant occipital encephaloceles can be sometimes larger than the size of baby skull itself and they pose a great surgical challenge. Occipital encephaloceles (OE are further classified as high OE when defect is only in occipital bone above the foramen magnum, low OE when involving occipital bone and foramen magnum and occipito-cervical when there involvement of occipital bone, foramen magnum and posterior upper neural arches. Chiari III malformation can be associated with high or low occipital encephaloceles. Pre-operatively, it is essential to know the size of the sac, contents of the sac, relation to the adjacent structures, presence or absence of venous sinuses/vascular structures and osseous defect size. Sometimes it becomes imperative to perform both CT and MRI for the necessary information. Volume rendered CT images can depict the relation of osseous defect to foramen magnum and provide information about upper neural arches which is necessary in classifying these lesions.

  5. Bringing Low the Giants

    CERN Multimedia

    2001-01-01

    Their work goes on unseen, because they a hundred metres beneath your feet. But while the race against the clock to build the LHC has begun on the surface, teams underground are feverishly engaged to dismantle LEP and its experiments. Four months after the start of dismantling, the technical coordinators of the different experiments discuss the progress of work. Little men attack the giant ALEPH. The barrel and its two endcaps have been removed to the end of the cavern and stripped of their cables. The breaking up of the detector can now begin. At ALEPH, counting rooms removed all in one go Jean-Paul Fabre, technical coordinator at ALEPH:'After making safe the structure, the first step was to remove the wiring and cables. Some 210 cubic metres were brought out. Then the counting rooms all round the detector were taken out. They were brought up from the cavern all in one go, up through the shaft, which is 10 metres wide and 150 metres deep. They made it with 15 centimetres to spare. They have been emptied of...

  6. Population synthesis of classical low-mass X-ray binaries in the Galactic Bulge

    Science.gov (United States)

    van Haaften, L. M.; Nelemans, G.; Voss, R.; van der Sluys, M. V.; Toonen, S.

    2015-07-01

    Aims: We model the present-day population of classical low-mass X-ray binaries (LMXBs) with neutron star accretors, which have hydrogen-rich donor stars. Their population is compared with that of hydrogen-deficient LMXBs, known as ultracompact X-ray binaries (UCXBs). We model the observable LMXB population and compare it to observations. We model the Galactic Bulge because it contains a well-observed population and it is the target of the Galactic Bulge Survey. Methods: We combine the binary population synthesis code SeBa with detailed LMXB evolutionary tracks to model the size and properties of the present-day LMXB population in the Galactic Bulge. Whether sources are persistent or transient, and what their instantaneous X-ray luminosities are, is predicted using the thermal-viscous disk instability model. Results: We find a population of ~2.1 × 103 LMXBs with neutron star accretors. Of these about 15-40 are expected to be persistent (depending on model assumptions), with luminosities higher than 1035 erg s-1. About 7-20 transient sources are expected to be in outburst at any given time. Within a factor of two these numbers are consistent with the observed population of bright LMXBs in the Bulge. This gives credence to our prediction of the existence of a population of ~1.6 × 103 LMXBs with low donor masses that have gone through the period minimum, and have present-day mass transfer rates below 10-11 M⊙ yr-1. Conclusions: Even though the observed population of hydrogen-rich LMXBs in the Bulge is larger than the observed population of (hydrogen-deficient) UCXBs, the latter have a higher formation rate. While UCXBs may dominate the total LMXB population at the present time, the majority would be very faint or may have become detached and produced millisecond radio pulsars. In that case UCXBs would contribute significantly more to the formation of millisecond radio pulsars than hydrogen-rich LMXBs.

  7. Giant Peltier Effect in a Submicron-Sized Cu-Ni/Au Junction with Nanometer-Scale Phase Separation

    Science.gov (United States)

    Sugihara, Atsushi; Kodzuka, Masaya; Yakushiji, Kay; Kubota, Hitoshi; Yuasa, Shinji; Yamamoto, Atsushi; Ando, Koji; Takanashi, Koki; Ohkubo, Tadakatsu; Hono, Kazuhiro; Fukushima, Akio

    2010-06-01

    We observed a giant Peltier effect in a submicron Cu-Ni/Au junction. The Peltier coefficient was evaluated to be 480 mV at room temperature from the balance between Joule heating and the Peltier cooling effect in the junction, which is 40 times that expected from the Seebeck coefficients of bulk Au and Cu-Ni alloy. This giant cooling effect lowered the inner temperature of the junction by 160 K. Microstructure analysis with a three-dimensional atom probe suggested that the giant Peltier effect possibly originated from nanometer-scale phase separation in the Cu-Ni layer.

  8. VIMOS mosaic integral-field spectroscopy of the bulge and disc of the early-type galaxy NGC 4697

    Science.gov (United States)

    Spiniello, C.; Napolitano, N. R.; Coccato, L.; Pota, V.; Romanowsky, A. J.; Tortora, C.; Covone, G.; Capaccioli, M.

    2015-09-01

    We present an integral-field study of the internal structure, kinematics and stellar population of the almost edge-on, intermediate-luminosity (L★) elliptical galaxy NGC 4697. We build extended two-dimensional (2D) maps of the stellar kinematics and line strengths of the galaxy up to ˜0.7 effective radii (Reff) using a mosaic of eight VIMOS (VIsible Multi-Objects Spectrograph, on the Very Large Telescope) integral-field unit pointings. We find clear evidence for a rotation-supported structure along the major axis from the 2D kinematical maps, confirming the previous classification of this system as a `fast rotator'. We study the correlations between the third and fourth Gauss-Hermite moments of the line-of-sight velocity distribution (LOSVD) h3 and h4 with the rotation parameter (V/σ), and compare our findings to hydrodynamical simulations. We find remarkable similarities to predictions from gas-rich mergers. Based on photometry, we perform a bulge/disc decomposition and study the stellar population properties of the two components. The bulge and the disc show different stellar populations, with the stars in the bulge being older (age_bulge=13.5^{+1.4}_{-1.4} Gyr, age_disc=10.5^{+1.6}_{-2.0} Gyr) and more metal poor ({[M/H]_{bulge}} = -0.17^{+0.12}_{-0.1}, {[M/H]_{disc}} = -0.03^{+0.02}_{-0.1}). The evidence of a later-formed, more metal-rich disc embedded in an older, more metal poor bulge, together with the LOSVD structure, supports a mass assembly scenario dominated by gas-rich minor mergers and possibly with a late gas-rich major merger that left a previously rapidly rotating system unchanged. The bulge and the disc do not show signs of different stellar initial mass function (IMF) slopes, and both match well with a Milky Way-like IMF.

  9. Giant Goos-Hänchen shift using PT symmetry

    Science.gov (United States)

    Ziauddin; Chuang, You-Lin; Lee, Ray-Kuang

    2015-07-01

    Influence of PT symmetry on the Goos-Hänchen (GH) shift in the reflected light is presented for an ensemble of atomic medium in a cavity, in the configuration of four-level N -type (87Rb atoms) systems driving by two copropagating strong laser fields and a weak probe field. The atom-field interaction follows the realization of PT symmetry by adjusting the coupling field detunings [J. Shenget al., Phys. Rev. A 88, 041803(R) (2013), 10.1103/PhysRevA.88.041803]. A giant enhancement for the GH shift in the reflected light is revealed when the PT -symmetry condition is satisfied.

  10. Atmospheres of Extrasolar Giant Planets

    Science.gov (United States)

    Marley, M. S.; Fortney, J.; Seager, S.; Barman, T.

    The key to understanding an extrasolar giant planet's spectrum - and hence its detectability and evolution - lies with its atmosphere. Now that direct observations of thermal emission from extrasolar giant planets (EGPs) are in hand, atmosphere models can be used to constrain atmospheric composition, thermal structure, and ultimately the formation and evolution of detected planets. We review the important physical processes that influence the atmospheric structure and evolution of EGPs and consider what has already been learned from the first generation of observations and modeling. We pay particular attention to the roles of cloud structure, metallicity, and atmospheric chemistry in affecting detectable properties through Spitzer Space Telescope observations of the transiting giant planets. Our review stresses the uncertainties that ultimately limit our ability to interpret EGP observations. Finally we will conclude with a look to the future as characterization of multiple individual planets in a single stellar system leads to the study of comparative planetary architectures.

  11. Giant intravesical calculus during pregnancy.

    Science.gov (United States)

    Escobar-del Barco, Laura; Rodriguez-Colorado, Silvia; Dueñas-Garcia, Omar Felipe; Avilez-Cevasco, Juan Carlos

    2008-10-01

    Urolithiasis is commonly found during pregnancy; but the presence of a giant vesical calculus during pregnancy is a very rare entity, associated with several potential obstetric complications. A 25-year-old primigravida at 25 weeks of gestational age was referred to our tertiary care unit because she presented a giant hyperechoic intravesical mass and inability to pass urine with suprapubic pain since 2 days. An open cystolithotomy revealed a huge intravesical calculus. The patient continued with her pregnancy until full term without adverse perinatal outcomes.

  12. Giant fields in southwest Mexico

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-20

    According to Petroleos Mexicanos southeastern Mexico's Isthmus Saline basin holds five new giant fields - Tonala-El Burro, El Plan, Cinco Presidentes, Oraggio, and Magallanes - producing oil and gas from Tertiary sandstones. Numerous normal faults resulting from salt intrusion have given rise to multiple blocks, each with its own reservoir conditions. Previously discovered basins in the area include the Macuspana, which holds three giant gas- and condensate-producing fields: Jose Colomo, Chilapilla, and Hormiquero. The 3100-mi/sup 2/ Campeche marine platform, extending offshore nearby, contains the Cantarell complex, Mexico's most productive hydrocarbon province.

  13. Barlenses and X-shaped features compared: two manifestations of boxy/peanut bulges

    Science.gov (United States)

    Laurikainen, E.; Salo, H.

    2017-01-01

    Aims: We study the morphological characteristics of boxy/peanut-shaped bulges. In particular, we are interested to determine whether most of the flux associated with bulges in galaxies with masses similar to those of the Milky Way at redshift z 0 might belong to the vertically thick inner part of the bar, in a similar manner as in the Milky Way itself. At high galaxy inclinations, these structures are observed as boxy/peanut/X-shaped features, and when the view is near to face-on, they are observed as barlenses. We also study the possibility that bulges in some fraction of unbarred galaxies might form in a similar manner as the bulges in barred galaxies. Methods: We used the Spitzer Survey of Stellar Structure in Galaxies (S4G) and the Near-IR S0 galaxy Survey (NIRS0S) to compile complete samples of galaxies with barlenses (N = 85) and X-shaped features (N = 88). A sample of unbarred galaxies (N = 41) is also selected. For all 214 galaxies unsharp mask images were created, used to recognize the X-shaped features and to measure their linear sizes. To detect possible boxy isophotes (using the B4-parameter), we also performed an isophotal analysis for the barlens galaxies. We use recently published N-body simulations: the models that exhibit boxy/peanut/X/barlens morphologies are viewed from isotropically chosen directions that cover the full range of galaxy inclinations in the sky. The synthetic images were analyzed in a similar manner as the observations. Results: This is the first time that the observed properties of barlenses and X-shaped features are directly compared across a wide range of galaxy inclinations. A comparison with the simulation models shows that the differences in their apparent sizes, a/rbar ≳ 0.5 for barlenses and a/rbar ≲ 0.5 for X-shapes, can be explained by projection effects. Observations at various inclinations are consistent with intrinsic abl ≈ aX ≈ 0.5rbar: here intrinsic size means the face-on semimajor axis length for bars and

  14. NoSOCS in SDSS - V. Red disc and blue bulge galaxies across different environments

    Science.gov (United States)

    Lopes, P. A. A.; Rembold, S. B.; Ribeiro, A. L. B.; Nascimento, R. S.; Vajgel, B.

    2016-09-01

    We investigated the typical environment and physical properties of `red discs' and `blue bulges', comparing those to the `normal' objects in the blue cloud and red sequence. Our sample is composed of cluster members and field galaxies at z ≤ 0.1, so that we can assess the impact of the local and global environment. We find that disc galaxies display a strong dependence on environment, becoming redder for higher densities. This effect is more pronounced for objects within the virial radius, being also strong related to the stellar mass. We find that local and global environment affect galaxy properties, but the most effective parameter is stellar mass. We find evidence for a scenario where `blue discs' are transformed into `red discs' as they grow in mass and move to the inner parts of clusters. From the metallicity differences of red and blue discs, and the analysis of their star formation histories, we suggest the quenching process is slow. We estimate a quenching time-scale of ˜2-3 Gyr. We also find from the sSFR-M* plane that `red discs' gradually change as they move into clusters. The `blue bulges' have many similar properties than `blue discs', but some of the former show strong signs of asymmetry. The high asymmetry `blue bulges' display enhanced recent star formation compared to their regular counterparts. That indicates some of these systems may have increased their star formation due to mergers. None the less, there may not be a single evolutionary path for these blue early-type objects.

  15. CO J = 2-1 EMISSION FROM EVOLVED STARS IN THE GALACTIC BULGE

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, Benjamin A.; Meixner, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Patel, N. A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Otsuka, M.; Srinivasan, S. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Riebel, D., E-mail: baspci@rit.edu [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2013-03-01

    We observe a sample of eight evolved stars in the Galactic bulge in the CO J = 2-1 line using the Submillimeter Array with angular resolution of 1''-4''. These stars have been detected previously at infrared wavelengths, and several of them have OH maser emission. We detect CO J = 2-1 emission from three of the sources in the sample: OH 359.943 +0.260, [SLO2003] A12, and [SLO2003] A51. We do not detect the remaining five stars in the sample because of heavy contamination from the galactic CO emission. Combining CO data with observations at infrared wavelengths constraining dust mass loss from these stars, we determine the gas-to-dust ratios of the Galactic bulge stars for which CO emission is detected. For OH 359.943 +0.260, we determine a gas mass-loss rate of 7.9 ({+-}2.2) Multiplication-Sign 10{sup -5} M {sub Sun} yr{sup -1} and a gas-to-dust ratio of 310 ({+-}89). For [SLO2003] A12, we find a gas mass-loss rate of 5.4 ({+-}2.8) Multiplication-Sign 10{sup -5} M {sub Sun} yr{sup -1} and a gas-to-dust ratio of 220 ({+-}110). For [SLO2003] A51, we find a gas mass-loss rate of 3.4 ({+-}3.0) Multiplication-Sign 10{sup -5} M {sub Sun} yr{sup -1} and a gas-to-dust ratio of 160 ({+-}140), reflecting the low quality of our tentative detection of the CO J = 2-1 emission from A51. We find that the CO J = 2-1 detections of OH/IR stars in the Galactic bulge require lower average CO J = 2-1 backgrounds.

  16. Dissecting the Red Sequence: The Bulge and Disc Colours of Early-Type Galaxies in the Coma Cluster

    CERN Document Server

    Head, Jacob T C G; Hudson, Micheal J; Smith, Russel J

    2014-01-01

    We explore the internal structure of red sequence galaxies in the Coma cluster across a wide range of luminosities ($-17>M_g>-22$) and cluster-centric radii ($0bulge-disc decomposition of galaxies in deep Canada-France-Hawaii Telescope $u,g,i$ imaging using GALFIT. Rigorous filtering is applied to identify an analysis sample of 200 galaxies which are well described by an `archetypal' S0 structure (central bulge + outer disc). We consider internal bulge and/or disc colour gradients by allowing component sizes to vary between bands. Gradients are required for $30\\%$ of analysis sample galaxies. Bulge half-light radii are found to be uncorrelated with galaxy luminosity ($R_e \\sim 1$ kpc, $n\\sim2$) for all but the brightest galaxies ($M_g<-20.5$). The S0 discs are brighter (at fixed size, or smaller at fixed luminosity) than those of star-forming spirals. A similar colour-magnitude relation is found for both bulges and discs. The global red sequence for ...

  17. Structure and dynamics of galaxies with a low surface-brightness disc - II. Stellar populations of bulges

    CERN Document Server

    Morelli, L; Pizzella, A; Bontà, E Dalla; Coccato, L; Méndez-Abreu, J; Cesetti, M

    2012-01-01

    The radial profiles of the Hb, Mg, and Fe line-strength indices are presented for a sample of eight spiral galaxies with a low surface-brightness stellar disc and a bulge. The correlations between the central values of the line-strength indices and velocity dispersion are consistent to those known for early-type galaxies and bulges of high surface-brightness galaxies. The age, metallicity, and alpha/Fe enhancement of the stellar populations in the bulge-dominated region are obtained using stellar population models with variable element abundance ratios. Almost all the sample bulges are characterized by a young stellar population, on-going star formation, and a solar alpha/Fe enhancement. Their metallicity spans from high to sub-solar values. No significant gradient in age and alpha/Fe enhancement is measured, whereas only in a few cases a negative metallicity gradient is found. These properties suggest that a pure dissipative collapse is not able to explain formation of all the sample bulges and that other ph...

  18. Tidal radii and destruction rates of globular clusters in the Milky Way due to bulge-bar and disk shocking

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Edmundo; Pichardo, Bárbara [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, 04510 México, D. F. (Mexico); Velázquez, Héctor [Observatorio Astronómico Nacional, Universidad Nacional Autónoma de México, Apdo. Postal 877, 22800 Ensenada (Mexico)

    2014-10-01

    We calculate orbits, tidal radii, and bulge-bar and disk shocking destruction rates for 63 globular clusters in our Galaxy. Orbits are integrated in both an axisymmetric and a nonaxisymmetric Galactic potential that includes a bar and a three-dimensional model for the spiral arms. With the use of a Monte Carlo scheme, we consider in our simulations observational uncertainties in the kinematical data of the clusters. In the analysis of destruction rates due to the bulge-bar, we consider the rigorous treatment of using the real Galactic cluster orbit instead of the usual linear trajectory employed in previous studies. We compare results in both treatments. We find that the theoretical tidal radius computed in the nonaxisymmetric Galactic potential compares better with the observed tidal radius than that obtained in the axisymmetric potential. In both Galactic potentials, bulge-shocking destruction rates computed with a linear trajectory of a cluster at its perigalacticons give a good approximation of the result obtained with the real trajectory of the cluster. Bulge-shocking destruction rates for clusters with perigalacticons in the inner Galactic region are smaller in the nonaxisymmetric potential than those in the axisymmetric potential. For the majority of clusters with high orbital eccentricities (e > 0.5), their total bulge+disk destruction rates are smaller in the nonaxisymmetric potential.

  19. Real-Time Difference Imaging Analysis of MOA Galactic Bulge Observations During 2000

    OpenAIRE

    Bond, I. A.; Abe, F.; Dodd, R. J.; Hearnshaw, J. B.; Honda, M.; Jugaku, J.; Kilmartin, P. M.; Marles, A.; Masuda, K.; Matsubara, Y.; Muraki, Y.(Solar-Terrestrial Environment Laboratory, Nagoya University, Japan); Nakamura, T.; Nankivell, G.; Noda, S.; Noguchi, C.

    2001-01-01

    We describe observations carried out by the MOA group of the Galactic Bulge during 2000 that were designed to detect efficiently gravitational microlensing of faint stars in which the magnification is high and/or of short duration. These events are particularly useful for studies of extra-solar planets and faint stars. Approximately 17 degrees square were monitored at a sampling rate of up to 6 times per night. The images were analysed in real-time using a difference imaging technique. Twenty...

  20. Population synthesis of ultracompact X-ray binaries in the Galactic bulge

    Science.gov (United States)

    van Haaften, L. M.; Nelemans, G.; Voss, R.; Toonen, S.; Portegies Zwart, S. F.; Yungelson, L. R.; van der Sluys, M. V.

    2013-04-01

    Aims: We model the present-day number and properties of ultracompact X-ray binaries (UCXBs) in the Galactic bulge. The main objective is to compare the results to the known UCXB population as well as to data from the Galactic Bulge Survey, in order to learn about the formation of UCXBs and their evolution, such as the onset of mass transfer and late-time behavior. Methods: The binary population synthesis code SeBa and detailed stellar evolutionary tracks have been used to model the UCXB population in the Bulge. The luminosity behavior of UCXBs has been predicted using long-term X-ray observations of the known UCXBs as well as the thermal-viscous disk instability model. Results: In our model, the majority of UCXBs initially have a helium burning star donor. Of the white dwarf donors, most have helium composition. In the absence of a mechanism that destroys old UCXBs, we predict (0.2-1.9) × 105 UCXBs in the Galactic bulge, depending on assumptions, mostly at orbital periods longer than 60 min (a large number of long-period systems also follows from the observed short-period UCXB population). About 5-50 UCXBs should be brighter than 1035 ergs-1, mostly persistent sources with orbital periods shorter than about 30 min and with degenerate helium and carbon-oxygen donors. This is about one order of magnitude more than the observed number of (probably) three. Conclusions: This overprediction of short-period UCXBs by roughly one order of magnitude implies that fewer systems are formed, or that a super-Eddington mass transfer rate is more difficult to survive than we assumed. The very small number of observed long-period UCXBs with respect to short-period UCXBs, the surprisingly high luminosity of the observed UCXBs with orbital periods around 50 min, and the properties of the PSR J1719-1438 system all point to much faster UCXB evolution than expected from angular momentum loss via gravitational wave radiation alone. Old UCXBs, if they still exist, probably have orbital

  1. On the Black Hole - Bulge Mass Ratios in Narrow-Line Seyfert 1 Galaxies

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We present estimated ratios of the central black hole mass to the bulgemass (Mbh/Mbulge) for 15 Narrow Line Seyfert 1 galaxies (NLS1s). It is found thatNLS1s apparently have lower mass ratios: the average mass ratio is about 1 × 10-4with a spread of 2, which is one order of magnitude lower than for Broad Line AGNsand quiescent galaxies. This lower value, as compared to that established essentiallyfor all other types of galaxies, can be accounted for by an underestimation of theblack hole masses and an overestimation of the bulge masses in the NLS1s.

  2. Battle of the bulge: Decay of the thin, false cosmic string

    Science.gov (United States)

    Lee, Bum-Hoon; Lee, Wonwoo; MacKenzie, Richard; Paranjape, M. B.; Yajnik, U. A.; Yeom, Dong-han

    2013-11-01

    We consider the decay of cosmic strings that are trapped in the false vacuum in a theory of scalar electrodynamics in 3+1 dimensions. This paper is the 3+1-dimensional generalization of the 2+1-dimensional decay of false vortices which we have recently completed . We restrict our analysis to the case of thin-walled cosmic strings which occur when large magnetic flux is trapped inside the string. Thus the string looks like a tube of fixed radius, at which it is classically stable. The core of the string contains magnetic flux in the true vacuum, while outside the string, separated by a thin wall, is the false vacuum. The string decays by tunneling to a configuration which is represented by a bulge, where the region of true vacuum within is ostensibly enlarged. The bulge can be described as the meeting of a kink soliton-antisoliton pair along the length of the string. It can be described as a bulge appearing in the initial string, starting from the string of small, classically stable radius, expanding to a fat string of large, classically unstable (to expansion) radius and then returning back to the string of small radius along its length. This configuration is the bounce point of a corresponding O(2) symmetric instanton, which we can determine numerically. Once the bulge appears it explodes in real time. The paired soliton and antisoliton recede from each other along the length of the string with a velocity that quickly approaches the speed of light, leaving behind a fat tube. At the same time the radius of the fat tube that is being formed expands (transversely) as it is no longer classically stable, converting false vacuum to the true vacuum with ever-diluting magnetic field within. The rate of this expansion is determined by the energy difference between the true vacuum and the false vacuum. Our analysis could be applied to a network of cosmic strings formed in the very early Universe or vortex lines in a superheated superconductor.

  3. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Verne V.; Cunha, Katia [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Shetrone, Matthew D. [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Meszaros, Szabolcs; Allende Prieto, Carlos [Instituto d' Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain); Bizyaev, Dmitry [Apache Point Observatory, Sunspot, NM 88349 (United States); Garcia Perez, Ana; Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Schiavon, Ricardo [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5UX (United Kingdom); Holtzman, Jon [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Johnson, Jennifer A., E-mail: vsmith@noao.edu [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States)

    2013-03-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants ({alpha} Boo and {mu} Leo), two M-giants ({beta} And and {delta} Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes {sup 12}C, {sup 13}C, {sup 14}N, and {sup 16}O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of {sup 12}C synthesized during {sup 4}He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to {approx}0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  4. Planetary Formation and Evolution Revealed with a Saturn Entry Probe: The Importance of Noble Gases

    CERN Document Server

    Fortney, Jonathan J; Baraffe, Isabelle; Burrows, Adam; Dodson-Robinson, Sarah E; Chabrier, Gilles; Guillot, Tristan; Helled, Ravit; Hersant, Franck; Hubbard, William B; Lissauer, Jack J; Marley, Mark S

    2009-01-01

    The determination of Saturn's atmospheric noble gas abundances are critical to understanding the formation and evolution of Saturn, and giant planets in general. These measurements can only be performed with an entry probe. A Saturn probe will address whether enhancement in heavy noble gases, as was found in Jupiter, are a general feature of giant planets, and their ratios will be a powerful constraint on how they form. The helium abundance will show the extent to which helium has phase separated from hydrogen in the planet's deep interior. Jupiter's striking neon depletion may also be tied to its helium depletion, and must be confirmed or refuted in Saturn. Together with Jupiter's measured atmospheric helium abundance, a consistent evolutionary theory for both planets, including "helium rain" will be possible. We will then be able to calibrate the theory of the evolution of all giant planets, including exoplanets. In addition, high pressure H/He mixtures under giant planet conditions are an important area of...

  5. Oxygen isotopic ratios in intermediate-mass red giants

    CERN Document Server

    Lebzelter, Thomas; Hinkle, Kenneth; Nowotny, Walter; Aringer, Bernhard

    2015-01-01

    Context. The abundances of the three main isotopes of oxygen are altered in the course of the CNO-cycle. When the first dredge-up mixes the burning products to the surface, the nucleosynthesis processes can be probed by measuring oxygen isotopic ratios. Aims. By measuring 16O/17O and 16O/18O in red giants of known mass we compare the isotope ratios with predictions from stellar and galactic evolution modelling. Methods. Oxygen isotopic ratios were derived from the K-band spectra of six red giants. The sample red giants are open cluster members with known masses of between 1.8 and 4.5 Msun . The abundance determination employs synthetic spectra calculated with the COMARCS code. The effect of uncertainties in the nuclear reaction rates, the mixing length, and of a change in the initial abundance of the oxygen isotopes was determined by a set of nucleosynthesis and mixing models using the FUNS code. Results. The observed 16O/17O ratios are in good agreement with the model results, even if the measured values do ...

  6. The MANIFEST fibre positioning system for the Giant Magellan Telescope

    Science.gov (United States)

    Lawrence, Jon S.; Brown, David M.; Brzeski, Jurek; Case, Scott; Colless, Matthew; Farrell, Tony; Gers, Luke; Gilbert, James; Goodwin, Michael; Jacoby, George; Hopkins, Andrew M.; Ireland, Michael; Kuehn, Kyler; Lorente, Nuria P. F.; Miziarski, Stan; Muller, Rolf; Nichani, Vijay; Rakman, Azizi; Richards, Samuel; Saunders, Will; Staszak, Nick F.; Tims, Julia; Vuong, Minh; Waller, Lew

    2014-08-01

    MANIFEST is a fibre feed system for the Giant Magellan Telescope that, coupled to the seeing-limited instruments GMACS and G-CLEF, offers qualitative and quantitative gains over each instrument's native capabilities in terms of multiplex, field of view, and resolution. The MANIFEST instrument concept is based on a system of semi-autonomous probes called "Starbugs" that hold and position hundreds of optical fibre IFUs under a glass field plate placed at the GMT Cassegrain focal plane. The Starbug probes feature co-axial piezoceramic tubes that, via the application of appropriate AC waveforms, contract or bend, providing a discrete stepping motion. Simultaneous positioning of all Starbugs is achieved via a closed-loop metrology system.

  7. Multiphonon giant resonances in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Mainz Univ. (Germany). Inst. fuer Kernchemie; Bortignon, P.F. [Milan Univ. (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Milan (Italy); Emling, H. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    1998-07-01

    We review the present knowledge of multiphonon giant resonances in nuclei. Theoretical concepts approaching the intrinsic structure and excitation mechanisms of multi-phonon states are discussed. The available experimental results are summarized, including a brief description of applied techniques. This review emphasizes electromagnetic excitations of double dipole resonances. Open questions and possible routes toward a solution are addressed. (orig.)

  8. Michigan has a sleeping giant

    CERN Multimedia

    Brock, Raymond; Nichols, Sue

    2007-01-01

    "That giant is 750 miles of fiber optic cable that lassoes its three biggest research universities and Van Andel Institute to the future. Its mission: to uncover the nature of the Big Bang by connecton U.S. physicists to their huge experiment ATLAS in Geneva.." (4 pages)

  9. Giant lipomas of the hand

    Directory of Open Access Journals (Sweden)

    Gokce Yildiran

    2015-04-01

    Conclusion: Giant lipomas of the hand are very rare and may cause compressions and other complications. Thus, they require a careful preoperative evaluation in order to make a proper differential diagnosis. [Hand Microsurg 2015; 4(1.000: 8-11

  10. A Giant or a Dwarf?

    DEFF Research Database (Denmark)

    Schmid, Herman

    2005-01-01

    EU may appear to be a giant when it can act on behalf of a united Europe, but usually it is hampered by conflicting member state interests. The EU economic and administrative resources for foreign and trade policy are quite small (on level with one of its major member states) and the hopes in man...

  11. Reinforcing the link between the double red clump and the X-shaped bulge of the Milky Way

    CERN Document Server

    Gonzalez, O A; Debattista, Victor P; Alonso-García, J; Valenti, E; Minniti, D

    2015-01-01

    The finding of a double red clump in the luminosity function of the Milky Way bulge has been interpreted as evidence for an X-shaped structure. Recently, an alternative explanation has been suggested, where the double red clump is an effect of multiple stellar populations in a classical spheroid. In this letter we provide an observational assessment of this scenario and show that it is not consistent with the behaviour of the red clump across different lines of sight, particularly at high distances from the Galactic plane. Instead, we confirm that the shape of the red clump magnitude distribution closely follows the distance distribution expected for an X-shaped bulge at critical Galactic latitudes. We also emphasize some key observational properties of the bulge red clump that should not be neglected in the search for alternative scenarios.

  12. SDSS-IV MaNGA: Bulge-Disc Decomposition of IFU Datacubes (BUDDI)

    CERN Document Server

    Johnston, Evelyn J; Aragon-Salamanca, Alfonso; Merrifield, Michael R; Bamford, Steven; Bershady, Matthew A; Bundy, Kevin; Drory, Niv; Fu, Hai; Law, David; Nitschelm, Christian; Thomas, Daniel; Lopes, Alexandre Roman; Wake, David; Yan, Renbin

    2016-01-01

    With the availability of large integral-field unit (IFU) spectral surveys of nearby galaxies, there is now the potential to extract spectral information from across the bulges and discs of galaxies in a systematic way. This information can address questions such as how these components built up with time, how galaxies evolve and whether their evolution depends on other properties of the galaxy such as its mass or environment. We present BUDDI, a new approach to fit the two-dimensional light profiles of galaxies as a function of wavelength to extract the spectral properties of these galaxies' discs and bulges. The fitting is carried out using GalfitM, a modified form of Galfit which can fit multi-waveband images simultaneously. The benefit of this technique over traditional multi-waveband fits is that the stellar populations of each component can be constrained using knowledge over the whole image and spectrum available. The decomposition has been developed using commissioning data from the SDSS-IV Mapping Nea...

  13. A methodology for computing nonlinear fracture parameters for a bulging crack in a pressurised aircraft fuselage

    Science.gov (United States)

    Shenoy, V. B.; Potyondy, D. O.; Atluri, S. N.

    1994-09-01

    A computational methodology for obtaining nonlinear fracture parameters which account for the effects of plasticity at the tips of a bulging crack in a pressurised aircraft fuselage is developed. The methodology involves a hierarchical three stage analysis (global, intermediate, and local) of the cracked fuselage, with the crack incorporated into the model at each stage. The global analysis is performed using a linear elastic shell finite element model in which the stiffeners are treated as beam elements. The geometrically nonlinear nature of the bulging phenomenon is emulated in the intermediate analysis using a geometrically nonlinear shell finite element model. The local analysis is a three-dimensional solid finite element model of the cracked skin using a hypoelastic-plastic rate formulation. Kinematic boundary conditions for each stage are obtained from the preceding stage in the hierarchy using a general mesh independent mechanism. The T *integral, which accounts for both large deformations and plasticity, is taken to be the fracture parameter characterising the severity of the conditions at the crack tip, and is evaluated from the local analysis using the Equivalent Domain Integral (EDI) method. The implementation of the EDI technique for finite deformations in shell space is also outlined. The methodology is applied to a number of example problems for which correction factors relating the nonlinear T * values to those obtained from a linear elastic stiffened shell analysis are computed. The issue of flapping is addressed by investigating the behaviour of the longitudinal stress parallel to the crack for various cases.

  14. Dark Atoms and the Positron-Annihilation-Line Excess in the Galactic Bulge

    Directory of Open Access Journals (Sweden)

    J.-R. Cudell

    2014-01-01

    Full Text Available It was recently proposed that stable particles of charge −2, O--, can exist and constitute dark matter after they bind with primordial helium in O-helium (OHe atoms. We study here in detail the possibility that this model provides an explanation for the excess of gamma radiation in the positron-annihilation line from the galactic bulge observed by INTEGRAL. This explanation assumes that OHe, excited to a 2s state through collisions in the central part of the Galaxy, deexcites to its ground state via an E0 transition, emitting an electron-positron pair. The cross-section for OHe collisions with excitation to 2s level is calculated and it is shown that the rate of such excitations in the galactic bulge strongly depends not only on the mass of O-helium, which is determined by the mass of O--, but also on the density and velocity distribution of dark matter. Given the astrophysical uncertainties on these distributions, this mechanism constrains the O-- mass to lie in two possible regions. One of these is reachable in the experimental searches for stable multicharged particles at the LHC.

  15. An observer's view of simulated galaxies: disc-to-total ratios, bars, and (pseudo-)bulges

    CERN Document Server

    Scannapieco, Cecilia; Jonsson, Patrik; White, Simon D M

    2010-01-01

    We use cosmological hydrodynamical simulations of the formation of Milky Way mass galaxies to study the relative importance of the main stellar components, discs, bulges, and bars, at z=0. The main aim of this work is to understand if estimates of the structural parameters of these components determined from kinematics (as usually done in simulations) agree well with those obtained using a photometric bulge/disc/bar decomposition (as done in observations). To perform such a comparison, we produced synthetic observations of the simulation outputs with the Monte-Carlo radiative transfer code SUNRISE and used the BUDDA code to make 2D photometric decompositions of the resulting images. We find that the kinematic disc-to-total ratio (D/T) estimates are systematically and significantly lower than the photometric ones. While the maximum D/T ratios obtained with the former method are of the order of 0.2, they are typically >0.4, and can be as high as 0.7, according to the latter. The photometric decomposition shows ...

  16. High-Resolution Mapping of Dust via Extinction in the M31 Bulge

    CERN Document Server

    Dong, Hui; Wang, Q D; Lauer, Tod R; Olsen, Knut A G; Saha, Abhijit; Dalcanton, Julianne J; Groves, Brent A

    2016-01-01

    We map the dust distribution in the central 180" (~680 pc) region of the M31 bulge, based on HST/WFC3 and ACS observations in ten bands from near-ultraviolet (2700 A) to near-infrared (1.5 micron). This large wavelength coverage gives us great leverage to detect not only dense dusty clumps, but also diffuse dusty molecular gas. We fit a pixel-by-pixel spectral energy distributions to construct a high-dynamic-range extinction map with unparalleled angular resolution (~0.5" , i.e., ~2 pc) and sensitivity (the extinction uncertainty, \\delta A_V~0.05). In particular, the data allow to directly fit the fractions of starlight obscured by individual dusty clumps, and hence their radial distances in the bulge. Most of these clumps seem to be located in a thin plane, which is tilted with respect to the M31 disk and appears face-on. We convert the extinction map into a dust mass surface density map and compare it with that derived from the dust emission as observed by Herschel . The dust masses in these two maps are co...

  17. Classical bulges, supermassive blackholes and AGN feedback: Extension to low-mass galaxies

    CERN Document Server

    Lu, Zhankui

    2014-01-01

    The empirical model of Lu et al. 2014a for the relation between star formation rate and halo mass growth is adopted to predict the classical bulge mass ($M_{\\rm cb}$) - total stellar mass ($M_\\star$) relation for central galaxies. The assumption that the supermassive black hole (SMBH) mass ($M_{\\rm BH}$) is directly proportional to the classical bulge mass, with the proportionality given by that for massive galaxies, predicts a $M_{\\rm BH}$ - $M_\\star$ relation that matches well the observed relation for different types of galaxies. In particular, the model reproduces the strong transition at $M_\\star=10^{10.5}$ - $10^{11}M_{\\odot}$, below which $M_{\\rm BH}$ drops rapidly with decreasing $M_\\star$. Our model predicts a new sequence at $M_\\star 10^{11}M_{\\odot}$. If all SMBH grow through similar quasar modes with a feedback efficiency of a few percent, the energy produced in low-mass galaxies at redshift $z\\gtrsim 2$ can heat the circum-galactic medium up to a specific entropy level that is required to prevent...

  18. Population synthesis of ultracompact X-ray binaries in the Galactic Bulge

    CERN Document Server

    van Haaften, L M; Voss, R; Toonen, S; Zwart, S F Portegies; Yungelson, L R; van der Sluys, M V

    2013-01-01

    [abridged] Aims. We model the number and properties of ultracompact X-ray binaries (UCXBs) in the Galactic Bulge. The objective is to learn about the formation of UCXBs and their evolution, such as the onset of mass transfer and late-time behavior. Methods. The binary population synthesis code SeBa and stellar evolutionary tracks are used to model the UCXB population. The luminosity behavior of UCXBs is predicted using long-term X-ray observations of the known UCXBs and the thermal-viscous disk instability model. Results. In our model, the majority of UCXBs initially have a helium burning star donor. In the absence of a mechanism that destroys old UCXBs, we predict (0.2 - 1.9) x 10^5 UCXBs in the Galactic Bulge, mostly at orbital periods longer than 60 min (a large number of long-period systems also follows from the observed short-period UCXB population). About 5 - 50 UCXBs should be brighter than 10^35 erg/s, mostly persistent sources with orbital periods shorter than 30 min and with degenerate helium and ca...

  19. Constitutive modeling of a commercially pure titanium: validation using bulge tests

    Science.gov (United States)

    Revil-Baudard, Benoit; Massoni, Elisabeth

    2016-08-01

    In this paper, mechanical tests aimed at characterizing the plastic anisotropy of a commercially pure α-titanium sheet are presented. Hemispheric and elliptic bulge tests conducted to investigate the forming properties of the material are also reported. To model the particularities of the plastic response of the material the classical Hill [1] yield criterion, and Cazacu et al. [2] yield criterion are used. Identification of the material parameters involved in both criteria is based only on uniaxial test data, while their predictive capabilities are assessed through comparison with the bulge tests data. Both models reproduce qualitatively the experimental plastic strain distribution and the final thickness of the sheet. However, only Cazacu et al. [2] yield criterion, which accounts for both the anisotropy and tension-compression asymmetry of the material captures correctly plastic strain localization, in particular its directionality. Furthermore, it is shown that accounting for the strong tension-compression asymmetry in the model formulation improves numerical predictions regarding the mechanical behavior close to fracture of a commercially pure titanium alloy under sheet metal forming processes.

  20. The VST Photometric Halpha Survey of the Southern Galactic Plane and Bulge (VPHAS+)

    CERN Document Server

    Drew, J E; Greimel, R; Irwin, M J; Yoldas, A Kupcu; Lewis, J; Barentsen, G; Eisloeffel, J; Farnhill, H J; Martin, W E; Walsh, J R; Walton, N A; Mohr-Smith, M; Raddi, R; Sale, S E; Wright, N J; Groot, P; Barlow, M J; Corradi, R L M; Drake, J J; Fabregat, J; Frew, D J; Gaensicke, B T; Knigge, C; Mampaso, A; Morris, R A H; Naylor, T; Parker, Q A; Phillipps, S; Ruhland, C; Steeghs, D; Unruh, Y C; Vink, J S; Wesson, R; Zijlstra, A A

    2014-01-01

    The VST Photometric Halpha Survey of the Southern Galactic Plane and Bulge (VPHAS+) is surveying the southern Milky Way in u, g, r, i and Halpha at 1 arcsec angular resolution. Its footprint spans the Galactic latitude range -5 < b < +5 at all longitudes south of the celestial equator. Extensions around the Galactic Centre to Galactic latitudes +/-10 bring in much of the Galactic Bulge. This ESO public survey, begun on 28th December 2011, reaches down to 20th magnitude (10-sigma) and will provide single-epoch digital optical photometry for around 300 million stars. The observing strategy and data pipelining is described, and an appraisal of the segmented narrowband Halpha filter in use is presented. Using model atmospheres and library spectra, we compute main-sequence (u - g), (g - r), (r - i) and (r - Halpha) stellar colours in the Vega system. We report on a preliminary validation of the photometry using test data obtained from two pointings overlapping the Sloan Digital Sky Survey. An example of the ...

  1. The stellar metallicity distribution of disc galaxies and bulges in cosmological simulations

    CERN Document Server

    Calura, F; Michel-Dansac, L; Stinson, G S; Pilkington, K; House, E L; Brook, C B; Few, C G; Bailin, J; Couchman, H M P; Wadsley, J; .,

    2012-01-01

    By means of high-resolution cosmological hydrodynamical simulations of Milky Way-like disc galaxies, we conduct an analysis of the associated stellar metallicity distribution functions (MDFs). After undertaking a kinematic decomposition of each simulation into spheroid and disc sub-components, we compare the predicted MDFs to those observed in the solar neighbourhood and the Galactic bulge. The effects of the star formation density threshold are visible in the star formation histories, which show a modulation in their behaviour driven by the threshold. The derived MDFs show median metallicities lower by 0.2-0.3 dex than the MDF observed locally in the disc and in the Galactic bulge. Possible reasons for this apparent discrepancy include the use of low stellar yields and/or centrally-concentrated star formation. The dispersions are larger than the one of the observed MDF; this could be due to simulated discs being kinematically hotter relative to the Milky Way. The fraction of low metallicity stars is largely ...

  2. From Discs to Bulges: effect of mergers on the morphology of galaxies

    CERN Document Server

    Kannan, Rahul; Fontanot, Fabio; Moster, Benjamin P; Karman, Wouter; Somerville, Rachel S

    2015-01-01

    We study the effect of mergers on the morphology of galaxies by means of the simulated merger tree approach first proposed by Moster et al. This method combines N-body cosmological simulations and semi-analytic techniques to extract realistic initial conditions for galaxy mergers. These are then evolved using high resolution hydrodynamical simulations, which include dark matter, stars, cold gas in the disc and hot gas in the halo. We show that the satellite mass accretion is not as effective as previously thought, as there is substantial stellar stripping before the final merger. The fraction of stellar disc mass transferred to the bulge is quite low, even in the case of a major merger, mainly due to the dispersion of part of the stellar disc mass into the halo. We confirm the findings of Hopkins et al., that a gas rich disc is able to survive major mergers more efficiently. The enhanced star formation associated with the merger is not localised to the bulge of galaxy, but a substantial fraction takes place i...

  3. Bulges versus disks: the evolution of angular momentum in cosmological simulations of galaxy formation

    CERN Document Server

    Zavala, J; Frenk, Carlos S

    2007-01-01

    We investigate the evolution of angular momentum in simulations of galaxy formation in a cold dark matter universe. We analyse two model galaxies produced in the N-body/hydrodynamic simulations of Okamoto et al. Starting from identical initial conditions, but using different assumptions for the baryonic physics, one of the simulations produced a bulge-dominated galaxy and the other one a disk-dominated galaxy. The main difference is the treatment of star formation and feedback, both of which were designed to be more efficient in the disk-dominated object. We find that the specific angular momentum of the disk-dominated galaxy tracks the evolution of the angular momentum of the dark matter halo very closely: the angular momentum grows as predicted by linear theory until the epoch of maximum expansion and remains constant thereafter. By contrast, the evolution of the angular momentum of the bulge-dominated galaxy resembles that of the central, most bound halo material: it also grows at first according to linear...

  4. Looking for imprints of the first stellar generations in metal-poor bulge field stars

    CERN Document Server

    Siqueira-Mello, C; Barbuy, B; Freeman, K; Ness, M; Depagne, E; Cantelli, E; Pignatari, M; Hirschi, R; Frischknecht, U; Meynet, G; Maeder, A

    2016-01-01

    Context. Efforts to look for signatures of the first stars have concentrated on metal-poor halo objects. However, the low end of the bulge metallicity distribution has been shown to host some of the oldest objects in the Milky Way and hence this Galactic component potentially offers interesting targets to look at imprints of the first stellar generations. As a pilot project, we selected bulge field stars already identified in the ARGOS survey as having [Fe/H] ~ -1 and oversolar [alpha/Fe] ratios, and we used FLAMES-UVES to obtain detailed abundances of key elements that are believed to reveal imprints of the first stellar generations. Aims. The main purpose of this study is to analyse selected ARGOS stars using new high-resolution (R~45,000) and high-signal-to-noise (S/N >100) spectra. We aim to derive their stellar parameters and elemental ratios, in particular the abundances of C, N, the alpha-elements O, Mg, Si, Ca, and Ti, the odd-Z elements Na and Al, the neutron-capture s-process dominated elements Y, Z...

  5. The H alpha Galaxy Survey VII. The spatial distribution of star formation within disks and bulges

    CERN Document Server

    James, P A; Knapen, J H

    2009-01-01

    We analyse the current build-up of stellar mass within the disks and bulges of nearby galaxies through a comparison of the spatial distributions of forming and old stellar populations. H alpha and R-band imaging are used to determine the distributions of young and old stellar populations in 313 S0a - Im field galaxies out to 40 Mpc. Concentration indices and mean normalised light profiles are calculated as a function of galaxy type and bar classification. The mean profiles and concentration indices show a strong and smooth dependence on galaxy type. Apart from a central deficit due to bulge/bar light in some galaxy types, mean H alpha and R-band profiles are very similar. Mean profiles within a given type are remarkably constant even given wide ranges in galaxy luminosity and size. SBc, SBbc and particularly SBb galaxies have profiles that are markedly different from those of unbarred galaxies. H alpha emission from SBb galaxies is studied in detail; virtually all show resolved central components and concentr...

  6. Discovery of RR Lyrae Stars in the Nuclear Bulge of the Milky Way

    CERN Document Server

    Minniti, D; Zoccali, M; Rejkuba, M; Gonzalez, O A; Valenti, E; Gran, F

    2016-01-01

    Galactic nuclei, like the one of the Milky Way, are extreme places with high stellar densities and, in most cases, hosting a supermassive black hole. One of the scenarios proposed for the formation of the Galactic nucleus is by merging of primordial globular clusters (Capuzzo-Dolcetta 1993). An implication of this model is that this region should host stars characteristically found in old Milky Way globular clusters. RR Lyrae stars are primary distance indicators, well known representatives of old and metal-poor stellar populations, and therefore regularly found in globular clusters. Here we report the discovery of a dozen RR Lyrae ab-type stars in the vicinity of the Galactic center, i.e. in the so-called nuclear stellar bulge of the Milky Way. This discovery provides the first direct observational evidence that the Galactic nuclear stellar bulge contains ancient stars (>10 Gyr old). Based on this we conclude that merging globular clusters likely contributed to building-up the high stellar density in the nuc...

  7. The Gaia-ESO Survey: metallicity and kinematic trends in the Milky Way bulge

    CERN Document Server

    Rojas-Arriagada, A; Hill, V; de Laverny, P; Schultheis, M; Babusiaux, C; Zoccali, M; Minniti, D; Gonzalez, O A; Feltzing, S; Gilmore, G; Randich, S; Vallenari, A; Alfaro, E J; Bensby, T; Bragaglia, A; Flaccomio, E; Lanzafame, A C; Pancino, E; Smiljanic, R; Bergemann, M; Costado, M T; Damiani, F; Hourihane, A; Jofré, P; Lardo, C; Magrini, L; Maiorca, E; Morbidelli, L; Sbordone, L; Worley, C C; Zaggia, S; Wyse, R

    2014-01-01

    (Abridged) We analyzed the stellar parameters and radial velocities of ~1200 stars in five bulge fields as determined from the Gaia-ESO survey data (iDR1). We use VISTA Variables in The Via Lactea (VVV) photometry to obtain reddening values by using a semi-empirical T_eff-color calibration. From a Gaussian decomposition of the metallicity distribution functions, we unveil a clear bimodality in all fields, with the relative size of components depending of the specific position on the sky. In agreement with some previous studies, we find a mild gradient along the minor axis (-0.05 dex/deg between b=-6 and b=-10) that arises from the varying proportion of metal-rich and metal-poor components. The number of metal-rich stars fades in favor of the metal-poor stars with increasing b. The K-magnitude distribution of the metal-rich population splits into two peaks for two of the analyzed fields that intersects the near and far branches of the X-shaped bulge structure. In addition, two lateral fields at (l,b)=(7,-9) an...

  8. TERZAN 5: the remnant of a pristine fragment of the Galactic Bulge?

    CERN Document Server

    Lanzoni, Barbara

    2013-01-01

    Terzan 5 is a stellar system in the Galactic bulge commonly catalogued as a globular cluster. Through dedicated NIR photometry and spectroscopy we have discovered that it harbors two main stellar populations defining two distinct red clumps (RCs) in the colour-magnitude diagram, and displaying different iron content: [Fe/H] = -0.2 and [Fe/H]=+0.3 for the faint and the bright red clumps, respectively. In addition, a third minor population with significantly lower metallicity ([Fe/H]=-0.79) has been recently detected, thus enlarging the metallicity range covered by Terzan 5 to Delta[Fe/H] ~ 1 dex. This evidence demonstrates that, similarly to omega Centauri in the Galactic halo, Terzan 5 is not a genuine globular cluster, but a stellar system that experienced a much more complex star formation and chemical enrichment history. Moreover the striking chemical similarity with the bulge stars suggests that Terzan 5 could be the relic of one of the massive clumps that contributed through strong dynamical interactions...

  9. CO J = 2 - 1 Emission from Evolved Stars in the Galactic Bulge

    CERN Document Server

    Sargent, Benjamin A; Meixner, M; Otsuka, M; Riebel, D; Srinivasan, S

    2014-01-01

    We observe a sample of 8 evolved stars in the Galactic Bulge in the CO J = 2 - 1 line using the Submillimeter Array (SMA) with angular resolution of 1 - 4 arcseconds. These stars have been detected previously at infrared wavelengths, and several of them have OH maser emission. We detect CO J = 2 - 1 emission from three of the sources in the sample: OH 359.943 +0.260, [SLO2003] A12, and [SLO2003] A51. We do not detect the remaining 5 stars in the sample because of heavy contamination from the galactic foreground CO emission. Combining CO data with observations at infrared wavelengths constraining dust mass loss from these stars, we determine the gas-to-dust ratios of the Galactic Bulge stars for which CO emission is detected. For OH 359.943 +0.260, we determine a gas mass-loss rate of 7.9 (+/- 2.2) x 10^-5 M_Sun/year and a gas-to-dust ratio of 310 (+/- 89). For [SLO2003] A12, we find a gas mass-loss rate of 5.4 (+/- 2.8) x 10^-5 M_Sun/year and a gas-to-dust ratio of 220 (+/- 110). For [SLO2003] A51, we find a ...

  10. Bulge RR Lyrae stars in the VVV tile $\\textit{b201}$

    CERN Document Server

    Gran, F; Saito, R K; Navarrete, C; Dékány, I; McDonald, I; Ramos, R Contreras; Catelan, M

    2015-01-01

    The VISTA Variables in the V\\'ia L\\'actea (VVV) Survey is one of the six ESO public surveys currently ongoing at the VISTA telescope on Cerro Paranal, Chile. VVV uses near-IR ($ZYJHK_{\\rm s}$) filters that at present provide photometry to a depth of $K_{\\rm s} \\sim 17.0$ mag in up to 36 epochs spanning over four years, and aim at discovering more than 10$^6$ variable sources as well as trace the structure of the Galactic bulge and part of the southern disk. A variability search was performed to find RR Lyrae variable stars. The low stellar density of the VVV tile $\\textit{b201}$, which is centered at ($\\ell, b$) $\\sim$ ($-9^\\circ, -9^\\circ$), makes it suitable to search for variable stars. Previous studies have identified some RR Lyrae stars using optical bands that served to test our search procedure. The main goal is to measure the reddening, interstellar extinction, and distances of the RR Lyrae stars and to study their distribution on the Milky Way bulge. A total of 1.5 sq deg were analyzed, and we found ...

  11. Deformation Characterization of Friction-Stir-Welded Tubes by Hydraulic Bulge Testing

    Science.gov (United States)

    Pang, Q.; Hu, Z. L.; Pan, X.; Zuo, X. Q.

    2014-10-01

    In this article, the large-diameter thin-walled aluminum alloy tubes were produced using a hybrid process combining friction-stir welding (FSW) and spinning. For this novel process, rolled aluminum alloy sheets with a thickness about 2-3 times the wall thickness of target tube, were FSW to form cylinders, and then the cylinders were subjected to spinning to get thin-walled aluminum alloy tubes. Both experimental and simulation study were conducted to investigate the deformation characterization of the FSW tube during hydraulic bulge testing, and the stress and strain states and thickness distribution of the FSW tube were investigated. It was found that the common defects of FSW tube can be significantly improved by specific welding devices. The ductility of the tube is considerably improved with nearly two times higher bulge ratio than as-spun tube after annealing treatment at 300°C. But the annealed tube still shows a high nonuniform wall thickness distribution due to the inhomogeneous deformation characteristics. With increasing deformation of the tube, the gap between the hoop and axial stress for the weld and base metal (BM) decreases. However, the hoop and axial stress of the weld are always greater than those of the BM at the same pressure.

  12. The Black Hole Mass-Bulge Luminosity Relationship for Active Galactic Nuclei From Reverberation Mapping and Hubble Space Telescope Imaging

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.

    2009-01-01

    We investigate the relationship between black hole mass and bulge luminosity for active galactic nuclei (AGNs) with reverberation-based black hole mass measurements and bulge luminosities from two-dimensional decompositions of Hubble Space Telescope host galaxy images. We find that the slope...... of the relationship for AGNs is 0.76-0.85 with an uncertainty of ~0.1, somewhat shallower than the M BH vprop L 1.0±0.1 relationship that has been fit to nearby quiescent galaxies with dynamical black hole mass measurements. This difference is somewhat perplexing, as the AGN black hole masses include an overall...

  13. Sample of optically unidentified X-ray binaries in the Galactic bulge. Constraints on the physical nature from infrared photometric surveys

    CERN Document Server

    Zolotukhin, Ivan

    2014-01-01

    We report on the archival near-infrared and mid-infrared observations of 7 persistent X-ray sources situated in the Galactic bulge using data from the UKIRT Infrared Deep Sky Survey (UKIDSS), Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) and the Wide-field Infrared Survey Explorer (WISE) all-sky survey. We were able to successfully identify, or provide upper flux limits for the systems SAX J1747.0-2853, IGR J17464-2811, AX J1754.2-2754, IGR J17597-2201, IGR J18134-1636, IGR J18256-1035, Ser X-1 and constrain the nature of these systems. In the case of IGR J17597-2201 we present arguments that the source accretes matter from the stellar wind rather than via Roche lobe overflow of the secondary. We suggest that, at its X-ray luminosity of $10^{34-35}$ erg s$^{-1}$, we are probing the poorly known class of wind-fed low-mass X-ray binaries (LMXBs).

  14. Asteroseismology of Red Giant stars

    CERN Document Server

    Tarrant, N J; Elsworth, Y P; Spreckley, S A; Stevens, I R

    2008-01-01

    Sun-like oscillations, that is p-modes excited stochastically by convective noise, have now been observed in a number of Red Giant stars. Compared to those seen in the Sun, these modes are of large amplitude and long period, making the oscillations attractive prospects for observation. However, the low Q-factor of these modes, and issues relating to the rising background at low frequencies, present some interesting challenges for identifying modes and determining the related asteroseismic parameters. We report on the analysis procedure adopted for peak-bagging by our group at Birmingham, and the techniques used to robustly ensure these are not a product of noise. I also show results from a number of giants extracted from multi-year observations with the SMEI instrument.

  15. Proximal Probes Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Proximal Probes Facility consists of laboratories for microscopy, spectroscopy, and probing of nanostructured materials and their functional properties. At the...

  16. Idiopathic giant right atrial aneurysm

    Directory of Open Access Journals (Sweden)

    Santosh C Uppu

    2013-01-01

    Full Text Available A 2-year-old boy with an incidental finding of massive cardiomegaly on a chest X-ray was diagnosed with a giant right atrial aneurysm upon further investigation with echocardiography. The patient underwent successful surgical reduction of the right atrium and closure of the patent foramen ovale to prevent thromboembolic complications and to lower the risk of atrial arrhythmias. The resected atrium had paper-thin walls and pathological features of interstitial fibrosis with endocardial thickening.

  17. Observed Properties of Giant Cells

    Science.gov (United States)

    Hathaway, David H.; Upton, Lisa; Colegrove, Owen

    2014-01-01

    The existence of Giant Cells has been suggested by both theory and observation for over 45 years. We have tracked the motions of supergranules in SDO/HMI Doppler velocity data and find larger (Giant Cell) flows that persist for months. The flows in these cells are clockwise around centers of divergence in the north and counter-clockwise in the south. Equatorward flows are correlated with prograde flows - giving the transport of angular momentum toward the equator that is needed to maintain the Sun's rapid equatorial rotation. The cells are most pronounced at mid- and high-latitudes where they exhibit the rotation rates representative of those latitudes. These are clearly large, long-lived, cellular features, with the dynamical characteristics expected from the effects of the Sun's rotation, but the shapes of the cells are not well represented in numerical models. While the Giant Cell flow velocities are small (<10 m/s), their long lifetimes should nonetheless substantially impact the transport of magnetic flux in the Sun's near surface layers.

  18. KEPLER RAPIDLY ROTATING GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.; Paz-Chinchón, F.; Chagas, M. L. das; Leão, I. C.; Oliveira, G. Pereira de; Silva, R. Rodrigues da; Roque, S.; Oliveira, L. L. A. de; Silva, D. Freire da; De Medeiros, J. R., E-mail: renan@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal RN (Brazil)

    2015-07-10

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surface rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.

  19. Kepler rapidly rotating giant stars

    CERN Document Server

    Costa, A D; Bravo, J P; Paz-Chinchón, F; Chagas, M L das; Leão, I C; de Oliveira, G Pereira; da Silva, R Rodrigues; Roque, S; de Oliveira, L L A; da Silva, D Freire; De Medeiros, J R

    2015-01-01

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of sub-stellar companions by their hosting stars. In the present letter we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting very short rotation period with values ranging from 13 to 55 days. This finding points for remarkable surface rotation rates, up to 18 times the Sun rotation. These giants are combined with 6 other recently listed in the literature for mid-IR diagnostic based on WISE information, from which a trend for an infrared excess is revealed for at least a half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.

  20. Electrodynamics in Giant Planet Atmospheres

    Science.gov (United States)

    Koskinen, T.; Yelle, R. V.; Lavvas, P.; Cho, J.

    2014-12-01

    The atmospheres of close-in extrasolar giant planets such as HD209458b are strongly ionized by the UV flux of their host stars. We show that photoionization on such planets creates a dayside ionosphere that extends from the thermosphere to the 100 mbar level. The resulting peak electron density near the 1 mbar level is higher than that encountered in any planetary ionosphere of the solar system, and the model conductivity is in fact comparable to the atmospheres of Sun-like stars. As a result, the momentum and energy balance in the upper atmosphere of HD209458b and similar planets can be strongly affected by ion drag and resistive heating arising from wind-driven electrodynamics. Despite much weaker ionization, electrodynamics is nevertheless also important on the giant planets of the solar system. We use a generic framework to constrain the conductivity regimes on close-in extrasolar planets, and compare the results with conductivites based on the same approach for Jupiter and Saturn. By using a generalized Ohm's law and assumed magnetic fields, we then demonstrate the basic effects of wind-driven ion drag in giant planet atmospheres. Our results show that ion drag is often significant in the upper atmosphere where it can also substantially alter the energy budget through resistive heating.

  1. Guiding the Giant

    Science.gov (United States)

    1998-08-01

    New ESO Survey Provides Targets for the VLT Giant astronomical telescopes like the ESO Very Large Telescope (VLT) must be used efficiently. Observing time is expensive and there are long waiting lines of excellent research programmes. Thus the work at the telescope must be very well prepared and optimized as much as possible - mistakes should be avoided and no time lost! Astronomers working with the new 8-m class optical/infrared telescopes must base their observations on detailed lists of suitable target objects if they want to perform cutting-edge science. This is particularly true for research programmes that depend on observations of large samples of comparatively rare, distant objects. This type of work requires that extensive catalogues of such objects must be prepared in advance. One such major catalogue - that will serve as a very useful basis for future VLT observations - has just become available from the new ESO Imaging Survey (EIS). The Need for Sky Surveys Astronomers have since long recognized the need to carry out preparatory observations with other telescopes in order to "guide" large telescopes. To this end, surveys of smaller or larger parts of the sky have been performed by wide-field telescopes, paving the way for subsequent work at the limits of the largest available ground-based telescopes. For instance, a complete photographic survey of the sourthern sky (declination deep imaging surveys have thus become an indispensable complement to the 8-m telescopes. The new generation of imaging surveys will, without doubt, be the backbone of future research and are likely to be as long-lived as their earlier counterparts, which have served the astronomical community so well over the past decades. The new surveys are now becoming possible, thanks to the new, extremely light-sensitive CCD-mosaics mounted on wide-field telescopes. The ESO Imaging Survey (EIS) A very successful, major step in this direction has recently been taken at ESO. It concerns an

  2. Theoretical re-evaluations of the black hole mass-bulge mass relation - I. Effect of seed black hole mass

    Science.gov (United States)

    Shirakata, Hikari; Kawaguchi, Toshihiro; Okamoto, Takashi; Makiya, Ryu; Ishiyama, Tomoaki; Matsuoka, Yoshiki; Nagashima, Masahiro; Enoki, Motohiro; Oogi, Taira; Kobayashi, Masakazu A. R.

    2016-10-01

    We explore the effect of varying the mass of a seed black hole on the resulting black hole mass-bulge mass relation at z ˜ 0, using a semi-analytic model of galaxy formation combined with large cosmological N-body simulations. We constrain our model by requiring that the observed properties of galaxies at z ˜ 0 are reproduced. In keeping with previous semi-analytic models, we place a seed black hole immediately after a galaxy forms. When the mass of the seed is set at 105 M⊙, we find that the model results become inconsistent with recent observational results of the black hole mass-bulge mass relation for dwarf galaxies. In particular, the model predicts that bulges with ˜109 M⊙ harbour larger black holes than observed. On the other hand, when we employ seed black holes of 103 M⊙ or select their mass randomly within a 103-5 M⊙ range, the resulting relation is consistent with observation estimates, including the observed dispersion. We find that, to obtain stronger constraints on the mass of seed black holes, observations of less massive bulges at z ˜ 0 are a more powerful comparison than the relations at higher redshifts.

  3. Theoretical reevaluations of black hole mass -- bulge mass relation - I. Influences of the seed black hole mass

    CERN Document Server

    Shirakata, Hikari; Okamoto, Takashi; Makiya, Ryu; Ishiyama, Tomoaki; Matsuoka, Yoshiki; Nagashima, Masahiro; Enoki, Motohiro; Oogi, Taira; Kobayashi, Masakazu A R

    2016-01-01

    We show influences of the mass of seed black holes on black hole mass -- bulge mass relation at z ~ 0 by using a semi-analytic model of galaxy formation combined with large cosmological N-body simulations. We constrain our model to reproduce observed properties of galaxies at z ~ 0. Similar to other semi-analytic models, we place a seed black hole immediately after a galaxy forms. When we set the seed black hole mass to 10^5 M_sun, we find that the model result becomes inconsistent with recent observational results of black hole mass -- bulge mass relation for dwarf galaxies. Namely, the model predicts that bulges with ~ 10^9 M_sun harbor black holes more massive than observed. On the other hand, when we employ seed black holes with 10^3 M_sun or randomly choose their masses in the range of 10^{3-5} M_sun, the black hole mass -- bulge mass relation obtained from these models are consistent with observational results including dispersions. We find that to obtain more stringent restrictions of the mass of seed ...

  4. The Origin of S0s in Clusters: evidence from the bulge and disc star formation histories

    CERN Document Server

    Johnston, Evelyn J; Merrifield, Michael R

    2014-01-01

    The individual star formation histories of bulges and discs of lenticular (S0) galaxies can provide information on the processes involved in the quenching of their star formation and subsequent transformation from spirals. In order to study this transformation in dense environments, we have decomposed long-slit spectroscopic observations of a sample of 21 S0s from the Virgo Cluster to produce one-dimensional spectra representing purely the bulge and disc light for each galaxy. Analysis of the Lick indices within these spectra reveals that the bulges contain consistently younger and more metal-rich stellar populations than their surrounding discs, implying that the final episode of star formation within S0s occurs in their central regions. Analysis of the $\\alpha$-element abundances in these components further presents a picture in which the final episode of star formation in the bulge is fueled using gas that has previously been chemically enriched in the disc, indicating the sequence of events in the transfo...

  5. Galaxy And Mass Assembly (GAMA): Understanding the wavelength dependence of galaxy structure with bulge-disc decompositions

    CERN Document Server

    Kennedy, Rebecca; Häußler, Boris; Baldry, Ivan; Bremer, Malcolm; Brough, Sarah; Brown, Michael J I; Driver, Simon; Duncan, Kenneth; Graham, Alister W; Holwerda, Benne W; Hopkins, Andrew M; Kelvin, Lee S; Lange, Rebecca; Phillipps, Steven; Vika, Marina; Vulcani, Benedetta

    2016-01-01

    With a large sample of bright, low-redshift galaxies with optical$-$near-IR imaging from the GAMA survey we use bulge-disc decompositions to understand the wavelength-dependent behavior of single-S\\'ersic structural measurements. We denote the variation in single-S\\'ersic index with wavelength as $\\mathcal{N}$, likewise for effective radius we use $\\mathcal{R}$. We find that most galaxies with a substantial disc, even those with no discernable bulge, display a high value of $\\mathcal{N}$. The increase in S\\'ersic index to longer wavelengths is therefore intrinsic to discs, apparently resulting from radial variations in stellar population and/or dust reddening. Similarly, low values of $\\mathcal{R}$ ($<$ 1) are found to be ubiquitous, implying an element of universality in galaxy colour gradients. We also study how bulge and disc colour distributions vary with galaxy type. We find that, rather than all bulges being red and all discs being blue in absolute terms, both components become redder for galaxies wi...

  6. Galactic Angular Momentum in Cosmological Zoom-in Simulations. I. Disk and Bulge Components and the Galaxy–Halo Connection

    Science.gov (United States)

    Sokołowska, Aleksandra; Capelo, Pedro R.; Fall, S. Michael; Mayer, Lucio; Shen, Sijing; Bonoli, Silvia

    2017-02-01

    We investigate the angular momentum evolution of four disk galaxies residing in Milky-Way–sized halos formed in cosmological zoom-in simulations with various sub-grid physics and merging histories. We decompose these galaxies, kinematically and photometrically, into their disk and bulge components. The simulated galaxies and their components lie on the observed sequences in the j *–M * diagram, relating the specific angular momentum and mass of the stellar component. We find that galaxies in low-density environments follow the relation {j}* \\propto {M}* α past major mergers, with α ∼ 0.6 in the case of strong feedback, when bulge-to-disk ratios are relatively constant, and α ∼ 1.4 in the other cases, when secular processes operate on shorter timescales. We compute the retention factors (i.e., the ratio of the specific angular momenta of stars and dark matter) for both disks and bulges and show that they vary relatively slowly after averaging over numerous but brief fluctuations. For disks, the retention factors are usually close to unity, while for bulges, they are a few times smaller. Our simulations therefore indicate that galaxies and their halos grow in a quasi-homologous way.

  7. Rapid Formation of Ice Giant Planets

    CERN Document Server

    Boss, A P; Haghighipour, N; Boss, Alan P.; Wetherill, George W.; Haghighipour, Nader

    2002-01-01

    The existence of Uranus and Neptune presents severe difficulties for the core accretion model for the formation of ice giant planets. We suggest an alternative mechanism, namely disk instability leading to the formation of gas giant protoplanets, coagulation and settling of dust grains to form ice/rock cores at their centers, and photoevaporation of their gaseous envelopes by a nearby OB star, as a possible means of forming ice giant planets.

  8. Elemental abundances of Galactic bulge planetary nebulae from optical recombination lines

    CERN Document Server

    Wang, W

    2007-01-01

    (abridged) Deep long-slit optical spectrophotometric observations are presented for 25 Galactic bulge planetary nebulae (GBPNe) and 6 Galactic disk planetary nebulae (GDPNe). The spectra, combined with archival ultraviolet spectra obtained with the International Ultraviolet Explorer (IUE) and infrared spectra obtained with the Infrared Space Observatory (ISO), have been used to carry out a detailed plasma diagnostic and element abundance analysis utilizing both collisional excited lines (CELs) and optical recombination lines (ORLs). Comparisons of plasma diagnostic and abundance analysis results obtained from CELs and from ORLs reproduce many of the patterns previously found for GDPNe. In particular we show that the large discrepancies between electron temperatures (Te's) derived from CELs and from ORLs appear to be mainly caused by abnormally low values yielded by recombination lines and/or continua. Similarly, the large discrepancies between heavy element abundances deduced from ORLs and from CELs are large...

  9. Stochastic Noncircular Motion and Outflows Driven by Magnetic Activity in the Galactic Bulge Region

    CERN Document Server

    Suzuki, Takeru K; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji

    2015-01-01

    By performing a global magneto-hydrodynamical simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic center region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches >~ 0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. In addition, the magnetic pressure-gradient force also drives radial flows in a similar manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the i...

  10. Binary Planetary Nebulae Nuclei towards the Galactic Bulge. I. Sample Discovery, Period Distribution and Binary Fraction

    CERN Document Server

    Miszalski, B; Moffat, A F J; Parker, Q A; Udalski, A

    2009-01-01

    Binarity has been hypothesised to play an important, if not ubiquitous, role in the formation of planetary nebulae (PNe). Yet there remains a severe paucity of known binary central stars required to test the binary hypothesis and to place strong constraints on the physics of the common-envelope (CE) phase of binary stellar evolution. Large photometric surveys offer an unrivalled opportunity to efficiently discover many binary central stars. We have combined photometry from the OGLE microlensing survey with the largest sample of PNe towards the Galactic Bulge to systematically search for new binaries. A total of 21 periodic binaries were found thereby more than doubling the known sample. The orbital period distribution was found to be best described by CE population synthesis models when no correlation between primary and secondary masses is assumed for the initial mass ratio distribution. A comparison with post-CE white dwarf binaries indicates both distributions are representative of the true post-CE period ...

  11. Low temperature deformation behavior of an electromagnetically bulged 5052 aluminum alloy

    Science.gov (United States)

    Li, Zu; Li, Ning; Wang, Duzhen; Ouyang, Di; Liu, Lin

    2016-07-01

    The fundamental understanding of the deformation behavior of electromagnetically formed metallic components under extreme conditions is important. Here, the effect of low temperature on the deformation behavior of an electromagnetically-bulged 5052 aluminum alloy was investigated through uniaxial tension. We found that the Portevin-Le Chatelier Effect, designated by the serrated characteristic in stress-strain curves, continuously decays until completely disappears with decreasing temperature. The physical origin of the phenomenon is rationalized on the basis of the theoretical analysis and the Monte Carlo simulation, which reveal an increasing resistance to dislocation motion imposed by lowering temperature. The dislocations are captured completely by solute atoms at ‑50 °C, which results in the extinction of Portevin-Le Chatelier. The detailed mechanism responsible for this process is further examined through Monte Carlo simulation.

  12. Precise Black Hole Masses from Megamaser Disks: Black Hole-Bulge Relations at Low Mass

    Science.gov (United States)

    Greene, Jenny E.; Peng, Chien Y.; Kim, Minjin; Kuo, Cheng-Yu; Braatz, James A.; Impellizzeri, C. M. V.; Condon, James J.; Lo, K. Y.; Henkel, Christian; Reid, Mark J.

    2010-09-01

    The black hole (BH)-bulge correlations have greatly influenced the last decade of efforts to understand galaxy evolution. Current knowledge of these correlations is limited predominantly to high BH masses (M BHgsim108 M sun) that can be measured using direct stellar, gas, and maser kinematics. These objects, however, do not represent the demographics of more typical L BH mass measurements derived from the dynamics of H2O megamasers in circumnuclear disks. The masers trace the Keplerian rotation of circumnuclear molecular disks starting at radii of a few tenths of a pc from the central BH. Modeling of the rotation curves, presented by Kuo et al., yields BH masses with exquisite precision. We present stellar velocity dispersion measurements for a sample of nine megamaser disk galaxies based on long-slit observations using the B&C spectrograph on the Dupont telescope and the Dual Imaging Spectrograph on the 3.5 m telescope at Apache Point. We also perform bulge-to-disk decomposition of a subset of five of these galaxies with Sloan Digital Sky Survey imaging. The maser galaxies as a group fall below the M BH-σ* relation defined by elliptical galaxies. We show, now with very precise BH mass measurements, that the low-scatter power-law relation between M BH and σ* seen in elliptical galaxies is not universal. The elliptical galaxy M BH-σ* relation cannot be used to derive the BH mass function at low mass or the zero point for active BH masses. The processes (perhaps BH self-regulation or minor merging) that operate at higher mass have not effectively established an M BH-σ* relation in this low-mass regime.

  13. The Optical Gravitational Lensing Experiment (OGLE-II). Difference Image Analysis of the Bulge Data.

    Science.gov (United States)

    Wozniak, P. R.

    2000-12-01

    During 1997-1999 observing seasons (mid March to mid December) the OGLE-II project collected more than 11,000 2Kx8K frames (over 370 GB of pixel data) of the Galactic Bulge using 1.3m Warsaw Telescope at the Las Campanas Observatory, Chile. Each of the 49 fields has roughly 200-300 measurements in I band. The fields span the range approximately from -10 to 10 deg in galactic longitude. I present a complete reanalysis of this data set using the optimal image subtraction method developed by Alard and Lupton (1998) and Alard (1999). Databases of difference measurements contain about 100,000 variable objects. This information is supplemented with colors from DoPhot photometry. Noise properties of our difference light curves are exceptionally good for this kind of massive monitoring program. The nongaussian tail in the distribution of residuals is totally negligible for usual applications. For faint stars the measurement errors are only 1.15 times photon noise. The difference photometry is always at least a factor of 2 better than results from DoPhot. Systematic effects due to blending are greatly relieved, the most important difference being the unbiased value of the variable light centroid. We discovered 512 microlensing events (compared to 214 from DoPhot photometry, Udalski et al. 2000). 305 of those were found fully algorithmically and have good quality light curves making them very well suited for optical depth determination. In the nearest future we plan to obtain an upper limit on the number of jupiters around microlenses as these should manifest themselves in the nongaussian tail of the residual distribution. Next possibilities include much better and larger extinction maps of the bulge and studies of the galactic bar. With 300-500 events we should be able to study the depth of the lens/source populations (Stanek 1996).

  14. Giant Positive Magnetoresistance in Magnetic Multilayer Film Prepared by Ion-Beam Sputtering

    Institute of Scientific and Technical Information of China (English)

    张栋杰; 都有为

    2003-01-01

    The magnetic multilayers Ni78Co22∥Cu∥Ni78Co22/Ni78Co22O∥Ta were fabricated by ion-beam sputtering through applied magnetic field and treatment under high vacuum. Resistance against applied magnetic field was measured by the standard four-point probe method at room temperature. The giant positive magnetoresistance has been observed. A maximum positive magnetoresistance at room temperature was obtained to be 280%.

  15. Giant kerr nonlinearity, controlled entangled photons and polarization phase gates in coupled quantum-well structures.

    Science.gov (United States)

    Zhu, Chengjie; Huang, Guoxiang

    2011-11-07

    We study linear and nonlinear propagations of probe and signal pulses in a multiple quantum-well structure with a four-level, double Λ-type configuration. We show that slow, mutually matched group velocities and giant Kerr nonlinearity of the probe and the signal pulses may be achieved with nearly vanishing optical absorption. Based on these properties we demonstrate that two-qubit quantum polarization phase gates can be constructed and highly entangled photon pairs may be produced. In addition, we show that coupled slow-light soliton pairs with very low generation power can be realized in the system.

  16. Probe tip heating assembly

    Science.gov (United States)

    Schmitz, Roger William; Oh, Yunje

    2016-10-25

    A heating assembly configured for use in mechanical testing at a scale of microns or less. The heating assembly includes a probe tip assembly configured for coupling with a transducer of the mechanical testing system. The probe tip assembly includes a probe tip heater system having a heating element, a probe tip coupled with the probe tip heater system, and a heater socket assembly. The heater socket assembly, in one example, includes a yoke and a heater interface that form a socket within the heater socket assembly. The probe tip heater system, coupled with the probe tip, is slidably received and clamped within the socket.

  17. In Situ Probe Science at Saturn

    Science.gov (United States)

    Atkinson, D.H.; Lunine, J.I.; Simon-Miller, A. A.; Atreya, S. K.; Brinckerhoff, W.; Colaprete, A.; Coustenis, A.; Fletcher, L. N.; Guillot, T.; Lebreton, J.-P.; Mahaffy, P.; Mousis, O.; Orton, G. S.; Reh, K.; Spilker, L. J.; Spilker, T. R.; Webster, C.

    2014-01-01

    A fundamental goal of solar system exploration is to understand the origin of the solar sys-tem, the initial stages, conditions, and processes by which the solar system formed, how the formation pro-cess was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Several theories have been put forward to explain the process of solar system formation, and the origin and evolution of the giant planets and their atmospheres. Each theory offers quantifiable predictions of the abundances of noble gases He, Ne, Ar, Kr, and Xe, and abundances of key isotopic ratios 4He3He, DH, 15N14N, 18O16O, and 13C12C. Detection of certain dis-equilibrium species, diagnostic of deeper internal pro-cesses and dynamics of the atmosphere, would also help discriminate between competing theories. Measurements of the critical abundance profiles of these key constituents into the deeper well-mixed at-mosphere must be complemented by measurements of the profiles of atmospheric structure and dynamics at high vertical resolution and also require in situ explora-tion. The atmospheres of the giant planets can also serve as laboratories to better understand the atmospheric chem-istries, dynamics, processes, and climates on all planets including Earth, and offer a context and provide a ground truth for exoplanets and exoplanetary systems. Additionally, Giant planets have long been thought to play a critical role in the development of potentially habitable planetary systems. In the context of giant planet science provided by the Galileo, Juno, and Cassini missions to Jupiter and Sat-urn, a small, relatively shallow Saturn probe capable of measuring abundances and isotopic ratios of key at-mospheric constituents, and atmospheric structure in-cluding pressures, temperatures, dynamics, and cloud

  18. GIANT OILFIELD DISCOVERED IN BOHAI

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ PetroChina announced a discovery of a giant oilfield in the beginning of May, which has a reserve of one billion tons, or about 7.35 billion barrels, the largest discovery in China over four decades. Of the reserves, the basically proven oil in place is 405 million tons with the average thickness of oil formations ranging between 80 meters and 100 meters. The oilfield lies in the Nanpu block of PetroChina Jidong Oilfield Company in Caofeidian industrial zone, north China's Hebei province. The area is expected to enjoy a better chance of becoming a national oil strategic reserve base following the discovery of the Nanpu Oilfield.

  19. On the Shoulders of Giants...

    Science.gov (United States)

    2013-01-01

    On the shoulders of giantsI Basil A. Pruitt, Jr., MD and Todd E. Rasmussen, MD I n a letter dated February 5, 1676 (dated 1675 using the Julian...T.E.R.), Fort Sam Houston, San Antonio, TX. Address for reprints: Basil A. Pruitt, Jr, MD, Division of Trauma, Department of Surgery, The University...default.htm. 20. Moore FD. Edward Delos Churchill (1895Y1972). Ann Surg. 1973; 177:507Y508. 21. The Board for the Study of the Severely Wounded. The

  20. Giant magneto-resistance devices

    CERN Document Server

    Hirota, Eiichi; Inomata, Koichiro

    2002-01-01

    This book deals with the application of giant magneto-resistance (GMR) effects to electronic devices. It will appeal to engineers and graduate students in the fields of electronic devices and materials. The main subjects are magnetic sensors with high resolution and magnetic read heads with high sensitivity, required for hard-disk drives with recording densities of several gigabytes. Another important subject is novel magnetic random-access memories (MRAM) with non-volatile non-destructive and radiation-resistant characteristics. Other topics include future GMR devices based on bipolar spin transistors, spin field-effect transistors (FETs) and double-tunnel junctions.

  1. River bulge evolution and dynamics in a non-tidal sea - Daugava River plume in the Gulf of Riga, Baltic Sea

    Science.gov (United States)

    Soosaar, Edith; Maljutenko, Ilja; Uiboupin, Rivo; Skudra, Maris; Raudsepp, Urmas

    2016-03-01

    Satellite remote sensing imagery and numerical modelling were used for the study of river bulge evolution and dynamics in a non-tidal sea, the Gulf of Riga (GoR) in the Baltic Sea. Total suspended matter (TSM) images showed a clearly formed anti-cyclonically rotating river bulge from Daugava River discharge during the studied low wind period. In about 7-8 days the bulge grew up to 20 km in diameter, before being diluted. A high-resolution (horizontal grid step of 125 m) General Estuarine Transport Model (GETM) was used for detailed description of the development of the river plume in the southern GoR over the period when satellite images were acquired. In the model simulation, the bulge growth rate was estimated as rb ˜ t0.5 ± 0.04 (R2 = 0.90). Both the model simulation and the satellite images showed that river water was mainly contained in the bulge and there were numerous intrusions at the outer perimeter of the bulge. We performed numerical sensitivity tests with actual bathymetry and measured river runoff without wind forcing (1) having an initial three-dimensional density distribution, and (2) using initially a homogeneous ambient density field. In the first case, the anti-cyclonic bulge did not develop within the course of the model simulation and the coastal current was kept offshore due to ambient density-driven circulation. In the second case, the river plume developed steadily into an anti-cyclonically recirculating bulge, with rb ˜ t0.28 ± 0.01 (R2 = 0.98), and a coastal current. Additional simulations with constant cross-shore and alongshore winds showed a significant effect of the wind in the evolution of the river bulge, even if the wind speed was moderate (3-4 m s-1). While previous studies conclude that the mid-field bulge region is governed by a balance between centrifugal, Coriolis and pressure gradient terms, our study showed that geostrophic balance is valid for the entire mid-field of the bulge, except during the 1-1.5 rotation period at

  2. Totally thrombosed giant anterior communicating artery aneurysm

    Directory of Open Access Journals (Sweden)

    V R Roopesh Kumar

    2015-01-01

    Full Text Available Giant anterior communicating artery aneurysmsarerare. Apatient presented with visual dysfunction, gait ataxia and urinary incontinence. MRI showed a giant suprasellar mass.At surgery, the lesion was identified as being an aneurysm arising from the anterior communicating artery.The difficulty in preoperative diagnosis and relevant literature are reviewed.

  3. Giant Rings in the CMB Sky

    CERN Document Server

    Kovetz, Ely D; Itzhaki, Nissan

    2010-01-01

    We find a unique direction in the CMB sky around which giant rings have an anomalous mean temperature profile. This direction is in very close alignment with the afore measured anomalously large bulk flow direction. We argue that a cosmic defect seeded by a pre-inflationary particle could explain the giant rings, the large bulk flow and their alignment.

  4. Internal rotation of red giants by asteroseismology

    CERN Document Server

    Di Mauro, M P; Ventura, R; Stello, D; Beck, P G; Davies, G; Elsworth, Y; Garcıa, R A; Hekker, S; Mosser, B; Christensen-Dalsgaard, J; Bloemen, S; Catanzaro, G; De Smedt, K; Tkachenko, A

    2012-01-01

    We present an asteroseismic approach to study the dynamics of the stellar interior in red-giant stars by asteroseismic inversion of the splittings induced by the stellar rotation on the oscillation frequencies. We show preliminary results obtained for the red giant KIC4448777 observed by the space mission Kepler.

  5. Hubble Case Studies of Transiting Giant Exoplanets

    Science.gov (United States)

    Wilkins, Ashlee N.; Deming, Drake; Barker, Adrian; Benneke, Björn; Delrez, Laetitia; Gillon, Michaël; Hamilton, Douglas P.; Jehin, Emmanuel; Knutson, Heather; Lewis, Nikole K.; Madhusudhan, Nikku; Mandell, Avi; McCullough, Peter R.; Wakeford, Hannah R.

    2017-01-01

    The study of planets around other stars has entered a science-rich era of characterization, in which detailed information about individual planets can be inferred from observations beyond mere detection, which only yields bulk properties like mass or radius. Characterization probes more revealing quantities such as chemical abundances, albedo, and temperature/pressure profiles, which allow us to address larger questions of planet formation mechanisms, planetary evolution, and, eventually, habitability and presence of biosignature gases. The primary method for characterization of close-in planets is transit spectroscopy. This dissertation talk will focus on transiting exoplanet case studies with the Hubble Space Telescope’ Wide-Field Camera-3 (WFC-3) as a tool of exoplanet characterization in a near-infrared band dominated by strong water features. I will first present a characterization the WFC-3 systematic effects that must be mitigated to extract the incredibly small (tens to 200 parts per million) signals, and then a study of four transiting giant planets (HATS-7b, HAT-p-3b, HD 149026b, and WASP-18b) in transmission, and two (WASP-18b and CoRoT-2b) in eclipse. Finally, I will discuss the role of transit timing monitoring of WASP-18b with HST and other observatories as another clue to its evolution as a close-in, massive planet. The five planets range from Neptune-class to Super-Jupiter-class in size/mass. Though these planets may be relatively rare, their observability represents a unique opportunity to probe planet formation and evolution, as well as atmospheric structures in a high-irradiation environment. These observations also yield insights into aerosols (i.e. clouds/hazes) in the atmosphere; clouds and/or hazes should significantly impact atmospheric chemistry and observational signatures, and we as a community must get a better handle on the phenomenon of aerosols in advance of the next generation of space observatories, including JWST and WFIRST

  6. CHARACTERIZATION OF A SAMPLE OF INTERMEDIATE-TYPE ACTIVE GALACTIC NUCLEI. II. HOST BULGE PROPERTIES AND BLACK HOLE MASS ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Erika; Cruz-Gonzalez, Irene; Martinez, Benoni; Jimenez-Bailon, Elena [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-264, Mexico D.F. 04510 (Mexico); Mendez-Abreu, Jairo; Lopez-Martin, Luis [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Fuentes-Carrera, Isaura [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional (ESFM-IPN), U.P. Adolfo Lopez Mateos, Mexico D.F. 07730 (Mexico); Chavushyan, Vahram [Instituto Nacional de Astrofisica, Optica y Electronica, Apdo. Postal 51-216, 72000 Puebla (Mexico); Leon-Tavares, Jonathan, E-mail: erika@astro.unam.mx [Aalto University Metsaehovi Radio Observatory, Metsaehovintie 114, 02540 Kylmaelae (Finland)

    2013-02-15

    We present a study of the host bulge properties and their relations with the black hole mass for a sample of 10 intermediate-type active galactic nuclei (AGNs). Our sample consists mainly of early-type spirals, four of them hosting a bar. For 70{sup +10} {sub -17}% of the galaxies, we have been able to determine the type of the bulge, and find that these objects probably harbor a pseudobulge or a combination of classical bulge/pseudobulge, suggesting that pseudobulges might be frequent in intermediate-type AGNs. In our sample, 50% {+-} 14% of the objects show double-peaked emission lines. Therefore, narrow double-peaked emission lines seem to be frequent in galaxies harboring a pseudobulge or a combination of classical bulge/pseudobulge. Depending on the bulge type, we estimated the black hole mass using the corresponding M {sub BH}-{sigma}* relation and found them within a range of 5.69 {+-} 0.21 < log M {sup {sigma}}*{sub BH} < 8.09 {+-} 0.24. Comparing these M {sup {sigma}}*{sub BH} values with masses derived from the FWHM of H{beta} and the continuum luminosity at 5100 A from their SDSS-DR7 spectra (M {sub BH}), we find that 8 out of 10 (80{sup +7} {sub -17}%) galaxies have black hole masses that are compatible within a factor of 3. This result would support that M {sub BH} and M {sup {sigma}}*{sub BH} are the same for intermediate-type AGNs, as has been found for type 1 AGNs. However, when the type of the bulge is taken into account, only three out of the seven (43{sup +18} {sub -15}%) objects of the sample have their M {sup {sigma}}*{sub BH} and M {sub BH} compatible within 3{sigma} errors. We also find that estimations based on the M {sub BH}-{sigma}* relation for pseudobulges are not compatible in 50% {+-} 20% of the objects.

  7. Giant Planet Formation, Evolution, and Internal Structure

    CERN Document Server

    Helled, Ravit; Podolak, Morris; Boley, Aaron; Meru, Farzana; Nayakshin, Sergei; Fortney, Jonathan J; Mayer, Lucio; Alibert, Yann; Boss, Alan P

    2013-01-01

    The large number of detected giant exoplanets offers the opportunity to improve our understanding of the formation mechanism, evolution, and interior structure of gas giant planets. The two main models for giant planet formation are core accretion and disk instability. There are substantial differences between these formation models, including formation timescale, favorable formation location, ideal disk properties for planetary formation, early evolution, planetary composition, etc. First, we summarize the two models including their substantial differences, advantages, and disadvantages, and suggest how theoretical models should be connected to available (and future) data. We next summarize current knowledge of the internal structures of solar- and extrasolar- giant planets. Finally, we suggest the next steps to be taken in giant planet exploration.

  8. Mobile Game Probes

    DEFF Research Database (Denmark)

    Borup Lynggaard, Aviaja

    2006-01-01

    This paper will examine how probes can be useful for game designers in the preliminary phases of a design process. The work is based upon a case study concerning pervasive mobile phone games where Mobile Game Probes have emerged from the project. The new probes are aimed towards a specific target...... group and the goal is to specify the probes so they will cover the most relevant areas for our project. The Mobile Game Probes generated many interesting results and new issues occurred, since the probes came to be dynamic and favorable for the process in new ways....

  9. The properties of heavy elements in giant planet envelopes

    CERN Document Server

    Soubiran, Francois

    2016-01-01

    The core accretion model for giant planet formation suggests a two layer picture for the initial structure of Jovian planets, with heavy elements in a dense core and a thick H-He envelope. Late planetesimal accretion and core erosion could potentially enrich the H-He envelope in heavy elements, which is supported by the three-fold solar metallicity that was measured in Jupiter's atmosphere by the Galileo entry probe. In order to reproduce the observed gravitational moments of Jupiter and Saturn, models for their interiors include heavy elements, $Z$, in various proportions. However, their effect on the equation of state of the hydrogen-helium mixtures has not been investigated beyond the ideal mixing approximation. In this article, we report results from \\textit{ab initio} simulations of fully interacting H-He-$Z$ mixtures in order to characterize their equation of state and to analyze possible consequences for the interior structure and evolution of giant planets. Considering C, N, O, Si, Fe, MgO and SiO$_2$...

  10. The Properties of Heavy Elements in Giant Planet Envelopes

    Science.gov (United States)

    Soubiran, François; Militzer, Burkhard

    2016-09-01

    The core-accretion model for giant planet formation suggests a two-layer picture for the initial structure of Jovian planets, with heavy elements in a dense core and a thick H-He envelope. Late planetesimal accretion and core erosion could potentially enrich the H-He envelope in heavy elements, which is supported by the threefold solar metallicity that was measured in Jupiter’s atmosphere by the Galileo entry probe. In order to reproduce the observed gravitational moments of Jupiter and Saturn, models for their interiors include heavy elements, Z, in various proportions. However, their effect on the equation of state of the hydrogen-helium mixtures has not been investigated beyond the ideal mixing approximation. In this article, we report results from ab initio simulations of fully interacting H-He-Z mixtures in order to characterize their equation of state and to analyze possible consequences for the interior structure and evolution of giant planets. Considering C, N, O, Si, Fe, MgO, and SiO2, we show that the behavior of heavy elements in H-He mixtures may still be represented by an ideal mixture if the effective volumes and internal energies are chosen appropriately. In the case of oxygen, we also compute the effect on the entropy. We find the resulting changes in the temperature-pressure profile to be small. A homogeneous distribution of 2% oxygen by mass changes the temperature in Jupiter’s interior by only 80 K.

  11. Nuclear Structure aspects of gamma decay from giant resonances

    Directory of Open Access Journals (Sweden)

    Bracco A.

    2014-01-01

    Full Text Available The gamma decay of the giant dipole resonance (including its tail region is an important tool to probe the properties of these states, and thus to test the predictions of mean field theories. This paper focuses on two main aspects concerning the electric dipole excitation in nuclei. These are the study of the isospin character of the low energy tail of the Giant Dipole Resonance (GDR, the so-called Pygmy resonance, and the isospin mixing of nuclear systems at finite temperature. In the first case, the Pygmy resonance has been populated in the inelastic scattering reaction 17O+124Sn at 20 MeV/u. Its gamma decay has been measured using the AGATA Demonstrator and an array of 8 large volume LaBr3:Ce scintillators. In the second case, the gamma decay of the GDR in thermalized nuclear systems, formed in fusion evaporation reactions, has been used to investigate the isospin mixing in 80Zr. For this work the reactions 40Ca+40Ca at 3.4 MeV/u and 37Cl +44Ca at 2.6 MeV/u were used.

  12. Exploring Halo Substructure with Giant Stars III First Results from the Grid Giant Star Survey and Discovery of a Possible Nearby Sagittarius Tidal Structure in Virgo

    CERN Document Server

    Kundu, A; Rhee, J; Rocha-Pinto, H J; Polak, A A; Slesnick, C L; Kunkel, W E; Johnston, K V; Patterson, R J; Geisler, D; Gieren, W P; Seguel, J; Smith, V V; Palma, C; Arenas, J; Crane, J D; Hummels, C B

    2002-01-01

    We describe first results of a spectroscopic probe of selected fields from the Grid Giant Star Survey. Multifiber spectroscopy of several hundred stars in a strip of eleven fields along delta approximately -17^{circ}, in the range 12 <~ alpha <~ 17 hours, reveals a group of 8 giants that have kinematical characteristics differing from the main field population, but that as a group maintain coherent, smoothly varying distances and radial velocities with position across the fields. Moreover, these stars have roughly the same abundance, according to their MgH+Mgb absorption line strengths. Photometric parallaxes place these stars in a semi-loop structure, arcing in a contiguous distribution between 5.7 and 7.9 kpc from the Galactic center. The spatial, kinematical, and abundance coherence of these stars suggests that they are part of a diffuse stream of tidal debris, and one roughly consistent with a wrapped, leading tidal arm of the Sagittarius dwarf spheroidal galaxy.

  13. Separating gas-giant and ice-giant planets by halting pebble accretion

    Science.gov (United States)

    Lambrechts, M.; Johansen, A.; Morbidelli, A.

    2014-12-01

    In the solar system giant planets come in two flavours: gas giants (Jupiter and Saturn) with massive gas envelopes, and ice giants (Uranus and Neptune) with much thinner envelopes around their cores. It is poorly understood how these two classes of planets formed. High solid accretion rates, necessary to form the cores of giant planets within the life-time of protoplanetary discs, heat the envelope and prevent rapid gas contraction onto the core, unless accretion is halted. We find that, in fact, accretion of pebbles (~cm sized particles) is self-limiting: when a core becomes massive enough it carves a gap in the pebble disc. This halt in pebble accretion subsequently triggers the rapid collapse of the super-critical gas envelope. Unlike gas giants, ice giants do not reach this threshold mass and can only bind low-mass envelopes that are highly enriched by water vapour from sublimated icy pebbles. This offers an explanation for the compositional difference between gas giants and ice giants in the solar system. Furthermore, unlike planetesimal-driven accretion scenarios, our model allows core formation and envelope attraction within disc life-times, provided that solids in protoplanetary discs are predominantly made up of pebbles. Our results imply that the outer regions of planetary systems, where the mass required to halt pebble accretion is large, are dominated by ice giants and that gas-giant exoplanets in wide orbits are enriched by more than 50 Earth masses of solids.

  14. Bulge Testing and Interface Fracture Characterization of Plasma-Sprayed and HIP Bonded Zr Coatings on U-Mo

    Science.gov (United States)

    Hollis, K.; Liu, C.; Leckie, R.; Lovato, M.

    2015-01-01

    Bulge testing using a pressurized fluid to fracture the interface between bonded material layers along with three-dimensional digital image correlation to measure the sample distortion caused by pressurized fluid was applied to plasma-sprayed coatings. The initiation fracture toughness associated with the bonded materials was measured during the testing. The bulge testing of the uranium-molybdenum alloy plasma sprayed with zirconium and clad in aluminum is presented. The initiation fracture toughness was observed to increase with the increasing cathodic arc-cleaning current and the use of alternating polarity transferred arc current. This dependence was linked to the interface composition of oxide and mixed metal phases along with the interface temperature during spray deposition.

  15. The Interstellar Extinction Toward the Milky Way Bulge with Planetary Nebulae, Red Clump, and RR Lyrae stars

    CERN Document Server

    Nataf, David M

    2016-01-01

    I review the literature covering the issue of interstellar extinction toward the Milky Way bulge, with emphasis placed on findings from planetary nebulae, RR Lyrae, and red clump stars. I also report on observations from HI gas and globular clusters. I show that there has been substantial progress in this field in recent decades, most particularly from red clump stars. The spatial coverage of extinction maps has increased by a factor $\\sim 100 \\times$ in the past twenty years, and the total-to-selective extinction ratios reported have shifted by $\\sim$20-25\\%, indicative of the improved accuracy and separately, of a steeper-than-standard extinction curve. Problems remain in modelling differential extinction, explaining anomalies involving the planetary nebulae, and understanding the difference between bulge extinction coefficients and "standard" literature values.

  16. River bulge evolution and dynamics in a non-tidal sea – Daugava River plume in the Gulf of Riga, Baltic Sea

    Directory of Open Access Journals (Sweden)

    E. Soosaar

    2015-10-01

    Full Text Available Satellite remote sensing imagery and numerical modelling were used for the study of river bulge evolution and dynamics in a non-tidal sea, the Gulf of Riga (GoR in the Baltic Sea. Total suspended matter (TSM images showed a clearly formed anti-cyclonically rotating river bulge from Daugava River discharge during the studied low wind period. In about 7–8 days the bulge grew up to 20 km in diameter, before being diluted. Bulge growth rate was estimated as rb ~ t 0.31± 0.23 (R2 = 0.87. A high resolution (horizontal grid step of 125 m General Estuarine Transport Model (GETM was used for detailed description of the development of the river plume in the southern GoR over the period when satellite images were acquired. In the model simulation, the rb ~ t 0.5± 0.04 (R2 = 0.90. Both the model simulation and the satellite images showed that river water was mainly contained in the bulge and there were numerous intrusions at the outer perimeter of the bulge. We made numerical sensitivity tests with actual bathymetry and measured river runoff without wind forcing: (1 having initial 3-dimensional density distribution, (2 using initially a homogeneous ambient density field. In the first case, the anti-cyclonic bulge did not develop within the course of the model simulation and coastal current was kept offshore due to ambient density-driven circulation. In the second case, the river plume developed steadily into an anti-cyclonically recirculating bulge and a coastal current. This showed a significant effect of the wind in the evolution of the river bulge, even if the wind speed was moderate (3–4 m s−1. In the second case, rb ~ t 0.28± 0.01 (R2 = 0.98. While previous studies conclude that mid-field bulge region is governed by balance between centrifugal, Coriolis and pressure gradient terms, our study showed that geostrophic balance is valid for the entire mid-field of the bulge. In addition, while there is discharge into the homogenous GoR in case of

  17. Stellar population gradients in Fornax Cluster S0 galaxies: connecting bulge and disk evolution

    CERN Document Server

    Bedregal, A G; Aragón-Salamanca, A; Merrifield, M R

    2011-01-01

    We present absorption-line index gradients for a sample of S0 galaxies in the Fornax Cluster. The sample has been selected to span a wide range in galaxy mass, and the deep VLT-FORS2 spectroscopy allows us to explore the stellar populations all the way to the outer disk-dominated regions of these galaxies. We find that globally, in both bulges and disks, star formation ceased earliest in the most massive systems, as a further manifestation of downsizing. However, within many galaxies, we find an age gradient which indicates that star formation ended first in the outermost regions. Metallicity gradients, when detected, are always negative such that the galaxy centres are more metal-rich. This finding fits with a picture in which star formation continued in the central regions, with enriched material, after it had stopped in the outskirts. Age and metallicity gradients are correlated, suggesting that large differences in star formation history between the inner and outer parts of S0 galaxies yield large differe...

  18. Bulging Modes of Circular Bottom Plates in Rigid Cylindrical Containers Filled with a Liquid

    Directory of Open Access Journals (Sweden)

    Marco Amabili

    1997-01-01

    Full Text Available In this article the free vibrations of the bottom plate of an otherwise rigid circular cylindrical tank filled with liquid are studied, considering only the bulging modes (when the amplitude of the plate displacement is predominant with respect to that of the free surface. The tank axis is vertical, thus the free liquid surface is orthogonal to the tank axis. The liquid is assumed to be inviscid, and the contribution of the free surface waves to the dynamic pressure on the free liquid surface is neglected. Wet and dry mode shapes of the plate are assumed to be the same, so that the natural frequencies are obtained by using the nondimensionalized added virtual mass incremental (NA VMI factors and the modal properties of dry plates. This simplifies computations compared to other existing theoretical approaches. NAVMI factors express the nondimensionalized ratio between the reference kinetic energy of the liquid and that of the plate and have the advantage that, due to their nondimensional form, they can be computed once and for all. Numerical results for simply supported and clamped bottom plates, as well as for supported plates with an elastic moment edge constraint are given. For more accurate results, and to exceed the limits of the assumed modes approach, the Rayleigh-Ritz method is applied and results are compared to those obtained by using the NAVMI factors and other existing methods in the literature.

  19. NoSOCS in SDSS. V. Red Disc and Blue Bulge Galaxies Across Different Environments

    CERN Document Server

    Lopes, P A A; Ribeiro, A L B; Nascimento, R S; Vajgel, B

    2016-01-01

    We investigated the typical environment and physical properties of "red discs" and "blue bulges", comparing those to the "normal" objects in the blue cloud and red sequence. Our sample is composed of cluster members and field galaxies at $z \\le 0.1$, so that we can assess the impact of the local and global environment. We find that disc galaxies display a strong dependence on environment, becoming redder for higher densities. This effect is more pronounced for objects within the virial radius, being also strong related to the stellar mass. We find that local and global environment affect galaxy properties, but the most effective parameter is stellar mass. We find evidence for a scenario where "blue discs" are transformed into "red discs" as they grow in mass and move to the inner parts of clusters. From the metallicity differences of red and blue discs, and the analysis of their star formation histories, we suggest the quenching process is slow. We estimate a quenching time scale of $\\sim $ 2$-$3 Gyr. We also...

  20. Clinical relevance of "bulging eyes" for the differential diagnosis of spinocerebellar ataxias

    Directory of Open Access Journals (Sweden)

    Adriana Moro

    2013-07-01

    Full Text Available Objective To investigate the relevance of the clinical finding of bulging eyes (BE in a large Brazilian cohort of spinocerebellar ataxias (SCA, to assess its importance in clinical differential diagnosis among SCA. Methods Three hundred sixty-nine patients from 168 Brazilian families with SCA were assessed with neurological examination and molecular genetic testing. BE was characterized by the presence of eyelid retraction. Genetically ascertained SCA3 was detected in 167 patients, SCA10 in 68 patients, SCA2 in 20, SCA1 in 9, SCA7 in 6, and SCA6 in 3 patients. Results BE was detected in 123 patients with SCA (33.3%, namely 109 of the 167 SCA3 patients (65.3% and in 5 of the others SCA patients (1 SCA10 patient, 2 SCA1 patients and 2 SCA2 patients. Conclusion BE was detected in the majority of patients with SCA3 (65.3% and could be used with a clinical tool for the differential diagnosis of SCA.

  1. MOA 2011-BLG-028Lb: a Neptune-mass Microlensing Planet in the Galactic Bulge

    CERN Document Server

    Skowron, J; Poleski, R; Kozłowski, S; Szymański, M K; Wyrzykowski, Ł; Ulaczyk, K; Pietrukowicz, P; Pietrzyński, G; Soszyński, I; Abe, F; Bennett, D P; Bhattacharya, A; Bond, I A; Freeman, M; Fukui, A; Hirao, Y; Itow, Y; Koshimoto, N; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Nagakane, M; Ohnishi, K; Rattenbury, N; Saito, To; Sullivan, D J; Sumi, T; Suzuki, D; Tristram, P J; Yonehara, A; Dominik, M; Jørgensen, U G; Bozza, V; Harpsøe, K; Hundertmark, M; Skottfelt, J

    2015-01-01

    We present the discovery of a Neptune-mass planet orbiting a 0.8 +- 0.3 M_Sun star in the Galactic bulge. The planet manifested itself during the microlensing event MOA 2011-BLG-028/OGLE-2011-BLG-0203 as a low-mass companion to the lens star. The analysis of the light curve provides the measurement of the mass ratio: (1.2 +- 0.2) x 10^-4, which indicates the mass of the planet to be 12-60 Earth masses. The lensing system is located at 7.3 +- 0.7 kpc away from the Earth near the direction to Baade's Window. The projected separation of the planet, at the time of the microlensing event, was 3.1-5.2 AU. Although the "microlens parallax" effect is not detected in the light curve of this event, preventing the actual mass measurement, the uncertainties of mass and distance estimation are narrowed by the measurement of the source star proper motion on the OGLE-III images spanning eight years, and by the low amount of blended light seen, proving that the host star cannot be too bright and massive. We also discuss the ...

  2. New insight on the origin of the double red clump in the Milky Way bulge

    CERN Document Server

    Joo, Seok-Joo; Chung, Chul

    2016-01-01

    The double red clump (RC) observed in the Milky Way bulge is widely interpreted as evidence for an X-shaped structure. We have recently suggested, however, an alternative interpretation based on the multiple population phenomenon, where the bright RC is from helium enhanced second-generation stars (G2), while the faint RC is representing first-generation stars (G1) with normal helium abundance. Here our RC models are constructed in a large parameter space to see the effects of metallicity, age, and helium abundance on the double RC feature. Our models show that the luminosity of RC stars is mainly affected by helium abundance, while the RC color is primarily affected by metallicity. The effect of age is relatively small, unless it is older than 12 Gyr or much younger than 6 Gyr. The observed double RC feature can therefore be reproduced in a relatively large parameter space, once {\\Delta}Y between G2 and G1 is assumed to be greater than $\\sim$0.10. We further show that the longitude dependence of the double R...

  3. Evolution in the Disks and Bulges of Group Galaxies since z=0.4

    CERN Document Server

    McGee, Sean L; Henderson, Robert D E; Wilman, David J; Bower, Richard G; Mulchaey, John S; Oemler, Augustus

    2008-01-01

    We present quantitative morphology measurements of a sample of optically selected group galaxies at 0.3 < z < 0.55 using the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and the GIM2D surface brightness--fitting software package. The group sample is derived from the Canadian Network for Observational Cosmology Field Redshift survey (CNOC2) and follow-up Magellan spectroscopy. We compare these measurements to a similarly selected group sample from the Millennium Galaxy Catalogue (MGC) at 0.05 < z < 0.12. We find that, at both epochs, the group and field fractional bulge luminosity (B/T) distributions differ significantly, with the dominant difference being a deficit of disk--dominated (B/T < 0.2) galaxies in the group samples. At fixed luminosity, z=0.4 groups have ~ 5.5 +/- 2 % fewer disk--dominated galaxies than the field, while by z=0.1 this difference has increased to ~ 19 +/- 6 %. Despite the morphological evolution we see no evidence that the group environment is actively...

  4. Discovery of a high state AM CVn binary in the Galactic Bulge Survey

    CERN Document Server

    Wevers, T; Jonker, P G; Wetuski, J D; Nelemans, G; Steeghs, D; Maccarone, T J; Heinke, C; Hynes, R I; Udalski, A; Kostrzewa-Rutkowska, Z; Groot, P J; Gazer, R; Szymanski, M K; Britt, C T; Wyrzykowski, L; Poleski, R

    2016-01-01

    We report on the discovery of a hydrogen-deficient compact binary (CXOGBS J175107.6-294037) belonging to the AM CVn class in the Galactic Bulge Survey. Deep archival X-ray observations constrain the X-ray positional uncertainty of the source to 0.57 arcsec, and allow us to uniquely identify the optical and UV counterpart. Optical spectroscopic observations reveal the presence of broad, shallow He i absorption lines while no sign of hydrogen is present, consistent with a high state system. We present the optical lightcurve from Optical Gravitational Lensing Experiment monitoring, spanning 15 years. It shows no evidence for outbursts; variability is present at the 0.2 mag level on timescales ranging from hours to weeks. A modulation on a timescale of years is also observed. A Lomb-Scargle analysis of the optical lightcurves shows two significant periodicities at 22.90 and 23.22 min. Although the physical interpretation is uncertain, such timescales are in line with expectations for the orbital and superhump per...

  5. Population synthesis of classical low-mass X-ray binaries in the Galactic Bulge

    CERN Document Server

    van Haaften, L M; Voss, R; van der Sluys, M V; Toonen, S

    2015-01-01

    Aims. We model the present-day population of 'classical' low-mass X-ray binaries (LMXBs) with neutron star accretors, which have hydrogen-rich donor stars. Their population is compared with that of hydrogen-deficient LMXBs, known as ultracompact X-ray binaries (UCXBs). We model the observable LMXB population and compare it to observations. Methods. We combine the binary population synthesis code SeBa with detailed LMXB evolutionary tracks to model the size and properties of the present-day LMXB population in the Galactic Bulge. Whether sources are persistent or transient, and what their instantaneous X-ray luminosities are, is predicted using the thermal-viscous disk instability model. Results. We find a population of ~2.1 x 10^3 LMXBs with neutron star accretors. Of these about 15 - 40 are expected to be persistent (depending on model assumptions), with luminosities higher than 10^35 erg s^-1. About 7 - 20 transient sources are expected to be in outburst at any given time. Within a factor of two these number...

  6. Bulge-forming galaxies with an extended rotating disk at z~2

    CERN Document Server

    Tadaki, Ken-ichi; Kodama, Tadayuki; Wuyts, Stijn; Wisnioski, Emily; Schreiber, Natascha M Förster; Burkert, Andreas; Lang, Philipp; Tacconi, Linda J; Lutz, Dieter; Belli, Sirio; Davies, Richard I; Hatsukade, Bunyo; Hayashi, Masao; Herrera-Camus, Rodrigo; Ikarashi, Soh; Inoue, Shigeki; Kohno, Kotaro; Koyama, Yusei; Mendel, J Trevor; Nakanishi, Kouichiro; Shimakawa, Rhythm; Suzuki, Tomoko L; Tamura, Yoichi; Tanaka, Ichi; Übler, Hannah; Wilman, Dave J

    2016-01-01

    We present 0".2-resolution Atacama Large Millimeter/submillimeter Array observations at 870 um for 25 Halpha-seleced star-forming galaxies (SFGs) around the main-sequence at z=2.2-2.5. We detect significant 870 um continuum emission in 16 (64%) of these SFGs. The high-resolution maps reveal that the dust emission is mostly radiated from a single region close to the galaxy center. Exploiting the visibility data taken over a wide $uv$ distance range, we measure the half-light radii of the rest-frame far-infrared emission for the best sample of 12 SFGs. We find nine galaxies to be associated with extremely compact dust emission with R_{1/2,870um}1e10 Msol/kpc^2 in several hundred Myr, i.e. by z~2. Moreover, ionized gas kinematics reveal that they are rotation-supported with an angular momentum as large as that of typical SFGs at z=1-3. Our results suggest bulges are commonly formed in extended rotating disks by internal processes, not involving major mergers.

  7. Stellar mass versus velocity dispersion as tracer of the lensing signal around bulge-dominated galaxies

    CERN Document Server

    van Uitert, Edo; Franx, Marijn; Gilbank, David G; Gladders, Michael D; Yee, H K C

    2012-01-01

    We present the results of a weak gravitational lensing analysis to determine whether the stellar mass or the velocity dispersion is more closely related to the amplitude of the lensing signal around galaxies - and hence to the projected distribution of dark matter. The lensing signal on scales smaller than the virial radius corresponds most closely to the lensing velocity dispersion in the case of a singular isothermal profile, but is on larger scales also sensitive to the clustering of the haloes. We select over 4000 lens galaxies at a redshift z<0.2 with concentrated (or bulge-dominated) surface brightness profiles from the ~300 square degree overlap between the Red-sequence Cluster Survey 2 (RCS2) and the data release 7 (DR7) of the Sloan Digital Sky Survey (SDSS). We consider both the spectroscopic velocity dispersion and a model velocity dispersion (a combination of the stellar mass, the size and the Sersic index of a galaxy). Comparing the model and spectroscopic velocity dispersion we find that they...

  8. The impact of interactions, bars, bulges, and AGN on star formation efficiency in local massive galaxies

    CERN Document Server

    Saintonge, A; Fabello, S; Wang, J; Catinella, B; Genzel, R; Gracia-Carpio, J; Kramer, C; Moran, S; Heckman, T M; Schiminovich, D; Schuster, K; Wuyts, S

    2012-01-01

    Using observations from the GASS and COLD GASS surveys and complementary data from SDSS and GALEX, we investigate the nature of variations in gas depletion time observed across the local massive galaxy population. The large and unbiased COLD GASS sample allows us to assess the relative importance of galaxy interactions, bar instabilities, morphologies and the presence of AGN in regulating star formation efficiency. Both the H2 mass fraction and depletion time vary as a function of the distance of a galaxy from the main sequence in the SFR-M* plane. The longest gas depletion times are found in below-main sequence bulge-dominated galaxies that are either gas-poor, or else on average less efficient than disk-dominated galaxy at converting into stars any cold gas they may have. We find no link between AGN and these long depletion times. The galaxies undergoing mergers or showing signs of morphological disruptions have the shortest molecular gas depletion times, while those hosting strong stellar bars have only ma...

  9. The Acceleration of the Nebular Shells in Planetary Nebulae in the Milky Way Bulge

    CERN Document Server

    Richer, Michael G; Pereyra, Margarita; Riesgo, Hortensia; Diaz, Maria Teresa Garcia; Baez, Sol-Haret

    2008-01-01

    We present a systematic study of line widths in the [\\ion{O}{3}]$\\lambda$5007 and H$\\alpha$ lines for a sample of 86 planetary nebulae in the Milky Way bulge based upon spectroscopy obtained at the \\facility{Observatorio Astron\\'omico Nacional in the Sierra San Pedro M\\'artir (OAN-SPM)} using the Manchester Echelle Spectrograph. The planetary nebulae were selected with the intention of simulating samples of bright extragalactic planetary nebulae. We separate the planetary nebulae into two samples containing cooler and hotter central stars, defined by the absence or presence, respectively, of the \\ion{He}{2} $\\lambda$6560 line in the H$\\alpha$ spectra. This division separates samples of younger and more evolved planetary nebulae. The sample of planetary nebulae with hotter central stars has systematically larger line widths, larger radii, lower electron densities, and lower H$\\beta$ luminosities. The distributions of these parameters in the two samples all differ at significance levels exceeding 99%. These dif...

  10. Barlenses and X-shape features compared: different manifestations of Boxy/Peanut bulges

    CERN Document Server

    Laurikainen, E

    2016-01-01

    Morphological characteristics of the vertically thick inner bar components are studied. At high galaxy inclinations they manifest as Boxy/Peanut/X-shape features, and near to face-on view as barlenses. Using the Spitzer Survey of Stellar Structure in Galaxies (S4G) and the Near-IR S0 galaxy Survey (NIRS0S), we compared the properties of 88 X-shape features, 85 barlenses, and the photometric bulges of 41 non-barred galaxies. Sizes and minor-to-major axis ratios (b/a) of these structures are compared, and interpreted by means of synthetic images using N-body simulation models. Barlenses and their parent galaxies are also divided into different sub-groups. The synthetic images are analyzed in a similar manner as the observations. This is the first time that the observed properties of barlenses and X-shape features are compared, over a large range of galaxy inclinations. Our analysis are consistent with the idea that barlenses and X-shape features are physically the same phenomenon. However, which of the two feat...

  11. The first direct detection of a gravitational microlens toward the Galactic bulge

    CERN Document Server

    Kozlowski, S; Mao, S; Wood, A

    2007-01-01

    We present a direct detection of the gravitational lens that caused the microlensing event MACHO-95-BLG-37. This is the first fully resolved microlensing system involving a source in the Galactic bulge, and the second such system in general. The lens and source are clearly resolved in images taken with the High Resolution Channel of the Advanced Camera for Surveys on board the Hubble Space Telescope (HST) ~9 years after the microlensing event. Only one plausible scenario fits all currently available data without invoking unusual physics or geometry. The lens is most likely a 0.6 solar mass main-sequence star of spectral type K2 with a sub-solar metallicity and located at a distance of ~3.5 kpc. However, in the view of challenges and limitations of the present data combined with a natural scatter in the physical properties of stars in the Galaxy, it is possible that different solutions will be found with the addition of new observations.

  12. Constraints on Jupiters from observations of Galactic Bulge microlensing events during 2000

    CERN Document Server

    Tsapras, Y; Carson, R S; Alvarez-Mendez, J; Batcheldor, D; Graham, A W; James, P A; Knapen, J H; Quaintrell, H; González-Serrano, J I; Sørensen, P; Wooder, N; Tsapras, Yiannis; Horne, Keith; Carson, Richard; Alvarez, Javier Mendez; Batcheldor, Dan; Graham, Alister W.; James, Philip A.; Knapen, Johan; Quaintrell, Hannah; Serrano, Ignacio Gonzalez; Sorensen, Peter; Wooder, Nick

    2002-01-01

    We present observations of 8 Galactic Bulge microlensing events taken with the 1.0m JKT on La Palma during 2000 June and July. The JKT observing schedule was optimized using a prioritizing algorithm to automatically update the target list. For most of these events we have sampled the lightcurves at times where no information was available from the OGLE alert team. We assume a point-source point-lens (PSPL) model and perform a maximum likelihood fit to both our data and the OGLE data to constrain the event parameters of the fit. We then refit the data assuming a binary lens and proceed to calculate the probability of detecting planets with mass ratio $q=10^{-3}$. We have seen no clear signatures of planetary deviations on any of the 8 events and we quantify constraints on the presence of planetary companions to the lensing stars. For two well observed events, 2000BUL31 and 2000BUL33, our detection probabilities peak at $\\sim$30% and $\\sim$20% respectively for $q=10^{-3}$ and $a \\sim R_{E}$ for a $\\Delta\\chi^2$...

  13. Extension of Tycho catalog for low-extinction windows in the galactic bulge

    CERN Document Server

    Dominici, T P; Horváth, J E; Medina-Tanco, G A; Benevides-Soares, P

    1999-01-01

    We present in this work secondary catalogs up to $m_{Val} \\sim 13$ based on the Tycho reference frame (ESA, 1997) for 12 selected low-extinction fields towards the galactic bulge. The observations have been performed with the Askania-Zeiss Meridian Circle equiped with a CCD camera, located at the Abrahão de Moraes Observatory (Valinhos, Brazil) and operated by the Institute of Astronomy and Geophysics, São Paulo University. The presented catalog, though not complete, has been designed to help in intensive search programmes (e.g. microlensing and variable searches) and therefore the selected standards have a high astrometric and photometric ($V$ band, approximately) quality. The mean precisions obtained were $0.0018^{s}$ in $\\alpha$, 0.013'' in magnitude when weighted with the error bars in each night (in the mean, 42 stars for the catalog of each window). Tables B.1 to B.12 are also available in eletronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg....

  14. A theoretical calculation of microlensing signatures caused by free-floating planets towards the Galactic bulge

    CERN Document Server

    Hamolli, L; Nucita, A A

    2014-01-01

    Free-floating planets are recently drawing a special interest of the scientific community. Gravitational microlensing is up to now the exclusive method for the investigation of free-floating planets, including their spatial distribution function and mass function. In this work, we examine the possibility that the future Euclid space-based observatory may allow to discover a substantial number of microlensing events caused by free-floating planets. Based on latest results about the free-floating planet mass function in the mass range $[10^{-5}, 10^{-2}]M_{\\odot}$, we calculate the optical depth towards the Galactic bulge as well as the expected microlensing rate and find that Euclid may be able to detect hundreds to thousands of these events per month. Making use of a synthetic population, we also investigate the possibility of detecting parallax effect in simulated microlensing events due to free-floating planets and find a significant efficiency for the parallax detection that turns out to be around 30%.

  15. Discovery of a high state AM CVn binary in the Galactic Bulge Survey

    Science.gov (United States)

    Wevers, T.; Torres, M. A. P.; Jonker, P. G.; Wetuski, J. D.; Nelemans, G.; Steeghs, D.; Maccarone, T. J.; Heinke, C.; Hynes, R. I.; Udalski, A.; Kostrzewa-Rutkowska, Z.; Groot, P. J.; Gazer, R.; Szymański, M. K.; Britt, C. T.; Wyrzykowski, Ł.; Poleski, R.

    2016-10-01

    We report on the discovery of a hydrogen-deficient compact binary (CXOGBS J175107.6-294037) belonging to the AM CVn class in the Galactic Bulge Survey. Deep archival X-ray observations constrain the X-ray positional uncertainty of the source to 0.57 arcsec, and allow us to uniquely identify the optical and UV counterpart. Optical spectroscopic observations reveal the presence of broad, shallow He I absorption lines while no sign of hydrogen is present, consistent with a high state system. We present the optical light curve from Optical Gravitational Lensing Experiment monitoring, spanning 15 yr. It shows no evidence for outbursts; variability is present at the 0.2 mag level on time-scales ranging from hours to weeks. A modulation on a time-scale of years is also observed. A Lomb-Scargle analysis of the optical light curves shows two significant periodicities at 22.90 and 23.22 min. Although the physical interpretation is uncertain, such time-scales are in line with expectations for the orbital and superhump periods. We estimate the distance to the source to be between 0.5 and 1.1 kpc. Spectroscopic follow-up observations are required to establish the orbital period, and to determine whether this source can serve as a verification binary for the eLISA gravitational wave mission.

  16. Colors of barlenses: evidence for connecting them to boxy/peanut bulges

    CERN Document Server

    Endoqui, M Herrera; Laurikainen, E; Knapen, J H

    2016-01-01

    We study the colors and orientations of structures in low and intermediate inclination barred galaxies. We test the hypothesis that barlenses, roundish central components embedded in bars, could form a part of the bar in a similar manner to boxy/peanut bulges in the edge-on view. A sample of 79 barlens galaxies was selected from the S$^4$G and the NIRS0S surveys. The sizes, ellipticities, and orientations of barlenses were measured and used to define the barlens regions in the color measurements. The orientations of barlenses were studied with respect to those of the "thin bars" and the line-of-nodes of the disks. For 47 galaxies color maps were constructed using the SDSS images in five optical bands, u, g, r, i, and z. Colors of bars, barlenses, disks, and central regions of the galaxies were measured using two different approaches and color-color diagrams sensitive to metallicity, stellar surface gravity, and short lived stars were constructed. Color differences between the structure components were calcula...

  17. Ultra-deep GEMINI near-infrared observations of the bulge globular cluster NGC 6624

    CERN Document Server

    Saracino, S; Ferraro, F R; Geisler, D; Mauro, F; Lanzoni, B; Origlia, L; Miocchi, P; Cohen, R E; Villanova, S; Bidin, C Moni

    2016-01-01

    We used ultra-deep $J$ and $K_s$ images secured with the near-infrared GSAOI camera assisted by the multi-conjugate adaptive optics system GeMS at the GEMINI South Telescope in Chile, to obtain a ($K_s$, $J-K_s$) color-magnitude diagram (CMD) for the bulge globular cluster NGC 6624. We obtained the deepest and most accurate near-infrared CMD from the ground for this cluster, by reaching $K_s$ $\\sim$ 21.5, approximately 8 magnitudes below the horizontal branch level. The entire extension of the Main Sequence (MS) is nicely sampled and at $K_s$ $\\sim$ 20 we detected the so-called MS "knee" in a purely near-infrared CMD. By taking advantage of the exquisite quality of the data, we estimated the absolute age of NGC 6624 ($t_{age}$ = 12.0 $\\pm$ 0.5 Gyr), which turns out to be in good agreement with previous studies in the literature. We also analyzed the luminosity and mass functions of MS stars down to M $\\sim$ 0.45 M$_{\\odot}$ finding evidence of a significant increase of low-mass stars at increasing distances f...

  18. Identification of twenty-three accreting binaries in the Galactic Bulge Survey

    CERN Document Server

    Torres, M A P; Britt, C T; Johnson, C B; Hynes, R I; Greiss, S; Steeghs, D; Maccarone, T J; Ozel, F; Bassa, C; Nelemans, G

    2013-01-01

    (Abridged:) We present the identification of optical counterparts to 23 Galactic Bulge Survey X-ray sources. We report their accurate coordinates and optical spectra acquired at the VLT and Magellan. All sources are classified as accreting binaries according to their emission line characteristics. To distinguish accreting binaries from chromospherically active objects we develop and explain criteria based on Halpha and HeI 5786,6678 emission line properties available in the literature. The spectroscopic properties and photometric variability of all the objects are discussed and a classification of the source is given where possible. Among the 23 systems, at least 9 of them show an accretion-dominated optical spectrum (CX28, CX63, CX70, CX128, CX142, CX207, CX522, CX794, CX1011) and another 6 show photospheric lines from a late-type donor star in addition to accretion disc emission (CX44, CX93, CX137, CX154, CX377 and CX1004) indicating that they are probably accreting binaries in quiescence or in a low accret...

  19. Separation of Stellar Populations by an Evolving Bar: Implications for the Bulge of the Milky Way

    CERN Document Server

    Debattista, Victor P; Gonzalez, Oscar A; Freeman, K; Zoccali, Manuela; Minniti, Dante

    2016-01-01

    We present a novel interpretation of the previously puzzling different behaviours of stellar populations of the Milky Way's bulge. We first show, by means of pure N-body simulations, that initially co-spatial stellar populations with different in-plane random motions separate when a bar forms. The radially cooler populations form a strong bar, and are vertically thin and peanut-shaped, while the hotter populations form a weaker bar and become a vertically thicker box. We demonstrate that it is the radial, not the vertical, velocity dispersion that drives this evolution. Assuming that early stellar discs heat rapidly as they form, then both the in-plane and vertical random motions correlate with stellar age and chemistry, leading to different density distributions for metal-rich and metal-poor stars. We then use a high resolution simulation, in which all stars form out of gas, to demonstrate that this is what happens. When we apply these results to the Milky Way we show that a very broad range of observed tren...

  20. Anti-truncated stellar light profiles in the outer regions of STAGES spiral galaxies: bulge or disc related?

    CERN Document Server

    Maltby, David T; Gray, Meghan E; Aragón-Salamanca, Alfonso; Wolf, Christian

    2011-01-01

    We present a comparison of azimuthally averaged radial surface brightness mu(r) profiles and analytical bulge-disc decompositions (de Vaucouleurs, r^(1/4) bulge plus exponential disc) for spiral galaxies using Hubble Space Telescope/Advanced Camera for Surveys V-band imaging from the Space Telescope A901/2 Galaxy Evolution Survey (STAGES). In the established classification scheme, antitruncated mu(r) profiles (Type III) have a broken exponential disc with a shallower region beyond the break radius r_brk. The excess light at large radii (r > r_brk) can either be caused by an outer exponential disc (Type III-d) or an extended spheroidal component (Type III-s). Using our comparisons, we determine the contribution of bulge light at r > r_brk for a large sample of 78 (barred/unbarred, Sa-Sd) spiral galaxies with outer disc antitruncations (mu_brk > 24 mag arcsec^-2). In the majority of cases (~85 per cent), evidence indicates that excess light at r > r_brk is related to an outer shallow disc (Type III-d). Here, th...

  1. Tidal radii and destruction rates of globular clusters in the Milky Way due to bulge-bar and disk shocking

    CERN Document Server

    Moreno, Edmundo; Velazquez, Hector

    2014-01-01

    We calculate orbits, tidal radii, and bulge-bar and disk shocking destruction rates for 63 globular clusters in our Galaxy. Orbits are integrated in both an axisymmetric and a non-axisymmetric Galactic potential that includes a bar and a 3D model for the spiral arms. With the use of a Monte Carlo scheme, we consider in our simulations observational uncertainties in the kinematical data of the clusters. In the analysis of destruction rates due to the bulge-bar, we consider the rigorous treatment of using the real Galactic cluster orbit, instead of the usual linear trajectory employed in previous studies. We compare results in both treatments. We ?nd that the theoretical tidal radius computed in the nonaxisymmetric Galactic potential compares better with the observed tidal radius than that obtained in the axisymmetric potential. In both Galactic potentials, bulge-shocking destruction rates computed with a linear trajectory of a cluster at its perigalacticons give a good approximation to the result obtained with...

  2. Feeding compact bulges and supermassive black holes with low angular-momentum cosmic gas at high redshift

    CERN Document Server

    Dubois, Yohan; Haehnelt, Martin; Kimm, Taysun; Slyz, Adrianne; Devriendt, Julien; Pogosyan, Dmitry

    2011-01-01

    We use cosmological hydrodynamical simulations to show that a significant fraction of the gas in high redshift rare massive halos falls nearly radially to their very centre on extremely short timescales. This process results in the formation of very compact bulges with specific angular momentum a factor 5-30$smaller than the average angular momentum of the baryons in the whole halo. Such low angular momentum originates both from segregation and effective cancellation when the gas flows to the centre of the halo along well defined cold filamentary streams. These filaments penetrate deep inside the halo and connect to the bulge from multiple rapidly changing directions. Structures falling in along the filaments (satellite galaxies) or formed by gravitational instabilities triggered by the inflow (star clusters) further reduce the angular momentum of the gas in the bulge. Finally, the fraction of gas radially falling to the centre appears to increase with the mass of the halo; we argue that this is most likely d...

  3. Study of mechanical-magnetic and electromagnetic properties of PZT/Ni film systems by a novel bulge technique

    Science.gov (United States)

    Liu, Q.; Zhou, W.; Ding, J.; Xiao, M.; Yu, Z. J.; Xu, H.; Mao, W. G.; Pei, Y. M.; Li, F. X.; Feng, X.; Fang, D. N.

    2017-02-01

    A novel multiple functional bulge apparatus was designed to study the mechanical-electronic-magnetic characteristics of electromagnetic materials. The elastic modulus difference effect of Ni thin film was observed and it was about 22.16% in the demagnetized and magnetization saturated states. The mechanical-magnetic behaviors of Ni and lead-titanate zirconate (PZT)/Ni films were in-situ measured by using the new bulge systems, respectively. The evolutions of three key material properties in hysteresis loop including saturation magnetization, remanent magnetization and coercive field were discussed in detail, respectively. The mechanisms of mechanical-magnetic coupled behaviors of Ni and PZT/Ni films were analyzed with the aid of the competitive relationship of stress and magnetization. Similarly, the electronic-magnetic characteristics of PZT/Ni films were in-situ measured by using this experimental system. The evolution of saturated magnetization, remanent magnetization and coercive field Kerr signals were discussed with the magneto-elastic anisotropy energy point. In this paper, a suitable mechanical-electronic-magnetic bulge measurement system was established, which would provide a good choice for further understanding the multi field coupling characteristics of electromagnetic film materials.

  4. Boxy/Peanut/X-shape bulges: steep inner rotation curve leads to barlens face-on morphology

    CERN Document Server

    Salo, Heikki

    2016-01-01

    We use stellar dynamical bulge/disk/halo simulations to study whether barlenses (lens-like structures embedded in the narrow bar component) are just the face-on counterparts of Boxy/Peanut/X-shapes (B/P/X) seen in edge-on bars, or if some additional physical parameter affects that morphology. A range of bulge-to-disk mass and size ratios are explored: our nominal parameters ($B/D=0.08$, $r_{\\rm eff}/h_r=0.07$, disk comprising 2/3 of total force at $2.2h_r$) correspond to typical MW mass galaxies. In all models a bar with pronounced B/P/X forms in a few Gyrs, visible in edge-on view. However, the pure barlens morphology forms only in models with sufficiently steep inner rotation curves, $dV_{cir}/dr\\gtrsim5V_{max}/h_r$, achieved when including a small classical bulge with $B/D\\gtrsim0.02$ and $r_{\\rm eff}/h_r\\lesssim0.1$. For shallower slopes the central structure still resembles a barlens, but shows a clear X-signature even in low inclinations. Similar result holds for bulgeless simulations, where the central...

  5. Bars in Disk-Dominated and Bulge-Dominated Galaxies at z~0: New Insights from ~3600 SDSS Galaxies

    CERN Document Server

    Barazza, Fabio D; Marinova, Irina

    2007-01-01

    We present a study of large-scale bars in the local Universe, based on a large sample of ~3692 galaxies, with -18.5 60^{\\circ}$) systems, we find the following results. (1) The optical r-band fraction (f_opt-r) of barred galaxies, when averaged over the whole sample, is ~48%-52%. (2)~When galaxies are separated according to half light radius (r_e), or normalized r_e/R_24, which is a measure of the bulge-to-disk (B/D) ratio, a remarkable result is seen: f_opt-r rises sharply, from ~40% in galaxies that have small r_e/R_24 and visually appear to host prominent bulges, to ~70% for galaxies that have large r_e/R_24 and appear disk-dominated. (3)~f_opt-r rises for galaxies with bluer colors, lower masses, or fainter luminosities. (4) While hierarchical $\\Lambda$CDM models of galaxy evolution models fail to produce galaxies without classical bulges, our study finds that ~20% of disk galaxies appear to be ``quasi-bulgeless''. (5) After applying the same cutoffs in magnitude (M_V= 1.5 kpc), and bar ellipticity (e_bar...

  6. Common Origin of Two RR Lyrae Populations and the Double Red Clump in the Milky Way Bulge

    CERN Document Server

    Lee, Young-Wook

    2016-01-01

    A recent survey toward the Milky Way bulge has discovered two sequences of RR Lyrae stars on the period-amplitude diagram with a maximum period-shift of {\\Delta}log P = 0.015 between the two populations. Here we show, from our synthetic horizontal-branch models, that this period-shift is most likely due to the small difference in helium abundance ({\\Delta}Y = 0.012) between the first and second-generation stars (G1 and G2), as is the case in our models for the inner halo globular clusters with similar metallicity ([Fe/H] = -1.1). We further show that the observed double red clump (RC) in the bulge is naturally reproduced when these models are extended to solar metallicity following {\\Delta}Y/{\\Delta}Z = 6 for G2, as would be expected from the chemical evolution models. Therefore, the two populations of RR Lyrae stars and the double RC observed in the bulge appear to be different manifestations of the same multiple population phenomenon in the metal-poor and metal-rich regimes respectively.

  7. Radio detection prospects for a bulge population of millisecond pulsars as suggested by Fermi LAT observations of the inner Galaxy

    CERN Document Server

    Calore, Francesca; Donato, Fiorenza; Hessels, Jason W T; Weniger, Christoph

    2015-01-01

    Analogously to globular clusters, the dense stellar environment of the Galactic center has been proposed to host a large population of as-yet undetected millisecond pulsars (MSPs). Recently, this hypothesis found support in the analysis of gamma rays from the inner Galaxy seen by the Large Area Telescope (LAT) aboard the Fermi satellite, which revealed a possible excess of diffuse GeV photons in the inner 15 deg about the Galactic center (Fermi GeV excess). The excess can be interpreted as the collective emission of thousands of MSPs in the Galactic bulge, with a spherical distribution that strongly peaks towards the Galactic center. In order to fully establish the MSP interpretation, it is essential to find corroborating evidence in multi-wavelength searches, most notably through the detection of radio pulsation from individual bulge MSPs. Based on globular cluster observations and the gamma-ray emission from the inner Galaxy, we investigate the prospects for detecting MSPs in the Galactic bulge. While previ...

  8. New galactic star clusters discovered in the VVV survey. Candidates projected on the inner disk and bulge

    CERN Document Server

    Borissova, J; Alegría, S Ramírez; Sharma, Saurabh; Clarke, J R A; Kurtev, R; Negueruela, I; Marco, A; Amigo, P; Minniti, D; Bica, E; Bonatto, C; Catelan, M; Fierro, C; Geisler, D; Gromadzki, M; Hempel, M; Hanson, M M; Ivanov, V D; Lucas, P; Majaess, D; Bidin, C Moni; Popescu, B; Saito, R K

    2014-01-01

    VISTA Variables in the V\\'ia L\\'actea (VVV) is one of six ESO Public Surveys using the 4 meter Visible and Infrared Survey Telescope for Astronomy (VISTA). The VVV survey covers the Milky Way bulge and an adjacent section of the disk, and one of the principal objectives is to search for new star clusters within previously unreachable obscured parts of the Galaxy. The primary motivation behind this work is to discover and analyze obscured star clusters in the direction of the inner Galactic disk and bulge. Regions of the inner disk and bulge covered by the VVV survey were visually inspected using composite JHKs color images to select new cluster candidates on the basis of apparent overdensities. DR1, DR2, CASU, and PSF photometry of 10x10 arcmin fields centered on each candidate cluster were used to construct color-magnitude and color-color diagrams. Follow-up spectroscopy of the brightest members of several cluster candidates was obtained in order to clarify their nature. We report the discovery of 58 new inf...

  9. Peanut-shaped metallicity distributions in bulges of edge-on galaxies: the case of NGC 4710

    CERN Document Server

    Gonzalez, Oscar A; Ness, Melissa; Erwin, Peter; Gadotti, Dimitri A

    2016-01-01

    Bulges of edge-on galaxies are often boxy/peanut-shaped (B/PS), and unsharp masks reveal the presence of an X shape. Simulations show that these shapes can be produced by dynamical processes driven by a bar which vertically thickens the centre. In the Milky Way, which contains such a B/PS bulge, the X-shaped structure is traced by the metal-rich stars but not by the metal-poor ones. Recently Debattista et al. (2016) interpreted this property as a result of the varying effect of the bar on stellar populations with different starting kinematics. This kinematic fractionation model predicts that cooler populations at the time of bar formation go on to trace the X shape, whereas hotter populations are more uniformly distributed. As this prediction is not specific to the Milky Way, we test it with MUSE observations of the B/PS bulge in the nearby galaxy NGC 4710. We show that the metallicity map is more peanut-shaped than the density distribution itself, in good agreement with the prediction. This result indicates ...

  10. Galaxies undergoing ram-pressure stripping: the influence of the bulge on morphology and star formation rate

    CERN Document Server

    Steinhauser, Dominik; Kapferer, Wolfgang; Schindler, Sabine; 10.1051/0004-6361/201118311

    2012-01-01

    We investigate the influence of stellar bulges on the star formation and morphology of disc galaxies that suffer from ram pressure. Several tree-SPH (smoothed particle hydrodynamics) simulations have been carried out to study the dependence of the star formation rate on the mass and size of a stellar bulge. In addition, different strengths of ram pressure and different alignments of the disc with respect to the intra-cluster medium (ICM) are applied. As claimed in previous works, when ram pressure is acting on a galaxy, the star formation rate (SFR) is enhanced and rises up to four times with increasing ICM density compared to galaxies that evolve in isolation. However, a bulge suppresses the SFR when the same ram pressure is applied. Consequently, fewer new stars are formed because the SFR can be lowered by up to 2 M_sun/yr. Furthermore, the denser the surrounding gas, the more inter-stellar medium (ISM) is stripped. While at an ICM density of 10^-28 g/cm^3 about 30% of the ISM is stripped, the galaxy is alm...

  11. Properties of Ultrasound Probes

    OpenAIRE

    Rusina, M.

    2015-01-01

    This work deals with the measurement properties of ultrasound probes. Ultrasound probes and their parameters significantly affect the quality of the final image. In this work there are described the possibility of measuring the spatial resolution, sensitivity of the probe and measuring the length of the dead zone. Ultrasound phantom ATS Multi Purpose Phantom Type 539 was used for measurements.

  12. Photophoresis boosts giant planet formation

    CERN Document Server

    Teiser, Jens

    2013-01-01

    In the core accretion model of giant planet formation, a solid protoplanetary core begins to accrete gas directly from the nebula when its mass reaches about 5 earth masses. The protoplanet has at most a few million years to reach runaway gas accretion, as young stars lose their gas disks after 10 million years at the latest. Yet gas accretion also brings small dust grains entrained in the gas into the planetary atmosphere. Dust accretion creates an optically thick protoplanetary atmosphere that cannot efficiently radiate away the kinetic energy deposited by incoming planetesimals. A dust-rich atmosphere severely slows down atmospheric cooling, contraction, and inflow of new gas, in contradiction to the observed timescales of planet formation. Here we show that photophoresis is a strong mechanism for pushing dust out of the planetary atmosphere due to the momentum exchange between gas and dust grains. The thermal radiation from the heated inner atmosphere and core is sufficient to levitate dust grains and to ...

  13. Studies show giant panda could survive

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The giant panda (Ailuropoda melanoleuca) is not a relic species, and it can survive, according to scientists. Employing microsatellite and mitochondrial control region (CR) sequences as genetic markers, CAS researchers have obtained some key information about the giant panda and its recent evolution history. Their discovery that the lovely creature still possesses high genetic diversity and evolution potentials challenges the hypothesis suggesting the giant panda is facing an"evolutionary dead-end." The research was reported in a recent issue of Molecular Biology and Evolution by a team of scientists led by Prof.WEI Fuwen of the CAS Institute of Zoology and Prof. Michael W.Bruford of Cardiff University.

  14. Giant Cell Tumor: Role of Conservative Treatment

    Institute of Scientific and Technical Information of China (English)

    Anatolii Diedkov[1; Pavlo Kovalchuk[1; Marija Kukushkina[2; Sergey Bojchuk[1; Viktor Kostyuk[1

    2014-01-01

    Giant cell tumor is aggressive bone tumor. Surgical treatment is considered to be the only effective method of treatment ofthese tumors. The problem of inoperable patients with giant cell tumors is a challenge. A total of 8 patients had giant cell bone tumorsof pelvis and sacrum. 3 patients were treated by bisphosphonates, radiation therapy and embolization of tumor-nutrient arteries. 5patients received denosumab. The efficiency was assessed according to clinical data and CT scan control. Median follow up is 28months. All 8 patients had reduction of pain intensity. Treatment with denosumab demonstrated more than 30% tumor regression. Allof the patients are in remission.

  15. SYNOVIAL GIANT CELL TUMOR OF THE KNEE.

    Science.gov (United States)

    Abdalla, Rene Jorge; Cohen, Moisés; Nóbrega, Jezimar; Forgas, Andrea

    2009-01-01

    Synovial giant cell tumor is a benign neoplasm, rarely reported in the form of malignant metastasis. Synovial giant cell tumor most frequently occurs on the hand, and, most uncommon, on the ankle and knee. In the present study, the authors describe a rare case of synovial giant cell tumor on the knee as well as the treatment approach. Arthroscopy has been shown, in this case, to be the optimal method for treating this kind of lesion, once it allowed a less aggressive approach, while providing good visualization of all compartments of knee joint and full tumor resection.

  16. Giant choledochal calculosis: Surgical treatment

    Directory of Open Access Journals (Sweden)

    Hasan Bektas

    2014-01-01

    Full Text Available Context: Gallstone disease is one of the most common surgical pathologies. Choledocholithiasis may occur in some of these cases and require surgical intervention. Although there are relatively non-invasive procedures such as endoscopic retrograde cholangiopancreatography (ERCP, this technique is usually unsuccessful in patients with stones larger than 10 mm. In our case, we aimed to report a giant choledochal stone (15 cm × 4.5 cm, which is rare in surgical practice and our treatment with open surgery. Case Report: The patient was a 59-year-old woman. Magnetic resonance cholangiopancreatography (MRCP had showed a hydropic gallbladder with an excessively dilated CBD and a 110 mm × 41 mm stone. In the operation, an excessively dilated CBD was seen and after choledochotomy and a very large calculus that filled CBD completely. Choledochotomy incision was carried forward and a T-tube choledochostomy with choledochoduodenostomy (CD was performed. The patient was discharged without any complications on postoperative 8 th day. Conclusion: Benign gallstone disease is a multifactorial process, with risk factors such as obesity, hemolytic diseases, diabetes mellitus, and pregnancy. Risk factors for choledocholithiasis are similar to those for gallstone disease. MRCP is a non-invasive technique in detecting choledocholithiasis. The gold standard intervention for CBD stones is ERCP. Stones in CBD may reach very considerable dimensions without causing serious symptoms. The most common symptom is jaundice. During preoperative radiological examination, giant stones may be interfered with malignancies. Surgeons should obey conventional algorithms in diagnosis and open surgery must be kept in mind in earlier stages without being too insistent on endoscopic interventions.

  17. The long lives of giant clumps and the birth of outflows in gas-rich galaxies at high redshift

    CERN Document Server

    Bournaud, Frederic; Renaud, Florent; Dekel, Avishai; Elmegreen, Bruce G; Elmegreen, Debra M; Teyssier, Romain; Amram, Philippe; Daddi, Emanuele; Duc, Pierre-Alain; Elbaz, David; Epinat, Benoit; Gabor, Jared M; Juneau, Stephanie; Kraljic, Katarina; Floch', Emeric Le

    2013-01-01

    Star-forming disk galaxies at high redshift are often subject to violent disk instability, characterized by giant clumps whose fate is yet to be understood. The main question is whether the clumps disrupt within their dynamical timescale (<50Myr), like molecular clouds in today's galaxies, or whether they survive stellar feedback for more than a disk orbital time (~300Myr) in which case they can migrate inward and help building the central bulge. We present 3.5-7pc resolution AMR simulations of high-redshift disks including photo-ionization, radiation pressure, and supernovae feedback (Renaud et al. 2013, and Perret et al., this astro-ph issue). Our modeling of radiation pressure determines the mass loading and initial velocity of winds from basic physical principles. We find that the giant clumps produce steady outflow rates comparable to and sometimes somewhat larger than their star formation rate, with velocities largely sufficient to escape galaxy. The clumps also lose mass, especially old stars, by ti...

  18. Synthetic photometry for M and K giants and stellar evolution: hydrostatic dust-free model atmospheres and chemical abundances

    Science.gov (United States)

    Aringer, B.; Girardi, L.; Nowotny, W.; Marigo, P.; Bressan, A.

    2016-04-01

    Based on a grid of hydrostatic spherical COMARCS models for cool stars, we have calculated observable properties of these objects, which will be mainly used in combination with stellar evolution tracks and population synthesis tools. The high-resolution opacity sampling and low-resolution convolved spectra as well as bolometric corrections for a large number of filter systems are made electronically available. We exploit those data to study the effect of mass, C/O ratio and nitrogen abundance on the photometry of K and M giants. Depending on effective temperature, surface gravity and the chosen wavelength ranges, variations of the investigated parameters cause very weak to moderate and, in the case of C/O values close to 1, even strong shifts of the colours. For the usage with stellar evolution calculations, they will be treated as correction factors applied to the results of an interpolation in the main quantities. When we compare the synthetic photometry to observed relations and to data from the Galactic bulge, we find in general a good agreement. Deviations appear for the coolest giants showing pulsations, mass-loss and dust shells, which cannot be described by hydrostatic models.

  19. STUDIES ON THE INGESTION CHARACTERISTICS OF GIANT FRESHWATER PRAWN, CHINESE PRAWN AND GIANT TIGER PRAWN

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The ingestion of giant freshwater prawn, Chinese prawn and giant tiger prawn had continuity and the ingestion high peak occurred at night. Light and temperature had significant effects on the daily ingestion rate (DIR) of giant freshwater prawn Macrobrachium rosenbergii. Red light and blue light favorably induced favorable ingestion. In the adaptive range of temperature, the DIR increased with rising temperature and feeding frequency, but decreased with rising body weight.

  20. Asteroseismology of red-giant stars as a novel approach in the search for gravitational waves

    CERN Document Server

    Campante, Tiago L; Bossini, Diego; Miglio, Andrea; Chaplin, William J

    2016-01-01

    Stars are massive resonators that may be used as gravitational-wave (GW) detectors with isotropic sensitivity. New insights on stellar physics are being made possible by asteroseismology, the study of stars by the observation of their natural oscillations. The continuous monitoring of oscillation modes in stars of different masses and sizes (e.g., as carried out by NASA's Kepler mission) opens the possibility of surveying the local Universe for GW radiation. Red-giant stars are of particular interest in this regard. Since the mean separation between red giants in open clusters is small (a few light years), this can in principle be used to look for the same GW imprint on the oscillation modes of different stars as a GW propagates across the cluster. Furthermore, the frequency range probed by oscillations in red giants complements the capabilities of the planned eLISA space interferometer. We propose asteroseismology of red giants as a novel approach in the search for gravitational waves.