WorldWideScience

Sample records for bulge chemical evolution

  1. Tracing the Chemical Evolution of Metal-rich Galactic Bulge Globular Clusters

    Science.gov (United States)

    Munoz Gonzalez, Cesar; Saviane, Ivo; Geisler, Doug; Villanova, Sandro

    2018-01-01

    We present in this poster the metallicity characterization of the four metal rich Bulge Galactic Gobular Clusters, which have controversial metallicities. We analyzed our high-resolution spectra (using UVES-580nm and GIRAFFE-HR13 setups) for a large sample of RGB/AGB targets in each cluster in order to measure their metallicity and prove or discard the iron spread hypothesis. We have also characterized chemically stars with potentially different iron content by measuring light (O, Na, Mg, Al), alpha (Si, Ca, Ti), iron–peak (V, Cr, Ni, Mn) and s and r process (Y, Zr, Ba, Eu) elements. We have identified possible channels responsible for the chemical heterogeneity of the cluster populations, like AGB or massive fast-rotating stars contamination, or SN explosion. Also, we have analyzed the origin and evolution of these bulge GCs and their connection with the bulge itself.

  2. The chemical evolution of the Galactic Bulge seen through micro-lensing events

    Directory of Open Access Journals (Sweden)

    Lucatello S.

    2012-02-01

    Full Text Available Galactic bulges are central to understanding galaxy formation and evolution. Here we report on recent studies using micro-lensing events to obtain spectra of high resolution and moderately high signal-to-noise ratios of dwarf stars in the Galactic bulge. Normally this is not feasible for the faint turn-off stars in the Galactic bulge, but micro-lensing offers this possibility. Elemental abundance trends in the Galactic bulge as traced by dwarf stars are very similar to those seen for dwarf stars in the solar neighbourhood. We discuss the implications of the ages and metallicity distribution function derived for the micro-lensed dwarf stars in the Galactic bulge.

  3. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars

    OpenAIRE

    Bensby, T.; Johnson, J. A.; Cohen, J.; Feltzing, S.; Udalski, A.; Gould, A.; Huang, W.; Thompson, I.; Simmerer, J.; Adén, D.

    2009-01-01

    Aims. Our aims are twofold. First we aim to evaluate the robustness and accuracy of stellar parameters and detailed elemental abundances that can be derived from high-resolution spectroscopic observations of microlensed dwarf and subgiant stars. We then aim to use microlensed dwarf and subgiant stars to investigate the abundance structure and chemical evolution of the Milky Way Bulge. Contrary to the cool giant stars, with their extremely crowded spectra, the dwarf stars are hotter, their spe...

  4. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars: II. Ages, metallicities, detailed elemental abundances, and connections to the Galactic thick disc

    NARCIS (Netherlands)

    Bensby, T.; Feltzing, S.; Johnson, J.A.; Gould, A.; Adén, D.; Asplund, M.; Meléndez, J.; Gal-Yam, A.; Lucatello, S.; Sana, H.; Sumi, T.; Miyake, N.; Suzuki, D.; Han, C.; Bond, I.; Udalski, A.

    2010-01-01

    Context. The Bulge is the least understood major stellar population of the Milky Way. Most of what we know about the formation and evolution of the Bulge comes from bright giant stars. The underlying assumption that giants represent all the stars, and accurately trace the chemical evolution of a

  5. Chemical Characterization of the Inner Galactic bulge: North-South Symmetry

    Science.gov (United States)

    Nandakumar, G.; Ryde, N.; Schultheis, M.; Thorsbro, B.; Jönsson, H.; Barklem, P. S.; Rich, R. M.; Fragkoudi, F.

    2018-05-01

    While the number of stars in the Galactic bulge with detailed chemical abundance measurements is increasing rapidly, the inner Galactic bulge (|b| detect a bimodal MDF with a metal-rich peak at ˜ +0.3 dex and a metal-poor peak at ˜ -0.5 dex, and no stars with [Fe/H] > +0.6 dex. The Galactic Center field reveals in contrast a mainly metal-rich population with a mean metallicity of +0.3 dex. We derived [Mg/Fe] and [Si/Fe] abundances which are consistent with trends from the outer bulge. We confirm for the supersolar metallicity stars the decreasing trend in [Mg/Fe] and [Si/Fe] as expected from chemical evolution models. With the caveat of a relatively small sample, we do not find significant differences in the chemical abundances between the Northern and the Southern fields, hence the evidence is consistent with symmetry in chemistry between North and South.

  6. The Chemical Composition of the Galactic Bulge and Implications for its Evolution

    Science.gov (United States)

    McWilliam, Andrew

    2016-08-01

    At a bulge latitude of b = -4°, the average [Fe/H] and [Mg/H] values are +0.06 and +0.17 dex, roughly 0.2 and 0.7 dex higher than the local thin and thick disk values, respectively, suggesting a large bulge effective yield, perhaps due to efficient retention of supernova ejecta. The bulge vertical [Fe/H] gradient, at ∼0.5 dex/kpc, appears to be due to a changing mixture of sub-populations (near +0.3 dex and -0.3 dex and one possibly near -0.7 dex) with latitude. At solar [Fe/H], the bulge [Al/Fe] and [α/Fe] ratios are ∼ +0.15 dex. Below [Fe/H] ∼ -0.5 dex, the bulge and local thick disk compositions are very similar; but the measured [Mg/Fe], [/Fe], [La/Eu] and dramatic [Cu/Fe] ratios suggest higher SFR in the bulge. However, these composition differences with the thick disk could be due to measurement errors and non-LTE effects. Unusual zig-zag trends of [Cu/Fe] and [Na/Fe] suggest metallicity-dependent nucleosynthesis by core-collapse supernovae in the Type Ia supernova time-delay scenario. The bulge sub-population compositions resemble the local thin and thick disks, but at higher [Fe/H], suggesting a radial [Fe/H] gradient of -0.04 to -0.05 dex/kpc for both the thin and thick disks. If the bulge formed through accretion of inner thin and thick disk stars, it appears that these stars retained vertical scale heights characteristic of their kinematic origin, resulting in the vertical [Fe/H] gradient and [α/Fe] trends seen today.

  7. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. Detailed abundance analysis of OGLE-2008-BLG-209S

    OpenAIRE

    Bensby, T.; Johnson, J. A.; Cohen, J.; Feltzing, S.; Udalski, A.; Gould, A.; Huang, W.; Thompson, I.; Simmerer, J.; Adén, D.

    2009-01-01

    AIMS. Our aims are twofold. First we aim to evaluate the robustness and accuracy of stellar parameters and detailed elemental abundances that can be derived from high-resolution spectroscopic observations of microlensed dwarf and subgiant stars. We then aim to use microlensed dwarf and subgiant stars to investigate the abundance structure and chemical evolution of the Milky Way Bulge. [ABRIDGED] METHODS. We present a detailed elemental abundance analysis of OGLE-2008-BLG-209S, the source star...

  8. Solving the Mystery of Galaxy Bulges and Bulge Substructure

    Science.gov (United States)

    Erwin, Peter

    2017-08-01

    Understanding galaxy bulges is crucial for understanding galaxy evolution and the growth of supermassive black holes (SMBHs). Recent studies have shown that at least some - perhaps most - disk-galaxy bulges are actually composite structures, with both classical-bulge (spheroid) and pseudobulge (disky) components; this calls into question the standard practice of using simple, low-resolution bulge/disk decompositions to determine spheroid and SMBH mass functions. We propose WFC3 optical and near-IR imaging of a volume- and mass-limited sample of local disk galaxies to determine the full range of pure-classical, pure-pseudobulge, and composite-bulge frequencies and parameters, including stellar masses for classical bulges, disky pseudobulges, and boxy/peanut-shaped bulges. We will combine this with ground-based spectroscopy to determine the stellar-kinematic and population characteristics of the different substructures revealed by our WFC3 imaging. This will help resolve growing uncertainties about the status and nature of bulges and their relation to SMBH masses, and will provide an essential local-universe reference for understanding bulge (and SMBH) formation and evolution.

  9. The zCOSMOS redshift survey : evolution of the light in bulges and discs since z ~ 0.8

    NARCIS (Netherlands)

    Tasca, L. A. M.; Tresse, L.; Le Fevre, O.; Ilbert, O.; Lilly, S. J.; Zamorani, G.; Lopez-Sanjuan, C.; Ho, L. C.; Bardelli, S.; Cattaneo, A.; Cucciati, O.; Farrah, D.; Iovino, A.; Koekemoer, A. M.; Liu, C. T.; Massey, R.; Renzini, A.; Taniguchi, Y.; Welikala, N.; Zucca, E.; Carollo, C. M.; Contini, T.; Kneib, J. -P.; Mainieri, V.; Scodeggio, M.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; de la Torre, S.; Franzetti, P.; Garilli, B.; Guzzo, L.; Kampczyk, P.; Knobel, C.; Kovac, K.; Lamareille, F.; Le Borgne, J. -F.; Le Brun, V.; Maier, C.; Mignoli, M.; Pello, R.; Peng, Y.; Perez Montero, E.; Rich, R. M.; Tanaka, M.; Vergani, D.; Bordoloi, R.; Cappi, A.; Cimatti, A.; Coppa, G.; McCracken, H. J.; Moresco, M.; Pozzetti, L.; Sanders, D.; Sheth, K.

    We studied the chronology of galactic bulge and disc formation by analysing the relative contributions of these components to the B-band rest-frame luminosity density at different epochs. We present the first estimate of the evolution of the fraction of rest-frame B-band light in galactic bulges and

  10. The zCOSMOS redshift survey: evolution of the light in bulges and discs since z ~ 0.8

    NARCIS (Netherlands)

    Tasca, L. A. M.; Tresse, L.; Le Fèvre, O.; Ilbert, O.; Lilly, S. J.; Zamorani, G.; López-Sanjuan, C.; Ho, L. C.; Bardelli, S.; Cattaneo, A.; Cucciati, O.; Farrah, D.; Iovino, A.; Koekemoer, A. M.; Liu, C. T.; Massey, R.; Renzini, A.; Taniguchi, Y.; Welikala, N.; Zucca, E.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Mainieri, V.; Scodeggio, M.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; de la Torre, S.; Franzetti, P.; Garilli, B.; Guzzo, L.; Kampczyk, P.; Knobel, C.; Kovač, K.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Mignoli, M.; Pello, R.; Peng, Y.; Perez Montero, E.; Rich, R. M.; Tanaka, M.; Vergani, D.; Bordoloi, R.; Cappi, A.; Cimatti, A.; Coppa, G.; McCracken, H. J.; Moresco, M.; Pozzetti, L.; Sanders, D.; Sheth, K.

    We studied the chronology of galactic bulge and disc formation by analysing the relative contributions of these components to the B-band rest-frame luminosity density at different epochs. We present the first estimate of the evolution of the fraction of rest-frame B-band light in galactic bulges and

  11. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1990-01-01

    Initial conditions are probably set by results of Big Bang nucleosynthesis (BBNS) without intervening complications affecting the composition of visible matter so that extrapolation of observed abundances to BBNS products seems fairly secure. Primordial helium and deuterium abundances deduced in this way place upper and lower limits on baryonic density implying that both baryonic and non-baryonic dark matter exist and predicting no more than 3 neutrino flavours as recently confirmed in accelerator experiments. The validity of simple galactic chemical evolution models assumed in extrapolating back to the Big Bang is examined in the light of the frequency distribution of iron or oxygen abundances in the Galactic halo, bulge and disk. (orig.)

  12. Chemically Dissected Rotation Curves of the Galactic Bulge from Main-sequence Proper Motions

    Science.gov (United States)

    Clarkson, William I.; Calamida, Annalisa; Sahu, Kailash C.; Brown, Thomas M.; Gennaro, Mario; Avila, Roberto J.; Valenti, Jeff; Debattista, Victor P.; Rich, R. Michael; Minniti, Dante; Zoccali, Manuela; Aufdemberge, Emily R.

    2018-05-01

    We report results from an exploratory study implementing a new probe of Galactic evolution using archival Hubble Space Telescope imaging observations. Precise proper motions are combined with photometric relative metallicity and temperature indices, to produce the proper-motion rotation curves of the Galactic bulge separately for metal-poor and metal-rich main-sequence samples. This provides a “pencil-beam” complement to large-scale wide-field surveys, which to date have focused on the more traditional bright giant branch tracers. We find strong evidence that the Galactic bulge rotation curves drawn from “metal-rich” and “metal-poor” samples are indeed discrepant. The “metal-rich” sample shows greater rotation amplitude and a steeper gradient against line-of-sight distance, as well as possibly a stronger central concentration along the line of sight. This may represent a new detection of differing orbital anisotropy between metal-rich and metal-poor bulge objects. We also investigate selection effects that would be implied for the longitudinal proper-motion cut often used to isolate a “pure-bulge” sample. Extensive investigation of synthetic stellar populations suggests that instrumental and observational artifacts are unlikely to account for the observed rotation curve differences. Thus, proper-motion-based rotation curves can be used to probe chemodynamical correlations for main-sequence tracer stars, which are orders of magnitude more numerous in the Galactic bulge than the bright giant branch tracers. We discuss briefly the prospect of using this new tool to constrain detailed models of Galactic formation and evolution. Based on observations made with the NASA/ESA Hubble Space Telescope and obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  13. THE AGE OF THE YOUNG BULGE-LIKE POPULATION IN THE STELLAR SYSTEM TERZAN 5: LINKING THE GALACTIC BULGE TO THE HIGH- Z UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, F. R.; Dalessandro, E.; Lanzoni, B.; Mucciarelli, A. [Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I–40127 Bologna (Italy); Massari, D. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani, 1, I-40127 Bologna (Italy); Origlia, L. [Kapteyn Astronomical Institute, University of Gröningen, Kapteyn Astron Institute, NL-9747 AD Gröningen (Netherlands); Rich, R. M. [Department of Physics and Astronomy, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States)

    2016-09-10

    The Galactic bulge is dominated by an old, metal-rich stellar population. The possible presence and the amount of a young (a few gigayears old) minor component is one of the major issues debated in the literature. Recently, the bulge stellar system Terzan 5 was found to harbor three sub-populations with iron content varying by more than one order of magnitude (from 0.2 up to two times the solar value), with chemical abundance patterns strikingly similar to those observed in bulge field stars. Here we report on the detection of two distinct main-sequence turnoff points in Terzan 5, providing the age of the two main stellar populations: 12 Gyr for the (dominant) sub-solar component and 4.5 Gyr for the component at super-solar metallicity. This discovery classifies Terzan 5 as a site in the Galactic bulge where multiple bursts of star formation occurred, thus suggesting a quite massive progenitor possibly resembling the giant clumps observed in star-forming galaxies at high redshifts. This connection opens a new route of investigation into the formation process and evolution of spheroids and their stellar content.

  14. Galactic Bulge Giants: Probing Stellar and Galactic Evolution. 1. Catalogue of Spitzer IRAC and MIPS Sources (PREPRINT)

    Science.gov (United States)

    Uttenthaler, Stefan; Stute, Matthias; Sahai, Raghvendra; Blommaert, Joris A.; Schultheis, Mathias; Kraemer, Kathleen E.; Groenewegen, Martin A.; Price, Stephan D.

    2010-01-01

    Aims. We aim at measuring mass-loss rates and the luminosities of a statistically large sample of Galactic bulge stars at several galactocentric radii. The sensitivity of previous infrared surveys of the bulge has been rather limited, thus fundamental questions for late stellar evolution, such as the stage at which substantial mass-loss begins on the red giant branch and its dependence on fundamental stellar properties, remain unanswered. We aim at providing evidence and answers to these questions. Methods. To this end, we observed seven 15 15 arcmin2 fields in the nuclear bulge and its vicinity with unprecedented sensitivity using the IRAC and MIPS imaging instruments on-board the Spitzer Space Telescope. In each of the fields, tens of thousands of point sources were detected. Results. In the first paper based on this data set, we present the observations, data reduction, the final catalogue of sources, and a detailed comparison to previous mid-IR surveys of the Galactic bulge, as well as to theoretical isochrones. We find in general good agreement with other surveys and the isochrones, supporting the high quality of our catalogue.

  15. LONG-TERM EVOLUTION OF DOME-SHAPED MACULA: Increased Macular Bulge is Associated With Extended Macular Atrophy.

    Science.gov (United States)

    Soudier, Guillaume; Gaudric, Alain; Gualino, Vincent; Massin, Pascale; Nardin, Mathieu; Tadayoni, Ramin; Speeg-Schatz, Claude; Gaucher, David

    2016-05-01

    Dome-shaped macula (DSM) may cause impaired vision. This study analyzed the long-term evolution of DSM, most particularly macular changes: serous retinal detachment, retinal pigment epithelium atrophy, and DSM bulge increase. Twenty-nine eyes presenting with DSM were retrospectively studied. Clinical data, color photographs, fluorescein angiographs, and optical coherence tomography examinations were reviewed. Patients were followed up from 6 months to 111 months (mean, 37.89 months). The height of the macular bulge, the size of retinal pigment epithelium macular atrophy, and serous retinal detachment progression were studied. Other macular changes were noted. Mean vision remained stable. Dome-shaped macula height increased significantly from 338.9 μm to 364.3 μm (P = 0.007). Serous retinal detachment was present initially in 15 of 29 eyes; it increased in 4 cases and resolved spontaneously in 7. Macular retinal pigment epithelium atrophy correlated with the bulge height (P = 0.015), and it enlarged during follow-up (1.12 vs. 1.34, P = 0.04). Other macular anomalies were present initially or appeared during follow-up: macular pucker, choroidal neovascularization (CNV), subretinal pigmentary clumps, and flat irregular pigmented epithelium detachment. A few treatments were proven in serous retinal detachment cases but were ineffective in restoring vision. In DSM, vision may be stable for years while macular changes progress: the macular bulge increases as does retinal pigment epithelium atrophy.

  16. Bulge Growth Through Disc Instabilities in High-Redshift Galaxies

    Science.gov (United States)

    Bournaud, Frédéric

    The role of disc instabilities, such as bars and spiral arms, and the associated resonances, in growing bulges in the inner regions of disc galaxies have long been studied in the low-redshift nearby Universe. There it has long been probed observationally, in particular through peanut-shaped bulges (Chap. 14 10.1007/978-3-319-19378-6_14"). This secular growth of bulges in modern disc galaxies is driven by weak, non-axisymmetric instabilities: it mostly produces pseudobulges at slow rates and with long star-formation timescales. Disc instabilities at high redshift (z > 1) in moderate-mass to massive galaxies (1010 to a few 1011 M⊙ of stars) are very different from those found in modern spiral galaxies. High-redshift discs are globally unstable and fragment into giant clumps containing 108-9 M⊙ of gas and stars each, which results in highly irregular galaxy morphologies. The clumps and other features associated to the violent instability drive disc evolution and bulge growth through various mechanisms on short timescales. The giant clumps can migrate inward and coalesce into the bulge in a few 108 years. The instability in the very turbulent media drives intense gas inflows toward the bulge and nuclear region. Thick discs and supermassive black holes can grow concurrently as a result of the violent instability. This chapter reviews the properties of high-redshift disc instabilities, the evolution of giant clumps and other features associated to the instability, and the resulting growth of bulges and associated sub-galactic components.

  17. The intrinsic shape of bulges in the CALIFA survey

    Science.gov (United States)

    Costantin, L.; Méndez-Abreu, J.; Corsini, E. M.; Eliche-Moral, M. C.; Tapia, T.; Morelli, L.; Dalla Bontà, E.; Pizzella, A.

    2018-02-01

    Context. The intrinsic shape of galactic bulges in nearby galaxies provides crucial information to separate bulge types. Aims: We aim to derive accurate constraints to the intrinsic shape of bulges to provide new clues on their formation mechanisms and set new limitations for future simulations. Methods: We retrieved the intrinsic shape of a sample of CALIFA bulges using a statistical approach. Taking advantage of GalMer numerical simulations of binary mergers we estimated the reliability of the procedure. Analyzing the i-band mock images of resulting lenticular remnants, we studied the intrinsic shape of their bulges at different galaxy inclinations. Finally, we introduced a new (B/A, C/A) diagram to analyze possible correlations between the intrinsic shape and the properties of bulges. Results: We tested the method on simulated lenticular remnants, finding that for galaxies with inclinations of 25° ≤ θ ≤ 65° we can safely derive the intrinsic shape of their bulges. We found that our CALIFA bulges tend to be nearly oblate systems (66%), with a smaller fraction of prolate spheroids (19%), and triaxial ellipsoids (15%). The majority of triaxial bulges are in barred galaxies (75%). Moreover, we found that bulges with low Sérsic indices or in galaxies with low bulge-to-total luminosity ratios form a heterogeneous class of objects; additionally, bulges in late-type galaxies or in less massive galaxies have no preference for being oblate, prolate, or triaxial. On the contrary, bulges with high Sérsic index, in early-type galaxies, or in more massive galaxies are mostly oblate systems. Conclusions: We concluded that various evolutionary pathways may coexist in galaxies, with merging events and dissipative collapse being the main mechanisms driving the formation of the most massive oblate bulges and bar evolution reshaping the less massive triaxial bulges.

  18. Chemical abundances and dust in planetary nebulae in the Galactic bulge

    NARCIS (Netherlands)

    Gutenkunst, S.; Bernard-Salas, J.; Pottasch, S. R.; Sloan, G. C.; Houck, J. R.

    2008-01-01

    We present mid-infrared Spitzer spectra of 11 planetary nebulae in the Galactic bulge. We derive argon, neon, sulfur, and oxygen abundances for them using mainly infrared line fluxes combined with some optical line fluxes from the literature. Due to the high extinction toward the bulge, the infrared

  19. The Gaia-ESO Survey: Exploring the complex nature and origins of the Galactic bulge populations

    Science.gov (United States)

    Rojas-Arriagada, A.; Recio-Blanco, A.; de Laverny, P.; Mikolaitis, Š.; Matteucci, F.; Spitoni, E.; Schultheis, M.; Hayden, M.; Hill, V.; Zoccali, M.; Minniti, D.; Gonzalez, O. A.; Gilmore, G.; Randich, S.; Feltzing, S.; Alfaro, E. J.; Babusiaux, C.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Pancino, E.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Donati, P.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Lind, K.; Magrini, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Zaggia, S.

    2017-05-01

    not participate in the X-shape bulge. Their Mg enhancement level and general shape in the [Mg/Fe] vs. [Fe/H] plane is comparable to that of the thick disk sequence. The position at which [Mg/Fe] starts to decrease with [Fe/H], called the "knee", is observed in the metal-poor bulge at [Fe/H] knee = -0.37 ± 0.09, being 0.06 dex higher than that of the thick disk. Although this difference is inside the error bars, it suggest a higher star formation rate (SFR) for the bulge than for the thick disk. We estimate an upper limit for this difference of Δ [Fe/H] knee = 0.24 dex. Finally, we present a chemical evolution model that suitably fits the whole bulge sequence by assuming a fast (Cambridge Astronomy Survey Unit (CASU) at the Institute of Astronomy, University of Cambridge, and by the FLAMES/UVES reduction team at INAF/Osservatorio Astrofisico di Arcetri. These data have been obtained from the Gaia-ESO Survey Data Archive, prepared and hosted by the Wide Field Astronomy Unit, Institute for Astronomy, University of Edinburgh, which is funded by the UK Science and Technology Facilities Council.

  20. The Metallicity Gradient of the Old Galactic Bulge Population

    Science.gov (United States)

    Sans Fuentes, Sara Alejandra; De Ridder, Joris

    Understanding the structure, formation and evolution of the Galactic Bulge requires the proper determination of spatial metallicity gradients in both the radial and vertical directions. RR Lyrae pulsators, known to be excellent distance indicators, may hold the key to determining these gradients. Jurcsik and Kovacs (A&A 312:111, 1996) has shown that RR Lyrae light curves and the phase difference of their Fourier decomposition, ϕ 31, can be used to estimate photometric metallicities. The existence of galactic bulge metallicity gradients is a currently debated topic that would help pinpoint the Galaxy's formation and evolution. A recent study of the OGLE-III Galactic Bulge RR Lyrae Population by Pietrukowicz et al. (ApJ 750:169, 2012) suggests that the spatial distribution is uniform. We investigate how small a gradient would be detectable within the current S/N levels of the present data set, given the random and systematic errors associated with the derivation of a photometric metallicity versus spatial position relationship.

  1. YOUNG STARS IN AN OLD BULGE: A NATURAL OUTCOME OF INTERNAL EVOLUTION IN THE MILKY WAY

    International Nuclear Information System (INIS)

    Ness, M.; Debattista, Victor P.; Cole, D. R.; Bensby, T.; Feltzing, S.; Roškar, R.; Johnson, J. A.; Freeman, K.

    2014-01-01

    The center of our disk galaxy, the Milky Way, is dominated by a boxy/peanut-shaped bulge. Numerous studies of the bulge based on stellar photometry have concluded that the bulge stars are exclusively old. The perceived lack of young stars in the bulge strongly constrains its likely formation scenarios, providing evidence that the bulge is a unique population that formed early and separately from the disk. However, recent studies of individual bulge stars using the microlensing technique have reported that they span a range of ages, emphasizing that the bulge may not be a monolithic structure. In this Letter we demonstrate that the presence of young stars that are located predominantly nearer to the plane is expected for a bulge that has formed from the disk via dynamical instabilities. Using an N-body+ smoothed particle hydrodynamics simulation of a disk galaxy forming out of gas cooling inside a dark matter halo and forming stars, we find a qualitative agreement between our model and the observations of younger metal-rich stars in the bulge. We are also able to partially resolve the apparent contradiction in the literature between results that argue for a purely old bulge population and those that show a population comprised of a range in ages; the key is where to look

  2. A Comparison of Galaxy Bulge+Disk Decomposition Between Pan-STARRS and SDSS

    Science.gov (United States)

    Lokken, Martine Elena; McPartland, Conor; Sanders, David B.

    2018-01-01

    Measurements of the size and shape of bulges in galaxies provide key constraints for models of galaxy evolution. A comprehensive catalog of bulge measurements for Sloan Digital Sky Survey (SDSS) DR7 galaxies is currently available to the public. However, the Pan-STARRS1 (PS1) 3π survey now covers the same region with ~1-2 mag deeper photometry, a ~10-30% smaller PSF, and additional coverage in y-band. To test how much improvement in galaxy parameter measurements (e.g. bulge + disk) can be achieved using the new PS1 data, we make use of ultra-deep imaging data from the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP). We fit bulge+disk models to images of 372 bright (mi SSP images shows a tighter correlation between PS1 and SSP measurements for both bulge and disk parameters. Bulge parameters, such as bulge-to-total fraction and bulge radius, show the strongest improvement. However, measurements of all parameters degrade for galaxies with total r-band magnitude below the SDSS spectroscopic limit, mr = 17.7. We plan to use the PS1 3π survey data to produce an updated catalog of bulge+disk decomposition measurements for the entire SDSS DR7 spectroscopic galaxy sample.

  3. Galactic bulges

    CERN Document Server

    Peletier, Reynier; Gadotti, Dimitri

    2016-01-01

    This book consists of invited reviews on Galactic Bulges written by experts in the field. A central point of the book is that, while in the standard picture of galaxy formation a significant amount of the baryonic mass is expected to reside in classical bulges, the question what is the fraction of galaxies with no classical bulges in the local Universe has remained open. The most spectacular example of a galaxy with no significant classical bulge is the Milky Way. The reviews of this book attempt to clarify the role of the various types of bulges during the mass build-up of galaxies, based on morphology, kinematics, and stellar populations, and connecting their properties at low and high redshifts. The observed properties are compared with the predictions of the theoretical models, accounting for the many physical processes leading to the central mass concentration and their destruction in galaxies. This book serves as an entry point for PhD students and non-specialists and as a reference work for researchers...

  4. The formation of the Galactic bulge of the Milky Way

    Directory of Open Access Journals (Sweden)

    Freeman K.

    2012-02-01

    Full Text Available We aim to determine if the bulge formed via mergers as predicted by Cold Dark Matter (CDM theory, or from disk instabilities, as suggested by its boxy shape, or both processes. We are observing about 28,000 bulge stars in fields that span longitudes of − 31 to + 26° and latitudes of − 5° to − 10°, targeting mostly red clump giants and we are measuring stellar velocities and chemical abundances. We have almost concluded our observations and have analysed data of 23,000 stars. We find a cylindrical rotation profile for the bulge which blends smoothly out into the disk and from the [Fe/H] results we find the bulge to be comprised of separate components, with an underlying slowly rotating metal poor subsample which we believe to be the inner halo stars and metal weak thick disk. We find only a small [Fe/H] gradient with latitude in the bulge, of − 0.07dex/kpc. This weak gradient does not necessarily support a merger origin for our bulge and the composite nature of the bulge is consistent with formation out of the thin disk as per instability formation models.

  5. THE INNER GALACTIC BULGE: EVIDENCE FOR A NUCLEAR BAR?

    International Nuclear Information System (INIS)

    Gerhard, Ortwin; Martinez-Valpuesta, Inma

    2012-01-01

    Recent data from the VVV survey have strengthened evidence for a structural change in the Galactic bulge inward of |l| ≤ 4°. Here we show with an N-body barred galaxy simulation that a boxy bulge formed through the bar and buckling instabilities effortlessly matches measured bulge longitude profiles for red clump stars. The same simulation snapshot was earlier used to clarify the apparent boxy bulge—long bar dichotomy, for the same orientation and scaling. The change in the slope of the model longitude profiles in the inner few degrees is caused by a transition from highly elongated to more nearly axisymmetric isodensity contours in the inner boxy bulge. This transition is confined to a few degrees from the Galactic plane; thus the change of slope is predicted to disappear at higher Galactic latitudes. We also show that the nuclear star count map derived from this simulation snapshot displays a longitudinal asymmetry similar to that observed in the Two Micron All Sky Survey (2MASS) data, but is less flattened to the Galactic plane than the 2MASS map. These results support the interpretation that the Galactic bulge originated from disk evolution and question the evidence advanced from star count data for the existence of a secondary nuclear bar in the Milky Way.

  6. KINEMATIC SIGNATURES OF BULGES CORRELATE WITH BULGE MORPHOLOGIES AND SÉRSIC INDEX

    International Nuclear Information System (INIS)

    Fabricius, Maximilian H.; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Fisher, David B.; Drory, Niv

    2012-01-01

    We use the Marcario Low Resolution Spectrograph at the Hobby-Eberly Telescope to study the kinematics of pseudobulges and classical bulges in the nearby universe. We present major axis rotational velocities, velocity dispersions, and h 3 and h 4 moments derived from high-resolution (σ inst ≈ 39 km s –1 ) spectra for 45 S0 to Sc galaxies; for 27 of the galaxies we also present minor axis data. We combine our kinematics with bulge-to-disk decompositions. We demonstrate for the first time that purely kinematic diagnostics of the bulge dichotomy agree systematically with those based on Sérsic index. Low Sérsic index bulges have both increased rotational support (higher v/σ values) and on average lower central velocity dispersions. Furthermore, we confirm that the same correlation also holds when visual morphologies are used to diagnose bulge type. The previously noted trend of photometrically flattened bulges to have shallower velocity dispersion profiles turns out to be significant and systematic if the Sérsic index is used to distinguish between pseudobulges and classical bulges. The anti-correlation between h 3 and v/σ observed in elliptical galaxies is also observed in intermediate-type galaxies, irrespective of bulge type. Finally, we present evidence for formerly undetected counter-rotation in the two systems NGC 3945 and NGC 4736.

  7. Light, Alpha, and Fe-peak Element Abundances in the Galactic Bulge

    Science.gov (United States)

    Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki; Kunder, Andrea; Koch, Andreas

    2014-10-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l, b) = (+5.25,-3.02) and (0,-12). The (+5.25,-3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high-resolution (R ~ 20,000), high signal-to-noise ration (S/N >~ 70) FLAMES-GIRAFFE spectra obtained through the European Southern Observatory archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did not show strong TiO absorption bands. This work extends previous analyses of this data set beyond Fe and the α-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H] >~ -0.5. In particular, the bulge [α/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk, and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high-velocity populations. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae may be required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 M ⊙ are ruled out, in particular because of disagreement with the Fe-peak abundance data. For most elements, the NGC 6553 stars exhibit abundance trends nearly identical to comparable metallicity bulge field stars. However, the

  8. Light, alpha, and Fe-peak element abundances in the galactic bulge

    International Nuclear Information System (INIS)

    Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki; Kunder, Andrea; Koch, Andreas

    2014-01-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l, b) = (+5.25,–3.02) and (0,–12). The (+5.25,–3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high-resolution (R ∼ 20,000), high signal-to-noise ration (S/N ≳ 70) FLAMES-GIRAFFE spectra obtained through the European Southern Observatory archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did not show strong TiO absorption bands. This work extends previous analyses of this data set beyond Fe and the α-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H] ≳ –0.5. In particular, the bulge [α/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk, and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high-velocity populations. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae may be required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 M ☉ are ruled out, in particular because of disagreement with the Fe-peak abundance data. For most elements, the NGC 6553 stars exhibit abundance trends nearly identical to comparable metallicity bulge field stars

  9. Light, alpha, and Fe-peak element abundances in the galactic bulge

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-15, Cambridge, MA 02138 (United States); Rich, R. Michael [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Kobayashi, Chiaki [Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Kunder, Andrea [Leibniz-Institute für Astrophysik Potsdam (AIP), Ander Sternwarte 16, D-14482, Potsdam (Germany); Koch, Andreas, E-mail: cjohnson@cfa.harvard.edu, E-mail: rmr@astro.ucla.edu, E-mail: c.kobayashi@herts.ac.uk, E-mail: akunder@aip.de, E-mail: akoch@lsw.uni-heidelberg.de [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, Heidelberg (Germany)

    2014-10-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l, b) = (+5.25,–3.02) and (0,–12). The (+5.25,–3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high-resolution (R ∼ 20,000), high signal-to-noise ration (S/N ≳ 70) FLAMES-GIRAFFE spectra obtained through the European Southern Observatory archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did not show strong TiO absorption bands. This work extends previous analyses of this data set beyond Fe and the α-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H] ≳ –0.5. In particular, the bulge [α/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk, and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high-velocity populations. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae may be required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 M {sub ☉} are ruled out, in particular because of disagreement with the Fe-peak abundance data. For most elements, the NGC 6553 stars exhibit abundance trends nearly identical to comparable metallicity bulge field

  10. POWERFUL RADIO EMISSION FROM LOW-MASS SUPERMASSIVE BLACK HOLES FAVORS DISK-LIKE BULGES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Xu, Y.; Xu, D. W.; Wei, J. Y., E-mail: wj@bao.ac.cn [CAS Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing (China)

    2016-12-10

    The origin of spin of low-mass supermassive black holes (SMBHs) is still a puzzle at present. We report here a study on the host galaxies of a sample of radio-selected nearby ( z < 0.05) Seyfert 2 galaxies with a BH mass of 10{sup 6–7} M{sub ⊙}. By modeling the SDSS r -band images of these galaxies through a two-dimensional bulge+disk decomposition, we identify a new dependence of SMBH's radio power on host bulge surface brightness profiles, in which more powerful radio emission comes from an SMBH associated with a more disk-like bulge. This result means low-mass and high-mass SMBHs are spun up by two entirely different modes that correspond to two different evolutionary paths. A low-mass SMBH is spun up by a gas accretion with significant disk-like rotational dynamics of the host galaxy in the secular evolution, while a high-mass one by a BH–BH merger in the merger evolution.

  11. CHEMICAL ABUNDANCE ANALYSIS OF A NEUTRON-CAPTURE ENHANCED RED GIANT IN THE BULGE PLAUT FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian I.; Rich, R. Michael [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); McWilliam, Andrew, E-mail: cijohnson@astro.ucla.edu, E-mail: rmr@astro.ucla.edu, E-mail: cjohnson@cfa.harvard.edu, E-mail: andy@obs.carnegiescience.edu [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States)

    2013-09-20

    We present chemical abundances for 27 elements ranging from oxygen to erbium in the metal-poor ([Fe/H] = –1.67) bulge red giant branch star 2MASS 18174532-3353235. The results are based on equivalent width and spectrum synthesis analyses of a high-resolution (R ∼ 30, 000) spectrum obtained with the Magellan-MIKE spectrograph. While the light (Z ∼< 30) element abundance patterns match those of similar metallicity bulge and halo stars, the strongly enhanced heavy element abundances are more similar to 'r-II' halo stars (e.g., CS 22892-052) typically found at [Fe/H] ∼< – 2.5. We find that the heaviest elements (Z ≥ 56) closely follow the scaled-solar r-process abundance pattern. We do not find evidence supporting significant s-process contributions; however, the intermediate mass elements (e.g., Y and Zr) appear to have been produced through a different process than the heaviest elements. The light and heavy element abundance patterns of 2MASS 18174532-3353235 are in good agreement with the more metal-poor r-process enhanced stars CS 22892-052 and BD +17{sup o}3248. 2MASS 18174532-3353235 also shares many chemical characteristics with the similar metallicity but comparatively α-poor Ursa Minor dwarf galaxy giant COS 82. Interestingly, the Mo and Ru abundances of 2MASS 18174532-3353235 are also strongly enhanced and follow a similar trend recently found to be common in moderately metal-poor main-sequence turn-off halo stars.

  12. Stellar populations of bulges in galaxies with a low surface-brightness disc

    Science.gov (United States)

    Morelli, L.; Corsini, E. M.; Pizzella, A.; Dalla Bontà, E.; Coccato, L.; Méndez-Abreu, J.

    2015-03-01

    The radial profiles of the Hβ, Mg, and Fe line-strength indices are presented for a sample of eight spiral galaxies with a low surface-brightness stellar disc and a bulge. The correlations between the central values of the line-strength indices and velocity dispersion are consistent to those known for early-type galaxies and bulges of high surface-brightness galaxies. The age, metallicity, and α/Fe enhancement of the stellar populations in the bulge-dominated region are obtained using stellar population models with variable element abundance ratios. Almost all the sample bulges are characterized by a young stellar population, on-going star formation, and a solar α/Fe enhancement. Their metallicity spans from high to sub-solar values. No significant gradient in age and α/Fe enhancement is measured, whereas only in a few cases a negative metallicity gradient is found. These properties suggest that a pure dissipative collapse is not able to explain formation of all the sample bulges and that other phenomena, like mergers or acquisition events, need to be invoked. Such a picture is also supported by the lack of a correlation between the central value and gradient of the metallicity in bulges with very low metallicity. The stellar populations of the bulges hosted by low surface-brightness discs share many properties with those of high surface-brightness galaxies. Therefore, they are likely to have common formation scenarios and evolution histories. A strong interplay between bulges and discs is ruled out by the fact that in spite of being hosted by discs with extremely different properties, the bulges of low and high surface-brightness discs are remarkably similar.

  13. REDSHIFT EVOLUTION IN BLACK HOLE-BULGE RELATIONS: TESTING C IV-BASED BLACK HOLE MASSES

    International Nuclear Information System (INIS)

    Greene, Jenny E.; Peng, Chien Y.; Ludwig, Randi R.

    2010-01-01

    We re-examine claims for redshift evolution in black hole-bulge scaling relations based on lensed quasars. In particular, we refine the black hole (BH) mass estimates using measurements of Balmer lines from near-infrared spectroscopy obtained with Triplespec at Apache Point Observatory. In support of previous work, we find a large scatter between Balmer and UV line widths, both Mg IIλλ2796, 2803 and C IVλλ1548, 1550. There is tentative evidence that C III]λ1909, despite being a blend of multiple transitions, may correlate well with Mg II, although a larger sample is needed for a real calibration. Most importantly, we find no systematic changes in the estimated BH masses for the lensed sample based on Balmer lines, providing additional support to the interpretation that black holes were overly massive compared to their host galaxies at high redshift.

  14. A "bulged" double helix in a RNA-protein contact site

    DEFF Research Database (Denmark)

    Peattie, D A; Douthwaite, S; Garrett, R A

    1981-01-01

    as a singly bulged nucleotide extending the Fox and Woese central helix by two base pairs in the E. coli sequence (to positions 16-23/60-68) as well as in each of 61 (prokaryotic and eukaryotic) aligned 5S RNA sequences. In each case, the single bulged nucleotide is at the relative position of adenosine-66...... in the RNA sequences. The presence of this putative bulged nucleotide appears to have been conserved in 5S RNA sequences throughout evolution, and its identity varies with major phylogenetic divisions. This residue is likely involved in specific 5S RNA-protein recognition or interaction in prokaryotic...... and eukaryotic ribosomes. The uridine-65 to adenosine-66 internucleotide bond is protected from RNase A digestion in the complex, and carbethoxylation of E. coli adenosine-66 prior to L18 binding affects formation of a stable RNA-protein complex. Thus, we identify a region of E. coli 5S RNA protected...

  15. Chemical evolution of galaxies

    CERN Document Server

    Matteucci, Francesca

    2012-01-01

    The term “chemical evolution of galaxies” refers to the evolution of abundances of chemical species in galaxies, which is due to nuclear processes occurring in stars and to gas flows into and out of galaxies. This book deals with the chemical evolution of galaxies of all morphological types (ellipticals, spirals and irregulars) and stresses the importance of the star formation histories in determining the properties of stellar populations in different galaxies. The topic is approached in a didactical and logical manner via galaxy evolution models which are compared with observational results obtained in the last two decades: The reader is given an introduction to the concept of chemical abundances and learns about the main stellar populations in our Galaxy as well as about the classification of galaxy types and their main observables. In the core of the book, the construction and solution of chemical evolution models are discussed in detail, followed by descriptions and interpretations of observations of ...

  16. Magnesium isotopes in giants in the Milky Way inner disk and bulge: First results with 3D stellar atmospheres.

    Science.gov (United States)

    Thygesen, Anders; Sbordone, Luca; Christlieb, Norbert; Asplund, Martin

    2015-01-01

    The Milky Way bulge is one of the most poorly understood components of our galaxy and its formation history is still a matter of debate (early collapse vs. disk instability). All knowledge of its chemical evolution history has been so far derived by measuring elemental abundances: no isotopic mixtures have been measured so far in the Bulge. While quite challenging, isotopic measurements can be accomplished with present instruments in bulge stars for a few elements, Magnesium being one of them.Of the three stable Mg isotopes, the most common one, 24Mg, is mainly produced by α capture in SN II, while the other two, 25Mg and 26Mg, can be produced efficiently in massive AGB stars, through the 22Ne(α, n)25Mg(n, γ)26Mg reactions as well as the Mg-Al chain. Moreover, SN II production of 25Mg and 26Mg increases with increasing progenitor metallicity, so in older stellar populations, where only the signature of metal-poor SNe is to be expected, one should not see a significant 25Mg or 26Mg fraction. However, if larger 25Mg/24Mg and 26Mg/24Mg ratios are observed, relative to what is produced in SNe, this is a clear sign of an AGB contribution. As such, Mg isotopic ratios are a very useful probe of AGB pollution onset and chemical enrichment timescale in a stellar population.Here, we present the first ever measurements of Mg isotopes in 7 red giant stars in the Milky Way bulge and inner disk, including two stars in the bulge globular cluster NGC6522. The isotopic abundances have been derived from high resolution, high signal-to-noise VLT-UVES spectra using both standard 1D atmospheric models as well as state-of-the-art 3D hydrodynamical models and spectrosynthesis. The use of 3D atmospheric models impacts the derived ratios and this work represents the first derivation of Mg isotopes using full 3D spectrosynthesis. These results yield new constraints on the proposed formation scenarios of the Milky Way bulge.

  17. Searching for fossil fragments of the Galactic bulge formation process

    Science.gov (United States)

    Ferraro, Francesco

    2017-08-01

    We have discovered that the stellar system Terzan5 (Ter5) in the Galactic bulge harbors stellar populations with very different IRON content (delta[Fe/H] 1 dex, Ferraro+09, Nature 462, 483) and AGES (12 Gyr and 4.5 Gyr for the sub-solar and super-solar metallicity populations, respectively, Ferraro+16, ApJ,828,75). This evidence demonstrates that Ter5 is not a globular cluster, and identifies it as (1) a site in the Galactic bulge where recent star formation occurred, and (2) the remnant of a massive system able to retain the iron-enriched gas ejected by violent supernova explosions. The striking chemical similarity between Ter5 and the bulge opens the fascinating possibility that we discovered the fossil remnant of a pristine massive structure that could have contributed to the Galactic bulge assembly.Prompted by this finding, here we propose to secure deep HST optical observations for the bulge stellar system Liller1, that shows a similar complexity as Ter5, with evidence of two stellar populations with different iron content. The immediate goal is to properly explore the main sequence turnoff region of the system for unveiling possible splits due to stellar populations of different ages. As demonstrated by our experience with Ter5, the requested HST observations, in combination with the K-band diffraction limited images that we already secured with GeMS-Gemini, are essential to achieve this goal.The project will allow us to establish if other fossil remnants of the bulge formation epoch do exist, thus probing that the merging of pre-evolved massive structures has been an important channel for the formation of the Galactic bulge.

  18. Chemical evolution and life

    Directory of Open Access Journals (Sweden)

    Malaterre Christophe

    2015-01-01

    Full Text Available In research on the origins of life, the concept of “chemical evolution” aims at explaining the transition from non-living matter to living matter. There is however strong disagreement when it comes to defining this concept more precisely, and in particular with reference to a chemical form of Darwinian evolution: for some, chemical evolution is nothing but Darwinian evolution applied to chemical systems before life appeared; yet, for others, it is the type of evolution that happened before natural selection took place, the latter being the birthmark of living systems. In this contribution, I review the arguments defended by each side and show how both views presuppose a dichotomous definition of “life”.

  19. Eyes, Bulging (Proptosis)

    Science.gov (United States)

    ... Early Breast Cancer to Avoid Chemo Could a Blood Test Spot Lung Cancer Early? Experimental Drug Shows 'Modest' Benefit ... often done when bulging affects only one eye. Blood tests to measure how well the thyroid is working are done when ... When bulging leads to severe dry eyes, lubrication with artificial tears is needed to ...

  20. Velocity Dispersions Across Bulge Types

    International Nuclear Information System (INIS)

    Fabricius, Maximilian; Bender, Ralf; Hopp, Ulrich; Saglia, Roberto; Drory, Niv; Fisher, David

    2010-01-01

    We present first results from a long-slit spectroscopic survey of bulge kinematics in local spiral galaxies. Our optical spectra were obtained at the Hobby-Eberly Telescope with the LRS spectrograph and have a velocity resolution of 45 km/s (σ*), which allows us to resolve the velocity dispersions in the bulge regions of most objects in our sample. We find that the velocity dispersion profiles in morphological classical bulge galaxies are always centrally peaked while the velocity dispersion of morphologically disk-like bulges stays relatively flat towards the center--once strongly barred galaxies are discarded.

  1. BULGE n AND B/T IN HIGH-MASS GALAXIES: CONSTRAINTS ON THE ORIGIN OF BULGES IN HIERARCHICAL MODELS

    International Nuclear Information System (INIS)

    Weinzirl, Tim; Jogee, Shardha; Kormendy, John; Khochfar, Sadegh; Burkert, Andreas

    2009-01-01

    We use the bulge Sersic index n and bulge-to-total mass ratio (B/T) to explore the fundamental question of how bulges form. We perform two-dimensional bulge-disk-bar decomposition on H-band images of 143 bright, high-mass (M * ≥ 1.0 x 10 10 M sun ) low-to-moderately inclined (i 0 ) spirals. Our results are as follows. (1) Our H-band bar fraction (∼58%) is consistent with that from ellipse fits. (2) 70% of the stellar mass is in disks, 10% in bars, and 20% in bulges. (3) A large fraction (∼69%) of bright spirals have B/T≤ 0.2, and ∼76% have low n ≤ 2 bulges. These bulges exist in barred and unbarred galaxies across a wide range of Hubble types. (4) About 65% (68%) of bright spirals with n ≤ 2 (B/T ≤ 0.2) bulges host bars, suggesting a possible link between bars and bulges. (5) We compare the results with predictions from a set of ΛCDM models. In the models, a high-mass spiral can have a bulge with a present-day low B/T≤ 0.2 only if it did not undergo a major merger since z ≤ 2. The predicted fraction (∼ 1.6%) of high-mass spirals, which have undergone a major merger since z ≤ 4 and host a bulge with a present-day low B/T ≤ 0.2, is a factor of over 30 smaller than the observed fraction (∼66%) of high-mass spirals with B/T ≤ 0.2. Thus, contrary to common perception, bulges built via major mergers since z ≤ 4 seriously fail to account for the bulges present in ∼66% of high mass spirals. Most of these present-day low B/T ≤ 0.2 bulges are likely to have been built by a combination of minor mergers and/or secular processes since z ≤ 4.

  2. Abundances in the Galactic bulge

    Energy Technology Data Exchange (ETDEWEB)

    Barbuy, B; Alves-Brito, A [Universidade de Sao Paulo, IAG, Rua do Matao 1226, Sao Paulo 05508-900 (Brazil); Ortolani, S; Zoccali, M [Dipartimento di Astronomia, Universita di Padova, Vicolo dell' Osservatorio 2, I-35122 Padova (Italy); Hill, V; Gomez, A [Observatoire de Paris-Meudon, 92195 Meudon Cedex (France); Melendez, J [Centro de AstrofIsica da Universidade de Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Asplund, M [Max Planck Institute for Astrophysics, Postfach 1317, 85741 Garching (Germany); Bica, E [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, CP 15051, Porto Alegre 91501-970 (Brazil); Renzini, A [Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Minniti, D [Department of Astronomy and Astrophysics, Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile)], E-mail: barbuy@astro.iag.usp.br

    2008-12-15

    The metallicity distribution and abundance ratios of the Galactic bulge are reviewed. Issues raised by recent work of different groups, in particular the high metallicity end, the overabundance of {alpha}-elements in the bulge relative to the thick disc and the measurement of giants versus dwarfs, are discussed. Abundances in the old moderately metal-poor bulge globular clusters are described.

  3. A simple multistage closed-(box+reservoir model of chemical evolution

    Directory of Open Access Journals (Sweden)

    Caimmi R.

    2011-01-01

    Full Text Available Simple closed-box (CB models of chemical evolution are extended on two respects, namely (i simple closed-(box+reservoir (CBR models allowing gas outflow from the box into the reservoir (Hartwick 1976 or gas inflow into the box from the reservoir (Caimmi 2007 with rate proportional to the star formation rate, and (ii simple multistage closed-(box+reservoir (MCBR models allowing different stages of evolution characterized by different inflow or outflow rates. The theoretical differential oxygen abundance distribution (TDOD predicted by the model maintains close to a continuous broken straight line. An application is made where a fictitious sample is built up from two distinct samples of halo stars and taken as representative of the inner Galactic halo. The related empirical differential oxygen abundance distribution (EDOD is represented, to an acceptable extent, as a continuous broken line for two viable [O/H]-[Fe/H] empirical relations. The slopes and the intercepts of the regression lines are determined, and then used as input parameters to MCBR models. Within the errors (-+σ, regression line slopes correspond to a large inflow during the earlier stage of evolution and to low or moderate outflow during the subsequent stages. A possible inner halo - outer (metal-poor bulge connection is also briefly discussed. Quantitative results cannot be considered for applications to the inner Galactic halo, unless selection effects and disk contamination are removed from halo samples, and discrepancies between different oxygen abundance determination methods are explained.

  4. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    International Nuclear Information System (INIS)

    García Pérez, Ana E.; Majewski, Steven R.; Hearty, Fred R.; Cunha, Katia; Shetrone, Matthew; Johnson, Jennifer A.; Zasowski, Gail; Smith, Verne V.; Beers, Timothy C.; Schiavon, Ricardo P.; Holtzman, Jon; Nidever, David; Allende Prieto, Carlos; Bizyaev, Dmitry; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor; Eisenstein, Daniel J.; Frinchaboy, Peter M.; Girardi, Léo

    2013-01-01

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403 giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] ≤ –1.7), including two that are very metal-poor [Fe/H] ∼ –2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the α-elements O, Mg, and Si without significant α-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.

  5. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Perez, Ana E.; Majewski, Steven R.; Hearty, Fred R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Cunha, Katia [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Shetrone, Matthew [McDonald Observatory, University of Texas at Austin, Fort Davis, TX 79734 (United States); Johnson, Jennifer A.; Zasowski, Gail [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Smith, Verne V.; Beers, Timothy C. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Schiavon, Ricardo P. [Gemini Observatory, 670 N. A' Ohoku Place, Hilo, HI 96720 (United States); Holtzman, Jon [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Nidever, David [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Allende Prieto, Carlos [Departamento de Astrofisica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Bizyaev, Dmitry; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Eisenstein, Daniel J. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Frinchaboy, Peter M. [Department of Physics and Astronomy, Texas Christian University, 2800 South University Drive, Fort Worth, TX 76129 (United States); Girardi, Leo [Laboratorio Interinstitucional de e-Astronomia - LIneA, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ - 20921-400 (Brazil); and others

    2013-04-10

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403 giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] {<=} -1.7), including two that are very metal-poor [Fe/H] {approx} -2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the {alpha}-elements O, Mg, and Si without significant {alpha}-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.

  6. Living with a parastomal bulge

    DEFF Research Database (Denmark)

    Krogsgaard, Marianne; Thomsen, Thordis; Vinther, Anders

    2017-01-01

    was performed using a phenomenological-hermeneutic approach. FINDINGS: The bulge caused different unfamiliar bodily sensations that interacted with patients' everyday lives. Some but not all of these sensations were modifiable. As the bulge and the ostomy changed size and shape, patients had to adjust...... and readjust stoma care continuously. The physical change called for patients' awareness and posed a threat to patients' control of the ostomy and challenged stoma self-care. The bulge caused a bodily asymmetry that deformed the patients' bodies in a way that exceeded the perceived alteration already caused...... is limited and highly warranted to improve clinical outcome. RELEVANCE TO CLINICAL PRACTICE: The ever-changing bulge posed a threat to patients' control of the ostomy and required specific care from the stoma therapist. Needs-based access to counselling, advice and supplementary materials is important....

  7. Rotation of the bulge components of barred galaxies

    International Nuclear Information System (INIS)

    Kormendy, J.

    1982-01-01

    Stellar rotation and velocity-dispersion measurements are presented for the bulge components of the SBO galaxies NGC 1023, 2859, 2950, 4340, 4371, and 7743. The kinematics of nine SB bulges with data available are compared with bulges of unbarred galaxies studied by Kormendy and Illingworth. All of the SB bulges are found to rotate at least as rapidly as oblate-spheroid dynamical models which are flattened by rotation. This result confirms the conclusion of Kormendy and Illingworth that bulges rotate very rapidly. Six SB bulges found by Kormendy and Koo to be triaxial rotate even more rapidly than the oblate models. In this respect, they resemble published n-body models of bars. That is, triaxial bulges are dynamically like bars and unlike elliptical galaxies, which are also believed to be triaxial, but which rotate slowly. Measured velocity anisotropies are found to be consistent with these conclusions. Two ordinary bulges whose rotation is well described by isotropic modes have a ratio of radial to azimuthal velocity dispersion of sigma/sub r//sigma/sub theta/ = 0.96 +- 0.03. In contrast, the triaxial bulge of NGC 3945, which rotates much faster than the isotropic models, has sigma/sub r//sigma/sub theta/ approx.1.31 +- 0.06. This is similar to the degree of anisotropy, sigma/sub r//sigma/sub theta/approx.1.21 +- 0.03, found in a recent n-body bar model by Hohl and Zang. Altogether the kinematic observations imply the triaxial bulges are more disklike than SA bulges. They appear to have been formed with more dissipation than ordinary bulges. These results are consistent with the hypothesis that part of the bulge in many SB galaxies consists of disk material (i.e., gas) which has been transported to the center by the bar. The resulting star formation may produce a very centrally concentrated light distribution which resembles a bulge but which has dislike dynamics

  8. Tidal stripping stellar substructures around four metal-poor globular clusters in the galactic bulge

    International Nuclear Information System (INIS)

    Chun, Sang-Hyun; Kang, Minhee; Jung, DooSeok; Sohn, Young-Jong

    2015-01-01

    We investigate the spatial density configuration of stars around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge region using wide-field deep J, H, and K imaging data obtained with the Wide Field Camera near-infrared array on the United Kingdom Infrared Telescope. A statistical weighted filtering algorithm for the stars on the color–magnitude diagram is applied in order to sort cluster member candidates from the field star contamination. In two-dimensional isodensity contour maps of the clusters, we find that all four of the globular clusters exhibit strong evidence of tidally stripped stellar features beyond the tidal radius in the form of tidal tails or small density lobes/chunks. The orientations of the extended stellar substructures are likely to be associated with the effect of dynamic interaction with the Galaxy and the cluster's space motion. The observed radial density profiles of the four globular clusters also describe the extended substructures; they depart from theoretical King and Wilson models and have an overdensity feature with a break in the slope of the profile at the outer region of clusters. The observed results could imply that four globular clusters in the Galactic bulge region have experienced strong environmental effects such as tidal forces or bulge/disk shocks of the Galaxy during the dynamical evolution of globular clusters. These observational results provide further details which add to our understanding of the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.

  9. The chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Chiosi, Cesare

    1986-01-01

    The chemical evolution of galaxies is reviewed with particular attention to the theoretical interpretation of the distribution and abundances of elements in stars and the interstellar medium. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy, 1986. The metallicity distribution of the solar vicinity, age metallicity relationship, abundance gradients in the galaxy, external galaxies, star formation and evolution, major sites of nucleosynthesis, yields of chemical elements, chemical models, and the galactic disk, are all discussed. (U.K.)

  10. The Globular Clusters of the Galactic Bulge: Results from Multiwavelength Follow-up Imaging

    Science.gov (United States)

    Cohen, Roger; Geisler, Doug; Mauro, Francesco; Alonso Garcia, Javier; Hempel, Maren; Sarajedini, Ata

    2018-01-01

    The Galactic globular clusters (GGCs) located towards the bulge of the Milky Way suffer from severe total and differential extinction and high field star densities. They have therefore been systematically excluded from deep, large-scale homogenous GGC surveys, and will present a challenge for Gaia. Meanwhile, existing observations of bulge GGCs have revealed tantalizing hints that they hold clues to Galactic formation and evolution not found elsewhere. Therefore, in order to better characterize these poorly studied stellar systems and place them in the context of their optically well-studied counterparts, we have undertaken imaging programs at optical and near-infrared wavelengths. We describe these programs and present a variety of results, including self-consistent measurement of bulge GGC ages and structural parameters. The limitations imposed by spatially variable extinction and extinction law are highlighted, along with the complimentary nature of forthcoming facilities, allowing us to finally complete our picture of the Milky Way GGC system.

  11. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Matteucci, F.; Consiglio Nazionale delle Ricerche, Frascati

    1989-01-01

    In principle, a good model of galactic chemical evolution should fulfil the majority of well established observational constraints. The goal of this paper is to review the observational data together with the existing chemical evolution models for the Milky Way (the disk), Blue Compact and Elliptical galaxies and to show how well the models can account for the observations. Some open problems and future prospects are also discussed. (author)

  12. Galaxy Zoo: Observing secular evolution through bars

    International Nuclear Information System (INIS)

    Cheung, Edmond; Faber, S. M.; Koo, David C.; Athanassoula, E.; Bosma, A.; Masters, Karen L.; Nichol, Robert C.; Melvin, Thomas; Bell, Eric F.; Lintott, Chris; Schawinski, Kevin; Skibba, Ramin A.; Willett, Kyle W.

    2013-01-01

    In this paper, we use the Galaxy Zoo 2 data set to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR) and bulge prominence. Our sample consists of 13,295 disk galaxies, with an overall (strong) bar fraction of 23.6% ± 0.4%, of which 1154 barred galaxies also have bar length (BL) measurements. These samples are the largest ever used to study the role of bars in galaxy evolution. We find that the likelihood of a galaxy hosting a bar is anticorrelated with SSFR, regardless of stellar mass or bulge prominence. We find that the trends of bar likelihood and BL with bulge prominence are bimodal with SSFR. We interpret these observations using state-of-the-art simulations of bar evolution that include live halos and the effects of gas and star formation. We suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks, a factor demonstrated to significantly retard both bar formation and evolution in models. We interpret the bimodal relationship between bulge prominence and bar properties as being due to the complicated effects of classical bulges and central mass concentrations on bar evolution and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies but are a critical evolutionary driver of their host galaxies in the local universe (z < 1).

  13. Study of mechanical-magnetic and electromagnetic properties of PZT/Ni film systems by a novel bulge technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q.; Zhou, W.; Ding, J.; Xiao, M. [School of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Film Materials and Devices of Science and Technology Department of Hunan Province, Xiangtan University, Hunan 411105 (China); Yu, Z.J.; Xu, H. [State Key Lab for Turbulence and Complex Systems, Peking University, Beijing 100871 (China); Mao, W.G., E-mail: ssamao@126.com [School of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Film Materials and Devices of Science and Technology Department of Hunan Province, Xiangtan University, Hunan 411105 (China); Pei, Y.M.; Li, F.X. [State Key Lab for Turbulence and Complex Systems, Peking University, Beijing 100871 (China); Feng, X. [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Fang, D.N., E-mail: fangdn@pku.edu.cn [State Key Lab for Turbulence and Complex Systems, Peking University, Beijing 100871 (China); Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2017-02-01

    A novel multiple functional bulge apparatus was designed to study the mechanical-electronic-magnetic characteristics of electromagnetic materials. The elastic modulus difference effect of Ni thin film was observed and it was about 22.16% in the demagnetized and magnetization saturated states. The mechanical-magnetic behaviors of Ni and lead-titanate zirconate (PZT)/Ni films were in-situ measured by using the new bulge systems, respectively. The evolutions of three key material properties in hysteresis loop including saturation magnetization, remanent magnetization and coercive field were discussed in detail, respectively. The mechanisms of mechanical-magnetic coupled behaviors of Ni and PZT/Ni films were analyzed with the aid of the competitive relationship of stress and magnetization. Similarly, the electronic-magnetic characteristics of PZT/Ni films were in-situ measured by using this experimental system. The evolution of saturated magnetization, remanent magnetization and coercive field Kerr signals were discussed with the magneto-elastic anisotropy energy point. In this paper, a suitable mechanical-electronic-magnetic bulge measurement system was established, which would provide a good choice for further understanding the multi field coupling characteristics of electromagnetic film materials. - Highlights: • A novel bulge apparatus was designed to study electromagnetic materials. • The mechanical-magnetic features of Ni film were studied by this new apparatus. • The ΔE effect of Ni film was observed and analyzed. • The mechanical electronic-magnetic characteristics of PZT/Ni film were discussed.

  14. Chemical Evolution and the Evolutionary Definition of Life.

    Science.gov (United States)

    Higgs, Paul G

    2017-06-01

    Darwinian evolution requires a mechanism for generation of diversity in a population, and selective differences between individuals that influence reproduction. In biology, diversity is generated by mutations and selective differences arise because of the encoded functions of the sequences (e.g., ribozymes or proteins). Here, I draw attention to a process that I will call chemical evolution, in which the diversity is generated by random chemical synthesis instead of (or in addition to) mutation, and selection acts on physicochemical properties, such as hydrolysis, photolysis, solubility, or surface binding. Chemical evolution applies to short oligonucleotides that can be generated by random polymerization, as well as by template-directed replication, and which may be too short to encode a specific function. Chemical evolution is an important stage on the pathway to life, between the stage of "just chemistry" and the stage of full biological evolution. A mathematical model is presented here that illustrates the differences between these three stages. Chemical evolution leads to much larger differences in molecular concentrations than can be achieved by selection without replication. However, chemical evolution is not open-ended, unlike biological evolution. The ability to undergo Darwinian evolution is often considered to be a defining feature of life. Here, I argue that chemical evolution, although Darwinian, does not quite constitute life, and that a good place to put the conceptual boundary between non-life and life is between chemical and biological evolution.

  15. THE X-SHAPED BULGE OF THE MILKY WAY REVEALED BY WISE

    International Nuclear Information System (INIS)

    Ness, Melissa; Lang, Dustin

    2016-01-01

    The Milky Way bulge has a boxy/peanut morphology and an X-shaped structure. This X-shape has been revealed by the “split in the red clump” from star counts along the line of sight toward the bulge, measured from photometric surveys. This boxy, X-shaped bulge morphology is not unique to the Milky Way and such bulges are observed in other barred spiral galaxies. N -body simulations show that boxy and X-shaped bulges are formed from the disk via dynamical instabilities. It has also been proposed that the Milky Way bulge is not X-shaped, but rather, the apparent split in the red clump stars is a consequence of different stellar populations, in an old classical spheroidal bulge. We present a Wide-Field Infrared Survey Explorer ( WISE ) image of the Milky Way bulge, produced by downsampling the publicly available “unWISE” coadds. The WISE image of the Milky Way bulge shows that the X-shaped nature of the Milky Way bulge is self-evident and irrefutable. The X-shape morphology of the bulge in itself and the fraction of bulge stars that comprise orbits within this structure has important implications for the formation history of the Milky Way, and, given the ubiquity of boxy X-shaped bulges, spiral galaxies in general.

  16. Construction and functional characterization of double and triple mutants of parallel beta-bulge of ubiquitin.

    Science.gov (United States)

    Sharma, Mrinal; Prabha, C Ratna

    2011-12-01

    Ubiquitin, a small eukaryotic protein serving as a post-translational modification on many important proteins, plays central role in cellular homeostasis and cell cycle regulation. Ubiquitin features two beta-bulges, the second beta-bulge, located at the C-terminal region of the protein along with type II turn, holds 3 residues Glu64(1), Ser65(2) and Gln2(X). Percent frequency of occurrence of such a sequence in parallel beta-bulge is very low. However, the sequence and structure have been conserved in ubiquitin through out the evolution. Present study involves replacement of residues in unusual beta-bulge of ubiquitin by introducing mutations in combination through site directed mutagenesis, generating double and triple mutants and their functional characterization. Mutant ubiquitins cloned in yeast expression vector YEp96 tested for growth profile, viability assay and heat stress complementation study have revealed significant decrease in growth rate, loss of viability and non-complementation of heat sensitive phenotype with UbE64G-S65D and UbQ2N-E64G-S65D mutations. However, UbQ2N-S65D did not show any negative effects in the above assays. Present results show that, replacement of residues in beta-bulge of ubiquitin exerts severe effects on growth and viability in Saccharomyces cerevisiae due to functional failure of the mutant ubiquitins UbE64G-S65D and UbQ2N-E64G-S65D.

  17. THE EVOLUTION OF THE KINEMATICS OF NEBULAR SHELLS IN PLANETARY NEBULAE IN THE MILKY WAY BULGE

    International Nuclear Information System (INIS)

    Richer, Michael G.; Lopez, Jose Alberto; Garcia-Diaz, Maria Teresa; Clark, David M.; Pereyra, Margarita; Diaz-Mendez, Enrique

    2010-01-01

    We study the line widths in the [O III]λ5007 and Hα lines for two groups of planetary nebulae in the Milky Way bulge based upon spectroscopy obtained at the Observatorio Astronomico Nacional in the Sierra San Pedro Martir (OAN-SPM) using the Manchester Echelle Spectrograph. The first sample includes objects early in their evolution, having high Hβ luminosities, but [O III]λ5007/Hβ 0.5. These planetary nebulae represent evolutionary phases preceding and following those of the objects studied by Richer et al. in 2008. Our sample of planetary nebulae with weak [O III]λ5007 has a line width distribution similar to that of the expansion velocities of the envelopes of asymptotic giant branch stars and shifted to systematically lower values as compared to the less evolved objects studied by Richer et al. The sample with strong He II λ4686 has a line width distribution indistinguishable from that of the more evolved objects from Richer et al., but a distribution in angular size that is systematically larger and so they are clearly more evolved. These data and those of Richer et al. form a homogeneous sample from a single Galactic population of planetary nebulae, from the earliest evolutionary stages until the cessation of nuclear burning in the central star. They confirm the long-standing predictions of hydrodynamical models of planetary nebulae, where the kinematics of the nebular shell are driven by the evolution of the central star.

  18. SDSS-IV MaNGA: bulge-disc decomposition of IFU data cubes (BUDDI)

    Science.gov (United States)

    Johnston, Evelyn J.; Häußler, Boris; Aragón-Salamanca, Alfonso; Merrifield, Michael R.; Bamford, Steven; Bershady, Matthew A.; Bundy, Kevin; Drory, Niv; Fu, Hai; Law, David; Nitschelm, Christian; Thomas, Daniel; Roman Lopes, Alexandre; Wake, David; Yan, Renbin

    2017-02-01

    With the availability of large integral field unit (IFU) spectral surveys of nearby galaxies, there is now the potential to extract spectral information from across the bulges and discs of galaxies in a systematic way. This information can address questions such as how these components built up with time, how galaxies evolve and whether their evolution depends on other properties of the galaxy such as its mass or environment. We present bulge-disc decomposition of IFU data cubes (BUDDI), a new approach to fit the two-dimensional light profiles of galaxies as a function of wavelength to extract the spectral properties of these galaxies' discs and bulges. The fitting is carried out using GALFITM, a modified form of GALFIT which can fit multiwaveband images simultaneously. The benefit of this technique over traditional multiwaveband fits is that the stellar populations of each component can be constrained using knowledge over the whole image and spectrum available. The decomposition has been developed using commissioning data from the Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at APO (MaNGA) survey with redshifts z 22 arcsec, but can be applied to any IFU data of a nearby galaxy with similar or better spatial resolution and coverage. We present an overview of the fitting process, the results from our tests, and we finish with example stellar population analyses of early-type galaxies from the MaNGA survey to give an indication of the scientific potential of applying bulge-disc decomposition to IFU data.

  19. The continuous rise of bulges out of galactic disks

    Science.gov (United States)

    Breda, Iris; Papaderos, Polychronis

    2018-06-01

    Context. A key subject in extragalactic astronomy concerns the chronology and driving mechanisms of bulge formation in late-type galaxies (LTGs). The standard scenario distinguishes between classical bulges and pseudo-bulges (CBs and PBs, respectively), the first thought to form monolithically prior to disks and the second gradually out of disks. These two bulge formation routes obviously yield antipodal predictions on the bulge age and bulge-to-disk age contrast, both expected to be high (low) in CBs (PBs). Aims: Our main goal is to explore whether bulges in present-day LTGs segregate into two evolutionary distinct classes, as expected from the standard scenario. Other questions motivating this study center on evolutionary relations between LTG bulges and their hosting disks, and the occurrence of accretion-powered nuclear activity as a function of bulge stellar mass ℳ⋆ and stellar surface density Σ⋆. Methods: In this study, we have combined three techniques - surface photometry, spectral modeling of integral field spectroscopy data and suppression of stellar populations younger than an adjustable age cutoff with the code REMOVEYOUNG (ℛ𝒴) - toward a systematic analysis of the physical and evolutionary properties (e.g., ℳ⋆, Σ⋆ and mass-weighted stellar age ℳ and metallicity ℳ, respectively) of a representative sample of 135 nearby (≤ 130 Mpc) LTGs from the CALIFA survey that cover a range between 108.9 M⊙ and 1011.5 M⊙ in total stellar mass ℳ⋆,T. In particular, the analysis here revolves around ⟨δμ9G⟩, a new distance- and formally extinction-independent measure of the contribution by stellar populations of age ≥ 9 Gyr to the mean r-band surface brightness of the bulge. We argue that ⟨δμ9G⟩ offers a handy semi-empirical tracer of the physical and evolutionary properties of LTG bulges and a promising means for their characterization. Results: The essential insight from this study is that LTG bulges form over 3 dex

  20. Tube Bulge Process : Theoretical Analysis and Finite Element Simulations

    International Nuclear Information System (INIS)

    Velasco, Raphael; Boudeau, Nathalie

    2007-01-01

    This paper is focused on the determination of mechanics characteristics for tubular materials, using tube bulge process. A comparative study is made between two different models: theoretical model and finite element analysis. The theoretical model is completely developed, based first on a geometrical analysis of the tube profile during bulging, which is assumed to strain in arc of circles. Strain and stress analysis complete the theoretical model, which allows to evaluate tube thickness and state of stress, at any point of the free bulge region. Free bulging of a 304L stainless steel is simulated using Ls-Dyna 970. To validate FE simulations approach, a comparison between theoretical and finite elements models is led on several parameters such as: thickness variation at the free bulge region pole with bulge height, tube thickness variation with z axial coordinate, and von Mises stress variation with plastic strain. Finally, the influence of geometrical parameters deviations on flow stress curve is observed using analytical model: deviations of the tube outer diameter, its initial thickness and the bulge height measurement are taken into account to obtain a resulting error on plastic strain and von Mises stress

  1. Does the Galactic Bulge Have Fewer Planets?

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    The Milky Ways dense central bulge is a very different environment than the surrounding galactic disk in which we live. Do the differences affect the ability of planets to form in the bulge?Exploring Galactic PlanetsSchematic illustrating how gravitational microlensing by an extrasolar planet works. [NASA]Planet formation is a complex process with many aspects that we dont yet understand. Do environmental properties like host star metallicity, the density of nearby stars, or the intensity of the ambient radiation field affect the ability of planets to form? To answer these questions, we will ultimately need to search for planets around stars in a large variety of different environments in our galaxy.One way to detect recently formed, distant planets is by gravitational microlensing. In this process, light from a distant source star is bent by a lens star that is briefly located between us and the source. As the Earth moves, this momentary alignment causes a blip in the sources light curve that we can detect and planets hosted by the lens star can cause an additional observable bump.Artists impression of the Milky Way galaxy. The central bulge is much denserthan the surroundingdisk. [ESO/NASA/JPL-Caltech/M. Kornmesser/R. Hurt]Relative AbundancesMost source stars reside in the galactic bulge, so microlensing events can probe planetary systems at any distance between the Earth and the galactic bulge. This means that planet detections from microlensing could potentially be used to measure the relative abundances of exoplanets in different parts of our galaxy.A team of scientists led by Matthew Penny, a Sagan postdoctoral fellow at Ohio State University, set out to do just that. The group considered a sample of 31 exoplanetary systems detected by microlensing and asked the following question: are the planet abundances in the galactic bulge and the galactic disk the same?A Paucity of PlanetsTo answer this question, Penny and collaborators derived the expected

  2. Nuclear starburst activity induced by elongated bulges in spiral galaxies

    Science.gov (United States)

    Kim, Eunbin; Kim, Sungsoo S.; Choi, Yun-Young; Lee, Gwang-Ho; de Grijs, Richard; Lee, Myung Gyoon; Hwang, Ho Seong

    2018-06-01

    We study the effects of bulge elongation on the star formation activity in the centres of spiral galaxies using the data from the Sloan Digital Sky Survey Data Release 7. We construct a volume-limited sample of face-on spiral galaxies with Mr nuclear starbursts using the fibre specific star formation rates derived from the SDSS spectra. We find a statistically significant correlation between bulge elongation and nuclear starbursts in the sense that the fraction of nuclear starbursts increases with bulge elongation. This correlation is more prominent for fainter and redder galaxies, which exhibit higher ratios of elongated bulges. We find no significant environmental dependence of the correlation between bulge elongation and nuclear starbursts. These results suggest that non-axisymmetric bulges can efficiently feed the gas into the centre of galaxies to trigger nuclear starburst activity.

  3. Ultrasonographic findings in patients with peristomal bulging

    DEFF Research Database (Denmark)

    Sjödahl, Rune I; Thorelius, Lars; Hallböök, Olof J

    2011-01-01

    The aim of this study was to obtain a classification of peristomal bulging based on findings at ultrasonography in patients with a sigmoid colostomy.......The aim of this study was to obtain a classification of peristomal bulging based on findings at ultrasonography in patients with a sigmoid colostomy....

  4. A stochastic approach to chemical evolution

    International Nuclear Information System (INIS)

    Copi, C.J.

    1997-01-01

    Observations of elemental abundances in the Galaxy have repeatedly shown an intrinsic scatter as a function of time and metallicity. The standard approach to chemical evolution does not attempt to address this scatter in abundances since only the mean evolution is followed. In this work, the scatter is addressed via a stochastic approach to solving chemical evolution models. Three simple chemical evolution scenarios are studied using this stochastic approach: a closed box model, an infall model, and an outflow model. These models are solved for the solar neighborhood in a Monte Carlo fashion. The evolutionary history of one particular region is determined randomly based on the star formation rate and the initial mass function. Following the evolution in an ensemble of such regions leads to the predicted spread in abundances expected, based solely on different evolutionary histories of otherwise identical regions. In this work, 13 isotopes are followed, including the light elements, the CNO elements, a few α-elements, and iron. It is found that the predicted spread in abundances for a 10 5 M circle-dot region is in good agreement with observations for the α-elements. For CN, the agreement is not as good, perhaps indicating the need for more physics input for low-mass stellar evolution. Similarly for the light elements, the predicted scatter is quite small, which is in contradiction to the observations of 3 He in HII regions. The models are tuned for the solar neighborhood so that good agreement with HII regions is not expected. This has important implications for low-mass stellar evolution and on using chemical evolution to determine the primordial light-element abundances in order to test big bang nucleosynthesis. copyright 1997 The American Astronomical Society

  5. Secular Evolution in Disk Galaxies

    Science.gov (United States)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  6. Galactic Angular Momentum in Cosmological Zoom-in Simulations. I. Disk and Bulge Components and the Galaxy-Halo Connection

    Science.gov (United States)

    Sokołowska, Aleksandra; Capelo, Pedro R.; Fall, S. Michael; Mayer, Lucio; Shen, Sijing; Bonoli, Silvia

    2017-02-01

    We investigate the angular momentum evolution of four disk galaxies residing in Milky-Way-sized halos formed in cosmological zoom-in simulations with various sub-grid physics and merging histories. We decompose these galaxies, kinematically and photometrically, into their disk and bulge components. The simulated galaxies and their components lie on the observed sequences in the j *-M * diagram, relating the specific angular momentum and mass of the stellar component. We find that galaxies in low-density environments follow the relation {j}* \\propto {M}* α past major mergers, with α ˜ 0.6 in the case of strong feedback, when bulge-to-disk ratios are relatively constant, and α ˜ 1.4 in the other cases, when secular processes operate on shorter timescales. We compute the retention factors (I.e., the ratio of the specific angular momenta of stars and dark matter) for both disks and bulges and show that they vary relatively slowly after averaging over numerous but brief fluctuations. For disks, the retention factors are usually close to unity, while for bulges, they are a few times smaller. Our simulations therefore indicate that galaxies and their halos grow in a quasi-homologous way.

  7. Reversible evolution of charged ergoregions

    Energy Technology Data Exchange (ETDEWEB)

    Kokkotas, K.; Spyrou, N.

    1987-07-01

    The reversible evolution of a charged rotating ergoregion, due to the injection into it of particles with mass-energy and angular momentum, is studied systematically. As in the uncharged case, a bulge always forms on the outer boundary of the ergoregion due to the latter's angular momentum. The behavior of the bulge's position, relative to the black hole's rotation axis and equatorial plane, is studied, on the basis of the cosmic censorship hypothesis, during the ergoregion's reversible evolution. The range of the permitted values of the ergoregion's linear dimensions along the rotation axis and perpendicular to it is specified. Finally the differences with the evolution of an uncharged ergoregion are pointed out and discussed.

  8. Functional myelographic differentiation of lumbar bulging annulus

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choong Ki; Kim, Hong Kil; Park, Sang Gyu; Lee, Young Jung; Yoon, Jong Sup [Hallym University College of Medicine, Seoul (Korea, Republic of)

    1988-08-15

    Herniated disk and bulging annulus are the major causes of lower back pain. It is necessary to differentiate bulging annulus from herniated disk because of their different methods of treatment. Myelography is one of the useful diagnostic methods for disk diseases even though advanced diagnostic modalities such as CT and MRI are more accurate. Functional myelography is not a new technology expect for two additional views, flexion and extension, are obtained with conventional myelography. Differentiation between bulging annulus and herniated disk by conventional myelography is based on the extent and multiplicity of extradural deformity of the contrast filled dural sac and neural sleeve as well as the changes of nerve root. There is no previous report about differential points between bulging annulus and herniated disk according to functional myelography. It is the purpose of this study to find any additional differential points on functional myelography between bulging annulus and herniated disk over convectional myelography. Authors analysed functional myelographic findings of 152 cases from July 1986 to July 1987. Among them, 22 cases who had been suffered from cervical abnormality or vague lower back pain were diagnosed as normal by myelography, and 30 cases of L4-5 herniated disk and 21 cases of L4-5 bulging annulus which had been finally diagnosed by operation were studied. The results were as follows. 1. In normal group, anterior epidural space was gradually widened from the upper lumbar vertebra downward. And anterior epidural space was more sidened at the disk level in extension view than in flexion except for L5-S1 lever. 2. In bulging annulus group, the shape of anterior epidural space in flexion state was as similar as normal. Anoterior epidural space in extension state was more sidened at the buldging annulus than normal, but lesser than herniated disk. 3. In herniated disk group, widening of anterior epidural space at the herniated disk level was

  9. Observational constraints to boxy/peanut bulge formation time

    Science.gov (United States)

    Pérez, I.; Martínez-Valpuesta, I.; Ruiz-Lara, T.; de Lorenzo-Caceres, A.; Falcón-Barroso, J.; Florido, E.; González Delgado, R. M.; Lyubenova, M.; Marino, R. A.; Sánchez, S. F.; Sánchez-Blázquez, P.; van de Ven, G.; Zurita, A.

    2017-09-01

    Boxy/peanut bulges are considered to be part of the same stellar structure as bars and both could be linked through the buckling instability. The Milky Way is our closest example. The goal of this Letter is to determine if the mass assembly of the different components leaves an imprint in their stellar populations allowing the estimation the time of bar formation and its evolution. To this aim, we use integral field spectroscopy to derive the stellar age distributions, SADs, along the bar and disc of NGC 6032. The analysis clearly shows different SADs for the different bar areas. There is an underlying old (≥12 Gyr) stellar population for the whole galaxy. The bulge shows star formation happening at all times. The inner bar structure shows stars of ages older than 6 Gyr with a deficit of younger populations. The outer bar region presents an SAD similar to that of the disc. To interpret our results, we use a generic numerical simulation of a barred galaxy. Thus, we constrain, for the first time, the epoch of bar formation, the buckling instability period and the posterior growth from disc material. We establish that the bar of NGC 6032 is old, formed around 10 Gyr ago while the buckling phase possibly happened around 8 Gyr ago. All these results point towards bars being long-lasting even in the presence of gas.

  10. CHEMICAL EVOLUTION LIBRARY FOR GALAXY FORMATION SIMULATION

    International Nuclear Information System (INIS)

    Saitoh, Takayuki R.

    2017-01-01

    We have developed a software library for chemical evolution simulations of galaxy formation under the simple stellar population (SSP) approximation. In this library, all of the necessary components concerning chemical evolution, such as initial mass functions, stellar lifetimes, yields from Type II and Type Ia supernovae, asymptotic giant branch stars, and neutron star mergers, are compiled from the literature. Various models are pre-implemented in this library so that users can choose their favorite combination of models. Subroutines of this library return released energy and masses of individual elements depending on a given event type. Since the redistribution manner of these quantities depends on the implementation of users’ simulation codes, this library leaves it up to the simulation code. As demonstrations, we carry out both one-zone, closed-box simulations and 3D simulations of a collapsing gas and dark matter system using this library. In these simulations, we can easily compare the impact of individual models on the chemical evolution of galaxies, just by changing the control flags and parameters of the library. Since this library only deals with the part of chemical evolution under the SSP approximation, any simulation codes that use the SSP approximation—namely, particle-base and mesh codes, as well as semianalytical models—can use it. This library is named “CELib” after the term “Chemical Evolution Library” and is made available to the community.

  11. CHEMICAL EVOLUTION LIBRARY FOR GALAXY FORMATION SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Takayuki R., E-mail: saitoh@elsi.jp [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro, Tokyo, 152-8551 (Japan)

    2017-02-01

    We have developed a software library for chemical evolution simulations of galaxy formation under the simple stellar population (SSP) approximation. In this library, all of the necessary components concerning chemical evolution, such as initial mass functions, stellar lifetimes, yields from Type II and Type Ia supernovae, asymptotic giant branch stars, and neutron star mergers, are compiled from the literature. Various models are pre-implemented in this library so that users can choose their favorite combination of models. Subroutines of this library return released energy and masses of individual elements depending on a given event type. Since the redistribution manner of these quantities depends on the implementation of users’ simulation codes, this library leaves it up to the simulation code. As demonstrations, we carry out both one-zone, closed-box simulations and 3D simulations of a collapsing gas and dark matter system using this library. In these simulations, we can easily compare the impact of individual models on the chemical evolution of galaxies, just by changing the control flags and parameters of the library. Since this library only deals with the part of chemical evolution under the SSP approximation, any simulation codes that use the SSP approximation—namely, particle-base and mesh codes, as well as semianalytical models—can use it. This library is named “CELib” after the term “Chemical Evolution Library” and is made available to the community.

  12. A TWO-PHASE SCENARIO FOR BULGE ASSEMBLY IN {Lambda}CDM COSMOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Obreja, A.; Dominguez-Tenreiro, R.; Brook, C. [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Cantoblanco Madrid (Spain); Martinez-Serrano, F. J.; Domenech-Moral, M.; Serna, A. [Departamento de Fisica y Arquitectura de Computadores, Universidad Miguel Hernandez, E-03202 Elche (Spain); Molla, M. [Departamento de Investigacion Basica, CIEMAT, E-28040 Madrid (Spain); Stinson, G., E-mail: aura.obreja@uam.es [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117, Heidelberg (Germany)

    2013-01-20

    We analyze and compare the bulges of a sample of L {sub *} spiral galaxies in hydrodynamical simulations in a cosmological context, using two different codes, P-DEVA and GASOLINE. The codes regulate star formation in very different ways, with P-DEVA simulations inputting low star formation efficiency under the assumption that feedback occurs on subgrid scales, while the GASOLINE simulations have feedback that drives large-scale outflows. In all cases, the marked knee shape in mass aggregation tracks, corresponding to the transition from an early phase of rapid mass assembly to a later slower one, separates the properties of two populations within the simulated bulges. The bulges analyzed show an important early starburst resulting from the collapse-like fast phase of mass assembly, followed by a second phase with lower star formation, driven by a variety of processes such as disk instabilities and/or mergers. Classifying bulge stellar particles identified at z = 0 into old and young according to these two phases, we found bulge stellar sub-populations with distinct kinematics, shapes, stellar ages, and metal contents. The young components are more oblate, generally smaller, more rotationally supported, with higher metallicity and less alpha-element enhanced than the old ones. These results are consistent with the current observational status of bulges, and provide an explanation for some apparently paradoxical observations, such as bulge rejuvenation and metal-content gradients observed. Our results suggest that bulges of L {sub *} galaxies will generically have two bulge populations that can be likened to classical and pseudo-bulges, with differences being in the relative proportions of the two, which may vary due to galaxy mass and specific mass accretion and merger histories.

  13. Bulge testing of copper and niobium tubes for hydroformed RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.S., E-mail: kim.3237@osu.edu [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Sumption, M.D. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Susner, M.A. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Lim, H. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Sandia National Laboratories, Albuquerque, NM (United States); Collings, E.W. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States)

    2016-01-27

    The heat treatment, tensile testing, and bulge testing of Cu and Nb tubes has been carried out to gain experience for the subsequent hydroforming of Nb tube into seamless superconducting radio frequency (SRF) cavities for high energy particle acceleration. In the experimental part of the study samples removed from representative tubes were prepared for heat treatment, tensile testing, residual resistance ratio measurement, and orientation imaging electron microscopy (OIM). After being optimally heat treated Cu and Nb tubes were subjected to hydraulic bulge testing and the results analyzed. In the final part of the study finite-element models (FEM) incorporating constitutive (stress–strain) relationships analytically derived from the tensile and bulge tests, respectively, were used to replicate the bulge test. As expected, agreement was obtained between the experimental bulge parameters and the FEM model based on the bulge-derived constitutive relationship. Not so for the FEM model based on tensile-test data. It is concluded that a constitutive relationship based on bulge testing is necessary to predict a material's performance under hydraulic deformation.

  14. Bulge testing of copper and niobium tubes for hydroformed RF cavities

    International Nuclear Information System (INIS)

    Kim, H.S.; Sumption, M.D.; Susner, M.A.; Lim, H.; Collings, E.W.

    2016-01-01

    The heat treatment, tensile testing, and bulge testing of Cu and Nb tubes has been carried out to gain experience for the subsequent hydroforming of Nb tube into seamless superconducting radio frequency (SRF) cavities for high energy particle acceleration. In the experimental part of the study samples removed from representative tubes were prepared for heat treatment, tensile testing, residual resistance ratio measurement, and orientation imaging electron microscopy (OIM). After being optimally heat treated Cu and Nb tubes were subjected to hydraulic bulge testing and the results analyzed. In the final part of the study finite-element models (FEM) incorporating constitutive (stress–strain) relationships analytically derived from the tensile and bulge tests, respectively, were used to replicate the bulge test. As expected, agreement was obtained between the experimental bulge parameters and the FEM model based on the bulge-derived constitutive relationship. Not so for the FEM model based on tensile-test data. It is concluded that a constitutive relationship based on bulge testing is necessary to predict a material's performance under hydraulic deformation.

  15. Age bimodality in the central region of pseudo-bulges in S0 galaxies

    Science.gov (United States)

    Mishra, Preetish K.; Barway, Sudhanshu; Wadadekar, Yogesh

    2017-11-01

    We present evidence for bimodal stellar age distribution of pseudo-bulges of S0 galaxies as probed by the Dn(4000) index. We do not observe any bimodality in age distribution for pseudo-bulges in spiral galaxies. Our sample is flux limited and contains 2067 S0 and 2630 spiral galaxies drawn from the Sloan Digital Sky Survey. We identify pseudo-bulges in S0 and spiral galaxies, based on the position of the bulge on the Kormendy diagram and their central velocity dispersion. Dividing the pseudo-bulges of S0 galaxies into those containing old and young stellar populations, we study the connection between global star formation and pseudo-bulge age on the u - r colour-mass diagram. We find that most old pseudo-bulges are hosted by passive galaxies while majority of young bulges are hosted by galaxies that are star forming. Dividing our sample of S0 galaxies into early-type S0s and S0/a galaxies, we find that old pseudo-bulges are mainly hosted by early-type S0 galaxies while most of the pseudo-bulges in S0/a galaxies are young. We speculate that morphology plays a strong role in quenching of star formation in the disc of these S0 galaxies, which stops the growth of pseudo-bulges, giving rise to old pseudo-bulges and the observed age bimodality.

  16. Galaxies Grow Their Bulges and Black Holes in Diverse Ways

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Eric F.; Harmsen, Benjamin; D’Souza, Richard [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109-1107 (United States); Monachesi, Antonela [Max Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, Postfach 1317, D-85741 Garching (Germany); Jong, Roelof S. de [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Bailin, Jeremy [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487-0324 (United States); Radburn-Smith, David J. [Department of Astronomy, University of Washington, 3910 15th Avenue NE, Seattle, WA 98195 (United States); Holwerda, Benne W., E-mail: ericbell@umich.edu [Department of Physics and Astronomy, University of Louisville, 102 Natural Science Building, Louisville, KY 40292 (United States)

    2017-03-01

    Galaxies with Milky Way–like stellar masses have a wide range of bulge and black hole masses; in turn, these correlate with other properties such as star formation history. While many processes may drive bulge formation, major and minor mergers are expected to play a crucial role. Stellar halos offer a novel and robust measurement of galactic merger history; cosmologically motivated models predict that mergers with larger satellites produce more massive, higher-metallicity stellar halos, reproducing the recently observed stellar halo metallicity–mass relation. We quantify the relationship between stellar halo mass and bulge or black hole prominence using a sample of 18 Milky Way-mass galaxies with newly available measurements of (or limits on) stellar halo properties. There is an order of magnitude range in bulge mass, and two orders of magnitude in black hole mass, at a given stellar halo mass (or, equivalently, merger history). Galaxies with low-mass bulges show a wide range of quiet merger histories, implying formation mechanisms that do not require intense merging activity. Galaxies with massive “classical” bulges and central black holes also show a wide range of merger histories. While three of these galaxies have massive stellar halos consistent with a merger origin, two do not—merging appears to have had little impact on making these two massive “classical” bulges. Such galaxies may be ideal laboratories to study massive bulge formation through pathways such as early gas-rich accretion, violent disk instabilities, or misaligned infall of gas throughout cosmic time.

  17. Milky Way demographics with the VVV survey. I. The 84-million star colour-magnitude diagram of the Galactic bulge

    Science.gov (United States)

    Saito, R. K.; Minniti, D.; Dias, B.; Hempel, M.; Rejkuba, M.; Alonso-García, J.; Barbuy, B.; Catelan, M.; Emerson, J. P.; Gonzalez, O. A.; Lucas, P. W.; Zoccali, M.

    2012-08-01

    Context. The Milky Way (MW) bulge is a fundamental Galactic component for understanding the formation and evolution of galaxies, in particular our own. The ESO Public Survey VISTA Variables in the Vía Láctea is a deep near-IR survey mapping the Galactic bulge and southern plane. Particularly for the bulge area, VVV is covering ~315 deg2. Data taken during 2010 and 2011 covered the entire bulge area in the JHKs bands. Aims: We used VVV data for the whole bulge area as a single and homogeneous data set to build for the first time a single colour - magnitude diagram (CMD) for the entire Galactic bulge. Methods: Photometric data in the JHKs bands were combined to produce a single and huge data set containing 173 150 467 sources in the three bands, for the ~315 deg2 covered by VVV in the bulge. Selecting only the data points flagged as stellar, the total number of sources is 84 095 284. Results: We built the largest colour-magnitude diagrams published up to date, containing 173.1+ million sources for all data points, and more than 84.0 million sources accounting for the stellar sources only. The CMD has a complex shape, mostly owing to the complexity of the stellar population and the effects of extinction and reddening towards the Galactic centre. The red clump (RC) giants are seen double in magnitude at b ~ -8° -10°, while in the inner part (b ~ -3°) they appear to be spreading in colour, or even splitting into a secondary peak. Stellar population models show the predominance of main-sequence and giant stars. The analysis of the outermost bulge area reveals a well-defined sequence of late K and M dwarfs, seen at (J - Ks) ~ 0.7-0.9 mag and Ks ≳ 14 mag. Conclusions: The interpretation of the CMD yields important information about the MW bulge, showing the fingerprint of its structure and content. We report a well-defined red dwarf sequence in the outermost bulge, which is important for the planetary transit searches of VVV. The double RC in magnitude seen in the

  18. Mapping the X-shaped Milky Way Bulge

    Science.gov (United States)

    Saito, R. K.; Zoccali, M.; McWilliam, A.; Minniti, D.; Gonzalez, O. A.; Hill, V.

    2011-09-01

    We analyzed the distribution of the red clump (RC) stars throughout the Galactic bulge using Two Micron All Sky Survey data. We mapped the position of the RC in 1 deg2 fields within the area |l| RC seen in the central area splits into two components at high Galactic longitudes in both hemispheres, produced by two structures at different distances along the same line of sight. The X-shape is clearly visible in the Z-X plane for longitudes close to the l = 0° axis. Crude measurements of the space densities of RC stars in the bright and faint RC populations are consistent with the adopted RC distances, providing further supporting evidence that the X-structure is real, and that there is approximate front-back symmetry in our bulge fields. We conclude that the Milky Way bulge has an X-shaped structure within |l| <~ 2°, seen almost edge-on with respect to the line of sight. Additional deep near-infrared photometry extending into the innermost bulge regions combined with spectroscopic data is needed in order to discriminate among the different possibilities that can cause the observed X-shaped structure.

  19. Chemical evolution of the galactic disk

    International Nuclear Information System (INIS)

    Wyse, R.F.G.; Gilmore, G.

    1987-01-01

    The distribution of enriched material in the stars and gas of their Galaxy contains information pertaining to the chemical evolution of the Milky Way from its formation epoch to the present day, and provides general constraints on theories of galaxy formation. The separate stellar components of the Galaxy cannot readily be understood if treated in isolation, but a reasonably self-consistent model for Galactic chemical evolution may be found if one considers together the chemical properties of the extreme spheroid, thick disk and thin disk populations of the Galaxy. The three major stellar components of the Galaxy are characterized by their distinct spatial distributions, metallicity structure, and kinematics, with the newly-identified thick disk being approximately three times more massive than the classical metal-poor, non-rotating extreme spheroid. Stellar evolution in the thick disk straightforwardly provides the desired pre-enrichment for resolution of the thin disk G dwarf problem

  20. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    Energy Technology Data Exchange (ETDEWEB)

    Schultheis, M. [Université de Nice Sophia-Antipolis, CNRS, Observatoire de Côte d' Azur, Laboratoire Lagrange, 06304 Nice Cedex 4 (France); Zasowski, G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Allende Prieto, C. [Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Anders, F.; Chiappini, C. [Leibniz-Institut für Astrophysik Potsdam (AIP), D-14482 Potsdam (Germany); Beaton, R. L.; García Pérez, A. E.; Majewski, S. R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Beers, T. C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Bizyaev, D. [Apache Point Observatory, Sunspot, NM 88349 (United States); Frinchaboy, P. M. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); Ge, J. [Astronomy Department, University of Florida, Gainesville, FL 32611 (United States); Hearty, F.; Schneider, D. P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Holtzman, J. [New Mexico State University, Las Cruces, NM 88003 (United States); Muna, D. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Nidever, D. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Shetrone, M., E-mail: mathias.schultheis@oca.eu, E-mail: gail.zasowski@gmail.com [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States)

    2014-07-01

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.

  1. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    International Nuclear Information System (INIS)

    Schultheis, M.; Zasowski, G.; Allende Prieto, C.; Anders, F.; Chiappini, C.; Beaton, R. L.; García Pérez, A. E.; Majewski, S. R.; Beers, T. C.; Bizyaev, D.; Frinchaboy, P. M.; Ge, J.; Hearty, F.; Schneider, D. P.; Holtzman, J.; Muna, D.; Nidever, D.; Shetrone, M.

    2014-01-01

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.

  2. Chemical evolution coefficients for the study of galactic evolution

    International Nuclear Information System (INIS)

    Mallik, D.C.V.

    1980-01-01

    A new evaluation of chemical evolution coefficients has been made using recent stellar evolution and nucleosynthesis data. The role of the low and intermediate mass stars in galactic nuclosynthesis has been emphasized. A significant amount of 4 He, 12 C and neutron-rich species is found to be contributed by these stars. Comparison with observed abundances suggests a primary origin of 14 N. The simple model of galactic evolution with the new coefficients has been used to derive the ratio of helium to heavy element enrichment in the Galaxy. The new stellar evolution data do not explain the large value of this ratio that has been determined observationally. (orig.)

  3. Chemical evolution coefficients for the study of galactic evolution

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, D C.V. [Indian Inst. of Astrophysics, Bangalore

    1980-05-01

    A new evaluation of chemical evolution coefficients has been made using recent stellar evolution and nucleosynthesis data. The role of the low and intermediate mass stars in galactic nucleosynthesis has been emphasized. A significant amount of /sup 4/He, /sup 12/C and neutron-rich species is found to be contributed by these stars. Comparison with observed abundances suggests a primary origin of /sup 14/N. The simple model of galactic evolution with the new coefficients has been used to derive the ratio of helium to heavy element enrichment in the Galaxy. The new stellar evolution data do not explain the large value of this ratio that has been determined observationally.

  4. Regional intercostal bulging of the parietal pleura

    International Nuclear Information System (INIS)

    Jantsch, H.; Greene, R.; Lechner, G.; Mavritz, W.; Pichler, W.; Winkler, M.; Zadrobilek, E.

    1989-01-01

    This paper describes bedside radiographs with localized intercostal bulging as the sole indication of tension pneumothorax in six patients with acute deterioration in gas exchange. Relief of the pneumothorax was followed by a rush of gas from the tension space and a prompt improvement in gas exchange. The authors concluded the regional intercostal bulging of the parietal pleura may be the sole indicator of life-threatening tension pneumothorax in patients on mechanical ventilation

  5. THE CHEMICAL EVOLUTION OF PHOSPHORUS

    International Nuclear Information System (INIS)

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Roederer, Ian U.; Cescutti, Gabriele; Matteucci, Francesca

    2014-01-01

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning –3.3 ≤ [Fe/H] ≤ -0.2, and obtained an upper limit for a star with [Fe/H] ∼ -3.8. Combined with the only other sample of P abundances in solar-type stars in the literature, which spans a range of –1 ≤ [Fe/H] ≤ +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together

  6. The Star Formation History in the M31 Bulge

    Science.gov (United States)

    Dong, Hui; Olsen, Knut; Lauer, Tod; Saha, Abhijit; Li, Zhiyuan; García-Benito, Ruben; Schödel, Rainer

    2018-05-01

    We present the study of stellar populations in the central 5.5' (˜1.2 kpc) of the M31 bulge by using the optical color magnitude diagram derived from HST ACS WFC/HRC observations. In order to enhance image quality and then obtain deeper photometry, we construct Nyquist-sampled images and use a deconvolution method to detect sources and measure their photometry. We demonstrate that our method performs better than DOLPHOT in the extremely crowded region. The resolved stars in the M31 bulge have been divided into nine annuli and the color magnitude diagram fitting is performed for each of them. We confirm that the majority of stars (>70%) in the M31 bulge are indeed very old (> 5 Gyr) and metal-rich ([Fe/H]˜0.3). At later times, the star formation rate decreased and then experienced a significant rise around 1 Gyr ago, which pervaded the entire M31 bulge. After that, stars formed at less than 500 Myr ago in the central 130" . Through simulation, we find that these intermediate-age stars cannot be the artifacts introduced by the blending effect. Our results suggest that although the majority of the M31 bulge are very old, the secular evolutionary process still continuously builds up the M31 bulge slowly. We compare our star formation history with an older analysis derived from the spectral energy distribution fitting, which suggests that the latter one is still a reasonable tool for the study of stellar populations in remote galaxies.

  7. Recognition of thymine in DNA bulges by a Zn(II) macrocyclic complex.

    Science.gov (United States)

    del Mundo, Imee Marie A; Fountain, Matthew A; Morrow, Janet R

    2011-08-14

    A Zn(II) macrocyclic complex with appended quinoline is a bifunctional recognition agent that uses both the Zn(II) center and the pendent aromatic group to bind to thymine in bulges with good selectivity over DNA containing G, C or A bulges. Spectroscopic studies show that the stem containing the bulge stays largely intact in a DNA hairpin with the Zn(II) complex bound to the thymine bulge. This journal is © The Royal Society of Chemistry 2011

  8. The gravitational self-interaction of the Earth's tidal bulge

    Science.gov (United States)

    Norsen, Travis; Dreese, Mackenzie; West, Christopher

    2017-09-01

    According to a standard, idealized analysis, the Moon would produce a 54 cm equilibrium tidal bulge in the Earth's oceans. This analysis omits many factors (beyond the scope of the simple idealized model) that dramatically influence the actual height and timing of the tides at different locations, but it is nevertheless an important foundation for more detailed studies. Here, we show that the standard analysis also omits another factor—the gravitational interaction of the tidal bulge with itself—which is entirely compatible with the simple, idealized equilibrium model and which produces a surprisingly non-trivial correction to the predicted size of the tidal bulge. Our analysis uses ideas and techniques that are familiar from electrostatics, and should thus be of interest to teachers and students of undergraduate E&M, Classical Mechanics (and/or other courses that cover the tides), and geophysics courses that cover the closely related topic of Earth's equatorial bulge.

  9. MERGERS AND BULGE FORMATION IN ΛCDM: WHICH MERGERS MATTER?

    International Nuclear Information System (INIS)

    Hopkins, Philip F.; Bundy, Kevin; Wetzel, Andrew; Croton, Darren; Hernquist, Lars; Keres, Dusan; Younger, Joshua D.; Khochfar, Sadegh; Stewart, Kyle

    2010-01-01

    We use a suite of semi-empirical models to predict the galaxy-galaxy merger rate and relative contributions to bulge growth as a function of mass (both halo and stellar), redshift, and mass ratio. The models use empirical constraints on the halo occupation distribution, evolved forward in time, to robustly identify where and when galaxy mergers occur. Together with the results of high-resolution merger simulations, this allows us to quantify the relative contributions of mergers with different properties (e.g., mass ratios, gas fractions, redshifts) to the bulge population. We compare with observational constraints, and find good agreement. We also provide useful fitting functions and make public a code to reproduce the predicted merger rates and contributions to bulge mass growth. We identify several robust conclusions. (1) Major mergers dominate the formation and assembly of ∼L * bulges and the total spheroid mass density, but minor mergers contribute a non-negligible ∼30%. (2) This is mass dependent: bulge formation and assembly is dominated by more minor mergers in lower-mass systems. In higher-mass systems, most bulges originally form in major mergers near ∼L * , but assemble in increasingly minor mergers. (3) The minor/major contribution is also morphology dependent: higher B/T systems preferentially form in more major mergers, with B/T roughly tracing the mass ratio of the largest recent merger; lower B/T systems preferentially form in situ from minor mergers. (4) Low-mass galaxies, being gas-rich, require more mergers to reach the same B/T as high-mass systems. Gas-richness dramatically suppresses the absolute efficiency of bulge formation, but does not strongly influence the relative contribution of major versus minor mergers. (5) Absolute merger rates at fixed mass ratio increase with galaxy mass. (6) Predicted merger rates agree well with those observed in pair and morphology-selected samples, but there is evidence that some morphology

  10. The population of planetary nebulae near the Galactic Centre: chemical abundances

    Science.gov (United States)

    Mollá, M.; Cavichia, O.; Costa, R. D. D.; Maciel, W. J.

    2017-10-01

    In this work, we report physical parameters and abundances derived for a sample of 15 high extinction planetary nebulae located in the inner 2° of the Galactic bulge, based on low dispersion spectroscopy secured at the SOAR telescope using the Goodman spectrograph. The new data allow us to extend our database including older, weaker objects that are at the faint end of the planetary nebulae luminosity function. The data provide chemical compositions for PNe located in this region of the bulge to explore the chemical enrichment history of the central region of the Galactic bulge. The results show that the abundances of our sample are skewed to higher metallicities than previous data in the outer regions of the bulge. This can indicate a faster chemical enrichment taking place at the Galactic centre.

  11. Morpho-kinematic properties of field S0 bulges in the CALIFA survey

    Science.gov (United States)

    Méndez-Abreu, J.; Aguerri, J. A. L.; Falcón-Barroso, J.; Ruiz-Lara, T.; Sánchez-Menguiano, L.; de Lorenzo-Cáceres, A.; Costantin, L.; Catalán-Torrecilla, C.; Zhu, L.; Sánchez-Blazquez, P.; Florido, E.; Corsini, E. M.; Wild, V.; Lyubenova, M.; van de Ven, G.; Sánchez, S. F.; Bland-Hawthorn, J.; Galbany, L.; García-Benito, R.; García-Lorenzo, B.; González Delgado, R. M.; López-Sánchez, A. R.; Marino, R. A.; Márquez, I.; Ziegler, B.; Califa Collaboration

    2018-02-01

    We study a sample of 28 S0 galaxies extracted from the integral field spectroscopic (IFS) survey Calar Alto Legacy Integral Field Area. We combine an accurate two-dimensional (2D) multicomponent photometric decomposition with the IFS kinematic properties of their bulges to understand their formation scenario. Our final sample is representative of S0s with high stellar masses (M⋆/M⊙ > 1010). They lay mainly on the red sequence and live in relatively isolated environments similar to that of the field and loose groups. We use our 2D photometric decomposition to define the size and photometric properties of the bulges, as well as their location within the galaxies. We perform mock spectroscopic simulations mimicking our observed galaxies to quantify the impact of the underlying disc on our bulge kinematic measurements (λ and v/σ). We compare our bulge corrected kinematic measurements with the results from Schwarzschild dynamical modelling. The good agreement confirms the robustness of our results and allows us to use bulge deprojected values of λ and v/σ. We find that the photometric (n and B/T) and kinematic (v/σ and λ) properties of our field S0 bulges are not correlated. We demonstrate that this morpho-kinematic decoupling is intrinsic to the bulges and it is not due to projection effects. We conclude that photometric diagnostics to separate different types of bulges (disc-like versus classical) might not be useful for S0 galaxies. The morpho-kinematics properties of S0 bulges derived in this paper suggest that they are mainly formed by dissipational processes happening at high redshift, but dedicated high-resolution simulations are necessary to better identify their origin.

  12. Chemical effects of ionizing radiation and sonic energy in the context of chemical evolution

    International Nuclear Information System (INIS)

    Negron Mendoza, A.; Albarran, G.

    1992-01-01

    Ionizing radiation and sonic energy are considered as sources for chemical evolution processes. These sources have still a modest place in the interdisciplinary approach for the prebiological synthesis of organic compounds. Studies in Radiation Chemistry and Sonochemistry can provide a deeper insight into the chemical processes that may have importance for prebiotic chemistry. The present work concerns the analysis of some chemical reactions induced by ionizing radiation or cavitation in aqueous media that may be relevant to chemical evolution studies. (author)

  13. The Age of the Young Bulge-like Population in the Stellar System Terzan 5: Linking the Galactic Bulge to the High-z Universe

    NARCIS (Netherlands)

    Ferraro, F. R.; Massari, D.; Dalessandro, E.; Lanzoni, B.; Origlia, L.; Rich, R. M.; Mucciarelli, A.

    2016-01-01

    The Galactic bulge is dominated by an old, metal-rich stellar population. The possible presence and the amount of a young (a few gigayears old) minor component is one of the major issues debated in the literature. Recently, the bulge stellar system Terzan 5 was found to harbor three sub-populations

  14. Investigation into the factors that influence inverse bulging effect during sheet hydro-mechanical deep drawing

    Directory of Open Access Journals (Sweden)

    Lang Lihui

    2015-01-01

    Full Text Available The factors that influence inverse bulging effect during sheet hydro-mechanical deep drawing are especially researched in this paper. According to the different inverse bulging process, two modes can be singled: the initial inverse bulging (IIB and the local inverse bulging (LIB. IIB includes two parameters: inverse bulging height ratio (HIb/t and inverse bulging pressure ratio (PIb/t. LIB is influenced by IIB and has a direct relationship with liquid chamber pressure in the forming process. The optimal inverse bulging parameters of hemispherical bottom cylindrical part and flat bottom cylindrical part are obtained by numerical simulation. Process parameters including the clearance between the punch and the blank holder and the blank holder entrance radius that have a large influence on inverse bulging effect are optimized, so as to make inverse bulging effect behave better in hydroforming process. Finally, the accuracy of the numerical simulation results was verified by experiments.

  15. THE STAR FORMATION HISTORY AND CHEMICAL EVOLUTION OF STAR-FORMING GALAXIES IN THE NEARBY UNIVERSE

    International Nuclear Information System (INIS)

    Torres-Papaqui, J. P.; Coziol, R.; Ortega-Minakata, R. A.; Neri-Larios, D. M.

    2012-01-01

    We have determined the metallicity (O/H) and nitrogen abundance (N/O) of a sample of 122,751 star-forming galaxies (SFGs) from the Data Release 7 of the Sloan Digital Sky Survey. For all these galaxies we have also determined their morphology and obtained a comprehensive picture of their star formation history (SFH) using the spectral synthesis code STARLIGHT. The comparison of the chemical abundance with the SFH allows us to describe the chemical evolution of the SFGs in the nearby universe (z ≤ 0.25) in a manner consistent with the formation of their stellar populations and morphologies. A high fraction (45%) of the SFGs in our sample show an excess abundance of nitrogen relative to their metallicity. We also find this excess to be accompanied by a deficiency of oxygen, which suggests that this could be the result of effective starburst winds. However, we find no difference in the mode of star formation of the nitrogen-rich and nitrogen-poor SFGs. Our analysis suggests that they all form their stars through a succession of bursts of star formation extended over a period of few Gyr. What produces the chemical differences between these galaxies seems therefore to be the intensity of the bursts: the galaxies with an excess of nitrogen are those that are presently experiencing more intense bursts or have experienced more intense bursts in their past. We also find evidence relating the chemical evolution process to the formation of the galaxies: the galaxies with an excess of nitrogen are more massive, and have more massive bulges and earlier morphologies than those showing no excess. Contrary to expectation, we find no evidence that the starburst wind efficiency decreases with the mass of the galaxies. As a possible explanation we propose that the loss of metals consistent with starburst winds took place during the formation of the galaxies, when their potential wells were still building up, and consequently were weaker than today, making starburst winds more

  16. Why are classical bulges more common in S0 galaxies than in spiral galaxies?

    Science.gov (United States)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2018-05-01

    In this paper, we try to understand why the classical bulge fraction observed in S0 galaxies is significantly higher than that in spiral galaxies. We carry out a comparative study of the bulge and global properties of a sample of spiral and S0 galaxies in a fixed environment. Our sample is flux limited and contains 262 spiral and 155 S0 galaxies drawn from the Sloan Digital Sky Survey. We have classified bulges into classical and pseudobulge categories based on their position on the Kormendy diagram. Dividing our sample into bins of galaxy stellar mass, we find that the fraction of S0 galaxies hosting a classical bulge is significantly higher than the classical bulge fraction seen in spirals even at fixed stellar mass. We have compared the bulge and the global properties of spirals and S0 galaxies in our sample and find indications that spiral galaxies which host a classical bulge, preferentially get converted into S0 population as compared to pseudobulge hosting spirals. By studying the star formation properties of our galaxies in the NUV - r color-mass diagram, we find that the pseudobulge hosting spirals are mostly star forming while the majority of classical bulge host spirals are in the green valley or in the passive sequence. We suggest that some internal process, such as AGN feedback or morphological quenching due to the massive bulge, quenches these classical bulge hosting spirals and transforms them into S0 galaxies, thus resulting in the observed predominance of the classical bulge in S0 galaxies.

  17. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Vigroux, Laurent

    1979-01-01

    This research thesis addresses theories on the chemical evolution of galaxies which aim at explaining abundances of different elements in galaxies, and more particularly aims at improving the model by modifying hypotheses. After a description of the simple model and of its uncertainties, the author shows how it is possible to understand the evolution of the main elements. Predictions obtained with this model are then compared with the present knowledge on galaxies by considering them according to an increasing complexity: Sun's neighbourhood, our galaxy, other spiral galaxies, elliptical galaxies, and finally galaxy clusters. A specific attention is given to irregular galaxies which are the simplest systems [fr

  18. DRAFTS: A DEEP, RAPID ARCHIVAL FLARE TRANSIENT SEARCH IN THE GALACTIC BULGE

    International Nuclear Information System (INIS)

    Osten, Rachel A.; Sahu, Kailash; Kowalski, Adam; Hawley, Suzanne L.

    2012-01-01

    We utilize the Sagittarius Window Eclipsing Extrasolar Planet Search Hubble Space Telescope/Advanced Camera for Surveys data set for a Deep Rapid Archival Flare Transient Search to constrain the flare rate toward the older stellar population in the Galactic bulge. During seven days of monitoring 229,293 stars brighter than V = 29.5, we find evidence for flaring activity in 105 stars between V = 20 and V = 28. We divided the sample into non-variable stars and variable stars whose light curves contain large-scale variability. The flare rate on variable stars is ∼700 times that of non-variable stars, with a significant correlation between the amount of underlying stellar variability and peak flare amplitude. The flare energy loss rates are generally higher than those of nearby well-studied single dMe flare stars. The distribution of proper motions is consistent with the flaring stars being at the distance and age of the Galactic bulge. If they are single dwarfs, then they span a range of ≈1.0-0.25 M ☉ . A majority of the flaring stars exhibit periodic photometric modulations with P < 3 days. If these are tidally locked magnetically active binary systems, then their fraction in the bulge is enhanced by a factor of ∼20 compared to the local value. These stars may be useful for placing constraints on the angular momentum evolution of cool close binary stars. Our results expand the type of stars studied for flares in the optical band, and suggest that future sensitive optical time-domain studies will have to contend with a larger sample of flaring stars than the M dwarf flare stars usually considered.

  19. COBE diffuse infrared background experiment observations of the galactic bulge

    Science.gov (United States)

    Weiland, J. L.; Arendt, R. G.; Berriman, G. B.; Dwek, E.; Freudenreich, H. T.; Hauser, M. G.; Kelsall, T.; Lisse, C. M.; Mitra, M.; Moseley, S. H.

    1994-01-01

    Low angular resolution maps of the Galactic bulge at 1.25, 2.2, 3.5, and 4.9 micrometers obtained by the Diffuse Infrared Background Experiment (DIRBE) onboard NASA's Cosmic Background Explorer (COBE) are presented. After correction for extinction and subtraction of an empirical model for the Galactic disk, the surface brightness distribution of the bulge resembles a flattened ellipse with a minor-to-major axis ratio of approximately 0.6. The bulge minor axis scale height is found to be 2.1 deg +/- 0.2 deg for all four near-infrared wavelengths. Asymmetries in the longitudinal distribution of bulge brightness contours are qualitatively consistent with those expected for a triaxial bar with its near end in the first Galactic quadrant (0 deg less than l less than 90 deg). There is no evidence for an out-of-plane tilt of such a bar.

  20. Fluorine in the solar neighborhood: Chemical evolution models

    Science.gov (United States)

    Spitoni, E.; Matteucci, F.; Jönsson, H.; Ryde, N.; Romano, D.

    2018-04-01

    Context. In light of new observational data related to fluorine abundances in solar neighborhood stars, we present chemical evolution models testing various fluorine nucleosynthesis prescriptions with the aim to best fit those new data. Aim. We consider chemical evolution models in the solar neighborhood testing various nucleosynthesis prescriptions for fluorine production with the aim of reproducing the observed abundance ratios [F/O] versus [O/H] and [F/Fe] versus [Fe/H]. We study in detail the effects of various stellar yields on fluorine production. Methods: We adopted two chemical evolution models: the classical two-infall model, which follows the chemical evolution of halo-thick disk and thin disk phases; and the one-infall model, which is designed only for thin disk evolution. We tested the effects on the predicted fluorine abundance ratios of various nucleosynthesis yield sources, that is, asymptotic giant branch (AGB) stars, Wolf-Rayet (W-R) stars, Type II and Type Ia supernovae, and novae. Results: The fluorine production is dominated by AGB stars but the W-R stars are required to reproduce the trend of the observed data in the solar neighborhood with our chemical evolution models. In particular, the best model both for the two-infall and one-infall cases requires an increase by a factor of 2 of the W-R yields. We also show that the novae, even if their yields are still uncertain, could help to better reproduce the secondary behavior of F in the [F/O] versus [O/H] relation. Conclusions: The inclusion of the fluorine production by W-R stars seems to be essential to reproduce the new observed ratio [F/O] versus [O/H] in the solar neighborhood. Moreover, the inclusion of novae helps to reproduce the observed fluorine secondary behavior substantially.

  1. EXPLORING THE UNUSUALLY HIGH BLACK-HOLE-TO-BULGE MASS RATIOS IN NGC 4342 AND NGC 4291: THE ASYNCHRONOUS GROWTH OF BULGES AND BLACK HOLES

    International Nuclear Information System (INIS)

    Bogdán, Ákos; Forman, William R.; Kraft, Ralph P.; Li, Zhiyuan; Vikhlinin, Alexey; Nulsen, Paul E. J.; Jones, Christine; Zhuravleva, Irina; Churazov, Eugene; Mihos, J. Christopher; Harding, Paul; Guo, Qi; Schindler, Sabine

    2012-01-01

    We study two nearby early-type galaxies, NGC 4342 and NGC 4291, that host unusually massive black holes relative to their low stellar mass. The observed black-hole-to-bulge mass ratios of NGC 4342 and NGC 4291 are 6.9 +3.8 –2.3 % and 1.9% ± 0.6%, respectively, which significantly exceed the typical observed ratio of ∼0.2%. As a consequence of the exceedingly large black-hole-to-bulge mass ratios, NGC 4342 and NGC 4291 are ≈5.1σ and ≈3.4σ outliers from the M . -M bulge scaling relation, respectively. In this paper, we explore the origin of the unusually high black-hole-to-bulge mass ratio. Based on Chandra X-ray observations of the hot gas content of NGC 4342 and NGC 4291, we compute gravitating mass profiles, and conclude that both galaxies reside in massive dark matter halos, which extend well beyond the stellar light. The presence of dark matter halos around NGC 4342 and NGC 4291 and a deep optical image of the environment of NGC 4342 indicate that tidal stripping, in which ∼> 90% of the stellar mass was lost, cannot explain the observed high black-hole-to-bulge mass ratios. Therefore, we conclude that these galaxies formed with low stellar masses, implying that the bulge and black hole did not grow in tandem. We also find that the black hole mass correlates well with the properties of the dark matter halo, suggesting that dark matter halos may play a major role in regulating the growth of the supermassive black holes.

  2. Chemical evolution of the early Martian hydrosphere

    International Nuclear Information System (INIS)

    Schaefer, M.W.

    1990-01-01

    The chemical evolution of the early Martian hydrosphere is discussed. The early Martian ocean can be modeled as a body of relatively pure water in equilibrium with a dense carbon dioxide atmosphere. The chemical weathering of lavas, pyroclastic deposits, and impact melt sheets would have the effect of neutralizing the acidity of the juvenile water. As calcium and other cations are added to the water by chemical weathering, they are quickly removed by the precipitation of calcium carbonate and other minerals, forming a deposit of limestone beneath the surface of the ocean. As the atmospheric carbon dioxide pressure and the temperature decrease, the Martian ocean would be completely frozen. Given the scenario for the chemical evolution of the northern lowland plains of Mars, it should be possible to draw a few conclusions about the expected mineralogy and geomorphology of this regions

  3. A HIGH-VELOCITY BULGE RR LYRAE VARIABLE ON A HALO-LIKE ORBIT

    International Nuclear Information System (INIS)

    Kunder, Andrea; Storm, J.; Rich, R. M.; Hawkins, K.; Poleski, R.; Johnson, C. I.; Shen, J.; Li, Z.-Y.; Cordero, M. J.; Nataf, D. M.; Bono, G.; Walker, A. R.; Koch, A.; De Propris, R.; Udalski, A.; Szymanski, M. K.; Soszynski, I.; Pietrzynski, G.; Ulaczyk, K.; Wyrzykowski, Ł.

    2015-01-01

    We report on the RR Lyrae variable star, MACHO 176.18833.411, located toward the Galactic bulge and observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay, which has the unusual radial velocity of −372 ± 8 km s −1 and true space velocity of −482 ± 22 km s −1 relative to the Galactic rest frame. Located less than 1 kpc from the Galactic center and toward a field at (l, b) = (3, −2.5), this pulsating star has properties suggesting it belongs to the bulge RR Lyrae star population, yet a velocity indicating it is abnormal, at least with respect to bulge giants and red clump stars. We show that this star is most likely a halo interloper and therefore suggest that halo contamination is not insignificant when studying metal-poor stars found within the bulge area, even for stars within 1 kpc of the Galactic center. We discuss the possibility that MACHO 176.18833.411 is on the extreme edge of the bulge RR Lyrae radial velocity distribution, and also consider a more exotic scenario in which it is a runaway star moving through the Galaxy

  4. Dissecting the assembly and star formation history of disks and bulges in nearby spirals using the VENGA IFU survey

    Science.gov (United States)

    Carrillo, Andreia Jessica; Jogee, Shardha; Kaplan, Kyle; Weinzirl, Tim; Blanc, Guillermo A.

    2017-06-01

    Integral field spectroscopy of nearby galaxies provides a powerful and unparalleled tool for studying how galaxies assemble the different components -- the bulge, bar, and disk-- that define the Hubble sequence. We explore the assembly and star formation history of these components using galaxies in the VIRUS-P Exploration of Nearby Galaxies (VENGA) survey of 30 nearby spiral galaxies. Compared to other integral field spectroscopy studies of spirals, our study benefits from high spatial sampling and resolution (typically a few 100 pc), large coverage from the bulge to the outer disk, broad wavelength range (3600-6800 A), and medium spectral resolution (120 km/s at 5000 A). In this poster, we present the methodology and data illustrating the exquisite, high-quality, spatially-resolved spectra out to large radii, and the distribution, kinematics, and metallicity of stars and ionized gas. We discuss the next steps in deriving the star formation history (SFH) of bulge, bar, and disk components, and elucidating their assembly pathway by comparing their SFH and structural properties to theoretical models of galaxy evolution. This project is supported by the NSF grants AST-1614798 and AST-1413652.

  5. Isotopic anomalies - chemical memory of Galactic evolution

    International Nuclear Information System (INIS)

    Clayton, D.D.

    1988-01-01

    New mechanisms for the chemical memory of isotopic anomalies are proposed which are based on the temporal change during the chemical evolution of the Galaxy of the isotopic composition of the mean ejecta from stars. Because of the differing temporal evolution of primary and secondary products of nucleosynthesis, the isotopic composition of the bulk interstellar medium changes approximately linearly with time, and thus any dust component having an age different from that of average dust will be isotopically anomalous. Special attention is given to C, O, Mg, Si, and isotopically heavy average-stellar condensates of SiC. 20 references

  6. A HIGH-VELOCITY BULGE RR LYRAE VARIABLE ON A HALO-LIKE ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Kunder, Andrea; Storm, J. [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Rich, R. M. [Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA 90095-1562 (United States); Hawkins, K. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Poleski, R. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Johnson, C. I. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Shen, J.; Li, Z.-Y. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Cordero, M. J. [Astronomisches Rechen-Institut: Zentrum für Astronomie, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Nataf, D. M. [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Bono, G. [Dipartimento di Fisica, Universita di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma (Italy); Walker, A. R. [Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena (Chile); Koch, A. [Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, D-69117 Heidelberg (Germany); De Propris, R. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Turku (Finland); Udalski, A.; Szymanski, M. K.; Soszynski, I.; Pietrzynski, G.; Ulaczyk, K.; Wyrzykowski, Ł. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); and others

    2015-07-20

    We report on the RR Lyrae variable star, MACHO 176.18833.411, located toward the Galactic bulge and observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay, which has the unusual radial velocity of −372 ± 8 km s{sup −1} and true space velocity of −482 ± 22 km s{sup −1} relative to the Galactic rest frame. Located less than 1 kpc from the Galactic center and toward a field at (l, b) = (3, −2.5), this pulsating star has properties suggesting it belongs to the bulge RR Lyrae star population, yet a velocity indicating it is abnormal, at least with respect to bulge giants and red clump stars. We show that this star is most likely a halo interloper and therefore suggest that halo contamination is not insignificant when studying metal-poor stars found within the bulge area, even for stars within 1 kpc of the Galactic center. We discuss the possibility that MACHO 176.18833.411 is on the extreme edge of the bulge RR Lyrae radial velocity distribution, and also consider a more exotic scenario in which it is a runaway star moving through the Galaxy.

  7. Dynamical manifestations of quantum chaos: correlation hole and bulge

    Science.gov (United States)

    Torres-Herrera, E. J.; Santos, Lea F.

    2017-10-01

    A main feature of a chaotic quantum system is a rigid spectrum where the levels do not cross. We discuss how the presence of level repulsion in lattice many-body quantum systems can be detected from the analysis of their time evolution instead of their energy spectra. This approach is advantageous to experiments that deal with dynamics, but have limited or no direct access to spectroscopy. Dynamical manifestations of avoided crossings occur at long times. They correspond to a drop, referred to as correlation hole, below the asymptotic value of the survival probability and to a bulge above the saturation point of the von Neumann entanglement entropy and the Shannon information entropy. By contrast, the evolution of these quantities at shorter times reflects the level of delocalization of the initial state, but not necessarily a rigid spectrum. The correlation hole is a general indicator of the integrable-chaos transition in disordered and clean models and as such can be used to detect the transition to the many-body localized phase in disordered interacting systems. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

  8. Numerical Simulation of Bulging Deformation for Wide-Thick Slab Under Uneven Cooling Conditions

    Science.gov (United States)

    Wu, Chenhui; Ji, Cheng; Zhu, Miaoyong

    2018-06-01

    In the present work, the bulging deformation of a wide-thick slab under uneven cooling conditions was studied using finite element method. The non-uniform solidification was first calculated using a 2D heat transfer model. The thermal material properties were derived based on a microsegregation model, and the water flux distribution was measured and applied to calculate the cooling boundary conditions. Based on the solidification results, a 3D bulging model was established. The 2D heat transfer model was verified by the measured shell thickness and the slab surface temperature, and the 3D bulging model was verified by the calculated maximum bulging deflections using formulas. The bulging deformation behavior of the wide-thick slab under uneven cooling condition was then determined, and the effect of uneven solidification, casting speed, and roll misalignment were investigated.

  9. Numerical Simulation of Bulging Deformation for Wide-Thick Slab Under Uneven Cooling Conditions

    Science.gov (United States)

    Wu, Chenhui; Ji, Cheng; Zhu, Miaoyong

    2018-02-01

    In the present work, the bulging deformation of a wide-thick slab under uneven cooling conditions was studied using finite element method. The non-uniform solidification was first calculated using a 2D heat transfer model. The thermal material properties were derived based on a microsegregation model, and the water flux distribution was measured and applied to calculate the cooling boundary conditions. Based on the solidification results, a 3D bulging model was established. The 2D heat transfer model was verified by the measured shell thickness and the slab surface temperature, and the 3D bulging model was verified by the calculated maximum bulging deflections using formulas. The bulging deformation behavior of the wide-thick slab under uneven cooling condition was then determined, and the effect of uneven solidification, casting speed, and roll misalignment were investigated.

  10. Comparative Analysis of Bulge Deformation between 2D and 3D Finite Element Models

    Directory of Open Access Journals (Sweden)

    Qin Qin

    2014-02-01

    Full Text Available Bulge deformation of the slab is one of the main factors that affect slab quality in continuous casting. This paper describes an investigation into bulge deformation using ABAQUS to model the solidification process. A three-dimensional finite element analysis model of the slab solidification process has been first established because the bulge deformation is closely related to slab temperature distributions. Based on slab temperature distributions, a three-dimensional thermomechanical coupling model including the slab, the rollers, and the dynamic contact between them has also been constructed and applied to a case study. The thermomechanical coupling model produces outputs such as the rules of bulge deformation. Moreover, the three-dimensional model has been compared with a two-dimensional model to discuss the differences between the two models in calculating the bulge deformation. The results show that the platform zone exists in the wide side of the slab and the bulge deformation is affected strongly by the ratio of width-to-thickness. The indications are also that the difference of the bulge deformation for the two modeling ways is little when the ratio of width-to-thickness is larger than six.

  11. Galactic chemical evolution in hierarchical formation models

    Science.gov (United States)

    Arrigoni, Matias

    2010-10-01

    The chemical properties and abundance ratios of galaxies provide important information about their formation histories. Galactic chemical evolution has been modelled in detail within the monolithic collapse scenario. These models have successfully described the abundance distributions in our Galaxy and other spiral discs, as well as the trends of metallicity and abundance ratios observed in early-type galaxies. In the last three decades, however, the paradigm of hierarchical assembly in a Cold Dark Matter (CDM) cosmology has revised the picture of how structure in the Universe forms and evolves. In this scenario, galaxies form when gas radiatively cools and condenses inside dark matter haloes, which themselves follow dissipationless gravitational collapse. The CDM picture has been successful at predicting many observed properties of galaxies (for example, the luminosity and stellar mass function of galaxies, color-magnitude or star formation rate vs. stellar mass distributions, relative numbers of early and late-type galaxies, gas fractions and size distributions of spiral galaxies, and the global star formation history), though many potential problems and open questions remain. It is therefore interesting to see whether chemical evolution models, when implemented within this modern cosmological context, are able to correctly predict the observed chemical properties of galaxies. With the advent of more powerfull telescopes and detectors, precise observations of chemical abundances and abundance ratios in various phases (stellar, ISM, ICM) offer the opportunity to obtain strong constraints on galaxy formation histories and the physics that shapes them. However, in order to take advantage of these observations, it is necessary to implement detailed modeling of chemical evolution into a modern cosmological model of hierarchical assembly.

  12. Incidence and Risk Factors for Parastomal Bulging in Patients with Ileostomy or Colostomy

    DEFF Research Database (Denmark)

    Andersen, Rune M; Klausen, Tobias W; Danielsen, Anne K

    2018-01-01

    AIM: To investigate incidence and risk factors for parastomal bulging, a clinically important complication, in patients with an ileostomy or colostomy. METHOD: The Danish Stoma Database Capital Region prospectively collects data on patients with a stoma up to a year after surgery. Stoma care nurses...... an exploratory approach. RESULTS: In a study population of 5019, the cumulative incidence (with competing risks) of parastomal bulging was 36.2% at 400 days after surgery. Age, colostomy, male gender, alcohol consumption, and laparoscopy were associated with an increased risk of parastomal bulging. Compared...... for age and colostomy as being risk factors for parastomal bulging. This article is protected by copyright. All rights reserved....

  13. Plasmasphere dynamics in the duskside bulge region: A new look at old topic

    Science.gov (United States)

    Carpenter, D. L.; Giles, B. L.; Chappell, C. R.; Decreau, P. M. E.; Anderson, R. R.; Persoon, A. M.; Smith, A. J.; Corcuff, Y.; Canu, P.

    1993-01-01

    Data acquired during several multiday periods in 1982 at ground stations Siple, Halley, and Kerguelen and on satellites Dynamics Explorer 1, International Sun Earth Explorer 1, and GEOS 2 have been used to investigate thermal plasma structure and dynamics in the duskside plasmasphere bulge region of the Earth. The distribution of thermal plasma in the dusk bulge sector is difficult to describe realistically, in part because of the time integral manner in which the thermal plasma distribution depends upon on the effects of bulk cross-B flow and interchange plasma flows along B. While relatively simple MHD models can be useful for qualitatively predicting certain effects of enhanced convection on a quiet plasmasphere, such as an initial sunward entrainment of the outer regions, they are of limited value in predicting the duskside thermal plasma structures that are observed. Furthermore, use of such models can be misleading if one fails to realize that they do not address the question of the formation of the steep plasmapause profile or provide for a possible role of instabilities or other irreversible processes in plasmapause formation. Our specific findings, which are based both upon the present case studies and upon earlier work, include the following: (1) during active periods the plasmasphere appears to become divided into two entities, a main plasmasphere and a duskside bulge region. (2) in the aftermath of an increase in convection activity, the main plasmasphere tends (from a statistical point of view) to become roughly circular in equatorial cross section, with only a slight bulge at dusk; (3) the abrupt westward edge of the duskside bulge observed from whistlers represents a state in the evolution of sunward extending streamers; (4) in the aftermath of a weak magnetic storm, 10 to 30% of the plasma 'removed' from the outer plasmasphere appears to remain in the afternoon-dusk sector beyond the main plasmasphere. (5) outlying dense plasma structures may

  14. Effect of massive disks on bulge isophotes

    International Nuclear Information System (INIS)

    Monet, D.G.; Richstone, D.O.; Schechter, P.L.

    1981-01-01

    Massive disks produce flattened equipotentials. Unless the stars in a galaxy bulge are preferentially hotter in the z direction than in the plane, the isophotes will be at least as flat as the equipotentials. The comparison of two galaxy models having flat rotation curves with the available surface photometry for five external galaxies does not restrict the mass fraction which might reside in the disk. However, star counts in our own Galaxy indicate that unless the disk terminates close to the solar circle, no more than half the mass within that circle lies in the disk. The remaining half must lie either in the bulge or, more probably, in a third dark, round, dynamically distinct component

  15. Finite Element Analysis of Bulge Forming of Laser Welding Dimple Jacket

    Directory of Open Access Journals (Sweden)

    Peisi ZHONG

    2015-11-01

    Full Text Available The stress-strain states of the model of laser welded dimple jacket is analyzed using ANSYS/LS-DYNA in order to determine the relation between bulging height and pressure and to achieve the controllability of pressure distension of the jacket. It is shown that in the same conditions, the bulging height increases with the increasing of the bulging pressure and the space of honeycomb. And it will decrease when the thickness of jacket plate changing larger. A table showing the relation between bulging height and pressure is obtained. An experiment using a test panel is conducted to certify the reliability of finite element analysis. It turns out that the data of finite element analysis is coincident with experimental data, which support finite element method based ANSYS/LS-DYNA can be an efficient way to research the laser welded dimple jacket. The relation table is useful as guidance for the fabrication process.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9704

  16. Internal and environmental secular evolution of disk galaxies

    Science.gov (United States)

    Kormendy, John

    2015-03-01

    This Special Session is devoted to the secular evolution of disk galaxies. Here `secular' means `slow' i.e., evolution on time scales that are generally much longer than the galaxy crossing or rotation time. Internal and environmentally driven evolution both are covered. I am indebted to Albert Bosma for reminding me at the 2011 Canary Islands Winter School on Secular Evolution that our subject first appeared in print in a comment made by Ivan King (1977) in his introductory talk at the Yale University meeting on The Evolution of Galaxies and Stellar Populations: `John Kormendy would like us to consider the possibility that a galaxy can interact with itself.. . . I'm not at all convinced, but John can show you some interesting pictures.' Two of the earliest papers that followed were Kormendy (1979a, b); the first discusses the interaction of galaxy components with each other, and the second studies these phenomena in the context of a morphological survey of barred galaxies. The earliest modeling paper that we still use regularly is Combes & Sanders (1981), which introduces the now well known idea that box-shaped bulges in edge-on galaxies are side-on, vertically thickened bars. It is gratifying to see how this subject has grown since that time. Hundreds of papers have been written, and the topic features prominently at many meetings (e.g., Block et al. 2004; Falcoń-Barroso & Knapen 2012, and this Special Session). My talk here introduces both internal and environmental secular evolution; a brief abstract follows. My Canary Islands Winter School review covers both subjects in more detail (Kormendy 2012). Kormendy & Kennicutt (2004) is a comprehensive review of internal secular evolution, and Kormendy & Bender (2012) covers environmental evolution. Both of these subject make significant progress at this meeting. Secular evolution happens because self-gravitating systems evolve toward the most tightly bound configuration that is reachable by the evolution processes

  17. Bulge growth and quenching since z = 2.5 in CANDELS/3D-HST

    International Nuclear Information System (INIS)

    Lang, Philipp; Wuyts, Stijn; Schreiber, Natascha M. Förster; Genzel, Reinhard; Lutz, Dieter; Rosario, David J.; Somerville, Rachel S.; Bell, Eric F.; Brammer, Gabe; Dekel, Avishai; Faber, Sandra M.; Momcheva, Ivelina; Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M.; Kocevski, Dale D.; McGrath, Elizabeth J.; Nelson, Erica J.; Primack, Joel R.; Skelton, Rosalind E.

    2014-01-01

    Exploiting the deep high-resolution imaging of all five CANDELS fields, and accurate redshift information provided by 3D-HST, we investigate the relation between structure and stellar populations for a mass-selected sample of 6764 galaxies above 10 10 M ☉ , spanning the redshift range 0.5 < z < 2.5. For the first time, we fit two-dimensional models comprising a single Sérsic fit and two-component (i.e., bulge + disk) decompositions not only to the H-band light distributions, but also to the stellar mass maps reconstructed from resolved stellar population modeling. We confirm that the increased bulge prominence among quiescent galaxies, as reported previously based on rest-optical observations, remains in place when considering the distributions of stellar mass. Moreover, we observe an increase of the typical Sérsic index and bulge-to-total ratio (with median B/T reaching 40%-50%) among star-forming galaxies above 10 11 M ☉ . Given that quenching for these most massive systems is likely to be imminent, our findings suggest that significant bulge growth precedes a departure from the star-forming main sequence. We demonstrate that the bulge mass (and ideally knowledge of the bulge and total mass) is a more reliable predictor of the star-forming versus quiescent state of a galaxy than the total stellar mass. The same trends are predicted by the state-of-the-art, semi-analytic model by Somerville et al. In this model, bulges and black holes grow hand in hand through merging and/or disk instabilities, and feedback from active galactic nuclei shuts off star formation. Further observations will be required to pin down star formation quenching mechanisms, but our results imply that they must be internal to the galaxies and closely associated with bulge growth.

  18. Bulge Growth and Quenching since z = 2.5 in CANDELS/3D-HST

    Science.gov (United States)

    Lang, Philipp; Wuyts, Stijn; Somerville, Rachel S.; Förster Schreiber, Natascha M.; Genzel, Reinhard; Bell, Eric F.; Brammer, Gabe; Dekel, Avishai; Faber, Sandra M.; Ferguson, Henry C.; Grogin, Norman A.; Kocevski, Dale D.; Koekemoer, Anton M.; Lutz, Dieter; McGrath, Elizabeth J.; Momcheva, Ivelina; Nelson, Erica J.; Primack, Joel R.; Rosario, David J.; Skelton, Rosalind E.; Tacconi, Linda J.; van Dokkum, Pieter G.; Whitaker, Katherine E.

    2014-06-01

    Exploiting the deep high-resolution imaging of all five CANDELS fields, and accurate redshift information provided by 3D-HST, we investigate the relation between structure and stellar populations for a mass-selected sample of 6764 galaxies above 1010 M ⊙, spanning the redshift range 0.5 < z < 2.5. For the first time, we fit two-dimensional models comprising a single Sérsic fit and two-component (i.e., bulge + disk) decompositions not only to the H-band light distributions, but also to the stellar mass maps reconstructed from resolved stellar population modeling. We confirm that the increased bulge prominence among quiescent galaxies, as reported previously based on rest-optical observations, remains in place when considering the distributions of stellar mass. Moreover, we observe an increase of the typical Sérsic index and bulge-to-total ratio (with median B/T reaching 40%-50%) among star-forming galaxies above 1011 M ⊙. Given that quenching for these most massive systems is likely to be imminent, our findings suggest that significant bulge growth precedes a departure from the star-forming main sequence. We demonstrate that the bulge mass (and ideally knowledge of the bulge and total mass) is a more reliable predictor of the star-forming versus quiescent state of a galaxy than the total stellar mass. The same trends are predicted by the state-of-the-art, semi-analytic model by Somerville et al. In this model, bulges and black holes grow hand in hand through merging and/or disk instabilities, and feedback from active galactic nuclei shuts off star formation. Further observations will be required to pin down star formation quenching mechanisms, but our results imply that they must be internal to the galaxies and closely associated with bulge growth.

  19. The INTEGRAL Galactic bulge monitoring program: the first 1.5 years

    NARCIS (Netherlands)

    Kuulkers, E.; Shaw, S.E.; Paizis, A.; Chenevez, J.; Brandt, S.; Courvoisier, T.J.L.; Domingo, A.; Ebisawa, K.; Kretschmar, P.; Markwardt, C.B.; Mowlavi, N.; Oosterbroek, T.; Orr, A.; Rísquez, D.; Sanchez-Fernandez, C.; Wijnands, R.

    2007-01-01

    Aims.The Galactic bulge region is a rich host of variable high-energy point sources. Since 2005, February 17 we are monitoring the source activity in the Galactic bulge region regularly and frequently, i.e., about every three days, with the instruments onboard INTEGRAL. Thanks to the large field of

  20. THE NUMBER OF TIDAL DWARF SATELLITE GALAXIES IN DEPENDENCE OF BULGE INDEX

    International Nuclear Information System (INIS)

    López-Corredoira, Martín; Kroupa, Pavel

    2016-01-01

    We show that a significant correlation (up to 5σ) emerges between the bulge index, defined to be larger for a larger bulge/disk ratio, in spiral galaxies with similar luminosities in the Galaxy Zoo 2 of the Sloan Digital Sky Survey and the number of tidal-dwarf galaxies in the catalog by Kaviraj et al. In the standard cold or warm dark matter cosmological models, the number of satellite galaxies correlates with the circular velocity of the dark matter host halo. In generalized gravity models without cold or warm dark matter, such a correlation does not exist, because host galaxies cannot capture infalling dwarf galaxies due to the absence of dark-matter-induced dynamical friction. However, in such models, a correlation is expected to exist between the bulge mass and the number of satellite galaxies because bulges and tidal-dwarf satellite galaxies form in encounters between host galaxies. This is not predicted by dark matter models in which bulge mass and the number of satellites are a priori uncorrelated because higher bulge/disk ratios do not imply higher dark/luminous ratios. Hence, our correlation reproduces the prediction of scenarios without dark matter, whereas an explanation is not found readily from the a priori predictions of the standard scenario with dark matter. Further research is needed to explore whether some application of the standard theory may explain this correlation

  1. ALMA observations of molecular absorption in four directions toward the Galactic bulge

    Science.gov (United States)

    Liszt, H.; Gerin, M.

    2018-02-01

    Context. Alma Cycle 3 observations serendipitously showed strong absorption from diffuse molecular gas in the Galactic bulge at -200 km s-1 51(3σ) for the bulge gas toward J1744 and 58 ± 9 and 64 ± 4 for the disk gas toward J1717 and J1744, respectively, all well above the value of 20-25 typical of the central molecular zone. Conclusions: The kinematics and chemistry of the bulge gas observed toward J1744 more nearly resemble that of gas in the Milky Way disk than in the central molecular zone.

  2. Nuclear fuel assembly grid sleeve/guide thimble bulge orientation gage and inspection method

    International Nuclear Information System (INIS)

    Widener, W.H.

    1988-01-01

    This patent describes a method of inspecting a fuel assembly to determine the orientation of externally-projecting mated bulges connecting a grid sleeve to a guide thimble of the assembly, the method comprising the steps of: (a) inserting a radially-expandable tubular member within the guide thimble, the tubular member having externally-projecting embossments thereon spaced circumferentially from one another about the tubular member, the embossments being the same in number as the bulges of the guide thimble and configured to fit therewithin; (b) axially moving an elongated expansion member, which extends through and rotatably mounts the tubular member, relative to the tubular member from a first position in which the expansion member permits inward contraction of the tubular member and displacement of embossments thereon away from the interior of the guide thimble bulges for removing the embossments from registry therewith and a second position in which the expansion member produces radial expansion of the tubular member and displacement of the embossments thereon toward the interior of the guide thimble bulges for placing the embossments in registry therewith; (c) rotating the tubular member relative to the expansion member so as to bring the embossments on the tubular member into alignment with the guide thimble bulges as the embossments on the tubular member are being displaced toward and into registry with the interior of the bulges; and (d) responsive to rotation of the tubular member away from a reference position, providing an indication of the orientation of the guide thimble bulges relative to a reference point upon displacement of the embossments into registry therewith

  3. Improved guide tube bulge tool

    International Nuclear Information System (INIS)

    Vaill, R.E.; Phillips, W.D.

    1979-01-01

    A guide tube bulge tool for securing control rod guide tubes to a fuel assembly grid, includes a cylinder having several flexible tines each of which is equipped with a semispherical radially outwardly extending projection. A tapered ram fits into the cylinder so as to force the tines outwardly when the ram is pulled into the cylinder while supporting the other tines. (UK)

  4. Effect of an upstream bulge configuration on film cooling with and without mist injection.

    Science.gov (United States)

    Wang, Jin; Li, Qianqian; Sundén, Bengt; Ma, Ting; Cui, Pei

    2017-12-01

    To meet the economic requirements of power output, the increased inlet temperature of modern gas turbines is above the melting point of the material. Therefore, high-efficient cooling technology is needed to protect the blades from the hot mainstream. In this study, film cooling was investigated in a simplified channel. A bulge located upstream of the film hole was numerically investigated by analysis of the film cooling effectiveness distribution downstream of the wall. The flow distribution in the plate channel is first presented. Comparing with a case without bulge, different cases with bulge heights of 0.1d, 0.3d and 0.5d were examined with blowing ratios of 0.5 and 1.0. Cases with 1% mist injection were also included in order to obtain better cooling performance. Results show that the bulge configuration located upstream the film hole makes the cooling film more uniform, and enhanceslateral cooling effectiveness. Unlike other cases, the configuration with a 0.3d-height bulge shows a good balance in improving the downstream and lateral cooling effectiveness. Compared with the case without mist at M = 0.5, the 0.3d-height bulge with 1% mist injection increases lateral average effectiveness by 559% at x/d = 55. In addition, a reduction of the thermal stress concentration can be obtained by increasing the height of the bulge configuration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The Chemical Evolution of Phosphorus

    Science.gov (United States)

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Roederer, Ian U.; Cescutti, Gabriele; Matteucci, Francesca

    2014-12-01

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning -3.3 production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This work is supported through program AR-13246. Other portions of this work are based on data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and the McDonald Observatory of the University of Texas at Austin.

  6. Material characterization of Inconel 718 from free bulging test at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Joon Tae; Yoon, Jong Hoon; Lee, Ho Sung [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Youn, Sung Kie [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-07-15

    Macroscopic superplastic behavior of metallic or non metallic materials is usually represented by the strain rate sensitivity, and it can be determined by tensile tests in uniaxial stress state and bulging tests in multi axial stress state, which is the actual hot forming process. And macroscopic behavior of Non SPF grade materials could be described in a similar way as that of superplastic materials, including strain hardening, cavity and so on. In this study, the material characterization of non SPF grade Inconel 718 has been carried out to determine the material parameters for flow stress throughout free bulging test under constant temperature. The measured height of bulged plate during the test was used for estimation of strain rate sensitivity, strain hardening index and cavity volume fraction with the help of numerical analysis. The bulged height obtained from the simulation showed good agreement with the experimental findings. The effects of strain hardening and cavity volume fraction factor for flow stress were also compared.

  7. Black Holes and Galactic Density Cusps I Radial Orbit Cusps and Bulges

    CERN Document Server

    Henriksen, Richard N; Macmillan, Joseph D

    2011-01-01

    Aims. In this paper we study density cusps made from radial orbits that may contain central black holes. The actual co-eval self-similar growth would not distinguish between the central object and the surroundings. Methods. To study the environment of an existing black hole we seek distribution functions that may contain a black hole and that retain at least a memory of self-similarity. We refer to the environment in brief as the 'bulge' or sometimes the 'halo'. This depends on whether the black hole is a true singularity dominating its halo or rather a core mass concentration that dominates a larger bulge. The hierarchy might extend to include galactic bulge and halo. Results.We find simple descriptions of simulated collisionless matter in the process of examining the presence of central masses. The Fridmann & Polyachenko distribution function describes co-eval growth of a bulge and black hole that might explain the observed mass correlation. Conclusions. We derive our results from first principles assum...

  8. On the kinematic separation of field and cluster stars across the bulge globular NGC 6528

    Energy Technology Data Exchange (ETDEWEB)

    Lagioia, E. P.; Bono, G.; Buonanno, R. [Dipartimento di Fisica, Università degli Studi di Roma-Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Milone, A. P. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Stetson, P. B. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Prada Moroni, P. G. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); Dall' Ora, M. [INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli (Italy); Aparicio, A.; Monelli, M. [Instituto de Astrofìsica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands (Spain); Calamida, A.; Ferraro, I.; Iannicola, G. [INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I-00044 Monte Porzio Catone (Italy); Gilmozzi, R. [European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching (Germany); Matsunaga, N. [Kiso Observatory, Institute of Astronomy, School of Science, The University of Tokyo, 10762-30, Mitake, Kiso-machi, Kiso-gun, 3 Nagano 97-0101 (Japan); Walker, A., E-mail: eplagioia@roma2.infn.it [Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena (Chile)

    2014-02-10

    We present deep and precise multi-band photometry of the Galactic bulge globular cluster NGC 6528. The current data set includes optical and near-infrared images collected with ACS/WFC, WFC3/UVIS, and WFC3/IR on board the Hubble Space Telescope. The images cover a time interval of almost 10 yr, and we have been able to carry out a proper-motion separation between cluster and field stars. We performed a detailed comparison in the m {sub F814W}, m {sub F606W} – m {sub F814W} color-magnitude diagram with two empirical calibrators observed in the same bands. We found that NGC 6528 is coeval with and more metal-rich than 47 Tuc. Moreover, it appears older and more metal-poor than the super-metal-rich open cluster NGC 6791. The current evidence is supported by several diagnostics (red horizontal branch, red giant branch bump, shape of the sub-giant branch, slope of the main sequence) that are minimally affected by uncertainties in reddening and distance. We fit the optical observations with theoretical isochrones based on a scaled-solar chemical mixture and found an age of 11 ± 1 Gyr and an iron abundance slightly above solar ([Fe/H] = +0.20). The iron abundance and the old cluster age further support the recent spectroscopic findings suggesting a rapid chemical enrichment of the Galactic bulge.

  9. CHEMICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1965-06-01

    How did life come to be on the surface of the earth? Darwin himself recognized that his basic idea of evolution by variation and natural selection must be a continuous process extending backward in time through that period in which the first living things arose and into the period of 'Chemical Evolution' which preceded it. We are approaching the examination of these events by two routes. One is to seek for evidence in the ancient rocks of the earth which were laid down prior to that time in which organisms capable of leaving their skeletons in the rocks to be fossilized were in existence. This period is sometime prior to approximately 600 million years ago. The earth is believed to have taken its present form approximately 4700 million years ago. We have found in rocks whose age is about 1000 million years certain organic molecules which are closely related to the green pigment of plants, chlorophyll. This seems to establish that green plants were already fluorishing prior to that time. We have now found in rocks of still greater age, namely, 2500 million years, the same kinds of molecules mentioned above which can be attributed to the presence of living organisms. If these molecules are as old as the rocks, we have thus shortened the time available for the generation of the complex biosynthetic sequences which give rise to these specific hydrocarbons (polyisoprenoids) to less than 2000 million years.

  10. Diffraction and Smith-Purcell radiation on the hemispherical bulges in a metal plate

    Science.gov (United States)

    Syshchenko, V. V.; Larikova, E. A.; Gladkih, Yu. P.

    2017-12-01

    The radiation resulting from the uniform motion of a charged particle near a hemispheric bulge on a metal plane is considered. The description of the radiation process based on the method of images is developed for the case of non-relativistic particle and a perfectly conducting target. The spectral-angular and spectral densities of the diffraction radiation on the single bulge (as well as the Smith-Purcell radiation on the periodic string of bulges) are computed. The possibility of application of the developed approach to the case of relativistic incident particle is discussed.

  11. THE SPLIT RED CLUMP OF THE GALACTIC BULGE FROM OGLE-III

    International Nuclear Information System (INIS)

    Nataf, D. M.; Gould, A.; Stanek, K. Z.; Udalski, A.; Fouque, P.

    2010-01-01

    The red clump (RC) is found to be split into two components along several sightlines toward the Galactic bulge. This split is detected with high significance toward the areas (-3.5 < l < 1, b < -5) and (l, b) = (0, + 5.2), i.e., along the bulge minor axis and at least 5 deg off the plane. The fainter (hereafter 'main') component is the one that more closely follows the distance-longitude relation of the bulge RC. The main component is ∼0.5 mag fainter than the secondary component and with an overall approximately equal population. For sightlines further from the plane, the difference in brightness increases, and more stars are found in the secondary component than in the main component. The two components have very nearly equal (V - I) color.

  12. X-ray bursters and the X-ray sources of the galactic bulge

    International Nuclear Information System (INIS)

    Lewin, W.H.G.; Joss, P.C.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1981-01-01

    In this article we shall discuss the observed X-ray, optical, infrared and radio properties of the galactic bulge sources, with an emphasis on those that produce type I X-ray bursts. There is persuasive evidence that these burst sources and many other galactic bulge sources are neutron stars in low-mass, close-binary stellar systems. (orig./WL)

  13. Formation of the Lunar Fossil Bulges and Its Implication for the Early Earth and Moon

    Science.gov (United States)

    Qin, Chuan; Zhong, Shijie; Phillips, Roger

    2018-02-01

    First recognized by Laplace over two centuries ago, the Moon's present tidal-rotational bulges are significantly larger than hydrostatic predictions. They are likely relics of a former hydrostatic state when the Moon was closer to the Earth and had larger bulges, and they were established when stresses in a thickening lunar lithosphere could maintain the bulges against hydrostatic adjustment. We formulate the first dynamically self-consistent model of this process and show that bulge formation is controlled by the relative timing of lithosphere thickening and lunar orbit recession. Viable solutions indicate that lunar bulge formation was a geologically slow process lasting several hundred million years, that the process was complete about 4 Ga when the Moon-Earth distance was less than 32 Earth radii, and that the Earth in Hadean was significantly less dissipative to lunar tides than during the last 4 Gyr, possibly implying a frozen hydrosphere due to the fainter young Sun.

  14. The Impact of Modeling Assumptions in Galactic Chemical Evolution Models

    Science.gov (United States)

    Côté, Benoit; O'Shea, Brian W.; Ritter, Christian; Herwig, Falk; Venn, Kim A.

    2017-02-01

    We use the OMEGA galactic chemical evolution code to investigate how the assumptions used for the treatment of galactic inflows and outflows impact numerical predictions. The goal is to determine how our capacity to reproduce the chemical evolution trends of a galaxy is affected by the choice of implementation used to include those physical processes. In pursuit of this goal, we experiment with three different prescriptions for galactic inflows and outflows and use OMEGA within a Markov Chain Monte Carlo code to recover the set of input parameters that best reproduces the chemical evolution of nine elements in the dwarf spheroidal galaxy Sculptor. This provides a consistent framework for comparing the best-fit solutions generated by our different models. Despite their different degrees of intended physical realism, we found that all three prescriptions can reproduce in an almost identical way the stellar abundance trends observed in Sculptor. This result supports the similar conclusions originally claimed by Romano & Starkenburg for Sculptor. While the three models have the same capacity to fit the data, the best values recovered for the parameters controlling the number of SNe Ia and the strength of galactic outflows, are substantially different and in fact mutually exclusive from one model to another. For the purpose of understanding how a galaxy evolves, we conclude that only reproducing the evolution of a limited number of elements is insufficient and can lead to misleading conclusions. More elements or additional constraints such as the Galaxy’s star-formation efficiency and the gas fraction are needed in order to break the degeneracy between the different modeling assumptions. Our results show that the successes and failures of chemical evolution models are predominantly driven by the input stellar yields, rather than by the complexity of the Galaxy model itself. Simple models such as OMEGA are therefore sufficient to test and validate stellar yields. OMEGA

  15. Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

    Science.gov (United States)

    Macias, Oscar; Gordon, Chris; Crocker, Roland M.; Coleman, Brendan; Paterson, Dylan; Horiuchi, Shunsaku; Pohl, Martin

    2018-05-01

    An anomalous gamma-ray excess emission has been found in the Fermi Large Area Telescope data1 covering the centre of the Galaxy2,3. Several theories have been proposed for this `Galactic centre excess'. They include self-annihilation of dark-matter particles4, an unresolved population of millisecond pulsars5, an unresolved population of young pulsars6, or a series of burst events7. Here, we report on an analysis that exploits hydrodynamical modelling to register the position of interstellar gas associated with diffuse Galactic gamma-ray emission. We find evidence that the Galactic centre excess gamma rays are statistically better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess. Given its non-spherical nature, we argue that the Galactic centre excess is not a dark-matter phenomenon but rather associated with the stellar population of the Galactic bulge and the nuclear bulge.

  16. UNCERTAINTIES IN GALACTIC CHEMICAL EVOLUTION MODELS

    International Nuclear Information System (INIS)

    Côté, Benoit; Ritter, Christian; Herwig, Falk; O’Shea, Brian W.; Pignatari, Marco; Jones, Samuel; Fryer, Chris L.

    2016-01-01

    We use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of the following seven basic parameters: the lower and upper mass limits of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number of SNe Ia per M ⊙ formed, the total stellar mass formed, and the final mass of gas. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical manner by identifying the most probable solutions, along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty. The thicknesses of the uncertainty bands bounded by the 68% and 95% confidence levels are generally within 0.3 and 0.6 dex, respectively. When looking at the evolution of individual elements as a function of galactic age instead of metallicity, those same thicknesses range from 0.1 to 0.6 dex for the 68% confidence levels and from 0.3 to 1.0 dex for the 95% confidence levels. The uncertainty in our chemical evolution model

  17. Chempy: A flexible chemical evolution model for abundance fitting. Do the Sun's abundances alone constrain chemical evolution models?

    Science.gov (United States)

    Rybizki, Jan; Just, Andreas; Rix, Hans-Walter

    2017-09-01

    Elemental abundances of stars are the result of the complex enrichment history of their galaxy. Interpretation of observed abundances requires flexible modeling tools to explore and quantify the information about Galactic chemical evolution (GCE) stored in such data. Here we present Chempy, a newly developed code for GCE modeling, representing a parametrized open one-zone model within a Bayesian framework. A Chempy model is specified by a set of five to ten parameters that describe the effective galaxy evolution along with the stellar and star-formation physics: for example, the star-formation history (SFH), the feedback efficiency, the stellar initial mass function (IMF), and the incidence of supernova of type Ia (SN Ia). Unlike established approaches, Chempy can sample the posterior probability distribution in the full model parameter space and test data-model matches for different nucleosynthetic yield sets. It is essentially a chemical evolution fitting tool. We straightforwardly extend Chempy to a multi-zone scheme. As an illustrative application, we show that interesting parameter constraints result from only the ages and elemental abundances of the Sun, Arcturus, and the present-day interstellar medium (ISM). For the first time, we use such information to infer the IMF parameter via GCE modeling, where we properly marginalize over nuisance parameters and account for different yield sets. We find that 11.6+ 2.1-1.6% of the IMF explodes as core-collapse supernova (CC-SN), compatible with Salpeter (1955, ApJ, 121, 161). We also constrain the incidence of SN Ia per 103M⊙ to 0.5-1.4. At the same time, this Chempy application shows persistent discrepancies between predicted and observed abundances for some elements, irrespective of the chosen yield set. These cannot be remedied by any variations of Chempy's parameters and could be an indication of missing nucleosynthetic channels. Chempy could be a powerful tool to confront predictions from stellar

  18. On the transition period from chemical to biological evolution

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    1991-06-01

    We discuss the consequences of the hypothesis that biological evolution was contemporary with an important event in chemical evolution, namely, the induction of a small chiral bias by the electroweak neutral interaction, amplified by the Salam enhancement factor, which we discuss in terms of familiar crystallographic terms. (author). 18 refs, 3 tabs

  19. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1979-01-01

    The chemical evolution of disk galaxies is discussed with special reference to results obtained from studies of the oxygen abundance in H II regions. Normal spirals (including our own) display the by now well known radial abundance gradient, which is discussed on the basis of the simple enrichment model and other models. The Magellanic Clouds, on the other hand, and the barred spiral NGC 1365, have been found to have little or no abundance gradient, implying a very different sort of evolution that may involve large-scale mixing. Finally, the simple model is tested against a number of results in H II regions where the ratio of total mass to mass of residual gas can be estimated. It turns out to fit adequately the Magellanic Clouds and a number of H II regions in the outer parts of spiral galaxies, but in more inner parts it fails, as do more sophisticated models involving infall during the formation of galactic disks that have proved very successful in other respects. (Auth.)

  20. An application of the tensor virial theorem to hole + vortex + bulge systems

    Science.gov (United States)

    Caimmi, R.

    2009-04-01

    The tensor virial theorem for subsystems is formulated for three-component systems and further effort is devoted to a special case where the inner subsystems and the central region of the outer one are homogeneous, the last surrounded by an isothermal homeoid. The virial equations are explicitly written under the additional restrictions: (i) similar and similarly placed inner subsystems, and (ii) spherical outer subsystem. An application is made to hole + vortex + bulge systems, in the limit of flattened inner subsystems, which implies three virial equations in three unknowns. Using the Faber-Jackson relation, R∝σ02, the standard M- σ0 form (M∝σ04) is deduced from qualitative considerations. The projected bulge velocity dispersion to projected vortex velocity ratio, η=(σ)33/{[(v)qq]2+[(σ)qq]2}, as a function of the fractional radius, y=R/R, and the fractional masses, m=M/M and m=M/M, is studied in the range of interest, 0⩽m=M/M⩽5 [Escala, A., 2006. ApJ, 648, L13] and 229⩽m⩽795 [Marconi, A., Hunt, L.H., 2003. ApJ 589, L21], consistent with observations. The related curves appear to be similar to Maxwell velocity distributions, which implies a fixed value of η below the maximum corresponds to two different configurations: a compact bulge on the left of the maximum, and an extended bulge on the right. All curves lie very close one to the other on the left of the maximum, and parallel one to the other on the right. On the other hand, fixed m or m, and y, are found to imply more massive bulges passing from bottom to top along a vertical line on the (Oyη) plane, and vice versa. The model is applied to NGC 4374 and NGC 4486, taking the fractional mass, m, and the fractional radius, y, as unknowns, and the bulge mass is inferred from the knowledge of the hole mass, and compared with results from different methods. In presence of a massive vortex (m=5), the hole mass has to be reduced by a factor 2-3 with respect to the case of a massless vortex, to get

  1. Improved Model for Predicting the Free Energy Contribution of Dinucleotide Bulges to RNA Duplex Stability.

    Science.gov (United States)

    Tomcho, Jeremy C; Tillman, Magdalena R; Znosko, Brent M

    2015-09-01

    Predicting the secondary structure of RNA is an intermediate in predicting RNA three-dimensional structure. Commonly, determining RNA secondary structure from sequence uses free energy minimization and nearest neighbor parameters. Current algorithms utilize a sequence-independent model to predict free energy contributions of dinucleotide bulges. To determine if a sequence-dependent model would be more accurate, short RNA duplexes containing dinucleotide bulges with different sequences and nearest neighbor combinations were optically melted to derive thermodynamic parameters. These data suggested energy contributions of dinucleotide bulges were sequence-dependent, and a sequence-dependent model was derived. This model assigns free energy penalties based on the identity of nucleotides in the bulge (3.06 kcal/mol for two purines, 2.93 kcal/mol for two pyrimidines, 2.71 kcal/mol for 5'-purine-pyrimidine-3', and 2.41 kcal/mol for 5'-pyrimidine-purine-3'). The predictive model also includes a 0.45 kcal/mol penalty for an A-U pair adjacent to the bulge and a -0.28 kcal/mol bonus for a G-U pair adjacent to the bulge. The new sequence-dependent model results in predicted values within, on average, 0.17 kcal/mol of experimental values, a significant improvement over the sequence-independent model. This model and new experimental values can be incorporated into algorithms that predict RNA stability and secondary structure from sequence.

  2. Role of the CCA bulge of prohead RNA of bacteriophage ø29 in DNA packaging.

    Science.gov (United States)

    Zhao, Wei; Morais, Marc C; Anderson, Dwight L; Jardine, Paul J; Grimes, Shelley

    2008-11-14

    The oligomeric ring of prohead RNA (pRNA) is an essential component of the ATP-driven DNA packaging motor of bacteriophage ø29. The A-helix of pRNA binds the DNA translocating ATPase gp16 (gene product 16) and the CCA bulge in this helix is essential for DNA packaging in vitro. Mutation of the bulge by base substitution or deletion showed that the size of the bulge, rather than its sequence, is primary in DNA packaging activity. Proheads reconstituted with CCA bulge mutant pRNAs bound the packaging ATPase gp16 and the packaging substrate DNA-gp3, although DNA translocation was not detected with several mutants. Prohead/bulge-mutant pRNA complexes with low packaging activity had a higher rate of ATP hydrolysis per base pair of DNA packaged than proheads with wild-type pRNA. Cryoelectron microscopy three-dimensional reconstruction of proheads reconstituted with a CCA deletion pRNA showed that the protruding pRNA spokes of the motor occupy a different position relative to the head when compared to particles with wild-type pRNA. Therefore, the CCA bulge seems to dictate the orientation of the pRNA spokes. The conformational changes observed for this mutant pRNA may affect gp16 conformation and/or subsequent ATPase-DNA interaction and, consequently, explain the decreased packaging activity observed for CCA mutants.

  3. Galactic chemical evolution: perspectives and prospects

    International Nuclear Information System (INIS)

    Trimble, V.

    1987-01-01

    The first modern, quantitative models of galactic chemical evolution appeared exactly 20 years ago in the PhD dissertation of the late Beatrice M. Tinsley. Such models represent a synthesis of the behavior of the 10 11 or more stars that form over the 10 10 year age of a galaxy like their Milky Way and are vital both for understanding how and why galaxies have the luminosities, colors, and chemical compositions they see now and for interpreting observations of distant galaxies to answer cosmological questions about the size, age, density, inhomogeneities, and geometry of the universe. Since my last status report on the subject, some issues have become much clearer (the distinctness of nucleosynthesis in Type I, low mass, supernovae, from that in Type II's that make pulsars; the importance of galaxy mergers and interactions in triggering bursts of star formation), while others have remained puzzling (the sites of the r and p processes) or newly-surfaced (the nucleosynthetic contributions of pre-galactic massive objects; the nature and roll of dark matter in galaxies). The talk will touch briefly on the past, present, and future of galactic evolution studies

  4. Fracture toughness of silicon nitride thin films of different thicknesses as measured by bulge tests

    International Nuclear Information System (INIS)

    Merle, B.; Goeken, M.

    2011-01-01

    A bulge test setup was used to determine the fracture toughness of amorphous low-pressure chemical vapor deposited (LPCVD) silicon nitride films with various thicknesses in the range 40-108 nm. A crack-like slit was milled in the center of each free-standing film with a focused ion beam, and the membrane was deformed in the bulge test until failure occurred. The fracture toughness K IC was calculated from the pre-crack length and the stress at failure. It is shown that the membrane is in a transition state between pure plane-stress and plane-strain which, however, had a negligible influence on the measurement of the fracture toughness, because of the high brittleness of silicon nitride and its low Young's modulus over yield strength ratio. The fracture toughness K IC was found to be constant at 6.3 ± 0.4 MPa m 1/2 over the whole thickness range studied, which compares well with bulk values. This means that the fracture toughness, like the Young's modulus, is a size-independent quantity for LPCVD silicon nitride. This presumably holds true for all amorphous brittle ceramic materials.

  5. A catalog of polychromatic bulge-disc decompositions of ˜17.600 galaxies in CANDELS

    Science.gov (United States)

    Dimauro, Paola; Huertas-Company, Marc; Daddi, Emanuele; Pérez-González, Pablo G.; Bernardi, Mariangela; Barro, Guillermo; Buitrago, Fernando; Caro, Fernando; Cattaneo, Andrea; Dominguez-Sánchez, Helena; Faber, Sandra M.; Häußler, Boris; Kocevski, Dale D.; Koekemoer, Anton M.; Koo, David C.; Lee, Christoph T.; Mei, Simona; Margalef-Bentabol, Berta; Primack, Joel; Rodriguez-Puebla, Aldo; Salvato, Mara; Shankar, Francesco; Tuccillo, Diego

    2018-05-01

    Understanding how bulges grow in galaxies is critical step towards unveiling the link between galaxy morphology and star-formation. To do so, it is necessary to decompose large sample of galaxies at different epochs into their main components (bulges and discs). This is particularly challenging, especially at high redshifts, where galaxies are poorly resolved. This work presents a catalog of bulge-disc decompositions of the surface brightness profiles of ˜17.600 H-band selected galaxies in the CANDELS fields (F160W https://lerma.obspm.fr/huertas/form_CANDELS and will be used for scientific analysis in forthcoming works.

  6. First detection of the white dwarf cooling sequence of the galactic bulge

    Energy Technology Data Exchange (ETDEWEB)

    Calamida, A.; Sahu, K. C.; Anderson, J.; Casertano, S.; Brown, T.; Sokol, J.; Bond, H. E.; Ferguson, H.; Livio, M.; Valenti, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cassisi, S.; Buonanno, R.; Pietrinferni, A. [Osservatorio Astronomico di Teramo—INAF, Via M. Maggini, I-64100 Teramo (Italy); Salaris, M. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Ferraro, I. [Osservatorio Astronomico di Roma—INAF, Via Frascati 33, I-00040 Monte Porzio Catone (Italy); Clarkson, W., E-mail: calamida@stsci.edu [University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128 (United States)

    2014-08-01

    We present Hubble Space Telescope data of the low-reddening Sagittarius window in the Galactic bulge. The Sagittarius Window Eclipsing Extrasolar Planet Search field (∼3'× 3'), together with three more Advanced Camera for Surveys and eight Wide-Field Camera 3 fields, were observed in the F606W and F814W filters, approximately every two weeks for 2 yr, with the principal aim of detecting a hidden population of isolated black holes and neutron stars through astrometric microlensing. Proper motions were measured with an accuracy of ≈0.1 mas yr{sup –1} (≈4 km s{sup –1}) at F606W ≈ 25.5 mag, and better than ≈0.5 mas yr{sup –1} (≈20 km s{sup –1}) at F606W ≈ 28 mag, in both axes. Proper-motion measurements allowed us to separate disk and bulge stars and obtain a clean bulge color-magnitude diagram. We then identified for the first time a white dwarf (WD) cooling sequence in the Galactic bulge, together with a dozen candidate extreme horizontal branch stars. The comparison between theory and observations shows that a substantial fraction of the WDs (≈30%) are systematically redder than the cooling tracks for CO-core H-rich and He-rich envelope WDs. This evidence would suggest the presence of a significant number of low-mass WDs and WD-main-sequence binaries in the bulge. This hypothesis is further supported by the finding of two dwarf novae in outburst, two short-period (P ≲ 1 day) ellipsoidal variables, and a few candidate cataclysmic variables in the same field.

  7. First detection of the white dwarf cooling sequence of the galactic bulge

    International Nuclear Information System (INIS)

    Calamida, A.; Sahu, K. C.; Anderson, J.; Casertano, S.; Brown, T.; Sokol, J.; Bond, H. E.; Ferguson, H.; Livio, M.; Valenti, J.; Cassisi, S.; Buonanno, R.; Pietrinferni, A.; Salaris, M.; Ferraro, I.; Clarkson, W.

    2014-01-01

    We present Hubble Space Telescope data of the low-reddening Sagittarius window in the Galactic bulge. The Sagittarius Window Eclipsing Extrasolar Planet Search field (∼3'× 3'), together with three more Advanced Camera for Surveys and eight Wide-Field Camera 3 fields, were observed in the F606W and F814W filters, approximately every two weeks for 2 yr, with the principal aim of detecting a hidden population of isolated black holes and neutron stars through astrometric microlensing. Proper motions were measured with an accuracy of ≈0.1 mas yr –1 (≈4 km s –1 ) at F606W ≈ 25.5 mag, and better than ≈0.5 mas yr –1 (≈20 km s –1 ) at F606W ≈ 28 mag, in both axes. Proper-motion measurements allowed us to separate disk and bulge stars and obtain a clean bulge color-magnitude diagram. We then identified for the first time a white dwarf (WD) cooling sequence in the Galactic bulge, together with a dozen candidate extreme horizontal branch stars. The comparison between theory and observations shows that a substantial fraction of the WDs (≈30%) are systematically redder than the cooling tracks for CO-core H-rich and He-rich envelope WDs. This evidence would suggest the presence of a significant number of low-mass WDs and WD-main-sequence binaries in the bulge. This hypothesis is further supported by the finding of two dwarf novae in outburst, two short-period (P ≲ 1 day) ellipsoidal variables, and a few candidate cataclysmic variables in the same field.

  8. Supermassive Black Holes and Their Host Galaxies. I. Bulge Luminosities from Dedicated Near-infrared Data

    Science.gov (United States)

    Läsker, Ronald; Ferrarese, Laura; van de Ven, Glenn

    2014-01-01

    In an effort to secure, refine, and supplement the relation between central supermassive black hole masses, M •, and the bulge luminosities of their host galaxies, L bul, we obtained deep, high spatial resolution K-band images of 35 nearby galaxies with securely measured M •, using the wide-field WIRCam imager at the Canada-France-Hawaii-Telescope. A dedicated data reduction and sky subtraction strategy was adopted to estimate the brightness and structure of the sky, a critical step when tracing the light distribution of extended objects in the near-infrared. From the final image product, bulge and total magnitudes were extracted via two-dimensional profile fitting. As a first order approximation, all galaxies were modeled using a simple Sérsic-bulge+exponential-disk decomposition. However, we found that such models did not adequately describe the structure that we observed in a large fraction of our sample galaxies which often include cores, bars, nuclei, inner disks, spiral arms, rings, and envelopes. In such cases, we adopted profile modifications and/or more complex models with additional components. The derived bulge magnitudes are very sensitive to the details and number of components used in the models, although total magnitudes remain almost unaffected. Usually, but not always, the luminosities and sizes of the bulges are overestimated when a simple bulge+disk decomposition is adopted in lieu of a more complex model. Furthermore, we found that some spheroids are not well fit when the ellipticity of the Sérsic model is held fixed. This paper presents the details of the image processing and analysis, while we discuss how model-induced biases and systematics in bulge magnitudes impact the M •-L bul relation in a companion paper.

  9. Shallow nitrogen ion implantation: Evolution of chemical state and defect structure in titanium

    Energy Technology Data Exchange (ETDEWEB)

    Manojkumar, P.A., E-mail: manoj@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Chirayath, V.A.; Balamurugan, A.K.; Krishna, Nanda Gopala; Ilango, S.; Kamruddin, M.; Amarendra, G.; Tyagi, A.K. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Raj, Baldev [National Institute of Advanced Studies, Bangalore 560 012 (India)

    2016-09-15

    Highlights: • Low energy nitrogen ion implantation in titanium was studied. • Chemical and defect states were analyzed using SIMS, XPS and PAS. • SIMS and depth resolved XPS data showed good agreement. • Depth resolved defect and chemical states information were revealed. • Formation of 3 layers of defect states proposed to fit PAS results. - Abstract: Evolution of chemical states and defect structure in titanium during low energy nitrogen ion implantation by Plasma Immersion Ion Implantation (PIII) process is studied. The underlying process of chemical state evolution is investigated using secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The implantation induced defect structure evolution as a function of dose is elucidated using variable energy positron annihilation Doppler broadening spectroscopy (PAS) and the results were corroborated with chemical state. Formation of 3 layers of defect state was modeled to fit PAS results.

  10. General constraints on the effect of gas flows in the chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Edmunds, M.G.

    1990-01-01

    The basic equations for the chemical evolution of galaxies in which the 'simple' closed box model is modified to allow any form of inflow or outflow are examined. It is found that there are quite general limiting constraints on the effects that such flows can have. Some implications for the actual chemical evolution of galaxies are discussed, and the constraints should also be useful in understanding the behaviour of detailed numerical models of galactic chemical evolution involving gas flows. (author)

  11. Two Red Clumps and the X-shaped Milky Way Bulge

    Science.gov (United States)

    McWilliam, Andrew; Zoccali, Manuela

    2010-12-01

    From Two Micron All Sky Survey infrared photometry, we find two red clump (RC) populations coexisting in fields toward the Galactic bulge at latitudes |b|>5fdg5, ranging over ~13° in longitude and 20° in latitude. These RC peaks indicate two stellar populations separated by ~2.3 kpc at (l, b) = (+1, - 8) the two RCs are located at 6.5 and 8.8 ± 0.2 kpc. The double-peaked RC is inconsistent with a tilted bar morphology. Most of our fields show the two RCs at roughly constant distance with longitude, also inconsistent with a tilted bar; however, an underlying bar may be present. Stellar densities in the two RCs change dramatically with longitude: on the positive longitude side the foreground RC is dominant, while the background RC dominates negative longitudes. A line connecting the maxima of the foreground and background populations is tilted to the line of sight by ~20°±4°, similar to claims for the tilt of a Galactic bar. The distance between the two RCs decreases toward the Galactic plane; seen edge-on the bulge is X-shaped, resembling some extragalactic bulges and the results of N-body simulations. The center of this X is consistent with the distance to the Galactic center, although better agreement would occur if the bulge is 2-3 Gyr younger than 47 Tuc. Our observations may be understood if the two RC populations emanate, nearly tangentially, from the Galactic bar ends, in a funnel shape. Alternatively, the X, or double funnel, may continue to the Galactic center. From the Sun, this would appear peanut/box shaped, but X-shaped when viewed tangentially.

  12. The influence of changes in cervical lordosis on bulging disk and spinal stenosis: functional MR imaging

    International Nuclear Information System (INIS)

    Lee, Young Joon; Eun, Choong Ki

    2001-01-01

    To assess the effect of lordotic curve change of the cervical spine on disk bulging and spinal stenosis by means of functional cervical MR imaging at the flexion and extension position. Using a 1.5T imager, kinematic MR examinations of 25 patients with degenerative spondylosis (average age, 41 years) were performed at the neutral, flexed and extended position of the cervical spine. Sagittal T2-weighted turbo spin-echo images were obtained during each of the three phases. Lordotic angle, bulging thickness of the disk, AP diameter of the spinal canal, and distance between the disk and spinal cord were measured on the workstation at each disk level. After qualitative independent observation of disk bulging, one of four grades(0, normal; 1, mild; 2, moderate; 3, marked) was assigned at each phase, and after further comparative observation, one of five scores (-2, prominent decrease; -1, mild decrease; 0, no change; 1, notable increase; 2 prominent increase) was also assigned. In addition, bulging thickness of the disk was measured and compared at the neutral, flexed, and extended positions. Average angles of the cervical spine were 160.5±5.9 deg (neutral position, lordotic angle); 185.4±8.5 deg (flexion, kyphotic angle); and 143.7±6.7 deg (extension, lordotic angle). Average grades of disk bulging were 0.55 at the neutral position. 0.16 at flexion, and 0.7 at extension. Comparative observation showed that average scores of disk bulging were -0.39 at flexion and 0.31 at extension. The bulging thickness of the disk decreased by 24.2% at flexion and increased by 30.3% at extension, while the diameter of the spinal canal increased by 4.5% at flexion and decreased by 3.6% at extension. The distance from the posterior margin of the disk to the anterior margin of the spinal cord decreased at both flexion(6.6%) and extension(19.1%). Functional MRI showed that compared with the neutral position, disk bulging and spinal stenosis are less prominent at flexion and accentuated

  13. The influence of changes in cervical lordosis on bulging disk and spinal stenosis: functional MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Joon; Eun, Choong Ki [Pusan Paik Hospital, Inje Univ. College of Medicine, Pusan (Korea, Republic of)

    2001-05-01

    To assess the effect of lordotic curve change of the cervical spine on disk bulging and spinal stenosis by means of functional cervical MR imaging at the flexion and extension position. Using a 1.5T imager, kinematic MR examinations of 25 patients with degenerative spondylosis (average age, 41 years) were performed at the neutral, flexed and extended position of the cervical spine. Sagittal T2-weighted turbo spin-echo images were obtained during each of the three phases. Lordotic angle, bulging thickness of the disk, AP diameter of the spinal canal, and distance between the disk and spinal cord were measured on the workstation at each disk level. After qualitative independent observation of disk bulging, one of four grades(0, normal; 1, mild; 2, moderate; 3, marked) was assigned at each phase, and after further comparative observation, one of five scores (-2, prominent decrease; -1, mild decrease; 0, no change; 1, notable increase; 2 prominent increase) was also assigned. In addition, bulging thickness of the disk was measured and compared at the neutral, flexed, and extended positions. Average angles of the cervical spine were 160.5{+-}5.9 deg (neutral position, lordotic angle); 185.4{+-}8.5 deg (flexion, kyphotic angle); and 143.7{+-}6.7 deg (extension, lordotic angle). Average grades of disk bulging were 0.55 at the neutral position. 0.16 at flexion, and 0.7 at extension. Comparative observation showed that average scores of disk bulging were -0.39 at flexion and 0.31 at extension. The bulging thickness of the disk decreased by 24.2% at flexion and increased by 30.3% at extension, while the diameter of the spinal canal increased by 4.5% at flexion and decreased by 3.6% at extension. The distance from the posterior margin of the disk to the anterior margin of the spinal cord decreased at both flexion(6.6%) and extension(19.1%). Functional MRI showed that compared with the neutral position, disk bulging and spinal stenosis are less prominent at flexion and

  14. Chemical Evolution of a Protoplanetary Disk

    Science.gov (United States)

    Semenov, Dmitry A.

    2011-12-01

    In this paper we review recent progress in our understanding of the chemical evolution of protoplanetary disks. Current observational constraints and theoretical modeling on the chemical composition of gas and dust in these systems are presented. Strong variations of temperature, density, high-energy radiation intensities in these disks, both radially and vertically, result in a peculiar disk chemical structure, where a variety of processes are active. In hot, dilute and heavily irradiated atmosphere only the most photostable simple radicals and atoms and atomic ions exist, formed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich ion-molecule and radical-radical chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex polyatomic (organic) species are synthesized. Dynamical processes affect disk chemical composition by enriching it in abundances of complex species produced via slow surface processes, which will become detectable with ALMA.

  15. Contributions of type II and Ib/c supernovae to Galactic chemical evolution

    International Nuclear Information System (INIS)

    Sahijpal Sandeep

    2014-01-01

    Type II and Ib/c supernovae (SNe II and Ib/c) have made major stellar nucleosynthetic contributions to the inventories of stable nuclides during chemical evolution of the Galaxy. A case study is performed here with the help of recently developed numerical simulations of Galactic chemical evolution in the solar neighborhood to understand the contributions of SNe II and Ib/c by comparing the stellar nucleosynthetic yields obtained by two leading groups in this field. These stellar nucleosynthetic yields differ in terms of their treatment of stellar evolution and nucleosynthesis. The formulation describing Galactic chemical evolution is developed with the recently revised solar metallicity of ∼0.014. Furthermore, the recent nucleosynthetic yields of stellar models based on the revised solar metallicity are also used. The analysis suggests that it could be difficult to explain, in a self-consistent manner, the various features associated with the elemental evolutionary trends over Galactic timescales by any single adopted stellar nucleosynthetic model that incorporates SNe II and Ib/c

  16. Spiral Galaxy Central Bulge Tangential Speed of Revolution Curves

    Science.gov (United States)

    Taff, Laurence

    2013-03-01

    The objective was to, for the first time in a century, scientifically analyze the ``rotation curves'' (sic) of the central bulges of scores of spiral galaxies. I commenced with a methodological, rational, geometrical, arithmetic, and statistical examination--none of them carried through before--of the radial velocity data. The requirement for such a thorough treatment is the paucity of data typically available for the central bulge: fewer than 10 observations and frequently only five. The most must be made of these. A consequence of this logical handling is the discovery of a unique model for the central bulge volume mass density resting on the positive slope, linear, rise of its tangential speed of revolution curve and hence--for the first time--a reliable mass estimate. The deduction comes from a known physics-based, mathematically valid, derivation (not assertion). It rests on the full (not partial) equations of motion plus Poisson's equation. Following that is a prediction for the gravitational potential energy and thence the gravitational force. From this comes a forecast for the tangential speed of revolution curve. It was analyzed in a fashion identical to that of the data thereby closing the circle and demonstrating internal self-consistency. This is a hallmark of a scientific method-informed approach to an experimental problem. Multiple plots of the relevant quantities and measures of goodness of fit will be shown. Astronomy related

  17. Analysis of Terminal Metallic Armor Plate Free-Surface Bulging

    National Research Council Canada - National Science Library

    Rapacki, Jr, E. J

    2008-01-01

    An analysis of the bulge formed on the free-surface of the terminal metallic plate of an armor array is shown to lead to reasonable estimates of the armor array's remaining penetration/perforation resistance...

  18. TWO RED CLUMPS AND THE X-SHAPED MILKY WAY BULGE

    International Nuclear Information System (INIS)

    McWilliam, Andrew; Zoccali, Manuela

    2010-01-01

    From Two Micron All Sky Survey infrared photometry, we find two red clump (RC) populations coexisting in fields toward the Galactic bulge at latitudes |b|>5. 0 5, ranging over ∼13 0 in longitude and 20 0 in latitude. These RC peaks indicate two stellar populations separated by ∼2.3 kpc; at (l, b) = (+1, - 8) the two RCs are located at 6.5 and 8.8 ± 0.2 kpc. The double-peaked RC is inconsistent with a tilted bar morphology. Most of our fields show the two RCs at roughly constant distance with longitude, also inconsistent with a tilted bar; however, an underlying bar may be present. Stellar densities in the two RCs change dramatically with longitude: on the positive longitude side the foreground RC is dominant, while the background RC dominates negative longitudes. A line connecting the maxima of the foreground and background populations is tilted to the line of sight by ∼20 0 ±4 0 , similar to claims for the tilt of a Galactic bar. The distance between the two RCs decreases toward the Galactic plane; seen edge-on the bulge is X-shaped, resembling some extragalactic bulges and the results of N-body simulations. The center of this X is consistent with the distance to the Galactic center, although better agreement would occur if the bulge is 2-3 Gyr younger than 47 Tuc. Our observations may be understood if the two RC populations emanate, nearly tangentially, from the Galactic bar ends, in a funnel shape. Alternatively, the X, or double funnel, may continue to the Galactic center. From the Sun, this would appear peanut/box shaped, but X-shaped when viewed tangentially.

  19. New VVV Survey Globular Cluster Candidates in the Milky Way Bulge

    Energy Technology Data Exchange (ETDEWEB)

    Minniti, Dante; Gómez, Matías [Departamento de Física, Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. Fernandez Concha 700, Las Condes, Santiago (Chile); Geisler, Douglas; Fernández-Trincado, Jose G. [Departamento de Astronomía, Casilla 160-C, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Alonso-García, Javier; Beamín, Juan Carlos; Borissova, Jura; Catelan, Marcio; Ramos, Rodrigo Contreras; Kurtev, Radostin; Pullen, Joyce [Instituto Milenio de Astrofísica, Santiago (Chile); Palma, Tali; Clariá, Juan J. [Observatorio Astronómico, Universidad Nacional de Córdoba, Laprida 854, Córdoba (Argentina); Cohen, Roger E. [Space Telescope Science Institute, 2700 San Martin Drive, Baltimore (United States); Dias, Bruno [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Hempel, Maren [Pontificia Universidad Católica de Chile, Instituto de Astrofísica, Av. Vicuña Mackenna 4860, Santiago (Chile); Ivanov, Valentin D. [European Southern Observatory, Karl-Schwarszchild-Str. 2, D-85748 Garching bei Muenchen (Germany); Lucas, Phillip W. [Dept. of Astronomy, University of Hertfordshire, Hertfordshire (United Kingdom); Moni-Bidin, Christian; Alegría, Sebastian Ramírez [Instituto de Astronomía, Universidad Católica del Norte, Antofagasta (Chile); and others

    2017-11-10

    It is likely that a number of Galactic globular clusters remain to be discovered, especially toward the Galactic bulge. High stellar density combined with high and differential interstellar reddening are the two major problems for finding globular clusters located toward the bulge. We use the deep near-IR photometry of the VISTA Variables in the Vía Láctea (VVV) Survey to search for globular clusters projected toward the Galactic bulge, and hereby report the discovery of 22 new candidate globular clusters. These objects, detected as high density regions in our maps of bulge red giants, are confirmed as globular cluster candidates by their color–magnitude diagrams. We provide their coordinates as well as their near-IR color–magnitude diagrams, from which some basic parameters are derived, such as reddenings and heliocentric distances. The color–magnitude diagrams reveal well defined red giant branches in all cases, often including a prominent red clump. The new globular cluster candidates exhibit a variety of extinctions (0.06 < A {sub Ks} < 2.77) and distances (5.3 < D < 9.5 kpc). We also classify the globular cluster candidates into 10 metal-poor and 12 metal-rich clusters, based on the comparison of their color–magnitude diagrams with those of known globular clusters also observed by the VVV Survey. Finally, we argue that the census for Galactic globular clusters still remains incomplete, and that many more candidate globular clusters (particularly the low luminosity ones) await to be found and studied in detail in the central regions of the Milky Way.

  20. Grid sleeve bulge tool

    International Nuclear Information System (INIS)

    Phillips, W.D.; Vaill, R.E.

    1980-01-01

    An improved grid sleeve bulge tool is designed for securing control rod guide tubes to sleeves brazed in a fuel assembly grid. The tool includes a cylinder having an outer diameter less than the internal diameter of the control rod guide tubes. The walls of the cylinder are cut in an axial direction along its length to provide several flexible tines or ligaments. These tines are similar to a fork except they are spaced in a circumferential direction. The end of each alternate tine is equipped with a semispherical projection which extends radially outwardly from the tine surface. A ram or plunger of generally cylindrical configuration and about the same length as the cylinder is designed to fit in and move axially of the cylinder and thereby force the tined projections outwardly when the ram is pulled into the cylinder. The ram surface includes axially extending grooves and plane surfaces which are complimentary to the inner surfaces formed on the tines on the cylinder. As the cylinder is inserted into a control rod guide tube, and the projections on the cylinder placed in a position just below or above a grid strap, the ram is pulled into the cylinder, thus moving the tines and the projections thereon outwardly into contact with the sleeve, to plastically deform both the sleeve and the control rod guide tube, and thereby form four bulges which extend outwardly from the sleeve surface and beyond the outer periphery of the grid peripheral strap. This process is then repeated at the points above the grid to also provide for outwardly projecting surfaces, the result being that the grid is accurately positioned on and mechanically secured to the control rod guide tubes which extend the length of a fuel assembly

  1. Thermal and Chemical Evolution of Collapsing Filaments

    Energy Technology Data Exchange (ETDEWEB)

    Gray, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scannapieco, Evan [Arizona State Univ., Mesa, AZ (United States). School of Earth and Space Exploration

    2013-01-15

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10-3Z filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253, but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  2. Cyril Ponnamperuma Memorial. Trieste conference on chemical evolution, 4: Physics of the origin and evolution of life. Summaries

    International Nuclear Information System (INIS)

    1995-08-01

    The document includes 19 summaries of papers presented at the Trieste Conference on Chemical Evolution, 4: Physics of the Origin and Evolution of Life (Cyril Ponnamperuma Memorial), Miramare, Trieste, 4-8 September 1995. The abstracts have been indexed individually. 3 refs, 1 fig

  3. TYPE Ia SUPERNOVA PROGENITORS AND CHEMICAL ENRICHMENT IN HYDRODYNAMICAL SIMULATIONS. I. THE SINGLE-DEGENERATE SCENARIO

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez, Noelia [School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS, Scotland (United Kingdom); Tissera, Patricia B. [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), CC. 67 Suc. 28, C1428ZAA, Ciudad de Buenos Aires (Argentina); Matteucci, Francesca, E-mail: nj22@st-andrews.ac.uk [Dipartimento di Fisica, Universita’ di Trieste, Via G. B. Tiepolo, 11, I-34100, Trieste (Italy)

    2015-09-10

    The nature of the Type Ia supernova (SN Ia) progenitors remains uncertain. This is a major issue for galaxy evolution models since both chemical and energetic feedback plays a major role in the gas dynamics, star formation, and therefore the overall stellar evolution. The progenitor models for the SNe Ia available in the literature propose different distributions for regulating the explosion times of these events. These functions are known as the delay time distributions (DTDs). This work is the first one in a series of papers aiming at studying five different DTDs for SNe Ia. Here we implement and analyze the single-degenerate (SD) scenario in galaxies dominated by a rapid quenching of the star formation, displaying the majority of the stars concentrated in the bulge component. We find a good fit to both the present observed SN Ia rates in spheroidal-dominated galaxies and the [O/Fe] ratios shown by the bulge of the Milky Way. Additionally, the SD scenario is found to reproduce a correlation between the specific SN Ia rate and the specific star formation rate (sSFR), which closely resembles the observational trend, at variance with previous works. Our results suggest that SN Ia observations in galaxies with very low and very high sSFRs can help to impose more stringent constraints on the DTDs and therefore on SN Ia progenitors.

  4. Was the Milky Way Bulge Formed from the Buckling Disk Instability, Hierarchical Collapse, Accretion of Clumps, or All of the Above?

    Science.gov (United States)

    Nataf, David M.

    2017-09-01

    The assembly of the Milky Way bulge is an old topic in astronomy, one now in a period of renewed and rapid development. That is due to tremendous advances in observations of bulge stars, motivating observations of both local and high-redshift galaxies, and increasingly sophisticated simulations. The dominant scenario for bulge formation is that of the Milky Way as a nearly pure disk galaxy, with the inner disk having formed a bar and buckled. This can potentially explain virtually all bulge stars with [Fe/H] ≳ -1.0, which comprise 95% of the stellar population. The evidence is the incredible success in N-body models of this type in making non-trivial, non-generic predictions, such as the rotation curve and velocity dispersion measured from radial velocities, and the spatial morphologies of the peanut/X-shape and the long bar. The classical bulge scenario, whereby the bulge formed from early dissipative collapse and mergers, remains viable for stars with [Fe/H] ≲ -1.0 and potentially a minority of the other stars. A classical bulge is expected from Λ-CDM cosmological simulations, can accentuate the properties of an existing bar in a hybrid system, and is most consistent with the bulge abundance trends such as [Mg/Fe], which are elevated relative to both the thin and thick disks. Finally, the clumpy-galaxy scenario is considered, as it is the correct description of most Milky Way precursors given observations of high-redshift galaxies. Simulations predict that these star-forming clumps will sometimes migrate to the centres of galaxies where they may form a bulge, and galaxies often include a bulge clump as well. They will possibly form a bar with properties consistent with those of the Milky Way, such as the exponential profile and metallicity gradient. Given the relative successes of these scenarios, the Milky Way bulge is plausibly of composite origin, with a classical bulge and/or inner halo numerically dominant for stars with [Fe/H] ≲ -1.0, a buckling

  5. Conference on chemical evolution and the origin of life

    International Nuclear Information System (INIS)

    1992-10-01

    This report contains 19 summaries of papers presented at the Conference on Chemical Evolution and the Origin of Life held at the International Centre for Theoretical Physics. A separate indexing is provided for each summary

  6. Stochastic evolution of refractory interstellar dust during the chemical evolution of a two-phase interstellar medium

    International Nuclear Information System (INIS)

    Liffman, K.; Clayton, D.D.

    1989-01-01

    The evolution course of refractory interstellar dust during the chemical evolution of a two-phase interstellar medium (ISM) is studied using a simple model of the chemical evolution of ISM. It is assumed that, in this medium, the stars are born in molecular clouds, but new nucleosynthesis products and stellar return are entered into a complementary diffuse medium; the well-mixed matter of each interstellar phase is repeatedly cycled stochastically through the complementary phase and back. The dust is studied on a particle-by-particle bases as it is sputtered by shock waves in the diffuse medium, accretes an amorphous mantle of gaseous refractory atoms while its local medium joins the molecular cloud medium, and encounters the possibility of astration within molecular clouds. Results are presented relevant to the size spectrum of accreted mantles, its age spectrum and the distinction among its several lifetimes, depletion factors of refractory atoms in the diffuse gas, and isotopic anomalies. 26 refs

  7. Looking for imprints of the first stellar generations in metal-poor bulge field stars

    Science.gov (United States)

    Siqueira-Mello, C.; Chiappini, C.; Barbuy, B.; Freeman, K.; Ness, M.; Depagne, E.; Cantelli, E.; Pignatari, M.; Hirschi, R.; Frischknecht, U.; Meynet, G.; Maeder, A.

    2016-09-01

    detected in our sample. The heavy elements Y, Zr, Ba, La, and Eu also exhibit oversolar abundances. Three out of the five stars analysed here show slightly enhanced [Y/Ba] ratios similar to those found in other metal-poor bulge globular clusters (NGC 6522 and M 62). Conclusions: This sample shows enhancement in the first-to-second peak abundance ratios of heavy elements, as well as dominantly s-process element excesses. This can be explained by different nucleosynthesis scenarios: (a) the main r-process plus extra mechanisms, such as the weak r-process; (b) mass transfer from asymptotic giant branch stars in binary systems; (c) an early generation of fast-rotating massive stars. Larger samples of moderately metal-poor bulge stars, with detailed chemical abundances, are needed to better constrain the source of dominantly s-process elements in the early Universe. Observations collected at the European Southern Observatory, Paranal, Chile (ESO), under programmes 089.B-0208(A).

  8. No bulging of floor heating pipes to be expected in case of incomplete floor plastering

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, U

    1983-02-01

    According to advertising slogans floor heating pipes are said to be damaged prematurely by bulges if they are not completely surrounded by flooring plaster. The author has thoroughly dealt with this problem and made the respective measurements. He found out that there are so few bulges occurring that they cannot lead to damages.

  9. The Split Red Clump of the Galactic Bulge from OGLE-III

    Science.gov (United States)

    Nataf, D. M.; Udalski, A.; Gould, A.; Fouqué, P.; Stanek, K. Z.

    2010-09-01

    The red clump (RC) is found to be split into two components along several sightlines toward the Galactic bulge. This split is detected with high significance toward the areas (-3.5 plane. The fainter (hereafter "main") component is the one that more closely follows the distance-longitude relation of the bulge RC. The main component is ~0.5 mag fainter than the secondary component and with an overall approximately equal population. For sightlines further from the plane, the difference in brightness increases, and more stars are found in the secondary component than in the main component. The two components have very nearly equal (V - I) color.

  10. THE VVV SURVEY REVEALS CLASSICAL CEPHEIDS TRACING A YOUNG AND THIN STELLAR DISK ACROSS THE GALAXY’S BULGE

    Energy Technology Data Exchange (ETDEWEB)

    Dékány, I. [Instituto Milenio de Astrofísica, Santiago (Chile); Minniti, D. [Departamento de Física, Facultad de Ciencias Exactas, Universidad Andres Bello, República 220, Santiago (Chile); Majaess, D. [Saint Mary’s University, Halifax, Nova Scotia (Canada); Zoccali, M.; Hajdu, G.; Catelan, M. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago (Chile); Alonso-García, J. [Unidad de Astronomía, Fac. Cs. Básicas, Universidad de Antofagasta, Avda. U. de Antofagasta 02800, Antofagasta (Chile); Gieren, W. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Borissova, J., E-mail: idekany@astro.puc.cl [Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaso (Chile)

    2015-10-20

    Solid insight into the physics of the inner Milky Way is key to understanding our Galaxy’s evolution, but extreme dust obscuration has historically hindered efforts to map the area along the Galactic mid-plane. New comprehensive near-infrared time-series photometry from the VVV Survey has revealed 35 classical Cepheids, tracing a previously unobserved component of the inner Galaxy, namely a ubiquitous inner thin disk of young stars along the Galactic mid-plane, traversing across the bulge. The discovered period (age) spread of these classical Cepheids implies a continuous supply of newly formed stars in the central region of the Galaxy over the last 100 million years.

  11. Micro-Bulges Investigation on Laser Modified Tool Steel Surface

    Directory of Open Access Journals (Sweden)

    Fauzun Fazliana

    2017-01-01

    Full Text Available This paper presents micro-bulges investigation on laser modified tool steel. The aim of this study is to understand the effect of laser irradiance and interaction time on surface morphology configuration. An Nd:YAG laser system with TEM00 pulse processing mode was used to modify the samples. Metallographic study shows samples were analyzed for focal position effect on melted pool size, angle of peaks geometry and laser modified layer depth. Surface morphology were analyzed for surface roughness. Laser modified layer shows depth ranged between 42.22 and 420.12 μm. Angle of peak bulge was found to be increase with increasing peak power. The maximum roughness, Ra, achieved in modified H13 was 21.10 μm. These findings are significant to enhance surface properties of laser modified steel and cast iron for dies and high wear resistance applications.

  12. COLORS AND COLOR GRADIENTS IN BULGES OF GALAXIES

    NARCIS (Netherlands)

    BALCELLS, M; PELETIER, RF

    We have obtained surface photometry in U, B, R, and I for a complete optically selected sample of 45 early-type spiral galaxies, to investigate the colors and color gradients of spiral bulges. Color profiles in U-R, B-R, U-B, and R-I have been determined in wedges opening on the semiminor axes.

  13. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Gao Hua [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2017-08-20

    The development of two-dimensional (2D) bulge-to-disk decomposition techniques has shown their advantages over traditional one-dimensional (1D) techniques, especially for galaxies with non-axisymmetric features. However, the full potential of 2D techniques has yet to be fully exploited. Secondary morphological features in nearby disk galaxies, such as bars, lenses, rings, disk breaks, and spiral arms, are seldom accounted for in 2D image decompositions, even though some image-fitting codes, such as GALFIT, are capable of handling them. We present detailed, 2D multi-model and multi-component decomposition of high-quality R -band images of a representative sample of nearby disk galaxies selected from the Carnegie-Irvine Galaxy Survey, using the latest version of GALFIT. The sample consists of five barred and five unbarred galaxies, spanning Hubble types from S0 to Sc. Traditional 1D decomposition is also presented for comparison. In detailed case studies of the 10 galaxies, we successfully model the secondary morphological features. Through a comparison of best-fit parameters obtained from different input surface brightness models, we identify morphological features that significantly impact bulge measurements. We show that nuclear and inner lenses/rings and disk breaks must be properly taken into account to obtain accurate bulge parameters, whereas outer lenses/rings and spiral arms have a negligible effect. We provide an optimal strategy to measure bulge parameters of typical disk galaxies, as well as prescriptions to estimate realistic uncertainties of them, which will benefit subsequent decomposition of a larger galaxy sample.

  14. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies

    Science.gov (United States)

    Gao, Hua; Ho, Luis C.

    2017-08-01

    The development of two-dimensional (2D) bulge-to-disk decomposition techniques has shown their advantages over traditional one-dimensional (1D) techniques, especially for galaxies with non-axisymmetric features. However, the full potential of 2D techniques has yet to be fully exploited. Secondary morphological features in nearby disk galaxies, such as bars, lenses, rings, disk breaks, and spiral arms, are seldom accounted for in 2D image decompositions, even though some image-fitting codes, such as GALFIT, are capable of handling them. We present detailed, 2D multi-model and multi-component decomposition of high-quality R-band images of a representative sample of nearby disk galaxies selected from the Carnegie-Irvine Galaxy Survey, using the latest version of GALFIT. The sample consists of five barred and five unbarred galaxies, spanning Hubble types from S0 to Sc. Traditional 1D decomposition is also presented for comparison. In detailed case studies of the 10 galaxies, we successfully model the secondary morphological features. Through a comparison of best-fit parameters obtained from different input surface brightness models, we identify morphological features that significantly impact bulge measurements. We show that nuclear and inner lenses/rings and disk breaks must be properly taken into account to obtain accurate bulge parameters, whereas outer lenses/rings and spiral arms have a negligible effect. We provide an optimal strategy to measure bulge parameters of typical disk galaxies, as well as prescriptions to estimate realistic uncertainties of them, which will benefit subsequent decomposition of a larger galaxy sample.

  15. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies

    International Nuclear Information System (INIS)

    Gao Hua; Ho, Luis C.

    2017-01-01

    The development of two-dimensional (2D) bulge-to-disk decomposition techniques has shown their advantages over traditional one-dimensional (1D) techniques, especially for galaxies with non-axisymmetric features. However, the full potential of 2D techniques has yet to be fully exploited. Secondary morphological features in nearby disk galaxies, such as bars, lenses, rings, disk breaks, and spiral arms, are seldom accounted for in 2D image decompositions, even though some image-fitting codes, such as GALFIT, are capable of handling them. We present detailed, 2D multi-model and multi-component decomposition of high-quality R -band images of a representative sample of nearby disk galaxies selected from the Carnegie-Irvine Galaxy Survey, using the latest version of GALFIT. The sample consists of five barred and five unbarred galaxies, spanning Hubble types from S0 to Sc. Traditional 1D decomposition is also presented for comparison. In detailed case studies of the 10 galaxies, we successfully model the secondary morphological features. Through a comparison of best-fit parameters obtained from different input surface brightness models, we identify morphological features that significantly impact bulge measurements. We show that nuclear and inner lenses/rings and disk breaks must be properly taken into account to obtain accurate bulge parameters, whereas outer lenses/rings and spiral arms have a negligible effect. We provide an optimal strategy to measure bulge parameters of typical disk galaxies, as well as prescriptions to estimate realistic uncertainties of them, which will benefit subsequent decomposition of a larger galaxy sample.

  16. THE BULGE OF M-104 - STELLAR CONTENT AND KINEMATICS

    NARCIS (Netherlands)

    HES, R; PELETIER, RF

    Optical and near-infrared surface photometry of the bulge of M 104, the Sombrero Galaxy, is presented. From these data we have determined the radial variations of colours along the minor axis. We also present absorption line strength gradients of a number of metal lines and molecular bands. The

  17. Genetically induced cell death in bulge stem cells reveals their redundancy for hair and epidermal regeneration.

    Science.gov (United States)

    Driskell, Iwona; Oeztuerk-Winder, Feride; Humphreys, Peter; Frye, Michaela

    2015-03-01

    Adult mammalian epidermis contains multiple stem cell populations in which quiescent and more proliferative stem and progenitor populations coexist. However, the precise interrelation of these populations in homeostasis remains unclear. Here, we blocked the contribution of quiescent keratin 19 (K19)-expressing bulge stem cells to hair follicle formation through genetic ablation of the essential histone methyltransferase Setd8 that is required for the maintenance of adult skin. Deletion of Setd8 eliminated the contribution of bulge cells to hair follicle regeneration through inhibition of cell division and induction of cell death, but the growth and morphology of hair follicles were unaffected. Furthermore, ablation of Setd8 in the hair follicle bulge blocked the contribution of K19-postive stem cells to wounded epidermis, but the wound healing process was unaltered. Our data indicate that quiescent bulge stem cells are dispensable for hair follicle regeneration and epidermal injury in the short term and support the hypothesis that quiescent and cycling stem cell populations are equipotent. © 2014 AlphaMed Press.

  18. Abundance gradients in disc galaxies and chemical evolution models

    International Nuclear Information System (INIS)

    Diaz, A.I.

    1989-01-01

    The present state of abundance gradients and chemical evolution models of spiral galaxies is reviewed. An up to date compilation of abundance data in the literature concerning HII regions over galactic discs is presented. From these data Oxygen and Nitrogen radial gradients are computed. The slope of the Oxygen gradient is shown to have a break at a radius between 1.5 and 1.75 times the value of the effective radius of the disc, i.e. the radius containing half of the light of the disc. The gradient is steeper in the central parts of the disc and becomes flatter in the outer parts. N/O gradients are shown to be rather different from galaxy to galaxy and only a weak trend of N/O with O/H is found. The existing chemical evolution models for spiral galaxies are reviewed with special emphasis in the interpretation of numerical models having a large number of parameters. (author)

  19. Primordial and Stellar Nucleosynthesis Chemical Evolution of Galaxies

    International Nuclear Information System (INIS)

    Chiosi, Cesare

    2010-01-01

    Following a brief introduction to early Universe cosmology, we present in some detail the results of primordial nucleosynthesis. Then we summarize the basic theory of nuclear reactions in stars and sketch the general rules of stellar evolution. We shortly review the subject of supernova explosions both by core collapse in massive stars (Type II) and carbon-deflagration in binary systems when one of the components is a White Dwarf accreting mass from the companion (Type Ia). We conclude the part dedicated to nucleosynthesis with elementary notions on the s- and r-process. Finally, we shortly address the topic of galactic chemical evolution and highlight some simple solutions aimed at understanding the main observational data on abundances and abundance ratios.

  20. Evolution of weak perturbations in gas-solid suspension with chemical reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sharypov, O.V. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Novosibirsk State Univ. (Russian Federation); Anufriev, I.S. [Novosibirsk State Univ. (Russian Federation)

    2013-07-01

    Dynamics of weak finite-amplitude perturbations in two-phase homogeneous medium (gas + solid particles) with non-equilibrium chemical reaction in gas is studied theoretically. Non-linear model of plane perturbation evolution is substantiated. The model takes into account wave-kinetic interaction and dissipation effects, including inter-phase heat and momentum transfer. Conditions for uniform state of the system are analyzed. Non-linear equation describing evolution of plane perturbation is derived under weak dispersion and dissipation effects. The obtained results demonstrate self-organization in the homogeneous system: steady-state periodic structure arises, its period, amplitude and velocity depends on the features of the medium. The dependencies of these parameters on dissipation and chemical kinetics are analyzed.

  1. DISCOVERY OF RR LYRAE STARS IN THE NUCLEAR BULGE OF THE MILKY WAY

    Energy Technology Data Exchange (ETDEWEB)

    Minniti, Dante; Ramos, Rodrigo Contreras; Zoccali, Manuela; Gran, Felipe [Instituto Milenio de Astrofisica, Santiago (Chile); Rejkuba, Marina; Valenti, Elena [European Southern Observatory, Karl-Schwarszchild-Str. 2, D-85748 Garching bei Muenchen (Germany); Gonzalez, Oscar A., E-mail: dante@astrofisica.cl, E-mail: rcontrer@astro.puc.cl [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom)

    2016-10-10

    Galactic nuclei, such as that of the Milky Way, are extreme regions with high stellar densities, and in most cases, the hosts of a supermassive black hole. One of the scenarios proposed for the formation of the Galactic nucleus is merging of primordial globular clusters. An implication of this model is that this region should host stars that are characteristically found in old Milky Way globular clusters. RR Lyrae stars are primary distance indicators, well known representatives of old and metal-poor stellar populations, and therefore are regularly found in globular clusters. Here we report the discovery of a dozen RR Lyrae type ab stars in the vicinity of the Galactic center, i.e., in the so-called nuclear stellar bulge of the Milky Way. This discovery provides the first direct observational evidence that the Galactic nuclear stellar bulge contains ancient stars (>10 Gyr old). Based on this we conclude that merging globular clusters likely contributed to the build-up of the high stellar density in the nuclear stellar bulge of the Milky Way.

  2. PRECISE BLACK HOLE MASSES FROM MEGAMASER DISKS: BLACK HOLE-BULGE RELATIONS AT LOW MASS

    International Nuclear Information System (INIS)

    Greene, Jenny E.; Peng, Chien Y.; Kim, Minjin; Kuo, Cheng-Yu; Braatz, James A.; Impellizzeri, C. M. Violette; Condon, James J.; Lo, K. Y.; Henkel, Christian; Reid, Mark J.

    2010-01-01

    The black hole (BH)-bulge correlations have greatly influenced the last decade of efforts to understand galaxy evolution. Current knowledge of these correlations is limited predominantly to high BH masses (M BH ∼>10 8 M sun ) that can be measured using direct stellar, gas, and maser kinematics. These objects, however, do not represent the demographics of more typical L 2 O megamasers in circumnuclear disks. The masers trace the Keplerian rotation of circumnuclear molecular disks starting at radii of a few tenths of a pc from the central BH. Modeling of the rotation curves, presented by Kuo et al., yields BH masses with exquisite precision. We present stellar velocity dispersion measurements for a sample of nine megamaser disk galaxies based on long-slit observations using the B and C spectrograph on the Dupont telescope and the Dual Imaging Spectrograph on the 3.5 m telescope at Apache Point. We also perform bulge-to-disk decomposition of a subset of five of these galaxies with Sloan Digital Sky Survey imaging. The maser galaxies as a group fall below the M BH -σ * relation defined by elliptical galaxies. We show, now with very precise BH mass measurements, that the low-scatter power-law relation between M BH and σ * seen in elliptical galaxies is not universal. The elliptical galaxy M BH -σ * relation cannot be used to derive the BH mass function at low mass or the zero point for active BH masses. The processes (perhaps BH self-regulation or minor merging) that operate at higher mass have not effectively established an M BH -σ * relation in this low-mass regime.

  3. Chemical evolution of the Magellanic Clouds

    Science.gov (United States)

    Barbuy, B.; de Freitas Pacheco, J. A.; Idiart, T.

    We have obtained integrated spectra for 14 clusters in the Magellanic Clouds, on which the spectral indices Hβ, Mg2, Fe5270, Fe5335 were measured. Selecting indices whose behaviour depends essentially on age and metallicity (Hβ and ), together with (B-V) and (V-K) colours, we were able to determine age and metallicities for these clusters, using calibrations based on single stellar population models (Borges et al. 1995). A chemical evolution model which follows a star formation history as indicated by the field population is checked with the age and metallicity data for our sample star clusters.

  4. Chemical evolution and the origin of life: cumulative keyword subject index 1970-1986

    Science.gov (United States)

    Roy, A. C.; Powers, J. V.; Rummel, J. D. (Principal Investigator)

    1990-01-01

    This cumulative subject index encompasses the subject indexes of the bibliographies on Chemical Evolution and the Origin of Life that were first published in 1970 and have continued through publication of the 1986 bibliography supplement. Early bibliographies focused on experimental and theoretical material dealing directly with the concepts of chemical evolution and the origin of life, excluding the broader areas of exobiology, biological evolution, and geochemistry. In recent years, these broader subject areas have also been incorporated as they appear in literature searches relating to chemical evolution and the origin of life, although direct attempts have not been made to compile all of the citations in these broad areas. The keyword subject indexes have also undergone an analogous change in scope. Compilers of earlier bibliographies used the most specific term available in producing the subject index. Compilers of recent bibliographies have used a number of broad terms relating to the overall subject content of each citation and specific terms where appropriate. The subject indexes of these 17 bibliographies have, in general, been cumulatively compiled exactly as they originally appeared. However, some changes have been made in an attempt to correct errors, combine terms, and provide more meaningful terms.

  5. Towards understanding the dynamics of the bar/bulge region in our Galaxy

    Directory of Open Access Journals (Sweden)

    Athanassoula E.

    2012-02-01

    Full Text Available I review some of the work on bars which is closely linked to the bar/bulge system in our Galaxy. Several independent studies, using totally independent methods, come to the same results about the 3D structure of a bar, i.e., that a bar is composed of a vertically thick inner part and a vertically thin outer part. I give examples of this from simulations and substantiate the discussion with input from orbital structure analysis and from observations. The thick part has a considerably shorter radial extent than the thin part. I then see how this applies to our Galaxy, where two bars have been reported, the COBE/DIRBE bar and the Long bar. Comparing their extents and making the reasonable and necessary assumption that our Galaxy has properties similar to those of other galaxies of similar type, leads to the conclusion that these two bars can not form a standard double bar system. I then discuss arguments in favour of the two bars being simply different parts of the same bar, the COBE/DIRBE bar being the thick inner part and the Long bar being the thin outer part of this bar. I also very briefly discuss some related new results. I first consider bar formation and evolution in disc galaxies with a gaseous component – including star formation, feedback and evolution – and a triaxial halo. Then I consider bar formation in a fully cosmological context using hydrodynamical LCDM simulations, where the host galaxies grow, accrete matter and significantly evolve during the formation and evolution of the bar.

  6. Disk Model with Central Bulge for Galaxy M94

    International Nuclear Information System (INIS)

    Jalocha, J.; Bratek, L.; Kutschera, M.

    2010-01-01

    A global disk model for spiral galaxies is modified by adding a spherical component to the galactic center to account for the presence of a central spherical bulge. It is verified whether such modification could be substantial for predictions of total mass and of its distribution in spiral galaxy M94. (authors)

  7. Research on Al-alloy sheet forming formability during warm/hot sheet hydroforming based on elliptical warm bulging test

    Science.gov (United States)

    Cai, Gaoshen; Wu, Chuanyu; Gao, Zepu; Lang, Lihui; Alexandrov, Sergei

    2018-05-01

    An elliptical warm/hot sheet bulging test under different temperatures and pressure rates was carried out to predict Al-alloy sheet forming limit during warm/hot sheet hydroforming. Using relevant formulas of ultimate strain to calculate and dispose experimental data, forming limit curves (FLCS) in tension-tension state of strain (TTSS) area are obtained. Combining with the basic experimental data obtained by uniaxial tensile test under the equivalent condition with bulging test, complete forming limit diagrams (FLDS) of Al-alloy are established. Using a quadratic polynomial curve fitting method, material constants of fitting function are calculated and a prediction model equation for sheet metal forming limit is established, by which the corresponding forming limit curves in TTSS area can be obtained. The bulging test and fitting results indicated that the sheet metal FLCS obtained were very accurate. Also, the model equation can be used to instruct warm/hot sheet bulging test.

  8. a Study of the AGB in Local Group Bulge Populations

    Science.gov (United States)

    Rich, R.

    1994-01-01

    We propose to survey the bolometric luminosities, colors, and space distribution of the most luminous asymptotic giant branch (AGB) stars in the bulges of M31, M32, and M33. We seek to discover whether the bulges of these galaxies are relatively young, of order 10 Gyr rather than 15 Gyr. We will use WFPC2 and the R, I, and F1042M (1 micron) filters. Knowing that F1042M falls on the first continuum point of M giants, we have shown that we can use 1.04 micron fluxes to reliably calculate bolometric magnitudes for these very red stars. Color information from R and I will permit (1) comparison with Galactic bulge M giants, (2) an estimate of the spread of abundance and (3) increase the accuracy of the bolometric magnitudes. Frames with the damaged HST show signs of resolution to within 3" of the M31 nucleus; Red images with the aberrated HST show a red star cluster associated with the nucleus. Ground-based studies of M32 find an intermediate-age population from spectroscopy and infrared photometry. The repaired HST should resolve stars close to the nuclei of these galaxies. We will measure bolometric luminosity functions to determine if the populations are intermediate age, and attempt to measure the abundance range for stars near the nuclei of these galaxies. If metals have been lost due to winds, theory predicts that we should see a substantial spread of abundances even near the nucleus.

  9. Proton nuclear magnetic resonance studies on bulge-containing DNA oligonucleotides from a mutational hot-spot sequence

    International Nuclear Information System (INIS)

    Woodson, S.A.; Crothers, D.M.

    1987-01-01

    A series of bulge-containing and normal double-helical synthetic oligodeoxyribonucleotides, of sequence corresponding to a frame-shift mutational hot spot in the λ C/sub I/ gene, are compared by proton magnetic resonance spectroscopy at 500 MHz. The imino proton resonances are assigned by one-dimensional nuclear Overhauser effect spectroscopy. Nonselective T 1 inversion-recovery experiments are used to determine exchangeable proton lifetimes and to compare helix stability and dynamics of the three duplexes. An extra adenosine flanking the internal G-C base pairs has a strongly localized effect on helix stability, but the destabilizing effect of an extra cytidine in a C tract is delocalized over the entire G-C run. These data lead to the conclusion that the position of the bulge migrates along the run in the fast-exchange limit on the NMR time scale. Rapid migration of the bulge defect in homopolymeric sequences may help rationalize both frame-shift mutagenesis and translational frame shifting. The authors estimate that the unfavorable free energy of a localized bulge defect is 2.9-3.2 kcal/mol, in good agreement with earlier estimates for RNA helices

  10. X-ray spectral models of Galactic bulge sources - the emission-line factor

    International Nuclear Information System (INIS)

    Vrtilek, S.D.; Swank, J.H.; Kallman, T.R.

    1988-01-01

    Current difficulties in finding unique and physically meaningful models for the X-ray spectra of Galactic bulge sources are exacerbated by the presence of strong, variable emission and absorption features that are not resolved by the instruments observing them. Nine Einstein solid state spectrometer (SSS) observations of five Galactic bulge sources are presented for which relatively high resolution objective grating spectrometer (OGS) data have been published. It is found that in every case the goodness of fit of simple models to SSS data is greatly improved by adding line features identified in the OGS that cannot be resolved by the SSS but nevertheless strongly influence the spectra observed by SSS. 32 references

  11. Deep JHK Photometry and the Infrared Luminosity Function of the Galactic Bulge

    Science.gov (United States)

    Tiede, Glenn P.; Frogel, Jay A.; Terndrup, D. M.

    1995-03-01

    We derive the deepest, most complete near-IR luminosity function for Galactic bulge stars yet obtained based on new JHK photometry for stars in two fields of Baade's Window. When combined with previously published data, we are able to construct a luminosity function over the range 5.5 Blanco, V.M., & Whitford, A.E. 1990, ApJ, 353, 494). Between b = -3 and -12 we find a gradient in [Fe/H] of -0.06 +/- 0.03 dex/degree, consistent with other, independent derivations. We derive a helium abundance for Baade's Window with the R and R(') methods and find that Y = 0.27 +/- 0.03. Finally, we find that the bolometric corrections for bulge K giants (V - K >= 2) are in excellent agreement with empirical derivations based on observations of globular cluster and local field stars. However, for the redder M giants we find, as did Frogel and Whitford 1987, that the bolometric corrections differ by several tenths of a magnitude from those derived for field giants and adopted in the Revised Yale Isochrones. This difference most likely arises from the excess molecular blanketing in the V and I bands of the bulge giants relative to that seen in field stars.

  12. EVOLUTION OF GASEOUS DISK VISCOSITY DRIVEN BY SUPERNOVA EXPLOSION. II. STRUCTURE AND EMISSIONS FROM STAR-FORMING GALAXIES AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Yan Changshuo; Wang Jianmin

    2010-01-01

    High spatial resolution observations show that high-redshift galaxies are undergoing intensive evolution of dynamical structure and morphologies displayed by the Hα, Hβ, [O III], and [N II] images. It has been shown that supernova explosion (SNexp) of young massive stars during the star formation epoch, as kinetic feedback to host galaxies, can efficiently excite the turbulent viscosity. We incorporate the feedback into the dynamical equations through mass dropout and angular momentum transportation driven by the SNexp-excited turbulent viscosity. The empirical Kennicutt-Schmidt law is used for star formation rates (SFRs). We numerically solve the equations and show that there can be intensive evolution of structure of the gaseous disk. Secular evolution of the disk shows interesting characteristics: (1) high viscosity excited by SNexp can efficiently transport the gas from 10 kpc to ∼1 kpc forming a stellar disk whereas a stellar ring forms for the case with low viscosity; (2) starbursts trigger SMBH activity with a lag of ∼10 8 yr depending on SFRs, prompting the joint evolution of SMBHs and bulges; and (3) the velocity dispersion is as high as ∼100 km s -1 in the gaseous disk. These results are likely to vary with the initial mass function (IMF) that the SNexp rates rely on. Given the IMF, we use the GALAXEV code to compute the spectral evolution of stellar populations based on the dynamical structure. In order to compare the present models with the observed dynamical structure and images, we use the incident continuum from the simple stellar synthesis and CLOUDY to calculate emission line ratios of Hα, Hβ, [O III], and [N II], and Hα brightness of gas photoionized by young massive stars formed on the disks. The models can produce the main features of emission from star-forming galaxies. We apply the present model to two galaxies, BX 389 and BX 482 observed in the SINS high-z sample, which are bulge and disk-dominated, respectively. Two successive

  13. Conformation and dynamics of nucleotides in bulges and symmetric internal loops in duplex DNA studied by EPR and fluorescence spectroscopies

    International Nuclear Information System (INIS)

    Cekan, Pavol; Sigurdsson, Snorri Th.

    2012-01-01

    Highlights: ► Bulges and loops were studied by both EPR and fluorescence spectroscopies using the probe Ç/Ç f . ► One-base bulge was in a temperature-dependent equilibrium between looped-out and stacked states. ► Bases in two- and three-base bulges were stacked at all temperatures, resulting in DNA bending. ► Bases were stacked in symmetrical two- to five-base internal loops, according to EPR data. ► Unexpectedly high fluorescence for the smaller loops indicated local structural perturbations. -- Abstract: The dynamics and conformation of base bulges and internal loops in duplex DNA were studied using the bifunctional spectroscopic probe Ç, which becomes fluorescent (Ç f ) upon reduction of the nitroxide functional group, along with EPR and fluorescence spectroscopies. A one-base bulge was in a conformational equilibrium between looped-out and stacked states, the former favored at higher temperature and the latter at lower temperature. Stacking of bulge bases was favored in two- and three-base bulges, independent of temperature, resulting in DNA bending as evidenced by increased fluorescence of Ç f . EPR spectra of Ç-labeled three-, four- and five-base symmetrical interior DNA bulges at 20 °C showed low mobility, indicating that the spin-label was stacked within the loop. The spin-label mobility at 37 °C increased as the loops became larger. A considerable variation in fluorescence between different loops was observed, as well as a temperature-dependence within constructs. Fluorescence unexpectedly increased as the size of the loop decreased at 2 °C. Fluorescence of the smallest loops, where a single T·T mismatch was located between the stem region and the probe, was even larger than for the single strand, indicating a considerable local structural deformation of these loops from regular B-DNA. These results show the value of combining EPR and fluorescence spectroscopy to study non-helical regions of nucleic acids.

  14. Limited Influence of Oxygen on the Evolution of Chemical Diversity in Metabolic Networks

    Directory of Open Access Journals (Sweden)

    Kazuhiro Takemoto

    2013-10-01

    Full Text Available Oxygen is thought to promote species and biomolecule diversity. Previous studies have suggested that oxygen expands metabolic networks by acquiring metabolites with different chemical properties (higher hydrophobicity, for example. However, such conclusions are typically based on biased evaluation, and are therefore non-conclusive. Thus, we re-investigated the effect of oxygen on metabolic evolution using a phylogenetic comparative method and metadata analysis to reduce the bias as much as possible. Notably, we found no difference in metabolic network expansion between aerobes and anaerobes when evaluating phylogenetic relationships. Furthermore, we showed that previous studies have overestimated or underestimated the degrees of differences in the chemical properties (e.g., hydrophobicity between oxic and anoxic metabolites in metabolic networks of unicellular organisms; however, such overestimation was not observed when considering the metabolic networks of multicellular organisms. These findings indicate that the contribution of oxygen to increased chemical diversity in metabolic networks is lower than previously thought; rather, phylogenetic signals and cell-cell communication result in increased chemical diversity. However, this conclusion does not contradict the effect of oxygen on metabolic evolution; instead, it provides a deeper understanding of how oxygen contributes to metabolic evolution despite several limitations in data analysis methods.

  15. Bulging of pressure tubes at hot spots under LOCA conditions

    International Nuclear Information System (INIS)

    Manu, C.; Shewfelt, R.S.W.; Wright, A.C.D.; Aboud, R.; Lau, J.H.K.; Sanderson, D.B.

    1996-01-01

    During certain postulated loss-of-coolant accidents (LOCA) in a CANDU reactor, some fuel channels can become highly voided within a very short time. Although the pressure tubes are heated mainly by convection and thermal radiation during the LOCA transient, additional heat flow occurs through the bearing pads that are in contact with the pressure tribe. This contact can lead to local hot spots and associated thermal stresses in the pressure tube wall. The two factors that affects the behavior of the pressure tubes during LOCA conditions are the internal pressure and the local heating. Although the effect of internal pressure and of axially uniform temperature has been studied elsewhere, the effect of the local heating on the pressure tube behavior has not been modelled before. This paper shows that the bulging of a pressure tube at a hot spot is the result of the thermal stresses that are developed in a pressure tube during a LOCA transient. To isolate the local heating effect from the internal pressure, a series of single-effect experiments was performed. In these experiments, sections of a CANDU pressure tube were subjected to local heating only. The thermal profile and the local deformation were measured function of time. To quantify the effect of the thermal stresses on the bulging of pressure tubes at hot spots and to develop numerical tools that can predict such bulging, finite element analyses were performed rising the ABAQUS finite element computer code. Use of the measured thermal profiles in the ABAQUS finite element analysis, resulted in very good agreement between the predicted and measured displacements. (author)

  16. The origin of nitrogen and the chemical evolution of spiral galaxies

    OpenAIRE

    Díaz, Angeles I.; Tosi, M.

    1986-01-01

    This is an electronic version of an article published in Astronomy and Astrophysics. Diaz, A.I. and M. Tosi. The origin of nitrogen and the chemical evolution of spiral galaxies. Astronomy and Astrophysics 158 (1986): 60-66

  17. The next generation of galaxy evolution models: A symbiosis of stellar populations and chemical abundances

    Science.gov (United States)

    Kotulla, Ralf

    2012-10-01

    Over its lifespan Hubble has invested significant effort into detailed observations of galaxies both in the local and distant universe. To extract the physical information from the observed {spectro-}photometry requires detailed and accurate models. Stellar population synthesis models are frequently used to obtain stellar masses, star formation rate, galaxy ages and star formation histories. Chemical evolution models offer another valuable and complementary approach to gain insight into many of the same aspects, yet these two methods have rarely been used in combination.Our proposed next generation of galaxy evolution models will help us improve our understanding of how galaxies form and evolve. Building on GALEV evolutionary synthesis models we incorporate state-of-the-art input physics for stellar evolution of binaries and rotating stars as well as new spectral libraries well matched to the modern observational capabilities. Our improved chemical evolution model allows us to self-consistently trace abundances of individual elements, fully accounting for the increasing initial abundances of successive stellar generations. GALEV will support variable Initial Mass Functions {IMF}, enabling us to test recent observational findings of a non-universal IMF by predicting chemical properties and integrated spectra in an integrated and consistent manner.HST is the perfect instrument for testing this approach. Its wide wavelength coverage from UV to NIR enables precise SED fitting, and with its spatial resolution we can compare the inferred chemical evolution to studies of star clusters and resolved stellar populations in nearby galaxies.

  18. Characterization of Friction Stir Welded Tubes by Means of Tube Bulge Test

    International Nuclear Information System (INIS)

    D'Urso, G.; Longo, M.; Giardini, C.

    2011-01-01

    Mechanical properties of friction stir welded joints are generally evaluated by means of conventional tensile test. This testing method might provide insufficient information because maximum strain obtained in tensile test before necking is small; moreover, the application of tensile test is limited when the joint path is not linear or even when the welds are executed on curved surfaces. Therefore, in some cases, it would be preferable to obtain the joints properties from other testing methods. Tube bulge test can be a valid solution for testing circumferential or longitudinal welds executed on tubular workpieces. The present work investigates the mechanical properties and the formability of friction stir welded tubes by means of tube bulge tests. The experimental campaign was performed on tubular specimens having a thickness of 3 mm and an external diameter of 40 mm, obtained starting from two semi-tubes longitudinally friction stir welded. The first step, regarding the fabrication of tubes, was performed combining a conventional forming process and friction stir welding. Sheets in Al-Mg-Si-Cu alloy AA6060 T6 were adopted for this purpose. Plates having a dimension of 225x60 mm were bent (with a bending axis parallel to the main dimension) in order to obtain semi-tubes. A particular care was devoted to the fabrication of forming devices (punch and die) in order to minimize the springback effects. Semi-tubes were then friction stir welded by means of a CNC machine tool. Some preliminary tests were carried out by varying the welding parameters, namely feed rate and rotational speed. A very simple tool having flat shoulder and cylindrical pin was used. The second step of the research was based on testing the welded tubes by means of tube bulge test. A specific equipment having axial actuators with a conical shape was adopted for this study. Some analyses were carried out on the tubes bulged up to a certain pressure level. In particular, the burst pressure and the

  19. Elemental abundances in the Galactic bulge from microlensed dwarf stars

    NARCIS (Netherlands)

    Bensby, T.; Feltzing, S.; Johnson, J.A.; Gould, A.; Sana, H.; Gal-Yam, A.; Asplund, M.; Lucatello, S.; Melendez, J.; Udalski, A.; Kubas, D.; James, G.; Adén, D.; Simmerer, J.

    2010-01-01

    We present elemental abundances of 13 microlensed dwarf and subgiant stars in the Galactic bulge, which constitute the largest sample to date. We show that these stars span the full range of metallicity from Fe/H= −0.8 to +0.4, and that they follow well-defined abundance trends, coincident with

  20. Bulging of cans containing plutonium residues. Summary report

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Wood, D.H.; Condit, R.H.; Shikany, S.D.

    1996-03-01

    In 1994, two cans in the Lawrence Livermore National Laboratory Plutonium Facility were found to be bulging as a result of the generation of gases form the plutonium ash residues contained in the cans. This report describes the chronology of this discovery, the response actions that revealed other pressurized cans, the analysis of the causes, the short-term remedial action, a followup inspection of the short-term storage packages, and a review of proposed long-term remedial options

  1. Modelling of chemical evolution of low pH cements at long term

    International Nuclear Information System (INIS)

    El Bitouri, Y.; Buffo-Lacarriere, L.; Sellier, A.; Bourbon, X.

    2015-01-01

    In the context of the underground radioactive waste repository, low-pH cements were developed to reduce interactions between concrete and clay barrier. These cements contain high proportions of mineral additions like silica fume, fly ash or blast furnace slag for example. The high ratio of cement replacement by pozzolanic additions allows to reduce the pH by a global reduction of Ca/Si ratio of the hydrates (according to the one observed on CEM I pastes). In order to predict the short term development of the hydration for each component of this cement, a multiphasic hydration model, previously developed, is used. The model predicts the evolution of hydration degree of each anhydrous phase and consequently the quantity of each hydrate in paste (CH, aluminates, CSH with different Ca/Si ratios). However, this model is not suitable to determine the long term mineralogical and chemical evolution of the material, due to the internal change induced by chemical imbalance between initial hydrates. In order to evaluate the chemical characteristics of low pH cement based materials, and thus assess its chemical stability in the context of radioactive waste storage, a complementary model of chemical evolution at long term is proposed. This original model is based on 'solid-solution' principles. It assumes that the microdiffusion of calcium plays a major role to explain how the different Ca/Si ratio of initial C-S-H tends together toward a medium stabilized value. The main mechanisms and full development of the model equations are presented first. Next, a comparison of the model with experimental data issue from EDS (Energy Dispersive X-ray Spectroscopy) analysis on low pH cement allows to test the model. (authors)

  2. Correlated evolution of herbivory and food chemical discrimination in iguanian and ambush foraging lizards

    OpenAIRE

    William E. Cooper

    2003-01-01

    To efficiently locate and assess foods, animal sensory capacities and behavioral discriminations based on them must be appropriate for the diet and method of hunting. In lizards, actively foraging insectivores identify animal prey using lingually sampled chemical cues, but ambush foragers do not. Among plant eaters derived from active foragers, plant chemical discrimination is added to prey chemical discrimination, resulting in correlated evolution of plant diet and plant chemical discriminat...

  3. The population of single and binary white dwarfs of the Galactic bulge

    Science.gov (United States)

    Torres, S.; García-Berro, E.; Cojocaru, R.; Calamida, A.

    2018-05-01

    Recent Hubble Space Telescope observations have unveiled the white dwarf cooling sequence of the Galactic bulge. Although the degenerate sequence can be well fitted employing the most up-to-date theoretical cooling sequences, observations show a systematic excess of red objects that cannot be explained by the theoretical models of single carbon-oxygen white dwarfs of the appropriate masses. Here, we present a population synthesis study of the white dwarf cooling sequence of the Galactic bulge that takes into account the populations of both single white dwarfs and binary systems containing at least one white dwarf. These calculations incorporate state-of-the-art cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, for both white dwarfs with carbon-oxygen and helium cores, and also take into account detailed prescriptions of the evolutionary history of binary systems. Our Monte Carlo simulator also incorporates all the known observational biases. This allows us to model with a high degree of realism the white dwarf population of the Galactic bulge. We find that the observed excess of red stars can be partially attributed to white dwarf plus main sequence binaries, and to cataclysmic variables or dwarf novae. Our best fit is obtained with a higher binary fraction and an initial mass function slope steeper than standard values, as well as with the inclusion of differential reddening and blending. Our results also show that the possible contribution of double degenerate systems or young and thick-discbulge stars is negligible.

  4. Chemical evolution of the Earth: Equilibrium or disequilibrium process?

    Science.gov (United States)

    Sato, M.

    1985-01-01

    To explain the apparent chemical incompatibility of the Earth's core and mantle or the disequilibrium process, various core forming mechanisms have been proposed, i.e., rapid disequilibrium sinking of molten iron, an oxidized core or protocore materials, and meteorite contamination of the upper mantle after separation from the core. Adopting concepts used in steady state thermodynamics, a method is devised for evaluating how elements should distribute stable in the Earth's interior for the present gradients of temperature, pressure, and gravitational acceleration. Thermochemical modeling gives useful insights into the nature of chemical evolution of the Earth without overly speculative assumptions. Further work must be done to reconcile siderophile elements, rare gases, and possible light elements in the outer core.

  5. Planetary nebula velocities in the disc and bulge of M31

    NARCIS (Netherlands)

    Halliday, C.; Carter, D.; Bridges, T. J.; Jackson, Z. C.; Wilkinson, M. I.; Quinn, D. P.; Evans, N. W.; Douglas, N. G.; Merrett, H. R.; Merrifield, M. R.; Romanowsky, A. J.; Kuijken, K.; Irwin, M. J.

    2006-01-01

    We present radial velocities for a sample of 723 planetary nebulae in the disc and bulge of M31, measured using the WYFFOS fibre spectrograph on the William Herschel Telescope. Velocities are determined using the [OIII] lambda 5007 emission line. Rotation and velocity dispersion are measured to a

  6. X-ray bursters and the X-ray sources of the galactic bulge

    Science.gov (United States)

    Lewin, W. H. G.; Joss, P. C.

    An attempt is made to distill from observational and theoretical information on the galactic bulge X-ray sources in general, and on the X-ray burst sources in particular, those aspects which seem to have the greatest relevance to the understanding of these sources. Galactic bulge sources appear to be collapsed objects of roughly solar mass, in most cases neutron stars, which are accreting matter from low-mass stellar companions. Type I bursts seem to result from thermonuclear flashes in the surface layers of some of these neutron stars, while the type II bursts from the Rapid Burster are almost certainly due to an instability in the accretion flow onto a neutron star. It is concluded that the studies cited offer a new and powerful observational handle on the fundamental properties of neutron stars and of the interacting binary systems in which they are often contained.

  7. Relations between the galactic evolution and the stellar evolution

    International Nuclear Information System (INIS)

    Audouze, J.

    1984-01-01

    After a quick definition of the galactic evolution and a summary of the basic ingredients (namely the abundances of the chemical elements observed in different astrophysical sites), the parameters directly related to the stellar evolution which govern the galactic evolution are outlined. They are the rates of star formation, the initial mass functions and the various nucleosynthetic yields. The 'classical' models of chemical evolution of galaxies are then briefly recalled. Finally, attention is drawn to three recent contributions concerning both the galactic evolution and the stellar evolution. They are (i) some prediction of the rate of star formation for low mass stars made from the planetary nebula abundance distribution (ii) the chemical evolution of C, O and Fe and (iii) the chemical evolution of the galactic interstellar medium. (Auth.)

  8. THE DATA REDUCTION PIPELINE FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT

    International Nuclear Information System (INIS)

    Nidever, David L.; Holtzman, Jon A.; Prieto, Carlos Allende; Mészáros, Szabolcs; Beland, Stephane; Bender, Chad; Desphande, Rohit; Bizyaev, Dmitry; Burton, Adam; García Pérez, Ana E.; Hearty, Fred R.; Majewski, Steven R.; Skrutskie, Michael F.; Sobeck, Jennifer S.; Wilson, John C.; Fleming, Scott W.; Muna, Demitri; Nguyen, Duy; Schiavon, Ricardo P.; Shetrone, Matthew

    2015-01-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the Sloan Digital Sky Survey III, explores the stellar populations of the Milky Way using the Sloan 2.5-m telescope linked to a high resolution (R ∼ 22,500), near-infrared (1.51–1.70 μm) spectrograph with 300 optical fibers. For over 150,000 predominantly red giant branch stars that APOGEE targeted across the Galactic bulge, disks and halo, the collected high signal-to-noise ratio (>100 per half-resolution element) spectra provide accurate (∼0.1 km s −1 ) RVs, stellar atmospheric parameters, and precise (≲0.1 dex) chemical abundances for about 15 chemical species. Here we describe the basic APOGEE data reduction software that reduces multiple 3D raw data cubes into calibrated, well-sampled, combined 1D spectra, as implemented for the SDSS-III/APOGEE data releases (DR10, DR11 and DR12). The processing of the near-IR spectral data of APOGEE presents some challenges for reduction, including automated sky subtraction and telluric correction over a 3°-diameter field and the combination of spectrally dithered spectra. We also discuss areas for future improvement

  9. THE DATA REDUCTION PIPELINE FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Nidever, David L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Holtzman, Jon A. [New Mexico State University, Las Cruces, NM 88003 (United States); Prieto, Carlos Allende; Mészáros, Szabolcs [Instituto de Astrofísica de Canarias, Via Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Beland, Stephane [Laboratory for Atmospheric and Space Sciences, University of Colorado at Boulder, Boulder, CO (United States); Bender, Chad; Desphande, Rohit [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Bizyaev, Dmitry [Apache Point Observatory and New Mexico State University, P.O. Box 59, sunspot, NM 88349-0059 (United States); Burton, Adam; García Pérez, Ana E.; Hearty, Fred R.; Majewski, Steven R.; Skrutskie, Michael F.; Sobeck, Jennifer S.; Wilson, John C. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Fleming, Scott W. [Computer Sciences Corporation, 3700 San Martin Dr, Baltimore, MD 21218 (United States); Muna, Demitri [Department of Astronomy and the Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States); Nguyen, Duy [Department of Astronomy and Astrophysics, University of Toronto, Toronto, Ontario, M5S 3H4 (Canada); Schiavon, Ricardo P. [Gemini Observatory, 670 N. A’Ohoku Place, Hilo, HI 96720 (United States); Shetrone, Matthew, E-mail: dnidever@umich.edu [University of Texas at Austin, McDonald Observatory, Fort Davis, TX 79734 (United States)

    2015-12-15

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the Sloan Digital Sky Survey III, explores the stellar populations of the Milky Way using the Sloan 2.5-m telescope linked to a high resolution (R ∼ 22,500), near-infrared (1.51–1.70 μm) spectrograph with 300 optical fibers. For over 150,000 predominantly red giant branch stars that APOGEE targeted across the Galactic bulge, disks and halo, the collected high signal-to-noise ratio (>100 per half-resolution element) spectra provide accurate (∼0.1 km s{sup −1}) RVs, stellar atmospheric parameters, and precise (≲0.1 dex) chemical abundances for about 15 chemical species. Here we describe the basic APOGEE data reduction software that reduces multiple 3D raw data cubes into calibrated, well-sampled, combined 1D spectra, as implemented for the SDSS-III/APOGEE data releases (DR10, DR11 and DR12). The processing of the near-IR spectral data of APOGEE presents some challenges for reduction, including automated sky subtraction and telluric correction over a 3°-diameter field and the combination of spectrally dithered spectra. We also discuss areas for future improvement.

  10. Using Star Clusters as Tracers of Star Formation and Chemical Evolution: The Chemical Enrichment History of the Large Magellanic Cloud

    Science.gov (United States)

    Chilingarian, Igor V.; Asa’d, Randa

    2018-05-01

    The star formation (SFH) and chemical enrichment (CEH) histories of Local Group galaxies are traditionally studied by analyzing their resolved stellar populations in a form of color–magnitude diagrams obtained with the Hubble Space Telescope. Star clusters can be studied in integrated light using ground-based telescopes to much larger distances. They represent snapshots of the chemical evolution of their host galaxy at different ages. Here we present a simple theoretical framework for the chemical evolution based on the instantaneous recycling approximation (IRA) model. We infer a CEH from an SFH and vice versa using observational data. We also present a more advanced model for the evolution of individual chemical elements that takes into account the contribution of supernovae type Ia. We demonstrate that ages, iron, and α-element abundances of 15 star clusters derived from the fitting of their integrated optical spectra reliably trace the CEH of the Large Magellanic Cloud obtained from resolved stellar populations in the age range 40 Myr age–metallicity relation. Moreover, the present-day total gas mass of the LMC estimated by the IRA model (6.2× {10}8 {M}ȯ ) matches within uncertainties the observed H I mass corrected for the presence of molecular gas (5.8+/- 0.5× {10}8 {M}ȯ ). We briefly discuss how our approach can be used to study SFHs of galaxies as distant as 10 Mpc at the level of detail that is currently available only in a handful of nearby Milky Way satellites. .

  11. Numerical calculation and analysis of single-curvature polyhedron hydro-bulging process for manufacturing spherical vessels

    International Nuclear Information System (INIS)

    Dong Jianling; Zhang Fengke; Yin Dejian

    2005-01-01

    Single-curvature polyhedron hydro-bulging technology is a new technology for manufacturing spherical vessels and it has a good application foreground. This technology has been used in practice. But the designing and manufacturing of polyhedron is based on experiences, and the final quality of spherical vessels cannot be forecast quantitatively. In the paper, the FEM code, MARC, is used to simulate the hydrobulging process of a single-curvature polyhedron, including loading and offloading. And the distributions of stress and strain are acquired as well as other important data. Comparing with the experimental results, it shows that single-curvature polyhedron hydro-bulging process can be simulated well by the FEM code. (authors)

  12. Abundance anomalies in RGB stars as probes of galactic chemical evolution

    Science.gov (United States)

    Charbonnel, C.; Palacios, A.

    During the last two decades, extensive spectroscopic studies have revealed chemical abundance anomalies exhibited by low mass RGB stars which bring a new light on some important aspects of stellar nucleosynthesis and chemical evolution. We underline the differences between field and globular cluster populations and discuss their possible origin both in terms of primordial pollution and stellar internal nucleosynthesis and mixing. We suggest some tests to help to understand the influence of metallicity and of a dense environment on abundance anomalies in connection with the second parameter problem and with the stellar yields.

  13. CHARACTERIZATION OF A SAMPLE OF INTERMEDIATE-TYPE ACTIVE GALACTIC NUCLEI. II. HOST BULGE PROPERTIES AND BLACK HOLE MASS ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Erika; Cruz-Gonzalez, Irene; Martinez, Benoni; Jimenez-Bailon, Elena [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-264, Mexico D.F. 04510 (Mexico); Mendez-Abreu, Jairo; Lopez-Martin, Luis [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Fuentes-Carrera, Isaura [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional (ESFM-IPN), U.P. Adolfo Lopez Mateos, Mexico D.F. 07730 (Mexico); Chavushyan, Vahram [Instituto Nacional de Astrofisica, Optica y Electronica, Apdo. Postal 51-216, 72000 Puebla (Mexico); Leon-Tavares, Jonathan, E-mail: erika@astro.unam.mx [Aalto University Metsaehovi Radio Observatory, Metsaehovintie 114, 02540 Kylmaelae (Finland)

    2013-02-15

    We present a study of the host bulge properties and their relations with the black hole mass for a sample of 10 intermediate-type active galactic nuclei (AGNs). Our sample consists mainly of early-type spirals, four of them hosting a bar. For 70{sup +10} {sub -17}% of the galaxies, we have been able to determine the type of the bulge, and find that these objects probably harbor a pseudobulge or a combination of classical bulge/pseudobulge, suggesting that pseudobulges might be frequent in intermediate-type AGNs. In our sample, 50% {+-} 14% of the objects show double-peaked emission lines. Therefore, narrow double-peaked emission lines seem to be frequent in galaxies harboring a pseudobulge or a combination of classical bulge/pseudobulge. Depending on the bulge type, we estimated the black hole mass using the corresponding M {sub BH}-{sigma}* relation and found them within a range of 5.69 {+-} 0.21 < log M {sup {sigma}}*{sub BH} < 8.09 {+-} 0.24. Comparing these M {sup {sigma}}*{sub BH} values with masses derived from the FWHM of H{beta} and the continuum luminosity at 5100 A from their SDSS-DR7 spectra (M {sub BH}), we find that 8 out of 10 (80{sup +7} {sub -17}%) galaxies have black hole masses that are compatible within a factor of 3. This result would support that M {sub BH} and M {sup {sigma}}*{sub BH} are the same for intermediate-type AGNs, as has been found for type 1 AGNs. However, when the type of the bulge is taken into account, only three out of the seven (43{sup +18} {sub -15}%) objects of the sample have their M {sup {sigma}}*{sub BH} and M {sub BH} compatible within 3{sigma} errors. We also find that estimations based on the M {sub BH}-{sigma}* relation for pseudobulges are not compatible in 50% {+-} 20% of the objects.

  14. Life from the stars?. [extraterrestrial sources contributing to chemical evolution on Earth

    Science.gov (United States)

    Pendleton, Yvonne J.; Cruikshank, Dale P.

    1994-01-01

    Scientists are now seriously considering the possibility that organic matter from interstellar space could have influenced, or even spurred, the origin of life on Earth. Various aspects of chemical evolution are discussed along with possible extraterrestrial sources responsible for contributing to Earth's life-producing, chemical composition. Specific topics covered include the following: interstellar matter, molecular clouds, asteroid dust, organic molecules in our solar system, interplanetary dust and comets, meteoritic composition, and organic-rich solar-system bodies.

  15. Monitoring and Mapping the Galactic Bulge

    Science.gov (United States)

    Markwardt, Craig

    Both neutron star and black hole binary transients are providing some of the most exciting RXTE science, and fortunately many are concentrated in the galactic bulge region. We propose to continue our twice weekly PCA scans of the region, which cover about 500 sq deg. The observations will be sensitive to new sources at the ~1 mCrab level (a factor of 10-60 more sensitive than the ASM in the region). We have had success finding new sources and new types of variability, including three millisecond pulsars, and new increased solid angle will improve the chances of finding more in the final RXTE years. We will continue efforts to search for variability in new and known sources. Companion follow-up proposals would be triggered by the results.

  16. Phase and Texture Evolution in Chemically Derived PZT Thin Films on Pt Substrates

    Science.gov (United States)

    2014-09-01

    function of heating rate. The FWHM of the Ill PZT texture components is sim 2978 Journal of the American Ceramic Society Mhin et al. Vol. 97, No. 9...Z39.18 ABSTRACT Phase and Texture Evolution in Chemically Derived PZT Thin Films on Pt Substrates Report Title The crystallization of lead zirconate...phase influencing texture evolution. The results suggest that PZT nucleates directly on Pt, which explains the observation of a more highly oriented

  17. Galaxy evolution. Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang.

    Science.gov (United States)

    Tacchella, S; Carollo, C M; Renzini, A; Förster Schreiber, N M; Lang, P; Wuyts, S; Cresci, G; Dekel, A; Genzel, R; Lilly, S J; Mancini, C; Newman, S; Onodera, M; Shapley, A; Tacconi, L; Woo, J; Zamorani, G

    2015-04-17

    Most present-day galaxies with stellar masses ≥10(11) solar masses show no ongoing star formation and are dense spheroids. Ten billion years ago, similarly massive galaxies were typically forming stars at rates of hundreds solar masses per year. It is debated how star formation ceased, on which time scales, and how this "quenching" relates to the emergence of dense spheroids. We measured stellar mass and star-formation rate surface density distributions in star-forming galaxies at redshift 2.2 with ~1-kiloparsec resolution. We find that, in the most massive galaxies, star formation is quenched from the inside out, on time scales less than 1 billion years in the inner regions, up to a few billion years in the outer disks. These galaxies sustain high star-formation activity at large radii, while hosting fully grown and already quenched bulges in their cores. Copyright © 2015, American Association for the Advancement of Science.

  18. Disc extrusions and bulges in nonspecific low back pain and sciatica: Exploratory randomised controlled trial comparing yoga therapy and normal medical treatment.

    Science.gov (United States)

    Monro, Robin; Bhardwaj, Abhishek Kumar; Gupta, Ram Kumar; Telles, Shirley; Allen, Beth; Little, Paul

    2015-01-01

    Previous trials of yoga therapy for nonspecific low back pain (nsLBP) (without sciatica) showed beneficial effects. To test effects of yoga therapy on pain and disability associated with lumbar disc extrusions and bulges. Parallel-group, randomised, controlled trial. Sixty-one adults from rural population, aged 20-45, with nsLBP or sciatica, and disc extrusions or bulges. Randomised to yoga (n=30) and control (n=31). Yoga: 3-month yoga course of group classes and home practice, designed to ensure safety for disc extrusions. normal medical care. OUTCOME MEASURES (3-4 months) Primary: Roland Morris Disability Questionnaire (RMDQ); worst pain in past two weeks. Secondary: Aberdeen Low Back Pain Scale; straight leg raise test; structural changes. Disc projections per case ranged from one bulge or one extrusion to three bulges plus two extrusions. Sixty-two percent had sciatica. Intention-to-treat analysis of the RMDQ data, adjusted for age, sex and baseline RMDQ scores, gave a Yoga Group score 3.29 points lower than Control Group (0.98, 5.61; p=0.006) at 3 months. No other significant differences in the endpoints occurred. No adverse effects of yoga were reported. Yoga therapy can be safe and beneficial for patients with nsLBP or sciatica, accompanied by disc extrusions and bulges.

  19. The importance of glyceraldehyde radiolysis in chemical evolution

    International Nuclear Information System (INIS)

    Cruz-Castaneda, J.; Melendez-Lopez, A.; Buhse, T.; Ramos-Bernal, S.; Camargo-Raya, C.; Negron-Mendoza, A.; Fuentes-Carreon, C.; Universidad Nacional Autonoma de Mexico, Mexico City

    2017-01-01

    Studies in chemical evolution are intended to demonstrate how compounds of biological importance are generated from substances that could have been found in abiotic conditions on the primitive Earth or in extraterrestrial environments. In this context, the aim of the present work was to examine the behavior of DL-glyceraldehyde in both aqueous solution and solid samples under gamma irradiation. We irradiated dl-glyceraldehyde at different doses and temperatures with a gamma source; even at low doses and temperature (77 K), free radicals were detected. Among the products formed were ethylene glycol and glycolaldehyde. Some sugar-like compounds were also detected. (author)

  20. Chemical evolution studies: the radiolysis and thermal decomposition of malonic acid

    International Nuclear Information System (INIS)

    Cruz-Castaneda, J.; Negron-Mendoza, A.; Heredia, A.; Ramos-Bernal, S.; Villafane-Barajas, S.; Frias, D.; Colin-Garcia, M.

    2015-01-01

    In the context of chemical evolution a simulation of a hydrothermal vent was performed. The thermolysis and radiolysis of malonic acid in aqueous solution were studied. The thermolysis was done by heating the samples (95 deg C) and radiolysis using gamma radiation. Products were identified by gas chromatography and gas chromatography-mass spectrometry. The thermal treatment produced acetic acid and CO 2 . The radiolysis experiments yield carbon dioxide, acetic acid, and di- and tricarboxylic acids. A theoretical model of the chemical process occurring under irradiation was developed; this was able to reproduce formation of products and the consumption of malonic acid. (author)

  1. Ages of galaxy bulges and disks from optical and near-infrared colours

    NARCIS (Netherlands)

    Peletier, RF; Balcells, M; Bender, R; Davies, RL

    1996-01-01

    For a sample of bright nearby early-type galaxies we have obtained surface photometry in bands ranging from U to K. Since the galaxies have inclinations larger than 50 degrees it is easy to separate bulges and disks. By measuring the colours in special regions, we minimize the effects of extinction,

  2. Stellar Sources in the ISOGAL Inner Galactic Bulge Field D. Κ. Ojha1 ...

    Indian Academy of Sciences (India)

    tribpo

    to study the stellar populations and the structure of the bulge. Multicolor mid infrared data ... Section 3 describes the cross identification of ISOGAL and ... observations for this field with a gap of 2 years (Table 1), which were used to check the.

  3. Chemical evolution of two-component galaxies. II

    International Nuclear Information System (INIS)

    Caimmi, R.

    1978-01-01

    In order to confirm and refine the results obtained in a previous paper the chemical evolution of two-component (spheroid + disk) galaxies is derived rejecting the instantaneous recycling approximation, by means of numerical computations, accounting for (i) the collapse phase of the gas, assumed to be uniform in density and composition, and (ii) a birth-rate stellar function. Computations are performed relatively to the solar neighbourhood and to model galaxies which closely resemble the real morphological sequence: in both cases, numerical results are compared with analytical ones. The numerical models of this paper constitute a first-order approximation, while higher order approximations could be made by rejecting the hypothesis of uniform density and composition, and making use of detailed dynamical models. (Auth.)

  4. A Chemical Evolution Model for the Fornax Dwarf Spheroidal Galaxy

    Directory of Open Access Journals (Sweden)

    Yuan Zhen

    2016-01-01

    Full Text Available Fornax is the brightest Milky Way (MW dwarf spheroidal galaxy and its star formation history (SFH has been derived from observations. We estimate the time evolution of its gas mass and net inflow and outflow rates from the SFH usinga simple star formation law that relates the star formation rate to the gas mass. We present a chemical evolution model on a 2D mass grid with supernovae (SNe as sources of metal enrichment. We find that a key parameter controlling the enrichment is the mass Mx of the gas to mix with the ejecta from each SN. The choice of Mx depends on the evolution of SN remnants and on the global gas dynamics. It differs between the two types of SNe involved and between the periods before and after Fornax became an MW satellite at time t = tsat. Our results indicate that due to the global gas outflow at t > tsat, part of the ejecta from each SN may directly escape from Fornax. Sample results from our model are presented and compared with data.

  5. COEVOLUTION BETWEEN SUPERMASSIVE BLACK HOLES AND BULGES IS NOT VIA INTERNAL FEEDBACK REGULATION BUT BY RATIONED GAS SUPPLY DUE TO ANGULAR MOMENTUM DISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Cen, Renyue, E-mail: cen@astro.princeton.edu [Princeton University Observatory, Princeton, NJ 08544 (United States)

    2015-05-20

    We reason that without physical fine-tuning, neither the supermassive black holes (SMBHs) nor the stellar bulges can self-regulate or inter-regulate by driving away already fallen cold gas to produce the observed correlation between them. We suggest an alternative scenario where the observed mass ratios of the SMBHs to bulges reflect the angular momentum distribution of infallen gas such that the mass reaching the stable accretion disk is a small fraction of that reaching the bulge region, averaged over the cosmological timescales. We test this scenario using high-resolution, large-scale cosmological hydrodynamic simulations, without active galactic nucleus (AGN) feedback, assuming the angular momentum distribution of gas landing in the bulge region yields a Mestel disk that is supported by independent simulations resolving the Bondi radii of SMBHs. A mass ratio of 0.1%–0.3% between the very low angular momentum gas that free falls to the subparsec region to accrete to the SMBH and the overall star formation rate is found. This ratio is found to increase with increasing redshift to within a factor of ∼2, suggesting that the SMBH-to-bulge ratio is nearly redshift independent, with a modest increase with redshift, which is a testable prediction. Furthermore, the duty cycle of AGNs with high Eddington ratios is expected to increase significantly with redshift. Finally, while SMBHs and bulges are found to coevolve on ∼30–150 Myr timescales or longer, there is indication that on still smaller timescales, the SMBH accretion and star formation may be less correlated.

  6. A transformation theory of stochastic evolution in Red Moon methodology to time evolution of chemical reaction process in the full atomistic system.

    Science.gov (United States)

    Suzuki, Yuichi; Nagaoka, Masataka

    2017-05-28

    Atomistic information of a whole chemical reaction system, e.g., instantaneous microscopic molecular structures and orientations, offers important and deeper insight into clearly understanding unknown chemical phenomena. In accordance with the progress of a number of simultaneous chemical reactions, the Red Moon method (a hybrid Monte Carlo/molecular dynamics reaction method) is capable of simulating atomistically the chemical reaction process from an initial state to the final one of complex chemical reaction systems. In the present study, we have proposed a transformation theory to interpret the chemical reaction process of the Red Moon methodology as the time evolution process in harmony with the chemical kinetics. For the demonstration of the theory, we have chosen the gas reaction system in which the reversible second-order reaction H 2 + I 2  ⇌ 2HI occurs. First, the chemical reaction process was simulated from the initial configurational arrangement containing a number of H 2 and I 2 molecules, each at 300 K, 500 K, and 700 K. To reproduce the chemical equilibrium for the system, the collision frequencies for the reactions were taken into consideration in the theoretical treatment. As a result, the calculated equilibrium concentrations [H 2 ] eq and equilibrium constants K eq at all the temperatures were in good agreement with their corresponding experimental values. Further, we applied the theoretical treatment for the time transformation to the system and have shown that the calculated half-life τ's of [H 2 ] reproduce very well the analytical ones at all the temperatures. It is, therefore, concluded that the application of the present theoretical treatment with the Red Moon method makes it possible to analyze reasonably the time evolution of complex chemical reaction systems to chemical equilibrium at the atomistic level.

  7. CO J = 2-1 EMISSION FROM EVOLVED STARS IN THE GALACTIC BULGE

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, Benjamin A.; Meixner, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Patel, N. A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Otsuka, M.; Srinivasan, S. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Riebel, D., E-mail: baspci@rit.edu [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2013-03-01

    We observe a sample of eight evolved stars in the Galactic bulge in the CO J = 2-1 line using the Submillimeter Array with angular resolution of 1''-4''. These stars have been detected previously at infrared wavelengths, and several of them have OH maser emission. We detect CO J = 2-1 emission from three of the sources in the sample: OH 359.943 +0.260, [SLO2003] A12, and [SLO2003] A51. We do not detect the remaining five stars in the sample because of heavy contamination from the galactic CO emission. Combining CO data with observations at infrared wavelengths constraining dust mass loss from these stars, we determine the gas-to-dust ratios of the Galactic bulge stars for which CO emission is detected. For OH 359.943 +0.260, we determine a gas mass-loss rate of 7.9 ({+-}2.2) Multiplication-Sign 10{sup -5} M {sub Sun} yr{sup -1} and a gas-to-dust ratio of 310 ({+-}89). For [SLO2003] A12, we find a gas mass-loss rate of 5.4 ({+-}2.8) Multiplication-Sign 10{sup -5} M {sub Sun} yr{sup -1} and a gas-to-dust ratio of 220 ({+-}110). For [SLO2003] A51, we find a gas mass-loss rate of 3.4 ({+-}3.0) Multiplication-Sign 10{sup -5} M {sub Sun} yr{sup -1} and a gas-to-dust ratio of 160 ({+-}140), reflecting the low quality of our tentative detection of the CO J = 2-1 emission from A51. We find that the CO J = 2-1 detections of OH/IR stars in the Galactic bulge require lower average CO J = 2-1 backgrounds.

  8. Ages of galaxy bulges and disks from optical and near-infrared colors

    NARCIS (Netherlands)

    Peletier, RF; Balcells, M

    We compare optical and near-infrared colors of disks and bulges in a diameter-limited sample of inclined, bright, nearby, early-type spirals. Color profiles along wedge apertures at 15 degrees from the major axis and on the minor axis on the side of the galaxy opposite to the dust lane are used to

  9. Forming limit diagram of aluminum AA6063 tubes at high temperatures by bulge tests

    International Nuclear Information System (INIS)

    Hashemi, Seyed Jalal; Naeini, Hassan Moslemi; Liaghat, Gholamhossein; Tafti, Rooholla Azizi; Rahmani, Farzad

    2014-01-01

    A free bulge test and ductile fracture criteria were used to obtain the forming limit diagrams (FLD) of aluminum alloy AA6063 tubes at high temperatures. Ductile fracture criteria were calibrated using the results of uniaxial tension tests at various elevated temperatures and different strain rates through adjusting the Zener-Holloman parameter. High temperature free bulge test of tubes was simulated in finite element software Abaqus, and tube bursting was predicted using ductile fracture criteria under different loading paths. FLDs which were obtained from finite element simulation were compared to experimental results to select the most accurate criterion for prediction of forming limit diagram. According to the results, all studied ductile fracture criteria predict similarly when forming condition is close to the uniaxial tension, while Ayada criterion predicts the FLD at 473 K and 573 K very well.

  10. Forming limit diagram of aluminum AA6063 tubes at high temperatures by bulge tests

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, Seyed Jalal; Naeini, Hassan Moslemi; Liaghat, Gholamhossein [Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Tafti, Rooholla Azizi [Yazd University, Yazd (Iran, Islamic Republic of); Rahmani, Farzad [Kar Higher Education Institute, Qazvin (Iran, Islamic Republic of)

    2014-11-15

    A free bulge test and ductile fracture criteria were used to obtain the forming limit diagrams (FLD) of aluminum alloy AA6063 tubes at high temperatures. Ductile fracture criteria were calibrated using the results of uniaxial tension tests at various elevated temperatures and different strain rates through adjusting the Zener-Holloman parameter. High temperature free bulge test of tubes was simulated in finite element software Abaqus, and tube bursting was predicted using ductile fracture criteria under different loading paths. FLDs which were obtained from finite element simulation were compared to experimental results to select the most accurate criterion for prediction of forming limit diagram. According to the results, all studied ductile fracture criteria predict similarly when forming condition is close to the uniaxial tension, while Ayada criterion predicts the FLD at 473 K and 573 K very well.

  11. A recursive microfluidic platform to explore the emergence of chemical evolution

    Directory of Open Access Journals (Sweden)

    David Doran

    2017-08-01

    Full Text Available We propose that a chemically agnostic approach to explore the origin of life, using an automated recursive platform based on droplet microfluidics, could be used to induce artificial chemical evolution by iterations of growth, speciation, selection, and propagation. To explore this, we set about designing an open source prototype of a fully automated evolution machine, comprising seven modules. These modules are a droplet generator, droplet transfer, passive and active size sorting, splitter, incubation chamber, reservoir, and injectors, all run together via a LabVIEWTM program integration system. Together we aim for the system to be used to drive cycles of droplet birth, selection, fusion, and propagation. As a proof of principle, in addition to the working individual modules, we present data showing the osmotic exchange of glycylglycine containing and pure aqueous droplets, showing that the fittest droplets exhibit higher osomolarity relative to their neighbours, and increase in size compared to their neighbours. This demonstrates the ability of our platform to explore some different physicochemical conditions, combining the efficiency and unbiased nature of automation with our ability to select droplets as functional units based on simple criteria.

  12. Chemical evolution of Titan’s aerosol analogues under VUV irradiation

    Science.gov (United States)

    Carrasco, Nathalie; Gavilan, Lisseth; Tigrine, Sarah; Vettier, Ludovic; Nahon, Laurent; Pernot, Pascal

    2017-10-01

    Since the Cassini-CAPS measurements, organic aerosols are known to be present and formed at high altitudes in the diluted and partially ionized medium that is Titan’s ionosphere [1].After production in the ionosphere, Titan’s aerosols evolve through microphysics during their sedimentation down to Titan’s surface [2]. Starting with a few nanomers size in the upper atmosphere, they reach a fractal structure of a few hundreds nanometers close to the surface [3]. During sedimentation, aerosols are also submitted to solar irradiation. As laboratory analogs of Titan’s atmospheric aerosols (tholins) show a strong UV absorption [4], we suspect that VUV irradiation could also induce a chemical evolution of Titan’s aerosols during their descent in Titan’s atmosphere.The aim of this work ist to simulate the irradiation process occuring on the aerosols in Titan’s atmosphere and to address whether this irradiation impacts the chemical composition of the organic solids. First aerosol analogues were produced in a N2-CH4 plasma discharge as thin organic films of a few hundreds of nanometers thick [5]. Then those were irradiated at Lyman-α wavelength, the strongest VUV line in the solar spectrum, with a high photon flux on a synchrotron VUV beamline. We will present and discuss the significant chemical evolutions observed on the analogues after VUV irradiation by mid-IR absorption spectroscopy.[1] Waite et al. (2009) Science , 316, p. 870[2] Lavvas et al. (2011) Astrophysical Journal, 728:80[3] Tomasko et al. (2008) Planetary and Space Science, 56, p. 669[4] Mahjoub et al. (2012) Icarus 221, P. 670[5] Carrasco et al. (2016) Planetary and Space Science, 128, p. 52

  13. Nonlinear Local Bending Response and Bulging Factors for Longitudinal and Circumferential Cracks in Pressurized Cylindrical Shells

    Science.gov (United States)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2000-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.

  14. High resolution infrared spectra of Bulge Globular Clusters: Liller 1, NGC 6553, and Ter 5

    Science.gov (United States)

    Origlia, L.; Rich, R. M.; Castro, S. M.

    2001-12-01

    Using the NIRSPEC spectrograph at Keck II, we have obtained echelle spectra covering the range 1.5-1.8μ m for 2 of the brightest giants in Liller 1 and NGC 6553, old metal rich globular clusters in the Galactic bulge. We also report a preliminary analysis for two giants in the obscured bulge globular cluster Ter 5. We use spectrum synthesis for the abundance analysis, and find [Fe/H]=-0.3+/-0.2 and [O/H]=+0.3+/- 0.1 (from the OH lines) for the giants in Liller 1 and NGC 6553. We measure strong lines for the alpha elements Mg, Ca, and Si, but the lower sensitivity of these lines to abundance permits us to only state a general [α /Fe]=+0.3+/-0.2 dex. The composition of the clusters is similar to that of field stars in the bulge and is consistent with a scenario in which the clusters formed early, with rapid enrichment. Our iron abundance for NGC 6553 is poorly consistent with either the low or the high values recently reported in the literature, unless unusally large, or no α -element enhancements are adopted, respectively. We will also present an abundance analsyis for 2 giants in the highly reddened bulge cluster Ter 5, which appears to be near the Solar metallicity. R. Michael Rich acknowledges finacial support from grant AST-0098739, from the National Science Foundation. Data presented herein were obtained at the W.M.Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors gratefully acknowledge those of Hawaiian ancestry on whose sacred mountain we are privileged to be guests. Without their generous hospitality, none of the observations presented would have been possible.

  15. Invasive placenta previa: Placental bulge with distorted uterine outline and uterine serosal hypervascularity at 1.5T MRI - useful features for differentiating placenta percreta from placenta accreta.

    Science.gov (United States)

    Chen, Xin; Shan, Ruiqin; Zhao, Lianxin; Song, Qingxu; Zuo, Changting; Zhang, Xinjuan; Wang, Shanshan; Shi, Honglu; Gao, Fei; Qian, Tianyi; Wang, Guangbin; Limperopoulos, Catherine

    2018-02-01

    To characterise MRI features of invasive placenta previa and to identify specific features for differentiating placenta percreta (PP) from placenta accreta (PA). Forty-five women with PP and 93 women with PA who underwent 1.5T placental MRI were included. Two radiologists independently evaluated the MRI features of invasive placenta previa, including our novel type of placental bulge (i.e. placental bulge type-II, characterized by placental bulge with distorted uterine outline). Pearson's chi-squared or Fisher's two-sided exact test was performed to compare the MRI features between PP and PA. Logistic stepwise regression analysis and the area under the receiver operating characteristic curve (AUC) were performed to select the optimal features for differentiating PP from PA. Significant differences were found in nine MRI features between women with PP and those with PA (P Placental bulge type-II and uterine serosal hypervascularity were independently associated with PP (odds ratio = 48.618, P Placental bulge type-II and uterine serosal hypervascularity are useful MRI features for differentiating PP from PA. • Placental bulge type-II demonstrated the strongest independent association with PP. • Uterine serosal hypervascularity is a useful feature for differentiating PP from PA. • MRI features associated with abnormal vessels increase the risk of massive haemorrhage.

  16. Conference on chemical evolution and the origin of life: Self-organization of the macromolecules of life

    International Nuclear Information System (INIS)

    1993-10-01

    The formation of biomolecules was a necessary step in the evolution of life on earth. This interdisciplinary conference emphasized the role of replication in processes of self-organization of biological macromolecules. The present document contains abstracts of the 26 contributions to the conference on chemical evolution. The individual contributions have been indexed separately for the database

  17. THE INFLUENCE OF RADIAL STELLAR MIGRATION ON THE CHEMICAL EVOLUTION OF THE MILKY WAY

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yue; Zhao Gang, E-mail: gzhao@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2013-05-20

    Stellar migration is an important dynamical process in the Galactic disk. Here we model radial stellar migration in the Galactic disk with an analytical method, then add it to a detailed Galactic chemical evolution model to study the influence of radial stellar migration on the chemical evolution of the Milky Way, especially for the abundance gradients. We found that the radial stellar migration in the Galactic disk can make the profile of the G-dwarf metallicity distribution of the solar neighborhood taller and narrower, and thus it becomes another solution to the ''G-dwarf problem''. It can also scatter the age-metallicity relation. However, after migration, the abundance distributions along the Galactic radius do not change much; namely, the abundance gradients would not be flattened by the radial stellar migration, which is different from the predictions of many theoretical works. However, it can flatten the radial gradients of the mean chemical abundance of stars, and older stars possess flatter abundance gradients than younger stars. The most significant effect of radial stellar migration on the chemical abundance is that at a certain position it scatters the abundance of stars from a relatively concentrated value to a range.

  18. Photoionization modelling of planetary nebulae - II. Galactic bulge nebulae, a comparison with literature results

    NARCIS (Netherlands)

    van Hoof, PAM; Van de Steene, GC

    1999-01-01

    We have constructed photoionization models of five galactic bulge planetary nebulae using our automatic method, which enables a fully self-consistent determination of the physical parameters of a planetary nebula. The models are constrained using the spectrum, the IRAS and radio fluxes and the

  19. Velocity dispersions in the bulges of spiral and SO galaxies. II. Further observations and a simple three-component model for spiral galaxies

    International Nuclear Information System (INIS)

    Whitmore, B.C.; Kirshner, R.P.

    1981-01-01

    We have obtained velocity dispersions for 24 galaxies in the Virgo cluster to supplement our earlier results. A 2000 channel intensified Reticon scanner has again been used on the 1.3 m telescope of McGraw-Hill Observatory, and a Fourier quotient technique has been employed to yield dispersions. We have confirmed our earlier result that spiral bulges exhibit a relation between total luminosity and velocity dispersion with the form L proportional sigma 4 , but with velocity dispersions that are 17 +- 8% smaller than elliptical galaxies at the same absolute magnitude. However, possible systematic errors may still affect the reality of this gap. The scatter in the L proportional sigma 4 relationship is substantially larger for the spiral bulges than for the elliptical galaxies. This larger scatter probably indicates that spiral bulges comprise a more heterogeneous sample than do elliptical galaxies. we also find that the bulge components of SO galaxies follow a L proportional sigma 4 relation with no gap with the ellipticals. The similarity in this relation for the spheroidal components of spiral, SO, and elliptical galaxies indicates that the systems are dynamically similar

  20. DISCOVERY OF A PAIR OF CLASSICAL CEPHEIDS IN AN INVISIBLE CLUSTER BEYOND THE GALACTIC BULGE

    Energy Technology Data Exchange (ETDEWEB)

    Dékány, I.; Palma, T. [Millennium Institute of Astrophysics, Santiago (Chile); Minniti, D. [Departamento de Ciencias Físicas, Universidad Andres Bello, República 220, Santiago (Chile); Hajdu, G.; Alonso-García, J.; Hempel, M.; Catelan, M. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago (Chile); Gieren, W. [Departamento de Astronomía, Universidad de Concepción, Casilla 160 C, Concepción (Chile); Majaess, D. [Department of Astronomy and Physics, Saint Mary’s University, Halifax, NS B3H 3C3 (Canada)

    2015-01-20

    We report the discovery of a pair of extremely reddened classical Cepheid variable stars located in the Galactic plane behind the bulge, using near-infrared (NIR) time-series photometry from the VISTA Variables in the Vía Láctea Survey. This is the first time that such objects have ever been found in the opposite side of the Galactic plane. The Cepheids have almost identical periods, apparent brightnesses, and colors. From the NIR Leavitt law, we determine their distances with ∼1.5% precision and ∼8% accuracy. We find that they have a same total extinction of A(V)≃32 mag, and are located at the same heliocentric distance of 〈d〉=11.4±0.9 kpc, and less than 1 pc from the true Galactic plane. Their similar periods indicate that the Cepheids are also coeval, with an age of ∼48±3 Myr, according to theoretical models. They are separated by an angular distance of only 18.″3, corresponding to a projected separation of ∼1 pc. Their position coincides with the expected location of the Far 3 kpc Arm behind the bulge. Such a tight pair of similar classical Cepheids indicates the presence of an underlying young open cluster that is both hidden behind heavy extinction and disguised by the dense stellar field of the bulge. All our attempts to directly detect this “invisible cluster” have failed, and deeper observations are needed. (letters)

  1. Star formation history of the Galactic bulge from deep HST imaging of low reddening windows

    Science.gov (United States)

    Bernard, Edouard J.; Schultheis, Mathias; Di Matteo, Paola; Hill, Vanessa; Haywood, Misha; Calamida, Annalisa

    2018-04-01

    Despite the huge amount of photometric and spectroscopic efforts targetting the Galactic bulge over the past few years, its age distribution remains controversial owing to both the complexity of determining the age of individual stars and the difficult observing conditions. Taking advantage of the recent release of very deep, proper-motion-cleaned colour-magnitude diagrams (CMDs) of four low reddening windows obtained with the Hubble Space Telescope (HST), we used the CMD-fitting technique to calculate the star formation history (SFH) of the bulge at -2° > b > -4° along the minor axis. We find that over 80 percent of the stars formed before 8 Gyr ago, but that a significant fraction of the super-solar metallicity stars are younger than this age. Considering only the stars that are within reach of the current generation of spectrographs (i.e. V≲ 21), we find that 10 percent of the bulge stars are younger than 5 Gyr, while this fraction rises to 20-25 percent in the metal-rich peak. The age-metallicity relation is well parametrized by a linear fit implying an enrichment rate of dZ/dt ˜ 0.005 Gyr-1. Our metallicity distribution function accurately reproduces that observed by several spectroscopic surveys of Baade's window, with the bulk of stars having metal-content in the range [Fe/H]˜-0.7 to ˜0.6, along with a sparse tail to much lower metallicities.

  2. The Role of Sexual Selection in the Evolution of Chemical Signals in Insects

    Directory of Open Access Journals (Sweden)

    Sandra Steiger

    2014-06-01

    Full Text Available Chemical communication is the most ancient and widespread form of communication. Yet we are only beginning to grasp the complexity of chemical signals and the role they play in sexual selection. Focusing on insects, we review here the recent progress in the field of olfactory-based sexual selection. We will show that there is mounting empirical evidence that sexual selection affects the evolution of chemical traits, but form and strength of selection differ between species. Studies indicate that some chemical signals are expressed in relation to an individual’s condition and depend, for example, on age, immunocompetence, fertility, body size or degree of inbreeding. Males or females might benefit by choosing based on those traits, gaining resources or “good genes”. Other chemical traits appear to reliably reflect an individual’s underlying genotype and are suitable to choose a mating partner that matches best the own genotype.

  3. Chemical study of the metal-rich globular cluster NGC 5927

    Science.gov (United States)

    Mura-Guzmán, A.; Villanova, S.; Muñoz, C.; Tang, B.

    2018-03-01

    Globular clusters (GCs) are natural laboratories where stellar and chemical evolution can be studied in detail. In addition, their chemical patterns and kinematics can tell us to which Galactic structure (disc, bulge, halo or extragalactic) the cluster belongs to. NGC 5927 is one of most metal-rich GCs in the Galaxy and its kinematics links it to the thick disc. We present abundance analysis based on high-resolution spectra of seven giant stars. The data were obtained using Fibre Large Array Multi Element Spectrograph/Ultraviolet Echelle Spectrograph (UVES) spectrograph mounted on UT2 telescope of the European Southern Observatory. The principal objective of this work is to perform a wide and detailed chemical abundance analysis of the cluster and look for possible Multiple Populations (MPs). We determined stellar parameters and measured 22 elements corresponding to light (Na, Al), alpha (O, Mg, Si, Ca, Ti), iron-peak (Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and heavy elements (Y, Zr, Ba, Ce, Nd, Eu). We found a mean iron content of [Fe/H] = -0.47 ± 0.02 (error on the mean). We confirm the existence of MPs in this GC with an O-Na anti-correlation, and moderate spread in Al abundances. We estimate a mean [α/Fe] = 0.25 ± 0.08. Iron-peak elements show no significant spread. The [Ba/Eu] ratios indicate a predominant contribution from SNeII for the formation of the cluster.

  4. Beverton-Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance

    Science.gov (United States)

    Liang, Juhua; Tang, Sanyi; Cheke, Robert A.

    2016-07-01

    Pest resistance to pesticides is usually managed by switching between different types of pesticides. The optimal switching time, which depends on the dynamics of the pest population and on the evolution of the pesticide resistance, is critical. Here we address how the dynamic complexity of the pest population, the development of resistance and the spraying frequency of pulsed chemical control affect optimal switching strategies given different control aims. To do this, we developed novel discrete pest population growth models with both impulsive chemical control and the evolution of pesticide resistance. Strong and weak threshold conditions which guarantee the extinction of the pest population, based on the threshold values of the analytical formula for the optimal switching time, were derived. Further, we addressed switching strategies in the light of chosen economic injury levels. Moreover, the effects of the complex dynamical behaviour of the pest population on the pesticide switching times were also studied. The pesticide application period, the evolution of pesticide resistance and the dynamic complexity of the pest population may result in complex outbreak patterns, with consequent effects on the pesticide switching strategies.

  5. The evolution of plant chemical defence - new roles for hydroxynitrile glucosides in Lotus japonicus

    DEFF Research Database (Denmark)

    Knudsen, Camilla

    Plants are sessile organisms well-known to produce a vast array of chemical compounds of which many are used in chemical defence against herbivores and pathogens. The biosynthesis of these plant chemical defence compounds poses a considerable risk of self-toxicity for the plant itself. Several...... on hydroxynitrile glucoside metabolism in the legume model plant Lotus japonicus. Lotus japonicus produces both cyanogenic and non-cyanogenic hydroxynitrile glucosides as chemical defence compounds. The cyanogenic glucosides linamarin and lotaustralin are stored in the cell vacuole as inactive glycosides and, upon...... function and evolution. Further, it contributes to our understanding of the formation and role of biosynthetic gene clusters in plant chemical defence. The bifurcation in hydroxynitrile glucoside biosynthesis and catabolism observed in Lotus japonicus makes it a very suitable model system to study...

  6. THE BLACK HOLE MASS-BULGE LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI FROM REVERBERATION MAPPING AND HUBBLE SPACE TELESCOPE IMAGING

    International Nuclear Information System (INIS)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.; Vestergaard, Marianne

    2009-01-01

    We investigate the relationship between black hole mass and bulge luminosity for active galactic nuclei (AGNs) with reverberation-based black hole mass measurements and bulge luminosities from two-dimensional decompositions of Hubble Space Telescope host galaxy images. We find that the slope of the relationship for AGNs is 0.76-0.85 with an uncertainty of ∼0.1, somewhat shallower than the M BH ∝ L 1.0±0.1 relationship that has been fit to nearby quiescent galaxies with dynamical black hole mass measurements. This difference is somewhat perplexing, as the AGN black hole masses include an overall scaling factor that brings the AGN M BH -σ * relationship into agreement with that of quiescent galaxies. We discuss biases that may be inherent to the AGN and quiescent galaxy samples and could cause the apparent inconsistency in the forms of their M BH -L bulge relationships. Recent work by Graham, however, presents a similar slope of ∼0.8 for the quiescent galaxies and may bring the relationship for AGNs and quiescent galaxies into agreement.

  7. Nuclear planetology: understanding habitable planets as Galactic bulge stellar remnants (black dwarfs) in a Hertzsprung-Russell (HR) diagram

    Science.gov (United States)

    Roller, Goetz

    2016-04-01

    The Hertzsprung-Russell (HR) diagram is one of the most important diagrams in astronomy. In a HR diagram, the luminosity of stars and/or stellar remnants (white dwarf stars, WD's), relative to the luminosity of the sun, is plotted versus their surface temperatures (Teff). The Earth shows a striking similarity in size (radius ≈ 6.370 km) and Teff of its outer core surface (Teff ≈ 3800 K at the core-mantle-boundary) with old WD's (radius ≈ 6.300 km) like WD0346+246 (Teff ≈ 3820 K after ≈ 12.7 Ga [1]), which plot in the HR diagram close to the low-mass extension of the stellar population or main sequence. In the light of nuclear planetology [2], Earth-like planets are regarded as old, down-cooled and differentiated black dwarfs (Fe-C BLD's) after massive decompression, the most important nuclear reactions involved being 56Fe(γ,α)52Cr (etc.), possibly responsible for extreme terrestrial glaciations events ("snowball" Earth), together with (γ,n), (γ,p) and fusion reactions like 12C(α,γ)16O. The latter reaction might have caused oxidation of the planet from inside out. Nuclear planetology is a new research field, tightly constrained by a coupled 187Re-232Th-238U systematics. By means of nuclear/quantum physics and taking the theory of relativity into account, it aims at understanding the thermal and chemical evolution of Fe-C BLD's after gravitational contraction (e.g. Mercury) or Fermi-pressure controlled collapse (e.g. Earth) events after massive decompression, leading possibly to an r-process event, towards the end of their cooling period [2]. So far and based upon 187Re-232Th-238U nuclear geochronometry, the Fe-C BLD hypothesis can successfully explain the global terrestrial MORB 232Th/238U signature [3]. Thus, it may help to elucidate the DM (depleted mantle), EMI (enriched mantle 1), EMII (enriched mantle 2) or HIMU (high U/Pb) reservoirs, and the 187Os/188Os isotopic dichotomy in Archean magmatic rocks and sediments [4]. Here I present a conceptual

  8. Concrete Chemical Evolution

    International Nuclear Information System (INIS)

    D.H. Tang

    1998-01-01

    The objectives of this analysis are to discuss and evaluate testing results that were performed for the M andO by the Pennsylvania State University (PSU) to evaluate the potential long-term evolution of organic admixtures in cementitious materials at elevated temperatures. The testing was designed to help provide a basis for a determination by the Performance Assessment group (PA) of the long-term acceptability and longevity of cementitious materials for repository use. The main purpose of the testing was to assess the evolution of gases (especially CO 2 ) from hydrated cement paste at elevated temperatures and to determine the impact on alkalinity, i.e., the pH value of cement paste pore solution. This information in turn can be used as scoping information to determine if further tests of this nature are needed to support PA. As part of this discussion and evaluation of the PSU results, an assessment of alkalinity in a ''cementitious repository'' and an evaluation of organic materials are presented

  9. The hair follicle bulge: a niche for adult stem cells.

    Science.gov (United States)

    Pasolli, Hilda Amalia

    2011-08-01

    Adult stem cells (SCs) are essential for tissue homeostasis and wound repair. They have the ability to both self-renew and differentiate into multiple cell types. They often reside in specialized microenvironments or niches that preserve their proliferative and tissue regenerative capacity. The murine hair follicle (HF) has a specialized and permanent compartment--the bulge, which safely lodges SCs and provides the necessary molecular cues to regulate their function. The HF undergoes cyclic periods of destruction, regeneration, and rest, making it an excellent system to study SC biology.

  10. Chemical Evolution of Ozone and Its Precursors in Asian Pacific Rim Outflow During TRACE-P

    Science.gov (United States)

    Hamlin, A.; Crawford, J.; Olson, J.; Pippin, M.; Avery, M.; Sachse, G.; Barrick, J.; Blake, D.; Tan, D.; Sandholm, S.; Kondo, Y.; Singh, H.; Eisele, F.; Zondlo, M.; Flocke, F.; Talbot, R.

    2002-12-01

    During NASA's GTE/TRACE-P (Transport and Chemical Evolution over the Pacific) mission, a widespread stagnant pollution layer was observed between 2 and 4 km over the central Pacific. In this region, high levels of O3 (70~ppbv), CO (210~ppbv), and NOx (130~pptv) were observed. Back trajectories suggest this airmass had been rapidly transported from the Asian coast near the Yellow Sea to the central Pacific where it underwent subsidence. The chemical evolution of ozone and its precursors for this airmass is examined using lagrangian photochemical box model calculations. Simulations are conducted along trajectories which intersect the flight path where predicted mixing ratios are compared to measurements. An analysis of the photochemical processes controlling the cycling of nitrogen oxides and ozone production and destruction during transport will be presented.

  11. Chemical Evolution of Interstellar Methanol Ice Analogs upon Ultraviolet Irradiation: The Role of the Substrate

    Science.gov (United States)

    Ciaravella, A.; Jiménez-Escobar, A.; Cosentino, G.; Cecchi-Pestellini, C.; Peres, G.; Candia, R.; Collura, A.; Barbera, M.; Di Cicca, G.; Varisco, S.; Venezia, A. M.

    2018-05-01

    An important issue in the chemistry of interstellar ices is the role of dust materials. In this work, we study the effect of an amorphous water-rich magnesium silicate deposited onto ZnSe windows on the chemical evolution of ultraviolet-irradiated methanol ices. For comparison, we also irradiate similar ices deposited onto bare ZnSe windows. Silicates are produced at relatively low temperatures exploiting a sol–gel technique. The chemical composition of the synthesized material reflects the forsterite stoichiometry. Si–OH groups and magnesium carbonates are incorporated during the process. The results show that the substrate material does affect the chemical evolution of the ice. In particular, the CO2/CO ratio within the ice is larger for methanol ices deposited onto the silicate substrate as a result of concurrent effects: the photolysis of carbonates present in the adopted substrate as a source of CO2, CO, and carbon and oxygen atoms; reactions of water molecules and hydroxyl radicals released from the substrate with the CO formed in the ice by the photolysis of the methanol ice; and changes in the structure and energy of the silicate surface by ultraviolet irradiation, leading to more favorable conditions for chemical reactions or catalysis at the grain surface. The results of our experiments allow such chemical effects contributed by the various substrate material components to be disentangled.

  12. The Black Hole Mass-Bulge Luminosity Relationship for Active Galactic Nuclei From Reverberation Mapping and Hubble Space Telescope Imaging

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.

    2009-01-01

    We investigate the relationship between black hole mass and bulge luminosity for active galactic nuclei (AGNs) with reverberation-based black hole mass measurements and bulge luminosities from two-dimensional decompositions of Hubble Space Telescope host galaxy images. We find that the slope...... of the relationship for AGNs is 0.76-0.85 with an uncertainty of ~0.1, somewhat shallower than the M BH vprop L 1.0±0.1 relationship that has been fit to nearby quiescent galaxies with dynamical black hole mass measurements. This difference is somewhat perplexing, as the AGN black hole masses include an overall...

  13. ULTRA-DEEP GEMINI NEAR-INFRARED OBSERVATIONS OF THE BULGE GLOBULAR CLUSTER NGC 6624

    Energy Technology Data Exchange (ETDEWEB)

    Saracino, S.; Dalessandro, E.; Ferraro, F. R.; Lanzoni, B.; Miocchi, P. [Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Geisler, D.; Mauro, F.; Cohen, R. E.; Villanova, S. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Origlia, L. [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Bidin, C. Moni, E-mail: sara.saracino@unibo.it [Instituto de Astronomía, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta (Chile)

    2016-11-20

    We used ultra-deep J and K {sub s} images secured with the near-infrared (NIR) GSAOI camera assisted by the multi-conjugate adaptive optics system GeMS at the GEMINI South Telescope in Chile, to obtain a ( K {sub s} , J - K {sub s} ) color–magnitude diagram (CMD) for the bulge globular cluster NGC 6624. We obtained the deepest and most accurate NIR CMD from the ground for this cluster, by reaching K {sub s} ∼ 21.5, approximately 8 mag below the horizontal branch level. The entire extension of the Main Sequence (MS) is nicely sampled and at K {sub s} ∼ 20 we detected the so-called MS “knee” in a purely NIR CMD. By taking advantage of the exquisite quality of the data, we estimated the absolute age of NGC 6624 ( t {sub age} = 12.0 ± 0.5 Gyr), which turns out to be in good agreement with previous studies in the literature. We also analyzed the luminosity and mass functions of MS stars down to M ∼ 0.45 M{sub ⊙}, finding evidence of a significant increase of low-mass stars at increasing distances from the cluster center. This is a clear signature of mass segregation, confirming that NGC 6624 is in an advanced stage of dynamical evolution.

  14. The SWELLS survey - VI. Hierarchical inference of the initial mass functions of bulges and discs

    DEFF Research Database (Denmark)

    Brewer, Brendon J.; Marshal, Philip J.; Auger, Matthew W.

    2014-01-01

    ) and stellar masses (constrained by optical and near-infrared colours in the context of a stellar population synthesis model, up to an IMF normalization parameter). Using minimal assumptions apart from the physical constraint that the total stellar mass m* within any aperture must be less than the total mass...... mtot with in the aperture, we find that the bulges of the galaxies cannot have IMFs heavier (i.e. implying high mass per unit luminosity) than Salpeter, while the disc IMFs are not well constrained by this data set.We also discuss the necessity for hierarchical modelling when combining incomplete...... information about multiple astronomical objects. This modelling approach allows us to place upper limits on the size of any departures from universality. More data, including spatially resolved kinematics (as in Paper V) and stellar population diagnostics over a range of bulge and disc masses, are needed...

  15. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Brett H. [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A., E-mail: andrewsb@pitt.edu [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2017-02-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high- α and low- α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α -elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.

  16. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    International Nuclear Information System (INIS)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A.

    2017-01-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high- α and low- α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α -elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.

  17. Concrete Chemical Evolution

    Energy Technology Data Exchange (ETDEWEB)

    D.H. Tang

    1998-07-31

    The objectives of this analysis are to discuss and evaluate testing results that were performed for the M&O by the Pennsylvania State University (PSU) to evaluate the potential long-term evolution of organic admixtures in cementitious materials at elevated temperatures. The testing was designed to help provide a basis for a determination by the Performance Assessment group (PA) of the long-term acceptability and longevity of cementitious materials for repository use. The main purpose of the testing was to assess the evolution of gases (especially CO{sub 2}) from hydrated cement paste at elevated temperatures and to determine the impact on alkalinity, i.e., the pH value of cement paste pore solution. This information in turn can be used as scoping information to determine if further tests of this nature are needed to support PA. As part of this discussion and evaluation of the PSU results, an assessment of alkalinity in a ''cementitious repository'' and an evaluation of organic materials are presented.

  18. On the physical nature of globular cluster candidates in the Milky Way bulge

    Science.gov (United States)

    Piatti, Andrés E.

    2018-06-01

    We present results from 2MASS JKs photometry on the physical reality of recently reported globular cluster (GC) candidates in the Milky Way (MW) bulge. We relied our analysis on photometric membership probabilities that allowed us to distinguish real stellar aggregates from the composite field star population. When building colour-magnitude diagrams and stellar density maps for stars at different membership probability levels, the genuine GC candidate populations are clearly highlighted. We then used the tip of the red giant branch (RGB) as distance estimator, resulting in heliocentric distances that place many of the objects in regions near the MW bulge, where no GC had been previously recognized. Some few GC candidates resulted to be MW halo/disc objects. Metallicities estimated from the standard RGB method are in agreement with the values expected according to the position of the GC candidates in the Galaxy. Finally, we derived, for the first time, their structural parameters. We found that the studied objects have core, half-light, and tidal radii in the ranges spanned by the population of known MW GCs. Their internal dynamical evolutionary stages will be described properly when their masses are estimated.

  19. Invasive placenta previa. Placental bulge with distorted uterine outline and uterine serosal hypervascularity at 1.5T MRI - useful features for differentiating placenta percreta from placenta accreta

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xin; Zhang, Xinjuan; Wang, Shanshan; Shi, Honglu; Gao, Fei; Wang, Guangbin [Shandong University, Department of MR, Shandong Medical Imaging Research Institute, Jinan, Shandong (China); Shan, Ruiqin [Jinan Maternity and Child Care Hospital, Department of Obstetrics, Jinan (China); Zhao, Lianxin [Qilu Hospital of Shandong University, Department of Radiology, Jinan, Shandong (China); Song, Qingxu [Qilu Hospital of Shandong University, Department of Radiation Oncology, Jinan, Shandong (China); Zuo, Changting [Shandong Provincial Hospital Affiliated to Shandong University, Department of Obstetrics and Gynaecology, Jinan, Shandong (China); Qian, Tianyi [MR Collaborations NE Asia, Siemens Healthcare, Beijing (China); Limperopoulos, Catherine [Children' s National Health System, Division of Diagnostic Imaging and Radiology, Washington, DC (United States); George Washington University School of Medicine, Department of Radiology, Washington, DC (United States)

    2018-02-15

    To characterise MRI features of invasive placenta previa and to identify specific features for differentiating placenta percreta (PP) from placenta accreta (PA). Forty-five women with PP and 93 women with PA who underwent 1.5T placental MRI were included. Two radiologists independently evaluated the MRI features of invasive placenta previa, including our novel type of placental bulge (i.e. placental bulge type-II, characterized by placental bulge with distorted uterine outline). Pearson's chi-squared or Fisher's two-sided exact test was performed to compare the MRI features between PP and PA. Logistic stepwise regression analysis and the area under the receiver operating characteristic curve (AUC) were performed to select the optimal features for differentiating PP from PA. Significant differences were found in nine MRI features between women with PP and those with PA (P <0.05). Placental bulge type-II and uterine serosal hypervascularity were independently associated with PP (odds ratio = 48.618, P < 0.001; odds ratio = 4.165, P = 0.018 respectively), and the combination of the two MRI features to distinguish PP from PA yielded an AUC of 0.92 for its predictive performance. Placental bulge type-II and uterine serosal hypervascularity are useful MRI features for differentiating PP from PA. (orig.)

  20. Invasive placenta previa. Placental bulge with distorted uterine outline and uterine serosal hypervascularity at 1.5T MRI - useful features for differentiating placenta percreta from placenta accreta

    International Nuclear Information System (INIS)

    Chen, Xin; Zhang, Xinjuan; Wang, Shanshan; Shi, Honglu; Gao, Fei; Wang, Guangbin; Shan, Ruiqin; Zhao, Lianxin; Song, Qingxu; Zuo, Changting; Qian, Tianyi; Limperopoulos, Catherine

    2018-01-01

    To characterise MRI features of invasive placenta previa and to identify specific features for differentiating placenta percreta (PP) from placenta accreta (PA). Forty-five women with PP and 93 women with PA who underwent 1.5T placental MRI were included. Two radiologists independently evaluated the MRI features of invasive placenta previa, including our novel type of placental bulge (i.e. placental bulge type-II, characterized by placental bulge with distorted uterine outline). Pearson's chi-squared or Fisher's two-sided exact test was performed to compare the MRI features between PP and PA. Logistic stepwise regression analysis and the area under the receiver operating characteristic curve (AUC) were performed to select the optimal features for differentiating PP from PA. Significant differences were found in nine MRI features between women with PP and those with PA (P <0.05). Placental bulge type-II and uterine serosal hypervascularity were independently associated with PP (odds ratio = 48.618, P < 0.001; odds ratio = 4.165, P = 0.018 respectively), and the combination of the two MRI features to distinguish PP from PA yielded an AUC of 0.92 for its predictive performance. Placental bulge type-II and uterine serosal hypervascularity are useful MRI features for differentiating PP from PA. (orig.)

  1. Monitoring and Mapping the Galactic Bulge (core Program)

    Science.gov (United States)

    Both neutron star and black hole binary transients are providing some of the most exciting RXTE science, and fortunately many are concentrated in the galactic bulge region. We propose to continue our twice weekly PCA scans of the region, which cover about 500 sq deg. The observations will be sensitive to new sources at the ~1 mCrab level (a factor of 10-60 more sensitive than the ASM in the region). We have had success finding new sources and new types of variability, including three millisecond pulsars, and new increased solid angle will improve the chances of finding more in the final RXTE years. We will continue efforts to search for variability in new and known sources. Companion follow-up proposals would be triggered by the results.

  2. Generative Models in Deep Learning: Constraints for Galaxy Evolution

    Science.gov (United States)

    Turp, Maximilian Dennis; Schawinski, Kevin; Zhang, Ce; Weigel, Anna K.

    2018-01-01

    New techniques are essential to make advances in the field of galaxy evolution. Recent developments in the field of artificial intelligence and machine learning have proven that these tools can be applied to problems far more complex than simple image recognition. We use these purely data driven approaches to investigate the process of star formation quenching. We show that Variational Autoencoders provide a powerful method to forward model the process of galaxy quenching. Our results imply that simple changes in specific star formation rate and bulge to disk ratio cannot fully describe the properties of the quenched population.

  3. Chemical Evolution and the Formation of Dwarf Galaxies in the Early Universe

    Science.gov (United States)

    Cote, Benoit; JINA-CEE, NuGrid, ChETEC

    2018-06-01

    Stellar abundances in local dwarf galaxies offer a unique window into the nature and nucleosynthesis of the first stars. They also contain clues regarding how galaxies formed and assembled in the early stages of the universe. In this talk, I will present our effort to connect nuclear astrophysics with the field of galaxy formation in order to define what can be learned about galaxy evolution using stellar abundances. In particular, I will describe the current state of our numerical chemical evolution pipeline which accounts for the mass assembly history of galaxies, present how we use high-redshift cosmological hydrodynamic simulations to calibrate our models and to learn about the formation of dwarf galaxies, and address the challenge of identifying the dominant r-process site(s) using stellar abundances.

  4. Galactic chemical evolution in hierarchical formation models - I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matías; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  5. Galactic chemical evolution in hierarchical formation models : I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matias; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    2010-01-01

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  6. STAR FORMATION HISTORY AND CHEMICAL EVOLUTION OF THE SEXTANS DWARF SPHEROIDAL GALAXY

    International Nuclear Information System (INIS)

    Lee, Myung Gyoon; Yuk, In-Soo; Park, Hong Soo; Harris, Jason; Zaritsky, Dennis

    2009-01-01

    We present the star formation history (SFH) and chemical evolution of the Sextans dSph galaxy as a function of a galactocentric distance. We derive these from the VI photometry of stars in the 42' x 28' field using the SMART model developed by Yuk and Lee and adopting a closed-box model for chemical evolution. For the adopted age of Sextans 15 Gyr, we find that >84% of the stars formed prior to 11 Gyr ago, significant star formation extends from 15 to 11 Gyr ago (∼ 65% of the stars formed 13-15 Gyr ago, while ∼ 25% formed 11-13 Gyr ago), detectable star formation continued to at least 8 Gyr ago, the SFH is more extended in the central regions than the outskirts, and the difference in star formation rates between the central and outer regions is most marked 11-13 Gyr ago. Whether blue straggler stars are interpreted as intermediate-age main-sequence stars affects conclusions regarding the SFH for times 4-8 Gyr ago, but this is at most only a trace population. We find that the metallicity of the stars increased rapidly up to [Fe/H] = -1.6 in the central region and to [Fe/H] = -1.8 in the outer region within the first Gyr, and has varied slowly since then. The abundance ratios of several elements derived in this study are in good agreement with the observational data based on the high-resolution spectroscopy in the literature. We conclude that the primary driver for the radial gradient of the stellar population in this galaxy is the SFH, which self-consistently drives the chemical enrichment history.

  7. Effects of main-sequence mass loss on stellar and galactic chemical evolution

    International Nuclear Information System (INIS)

    Guzik, J.A.

    1988-01-01

    L.A. Willson, G.H. Bowen and C. Struck-Marcell have proposed that 1 to 3 solar mass stars may experience evolutionarily significant mass loss during the early part of their main-sequence phase. The suggested mass-loss mechanism is pulsation, facilitated by rapid rotation. Initial mass-loss rates may be as large as several times 10 -9 M mass of sun/yr, diminishing over several times 10 8 years. The author attempts to test this hypothesis by comparing some theoretical implications with observations. Three areas are addressed: Solar models, cluster HR diagrams, and galactic chemical evolution. Mass-losing solar models were evolved that match the Sun's luminosity and radius at its present age. The most extreme viable models have initial mass 2.0 M 0 , and mass-loss rates decreasing exponentially over 2-3 x 10 8 years. Evolution calculations incorporating main-sequence mass loss were completed for a grid of models with initial masses 1.25 to 2.0 M mass of sun and mass loss timescales 0.2 to 2.0 Gry. Cluster HR diagrams synthesized with these models confirm the potential for the hypothesis to explain observed spreads or bifurcations in the upper main sequence, blue stragglers, anomalous giants, and poor fits of main-sequence turnoffs by standard isochrones. Simple closed galactic chemical evolution models were used to test the effects of main-sequence mass loss on the F and G dwarf distribution. Stars between 3.0 M mass of sun and a metallicity-dependent lower mass are assumed to lose mass. The models produce a 30 to 60% increase in the stars to stars-plus-remnants ratio, with fewer early-F dwarfs and many more late-F dwarfs remaining on the main sequence to the present

  8. The BRAVE Program. I. Improved Bulge Stellar Velocity Dispersion Estimates for a Sample of Active Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Batiste, Merida; Bentz, Misty C.; Manne-Nicholas, Emily R. [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Atlanta, GA 30303 (United States); Onken, Christopher A. [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Bershady, Matthew A., E-mail: batiste@astro.gsu.edu [Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53706 (United States)

    2017-02-01

    We present new bulge stellar velocity dispersion measurements for 10 active galaxies with secure M {sub BH} determinations from reverberation mapping. These new velocity dispersion measurements are based on spatially resolved kinematics from integral-field (IFU) spectroscopy. In all but one case, the field of view of the IFU extends beyond the effective radius of the galaxy, and in the case of Mrk 79 it extends to almost one half the effective radius. This combination of spatial resolution and field of view allows for secure determinations of stellar velocity dispersion within the effective radius for all 10 target galaxies. Spatially resolved maps of the first ( V ) and second ( σ {sub ⋆}) moments of the line of sight velocity distribution indicate the presence of kinematic substructure in most cases. In future projects we plan to explore methods of correcting for the effects of kinematic substructure in the derived bulge stellar velocity dispersion measurements.

  9. Evolution of camel CYP2E1 and its associated power of binding toxic industrial chemicals and drugs.

    Science.gov (United States)

    Kandeel, Mahmoud; Altaher, Abdullah; Kitade, Yukio; Abdelaziz, Magdi; Alnazawi, Mohamed; Elshazli, Kamal

    2016-10-01

    Camels are raised in harsh desert environment for hundreds of years ago. By modernization of live and the growing industrial revolution in camels rearing areas, camels are exposed to considerable amount of chemicals, industrial waste, environmental pollutions and drugs. Furthermore, camels have unique gene evolution of some genes to withstand living in harsh environments. In this work, the camel cytochrome P450 2E1 (CYP2E1) is compromised to detect its evolution rate and its power to bind with various chemicals, protoxins, procarcinogens, industrial toxins and drugs. In comparison with human CYP2E1, camel CYP2E1 more efficiently binds to small toxins as aniline, benzene, catechol, amides, butadiene, toluene and acrylamide. Larger compounds were more preferentially bound to the human CYP2E1 in comparison with camel CYP2E1. The binding of inhalant anesthetics was almost similar in both camel and human CYP2E1 coinciding with similar anesthetic effect as well as toxicity profiles. Furthermore, evolutionary analysis indicated the high evolution rate of camel CYP2E1 in comparison with human, farm and companion animals. The evolution rate of camel CYP2E1 was among the highest evolution rate in a subset of 57 different organisms. These results indicate rapid evolution and potent toxin binding power of camel CYP2E1. Copyright © 2016. Published by Elsevier Ltd.

  10. Evolution of a chemically reacting plume in a ventilated room

    Science.gov (United States)

    Conroy, D. T.; Smith, Stefan G. Llewellyn; Caulfield, C. P.

    2005-08-01

    The dynamics of a second-order chemical reaction in an enclosed space driven by the mixing produced by a turbulent buoyant plume are studied theoretically, numerically and experimentally. An isolated turbulent buoyant plume source is located in an enclosure with a single external opening. Both the source and the opening are located at the bottom of the enclosure. The enclosure is filled with a fluid of a given density with a fixed initial concentration of a chemical. The source supplies a constant volume flux of fluid of different density containing a different chemical of known and constant concentration. These two chemicals undergo a second-order non-reversible reaction, leading to the creation of a third product chemical. For simplicity, we restrict attention to the situation where the reaction process does not affect the density of the fluids involved. Because of the natural constraint of volume conservation, fluid from the enclosure is continually vented. We study the evolution of the various chemical species as they are advected by the developing ventilated filling box process within the room that is driven by the plume dynamics. In particular, we study both the mean and vertical distributions of the chemical species as a function of time within the room. We compare the results of analogue laboratory experiments with theoretical predictions derived from reduced numerical models, and find excellent agreement. Important parameters for the behaviour of the system are associated with the source volume flux and specific momentum flux relative to the source specific buoyancy flux, the ratio of the initial concentrations of the reacting chemical input in the plume and the reacting chemical in the enclosed space, the reaction rate of the chemicals and the aspect ratio of the room. Although the behaviour of the system depends on all these parameters in a non-trivial way, in general the concentration within the room of the chemical input at the isolated source passes

  11. Cosmic Evolution of Black Holes And Spheroids. 1, the M(BH)-Sigma Relation at Z=0.36

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Jong-Hak; Treu, Tommaso; /UC, Santa Barbara; Malkan, Matthew A.; /UCLA; Blandford, Roger D.; /KIPAC, Menlo Park

    2006-04-17

    We test the evolution of the correlation between black hole mass and bulge velocity dispersion (M{sub BH} - {sigma}), using a carefully selected sample of 14 Seyfert 1 galaxies at z = 0.36 {+-} 0.01. We measure velocity dispersion from stellar absorption lines around Mgb (5175 {angstrom}) and Fe (5270 {angstrom}) using high S/N Keck spectra, and estimate black hole mass from the H{beta} line width and the optical luminosity at 5100 {angstrom}, based on the empirically calibrated photo-ionization method. We find a significant offset from the local relation, in the sense that velocity dispersions were smaller for given black hole masses at z = 0.36 than locally. We investigate various sources of systematic uncertainties and find that those cannot account for the observed offset. The measured offset is {Delta} log M{sub BH} = 0.62 {+-} 0.10 {+-} 0.25, i.e. {Delta} log {sigma} = 0.15 {+-} 0.03 {+-} 0.06, where the error bars include a random component and an upper limit to the systematics. At face value, this result implies a substantial growth of bulges in the last 4 Gyr, assuming that the local M{sub BH} - {sigma} relation is the universal evolutionary end-point. Along with two samples of active galaxies with consistently determined black hole mass and stellar velocity dispersion taken from the literature, we quantify the observed evolution with the best fit linear relation, {Delta} log M{sub BH} = (1.66 {+-} 0.43)z + (0.04 {+-} 0.09) with respect to the local relationship of Tremaine et al. (2002), and {Delta} log M{sub BH} = (1.55 {+-} 0.46)z +(0.01 {+-} 0.12) with respect to that of Ferrarese (2002). This result is consistent with the growth of black holes predating the final growth of bulges at these mass scales (<{sigma}> = 170 km s{sup -1}).

  12. Chemical evolution, stellar nucleosynthesis and a variable star formation rate

    International Nuclear Information System (INIS)

    Olive, K.A.; Thielemann, F.K.; Truran, J.W.

    1986-04-01

    The effects of a decreasing star formation rate (SFR) on the galactic abundances of elements produced in massive stars (M ≥ 10 Msub solar). On the basis of a straightforward model of galactic evolution, a relation between the upper mass limit of type II supernovae (M/sub SN/) contributing to chemical evolution and the decline of the SFR (tau) is derived, when the oxygen abundance is determined only by massive stars. The additional requirement that all intermediate mass elements (Ne-Ti), which are also predominantly due to nucleosynthesis in massive stars, are produced in solar proportions leads to a unique value of M/sub SN/ and tau. The application of this method with abundance yields from Arnett (1978) and Woosley and Weaver (1986) resuults, however, in contradicting solutions: M/sub SN/ ≅ 45 Msub solar, tau = ∞, and M/sub SN/ ≅ 15 Msub solar, tau = 3 x 10 9 y. Thus, in order that this approach provide an effective probe of the SFR over the history of our galaxy it is essential that converging and more accurate predictions of the consequences of stellar and supernova nucleosynthesis will be forthcoming. 54 refs., 2 figs., 2 tabs

  13. Responses of soil physical and chemical properties to karst rocky desertification evolution in typical karst valley area

    Science.gov (United States)

    Chen, Fei; Zhou, Dequan; Bai, Xiaoyong; zeng, Cheng; Xiao, Jianyong; Qian, Qinghuan; Luo, Guangjie

    2018-01-01

    In order to reveal the differences of soil physical and chemical properties and their response mechanism to the evolution of KRD. The characteristics of soil physical and chemical properties of different grades of KRD were studied by field sampling method to research different types of KRD in the typical karst valley of southern China. Instead of using space of time, to explore the response and the mechanisms of the soil physical and chemical properties at the different evolution process. The results showed that: (1) There were significant differences in organic matter, pH, total nitrogen, total phosphorus, total potassium, sediment concentration, clay content and AWHC in different levels of KRD environment. However, these indicators are not with increasing desertification degree has been degraded, but improved after a first degradation trends; (2) The correlation analysis showed that soil organic matter, acid, alkali, total nitrogen, total phosphorus, total potassium and clay contents were significantly correlated with other physical and chemical factors. They are the key factors of soil physical and chemical properties, play a key role in improving soil physical and chemical properties and promoting nutrient cycling; (3) The principal component analysis showed that the cumulative contribution rate of organic matter, pH, total nitrogen, total phosphorus, total potassium and sediment concentration was 80.26%, which was the key index to evaluate rocky desertification degree based on soil physical and chemical properties. The results have important theoretical and practical significance for the protection and restoration of rocky desertification ecosystem in southwest China.

  14. Geochemical investigation of groundwater in the Tono area, Japan. Chemical characteristics and groundwater evolution

    International Nuclear Information System (INIS)

    Iwatsuki, Teruki; Hama, Katsuhiro; Yoshida, Hidekazu

    1997-01-01

    Geochemical investigations form an important part of the R and D program at the Tono study site, central Japan. Detailed geological structure and groundwater chemistry have been studied to understand the geochemical environment in the sedimentary and crystalline rocks distributed in this area. The chemical evolution of the groundwater in the sedimentary rocks is characterized with the variation in Na + , Ca 2+ and HCO 3 - concentrations, and ion exchange and dissolution of calcite are dominant reactions in the evolution of groundwater. Geological investigation shows that a fracture system of crystalline rock can be classified into:intact zone, moderately fractured zone and intensely fractured zone, according to the frequency and the width of fractures and fractured zones. The groundwater in the intact and fractured zones of crystalline rock are characterized by Na + -Ca 2+ -HCO 3 - or Na + -HCO 3 - dominated water, and Na + -Ca 2+ -Fe 2+ -HCO 3 - dominated water. The chemical evolution of groundwater is, generally, controlled by water-rock interaction between plagioclase, iron minerals and groundwater. The groundwater at depth of G.L.-186m in the crystalline rock at the Tono area is characterized by the mixture between the oxidized surface water and the reduced groundwater. The investigation based on correlation between geological structures and groundwater chemistry can be applied to understand the geochemical environment in deep crystalline rock, and will support the development of a realistic hydrogeochemical model. (author)

  15. Stellar evolution

    CERN Document Server

    Meadows, A J

    2013-01-01

    Stellar Evolution, Second Edition covers the significant advances in the understanding of birth, life, and death of stars.This book is divided into nine chapters and begins with a description of the characteristics of stars according to their brightness, distance, size, mass, age, and chemical composition. The next chapters deal with the families, structure, and birth of stars. These topics are followed by discussions of the chemical composition and the evolution of main-sequence stars. A chapter focuses on the unique features of the sun as a star, including its evolution, magnetic fields, act

  16. SURFACE AND LIGHTNING SOURCES OF NITROGEN OXIDES OVER THE UNITED STATES: MAGNITUDES, CHEMICAL EVOLUTION, AND OUTFLOW

    Science.gov (United States)

    We use observations from two aircraft during the ICARTT campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of regional sources, chemical evolution...

  17. Chemical, physical, and optical evolution of biomass burning aerosols: a case study

    Science.gov (United States)

    Adler, G.; Flores, J. M.; Abo Riziq, A.; Borrmann, S.; Rudich, Y.

    2011-02-01

    In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (HR-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While these types of extensive BB events are not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). The average EBRI for a mixed population of aerosols dominated by open fires was m = 1.53(±0.03) + 0.07i(±0.03), during the smoldering phase of the fires we found the EBRI to be m = 1.54(±0.01) + 0.04i(±0.01) compared to m = 1.49(±0.01) + 0.02i(±0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.

  18. Normal black holes in bulge-less galaxies: the largely quiescent, merger-free growth of black holes over cosmic time

    Science.gov (United States)

    Martin, G.; Kaviraj, S.; Volonteri, M.; Simmons, B. D.; Devriendt, J. E. G.; Lintott, C. J.; Smethurst, R. J.; Dubois, Y.; Pichon, C.

    2018-05-01

    Understanding the processes that drive the formation of black holes (BHs) is a key topic in observational cosmology. While the observed MBH-MBulge correlation in bulge-dominated galaxies is thought to be produced by major mergers, the existence of an MBH-M⋆ relation, across all galaxy morphological types, suggests that BHs may be largely built by secular processes. Recent evidence that bulge-less galaxies, which are unlikely to have had significant mergers, are offset from the MBH-MBulge relation, but lie on the MBH-M⋆ relation, has strengthened this hypothesis. Nevertheless, the small size and heterogeneity of current data sets, coupled with the difficulty in measuring precise BH masses, make it challenging to address this issue using empirical studies alone. Here, we use Horizon-AGN, a cosmological hydrodynamical simulation to probe the role of mergers in BH growth over cosmic time. We show that (1) as suggested by observations, simulated bulge-less galaxies lie offset from the main MBH-MBulge relation, but on the MBH-M⋆ relation, (2) the positions of galaxies on the MBH-M⋆ relation are not affected by their merger histories, and (3) only ˜35 per cent of the BH mass in today's massive galaxies is directly attributable to merging - the majority (˜65 per cent) of BH growth, therefore, takes place gradually, via secular processes, over cosmic time.

  19. Understanding how surface chemistry and topography enhance fog harvesting based on the superwetting surface with patterned hemispherical bulges.

    Science.gov (United States)

    Zhong, Lieshuang; Zhu, Hai; Wu, Yang; Guo, Zhiguang

    2018-09-01

    The Namib Desert beetle-Stenocara can adapt to the arid environment by its fog harvesting ability. A series of samples with different topography and wettability that mimicked the elytra of the beetle were fabricated to study the effect of these factors on fog harvesting. The superhydrophobic bulgy sample harvested 1.5 times the amount of water than the sample with combinational pattern of hydrophilic bulgy/superhydrophobic surrounding and 2.83 times than the superhydrophobic surface without bulge. These bulges focused the droplets around them which endowed droplets with higher velocity and induced the highest dynamic pressure atop them. Superhydrophobicity was beneficial for the departure of harvested water on the surface of sample. The bulgy topography, together with surface wettability, dominated the process of water supply and water removal. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Evolution of chemical composition of fogwater in winter in Chengdu, China.

    Science.gov (United States)

    Yin, Hongling; Ye, Zhixiang; Yang, Yingchun; Yuan, Wei; Qiu, Changyan; Yuan, Huawei; Wang, Min; Li, Shiping; Zou, Changwu

    2013-09-01

    Two sampling sites representing the urban and suburban area of Chengdu, China were sampled and analyzed for selected chemicals to characterize the evolution of the chemical composition of fogwater. A trend of total organic carbon (TOC) > total nitrogen (TN) > total inorganic carbon (TIC) was observed for both sites. Variation of inorganic ions indicated that inorganic pollutants were not accumulated in the fog. Concentrations of n-alkanes (C11-C37) at the urban site ranged from 7.58 to 27.75 ng/mL while at the suburban site concentrations were 2.57-21.55 ng/mL. The highest concentration of n-alkanes was observed in the mature period of fog (393.12 ng/mL) which was more than ten times that in the fog formation period (27.83 ng/mL) and the fog dissipation period (14.87 ng/mL). Concentrations of Sigma15PAHs were in the range of 7.27-38.52 ng/mL at the urban site and 2.59-22.69 ng/mL at the suburban site. Contents of PAHs in the mature period of fog (27.15 ng/mL) > fog dissipation period (11.59 ng/mL) > fog formation period (6.42 ng/mL). Concentrations of dicarboxylic acids (C5-C9) ranged from 10.92 to 40.78 ng/mL, with glutaric acid (C5) as the dominant dicarboxylic acid. These data provide strong indications of the accumulation of certain organic chemicals of environmental concern in fog and fog water, and provide additional insights about processes in urban and suburban air acting on organic chemicals with similar physical chemical properties.

  1. Study of solid chemical evolution in torrefaction of different biomasses through solid-state "1"3C cross-polarization/magic angle spinning NMR (nuclear magnetic resonance) and TGA (thermogravimetric analysis)

    International Nuclear Information System (INIS)

    Rodriguez Alonso, Elvira; Dupont, Capucine; Heux, Laurent; Da Silva Perez, Denilson; Commandre, Jean-Michel; Gourdon, Christophe

    2016-01-01

    The objective of this work is to compare mass loss and chemical evolution of the solid phase, versus time, during dynamic torrefaction of different types of biomass. For this purpose, two experiments, ThermoGravimetric Analysis and solid-state "1"3C Cross-Polarization/Magic Angle Spinning Nuclear Magnetic Resonance, were run on four representative biomasses. Overall mass loss and chemical evolution of the solid phase were followed, respectively, as a function of temperature and time. Thanks to this coupled information, it was shown that the knowledge of both solid mass loss and chemical evolution is necessary to characterize torrefaction severity. Moreover, biomasses containing higher proportions of xylan lost mass faster than those containing lower proportions. Lignin showed a protecting role towards cellulose, which would lead to a faster degradation of non-woody biomasses in comparison with woody biomasses. Three parameters would have an influence on solid chemical evolution during torrefaction: xylan content in hemicellulose, lignin content in biomass, and cellulose crystallinity. - Highlights: • Torrefaction of four biomasses was studied with TGA and solid-state NMR. • Both solid mass loss and chemical evolution characterize torrefaction severity. • Biomasses containing a higher proportion of xylan lose mass faster. • Lignin shows a stronger protecting role in degradation of woody biomasses. • Xylan, lignin and crystalline cellulose values influence solid chemical evolution.

  2. Evolution of chemical specifications following the working group of international inter-comparison

    International Nuclear Information System (INIS)

    Leduc-Brunet, Murielle; Gressier, F.; Mole, D.; Massias, O.; Marescot, O.; Bretelle, Jean Luc

    2012-09-01

    As part of a continuous improvement process and the inclusion of Experience Feedback, EDF has launched a working group to analyse its reference of Chemical Specifications with regard to the guidelines of EPRI and VGB.. As a result of the analysis of over 1000 lines of specifications, a large number of recommendations were issued, referring either to control of new chemical parameters or to an enhancement of measurement frequencies. These recommendations are to be developed by preliminary studies which will provide supporting evidence for future decisions. To implement these recommendations, EDF launched a dedicated project in 2011, whose main objectives were to: - raise the requirements of chemical specifications in line with international standards and compare the technical basis of the different international standards, - strengthen monitoring and anticipation of corrective actions in the field of plant chemistry with a view to extending nuclear plant lifetime to 60 years. This project, scheduled for 2011 to 2016, covers the following activities: - studies on the technical background of the specifications (2011-14), - study of the possibility of adopting an 'Actions Levels' approach in EDF's own specifications (2012-14), - new propositions evolution of the specifications (2015-16). (authors)

  3. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. I. BRIGHT UV STARS IN THE BULGE OF M31

    International Nuclear Information System (INIS)

    Rosenfield, Philip; Johnson, L. Clifton; Dalcanton, Julianne J.; Williams, Benjamin F.; Gilbert, Karoline M.; Girardi, Léo; Bressan, Alessandro; Lang, Dustin; Guhathakurta, Puragra; Dorman, Claire E.; Howley, Kirsten M.; Lauer, Tod R.; Olsen, Knut A. G.; Bell, Eric F.; Bianchi, Luciana; Caldwell, Nelson; Dolphin, Andrew; Kalirai, Jason; Larsen, Søren S.; Rix, Hans-Walter

    2012-01-01

    As part of the Panchromatic Hubble Andromeda Treasury multi-cycle program, we observed a 12' × 6.'5 area of the bulge of M31 with the WFC3/UVIS filters F275W and F336W. From these data we have assembled a sample of ∼4000 UV-bright, old stars, vastly larger than previously available. We use updated Padova stellar evolutionary tracks to classify these hot stars into three classes: Post-AGB stars (P-AGB), Post-Early AGB (PE-AGB) stars, and AGB-manqué stars. P-AGB stars are the end result of the asymptotic giant branch (AGB) phase and are expected in a wide range of stellar populations, whereas PE-AGB and AGB-manqué (together referred to as the hot post-horizontal branch; HP-HB) stars are the result of insufficient envelope masses to allow a full AGB phase, and are expected to be particularly prominent at high helium or α abundances when the mass loss on the red giant branch is high. Our data support previous claims that most UV-bright sources in the bulge are likely hot (extreme) horizontal branch (EHB) stars and their progeny. We construct the first radial profiles of these stellar populations and show that they are highly centrally concentrated, even more so than the integrated UV or optical light. However, we find that this UV-bright population does not dominate the total UV luminosity at any radius, as we are detecting only the progeny of the EHB stars that are the likely source of the UV excess. We calculate that only a few percent of main-sequence stars in the central bulge can have gone through the HP-HB phase and that this percentage decreases strongly with distance from the center. We also find that the surface density of hot UV-bright stars has the same radial variation as that of low-mass X-ray binaries. We discuss age, metallicity, and abundance variations as possible explanations for the observed radial variation in the UV-bright population.

  4. Limb darkening of a K giant in the galactic bulge : Planet photometry of MACHO 97-BLG-28

    NARCIS (Netherlands)

    Albrow, MD; Beaulieu, JP; Caldwell, JAR; Dominik, M; Greenhill, J; Hill, K; Kane, S; Martin, R; Menzies, J; Pel, JW; Pollard, K; Sackett, PD; Sahu, KC; Vermaak, P; Watson, R; Williams, A; Sahu, MS

    1999-01-01

    We present the PLANET photometric data set(10) for the binary-lens microlensing event MACHO 97-BLG-28, consisting of 696 I- and V-band measurements, and analyze it to determine the radial surface brightness profile of the Galactic bulge source star. The microlensed source, demonstrated to be a K

  5. Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics

    Science.gov (United States)

    Taranu, D. S.; Obreschkow, D.; Dubinski, J. J.; Fogarty, L. M. R.; van de Sande, J.; Catinella, B.; Cortese, L.; Moffett, A.; Robotham, A. S. G.; Allen, J. T.; Bland-Hawthorn, J.; Bryant, J. J.; Colless, M.; Croom, S. M.; D'Eugenio, F.; Davies, R. L.; Drinkwater, M. J.; Driver, S. P.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Mould, J. R.; Owers, M. S.; Power, C.; Richards, S. N.; Tonini, C.

    2017-11-01

    We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness, rotation, and velocity dispersion profiles of a galaxy. The models are fully self-consistent 6D distribution functions for a galaxy with a Sérsic profile stellar bulge, exponential disk, and parametric dark-matter halo, generated by an updated version of GalactICS. By creating realistic flux-weighted maps of the kinematic moments (flux, mean velocity, and dispersion), we simultaneously fit photometric and spectroscopic data using both maximum-likelihood and Bayesian (MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with kinematics from the SAMI Galaxy Survey and deep g- and r-band photometry from the VST-KiDS survey, comparing parameter constraints with those from traditional 2D bulge-disk decomposition. Our method returns broadly consistent results for shared parameters while constraining the mass-to-light ratios of stellar components and reproducing the H I-inferred circular velocity well beyond the limits of the SAMI data. Although the method is tailored for fitting integral field kinematic data, it can use other dynamical constraints like central fiber dispersions and H I circular velocities, and is well-suited for modeling galaxies with a combination of deep imaging and H I and/or optical spectra (resolved or otherwise). Our implementation (MagRite) is computationally efficient and can generate well-resolved models and kinematic maps in under a minute on modern processors.

  6. Observing the metal-poor solar neighbourhood: a comparison of galactic chemical evolution predictions*†

    Science.gov (United States)

    Mishenina, T.; Pignatari, M.; Côté, B.; Thielemann, F.-K.; Soubiran, C.; Basak, N.; Gorbaneva, T.; Korotin, S. A.; Kovtyukh, V. V.; Wehmeyer, B.; Bisterzo, S.; Travaglio, C.; Gibson, B. K.; Jordan, C.; Paul, A.; Ritter, C.; Herwig, F.; NuGrid Collaboration

    2017-08-01

    Atmospheric parameters and chemical compositions for 10 stars with metallicities in the region of -2.2 LTE) and non-LTE (NLTE) approaches. In particular, differences by assuming LTE or NLTE are about 0.10 dex; depending on [Fe/H], Teff, gravity and element lines used in the analysis. We find that the O abundance has the largest error, ranging from 0.10 and 0.2 dex. The best measured elements are Cr, Fe, and Mn; with errors between 0.03 and 0.11 dex. The stars in our sample were included in previous different observational work. We provide a consistent data analysis. The data dispersion introduced in the literature by different techniques and assumptions used by the different authors is within the observational errors, excepting for HD103095. We compare these results with stellar observations from different data sets and a number of theoretical galactic chemical evolution (GCE) simulations. We find a large scatter in the GCE results, used to study the origin of the elements. Within this scatter as found in previous GCE simulations, we cannot reproduce the evolution of the elemental ratios [Sc/Fe], [Ti/Fe], and [V/Fe] at different metallicities. The stellar yields from core-collapse supernovae are likely primarily responsible for this discrepancy. Possible solutions and open problems are discussed.

  7. Rubber bulge forming of single-stage bellows of TiNi shape memory alloy using the displacement control method

    International Nuclear Information System (INIS)

    Senba, Hiromasa; Yamaji, Toru; Okita, Keisuke; Okabe, Nagatoshi; Yamauchi, Kiyoshi; Matsumoto, Kenya

    2005-01-01

    This paper deals with the bulge process for forming the single-stage bellows of TiNi shape memory alloys, which is proposed as a new type of seismic applications, and especially considering the material's special behavior. Thin walled tubes with 20% cold work, whose composition is Ti-51.0 at% Ni, were prepared. First they are appropriately heat-treated and then the rubber bulge process is introduced for the tubes under the condition of austenite phase at room temperature. Displacement control method is adapted to the process. Theoretical prediction of change in outer diameter of the tube on compression is derived, and modified taking into account the progress of the stress-induced martensite transformation on tube's surface by observing the detachment of the oxide layer of the surface. Finally theoretical relationship between compressive displacement and the outer diameter of the tube, which is the most important for the design of the bellows shape, is cleared. (author)

  8. The mineralogic evolution of the Martian surface through time: Implications from chemical reaction path modeling studies

    Science.gov (United States)

    Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.

    1993-01-01

    Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.

  9. Positron Transport and Annihilation in the Galactic Bulge

    Directory of Open Access Journals (Sweden)

    Fiona Helen Panther

    2018-03-01

    Full Text Available The annihilation of positrons in the Milky Way Galaxy has been observed for ∼50 years; however, the production sites of these positrons remains hard to identify. The observed morphology of positron annihilation gamma-rays provides information on the annihilation sites of these Galactic positrons. It is understood that the positrons responsible for the annihilation signal originate at MeV energies. The majority of sources of MeV positrons occupy the star-forming thin disk of the Milky Way. If positrons propagate far from their sources, we must develop accurate models of positron propagation through all interstellar medium (ISM phases in order to reveal the currently uncertain origin of these Galactic positrons. On the other hand, if positrons annihilate close to their sources, an alternative source of MeV positrons with a distribution that matches the annihilation morphology must be identified. In this work, I discuss the various models that have been developed to understand the origin of the 511 keV line from the direction of the Galactic bulge, and the propagation of positrons in the ISM.

  10. Features in chemical kinetics. I. Signatures of self-emerging dimensional reduction from a general format of the evolution law.

    Science.gov (United States)

    Nicolini, Paolo; Frezzato, Diego

    2013-06-21

    Simplification of chemical kinetics description through dimensional reduction is particularly important to achieve an accurate numerical treatment of complex reacting systems, especially when stiff kinetics are considered and a comprehensive picture of the evolving system is required. To this aim several tools have been proposed in the past decades, such as sensitivity analysis, lumping approaches, and exploitation of time scales separation. In addition, there are methods based on the existence of the so-called slow manifolds, which are hyper-surfaces of lower dimension than the one of the whole phase-space and in whose neighborhood the slow evolution occurs after an initial fast transient. On the other hand, all tools contain to some extent a degree of subjectivity which seems to be irremovable. With reference to macroscopic and spatially homogeneous reacting systems under isothermal conditions, in this work we shall adopt a phenomenological approach to let self-emerge the dimensional reduction from the mathematical structure of the evolution law. By transforming the original system of polynomial differential equations, which describes the chemical evolution, into a universal quadratic format, and making a direct inspection of the high-order time-derivatives of the new dynamic variables, we then formulate a conjecture which leads to the concept of an "attractiveness" region in the phase-space where a well-defined state-dependent rate function ω has the simple evolution ω[over dot]=-ω(2) along any trajectory up to the stationary state. This constitutes, by itself, a drastic dimensional reduction from a system of N-dimensional equations (being N the number of chemical species) to a one-dimensional and universal evolution law for such a characteristic rate. Step-by-step numerical inspections on model kinetic schemes are presented. In the companion paper [P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234102 (2013)] this outcome will be naturally related to the

  11. Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results

    Science.gov (United States)

    Jacob, Daniel J.; Crawford, James H.; Kleb, Mary M.; Connors, Vickie S.; Bendura, Richard J.; Raper, James L.; Sachse, Glen W.; Gille, John C.; Emmons, Louisa; Heald, Colette L.

    2003-10-01

    The NASA Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission was conducted in February-April 2001 over the NW Pacific (1) to characterize the Asian chemical outflow and relate it quantitatively to its sources and (2) to determine its chemical evolution. It used two aircraft, a DC-8 and a P-3B, operating out of Hong Kong and Yokota Air Force Base (near Tokyo), with secondary sites in Hawaii, Wake Island, Guam, Okinawa, and Midway. The aircraft carried instrumentation for measurements of long-lived greenhouse gases, ozone and its precursors, aerosols and their precursors, related species, and chemical tracers. Five chemical transport models (CTMs) were used for chemical forecasting. Customized bottom-up emission inventories for East Asia were generated prior to the mission to support chemical forecasting and to serve as a priori for evaluation with the aircraft data. Validation flights were conducted for the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument and revealed little bias (6 ± 2%) in the MOPITT measurements of CO columns. A major event of transpacific Asian pollution was characterized through combined analysis of TRACE-P and MOPITT data. The TRACE-P observations showed that cold fronts sweeping across East Asia and the associated warm conveyor belts (WCBs) are the dominant pathway for Asian outflow to the Pacific in spring. The WCBs lift both anthropogenic and biomass burning (SE Asia) effluents to the free troposphere, resulting in complex chemical signatures. The TRACE-P data are in general consistent with a priori emission inventories, lending confidence in our ability to quantify Asian emissions from socioeconomic data and emission factors. However, the residential combustion source in rural China was found to be much larger than the a priori, and there were also unexplained chemical enhancements (HCN, CH3Cl, OCS, alkylnitrates) in Chinese urban plumes. The Asian source of CCl4 was found to be much

  12. Effects of Main-Sequence Mass Loss on Stellar and Galactic Chemical Evolution.

    Science.gov (United States)

    Guzik, Joyce Ann

    1988-06-01

    L. A. Willson, G. H. Bowen and C. Struck -Marcell have proposed that 1 to 3 solar mass stars may experience evolutionarily significant mass loss during the early part of their main-sequence phase. The suggested mass-loss mechanism is pulsation, facilitated by rapid rotation. Initial mass-loss rates may be as large as several times 10^{-9}M o/yr, diminishing over several times 10^8 years. We attempted to test this hypothesis by comparing some theoretical implications with observations. Three areas are addressed: Solar models, cluster HR diagrams, and galactic chemical evolution. Mass-losing solar models were evolved that match the Sun's luminosity and radius at its present age. The most extreme viable models have initial mass 2.0 M o, and mass-loss rates decreasing exponentially over 2-3 times 10^8 years. Compared to a constant -mass model, these models require a reduced initial ^4He abundance, have deeper envelope convection zones and higher ^8B neutrino fluxes. Early processing of present surface layers at higher interior temperatures increases the surface ^3He abundance, destroys Li, Be and B, and decreases the surface C/N ratio following first dredge-up. Evolution calculations incorporating main-sequence mass loss were completed for a grid of models with initial masses 1.25 to 2.0 Mo and mass loss timescales 0.2 to 2.0 Gyr. Cluster HR diagrams synthesized with these models confirm the potential for the hypothesis to explain observed spreads or bifurcations in the upper main sequence, blue stragglers, anomalous giants, and poor fits of main-sequence turnoffs by standard isochrones. Simple closed galactic chemical evolution models were used to test the effects of main-sequence mass loss on the F and G dwarf distribution. Stars between 3.0 M o and a metallicity -dependent lower mass are assumed to lose mass. The models produce a 30 to 60% increase in the stars to stars-plus -remnants ratio, with fewer early-F dwarfs and many more late-F dwarfs remaining on the main

  13. REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S R{sub V} {approx} 2.5 EXTINCTION CURVE

    Energy Technology Data Exchange (ETDEWEB)

    Nataf, David M.; Gould, Andrew; Johnson, Jennifer A.; Skowron, Jan [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Fouque, Pascal [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France); Gonzalez, Oscar A. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Udalski, Andrzej; Szymanski, Michal K.; Kubiak, Marcin; Pietrzynski, Grzegorz; Soszynski, Igor; Ulaczyk, Krzysztof; Wyrzykowski, Lukasz; Poleski, Radoslaw, E-mail: nataf@astronomy.ohio-state.edu [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland)

    2013-06-01

    We combine VI photometry from OGLE-III with VISTA Variables in The Via Lactea survey and Two Micron All Sky Survey measurements of E(J - K{sub s} ) to resolve the longstanding problem of the non-standard optical extinction toward the Galactic bulge. We show that the extinction is well fit by the relation A{sub I} = 0.7465 Multiplication-Sign E(V - I) + 1.3700 Multiplication-Sign E(J - K{sub s} ), or, equivalently, A{sub I} = 1.217 Multiplication-Sign E(V - I)(1 + 1.126 Multiplication-Sign (E(J - K{sub s} )/E(V - I) - 0.3433)). The optical and near-IR reddening law toward the inner Galaxy approximately follows an R{sub V} Almost-Equal-To 2.5 extinction curve with a dispersion {sigma}{sub R{sub V}}{approx}0.2, consistent with extragalactic investigations of the hosts of Type Ia SNe. Differential reddening is shown to be significant on scales as small as our mean field size of 6'. The intrinsic luminosity parameters of the Galactic bulge red clump (RC) are derived to be (M{sub I,RC},{sigma}{sub I,RC,0}, (V-I){sub RC,0},{sigma}{sub (V-I){sub R{sub C}}}, (J-K{sub s}){sub RC,0}) = (-0.12, 0.09, 1.06, 0.121, 0.66). Our measurements of the RC brightness, brightness dispersion, and number counts allow us to estimate several Galactic bulge structural parameters. We estimate a distance to the Galactic center of 8.20 kpc. We measure an upper bound on the tilt {alpha} Almost-Equal-To 40 Degree-Sign between the bulge's major axis and the Sun-Galactic center line of sight, though our brightness peaks are consistent with predictions of an N-body model oriented at {alpha} Almost-Equal-To 25 Degree-Sign . The number of RC stars suggests a total stellar mass for the Galactic bulge of {approx}2.3 Multiplication-Sign 10{sup 10} M{sub Sun} if one assumes a canonical Salpeter initial mass function (IMF), or {approx}1.6 Multiplication-Sign 10{sup 10} M{sub Sun} if one assumes a bottom-light Zoccali IMF.

  14. Polyamorphic Transformations in Fe-Ni-C Liquids: Implications for Chemical Evolution of Terrestrial Planets: Fe-Ni-C liquid structural change

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Xiaojing [Department of Geology and Geophysics, University of Hawai‘i at Mānoa, Honolulu HI USA; Hawaii Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu HI USA; Chen, Bin [Hawaii Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu HI USA; Wang, Jianwei [Department of Geology and Geophysics, Center for Computation and Technology, Louisiana State University, Baton Rouge LA USA; Kono, Yoshio [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, Argonne IL USA; Zhu, Feng [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor MI USA

    2017-12-01

    During the formation of the Earth's core, the segregation of metallic liquids from silicate mantle should have left behind evident geochemical imprints on both the mantle and the core. Some distinctive geochemical signatures of the mantle-derived rocks likely own their origin to the metal-silicate differentiation of the primitive Earth, setting our planet apart from undifferentiated meteorites as well as terrestrial planets or moons isotopically and compositionally. Understanding the chemical evolution of terrestrial planetary bodies requires knowledge on properties of both liquid iron alloys and silicates equilibrating under physicochemical conditions pertinent to the deep magma ocean. Here we report experimental and computational results on the pressure-induced structural evolution of iron-nickel liquids alloyed with carbon. Our X-ray diffraction experiments up to 7.3 gigapascals (GPa) demonstrate that Fe-Ni (Fe90Ni10) liquids alloyed with 3 and 5 wt % carbon undergo a polyamorphic liquid structure transition at approximately 5 GPa. Corroborating the experimental observations, our first-principles molecular dynamic calculations reveal that the structural transitions result from the marked prevalence of three-atom face-sharing polyhedral connections in the liquids at >5 GPa. The structure and polyamorphic transitions of liquid iron-nickel-carbon alloys govern their physical and chemical properties and may thus cast fresh light on the chemical evolution of terrestrial planets and moons.

  15. Simulation of the evolution of fused silica's surface defect during wet chemical etching

    Science.gov (United States)

    Liu, Taixiang; Yang, Ke; Li, Heyang; Yan, Lianghong; Yuan, Xiaodong; Yan, Hongwei

    2017-08-01

    Large high-power-laser facility is the basis for achieving inertial confinement fusion, one of whose missions is to make fusion energy usable in the near future. In the facility, fused silica optics plays an irreplaceable role to conduct extremely high-intensity laser to fusion capsule. But the surface defect of fused silica is a major obstacle limiting the output power of the large laser facility and likely resulting in the failure of ignition. To mitigate, or event to remove the surface defect, wet chemical etching has been developed as a practical way. However, how the surface defect evolves during wet chemical etching is still not clearly known so far. To address this problem, in this work, the three-dimensional model of surface defect is built and finite difference time domain (FDTD) method is developed to simulate the evolution of surface defect during etching. From the simulation, it is found that the surface defect will get smooth and result in the improvement of surface quality of fused silica after etching. Comparatively, surface defects (e.g. micro-crack, scratch, series of pinholes, etc.) of a typical fused silica at different etching time are experimentally measured. It can be seen that the simulation result agrees well with the result of experiment, indicating the FDTD method is valid for investigating the evolution of surface defect during etching. With the finding of FDTD simulation, one can optimize the treatment process of fused silica in practical etching or even to make the initial characterization of surface defect traceable.

  16. Time evolution studies of laser induced chemical changes in InAs nanowire using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Suparna; Aggarwal, R.; Kumari Gupta, Vandna; Ingale, Alka [Laser Physics Application Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, MP (India)

    2014-07-07

    We report the study of time evolution of chemical changes on the surface of an InAs nanowire (NW) on laser irradiation in different power density regime, using Raman spectroscopy for a time span of 8–16 min. Mixture of metastable oxides like InAsO{sub 4,} As{sub 2}O{sub 3} are formed upon oxidation, which are reflected as sharp Raman peaks at ∼240–254 and 180–200 cm{sup −1}. Evidence of removal of arsenic layer by layer is also observed at higher power density. Position controlled laser induced chemical modification on a nanometer scale, without changing the core of the NW, can be useful for NW based device fabrication.

  17. From Chemical Forces to Chemical Rates: A Historical/Philosophical Foundation for the Teaching of Chemical Equilibrium

    Science.gov (United States)

    Quilez, Juan

    2009-01-01

    With this paper, our main aim is to contribute to the realisation of the chemical reactivity concept, tracing the historical evolution of the concept of chemical affinity that eventually supported the concept of chemical equilibrium. We will concentrate on searching for the theoretical grounds of three key chemical equilibrium ideas: "incomplete…

  18. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Directory of Open Access Journals (Sweden)

    E. C. Apel

    2010-03-01

    Full Text Available The volatile organic compound (VOC distribution in the Mexico City Metropolitan Area (MCMA and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs but with a substantial contribution from oxygenated volatile organic compounds (OVOCs, predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry model and MOZART (Model for Ozone and Related chemical Tracers were able to approximate the observed MCMA daytime patterns and absolute values of the VOC OH reactivity. The MOZART model is also in agreement with observations showing that NMHCs dominate the reactivity distribution except in the afternoon hours. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height.

    A northeast transport event was studied in which air originating in the MCMA was intercepted aloft with the Department of Energy (DOE G1 on 18 March and downwind with the National Center for Atmospheric Research (NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind; ozone was shown to be photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial extent and temporal evolution of the plume

  19. Sedimentary Evolution of Marginal Ganga Foreland Basin during the Late Pleistocene

    Science.gov (United States)

    Ghosh, R.; Srivastava, P.; Shukla, U. K.

    2017-12-01

    Ganga foreland basin, an asymmetrical basin, was formed as result of plate-plate collision during middle Miocene. A major thrust event occurred during 500 ka when upper Siwalik sediments were uplifted and the modern Ganga foreland basin shifted towards craton, making a more wide and deep basin. The more distal part of this basin, south of axial river Yamuna, records fluvial sedimentary packages that helps to understand dynamics of peripheral bulge during the late Quaternary. Sedimentary architecture in conjunction with chemical index of alteration (CIA), paleocurrent direction and optically stimulated dating (OSL) from 19 stratigraphic sections helped reconstructing the variations in depositional environments vis-à-vis climate change and peripheral bulge tectonics. Three major units (i) paleosol; (ii) cratonic gravel; (iii) interfluve succession were identified. The lower unit-I showing CIA values close to 70-80 and micro-morphological features of moderately well-developed pedogenic unit that shows development of calcrete, rhizoliths, and mineralized organic matter in abundance. This is a regional paleosols unit and OSL age bracketed 200 ka. This is unconformably overlain by unit-II, a channelized gravel composed of sub-angular to sub-rounded clasts of granite, quartz, quartzite, limestone and calcrete. The gravel have low CIA value up to 55, rich in vertebrate fossil assemblages and mean paleocurrent vector direction is NE, which suggesting deposition by a fan of a river draining craton into foreland. This unit is dated between 100 ka and 54 ka. The top unit-III, interfluve succession of 10-15 m thick is composed of dark and light bands of sheet like deposit of silty clay to clayey silt comprises sand lenses of red to grey color and displaying top most OSL age is 12 ka. The basal mature paleosol signifies a humid climate developed under low subsidence rate at >100 ka. After a hiatus represented by pedogenic surface deposition of unit-II (gravel) suggests uplift

  20. Ultra-deep GEMINI Near-infrared Observations of the Bulge Globular Cluster NGC 6624.

    Science.gov (United States)

    Saracino, S.; Dalessandro, E.; Ferraro, F. R.; Geisler, D.; Mauro, F.; Lanzoni, B.; Origlia, L.; Miocchi, P.; Cohen, R. E.; Villanova, S.; Moni Bidin, C.

    2016-11-01

    We used ultra-deep J and K s images secured with the near-infrared (NIR) GSAOI camera assisted by the multi-conjugate adaptive optics system GeMS at the GEMINI South Telescope in Chile, to obtain a (K s , J - K s ) color-magnitude diagram (CMD) for the bulge globular cluster NGC 6624. We obtained the deepest and most accurate NIR CMD from the ground for this cluster, by reaching K s ˜ 21.5, approximately 8 mag below the horizontal branch level. The entire extension of the Main Sequence (MS) is nicely sampled and at K s ˜ 20 we detected the so-called MS “knee” in a purely NIR CMD. By taking advantage of the exquisite quality of the data, we estimated the absolute age of NGC 6624 (t age = 12.0 ± 0.5 Gyr), which turns out to be in good agreement with previous studies in the literature. We also analyzed the luminosity and mass functions of MS stars down to M ˜ 0.45 M⊙, finding evidence of a significant increase of low-mass stars at increasing distances from the cluster center. This is a clear signature of mass segregation, confirming that NGC 6624 is in an advanced stage of dynamical evolution. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). Based on observations gathered with ESO-VISTA telescope (program ID 179.B-2002).

  1. Variations in ion and neutral composition at Venus - Evidence of solar control of the formation of the predawn bulges in H/+/ and He1

    Science.gov (United States)

    Taylor, H. A., Jr.; Mayr, H.; Brinton, H.; Niemann, H.; Hartle, R.; Daniell, R. E., Jr.

    1982-01-01

    A comparison of ion and neutral composition measurements at Venus for periods of greatly different solar activity provides qualitative evidence of solar control of the day-to-night transport of light ion and neutral species. Concentrations of H(+) and He in the predawn bulge near solar maximum in November, 1979, exhibit a depletion signature correlated with a pronounced modulation in the solar F10.7 and EUV fluxes. This perturbation, not observed in the predawn region during an earlier period of relative quiet solar conditions, is interpreted as resulting from pronounced changes in solar heating and photoionization on the dayside, which in turn modulate the transport of ions and neutrals into the bulge region.

  2. Evolution of sorption properties in large-scale concrete structures accounting for long-term physical-chemical concrete degradation - 59297

    International Nuclear Information System (INIS)

    Perko, Janez; Jacques, Diederik; Mallants, Dirk; Seetharam, Suresh

    2012-01-01

    , Belgium: (i) The procedure begins by the selection of sorption and solubility values pertinent to the type of concrete used for the Dessel near-surface facility. The selection procedure is transparently documented and published in two NIRAS/ONDRAF reports . These reports define sorption values for four distinct chemical degradation states of concrete used in the safety assessments. Most of the selected data is based on experimental sorption data at laboratory scale with benchmark cements. (ii) Cement, however, occupies only a fraction of the total volume of concrete and rescaling of cement sorption values to concrete is an important issue. Though very obvious, this rescaling could be a source of wrong interpretation and, to authors' knowledge, has never been addressed in long-term safety assessments. (iii) Long term evolution of concrete is modelled by the use of a geochemical model supported by a state-of-the-art thermodynamic database. The long-term evolution of the cementitious near field SSCs at the Dessel facility is based on leaching of the reactive phases from the concrete. Evolution of sorption parameters follows the evolution of these cement phases. Distinct sorption values for specific chemical degradation states are linked to the evolution of the calcium silicate hydrates (C-S-H phases) in the cement because they were judged to offer the most robust and unique behaviour applicable to all radionuclides. (iv) Final use of sorption values in safety assessment depends on the conceptual model and purpose of the model. Few examples are discussed in this paper. (authors)

  3. Hydro-chemical study of the evolution of interstellar pre-biotic molecules during the collapse of molecular clouds

    International Nuclear Information System (INIS)

    Majumdar, Liton; Das, Ankan; Chakrabarti, Sandip K.; Chakrabarti, Sonali

    2012-01-01

    One of the stumbling blocks for studying the evolution of interstellar molecules is the lack of adequate knowledge about the rate coefficients of various reactions which take place in the interstellar medium and molecular clouds. Some theoretical models of rate coefficients do exist in the literature for computing abundances of complex pre-biotic molecules. So far these have been used to study the abundances of these molecules in space. However, in order to obtain more accurate final compositions in these media, we have calculated the rate coefficients for the formation of some of the most important interstellar pre-biotic molecules by using quantum chemical theory. We use these rates inside our hydro-chemical model to examine the chemical evolution and final abundances of pre-biotic species during the collapsing phase of a proto-star. We find that a significant amount of various pre-biotic molecules could be produced during the collapse phase of a proto-star. We thoroughly study the formation of these molecules via successive neutral-neutral and radical-radical/radical-molecular reactions. We present the time evolution of the chemical species with an emphasis on how the production of these molecules varies with the depth of a cloud. We compare the formation of adenine in interstellar space using our rate-coefficients and using those obtained from existing theoretical models. Formation routes of the pre-biotic molecules are found to be highly dependent on the abundances of the reactive species and the rate coefficients involved in the reactions. The presence of grains strongly affects the abundances of the gas phase species. We also carry out a comparative study between different pathways available for the synthesis of adenine, alanine, glycine and other molecules considered in our network. Despite the huge abundances of the neutral reactive species, production of adenine is found to be strongly dominated by the radical-radical/radical-molecular reaction pathways

  4. Molybdenum and technetium cycle in the environment. Physical chemical evolution and mobility in soils and plants

    International Nuclear Information System (INIS)

    Saas, A.; Denardi, J.L.; Colle, C.; Quinault, J.M.

    1980-01-01

    Molybdenum 99 and technetium 99 from liquid discharges of base nuclear installations (reactors, reprocessing plants, UF 6 treatment, etc.) can reach the environment via irrigation waters and atmospheric deposits. The contribution to the soil by irrigation results in a physical-chemical transformation, the results of which, in the case of technetium 99, could be volatilization via microbes. The changes in the physical-chemical forms of technetium in different soils reveals the preponderant effect of the initial amount deposited. The determination of the rate of technetium and molybdenum assimilation shows a certain similarity in behaviour; yet the localization of these isotopes is not the same. The transfer of molybdenum and technetium via the root system is different in its intensity; this is mainly due to different physical-chemical forms. Finally, each isotope has an optimum assimilation threshold and a toxicity threshold. The study of the physical-chemical evolution and the mobility in the soil-plant-water table system of these two isotopes shows a new aspect with respect to certain transfer channels to the human being [fr

  5. Neutron-Capture Nucleosynthesis and the Chemical Evolution of Globular Clusters

    Science.gov (United States)

    Shingles, Luke J.

    2015-09-01

    Elements heavier than iron are almost entirely produced in stars through neutron captures and radioactive decays. Of these heavy elements, roughly half are produced by the slow neutron-capture process (s-process), which takes place under extended exposure to low neutron densities. Most of the s-process production occurs in stars with initial masses between roughly 0.8 and 8 solar masses (Msun), which evolve through the Asymptotic Giant Branch (AGB) phase. This thesis explores several topics related to AGB stars and the s-process, with a focus on comparing theoretical models to observations in the literature on planetary nebulae, post-AGB stars, and globular cluster stars. A recurring theme is the uncertainty of carbon-13-pocket formation, which is crucial for building accurate models of s-process nucleosynthesis. We first investigated whether neutron-capture reactions in AGB stars are the cause of the low sulphur abundances in planetary nebulae and post-AGB stars relative to the interstellar medium. Accounting for uncertainties in the size of the partial mixing zone that forms carbon-13 pockets and the rates of neutron-capture and neutron-producing reactions, our models failed to reproduce the observed levels of sulphur destruction. From this, we concluded that AGB nucleosynthesis is not the cause of the sulphur anomaly. We also discovered a new method to constrain the extent of the partial mixing zone using neon abundances in planetary nebulae. We next aimed to discover the stellar sites of the s-process enrichment in globular clusters that have inter- and intra-cluster variation, with the examples of M4 (relative to M5) and M22, respectively. Using a new chemical evolution code developed by the candidate, we tested models with stellar yields from rotating massive stars and AGB stars. We compared our model predictions for the production of s-process elements with abundances from s-poor and s-rich populations. We found that rotating massive stars alone do not

  6. Galactic chemical evolution with main-sequence mass loss and the distribution of F and G dwarfs

    International Nuclear Information System (INIS)

    Guzik, J.A.; Struck-Marcell, C.

    1988-01-01

    Simple closed galactic chemical-evolution models incorporating early main-sequence stellar mass loss have been developed for disk ages of 5, 10, and 15 Gyr. Relative to models without stellar mass loss, the models are shown to produce a 30-60 percent increase in the present mass ratio of dwarfs to dwarfs plus remnants, and a 200-250 percent increase in the total mass of late F dwarfs remaining on the main sequence at the current disk age. For present disk ages 5 and 10 Gyr, the total mass of mid-F dwarfs remaining on the main sequence is also shown to increase by 90-120 percent. It is concluded that models with main-sequence mass loss have a slightly reduced gas metallicity and slightly increased gas fraction midway through the evolution. 30 references

  7. APOGEE-2: The Second Phase of the Apache Point Observatory Galactic Evolution Experiment in SDSS-IV

    Science.gov (United States)

    Sobeck, Jennifer; Majewski, S.; Hearty, F.; Schiavon, R. P.; Holtzman, J. A.; Johnson, J.; Frinchaboy, P. M.; Skrutskie, M. F.; Munoz, R.; Pinsonneault, M. H.; Nidever, D. L.; Zasowski, G.; Garcia Perez, A.; Fabbian, D.; Meza Cofre, A.; Cunha, K. M.; Smith, V. V.; Chiappini, C.; Beers, T. C.; Steinmetz, M.; Anders, F.; Bizyaev, D.; Roman, A.; Fleming, S. W.; Crane, J. D.; SDSS-IV/APOGEE-2 Collaboration

    2014-01-01

    The second phase of the Apache Point Observatory Galactic Evolution Experiment (APOGEE-2), a part of the Sloan Digital Sky Survey IV (SDSS-IV), will commence operations in 2014. APOGEE-2 represents a significant expansion over APOGEE-1, not only in the size of the stellar sample, but also in the coverage of the sky through observations in both the Northern and Southern Hemispheres. Observations on the 2.5m Sloan Foundation Telescope of the Apache Point Observatory (APOGEE-2N) will continue immediately after the conclusion of APOGEE-1, to be followed by observations with the 2.5m du Pont Telescope of the Las Campanas Observatory (APOGEE-2S) within three years. Over the six-year lifetime of the project, high resolution (R˜22,500), high signal-to-noise (≥100) spectroscopic data in the H-band wavelength regime (1.51-1.69 μm) will be obtained for several hundred thousand stars, more than tripling the total APOGEE-1 sample. Accurate radial velocities and detailed chemical compositions will be generated for target stars in the main Galactic components (bulge, disk, and halo), open/globular clusters, and satellite dwarf galaxies. The spectroscopic follow-up program of Kepler targets with the APOGEE-2N instrument will be continued and expanded. APOGEE-2 will significantly extend and enhance the APOGEE-1 legacy of scientific contributions to understanding the origin and evolution of the elements, the assembly and formation history of galaxies like the Milky Way, and fundamental stellar astrophysics.

  8. Second Symposium on Chemical Evolution and the Origin of Life

    International Nuclear Information System (INIS)

    Devincenzi, D.L.; Dufour, P.A.

    1986-05-01

    Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI)

  9. The MACHO Project Sample of Galactic Bulge High-Amplitude Scuti Stars: Pulsation Behavior and Stellar Properties

    International Nuclear Information System (INIS)

    Bennett, D.P.; Cook, K.H.; Freeman, K.C.; Geha, M.; Griest, K.; Lehner, M.J.; Marshall, S.L.; McNamara, B.J.; Minniti, D.; Nelson, C.; Peterson, B.A.; Popowski, P.; Pratt, M.R.; Quinn, P.J.; Rodgers, A.W.; Sutherland, W.; Templeton, M.R.; Vandehei, T.; Welch, D.L.

    1999-01-01

    We have detected 90 objects with periods and lightcurve structure similar to those of field(delta) Scuti stars, using the Massive Compact Halo Object (MACHO) Project database of Galactic bulge photometry. If we assume similar extinction values for all candidates and absolute magnitudes similar to those of other field high-amplitude(delta) Scuti stars (HADS), the majority of these objects lie in or near the Galactic bulge. At least two of these objects are likely foreground(delta) Scuti stars, one of which may be an evolved nonradial pulsator, similar to other evolved, disk-population(delta) Scuti stars. We have analyzed the light curves of these objects and find that they are similar to the light curves of field(delta) Scuti stars and the(delta) Scuti stars found by the Optical Gravitational Lens Experiment (OGLE). However, the amplitude distribution of these sources lies between those of low- and high-amplitude(delta) Scuti stars, which suggests that they may be an intermediate population. We have found nine double-mode HADS with frequency ratios ranging from 0.75 to 0.79, four probable double- and multiple-mode objects, and another four objects with marginal detections of secondary modes. The low frequencies (5-14 cycles d(sup -1)) and the observed period ratios of(approx)0.77 suggest that the majority of these objects are evolved stars pulsating in fundamental or first overtone radial modes

  10. The dimensionality of stellar chemical space using spectra from the Apache Point Observatory Galactic Evolution Experiment

    Science.gov (United States)

    Price-Jones, Natalie; Bovy, Jo

    2018-03-01

    Chemical tagging of stars based on their similar compositions can offer new insights about the star formation and dynamical history of the Milky Way. We investigate the feasibility of identifying groups of stars in chemical space by forgoing the use of model derived abundances in favour of direct analysis of spectra. This facilitates the propagation of measurement uncertainties and does not pre-suppose knowledge of which elements are important for distinguishing stars in chemical space. We use ˜16 000 red giant and red clump H-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and perform polynomial fits to remove trends not due to abundance-ratio variations. Using expectation maximized principal component analysis, we find principal components with high signal in the wavelength regions most important for distinguishing between stars. Different subsamples of red giant and red clump stars are all consistent with needing about 10 principal components to accurately model the spectra above the level of the measurement uncertainties. The dimensionality of stellar chemical space that can be investigated in the H band is therefore ≲10. For APOGEE observations with typical signal-to-noise ratios of 100, the number of chemical space cells within which stars cannot be distinguished is approximately 1010±2 × (5 ± 2)n - 10 with n the number of principal components. This high dimensionality and the fine-grained sampling of chemical space are a promising first step towards chemical tagging based on spectra alone.

  11. Ultraviolet spectrophotometry of 2A 1822--371: A bulge on the accretion disk

    International Nuclear Information System (INIS)

    Mason, K.O.; Cordova, F.A.

    1982-01-01

    The X-ray source 2A 1822--371 has been observed with the IUE satellite over an 8 hour period. Long and short wavelength exposures of duration 45 or 60 minutes were alternated in order to resolve the 5.57 hr photometric modulation of the star. The data provide evidence that the shape of the 5.57 hr modulation evolves smoothly with energy between extremes defined by the optical and X-ray curves. The far-UV light curve is more deeply modulated than the X-ray light curve. The combined ultraviolet and the UBV band optical data can be fitted with a single blackbody of temperature 2.7 x 10 4 K, or an optically thick disk model with parameters T/sub asterisk/ = 1.2 x 10 5 K and R/sub out//R/sub in/approx.30. A single power-law model does not adequately represent the continuum. There is evidence of absorption due to the 2200 A interstellar feature whose depth requires a color excess, E(B--V)approx.0.1, with 3 sigma upper and lower bounds of 0.29 and 0.01. Emission lines of C IV 1550 A and N V 1240 A are detected in the UV spectrum. The work of Mason et al. and White et al. suggests that the optical and ultraviolet emission arises in an accretion disk, whereas the X-radiation is emitted from a scattering cloud that envelopes a central compact object. In the present paper, the 5.57 hr optical, X-ray and ultraviolet modulation of 2A 1822--371 is intrepreted as the result of partial occultation of the emitting region by a comparison star and a bulge on the outer accretion disk. X-ray heating of the bulge will probably also contribute to the modulation at optical and ultraviolet wavelengths

  12. Chemical evolution of formation waters in the Palm Valley gas field, Northern Territory

    International Nuclear Information System (INIS)

    Andrew, A.S.; Giblin, A.M.

    2000-01-01

    The chemical composition and evolution of formation waters associated with gas production in the Palm Valley field, Northern Territory, has important implications for reservoir management, saline water disposal, and gas reserve calculations. Historically, the occurrence of saline formation water in gas fields has been the subject of considerable debate. A better understanding of the origin, chemical evolution and movement of the formation water at Palm Valley has important implications for future reservoir management, disposal of highly saline water and accurate gas reserves estimation. Major and trace element abundance data suggest that a significant component of the highly saline water from Palm Valley has characteristics that may have been derived from a modified evaporated seawater source such as an evaporite horizon. The most dilute waters probably represent condensate and the variation in the chemistry of the intermediate waters suggests they were derived from a mixture of the condensate with the highly saline brine. The chemical and isotopic results raise several interrelated questions; the ultimate source of the high salinity and the distribution of apparently mixed compositions. In this context several key observation are highlighted. Strontium concentrations are extremely high in the brines; although broadly similar in their chemistry, the saline fluids are neither homogeneous nor well mixed; the 87 Sr/ 86 Sr ratios in the brines are higher than the signatures preserved in the evaporitic Bitter Springs Formation, and all other conceivably marine-related evaporites (Strauss, 1993); the 87 Sr/ 86 Sr ratios in the brines are lower than those measured from groundmass carbonates in the host rocks, and that the 87 Sr/ 86 Sr ratios of the brines are similar, but still somewhat higher than those measured in vein carbonates from the reservoir. It is concluded that the high salinity brine entered the reservoir during the Devonian uplift and was subsequently

  13. Astrid-2 and ground-based observations of the auroral bulge in the middle of the nightside convection throat

    Directory of Open Access Journals (Sweden)

    G. T. Marklund

    2001-06-01

    Full Text Available Results concerning the electrodynamics of the nightside auroral bulge are presented based on simultaneous satellite and ground-based observations. The satellite data include Astrid-2 measurements of electric fields, currents and particles from a midnight auroral oval crossing and Polar UVI images of the large-scale auroral distribution. The ground-based observations include STARE and SuperDARN electric fields and magnetic records from the Greenland and MIRACLE magnetometer network, the latter including stations from northern Scandinavia north to Svalbard. At the time of the Astrid-2 crossing the ground-based data reveal intense electrojet activity, both to the east and west of the Astrid-2 trajectory, related to the Polar observations of the auroral bulge but not necessarily to a typical substorm. The energetic electron fluxes measured by Astrid-2 across the auroral oval were generally weak being consistent with a gap observed in the auroral luminosity distribution. The electric field across the oval was directed westward, intensifying close to the poleward boundary followed by a decrease in the polar cap. The combined observations suggests that Astrid-2 was moving close to the separatrix between the dusk and dawn convection cells in a region of low conductivity. The constant westward direction of the electric field across the oval indicates that current continuity was maintained, not by polarisation electric fields (as in a Cowling channel, but solely by localized up- and downward field-aligned currents in good agreement with the Astrid-2 magnetometer data. The absence of a polarisation electric field and thus of an intense westward closure current between the dawn and dusk convection cells is consistent with the relatively weak precipitation and low conductivity in the convection throat. Thus, the Cowling current model is not adequate for describing the electrodynamics of the nightside auroral bulge treated here.Key words. Ionosphere (auroral

  14. GALACTIC CHEMICAL EVOLUTION: THE IMPACT OF THE 13C-POCKET STRUCTURE ON THE s -PROCESS DISTRIBUTION

    International Nuclear Information System (INIS)

    Bisterzo, S.; Travaglio, C.; Wiescher, M.; Käppeler, F.; Gallino, R.

    2017-01-01

    The solar s -process abundances have been analyzed in the framework of a Galactic Chemical Evolution (GCE) model. The aim of this work is to implement the study by Bisterzo et al., who investigated the effect of one of the major uncertainties of asymptotic giant branch (AGB) yields, the internal structure of the 13 C pocket. We present GCE predictions of s -process elements computed with additional tests in the light of suggestions provided in recent publications. The analysis is extended to different metallicities, by comparing GCE results and updated spectroscopic observations of unevolved field stars. We verify that the GCE predictions obtained with different tests may represent, on average, the evolution of selected neutron-capture elements in the Galaxy. The impact of an additional weak s -process contribution from fast-rotating massive stars is also explored.

  15. General constraints on the age and chemical evolution of the Galaxy

    International Nuclear Information System (INIS)

    Meyer, B.S.; Schramm, D.N.

    1986-05-01

    The formalism of Schramm and Wasserburg (1970) for determining the mean age of the elements is extended. Model-independent constraints (constraints that are independent of a specific form for the effective nucleosynthesis rate and Galactic chemical evolution over time) are derived on the first four terms in the expansion giving the mean age of the elements, and from these constraints limits are derived on the total duration of nucleosynthesis. These limits require only input of the Schramm-Wasserburg parameter Δ/sup max/ and of the ratio of the mean time for formation of the elements to the total duration of nucleosynthesis, t/sub nu//T. The former quantity is a function of nuclear input parameters. Limits on the latter are obtained from constraints on the relative rate of nucleosynthesis derived from the 232 Th/ 238 U, 235 U/ 238 U, and shorter-lived chronometric pairs. 65 refs

  16. Role of Metal Oxides in Chemical Evolution: Interaction of Ribose Nucleotides with Alumina

    Science.gov (United States)

    Arora, Avnish Kumar; Kamaluddin

    2009-03-01

    Interaction of ribonucleotides—namely, 5‧-AMP, 5‧-GMP, 5‧-CMP, and 5‧-UMP—with acidic, neutral, and basic alumina has been studied. Purine nucleotides showed higher adsorption on alumina in comparison with pyrimidine nucleotides under acidic conditions. Adsorption data obtained followed Langmuir adsorption isotherm, and Xm and KL values were calculated. On the basis of infrared spectral studies of ribonucleotides, alumina, and ribonucleotide-alumina adducts, we propose that the nitrogen base and phosphate moiety of the ribonucleotides interact with the positive charge surface of alumina. Results of the present study may indicate the importance of alumina in concentrating organic molecules from dilute aqueous solutions in primeval seas in the course of chemical evolution on Earth.

  17. Chemical Evolution and Star Formation History of the Disks of Spirals in Local Group

    Science.gov (United States)

    Yin, J.

    2011-05-01

    Milky Way (MW), M31 and M33 are the only three spiral galaxies in our Local group. MW and M31 have similar mass, luminosity and morphology, while M33 is only about one tenth of MW in terms of its baryonic mass. Detailed theoretical researches on these three spirals will help us to understand the formation and evolution history of both spiral galaxies and Local group. Referring to the phenomenological chemical evolution model adopted in MW disk, a similar model is established to investigate the star formation and chemical enrichment history of these three local spirals. Firstly, the properties of M31 disk are studied by building a similar chemical evolution model which is able to successfully describe the MW disk. It is expected that a simple unified phenomenological chemical evolution model could successfully describe the radial and global properties of both disks. Comparing with the former work, we adopt an extensive data set as model constraints, including the star formation profile of M31 disk derived from the recent UV data of GALEX. The comparison among the observed properties of these two disks displays very interesting similarities in their radial profiles when the distance from the galactic center is expressed in terms of the corresponding scale length. This implies some common processes in their formation and evolution history. Based on the observed data of the gas mass surface density and SFR surface density, the SFR radial profile of MW can be well described by Kennicutt-Schmidt star formation law (K-S law) or modified K-S law (SFR is inversely proportional to the distance from the galactic center), but this is not applicable to the M31 disk. Detailed calculations show that our unified model describes fairly well all the main properties of the MW disk and most properties of M31 disk, provided that the star formation efficiency of M31 disk is adjusted to be twice as large as that of MW disk (as anticipated from the lower gas fraction of M31). However, the

  18. A Kinematic Link Between Boxy Bulges, Stellar Bars, and Nuclear Activity in NGC 3079 and NGC 4388

    Science.gov (United States)

    Veilleux, S.; Bland-Hawthrorn, J.; Cecil, Gerald

    1999-01-01

    We present direct kinematic evidence for bar streaming in two active galaxies with boxy stellar bulges. The Hawaii Imaging Fabry-Perot Interferometer was used on the Canada-France-Hawaii 3.6-m telescope and the University of Hawaii 2.2-m telescope to derive the two-dimensional velocity field of the line-emitting gas in the disks of the Sc galaxy NGC 3079 and the Sb galaxy NGC 4388. In contrast to previous work based on long-slit data, the detection of the bar potential from the Fabry-Perot data does not rely on the existence of inner Lindblad resonances or strong bar-induced shocks. Simple kinematic models which approximate the intrinsic gas orbits as nonintersecting, inclined elliptical annuli that conserve angular momentum characterize the observed velocity fields. In NGC 3079, bar streaming motions with moderately eccentric orbits (e = b/a approx. 0.7) aligned along PA = 130 deg. intrinsic to the disk (PA = 97 deg. on the sky) are detected out to R(sub b) = 3.6 kpc. The orbits become increasingly circular beyond that radius (e = 1 at R(sub d) approx. = 6 kpc). The best model for NGC 4388 includes highly eccentric orbits (e approx. 0.3) for R(sub) less than or equal to 1.5 kpc which are aligned along PA = 135 deg. intrinsic to the disk (PA = 100 deg. on the sky). The observed "spiral arms" are produced by having the orbits become increasingly circular from the ends of the bar to the edge of the disk (R(sub d) approx. = 5 kpc), and the intrinsic bar PA shifting from 135 deg. to 90 deg.. Box-shaped bulges in both NGC 3079 and NGC 4388 are confirmed using new near-infrared images to reduce dust obscuration. Morphological analysis of starlight in these galaxies is combined with the gas kinematics derived from the Fabry-Perot spectra to test evolutionary models of stellar bars that involve transitory boxy bulges, and to quantify the importance of such bars in fueling active nuclei. Our data support the evolutionary bar models, but fail to prove convincingly that the

  19. Study on dynamic buckling behavior of a cylindrical liquid storage tanks under seismic excitation. 1st report, effects of liquid pressure on elephant foot bulge

    International Nuclear Information System (INIS)

    Ito, Tomohiro; Morita, Hideyuki; Sugiyama, Akihisa; Kawamoto, Yoji; Sirai, Eiji; Ogo, Hideyasu

    2004-01-01

    When a thin walled cylindrical liquid storage tank is exposed to a very large seismic base excitation, buckling phenomena may be caused such as bending buckling where diamond buckling pattern or elephant foot bulge pattern will be found at the bottom portion, and shear buckling at the middle portion of the tank. In this study, dynamic buckling tests were performed using scale models of thin cylindrical liquid storage tanks for the nuclear power plants. The input seismic acceleration was increased until the elephant foot bulge occurred and the vibrational behavior before and after buckling was investigated. And the effects of static and dynamic liquid pressure on the bending buckling patterns and the buckling critical force was investigated by fundamental tests using small tank models. (author)

  20. Effect of the new C-12(alpha, gamma)O-16 rate on the chemical evolution of the solar neighborhood

    International Nuclear Information System (INIS)

    Matteucci, F.

    1986-01-01

    New models of chemical evolution of the solar neighborhood have been computed by taking into account the effect of the revised rate of the C-12(alpha, gamma)O-16 reaction on the chemical yields from massive stars, together with the yields from low- and intermediate-mass stars which also include those from Type I supernova explosions (C-deflagration in white dwarfs). In particular, the evolution of C-12, N-14, O-16, Ne-20, Mg-24, Si-28, and Fe-56 has been followed in detail, and their predicted solar absolute abundances as well as their relative ratios, both in the sun and in metal-poor stars, have been compared with the observed ones. It is concluded that a model with the new yields combined with a Salpeter initial mass function, an upper cutoff mass of 100 solar masses (the mass beyond which stars are not contributing to the galactic enrichment), and an upper limiting mass for intermediate-mass stars of the order of 5 solar masses, is in best agreement with the observations. 34 references

  1. Physico-Chemical Evolution of Organic Aerosol from Wildfire Emissions

    Science.gov (United States)

    Croteau, P.; Jathar, S.; Akherati, A.; Galang, A.; Tarun, S.; Onasch, T. B.; Lewane, L.; Herndon, S. C.; Roscioli, J. R.; Yacovitch, T. I.; Fortner, E.; Xu, W.; Daube, C.; Knighton, W. B.; Werden, B.; Wood, E.

    2017-12-01

    Wildfires are the largest combustion-related source of carbonaceous emissions to the atmosphere; these include direct emissions of black carbon (BC), primary organic aerosol (POA) and semi-volatile, intermediate-volatility, and volatile organic compounds (SVOCs, IVOCs, and VOCs). However, there are large uncertainties surrounding the evolution of these carbonaceous emissions as they are physically and chemically transformed in the atmosphere. To understand these transformations, we performed sixteen experiments using an environmental chamber to simulate day- and night-time chemistry of gas- and aerosol-phase emissions from 6 different fuels at the Fire Laboratory in Missoula, MT. Across the test matrix, the experiments simulated 2 to 8 hours of equivalent day-time aging (with the hydroxyl radical and ozone) or several hours of night-time aging (with the nitrate radical). Aging resulted in an average organic aerosol (OA) mass enhancement of 28% although the full range of OA mass enhancements varied between -10% and 254%. These enhancement findings were consistent with chamber and flow reactor experiments performed at the Fire Laboratory in 2010 and 2012 but, similar to previous studies, offered no evidence to link the OA mass enhancement to fuel type or oxidant exposure. Experiments simulating night-time aging resulted in an average OA mass enhancement of 10% and subsequent day-time aging resulted in a decrease in OA mass of 8%. While small, for the first time, these experiments highlighted the continuous nature of the OA evolution as the wildfire smoke cycled through night- and day-time processes. Ongoing work is focussed on (i) quantifying bulk compositional changes in OA, (ii) comparing the near-field aging simulated in this work with far-field aging simulated during the same campaign (via a mini chamber and flow tube) and (iii) integrating wildfire smoke aging datasets over the past decade to examine the relationship between OA mass enhancement ratios, modified

  2. Thick disk and pseudobulge formation in a clump cluster

    Directory of Open Access Journals (Sweden)

    Inoue S.

    2012-02-01

    Full Text Available Bulges in spiral galaxies have been supposed to be classified into two types: classical bulges or pseudobulges. Classical bulges are thought to form by galactic merger with bursty star formation, whereas pseudobulges are suggested to form by secular evolution. Noguchi (1998,199 suggested another bulge formation scenario, ‘clump-origin bulge’ [1,2]. He demonstrated using a numerical simulation that a galactic disc suffers dynamical instability to form clumpy structures in the early stage of disc formation, then the clumps are sucked into the galactic centre by dynamical friction and merge into a single bulge at the centre. Therefore, clump-origin bulges may have their own unique properties. I perform a high-resolution N-body/SPH simulation for the formation of the clump-origin bulge in an isolated galaxy model and study the formation of the clump-origin bulge. I find that the clump-origin bulge resembles pseudobulges in dynamical properties, a nearly exponential surface density profile, a barred boxy shape and a significant rotation. I also find that this bulge consists of old and metal-rich stars. These natures, old metal-rich population but pseudobulge-like structures, mean that the clump-origin bulge can not be simply classified into classical bulges nor pseudobulges. From these results, I discuss similarities of the clump-origin bulge to the Milky Way (MW bulge.

  3. The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone

    Science.gov (United States)

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf

    2014-05-01

    Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within

  4. VARIABILITY OF OPTICAL COUNTERPARTS IN THE CHANDRA GALACTIC BULGE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Britt, C. T.; Hynes, R. I.; Johnson, C. B.; Baldwin, A.; Collazzi, A.; Gossen, L. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Jonker, P. G.; Torres, M. A. P. [SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Nelemans, G. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen (Netherlands); Maccarone, T. [Department of Physics, Texas Tech University, Box 41051, Science Building, Lubbock, TX 79409-1051 (United States); Steeghs, D.; Greiss, S. [Astronomy and Astrophysics, Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Heinke, C. [Department of Physics, University of Alberta, CCIS 4-183, Edmonton, AB T6G 2E1 (Canada); Bassa, C. G. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Villar, A. [Department of Physics, Massachussettes Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Gabb, M. [Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991 (United States)

    2014-09-01

    We present optical light curves of variable stars consistent with the positions of X-ray sources identified with the Chandra X-ray Observatory for the Chandra Galactic Bulge Survey (GBS). Using data from the Mosaic-II instrument on the Blanco 4 m Telescope at CTIO, we gathered time-resolved photometric data on timescales from ∼2 hr to 8 days over the 3/4 of the X-ray survey containing sources from the initial GBS catalog. Among the light curve morphologies we identify are flickering in interacting binaries, eclipsing sources, dwarf nova outbursts, ellipsoidal variations, long period variables, spotted stars, and flare stars. Eighty-seven percent of X-ray sources have at least one potential optical counterpart. Twenty-seven percent of these candidate counterparts are detectably variable; a much greater fraction than expected for randomly selected field stars, which suggests that most of these variables are real counterparts. We discuss individual sources of interest, provide variability information on candidate counterparts, and discuss the characteristics of the variable population.

  5. Tectonic evolution of Mars

    International Nuclear Information System (INIS)

    Wise, D.U.; Golombek, M.P.; McGill, G.E.

    1979-01-01

    Any model for the tectonic evolution of Mars must account for two major crustal elements: the Tharsis bulge and the topographically low and lightly crated northern third of the planet. Ages determined by crater density indicate that both of these elements came into existence very early in Martian history, a conclusion that holds no matter which of the current crater density versus age curves is used. The size of these two major crustal elements and their sequential development suggest that both may be related to a global-scale internal process. It is proposed that the resurfacing of the northern third of Mars is related to subcrustal erosion and isostatic foundering during the life of a first-order convection cell. With the demise of the cell, denser segregations of metallic materials began to coalesce as a gravitatively unstable layer which finally overturned to form the core. In the overturn, lighter crustal materials was shifted laterally and underplated beneath Tharsis to cause rapid and permanent isostatic rise. This was followed by a long-lived thermal phase produced by the hot underplate and by the gravitative energy of core formation slowly making its way to the surface to produce the Tharsis volcanics

  6. Chemical Abundances of Red Giant Branch Stars in the Globular Clusters NGC 6333 and NGC 6366

    Science.gov (United States)

    Johnson, Christian I.; Rich, R. M.; Pilachowski, C. A.; Kunder, A. M.

    2013-01-01

    We present chemical abundances and radial velocities for >20 red giant branch (RGB) stars in the Galactic globular clusters NGC 6333 ([Fe/H]≈-1.8) and NGC 6366 ([Fe/H]≈-0.6). The results are based on moderate resolution (R=18,000), high signal-to-noise ratio (>100) spectra obtained with the Hydra multifiber positioner and bench spectrograph on the WIYN 3.5m telescope at Kitt Peak National Observatory. Both objects are likely associated with the Galactic bulge globular cluster system, and we therefore compare the cluster abundance patterns with those of nearby bulge field stars. Additionally, we investigate differences in the O-Na anticorrelation and neutron-capture element dispersion between the two clusters, and compare their abundance patterns with those of similar metallicity halo globular clusters. This material is based upon work supported by the National Science Foundation under award No. AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grant AST-0709479 and AST-121120995.

  7. THE EVOLUTION OF BLACK HOLE SCALING RELATIONS IN GALAXY MERGERS

    International Nuclear Information System (INIS)

    Johansson, Peter H.; Burkert, Andreas; Naab, Thorsten

    2009-01-01

    We study the evolution of black holes (BHs) on the M BH -σ and M BH -M bulge planes as a function of time in disk galaxies undergoing mergers. We begin the simulations with the progenitor BH masses being initially below (Δlog M BH,i ∼ -2), on (Δlog M BH,i ∼ 0), and above (Δlog M BH,i ∼ 0.5) the observed local relations. The final relations are rapidly established after the final coalescence of the galaxies and their BHs. Progenitors with low initial gas fractions (f gas = 0.2) starting below the relations evolve onto the relations (Δlog M BH,f ∼ -0.18), progenitors on the relations stay there (Δlog M BH,f ∼ 0), and finally progenitors above the relations evolve toward the relations, but still remain above them (Δlog M BH,f ∼ 0.35). Mergers in which the progenitors have high initial gas fractions (f gas = 0.8) evolve above the relations in all cases (Δlog M BH,f ∼ 0.5). We find that the initial gas fraction is the prime source of scatter in the observed relations, dominating over the scatter arising from the evolutionary stage of the merger remnants. The fact that BHs starting above the relations do not evolve onto the relations indicates that our simulations rule out the scenario in which overmassive BHs evolve onto the relations through gas-rich mergers. By implication our simulations thus disfavor the picture in which supermassive BHs develop significantly before their parent bulges.

  8. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Apel, Eric; Emmons, L.; Karl, Thomas G.; Flocke, Frank M.; Hills, A. J.; Madronich, Sasha; Lee-Taylor, J.; Fried, Alan; Weibring, P.; Walega, J.; Richter, Dirk; Tie, X.; Mauldin, L.; Campos, Teresa; Weinheimer, Andrew J.; Knapp, David; Sive, B.; Kleinman, Lawrence I.; Springston, S.; Zaveri, Rahul A.; Ortega, John V.; Voss, Paul B.; Blake, D. R.; Baker, Angela K.; Warneke, Carsten; Welsh-Bon, Daniel; de Gouw, Joost A.; Zheng, J.; Zhang, Renyi; Rudolph, Jochen; Junkermann, W.; Riemer, D.

    2010-01-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on March 18 and the NCAR C130 one day later on March 19. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the March 19 plume and to help interpret the OH

  9. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Apel, E.; Springston, S.; Karl, T.; Emmons, L.; Flocke, F.; Hills, A. J.; Madronich, S.; Lee-Taylor, J.; Fried, A.; Weibring, P.; Walega, J.; Richter, D., Tie, X.; Mauldin, L.; Campos, T.; Sive, B.; Kleinman, L.; Springston, S., Zaveri, R.; deGouw, J.; Zheng, J.; Zhang, R.; Rudolph, J.; Junkermann, W.; Riemer, D. D.

    2009-11-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on 18 March and the NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the 19 March plume and to help interpret the OH

  10. Radiation-induced chemical evolution of glycine to (Gly)2, (Gly)3, and (Gly)4

    International Nuclear Information System (INIS)

    Matsui, T.; Izumi, Y.; Kamohara, M.; Nakagawa, K.; Yokoya, A.

    2006-01-01

    Recently amino acids were detected from some meteorites. Since these amino acids were found after hydrolysis, some oligopeptides were possibly formed in space. A simulation experiment of chemical evolution from Glycine (Gly) to Glycylglycine ((Gly)2) was reported by Kaneko et al. In this work, we irradiated (Gly)2 with 8 eV vacuum ultraviolet photons or with 530 eV soft X-ray photons and examined absolute values of quantum yield of radiation-induced chemical evolution from Gly2 to Glycylglycylglycine ((Gly)3) and Glycylglycylglycylglycine ((Gly)4). Thin films of (Gly)2 were prepared on quartz plate or CuBe plate with a vacuum evaporation technique. These samples were irradiated by 8 eV photons from a Xe 2 * excimer lamp or by 530 eV soft X-ray photons at SPring-8 Synchrotron Radiation Facility. Irradiated samples were analyzed with a high performance liquid chromatography HPLC. Decomposition of (Gly)2 and production of Gly, (Gly)3 and (Gly)4 were observed. Quantum yield Y was defined to be N = Y N 0 , where N is the number of produced or decomposed molecule, and N 0 is the number of (Gly)2 molecules excited by photons. Obtained results by 8 eV irradiation were summarized in Table 1. The similar magnitude of decomposition of (Gly)2 may show that yield of the primary breaking reaction upon photo-excitation is of similar magnitude. It should be noted that (Gly)3 and (Gly)4 was produced by irradiation with the yield of 10 -4 without any catalysis. For soft X-ray irradiation, yield of Gly was tentatively determined to be about 40. This largervalue than that for 8 eV irradiation may originate from large energy of incident soft X-ray photons just like a result reported by Simakov et al. We will discuss in detail at the conference. (authors)

  11. Nano-scale chemical evolution in a proton-and neutron-irradiated Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Harte, Allan, E-mail: allan.harte@manchester.ac.uk [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Topping, M.; Frankel, P. [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Jädernäs, D. [Studsvik Nuclear AB, SE 611 82, Nyköping (Sweden); Romero, J. [Westinghouse Electric Company, Columbia, SC (United States); Hallstadius, L. [Westinghouse Electric Sweden AB, SE 72163 Västerås (Sweden); Darby, E.C. [Rolls Royce Plc., Nuclear Materials, Derby (United Kingdom); Preuss, M. [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2017-04-15

    Proton-and neutron-irradiated Zircaloy-2 are compared in terms of the nano-scale chemical evolution within second phase particles (SPPs) Zr(Fe,Cr){sub 2} and Zr{sub 2}(Fe,Ni). This is accomplished through ultra-high spatial resolution scanning transmission electron microscopy and the use of energy-dispersive X-ray spectroscopic methods. Fe-depletion is observed from both SPP types after irradiation with both irradiative species, but is heterogeneous in the case of Zr(Fe,Cr){sub 2}, predominantly from the edge region, and homogeneously in the case of Zr{sub 2}(Fe,Ni). Further, there is evidence of a delay in the dissolution of the Zr{sub 2}(Fe,Ni) SPP with respect to the Zr(Fe,Cr){sub 2}. As such, SPP dissolution results in matrix supersaturation with solute under both irradiative species and proton irradiation is considered well suited to emulate the effects of neutron irradiation in this context. The mechanisms of solute redistribution processes from SPPs and the consequences for irradiation-induced growth phenomena are discussed. - Highlights: •Protons emulate the effects of neutron irradiation in the evolution of chemistry and morphology of second phase particles. •Detailed energy-dispersive X-ray spectroscopy reveals heterogeneity in Zr-Fe-Cr SPPs both before and after irradiation. •Zr-Fe-Ni SPPs are delayed in irradiation-induced dissolution due to their better self-solubility with respect to Zr-Fe-Cr.

  12. The panchromatic Hubble Andromeda treasury. VII. The steep mid-ultraviolet to near-infrared extinction curve in the central 200 pc of the M31 Bulge

    International Nuclear Information System (INIS)

    Dong, Hui; Lauer, Tod R.; Olsen, Knut; Saha, Abhijit; Li, Zhiyuan; Wang, Q. D.; Dalcanton, Julianne; Fouesneau, Morgan; Gordon, Karl; Bell, Eric; Bianchi, Luciana

    2014-01-01

    We measure the extinction curve in the central 200 pc of M31 at mid-ultraviolet to near-infrared wavelengths (from 1928 Å to 1.5 μm), using Swift/UVOT and Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3)/Advanced Camera for Surveys (ACS) observations in 13 bands. Taking advantage of the high angular resolution of the HST/WFC3 and ACS detectors, we develop a method to simultaneously determine the relative extinction and the fraction of obscured starlight for five dusty complexes located in the circumnuclear region. The extinction curves of these clumps (R V = 2.4-2.5) are steeper than the average Galactic one (R V = 3.1), but are similar to optical and near-infrared curves recently measured toward the Galactic bulge (R V ∼ 2.5). This similarity suggests that steep extinction curves may be common in the inner bulge of galaxies. In the ultraviolet, the extinction curves of these clumps are also unusual. We find that one dusty clump (size < 2 pc) exhibits a strong UV bump (extinction at 2175 Å), more than three standard deviation higher than that predicted by common models. Although the high stellar metallicity of the M31 bulge indicates that there are sufficient carbon and silicon to produce large dust grains, the grains may have been destroyed by supernova explosions or past activity of the central supermassive black hole, resulting in the observed steepened extinction curve.

  13. The panchromatic Hubble Andromeda treasury. VII. The steep mid-ultraviolet to near-infrared extinction curve in the central 200 pc of the M31 Bulge

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Lauer, Tod R.; Olsen, Knut; Saha, Abhijit [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Li, Zhiyuan [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wang, Q. D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Dalcanton, Julianne; Fouesneau, Morgan [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Gordon, Karl [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bell, Eric [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Bianchi, Luciana, E-mail: hdong@noao.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2014-04-20

    We measure the extinction curve in the central 200 pc of M31 at mid-ultraviolet to near-infrared wavelengths (from 1928 Å to 1.5 μm), using Swift/UVOT and Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3)/Advanced Camera for Surveys (ACS) observations in 13 bands. Taking advantage of the high angular resolution of the HST/WFC3 and ACS detectors, we develop a method to simultaneously determine the relative extinction and the fraction of obscured starlight for five dusty complexes located in the circumnuclear region. The extinction curves of these clumps (R{sub V} = 2.4-2.5) are steeper than the average Galactic one (R{sub V} = 3.1), but are similar to optical and near-infrared curves recently measured toward the Galactic bulge (R{sub V} ∼ 2.5). This similarity suggests that steep extinction curves may be common in the inner bulge of galaxies. In the ultraviolet, the extinction curves of these clumps are also unusual. We find that one dusty clump (size < 2 pc) exhibits a strong UV bump (extinction at 2175 Å), more than three standard deviation higher than that predicted by common models. Although the high stellar metallicity of the M31 bulge indicates that there are sufficient carbon and silicon to produce large dust grains, the grains may have been destroyed by supernova explosions or past activity of the central supermassive black hole, resulting in the observed steepened extinction curve.

  14. The MACHO Project Sample of Galactic Bulge High-Amplitude {delta} Scuti Stars: Pulsation Behavior and Stellar Properties

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Freeman, K. C.; Geha, M.; Griest, K. (and others)

    2000-06-20

    We have detected 90 objects with periods and light-curve structures similar to those of field {delta} Scuti stars using the Massive Compact Halo Object (MACHO) Project database of Galactic bulge photometry. If we assume similar extinction values for all candidates and absolute magnitudes similar to those of other field high-amplitude {delta} Scuti stars (HADS), the majority of these objects lie in or near the Galactic bulge. At least two of these objects are likely foreground {delta} Scuti stars, one of which may be an evolved nonradial pulsator, similar to other evolved, disk-population {delta} Scuti stars. We have analyzed the light curves of these objects and find that they are similar to the light curves of field {delta} Scuti stars and the {delta} Scuti stars found by the Optical Gravitational Lens Experiment (OGLE). However, the amplitude distribution of these sources lies between those of low- and high-amplitude {delta} Scuti stars, which suggests that they may be an intermediate population. We have found nine double-mode HADS with frequency ratios ranging from 0.75 to 0.79, four probable double- and multiple-mode objects, and another four objects with marginal detections of secondary modes. The low frequencies (5-14 cycles day-1) and the observed period ratios of {approx}0.77 suggest that the majority of these objects are evolved stars pulsating in fundamental or first overtone radial modes. (c) 2000 The American Astronomical Society.

  15. INTEGRAL Galactic bulge monitoring observations of GRO J1750-27 (AX J1749.1-2639), H1743-322 and SLX 1746-331

    DEFF Research Database (Denmark)

    Kuulkers, E.; Beckmann, V.; Shaw, S.

    2008-01-01

    A new season of the INTEGRAL Galactic Bulge monitoring program (see ATels #438, #874, #1005; Kuulkers et al. 2007, A&A 466, 595) started, with observations on UT 11 Feb 2008, 16:33-18:07. We here report on results from three currently active transient sources. The IBIS/ISGRI and JEM-X1 images sho...

  16. Effect of increasing helium content and disk dwarfs evolution on the chemical enrichment of the galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Caimmi, R [Padua Univ. (Italy). Ist. di Astronomia

    1979-07-01

    The author deals with two main effects: First the empirical metal abundance distribution in Main Sequence disk dwarfs of the solar neighbourhood, and second, the theoretical possibility of (i) an increased helium content as the Galaxy evolves, and (ii) the presence of evolutionary effects in disk dwarfs (i.e., the age of some or all stars considered up to the subgiant phase is not necessarily longer than the age of the galactic disk). Account is taken of a linear increase of helium content with metal content, and some constraints are imposed relative to initial, solar and present-day observed values of Y and Z, and to observed relative helium to heavy element enrichment, ..delta..Y/..delta..Z. In this way, little influence is found on the empirical metal abundance distribution in the range 0<=..delta..Y/..delta..Z<=3, while larger values of ..delta..Y/..delta..Zwould lead to a more significant influence. 'Evolved' and 'unevolved' theoretical metal abundance distributions are derived by accounting for a two-phase model of chemical evolution of galaxies and for a linear mass dependence of star lifetimes in the spectral range G2V-G8V and are compared with the empirical distribution. All are in satisfactory agreement due to systematic shift data by different observations; several values of collapse time Tsub(c) and age of the Galaxy T are also considered. Finally, models of chemical evolution invoking homogeneous collapse without infall and inhomogeneous collapse with infall, are briefly discussed relative to the empirical metal abundance distribution in Main Sequence disk dwarfs of the solar neighbourhood.

  17. Chemical evolution with rotating massive star yields - I. The solar neighbourhood and the s-process elements

    Science.gov (United States)

    Prantzos, N.; Abia, C.; Limongi, M.; Chieffi, A.; Cristallo, S.

    2018-05-01

    We present a comprehensive study of the abundance evolution of the elements from H to U in the Milky Way halo and local disc. We use a consistent chemical evolution model, metallicity-dependent isotopic yields from low and intermediate mass stars and yields from massive stars which include, for the first time, the combined effect of metallicity, mass loss, and rotation for a large grid of stellar masses and for all stages of stellar evolution. The yields of massive stars are weighted by a metallicity-dependent function of the rotational velocities, constrained by observations as to obtain a primary-like 14N behaviour at low metallicity and to avoid overproduction of s-elements at intermediate metallicities. We show that the Solar system isotopic composition can be reproduced to better than a factor of 2 for isotopes up to the Fe-peak, and at the 10 per cent level for most pure s-isotopes, both light ones (resulting from the weak s-process in rotating massive stars) and the heavy ones (resulting from the main s-process in low and intermediate mass stars). We conclude that the light element primary process (LEPP), invoked to explain the apparent abundance deficiency of the s-elements with A values of ^{12}C/^{13}C in halo red giants, which is rather due to internal processes in those stars.

  18. Directed evolution strategies for enantiocomplementary haloalkane dehalogenases: from chemical waste to enantiopure building blocks.

    Science.gov (United States)

    van Leeuwen, Jan G E; Wijma, Hein J; Floor, Robert J; van der Laan, Jan-Metske; Janssen, Dick B

    2012-01-02

    We used directed evolution to obtain enantiocomplementary haloalkane dehalogenase variants that convert the toxic waste compound 1,2,3-trichloropropane (TCP) into highly enantioenriched (R)- or (S)-2,3-dichloropropan-1-ol, which can easily be converted into optically active epichlorohydrins-attractive intermediates for the synthesis of enantiopure fine chemicals. A dehalogenase with improved catalytic activity but very low enantioselectivity was used as the starting point. A strategy that made optimal use of the limited capacity of the screening assay, which was based on chiral gas chromatography, was developed. We used pair-wise site-saturation mutagenesis (SSM) of all 16 noncatalytic active-site residues during the initial two rounds of evolution. The resulting best R- and S-enantioselective variants were further improved in two rounds of site-restricted mutagenesis (SRM), with incorporation of carefully selected sets of amino acids at a larger number of positions, including sites that are more distant from the active site. Finally, the most promising mutations and positions were promoted to a combinatorial library by using a multi-site mutagenesis protocol with restricted codon sets. To guide the design of partly undefined (ambiguous) codon sets for these restricted libraries we employed structural information, the results of multiple sequence alignments, and knowledge from earlier rounds. After five rounds of evolution with screening of only 5500 clones, we obtained two strongly diverged haloalkane dehalogenase variants that give access to (R)-epichlorohydrin with 90 % ee and to (S)-epichlorohydrin with 97 % ee, containing 13 and 17 mutations, respectively, around their active sites. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. THE RISE AND FALL OF PASSIVE DISK GALAXIES: MORPHOLOGICAL EVOLUTION ALONG THE RED SEQUENCE REVEALED BY COSMOS

    International Nuclear Information System (INIS)

    Bundy, Kevin; Hopkins, Philip; Ma, Chung-Pei; Scarlata, Claudia; Capak, Peter; Carollo, C. M.; Oesch, Pascal; Ellis, Richard S.; Salvato, Mara; Scoville, Nick; Drory, Niv; Leauthaud, Alexie; Koekemoer, Anton M.; Murray, Norman; Ilbert, Olivier; Pozzetti, Lucia

    2010-01-01

    The increasing abundance of passive 'red-sequence' galaxies since z ∼ 1-2 is mirrored by a coincident rise in the number of galaxies with spheroidal morphologies. In this paper, however, we show in detail, that, the correspondence between galaxy morphology and color is not perfect, providing insight into the physical origin of this evolution. Using the COSMOS survey, we study a significant population of red-sequence galaxies with disk-like morphologies. These passive disks typically have Sa-Sb morphological types with large bulges, but they are not confined to dense environments. They represent nearly one-half of all red-sequence galaxies and dominate at lower masses (∼ 10 M sun ) where they are increasingly disk-dominated. As a function of time, the abundance of passive disks with M * ∼ 11 M sun increases, but not as fast as red-sequence spheroidals in the same mass range. At higher mass, the passive disk population has declined since z ∼ 1, likely because they transform into spheroidals. Based on these trends, we estimate that as much as 60% of galaxies transitioning onto the red sequence evolve through a passive disk phase. The origin of passive disks therefore has broad implications for our understanding of how star formation shuts down. Because passive disks tend to be more bulge-dominated than their star-forming counterparts, a simple fading of blue disks does not fully explain their origin. We explore the strengths and weaknesses of several more sophisticated explanations, including environmental effects, internal stabilization, and disk regrowth during gas-rich mergers. While previous work has sought to explain color and morphological transformations with a single process, these observations open the way to new insight by highlighting the fact that galaxy evolution may actually proceed through several separate stages.

  20. Chemical evolution of the Galaxy at the initial rapid-collapse phase

    Energy Technology Data Exchange (ETDEWEB)

    Caimmi, R [Padua Univ. (Italy). Istituto di Astronomia

    1978-04-01

    Equations for the chemical evolution of the Galaxy are derived, accounting for (i) the dynamical evolution of the Galaxy (i.e. the collapse of the proto-galaxy) and (ii) either a variable mass-spectrum in the birth-rate stellar function of the type B(m,t) = psi(t)phi(m,t), or a constant mass-spectrum with variable lower mass limit for star birth: msub(mf) = msub(mf)(Z). Simple equations are adopted for the collapse of the proto-galaxy, accounting for the experimental data (i.e. axial ratio and major semi-axis) relative to the halo and to the disk, and best fitted for a rapid collapse; gas density is assumed to be always uniform. Numerical computations of several cases show that there is qualitative agreement with the experimental data relative to the Z(t) function when: (i) the mass-spectrum is nearly constant in time: phi(m,t) approximately phi(m) = msup(-2.35); (ii) the efficiency phi(t) proportional to rhosup(..cap alpha..) is sufficiently high; moreover, the super metallic effect (SME) takes place for ..cap alpha.. greater than a given value (..cap alpha.. > approximately 1.5); (iii) the shorter the collapse time Tsub(c), the more rapid is the initial increase of metallicity, the asymptotic value being left nearly unaltered. The theoretical results are not in complete agreement with the observed data bearing on the Nsub(n)(Z) function (Nsub(n) is the number of stars whose Main-Sequence lifetime is not less than the age of the Galaxy), while a hypothesis of star formation with different efficiencies in different zones of the Galaxy, and successive stellar mixing from zone to zone, is not inconsistent with such data.

  1. Chemical evolution of the Galaxy at the initial rapid-collapse phase

    International Nuclear Information System (INIS)

    Caimmi, R.

    1978-01-01

    Equations for the chemical evolution of the Galaxy are derived, accounting for (i) the dynamical evolution of the Galaxy (i.e. the collapse of the proto-galaxy) and (ii) either a variable mass-spectrum in the birth-rate stellar function of the type B(m,t) = psi(t)phi(m,t), or a constant mass-spectrum with variable lower mass limit for star birth: msub(mf) = msub(mf)(Z). Simple equations are adopted for the collapse of the proto-galaxy, accounting for the experimental data (i.e. axial ratio and major semi-axis) relative to the halo and to the disk, and best fitted for a rapid collapse; gas density is assumed to be always uniform. Numerical computations of several cases show that there is qualitative agreement with the experimental data relative to the Z(t) function when: (i) the mass-spectrum is nearly constant in time: phi(m,t) approximately phi(m) = msup(-2.35); (ii) the efficiency phi(t) proportional to rhosup(α) is sufficiently high; moreover, the super metallic effect (SME) takes place for α greater than a given value (α > approximately 1.5); (iii) the shorter the collapse time Tsub(c), the more rapid is the initial increase of metallicity, the asymptotic value being left nearly unaltered. The theoretical results are not in complete agreement with the observed data bearing on the Nsub(n)(Z) function (Nsub(n) is the number of stars whose Main-Sequence lifetime is not less than the age of the Galaxy), while a hypothesis of star formation with different efficiencies in different zones of the Galaxy, and successive stellar mixing from zone to zone, is not inconsistent with such data. (Auth.)

  2. RR Lyrae star distance scale and kinematics from inner bulge to 50 kpc

    Directory of Open Access Journals (Sweden)

    Dambis Andrei

    2017-01-01

    Full Text Available We use the currently most complete sample of ∼ 3500 type ab RR Lyraes in our Galaxy with available radial-velocity and [Fe/H] measurements to perform a statisticalparallax analysis for a subsample of ∼ 600 type ab RR Lyraes located within 5 kpc from the Sun to refine the parameters of optical and WISE W1-band period-metallicityluminosity relations and adjust our preliminary distances. The new zero point implies the rescaled estimates for the solar Galactocentric distance (RG = 7.99 ± 0.37 kpc and the LMC distance modulus (DMLMC = 18.39 ±0.09. We use the kinematic data for the entire sample to explore the dependence of the halo and thick-disk RR Lyrae velocity ellipsoids on Galactocentric distance from the inner bulge out to R ∼ 50 kpc.

  3. International conference on the performance of engineered barriers. Physical and chemical properties, behaviour and evolution. Short abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Schaefers, Annika; Fahland, Sandra (eds.)

    2014-08-01

    The volume includes the abstracts of the papers presented at the international conference on the performance of engineered barrier systems, their physical and chemical properties, behavior and evolution. The papers cover the topics bentonite buffers, radioactive waste repository safety, geophysical and geochemical property monitoring, repository sealing materials, thermo-hydro-mechanical characterization, gas injection tests, hydration and heating tests, clay-iron interaction experiments, water retention behavior, thermal stability of materials, numerical modeling studies, long-term simulations, thermo-hydrologic phenomena, uncertainty and sensitivity studies, probabilistic assessments, preliminary safety analyses of Gorleben.

  4. The chemical evolution of white dwarf atmospheres: Diffusion and accretion

    International Nuclear Information System (INIS)

    Vauclair, G.; Vauclair, S.; Greenstein, J.L.

    1979-01-01

    A study of diffusion processes in white dwarfs is presented. We are especially interested in the estimate of the diffusion time scales for C, N, O, Mg, and Ca along the cooling sequence. The effect of the radiative acceleration is important in hot white dwarfs while in cooler ones the thermal diffusion dominates the gravitational settling. In hot white dwarfs, there should be an observable amount of CNO elements unless they have previously left the stars by a selective wind. Observational tests of this result are discussed. The diffusion time scales are always short compared to the evolutionary time scales. It is shown that in both hydrogen and helium envelopes, the convection zone, even at its maximum depth, is not able to bring back to the stellar surface the metals which have previously diffused downwards. The diffusion alone predicts a complete absence of metals in white dwarf atmospheres and envelopes. As metals are observed in white dwarfs, at least at effective temperatures lower than 15,000 K, there must be some mechanism competing with diffusion. We investigate the competition between diffusion and accretion and propose a general scheme for the chemical evolution of white dwarf atmospheres along the cooling sequence. (orig.)

  5. Engineering microbes for efficient production of chemicals

    Science.gov (United States)

    Gong, Wei; Dole, Sudhanshu; Grabar, Tammy; Collard, Andrew Christopher; Pero, Janice G; Yocum, R Rogers

    2015-04-28

    This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.

  6. The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs. Implications for stellar and Galactic chemical evolution

    Science.gov (United States)

    Smiljanic, R.; Romano, D.; Bragaglia, A.; Donati, P.; Magrini, L.; Friel, E.; Jacobson, H.; Randich, S.; Ventura, P.; Lind, K.; Bergemann, M.; Nordlander, T.; Morel, T.; Pancino, E.; Tautvaišienė, G.; Adibekyan, V.; Tosi, M.; Vallenari, A.; Gilmore, G.; Bensby, T.; François, P.; Koposov, S.; Lanzafame, A. C.; Recio-Blanco, A.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Franciosini, E.; Heiter, U.; Hill, V.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2016-05-01

    Context. Stellar evolution models predict that internal mixing should cause some sodium overabundance at the surface of red giants more massive than ~1.5-2.0 M⊙. The surface aluminium abundance should not be affected. Nevertheless, observational results disagree about the presence and/or the degree of Na and Al overabundances. In addition, Galactic chemical evolution models adopting different stellar yields lead to very different predictions for the behavior of [Na/Fe] and [Al/Fe] versus [Fe/H]. Overall, the observed trends of these abundances with metallicity are not well reproduced. Aims: We readdress both issues, using new Na and Al abundances determined within the Gaia-ESO Survey. Our aim is to obtain better observational constraints on the behavior of these elements using two samples: I) more than 600 dwarfs of the solar neighborhood and of open clusters and II) low- and intermediate-mass clump giants in six open clusters. Methods: Abundances were determined using high-resolution UVES spectra. The individual Na abundances were corrected for nonlocal thermodynamic equilibrium effects. For the Al abundances, the order of magnitude of the corrections was estimated for a few representative cases. For giants, the abundance trends with stellar mass are compared to stellar evolution models. For dwarfs, the abundance trends with metallicity and age are compared to detailed chemical evolution models. Results: Abundances of Na in stars with mass below ~2.0 M⊙, and of Al in stars below ~3.0 M⊙, seem to be unaffected by internal mixing processes. For more massive stars, the Na overabundance increases with stellar mass. This trend agrees well with predictions of stellar evolutionary models. For Al, our only cluster with giants more massive than 3.0 M⊙, NGC 6705, is Al enriched. However, this might be related to the environment where the cluster was formed. Chemical evolution models that well fit the observed [Na/Fe] vs. [Fe/H] trend in solar neighborhood dwarfs

  7. The Diversity of Chemical Composition and the Effects on Stellar Evolution and Planetary Habitability

    Science.gov (United States)

    Truitt, Amanda R.

    2017-08-01

    I present a catalog of 1,794 stellar evolution models for solar-type and low-mass stars, which is intended to help characterize real host-stars of interest during the ongoing search for potentially habitable exoplanets. The main grid is composed of 904 tracks, for 0.5-1.2 M solar masses at scaled metallicity values of 0.1-1.5 Z solar masses and specific elemental abundance ratio values of 0.44-2.28 O/Fe solar masses, 0.58-1.72 C/Fe solar masses, 0.54-1.84 Mg/Fe solar masses, and 0.5-2.0 Ne/Fe solar masses. The catalog includes a small grid of late stage evolutionary tracks (25 models), as well as a grid of M-dwarf stars for 0.1-0.45 M solar masses (856 models). The time-dependent habitable zone evolution is calculated for each track, and is strongly dependent on stellar mass, effective temperature, and luminosity parameterizations. I have also developed a subroutine for the stellar evolution code TYCHO that implements a minimalist coupled model for estimating changes in the stellar X-ray luminosity, mass loss, rotational velocity, and magnetic activity over time; to test the utility of the updated code, I created a small grid (9 models) for solar-mass stars, with variations in rotational velocity and scaled metallicity. Including this kind of information in the catalog will ultimately allow for a more robust consideration of the long-term conditions that orbiting planets may experience. In order to gauge the true habitability potential of a given planetary system, it is extremely important to characterize the host-star's mass, specific chemical composition, and thus the timescale over which the star will evolve. It is also necessary to assess the likelihood that a planet found in the "instantaneous" habitable zone has actually had sufficient time to become "detectably" habitable. This catalog provides accurate stellar evolution predictions for a large collection of theoretical host-stars; the models are of particular utility in that they represent the real

  8. Chemical evolution of Local Group dwarf galaxies in a cosmological context - I. A new modelling approach and its application to the Sculptor dwarf spheroidal galaxy

    Science.gov (United States)

    Romano, Donatella; Starkenburg, Else

    2013-09-01

    We present a new approach for chemical evolution modelling, specifically designed to investigate the chemical properties of dwarf galaxies in a full cosmological framework. In particular, we focus on the Sculptor dwarf spheroidal galaxy, for which a wealth of observational data exists, as a test bed for our model. We select four candidate Sculptor-like galaxies from the satellite galaxy catalogue generated by implementation of a version of the Munich semi-analytic model for galaxy formation on the level 2 Aquarius dark matter simulations and use the mass assembly and star formation histories predicted for these four systems as an input for the chemical evolution code. We follow explicitly the evolution of several chemical elements, both in the cold gas out of which the stars form and in the hot medium residing in the halo. We take into account in detail the lifetimes of stars of different initial masses, the distribution of the delay times for Type Ia supernova explosions and the dependence of the stellar yields from the initial metallicity of the stars. We allow large fractions of metals to be deposited into the hot phase, either directly as stars die or through reheated gas flows powered by supernova explosions. We find that, in order to reproduce both the observed metallicity distribution function and the observed abundance ratios of long-lived stars of Sculptor, large fractions of the reheated metals must never re-enter regions of active star formation. With this prescription, all the four analogues to the Sculptor dwarf spheroidal galaxy extracted from the simulated satellites catalogue on the basis of luminosity and stellar population ages are found to reasonably match the detailed chemical properties of real Sculptor stars. However, all model galaxies do severely underestimate the fraction of very metal poor stars observed in Sculptor. Our analysis thus sets further constraints on the semi-analytical models and, at large, on possible metal enrichment

  9. Ground water chemical evolution of Pocos de Caldas - Minas Gerais State -Brazil

    International Nuclear Information System (INIS)

    Cruz, W.B.; Peixoto, C.A.M.

    1991-01-01

    The chemical evolution and the origin of the groundwater, cold and thermal springs composition are analysed related to the geochemical environment of the Pocos de Caldas alkaline complex. The thermal waters origin are related to a large and deep open fracture system in three main directions: N14E, N50E and E-W. The tritium content when simultaneously analysed with the deuterium and oxygen-18 set show that thermal waters are old meteoric waters (30-40 years of age). On the other hand, the cold springs that circulate on the superficial levels are more recent, which is a characteristic of an acid oxidizing environment without sulfides and greater concentration of free CO 2 and Rn 222 . The pH increases slowly with depth and also the H C O 3 - , Na + , SO 4 2- and the Si O 2 content. High concentrations of fluoride follow this process. Reducing environment with an increase in the sulphide content and a decrease in radioactivity are trends in the system studied. (author)

  10. Evolution of microbiological and physico-chemical quality of pasteurized milk

    Directory of Open Access Journals (Sweden)

    Natalia Gonzaga

    2015-11-01

    Full Text Available Milk quality is defined, among other parameters, by a reduced number of spoilage microorganisms, low somatic cell count and the absence of pathogens and chemical waste. Several studies conducted in different regions of the country have emphasized the high percentage of samples not complying with the standard. The purpose of this study was to evaluate the evolution of microbiological and physicochemical quality of pasteurized milk produced in the State of Paraná over 7 years. A total of 457 samples of pasteurized milk were analyzed, 104 samples in 2008, 269 samples in 2011 and 84 samples in 2014. The samples were subjected to physicochemical analysis of cryoscopy and enzyme search for alkaline phosphatase and peroxidase. Regarding microbiological tests, coliform counts were performed at 30°C and 45°C and count plate pattern. In the laboratory, physicochemical analysis were performed according to the Normative 68 and microbiological as normative instruction 62, both of the Brazilian Ministry of Agriculture, Livestock and Food Supply. The results showed that over the years the microbiological quality of milk decreased, with an increase of non-standard samples. For enzymes alkaline phosphatase, peroxidase, the pasteurization temperature has been observed over time and the overheating of the milk was more frequent in 2011. Fraud by addition of water in milk has either decreased or become more sophisticated, making its detection difficult.

  11. Origin and Evolution of the Elements

    Science.gov (United States)

    McWilliam, Andrew; Rauch, Michael

    2004-09-01

    Introduction; List of participants; 1. Mount Wilson Observatory contributions to the study of cosmic abundances of the chemical elements George W. Preston; 2. Synthesis of the elements in stars: B2FH and beyond E. Margaret Burbidge; 3. Stellar nucleosynthesis: a status report 2003 David Arnett; 4. Advances in r-process nucleosynthesis John J. Cowan and Christopher Sneden; 5. Element yields of intermediate-mass stars Richard B. C. Henry; 6. The impact of rotation on chemical abundances in red giant branch stars Corinne Charbonnel; 7. s-processing in AGB stars and the composition of carbon stars Maurizio Busso, Oscar Straniero, Roberto Gallino, and Carlos Abia; 8. Models of chemical evolution Francesca Matteucci; 9. Model atmospheres and stellar abundance analysis Bengt Gustafsson; 10. The light elements: lithium, beryllium, and boron Ann Merchant Boesgaard; 11. Extremely metal-poor stars John E. Norris; 12. Thin and thick galactic disks Poul E. Nissen; 13. Globular clusters and halo field stars Christopher Sneden, Inese I. Ivans and Jon P. Fulbright; 14. Chemical evolution in ω Centauri Verne V. Smith; 15. Chemical composition of the Magellanic Clouds, from young to old stars Vanessa Hill; 16. Detailed composition of stars in dwarf spheroidal galaxies Matthew D. Shetrone; 17. The evolutionary history of Local Group irregular galaxies Eva K. Grebel; 18. Chemical evolution of the old stellar populations of M31 R. Michael Rich; 19. Stellar winds of hot massive stars nearby and beyond the Local Group Fabio Bresolin and Rolf P. Kudritzki; 20. Presolar stardust grains Donald D. Clayton and Larry R. Nittler; 21. Interstellar dust B. T. Draine; 22. Interstellar atomic abundances Edward B. Jenkins; 23. Molecules in the interstellar medium Tommy Wiklind; 24. Metal ejection by galactic winds Crystal L. Martin; 25. Abundances from the integrated light of globular clusters and galaxies Scott C. Trager; 26. Abundances in spiral and irregular galaxies Donald R. Garnett; 27

  12. Database proton NMR chemical shifts for RNA signal assignment and validation

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Shawn; Heng Xiao [University of Maryland, Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce@onemoonscientific.com [University of Maryland, Baltimore County, Department of Chemistry and Biochemistry (United States); Summers, Michael F., E-mail: summers@hhmi.umbc.edu [University of Maryland, Baltimore County, Howard Hughes Medical Institute (United States)

    2013-01-15

    The Biological Magnetic Resonance Data Bank contains NMR chemical shift depositions for 132 RNAs and RNA-containing complexes. We have analyzed the {sup 1}H NMR chemical shifts reported for non-exchangeable protons of residues that reside within A-form helical regions of these RNAs. The analysis focused on the central base pair within a stretch of three adjacent base pairs (BP triplets), and included both Watson-Crick (WC; G:C, A:U) and G:U wobble pairs. Chemical shift values were included for all 4{sup 3} possible WC-BP triplets, as well as 137 additional triplets that contain one or more G:U wobbles. Sequence-dependent chemical shift correlations were identified, including correlations involving terminating base pairs within the triplets and canonical and non-canonical structures adjacent to the BP triplets (i.e. bulges, loops, WC and non-WC BPs), despite the fact that the NMR data were obtained under different conditions of pH, buffer, ionic strength, and temperature. A computer program (RNAShifts) was developed that enables convenient comparison of RNA {sup 1}H NMR assignments with database predictions, which should facilitate future signal assignment/validation efforts and enable rapid identification of non-canonical RNA structures and RNA-ligand/protein interaction sites.

  13. Evolution before genes

    Directory of Open Access Journals (Sweden)

    Vasas Vera

    2012-01-01

    Full Text Available Abstract Background Our current understanding of evolution is so tightly linked to template-dependent replication of DNA and RNA molecules that the old idea from Oparin of a self-reproducing 'garbage bag' ('coacervate' of chemicals that predated fully-fledged cell-like entities seems to be farfetched to most scientists today. However, this is exactly the kind of scheme we propose for how Darwinian evolution could have occurred prior to template replication. Results We cannot confirm previous claims that autocatalytic sets of organic polymer molecules could undergo evolution in any interesting sense by themselves. While we and others have previously imagined inhibition would result in selectability, we found that it produced multiple attractors in an autocatalytic set that cannot be selected for. Instead, we discovered that if general conditions are satisfied, the accumulation of adaptations in chemical reaction networks can occur. These conditions are the existence of rare reactions producing viable cores (analogous to a genotype, that sustains a molecular periphery (analogous to a phenotype. Conclusions We conclude that only when a chemical reaction network consists of many such viable cores, can it be evolvable. When many cores are enclosed in a compartment there is competition between cores within the same compartment, and when there are many compartments, there is between-compartment competition due to the phenotypic effects of cores and their periphery at the compartment level. Acquisition of cores by rare chemical events, and loss of cores at division, allows macromutation, limited heredity and selectability, thus explaining how a poor man's natural selection could have operated prior to genetic templates. This is the only demonstration to date of a mechanism by which pre-template accumulation of adaptation could occur. Reviewers This article was reviewed by William Martin and Eugene Koonin.

  14. Evolution of near-field physico-chemical characteristics of the SFR repository

    International Nuclear Information System (INIS)

    Savage, D.; Stenhouse, M.; Benbow, S.

    2000-08-01

    The evaluation of the post-closure performance of the SFR repository needs to consider time dependent evolution of the repository environment. Time-dependent reaction of near-field barriers (cement, steel, bentonite) with saturating groundwater will lead to the development of hyper alkaline repository pore fluids, chemically reducing conditions, and ultimately, the generation of gas through anaerobic corrosion of metals. Cement and concrete will act as chemical conditioning agents to minimise metal corrosion and ultimately, maximise radioelement sorption. The chemical and physical evolution of cement and concrete through reaction with ambient groundwater will thus affect sorption processes through changes in pH, complexing ligands, and solid surface properties. It is desirable that these changes be incorporated into the safety assessment. The sorption behaviour of radionuclides in cementitious systems has been reviewed in detail. The available evidence from experimental work carried out on the influence of organic materials on the sorption behaviour of radionuclides, indicates that most organic degradation products will not affect sorption significantly at the concentrations expected in a cementitious repository. The notable exception to this conclusion involves the degradation products of cellulose and, in particular, polycarboxylic acids represented by iso-saccharinic acid (ISA). Results using ISA indicate a significant reduction in sorption of Pu, by several orders of magnitude, for an ISA concentration of about 10 -3 M. More recent data indicate that the negative effect is not as great, though still significant. Therefore, some scoping calculations are advisable to determine how realistic an ISA concentration of about 10 -3 M would be for the SFR repository and to estimate concentrations of other relevant organic compounds, in particular EDTA, for comparison. Scoping calculations relevant to the longevity of hyper alkaline pore fluid conditions at SFR have been

  15. Black Holes and Galactic Density Cusps III From Black Hole to Bulge

    CERN Document Server

    Henriksen, Richard N; Macmillan, Joseph D

    2011-01-01

    Aims. In this paper we continue our study of density cusps that may contain central black holes. Methods. We recall our attempts to use distribution functions with a memory of self-similar relaxation, but mostly they apply only in restricted regions of the global system. We are forced to consider related distribution functions that are steady but not self-similar. Results. One remarkably simple distribution function that has a filled loss cone describes a bulge that transits from a near black hole domain to an outer 'zero flux' regime where$\\rho\\propto r^{-7/4}$. The transition passes from an initial inverse square profile through a region having a 1/r density profile. The structure is likely to be developed at an early stage in the growth of a galaxy. A central black hole is shown to grow exponentially in this background with an e-folding time of a few million years. Conclusions. We derive our results from first principles, using only the angular momentum integral in spherical symmetry. The initial relaxatio...

  16. Primordial nucleosynthesis and chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Audouze, J.; Delbourgo-Salvador, P.

    1986-07-01

    Simple or canonical Big Bang models are claimed to account properly for the abundances of the lightest elements D, 3 He, 4 He and 7 Li if the baryonic cosmological parameter of the Universe is Ω B B is lower than 0.06 i.e. significantly smaller than in the simplest framework. Moreover this hypothesis of significant D destruction during the galactic evolution could be observationally tested

  17. SUB-SATURN PLANET MOA-2008-BLG-310Lb: LIKELY TO BE IN THE GALACTIC BULGE

    International Nuclear Information System (INIS)

    Janczak, Julia; Dong, Subo; Kozlowski, Szymon

    2010-01-01

    We report the detection of sub-Saturn-mass planet MOA-2008-BLG-310Lb and argue that it is the strongest candidate yet for a bulge planet. Deviations from the single-lens fit are smoothed out by finite-source effects and therefore are not immediately apparent from the light curve. Nevertheless, we find that a model in which the primary has a planetary companion is favored over the single-lens model by Δχ 2 ∼ 880 for an additional 3 degrees of freedom. Detailed analysis yields a planet/star mass ratio q = (3.3 ± 0.3) x 10 -4 and an angular separation between the planet and star within 10% of the angular Einstein radius. The small angular Einstein radius, θ E = 0.155 ± 0.011 mas, constrains the distance to the lens to be D L >6.0 kpc if it is a star (M L >0.08 M sun ). This is the only microlensing exoplanet host discovered so far that must be in the bulge if it is a star. By analyzing VLT NACO adaptive optics images taken near the baseline of the event, we detect additional blended light that is aligned to within 130 mas of the lensed source. This light is plausibly from the lens, but could also be due to a companion to the lens or source, or possibly an unassociated star. If the blended light is indeed due to the lens, we can estimate the mass of the lens, M L = 0.67 ± 0.14 M sun , planet mass m = 74 ± 17 M + , and projected separation between the planet and host, 1.25 ± 0.10 AU, putting it right on the 'snow line'. If not, then the planet has lower mass, is closer to its host and is colder. To distinguish among these possibilities on reasonable timescales would require obtaining Hubble Space Telescope images almost immediately, before the source-lens relative motion of μ= 5 mas yr -1 causes them to separate substantially.

  18. Morphology evolution and nanostructure of chemical looping transition metal oxide materials upon redox processes

    International Nuclear Information System (INIS)

    Qin, Lang; Cheng, Zhuo; Guo, Mengqing; Fan, Jonathan A.; Fan, Liang-Shih

    2017-01-01

    Transition metal are heavily used in chemical looping technologies because of their high oxygen carrying capacity and high thermal reactivity. These oxygen activities result in the oxide formation and oxygen vacancy formation that affect the nanoscale crystal phase and morphology within these materials and their subsequent bulk chemical behavior. In this study, two selected earlier transition metals manganese and cobalt as well as two selected later transition metals copper and nickel that are important to chemical looping reactions are investigated when they undergo cyclic redox reactions. We found Co microparticles exhibited increased CoO impurity presence when oxidized to Co_3O_4 upon cyclic oxidation; CuO redox cycles prefer to be limited to a reduced form of Cu_2O and an oxidized form of CuO; Mn microparticles were oxidized to a mixed phases of MnO and Mn_3O_4, which causes delamination during oxidation. For Ni microparticles, a dense surface were observed during the redox reaction. The atomistic thermodynamics methods and density functional theory (DFT) calculations are carried out to elucidate the effect of oxygen dissociation and migration on the morphological evolution of nanostructures during the redox processes. Our results indicate that the earlier transition metals (Mn and Co) tend to have stronger interaction with O_2 than the later transition metals (Ni and Cu). Also, our modified Brønsted−Evans−Polanyi (BEP) relationship for reaction energies and total reaction barriers reveals that reactions of earlier transition metals are more exergonic and have lower oxygen dissociation barriers than those of later transition metals. In addition, it was found that for these transition metal oxides the oxygen vacancy formation energies increase with the depth. The oxide in the higher oxidation state of transition metal has lower vacancy formation energy, which can facilitate forming the defective nanostructures. The fundamental understanding of these metal

  19. THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT: FIRST DETECTION OF HIGH-VELOCITY MILKY WAY BAR STARS

    Energy Technology Data Exchange (ETDEWEB)

    Nidever, David L.; Zasowski, Gail; Majewski, Steven R.; Beaton, Rachael L.; Wilson, John C.; Skrutskie, Michael F.; O' Connell, Robert W. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Bird, Jonathan; Schoenrich, Ralph; Johnson, Jennifer A.; Sellgren, Kris [Department of Astronomy and the Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States); Robin, Annie C.; Schultheis, Mathias [Institut Utinam, CNRS UMR 6213, OSU THETA, Universite de Franche-Comte, 41bis avenue de l' Observatoire, F-25000 Besancon (France); Martinez-Valpuesta, Inma; Gerhard, Ortwin [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Shetrone, Matthew [McDonald Observatory, University of Texas at Austin, Fort Davis, TX 79734 (United States); Schiavon, Ricardo P. [Gemini Observatory, 670 North A' Ohoku Place, Hilo, HI 96720 (United States); Weiner, Benjamin [Steward Observatory, 933 North Cherry Street, University of Arizona, Tucson, AZ 85721 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Allende Prieto, Carlos, E-mail: dln5q@virginia.edu [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); and others

    2012-08-20

    Commissioning observations with the Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the Sloan Digital Sky Survey III, have produced radial velocities (RVs) for {approx}4700 K/M-giant stars in the Milky Way (MW) bulge. These high-resolution (R {approx} 22, 500), high-S/N (>100 per resolution element), near-infrared (NIR; 1.51-1.70 {mu}m) spectra provide accurate RVs ({epsilon}{sub V} {approx} 0.2 km s{sup -1}) for the sample of stars in 18 Galactic bulge fields spanning -1 Degree-Sign -32 Degree-Sign . This represents the largest NIR high-resolution spectroscopic sample of giant stars ever assembled in this region of the Galaxy. A cold ({sigma}{sub V} {approx} 30 km s{sup -1}), high-velocity peak (V{sub GSR} Almost-Equal-To +200 km s{sup -1}) is found to comprise a significant fraction ({approx}10%) of stars in many of these fields. These high RVs have not been detected in previous MW surveys and are not expected for a simple, circularly rotating disk. Preliminary distance estimates rule out an origin from the background Sagittarius tidal stream or a new stream in the MW disk. Comparison to various Galactic models suggests that these high RVs are best explained by stars in orbits of the Galactic bar potential, although some observational features remain unexplained.

  20. Persistent local chemical bonds in intermetallic phase formation

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yanwen [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bian, Xiufang, E-mail: xfbian@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Qin, Xubo [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang, Shuo; Huang, Yuying [Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2014-05-01

    We found a direct evidence for the existence of the local chemical Bi–In bonds in the BiIn{sub 2} melt. These bonds are strong and prevail, dominating the structure evolution of the intermetallic clusters. From the local structure of the melt-quenched BiIn{sub 2} ribbon, the chemical Bi–In bonds strengthen compared with those in the equilibrium solidified alloy. The chemical bonds in BiIn{sub 2} melt retain to solid during a rapid quenching process. The results suggest that the intermetallic clusters in the melt evolve into the as-quenched intermetallic phase, and the intermetallic phase originates from the chemical bonds between unlike atoms in the melt. The chemical bonds preserve the chemical ordered clusters and dominate the clusters evolution.

  1. Evolution of near-field physico-chemical characteristics of the SFR repository

    Energy Technology Data Exchange (ETDEWEB)

    Savage, D [Quintessa Ltd., Nottingham (United Kingdom); Stenhouse, M [Monitor Scientific LLC, Denver, CO (United States); Benbow, S [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2000-08-01

    The evaluation of the post-closure performance of the SFR repository needs to consider time dependent evolution of the repository environment. Time-dependent reaction of near-field barriers (cement, steel, bentonite) with saturating groundwater will lead to the development of hyper alkaline repository pore fluids, chemically reducing conditions, and ultimately, the generation of gas through anaerobic corrosion of metals. Cement and concrete will act as chemical conditioning agents to minimise metal corrosion and ultimately, maximise radioelement sorption. The chemical and physical evolution of cement and concrete through reaction with ambient groundwater will thus affect sorption processes through changes in pH, complexing ligands, and solid surface properties. It is desirable that these changes be incorporated into the safety assessment. The sorption behaviour of radionuclides in cementitious systems has been reviewed in detail. The available evidence from experimental work carried out on the influence of organic materials on the sorption behaviour of radionuclides, indicates that most organic degradation products will not affect sorption significantly at the concentrations expected in a cementitious repository. The notable exception to this conclusion involves the degradation products of cellulose and, in particular, polycarboxylic acids represented by iso-saccharinic acid (ISA). Results using ISA indicate a significant reduction in sorption of Pu, by several orders of magnitude, for an ISA concentration of about 10{sup -3} M. More recent data indicate that the negative effect is not as great, though still significant. Therefore, some scoping calculations are advisable to determine how realistic an ISA concentration of about 10{sup -3} M would be for the SFR repository and to estimate concentrations of other relevant organic compounds, in particular EDTA, for comparison. Scoping calculations relevant to the longevity of hyper alkaline pore fluid conditions at SFR

  2. 2005 dossier: clay. Tome: phenomenological evolution of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological processes taking place in an argilite-type geologic disposal facility for high-level and long-lived (HLLL) radioactive wastes. Content: 1 - introduction: goal, input data, time and space scales, long-time forecasting of the phenomenological evolution; 2 - the Meuse/Haute-Marne site, the HLLL wastes and the disposal concepts: impact of the repository architecture; 3 - initial state of the geologic environment prior to the building up of the repository: general framework, geologic formations, tectonics and fractures, surface environment, geologic synthesis; 4 - phenomenological processes: storage-related processes, geodynamics-related processes, time scales of processes and of radionuclides migration, independence and evolution similarities of the repository and of the geologic environment; 5 - heat loads: heat transfers between containers and geologic formations, spatial organization of the thermal load, for C-type wastes and spent fuels, for B-type wastes, synthesis of the repository thermal load; 6 - flows and liquid solution and gas transfers: hydraulic behaviour of surrounding Jurassic formations (Tithonian, Kimmeridgian, Callovian, Oxfordian); 7 - chemical phenomena: chemical evolution of ventilated facilities (alveoles, galleries, boreholes), chemical evolution of B-type waste alveoles and of gallery and borehole sealing after closure, far field chemical evolution of Callovo-Oxfordian argilites and of other surrounding formations; 8 - mechanical evolution of the disposal and of the surrounding geologic environment: creation of an initial excavated damaged zone (EDZ), mechanical evolution of ventilated galleries, alveoles and sealing before and after closure, large-scale mechanical evolution; 9 - geodynamical evolution of the Callovo-Oxfordian and other surrounding formations and of the surface environment: internal

  3. Chemical shift-dependent apparent scalar couplings: An alternative concept of chemical shift monitoring in multi-dimensional NMR experiments

    International Nuclear Information System (INIS)

    Kwiatkowski, Witek; Riek, Roland

    2003-01-01

    The paper presents an alternative technique for chemical shift monitoring in a multi-dimensional NMR experiment. The monitored chemical shift is coded in the line-shape of a cross-peak through an apparent residual scalar coupling active during an established evolution period or acquisition. The size of the apparent scalar coupling is manipulated with an off-resonance radio-frequency pulse in order to correlate the size of the coupling with the position of the additional chemical shift. The strength of this concept is that chemical shift information is added without an additional evolution period and accompanying polarization transfer periods. This concept was incorporated into the three-dimensional triple-resonance experiment HNCA, adding the information of 1 H α chemical shifts. The experiment is called HNCA coded HA, since the chemical shift of 1 H α is coded in the line-shape of the cross-peak along the 13 C α dimension

  4. The Amazon Mangrove Coast: The Role of Geological Factors in its Evolution During the Quaternary

    Science.gov (United States)

    Souza-Filho, P. W.; Lara, R.; Silveira, O.; Miranda, F. P.

    2007-05-01

    reactived by peripheral bulge. In this sector, the location of these inactive cliffs is spatially coincident with the peripheral bulge. Hence, we suggest that the inactive cliffs are a result of the flexural reactivation of ancient normal faults, which is supported by studies of in the northeastern Brazilian coast. Sector 3 is also marked by normal faults and peripheral bulge influence, presenting geomorphological characteristics similar to Sector 2. In Sectors 2 and 3 the retreated coastal plateau and inundation deposits of the estuaries allowed the development of wide tidal flats where the largest mangrove belt is established. In Sector 4 there is a great mangrove development. This area is characterized by a gravimetric high, with little influenced by peripheral bulge and is structurally controlled by normal faults limited by the Cururupu arch. The interaction of regional framework and flexural deformation explains the reactivation of ancient faults responsible for the geomorphology of the North Brazilian mangrove coast. However, further structural and geodetic monitoring from interferometric SAR data are needed for a more detailed knowledge of the Quaternary tectonics of this region. This may provide elements for a better comprehension of wetland evolution in the moist tropics, particularly regarding their response to coastal subsidence and relative sea level changes in time of global changes.

  5. Hormonally active phytochemicals and vertebrate evolution.

    Science.gov (United States)

    Lambert, Max R; Edwards, Thea M

    2017-06-01

    Living plants produce a diversity of chemicals that share structural and functional properties with vertebrate hormones. Wildlife species interact with these chemicals either through consumption of plant materials or aquatic exposure. Accumulating evidence shows that exposure to these hormonally active phytochemicals (HAPs) often has consequences for behavior, physiology, and fecundity. These fitness effects suggest there is potential for an evolutionary response by vertebrates to HAPs. Here, we explore the toxicological HAP-vertebrate relationship in an evolutionary framework and discuss the potential for vertebrates to adapt to or even co-opt the effects of plant-derived chemicals that influence fitness. We lay out several hypotheses about HAPs and provide a path forward to test whether plant-derived chemicals influence vertebrate reproduction and evolution. Studies of phytochemicals with direct impacts on vertebrate reproduction provide an obvious and compelling system for studying evolutionary toxicology. Furthermore, an understanding of whether animal populations evolve in response to HAPs could provide insightful context for the study of rapid evolution and how animals cope with chemical agents in the environment.

  6. Chemical Engineering in the "BIO" World.

    Science.gov (United States)

    Chiarappa, Gianluca; Grassi, Mario; Abrami, Michela; Abbiati, Roberto Andrea; Barba, Anna Angela; Boisen, Anja; Brucato, Valerio; Ghersi, Giulio; Caccavo, Diego; Cascone, Sara; Caserta, Sergio; Elvassore, Nicola; Giomo, Monica; Guido, Stefano; Lamberti, Gaetano; Larobina, Domenico; Manca, Davide; Marizza, Paolo; Tomaiuolo, Giovanna; Grassi, Gabriele

    2017-01-01

    Modern Chemical Engineering was born around the end of the 19th century in Great Britain, Germany, and the USA, the most industrialized countries at that time. Milton C. Whitaker, in 1914, affirmed that the difference between Chemistry and Chemical Engineering lies in the capability of chemical engineers to transfer laboratory findings to the industrial level. Since then, Chemical Engineering underwent huge transformations determining the detachment from the original Chemistry nest. The beginning of the sixties of the 20th century saw the development of a new branch of Chemical Engineering baptized Biomedical Engineering by Peppas and Langer and that now we can name Biological Engineering. Interestingly, although Biological Engineering focused on completely different topics from Chemical Engineering ones, it resorted to the same theoretical tools such as, for instance, mass, energy and momentum balances. Thus, the birth of Biological Engineering may be considered as a Darwinian evolution of Chemical Engineering similar to that experienced by mammals which, returning to water, used legs and arms to swim. From 1960 on, Biological Engineering underwent a considerable evolution as witnessed by the great variety of topics covered such as hemodialysis, release of synthetic drugs, artificial organs and, more recently, delivery of small interfering RNAs (siRNA). This review, based on the activities developed in the frame of our PRIN 2010-11 (20109PLMH2) project, tries to recount origins and evolution of Chemical Engineering illustrating several examples of recent and successful applications in the biological field. This, in turn, may stimulate the discussion about the Chemical Engineering students curriculum studiorum update. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Selective Alkylation of C-Rich Bulge Motifs in Nucleic Acids by Quinone Methide Derivatives.

    Science.gov (United States)

    Lönnberg, Tuomas; Hutchinson, Mark; Rokita, Steven

    2015-09-07

    A quinone methide precursor featuring a bis-cyclen anchoring moiety has been synthesized and its capacity to alkylate oligonucleotide targets quantified in the presence and absence of divalent metal ions (Zn(2+) , Ni(2+) and Cd(2+) ). The oligonucleotides were designed for testing the sequence and secondary structure specificity of the reaction. Gel electrophoretic analysis revealed predominant alkylation of C-rich bulges, regardless of the presence of divalent metal ions or even the bis-cyclen anchor. This C-selectivity appears to be an intrinsic property of the quinone methide electrophile as reflected by its reaction with an equimolar mixture of the 2'-deoxynucleosides. Only dA-N1 and dC-N3 alkylation products were detected initially and only the dC adduct persisted for detection under conditions of the gel electrophoretic analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Modeling risk evolution of digestive tract functional violations when exposed to chemical environmental factors

    Directory of Open Access Journals (Sweden)

    M.R. Kamaltdinov

    2015-06-01

    Full Text Available Modern methods of health risk assessment are based on the representation of individual and public health as a dynamic process of “evolution”, which describes a continuous course of negative (and positive changes in the condition of the body. The article presents a conceptual diagram of multilevel health risk evolution modeling under the influence of environmental factors. The main aspects associated with the simulation of digestive processes in the “meso level” are considered. Some results of solving the problem of the flow in the digestive tract antroduodenal area taken into account tract motility. Further development ways of the model are outlines – account of biochemical reactions, secretory and absorptive functions tract. The proposed approach will enable not only to predict the risk of digestive system functional disorders, but also take into account basic physiological processes, mechanisms of income, distribution, excretion of chemicals.

  9. A guide to the coupled chemical equilibria and migration code CHEQMATE

    International Nuclear Information System (INIS)

    Haworth, A.; Sharland, S.M.; Tasker, P.W.; Tweed, C.J.

    1988-02-01

    The CHEQMATE (CHemical EQuilibrium with Migration and Transport Equations) program has been developed to model the evolution of spatially inhomogeneous aqueous chemical systems. CHEQMATE models one-dimensional diffusion and electromigration of ionic species with chemical equilibration provided by the geochemical code PHREEQE. The transport and chemical parts of the CHEQMATE code are iteratively coupled, so that local chemical equilibrium is maintained as the transport processes evolve. CHEQMATE is very flexible and can easily be applied to many different evolving chemical systems. It has principally been used to study the evolution of the chemical environment in and around a nuclear waste repository. (author)

  10. Hydrogen evolution under visible light over LaCoO3 prepared by chemical route

    International Nuclear Information System (INIS)

    Meziani, D.; Reziga, A.; Rekhila, G.; Bellal, B.; Trari, M.

    2014-01-01

    Highlights: • Visible-light hydrogen evolution is achieved on the hetero-system LaCoO 3 /SnO 2 . • The crystal field splits the Co 3+ : 3d orbital by a value of 2.05 eV. • The capacitance plot shows p-type conduction with flat band potential of 0 V SCE. • The photo-electrochemistry yields a valence and conduction bands of 3d parentage. - Abstract: The semiconducting properties of the perovskite LaCoO 3 , prepared by nitrate route, are investigated for the first time by the photo-electrochemical technique. The oxide shows a direct optical transition at 1.33 eV, due to Co 3+ : 3d orbital splitting in octahedral site and possesses a chemical stability over a fair pH range (4–14). The conductivity follows an exponential type law with a hole mobility (8.3 × 10 −2 cm 2 V −1 s −1 ), thermally activated. The Mott–Schottky plot in KOH medium is characteristic of p type conduction with a flat band potential of 0 V SCE and a holes density of 1.35 × 10 17 cm −3 . The electrochemical impedance spectroscopy reveals the predominance of the bulk and grains boundaries contributions with a constant phase element and a multi-relaxation type nature. As application, the hydrogen evolution upon visible light is demonstrated on the hetero-junction LaCoO 3 /SnO 2 . The best performance occurs at pH ∼ 12.8 with an evolution rate of 0.25 cm 3 min −1 (mg LaCoO 3 ) −1 and a quantum yield of 0.11%. The improved activity is attributed to the wide depletion width of ∼10 nm and the potential of the conduction band of LaCoO 3 (−1.34 V SCE ), more negative than that of SnO 2 , the latter acts as electrons bridge for the interfacial water reduction. The relevance of 3d orbital of the performance of semi conducting photoelectrode is discussed

  11. The chemical evolution of a travertine-depositing stream: Geochemical processes and mass transfer reactions

    Science.gov (United States)

    Lorah, Michelle M.; Herman, Janet S.

    1988-01-01

    This field study focuses on quantitatively defining the chemical changes occurring in Falling Spring Creek, a travertine-depositing stream located in Alleghany County, Virginia. The processes of CO2outgassing and calcite precipitation or dissolution control the chemical evolution of the stream. The observed chemical composition of the water was used with the computerized geochemical model WATEQF to calculate aqueous speciation, saturation indices, and CO2 partial pressure values. Mass balance calculations were performed to obtain mass transfers of CO2 and calcite. Reaction times, estimated from stream discharge, were used with the mass transfer results to calculate rates of CO2, outgassing and calcite precipitation between consecutive sampling points. The stream, which is fed by a carbonate spring, is supersaturated with respect to CO2 along the entire 5.2-km flow path. Outgassing of CO2 drives the solution to high degrees of supersaturation with respect to calcite. Metabolic uptake of CO2 by photosynthetic plants is insignificant, because the high supply rate of dissolved carbon dioxide and the extreme agitation of the stream at waterfalls and rapids causes a much greater amount of inorganic CO2 outgassing to occur. Calcite precipitation is kinetically inhibited until near the crest of a 20-m vertical waterfall. Calcite precipitation rates then reach a maximum at the waterfall where greater water turbulence allows the most rapid escape of CO2. Physical evidence for calcite precipitation exists in the travertine deposits which are first observed immediately above the waterfall and extend for at least 1.0 km below the falls. Net calcite precipitation occurs at all times of the year but is greatest during low-flow conditions in the summer and early fall.

  12. Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols

    Directory of Open Access Journals (Sweden)

    Y. Li

    2016-03-01

    Full Text Available The formation and aging of organic aerosols (OA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of OA evolution in atmospheric aerosol models. Based on data from over 30 000 compounds, we show that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. We developed parameterizations to predict the saturation mass concentration of organic compounds containing oxygen, nitrogen, and sulfur from the elemental composition that can be measured by soft-ionization high-resolution mass spectrometry. Field measurement data from new particle formation events, biomass burning, cloud/fog processing, and indoor environments were mapped into molecular corridors to characterize the chemical nature of the observed OA components. We found that less-oxidized indoor OA are constrained to a corridor of low molar mass and high volatility, whereas highly oxygenated compounds in atmospheric water extend to high molar mass and low volatility. Among the nitrogen- and sulfur-containing compounds identified in atmospheric aerosols, amines tend to exhibit low molar mass and high volatility, whereas organonitrates and organosulfates follow high O : C corridors extending to high molar mass and low volatility. We suggest that the consideration of molar mass and molecular corridors can help to constrain volatility and particle-phase state in the modeling of OA particularly for nitrogen- and sulfur-containing compounds.

  13. Evidence for expansion of the precuneus in human evolution.

    Science.gov (United States)

    Bruner, Emiliano; Preuss, Todd M; Chen, Xu; Rilling, James K

    2017-03-01

    The evolution of neurocranial morphology in Homo sapiens is characterized by bulging of the parietal region, a feature unique to our species. In modern humans, expansion of the parietal surface occurs during the first year of life, in a morphogenetic stage which is absent in chimpanzees and Neandertals. A similar variation in brain shape among living adult humans is associated with expansion of the precuneus. Using MRI-derived structural brain templates, we compare medial brain morphology between humans and chimpanzees through shape analysis and geometrical modeling. We find that the main spatial difference is a prominent expansion of the precuneus in our species, providing further evidence of evolutionary changes associated with this area. The precuneus is a major hub of brain organization, a central node of the default-mode network, and plays an essential role in visuospatial integration. Together, the comparative neuroanatomical and paleontological evidence suggest that precuneus expansion is a neurological specialization of H. sapiens that evolved in the last 150,000 years that may be associated with recent human cognitive specializations.

  14. Polycyclic Aromatic Hydrocarbon Emission Toward the Galactic Bulge

    Science.gov (United States)

    Shannon, M. J.; Peeters, E.; Cami, J.; Blommaert, J. A. D. L.

    2018-03-01

    We examine polycyclic aromatic hydrocarbon (PAH), dust, and atomic/molecular emission toward the Galactic bulge using Spitzer Space Telescope observations of four fields: C32, C35, OGLE, and NGC 6522. These fields are approximately centered on (l, b) = (0.°0, 1.°0), (0.°0, ‑1.°0), (0.°4, ‑2.°4), and (1.°0, ‑3.°8), respectively. Far-infrared photometric observations complement the Spitzer/IRS spectroscopic data and are used to construct spectral energy distributions. We find that the dust and PAH emission are exceptionally similar between C32 and C35 overall, in part explained due to their locations—they reside on or near boundaries of a 7 Myr old Galactic outflow event and are partly shock-heated. Within the C32 and C35 fields, we identify a region of elevated Hα emission that is coincident with elevated fine-structure and [O IV] line emission and weak PAH feature strengths. We are likely tracing a transition zone of the outflow into the nascent environment. PAH abundances in these fields are slightly depressed relative to typical ISM values. In the OGLE and NGC 6522 fields, we observe weak features on a continuum dominated by zodiacal dust. SED fitting indicates that thermal dust grains in C32 and C35 have temperatures comparable to those of diffuse, high-latitude cirrus clouds. Little variability is detected in the PAH properties between C32 and C35, indicating that a stable population of PAHs dominates the overall spectral appearance. In fact, their PAH features are exceptionally similar to that of the M82 superwind, emphasizing that we are probing a local Galactic wind environment.

  15. New insights into the origin and evolution of the old, metal-rich open cluster NGC 6791

    Science.gov (United States)

    Martinez-Medina, Luis A.; Gieles, Mark; Pichardo, Barbara; Peimbert, Antonio

    2018-02-01

    NGC 6791 is one of the most studied open clusters, it is massive (˜5000 M⊙), located at the solar circle, old (˜8 Gyr) and yet the most metal-rich cluster ([Fe/H] ≃ 0.4) known in the Milky Way. By performing an orbital analysis within a Galactic model including spiral arms and a bar, we found that it is plausible that NGC 6791 formed in the inner thin disc or in the bulge, and later displaced by radial migration to its current orbit. We apply different tools to simulate NGC 6791, including direct N-body summation in time-varying potentials, to test its survivability when going through different Galactic environments. In order to survive the 8-Gyr journey moving on a migrating orbit, NGC 6791 must have been more massive, M0 ≥ 5 × 104 M⊙, when formed. We find independent confirmation of this initial mass in the stellar mass function, which is observed to be flat; this can only be explained if the average tidal field strength experienced by the cluster is stronger than what it is at its current orbit. Therefore, the birth place and journeys of NGC 6791 are imprinted in its chemical composition, in its mass-loss and in its flat stellar mass function, supporting its origin in the inner thin disc or in the bulge.

  16. Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition

    Science.gov (United States)

    Tai, Lixuan; Zhu, Daming; Liu, Xing; Yang, Tieying; Wang, Lei; Wang, Rui; Jiang, Sheng; Chen, Zhenhua; Xu, Zhongmin; Li, Xiaolong

    2018-06-01

    The metal-free synthesis of graphene on single-crystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed, single-crystal silicon substrate using metal-free, ambient-pressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates. [Figure not available: see fulltext.

  17. Evolution of interstellar grains

    International Nuclear Information System (INIS)

    Greenberg, J.M.

    1984-01-01

    The principal aim of this chapter is to derive the properties of interstellar grains as a probe of local physical conditions and as a basis for predicting such properties as related to infrared emissivity and radiative transfer which can affect the evolution of dense clouds. The first sections will develop the criteria for grain models based directly on observations of gas and dust. A summary of the chemical evolution of grains and gas in diffuse and dense clouds follows. (author)

  18. Aging study on carboxymethyl cellulose-coated zero-valent iron nanoparticles in water: Chemical transformation and structural evolution

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Haoran, E-mail: dongh@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China); Zhao, Feng; Zeng, Guangming; Tang, Lin; Fan, Changzheng; Zhang, Lihua; Zeng, Yalan; He, Qi; Xie, Yankai; Wu, Yanan [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China)

    2016-07-15

    Highlights: • The chemical transformation and structural evolution of CMC-nZVI were investigated. • CMC could slow down the aging rate of nZVI and alter the species transformation. • Fe{sub 3}O{sub 4} and/or γ-Fe{sub 2}O{sub 3} are the dominant corrosion products of bare nZVI after aging. • γ-FeOOH is the primary corrosion product of CMC-nZVI after aging. - Abstract: To assess the long-term fate and the associated risks of nanoscale zero-valent iron (nZVI) used in the water remediation, it is essential to understand the chemical transformations during aging of nZVI in water. This study investigated the compositional and structural evolution of bare nZVI and carboxymethyl cellulose (CMC) coated nZVI in static water over a period of 90 days. Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were used to characterize the corrosion products of nZVI and CMC-nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging, but the coating of CMC could slow down the aging rate of nZVI (as indicated by the slower drop in Fe{sup 0} intensity in XRD pattern). For the bare nZVI, magnetite (Fe{sub 3}O{sub 4}) and/or maghemite (γ-Fe{sub 2}O{sub 3}) are the dominant corrosion products after 90 days of aging. However, for the CMC-nZVI, the core-shell spheres collapses to acicular-shaped structures after aging with crystalline lepidocrocite (γ-FeOOH) as the primary end product. Moreover, more lepidocrocite present in the corrosion products of CMC-nZVI with higher loading of CMC, which reveals that the CMC coating could influence the transformation of iron oxides.

  19. Aging study on carboxymethyl cellulose-coated zero-valent iron nanoparticles in water: Chemical transformation and structural evolution

    International Nuclear Information System (INIS)

    Dong, Haoran; Zhao, Feng; Zeng, Guangming; Tang, Lin; Fan, Changzheng; Zhang, Lihua; Zeng, Yalan; He, Qi; Xie, Yankai; Wu, Yanan

    2016-01-01

    Highlights: • The chemical transformation and structural evolution of CMC-nZVI were investigated. • CMC could slow down the aging rate of nZVI and alter the species transformation. • Fe_3O_4 and/or γ-Fe_2O_3 are the dominant corrosion products of bare nZVI after aging. • γ-FeOOH is the primary corrosion product of CMC-nZVI after aging. - Abstract: To assess the long-term fate and the associated risks of nanoscale zero-valent iron (nZVI) used in the water remediation, it is essential to understand the chemical transformations during aging of nZVI in water. This study investigated the compositional and structural evolution of bare nZVI and carboxymethyl cellulose (CMC) coated nZVI in static water over a period of 90 days. Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were used to characterize the corrosion products of nZVI and CMC-nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging, but the coating of CMC could slow down the aging rate of nZVI (as indicated by the slower drop in Fe"0 intensity in XRD pattern). For the bare nZVI, magnetite (Fe_3O_4) and/or maghemite (γ-Fe_2O_3) are the dominant corrosion products after 90 days of aging. However, for the CMC-nZVI, the core-shell spheres collapses to acicular-shaped structures after aging with crystalline lepidocrocite (γ-FeOOH) as the primary end product. Moreover, more lepidocrocite present in the corrosion products of CMC-nZVI with higher loading of CMC, which reveals that the CMC coating could influence the transformation of iron oxides.

  20. Gas Removal in the Ursa Minor Galaxy: Linking Hydrodynamics and Chemical Evolution Models

    Energy Technology Data Exchange (ETDEWEB)

    Caproni, Anderson; Lanfranchi, Gustavo Amaral; Baio, Gabriel Henrique Campos; Kowal, Grzegorz [Núcleo de Astrofísica Teórica, Universidade Cruzeiro do Sul, R. Galvão Bueno 868, Liberdade, 01506-000, São Paulo, SP (Brazil); Falceta-Gonçalves, Diego, E-mail: anderson.caproni@cruzeirodosul.edu.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Bettio 1000, CEP 03828-000 São Paulo (Brazil)

    2017-04-01

    We present results from a non-cosmological, three-dimensional hydrodynamical simulation of the gas in the dwarf spheroidal galaxy Ursa Minor. Assuming an initial baryonic-to-dark-matter ratio derived from the cosmic microwave background radiation, we evolved the galactic gas distribution over 3 Gyr, taking into account the effects of the types Ia and II supernovae. For the first time, we used in our simulation the instantaneous supernovae rates derived from a chemical evolution model applied to spectroscopic observational data of Ursa Minor. We show that the amount of gas that is lost in this process is variable with time and radius, being the highest rates observed during the initial 600 Myr in our simulation. Our results indicate that types Ia and II supernovae must be essential drivers of the gas loss in Ursa Minor galaxy (and probably in other similar dwarf galaxies), but it is ultimately the combination of galactic winds powered by these supernovae and environmental effects (e.g., ram-pressure stripping) that results in the complete removal of the gas content.

  1. The effects of the initial mass function on the chemical evolution of elliptical galaxies

    Science.gov (United States)

    De Masi, Carlo; Matteucci, F.; Vincenzo, F.

    2018-03-01

    We describe the use of our chemical evolution model to reproduce the abundance patterns observed in a catalogue of elliptical galaxies from the Sloan Digital Sky Survey Data Release 4. The model assumes ellipticals form by fast gas accretion, and suffer a strong burst of star formation followed by a galactic wind, which quenches star formation. Models with fixed initial mass function (IMF) failed in simultaneously reproducing the observed trends with the galactic mass. So, we tested a varying IMF; contrary to the diffused claim that the IMF should become bottom heavier in more massive galaxies, we find a better agreement with data by assuming an inverse trend, where the IMF goes from being bottom heavy in less massive galaxies to top heavy in more massive ones. This naturally produces a downsizing in star formation, favouring massive stars in largest galaxies. Finally, we tested the use of the integrated Galactic IMF, obtained by averaging the canonical IMF over the mass distribution function of the clusters where star formation is assumed to take place. We combined two prescriptions, valid for different SFR regimes, to obtain the Integrated Initial Mass Function values along the whole evolution of the galaxies in our models. Predicted abundance trends reproduce the observed slopes, but they have an offset relative to the data. We conclude that bottom-heavier IMFs do not reproduce the properties of the most massive ellipticals, at variance with previous suggestions. On the other hand, an IMF varying with galactic mass from bottom heavier to top heavier should be preferred.

  2. Molecular archaeology of Flaviviridae untranslated regions: duplicated RNA structures in the replication enhancer of flaviviruses and pestiviruses emerged via convergent evolution.

    Directory of Open Access Journals (Sweden)

    Dmitri J Gritsun

    Full Text Available RNA secondary structures in the 3'untranslated regions (3'UTR of the viruses of the family Flaviviridae, previously identified as essential (promoters or beneficial (enhancers for replication, have been analysed. Duplicated enhancer elements are revealed as a global feature in the evolution of the 3'UTR of distantly related viruses within the genera Flavivirus and Pestivirus. For the flaviviruses, duplicated structures occur in the 3'UTR of all four distantly related ecological virus subgroups (tick-borne, mosquito-borne, no known vector and insect-specific flaviviruses (ISFV. RNA structural differences distinguish tick-borne flaviviruses with discrete pathogenetic characteristics. For Aedes- and Culex-associated ISFV, secondary RNA structures with different conformations display numerous short ssRNA direct repeats, exposed as loops and bulges. Long quadruplicate regions comprise almost the entire 3'UTR of Culex-associated ISFV. Extended duplicated sequence and associated RNA structures were also discovered in the 3'UTR of pestiviruses. In both the Flavivirus and Pestivirus genera, duplicated RNA structures were localized to the enhancer regions of the 3'UTR suggesting an adaptive role predominantly in wild-type viruses. We propose sequence reiteration might act as a scaffold for dimerization of proteins involved in assembly of viral replicase complexes. Numerous nucleotide repeats exposed as loops/bulges might also interfere with host immune responses acting as a molecular sponge to sequester key host proteins or microRNAs.

  3. Robust numerical simulation of porosity evolution in chemical vapor infiltration III: three space dimension

    CERN Document Server

    Jin Shi

    2003-01-01

    Chemical vapor infiltration (CVI) process is an important technology to fabricate ceramic matrix composites (CMC's). In this paper, a three-dimension numerical model is presented to describe pore microstructure evolution during the CVI process. We extend the two-dimension model proposed in [S. Jin, X.L. Wang, T.L. Starr, J. Mater. Res. 14 (1999) 3829; S. Jin. X.L. Wang, T.L. Starr, X.F. Chen, J. Comp. Phys. 162 (2000) 467], where the fiber surface is modeled as an evolving interface, to the three space dimension. The 3D method keeps all the virtue of the 2D model: robust numerical capturing of topological changes of the interface such as the merging, and fast detection of the inaccessible pores. For models in the kinetic limit, where the moving speed of the interface is constant, some numerical examples are presented to show that this three-dimension model will effectively track the change of porosity, close-off time, location and shape of all pores.

  4. Star formation and galactic evolution. I. General expressions and applications to our galaxy

    International Nuclear Information System (INIS)

    Kaufman, M.

    1979-01-01

    The study of galactic evolution involves three mechanisms for triggering star formation in interstellar clouds: (i) star formation triggered by a galactic spiral density wave, (ii) star formation triggered by shock waves from supernovae, and (iii) star formation triggered by an expanding H II region. Useful analytic approximations to the birthrate per unit mass are obtained by treating the efficiencies of these various mechanisms as time independent. In situations where shock waves from high-mass stars (either expanding H II regions or supernova explosions) are the only important star-forming mechanisms, the birthrate is exponential in time. This case is appropriate for the past evolution of an elliptical galaxy, nuclear bulge, or galactic halo. In the disk of a spiral galaxy where all three mechanisms operate, the birthrate consists of an exponential term plus a time-independent term. In both situations, the value of the time constant T in the exponential term is directly related to the efficiency of the shock waves from massive stars in initiating star formation.For our Galaxy, this simplified model is used to compute the radial distributions of young objects and low-mass stars in the disk, and the past and present birthrates in the solar-neighborhood shell

  5. Origin of the chemical elements

    Energy Technology Data Exchange (ETDEWEB)

    Tayler, R J

    1984-05-01

    The subject is discussed in relation to the composition of initially created matter and changes which have occurred during the life history of the universe, with particular reference to our galaxy and nearby galaxies. Headings are: observations of element abundances (stars, gas clouds in our own and nearby galaxies, hot gas in galaxy clusters, the solar system); the originally created matter (Big Bang theory and early nuclear reactions); processes changing observed composition (galactic evolution; nuclear fusion reactions in stellar interiors; chemical composition of a highly evolved massive star); supernovae (production of heavy elements); chemical evolution of the galaxy; production of very heavy elements (s process, r process).

  6. Effect of laser energy on the deformation behavior in microscale laser bulge forming

    International Nuclear Information System (INIS)

    Zheng Chao; Sun Sheng; Ji Zhong; Wang Wei

    2010-01-01

    Microscale laser bulge forming is a high strain rate microforming method using high-amplitude shock wave pressure induced by pulsed laser irradiation. The process can serve as a rapidly established and high precision technique to impress microfeatures on thin sheet metals and holds promise of manufacturing complex miniaturized devices. The present paper investigated the forming process using both numerical and experimental methods. The effect of laser energy on microformability of pure copper was discussed in detail. A 3D measuring laser microscope was adopted to measure deformed regions under different laser energy levels. The deformation measurements showed that the experimental and numerical results were in good agreement. With the verified simulation model, the residual stress distribution at different laser energy was predicted and analyzed. The springback was found as a key factor to determine the distribution and magnitude of the compressive residual stress. In addition, the absorbent coating and the surface morphology of the formed samples were observed through the scanning electron microscope. The observation confirmed that the shock forming process was non-thermal attributed to the protection of the absorbent coating.

  7. Low-frequency magnetization processes in chemically etched Co-based amorphous ribbons

    International Nuclear Information System (INIS)

    Betancourt, I.; Martinez, L.A.; Valenzuela, R.

    2005-01-01

    In this report we present a study of the magnetization processes for Co-based amorphous ribbons at low frequencies (10 Hz-13 MHz) as a function of decreasing thicknesses attained by chemical etching. Reversible domain-wall bulging, characterized by initial permeability and relaxation frequency, was monitored by means of inductance measurements. The real part of inductance (proportional to initial permeability) exhibited a decreasing trend with diminishing ribbon thickness, together with an increasing tendency for the relaxation frequency. For high amplitude of the ac field (leading to domain-wall unpinning), reduced ribbon thickness showed a deleterious-enhancement effect on irreversible domain-wall displacement, which was observed for both real and imaginary inductance spectroscopic plots. Results are interpreted in terms of reduced domain-wall pinning distances resulting from thinner alloy samples

  8. Ultrafaint dwarfs—star formation and chemical evolution in the smallest galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Webster, David; Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Sutherland, Ralph, E-mail: d.webster@physics.usyd.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia)

    2014-11-20

    In earlier work, we showed that a dark matter halo with a virial mass of 10{sup 7} M {sub ☉} can retain a major part of its baryons in the face of the pre-ionization phase and supernova (SN) explosion from a 25 M {sub ☉} star. Here, we expand on the results of that work, investigating the star formation and chemical evolution of the system beyond the first SN. In a galaxy with a mass M {sub vir} = 10{sup 7} M {sub ☉}, sufficient gas is retained by the potential for a second period of star formation to occur. The impact of a central explosion is found to be much stronger than that of an off-center explosion both in blowing out the gas and in enriching it, as in the off-center case most of the SN energy and metals escape into the intergalactic medium. We model the star formation and metallicity, given the assumption that stars form for 100, 200, 400, and 600 Myr, and discuss the results in the context of recent observations of very low-mass galaxies. We show that we can account for most features of the observed relationship between [α/Fe] and [Fe/H] in ultra-faint dwarf galaxies with the assumption that the systems formed at a low mass, rather than being remnants of much larger systems.

  9. The η/s of hadrons out of chemical equilibrium

    International Nuclear Information System (INIS)

    Wiranata, A; Wang, X N; Prakash, M; Huovinen, P; Koch, V

    2014-01-01

    We study how the shear viscosity, η, entropy density, s, and η/s depend on growing hadron chemical potentials resulting from the loss of chemical equilibrium during the evolution of a relativistic heavy-ion collision. Our calculations here are for an interacting pion gas in a system of net baryon number zero. Time evolution of the temperature and pion chemical potential are taken from ideal fluid hydrodynamic calculations of RHIC and LHC collisions. We find that the shear viscosity decreases whereas the entropy density increases with increasing pion chemical potential resulting in values of η/s that are slightly reduced from the case of chemical potentials being zero when chemical equilibrium prevails. Our results indicate that the inclusion of additional mesons and baryons will likely lead to further reduction in the value of η/s.

  10. Evolution of disk galaxies and the SO problem, revisited

    International Nuclear Information System (INIS)

    Bothun, G.D.

    1982-01-01

    We begin by summerizing the relevant properties of clusters of galaxies in relation to their ability to alter the course of galaxy evolution. Previous work on the effect of environment on the evolution of disk galaxies is also summerized and critiqued. The extensive data base of Bothun is then used to reexamine the issue of the role of the environment in motivating the evolution of disk galaxies. This data base consists of radio and optical observations of approx.350 galaxies in the clusters Peg I, Cancer, Pices, Coma, A1367, Z74--23, Hercules, A539, and A400. The data are portrayed in the color-gas content plane [log M/sub H//L/sub B/ vs. (B--V)/sup T/ 0 ], and theoretical evolutionary tracks have been constructed in that plane to serve as an adjunct to data interpretation. All analysis is done solely on the basis of the measurable quantities themselves, as opposed to morphological considerations. We find that spiral galaxies exhibit such a wide range in their integrated properties that attempting to force then into ''narrow'' morphological bins is neither practical or physically meaningful. With respect to the question of environmental modification of disk galaxies in clusters, we find the great majority of the data to mitigate strongly against any global environmental processes as having been important in determining the particular evolutionary history of cluster galaxies. Our basic conclusion is that initial conditions of formation and variations in star formation histories have been more important than environmental influences in determining the present-day character of spiral galaxies in clusters. The key parameter may well be the amount of neutral hydrogen remaining after star formation in the bulge component has ceased

  11. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO 3

    KAUST Repository

    Li, Yangyang

    2016-06-27

    Metal/oxide interfaces are ubiquitous in a wide range of applications such as electronics, photovoltaics, memories, catalysis, and sensors. However, there have been few investigations dedicated to the nanoscale structural and chemical characteristics of these buried interfaces. In this work, the metal/oxide interface between Ti and SrTiO3 (STO) is examined as a prototypical system using high-resolution scanning transmission electron microscopy and electron energy loss spectroscopy. An atomic-thin Ti2O3-like layer at the Ti/STO interface prepared at room temperature is discovered, and first-principles calculations predict a metallic band structure of this 2D electron system. As a universal feature of such interfaces prepared at different temperatures, near the interface nanoscale oxygen-deficient domains and continuous modulation of Ti oxidation states are found. Overall, these results directly reveal complex chemical and valence evolutions at the metal/oxide interfaces, providing microscopic insights on such heterostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  12. Physical, chemical, microbiological and sensorial behaviour evolution of non cooked pressed cheese paste while in refrigerated storage, made with red chilli powder, treated by heat or ionization

    International Nuclear Information System (INIS)

    Iben El Hadj Mohamed, A.

    1998-01-01

    The evolution of different physical, chemical, microbiological and sensorial characteristics of a Tunisian manufactured cheese made of non cooked pressed cheese paste with red chilli powder treated by heat, was measured while in refrigerated storage and compared to the one treated by ionization (author)

  13. The evolution of high-metallicity horizontal-branch stars and the origin of the ultraviolet light in elliptical galaxies

    Science.gov (United States)

    Horch, E.; Demarque, P.; Pinsonneault, M.

    1992-01-01

    Evolutionary calculations of high-metallicity horizontal-branch stars show that for the relevant masses and helium abundances, post-HB evolution in the HR diagram does not proceed toward and along the AGB, but rather toward a 'slow blue phase' in the vicinity of the helium-burning main sequence, following the extinction of the hydrogen shell energy source. For solar and twice solar metallicity, the blue phase begins during the helium shell-burning phase (in agreement with the work of Brocato and Castellani and Tornambe); for 3 times solar metallicity, it begins earlier, during the helium core-burning phase. This behavior differs from what takes place at lower metallicities. The implications for high-metallicity old stellar populations in the Galactic bulge and for the integrated colors of elliptical galaxies are discussed.

  14. Inhomogeneous Chemical Evolution of the Galaxy in the Solar ...

    Indian Academy of Sciences (India)

    The evolution of the galaxy is simulated by considering discrete .... The discrete nature of the simulations along with the high temporal resolution of 1 Myr ...... be revived again even if a major homogenizing event occurs over spatial dimensions.

  15. From chemical mapping to pressure temperature deformation micro-cartography: mineralogical evolution and mass transport in thermo-mechanic disequilibrium systems: application to meta-pelites and confinement nuclear waste materials

    International Nuclear Information System (INIS)

    Andrade, V. de

    2006-03-01

    The mineralogical composition of metamorphic rocks or industrial materials evolves when they are submitted to thermomechanical disequilibria, i.e. a spatial or temporal pressure and temperature evolution, or chemical disequilibria as variations in redox conditions, pH... For example, during low temperature metamorphic processes, rocks re-equilibrate only partially, and thus record locally thermodynamic equilibria increasing so the spatial chemical heterogeneities. Understanding the P-T evolution of such systems and deciphering modalities of their mineralogical transformation imply to recognize and characterize the size of these local 'paleo-equilibria', and so to have a spatial chemical information at least in 2 dimensions. In order to get this information, microprobe X-ray fluorescence maps have been used. Computer codes have been developed with Matlab to quantify these maps in view of thermo-barometric estimations. In this way, P-T maps of mineral crystallisation were produced using the multi-equilibria thermodynamic technique. Applications on two meta-pelites from the Sambagawa blue-schist belt (Japan) and from the Caledonian eclogitic zone in Spitsbergen, show that quantitative chemical maps are a powerful tool to retrieve the metamorphic history of rocks. From these chemical maps have been derived maps of P-T-time-redox-deformation that allow to characterize P-T conditions of minerals formation, and so, the P-T path of the sample, the oxidation state of iron in the chlorite phase. As a result, we underline the relation between deformation and crystallisation, and propose a relative chronology of minerals crystallisation and deformations. The Fe 3+ content map in chlorite calculated by thermodynamic has also been validated by a μ-XANES mapping at the iron K-edge measured at the ESRF (ID24) using an innovative method. Another application relates to an experimental study of clay materials, main components of an analogical model of a nuclear waste storage site

  16. Evolution of White Dwarf Stars

    OpenAIRE

    L. G. Althaus

    2001-01-01

    This paper is aimed at presenting the main results we have obtained for the study of the evoution of white dwarf stars. The calculations are carried out by means of a detailed evolutionary code based on an updated physical description. In particular, we briefly discuss the results for the evolution of white dwarfs of different stellar masses and chemical composition, and the evolution of whit e dwarfs in the framework of a varying gravitational constant G scenario as well.

  17. Morphological Evolution of Vertically Standing Molybdenum Disulfide Nanosheets by Chemical Vapor Deposition.

    Science.gov (United States)

    Zhang, Song; Liu, Jiajia; Ruiz, Karla Hernandez; Tu, Rong; Yang, Meijun; Li, Qizhong; Shi, Ji; Li, Haiwen; Zhang, Lianmeng; Goto, Takashi

    2018-04-20

    In this study, we demonstrated the chemical vapor deposition (CVD) of vertically standing molybdenum disulfide (MoS₂) nanosheets, with an unconventional combination of molybdenum hexacarbonyl (Mo(CO)₆) and 1,2-ethanedithiol (C₂H₆S₂) as the novel kind of Mo and S precursors respectively. The effect of the distance between the precursor’s outlet and substrates (denoted as d ) on the growth characteristics of MoS₂, including surface morphology and nanosheet structure, was investigated. Meanwhile, the relationship between the structure characteristics of MoS₂ nanosheets and their catalytic performance for hydrogen evolution reaction (HER) was elucidated. The formation of vertically standing nanosheets was analyzed and verified by means of an extrusion growth model. The crystallinity, average length, and average depth between peak and valley ( R z) of MoS₂ nanosheets differed depending on the spatial location of the substrate. Good crystalized MoS₂ nanosheets grown at d = 5.5 cm with the largest average length of 440 nm, and the highest R z of 162 nm contributed to a better HER performance, with a respective Tafel slope and exchange current density of 138.9 mV/decade, and 22.6 μA/cm² for raw data (127.8 mV/decade and 19.3 μA/cm² for iR-corrected data).

  18. The best and brightest metal-poor stars

    Energy Technology Data Exchange (ETDEWEB)

    Schlaufman, Kevin C.; Casey, Andrew R., E-mail: kschlauf@mit.edu, E-mail: arc@ast.cam.ac.uk [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2014-12-10

    The chemical abundances of large samples of extremely metal-poor (EMP) stars can be used to investigate metal-free stellar populations, supernovae, and nucleosynthesis as well as the formation and galactic chemical evolution of the Milky Way and its progenitor halos. However, current progress on the study of EMP stars is being limited by their faint apparent magnitudes. The acquisition of high signal-to-noise spectra for faint EMP stars requires a major telescope time commitment, making the construction of large samples of EMP star abundances prohibitively expensive. We have developed a new, efficient selection that uses only public, all-sky APASS optical, 2MASS near-infrared, and WISE mid-infrared photometry to identify bright metal-poor star candidates through their lack of molecular absorption near 4.6 microns. We have used our selection to identify 11,916 metal-poor star candidates with V < 14, increasing the number of publicly available candidates by more than a factor of five in this magnitude range. Their bright apparent magnitudes have greatly eased high-resolution follow-up observations that have identified seven previously unknown stars with [Fe/H] ≲ –3.0. Our follow-up campaign has revealed that 3.8{sub −1.1}{sup +1.3}% of our candidates have [Fe/H] ≲ –3.0 and 32.5{sub −2.9}{sup +3.0}% have –3.0 ≲ [Fe/H] ≲ –2.0. The bulge is the most likely location of any existing Galactic Population III stars, and an infrared-only variant of our selection is well suited to the identification of metal-poor stars in the bulge. Indeed, two of our confirmed metal-poor stars with [Fe/H] ≲ –2.7 are within about 2 kpc of the Galactic center. They are among the most metal-poor stars known in the bulge.

  19. Tracing chemical evolution over the extent of the Milky Way's disk with apogee red clump stars

    International Nuclear Information System (INIS)

    Nidever, David L.; Bovy, Jo; Bird, Jonathan C.; Andrews, Brett H.; Johnson, Jennifer A.; Weinberg, David H.; Hayden, Michael; Holtzman, Jon; Feuillet, Diane; Majewski, Steven R.; García Pérez, Ana E.; Smith, Verne; Robin, Annie C.; Sobeck, Jennifer; Cunha, Katia; Allende Prieto, Carlos; Zasowski, Gail; Schiavon, Ricardo P.; Schneider, Donald P.; Shetrone, Matthew

    2014-01-01

    We employ the first two years of data from the near-infrared, high-resolution SDSS-III/APOGEE spectroscopic survey to investigate the distribution of metallicity and α-element abundances of stars over a large part of the Milky Way disk. Using a sample of ≈10, 000 kinematically unbiased red-clump stars with ∼5% distance accuracy as tracers, the [α/Fe] versus [Fe/H] distribution of this sample exhibits a bimodality in [α/Fe] at intermediate metallicities, –0.9 < [Fe/H] <–0.2, but at higher metallicities ([Fe/H] ∼+0.2) the two sequences smoothly merge. We investigate the effects of the APOGEE selection function and volume filling fraction and find that these have little qualitative impact on the α-element abundance patterns. The described abundance pattern is found throughout the range 5 < R < 11 kpc and 0 < |Z| < 2 kpc across the Galaxy. The [α/Fe] trend of the high-α sequence is surprisingly constant throughout the Galaxy, with little variation from region to region (∼10%). Using simple galactic chemical evolution models, we derive an average star-formation efficiency (SFE) in the high-α sequence of ∼4.5 × 10 –10 yr –1 , which is quite close to the nearly constant value found in molecular-gas-dominated regions of nearby spirals. This result suggests that the early evolution of the Milky Way disk was characterized by stars that shared a similar star-formation history and were formed in a well-mixed, turbulent, and molecular-dominated ISM with a gas consumption timescale (SFE –1 ) of ∼2 Gyr. Finally, while the two α-element sequences in the inner Galaxy can be explained by a single chemical evolutionary track, this cannot hold in the outer Galaxy, requiring, instead, a mix of two or more populations with distinct enrichment histories.

  20. Tracing chemical evolution over the extent of the Milky Way's disk with apogee red clump stars

    Energy Technology Data Exchange (ETDEWEB)

    Nidever, David L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48104 (United States); Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Bird, Jonathan C. [Physics and Astronomy Department, Vanderbilt University, 1807 Station B, Nashville, TN 37235 (United States); Andrews, Brett H.; Johnson, Jennifer A.; Weinberg, David H. [Department of Astronomy and the Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States); Hayden, Michael; Holtzman, Jon; Feuillet, Diane [New Mexico State University, Las Cruces, NM 88003 (United States); Majewski, Steven R.; García Pérez, Ana E. [Department of Astronomy, University of Virginia, Charlottesville, VA, 22904 (United States); Smith, Verne [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Robin, Annie C.; Sobeck, Jennifer [Institut Utinam, CNRS UMR 6213, OSU THETA, Université de Franche-Comté, 41bis avenue de l' Observatoire, F-25000 Besançon (France); Cunha, Katia [Observatorio Nacional, Rio de Janeiro (Brazil); Allende Prieto, Carlos [Instituto de Astrofsica de Canarias, E-38205 La Laguna, Tenerife (Spain); Zasowski, Gail [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Schiavon, Ricardo P. [Astrophysics Research Institute, IC2, Liverpool Science Park, Liverpool John Moores University, 146 Brownlow Hill, Liverpool, L3 5RF (United Kingdom); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Shetrone, Matthew, E-mail: dnidever@umich.edu [University of Texas at Austin, McDonald Observatory, 32 Fowlkes Road, McDonald Observatory, TX 79734-3005 (United States); and others

    2014-11-20

    We employ the first two years of data from the near-infrared, high-resolution SDSS-III/APOGEE spectroscopic survey to investigate the distribution of metallicity and α-element abundances of stars over a large part of the Milky Way disk. Using a sample of ≈10, 000 kinematically unbiased red-clump stars with ∼5% distance accuracy as tracers, the [α/Fe] versus [Fe/H] distribution of this sample exhibits a bimodality in [α/Fe] at intermediate metallicities, –0.9 < [Fe/H] <–0.2, but at higher metallicities ([Fe/H] ∼+0.2) the two sequences smoothly merge. We investigate the effects of the APOGEE selection function and volume filling fraction and find that these have little qualitative impact on the α-element abundance patterns. The described abundance pattern is found throughout the range 5 < R < 11 kpc and 0 < |Z| < 2 kpc across the Galaxy. The [α/Fe] trend of the high-α sequence is surprisingly constant throughout the Galaxy, with little variation from region to region (∼10%). Using simple galactic chemical evolution models, we derive an average star-formation efficiency (SFE) in the high-α sequence of ∼4.5 × 10{sup –10} yr{sup –1}, which is quite close to the nearly constant value found in molecular-gas-dominated regions of nearby spirals. This result suggests that the early evolution of the Milky Way disk was characterized by stars that shared a similar star-formation history and were formed in a well-mixed, turbulent, and molecular-dominated ISM with a gas consumption timescale (SFE{sup –1}) of ∼2 Gyr. Finally, while the two α-element sequences in the inner Galaxy can be explained by a single chemical evolutionary track, this cannot hold in the outer Galaxy, requiring, instead, a mix of two or more populations with distinct enrichment histories.

  1. Chemical and physical drivers of the evolution of organic aerosols over forests

    NARCIS (Netherlands)

    Janssen, R.H.H.

    2013-01-01

    Diurnal evolution of organic aerosol over boreal and tropical forests

    The first research question of this thesis is: how do local surface forcings and large-scale meteorological forcings shape the evolution of organic aerosol over the boreal and tropical forest? This

  2. Role of Short-Range Chemical Ordering in (GaN) 1–x (ZnO) x for Photodriven Oxygen Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dennis P. [Department; Neuefeind, Joerg C. [Chemical; Koczkur, Kallum M. [Department; Bish, David L. [Department; Skrabalak, Sara E. [Department

    2017-07-21

    (GaN)1–x(ZnO)x (GZNO) is capable of visible-light driven water splitting, but its bandgap at x ≤ 0.15 (>2.7 eV) results in poor visible-light absorption. Unfortunately, methods to narrow its bandgap by incorporating higher ZnO concentrations are accompanied by extensive Urbach tailing near the absorption-edge, which is indicative of structural disorder or chemical inhomogeneities. We evaluated whether this disorder is intrinsic to the bond-length distribution in GZNO or is a result of defects introduced from the loss of Zn during nitridation. Here, the synthesis of GZNO derived from layered double hydroxide (LDH) precursors is described which minimizes Zn loss and chemical inhomogeneities and enhances visible-light absorption. The average and local atomic structures of LDH-derived GZNO were investigated using X-ray and neutron scattering and are correlated with their oxygen evolution rates. An isotope-contrasted neutron-scattering experiment was conducted in conjunction with reverse Monte Carlo (RMC) simulations. We showed that a bond-valence bias in the RMC refinements reproduces the short-range ordering (SRO) observed in structure refinements using isotope-contrasted neutron data. The findings suggest that positional disorder of cation–anion pairs in GZNO partially arises from SRO and influences local bond relaxations. Furthermore, particle-based oxygen evolution reactions (OERs) in AgNO3 solution reveal that the crystallite size of GZNO correlates more than positional disorder with oxygen evolution rate. These findings illustrate the importance of examining the local structure of multinary photocatalysts to identify dominant factors in particulate-based photodriven oxygen evolution.

  3. Enzyme (re)design: lessons from natural evolution and computation.

    Science.gov (United States)

    Gerlt, John A; Babbitt, Patricia C

    2009-02-01

    The (re)design of enzymes to catalyze 'new' reactions is a topic of considerable practical and intellectual interest. Directed evolution (random mutagenesis followed by screening/selection) has been used widely to identify novel biocatalysts. However, 'rational' approaches using either natural divergent evolution or computational predictions based on chemical principles have been less successful. This review summarizes recent progress in evolution-based and computation-based (re)design.

  4. Galaxy formation with radiative and chemical feedback

    NARCIS (Netherlands)

    Graziani, L.; Salvadori, S.; Schneider, R.; Kawata, D.; de Bennassuti, M.; Maselli, A.

    Here we introduce GAMESH, a novel pipeline that implements self-consistent radiative and chemical feedback in a computational model of galaxy formation. By combining the cosmological chemical-evolution model GAMETE with the radiative transfer code CRASH, GAMESH can post-process realistic outputs of

  5. Isotopes of C, N and O and chemical evolution of galaxies. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Vigroux, L; Audouze, J; Lequeux, J [Centre National de la Recherche Scientifique, 91 - Orsay (France). Lab. Rene Bernas; Observatoire de Paris, Section de Meudon, 92 (France). Dept. de Radioastronomie)

    1976-10-01

    The most recent progresses in the CNO abundance determinations are reported. They are still consistent with an enrichment of /sup 13/C relative to /sup 12/C with time and with the existence of spatial gradients of N and O abundances. An improved formalism has been used to study the evolution of these abundances: this formalism which can be applied to rather general problems relaxes the assumption of instant recycling approximation which in spite of its general use does not take properly into account the evolution of low mass stars. With this method the evolution of the gas content, the rate of supernova explosions and planetary nebulae and the evolution of the abundances have been studied in models sketching the galactic center and the solar neighborhood and these models take into account various evolution parameters such as the rate of infall of external matter and/or the possibility of a prompt initial enrichment in metals.

  6. The origin of the chemical elements

    International Nuclear Information System (INIS)

    Tayler, R.J.

    1984-01-01

    The subject is discussed in relation to the composition of initially created matter and changes which have occurred during the life history of the universe, with particular reference to our galaxy and nearby galaxies. Headings are: observations of element abundances (stars, gas clouds in our own and nearby galaxies, hot gas in galaxy clusters, the solar system); the originally created matter (Big Bang theory and early nuclear reactions); processes changing observed composition (galactic evolution; nuclear fusion reactions in stellar interiors; chemical composition of a highly evolved massive star); supernovae (production of heavy elements); chemical evolution of the galaxy; production of very heavy elements (s process, r process). (U.K.)

  7. Continental crust formation: Numerical modelling of chemical evolution and geological implications

    Science.gov (United States)

    Walzer, U.; Hendel, R.

    2017-05-01

    Oceanic plateaus develop by decompression melting of mantle plumes and have contributed to the growth of the continental crust throughout Earth's evolution. Occasional large-scale partial melting events of parts of the asthenosphere during the Archean produced large domains of precursor crustal material. The fractionation of arc-related crust during the Proterozoic and Phanerozoic contributed to the growth of continental crust. However, it remains unclear whether the continents or their precursors formed during episodic events or whether the gaps in zircon age records are a function of varying preservation potential. This study demonstrates that the formation of the continental crust was intrinsically tied to the thermoconvective evolution of the Earth's mantle. Our numerical solutions for the full set of physical balance equations of convection in a spherical shell mantle, combined with simplified equations of chemical continent-mantle differentiation, demonstrate that the actual rate of continental growth is not uniform through time. The kinetic energy of solid-state mantle creep (Ekin) slowly decreases with superposed episodic but not periodic maxima. In addition, laterally averaged surface heat flow (qob) behaves similarly but shows peaks that lag by 15-30 Ma compared with the Ekin peaks. Peak values of continental growth are delayed by 75-100 Ma relative to the qob maxima. The calculated present-day qob and total continental mass values agree well with observed values. Each episode of continental growth is separated from the next by an interval of quiescence that is not the result of variations in mantle creep velocity but instead reflects the fact that the peridotite solidus is not only a function of pressure but also of local water abundance. A period of differentiation results in a reduction in regional water concentrations, thereby increasing the temperature of the peridotite solidus and the regional viscosity of the mantle. By plausibly varying the

  8. INTEGRAL Galactic Bulge monitoring: transient activity from KS 1741-293, MXB 1730-335, and IGR J17498-2921

    Science.gov (United States)

    Chenevez, J.; Brandt, S.; Kuulkers, E.; Alfonso-Garzón, J.; Beckmann, V.; Bird, T.; Courvoisier, Th.; Del Santo, M.; Domingo, A.; Ebisawa, K.; Jonker, P.; Kretschmar, P.; Markwardt, C.; Oosterbroek, T.; Paizis, A.; Pottschmidt, K.; Sánchez-Fernández, C.; Wijnands, R.

    2011-09-01

    As part of its regular monitoring of the Galactic Bulge (see ATel #438) INTEGRAL observed this region of the sky on September 13, 2011, between UTC 9:14:50 and 12:56:26. Both the JEM-X and the IBIS/ISGRI instruments detect the transient neutron star low-mass X-ray binary KS 1741-293 at the following flux levels: JEM-X: 6 ±3 mCrab (3-10 keV) and 14 ±6 mCrab (10-25 keV) ISGRI: 11 ±2 mCrab (18-40 keV) and 13 ±2 mCrab (40-100 keV) We note that the activity of this source already started two weeks ago as has been reported by Linares et al.

  9. Molecular Archaeology of Flaviviridae Untranslated Regions: Duplicated RNA Structures in the Replication Enhancer of Flaviviruses and Pestiviruses Emerged via Convergent Evolution

    Science.gov (United States)

    Gritsun, Dmitri J.; Jones, Ian M.; Gould, Ernest A.; Gritsun, Tamara S.

    2014-01-01

    RNA secondary structures in the 3′untranslated regions (3′UTR) of the viruses of the family Flaviviridae, previously identified as essential (promoters) or beneficial (enhancers) for replication, have been analysed. Duplicated enhancer elements are revealed as a global feature in the evolution of the 3′UTR of distantly related viruses within the genera Flavivirus and Pestivirus. For the flaviviruses, duplicated structures occur in the 3′UTR of all four distantly related ecological virus subgroups (tick-borne, mosquito-borne, no known vector and insect-specific flaviviruses (ISFV). RNA structural differences distinguish tick-borne flaviviruses with discrete pathogenetic characteristics. For Aedes- and Culex-associated ISFV, secondary RNA structures with different conformations display numerous short ssRNA direct repeats, exposed as loops and bulges. Long quadruplicate regions comprise almost the entire 3′UTR of Culex-associated ISFV. Extended duplicated sequence and associated RNA structures were also discovered in the 3′UTR of pestiviruses. In both the Flavivirus and Pestivirus genera, duplicated RNA structures were localized to the enhancer regions of the 3′UTR suggesting an adaptive role predominantly in wild-type viruses. We propose sequence reiteration might act as a scaffold for dimerization of proteins involved in assembly of viral replicase complexes. Numerous nucleotide repeats exposed as loops/bulges might also interfere with host immune responses acting as a molecular sponge to sequester key host proteins or microRNAs. PMID:24647143

  10. Experiments on chemical and physical evolution of interstellar grain mantles

    International Nuclear Information System (INIS)

    Greenberg, J.M.

    1984-01-01

    The Astrophysical Laboratory at the University of Leiden is the first to succeed in simulating the essential conditions in interstellar space as they affect the evolution of interstellar grains. (author)

  11. Conceptualizing the origin of life in terms of evolution

    NARCIS (Netherlands)

    Takeuchi, N; Hogeweg, P; Kaneko, K

    2017-01-01

    In this opinion piece, we discuss how to place evolution in the context of origin-of-life research. Our discussion starts with a popular definition: 'life is a self-sustained chemical system capable of undergoing Darwinian evolution'. According to this definition, the origin of life is the same as

  12. Recent breakthroughs in metabolomics promise to reveal the cryptic chemical traits that mediate plant community composition, character evolution and lineage diversification.

    Science.gov (United States)

    Sedio, Brian E

    2017-05-01

    Contents 952 I. 952 II. 953 III. 955 IV. 956 V. 957 957 References 957 SUMMARY: Much of our understanding of the mechanisms by which biotic interactions shape plant communities has been constrained by the methods available to study the diverse secondary chemistry that defines plant relationships with other organisms. Recent innovations in analytical chemistry and bioinformatics promise to reveal the cryptic chemical traits that mediate plant ecology and evolution by facilitating simultaneous structural comparisons of hundreds of unknown molecules to each other and to libraries of known compounds. Here, I explore the potential for mass spectrometry and nuclear magnetic resonance metabolomics to enable unprecedented tests of seminal, but largely untested hypotheses that propose a fundamental role for plant chemical defenses against herbivores and pathogens in the evolutionary origins and ecological coexistence of plant species diversity. © 2017 The Author. New Phytologist © 2017 New Phytologist Trust.

  13. The role of neutron star mergers in the chemical evolution of the Galactic halo

    Science.gov (United States)

    Cescutti, G.; Romano, D.; Matteucci, F.; Chiappini, C.; Hirschi, R.

    2015-05-01

    Context. The dominant astrophysical production site of the r-process elements has not yet been unambiguously identified. The suggested main r-process sites are core-collapse supernovae and merging neutron stars. Aims: We explore the problem of the production site of Eu. We also use the information present in the observed spread in the Eu abundances in the early Galaxy, and not only its average trend. Moreover, we extend our investigations to other heavy elements (Ba, Sr, Rb, Zr) to provide additional constraints on our results. Methods: We adopt a stochastic chemical evolution model that takes inhomogeneous mixing into account. The adopted yields of Eu from merging neutron stars and from core-collapse supernovae are those that are able to explain the average [Eu/Fe]-[Fe/H] trend observed for solar neighbourhood stars, the solar abundance of Eu, and the present-day abundance gradient of Eu along the Galactic disc in the framework of a well-tested homogeneous model for the chemical evolution of the Milky Way. Rb, Sr, Zr, and Ba are produced by both the s- and r-processes. The r-process yields were obtained by scaling the Eu yields described above according to the abundance ratios observed in r-process rich stars. The s-process contribution by spinstars is the same as in our previous papers. Results: Neutron star binaries that merge in less than 10 Myr or neutron star mergers combined with a source of r-process generated by massive stars can explain the spread of [Eu/Fe] in the Galactic halo. The combination of r-process production by neutron star mergers and s-process production by spinstars is able to reproduce the available observational data for Sr, Zr, and Ba. We also show the first predictions for Rb in the Galactic halo. Conclusions: We confirm previous results that either neutron star mergers on a very short timescale or both neutron star mergers and at least a fraction of Type II supernovae have contributed to the synthesis of Eu in the Galaxy. The r

  14. A "Genetic Study" of the Galaxy

    Science.gov (United States)

    2006-09-01

    Looking in detail at the composition of stars with ESO's VLT, astronomers are providing a fresh look at the history of our home galaxy, the Milky Way. They reveal that the central part of our Galaxy formed not only very quickly but also independently of the rest. "For the first time, we have clearly established a 'genetic difference' between stars in the disc and the bulge of our Galaxy," said Manuela Zoccali, lead author of the paper presenting the results in the journal Astronomy and Astrophysics [1]. "We infer from this that the bulge must have formed more rapidly than the disc, probably in less than a billion years and when the Universe was still very young." ESO PR Photo 34a/06 ESO PR Photo 34a/06 The Field around Baade's Window The Milky Way is a spiral galaxy, having pinwheel-shaped arms of gas, dust, and stars lying in a flattened disc, and extending directly out from a spherical nucleus of stars in the central region. The spherical nucleus is called a bulge, because it bulges out from the disc. While the disc of our Galaxy is made up of stars of all ages, the bulge contains old stars dating from the time the galaxy formed, more than 10 billion years ago. Thus, studying the bulge allows astronomers to know more about how our Galaxy formed. To do this, an international team of astronomers [2] analysed in detail the chemical composition of 50 giant stars in four different areas of the sky towards the Galactic bulge. They made use of the FLAMES/UVES spectrograph on ESO's Very Large Telescope to obtain high-resolution spectra. The chemical composition of stars carries the signature of the enrichment processes undergone by the interstellar matter up to the moment of their formation. It depends on the previous history of star formation and can thus be used to infer whether there is a 'genetic link' between different stellar groups. In particular, comparison between the abundance of oxygen and iron in stars is very illustrative. Oxygen is predominantly produced in

  15. Elucidating doping driven microstructure evolution and optical properties of lead sulfide thin films grown from a chemical bath

    Science.gov (United States)

    Mohanty, Bhaskar Chandra; Bector, Keerti; Laha, Ranjit

    2018-03-01

    Doping driven remarkable microstructural evolution of PbS thin films grown by a single-step chemical bath deposition process at 60 °C is reported. The undoped films were discontinuous with octahedral-shaped crystallites after 30 min of deposition, whereas Cu doping led to a distinctly different surface microstructure characterized by densely packed elongated crystallites. A mechanism, based on the time sequence study of microstructural evolution of the films, and detailed XRD and Raman measurements, has been proposed to explain the contrasting microstructure of the doped films. The incorporation of Cu forms an interface layer, which is devoid of Pb. The excess Cu ions in this interface layer at the initial stages of film growth strongly interact and selectively stabilize the charged {111} faces containing either Pb or S compared to the uncharged {100} faces that contain both Pb and S. This interaction interferes with the natural growth habit resulting in the observed surface features of the doped films. Concurrently, the Cu-doping potentially changed the optical properties of the films: A significant widening of the bandgap from 1.52 eV to 1.74 eV for increase in Cu concentration from 0 to 20% was observed, making it a highly potential absorber layer in thin film solar cells.

  16. An Experimental Framework for Generating Evolvable Chemical Systems in the Laboratory

    Science.gov (United States)

    Baum, David A.; Vetsigian, Kalin

    2017-12-01

    Most experimental work on the origin of life has focused on either characterizing the chemical synthesis of particular biochemicals and their precursors or on designing simple chemical systems that manifest life-like properties such as self-propagation or adaptive evolution. Here we propose a new class of experiments, analogous to artificial ecosystem selection, where we select for spontaneously forming self-propagating chemical assemblages in the lab and then seek evidence of a response to that selection as a key indicator that life-like chemical systems have arisen. Since surfaces and surface metabolism likely played an important role in the origin of life, a key experimental challenge is to find conditions that foster nucleation and spread of chemical consortia on surfaces. We propose high-throughput screening of a diverse set of conditions in order to identify combinations of "food," energy sources, and mineral surfaces that foster the emergence of surface-associated chemical consortia that are capable of adaptive evolution. Identification of such systems would greatly advance our understanding of the emergence of self-propagating entities and the onset of adaptive evolution during the origin of life.

  17. Alpha Elements' Effects on Planet Formation and the Hunt for Extragalactic Planets

    Science.gov (United States)

    Penny, Matthew; Rodriguez, Joseph E.; Beatty, Thomas; Zhou, George

    2018-01-01

    A star's likelihood of hosting a giant planet is well known to be strongly dependent on metallicity. However, little is known about what elements cause this correlation (e.g. bulk metals, iron, or alpha elements such as silicon and oxygen). This is likely because most planet searches target stars in the Galactic disk, and due to Galactic chemical evolution, alpha element abundances are themselves correlated with metallicity within a population. We investigate the feasibility of simultaneous transiting planet search towards the alpha-poor Sagittarius dwarf galaxy and alpha-rich Galactic bulge in a single field of view of DECam, that would enable a comparative study of planet frequency over an [alpha/Fe] baseline of ~0.4 dex. We show that a modestly sized survey could detect planet candidates in both populations, but that false positive rejection in Sgr Dwarf may be prohibitively expensive. Conversely, two-filter survey observations alone would be sufficient to rule out a large fraction of bulge false positives, enabling statistical validation of candidates with a modest follow-up investment. Although over a shorter [alpha/Fe] baseline, this survey would provide a test of whether it is alpha or iron that causes the planet metallicity correlation.

  18. The relation between stellar evolution and cosmology

    International Nuclear Information System (INIS)

    Tayler, R.J.

    1984-01-01

    Observations of star clusters combined with the theory of stellar evolution enable us to estimate the ages of stars while cosmological observations and theories give us a value for the age of the Universe. This is the most important interaction between cosmology and stellar evolution because it is clearly necessary that stars are younger than the Universe. Stellar evolution also plays an important role in relating the present chemical composition of the Universe to its original composition. The author restricts the review to a discussion of the relation between stellar evolution and the big bang cosmological theory because there is such a good qualitative agreement between the hot big bang theory and observations. (Auth.)

  19. Untangling the Chemical Evolution of Titan's Atmosphere and Surface -- From Homogeneous to Heterogeneous Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Ralf I.; Maksyutenko, Pavlo; Ennis, Courtney; Zhang, Fangtong; Gu, Xibin; Krishtal, Sergey P.; Mebel, Alexander M.; Kostko, Oleg; Ahmed, Musahid

    2010-03-16

    The arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and a thick atmosphere with a pressure of 1.4 atm at surface level - in 2004 opened up a new chapter in the history of Solar System exploration. The mission revealed Titan as a world with striking Earth-like landscapes involving hydrocarbon lakes and seas as well as sand dunes and lava-like features interspersed with craters and icy mountains of hitherto unknown chemical composition. The discovery of a dynamic atmosphere and active weather system illustrates further the similarities between Titan and Earth. The aerosol-based haze layers, which give Titan its orange-brownish color, are not only Titan's most prominent optically visible features, but also play a crucial role in determining Titan's thermal structure and chemistry. These smog-like haze layers are thought to be very similar to those that were present in Earth's atmosphere before life developed more than 3.8 billion years ago, absorbing the destructive ultraviolet radiation from the Sun, thus acting as 'prebiotic ozone' to preserve astrobiologically important molecules on Titan. Compared to Earth, Titan's low surface temperature of 94 K and the absence of liquid water preclude the evolution of biological chemistry as we know it. Exactly because of these low temperatures, Titan provides us with a unique prebiotic 'atmospheric laboratory' yielding vital clues - at the frozen stage - on the likely chemical composition of the atmosphere of the primitive Earth. However, the underlying chemical processes, which initiate the haze formation from simple molecules, have been not understood well to date.

  20. Role of manganese oxides in peptide synthesis: implication in chemical evolution

    Science.gov (United States)

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2017-10-01

    During the course of chemical evolution the role of metal oxides may have been very significant in catalysing the polymerization of biomonomers. The peptide bond formation of alanine (ala) and glycine (gly) in the presence of various oxides of manganese were performed for a period of 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The reaction was monitored every week. The products formed were characterized by high-performance liquid chromatography and electrospray ionization-mass spectrometry techniques. Trace amount of oligomers was observed at 50°C. Maximum yield of peptides was found after 35 days at 90°C. It is important to note that very high temperatures of 120°C favoured the formation of diketopiperazine derivatives. Different types of manganese oxides [manganosite (MnO), bixbyite (Mn2O3), hausmannite (Mn3O4) and pyrolusite (MnO2)] were used as catalyst. The MnO catalysed glycine to cyclic (Gly)2, (Gly)2 and (Gly)3, and alanine, to cyclic (Ala)2 and (Ala)2. Mn3O4 also produced the same products but in lesser yield, while Mn2O3 and MnO2 produced cyclic anhydride of glycine and alanine with a trace amount of dimers and trimmers. Manganese of lower oxidation state is much more efficient in propagating the reaction than higher oxidation states. The possible mechanism of these reactions and the relevance of the results for the prebiotic chemistry are discussed.

  1. Chemical Evolution of Groundwater Near a Sinkhole Lake, Northern Florida: 2. Chemical Patterns, Mass Transfer Modeling, and Rates of Mass Transfer Reactions

    Science.gov (United States)

    Katz, Brian G.; Plummer, L. Niel; Busenberg, Eurybiades; Revesz, Kinga M.; Jones, Blair F.; Lee, Terrie M.

    1995-06-01

    Chemical patterns along evolutionary groundwater flow paths in silicate and carbonate aquifers were interpreted using solute tracers, carbon and sulfur isotopes, and mass balance reaction modeling for a complex hydrologic system involving groundwater inflow to and outflow from a sinkhole lake in northern Florida. Rates of dominant reactions along defined flow paths were estimated from modeled mass transfer and ages obtained from CFC-modeled recharge dates. Groundwater upgradient from Lake Barco remains oxic as it moves downward, reacting with silicate minerals in a system open to carbon dioxide (CO2), producing only small increases in dissolved species. Beneath and downgradient of Lake Barco the oxic groundwater mixes with lake water leakage in a highly reducing, silicate-carbonate mineral environment. A mixing model, developed for anoxic groundwater downgradient from the lake, accounted for the observed chemical and isotopic composition by combining different proportions of lake water leakage and infiltrating meteoric water. The evolution of major ion chemistry and the 13C isotopic composition of dissolved carbon species in groundwater downgradient from the lake can be explained by the aerobic oxidation of organic matter in the lake, anaerobic microbial oxidation of organic carbon, and incongruent dissolution of smectite minerals to kaolinite. The dominant process for the generation of methane was by the CO2 reduction pathway based on the isotopic composition of hydrogen (δ2H(CH4) = -186 to -234‰) and carbon (δ13C(CH4) = -65.7 to -72.3‰). Rates of microbial metabolism of organic matter, estimated from the mass transfer reaction models, ranged from 0.0047 to 0.039 mmol L-1 yr-1 for groundwater downgradient from the lake.

  2. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated Mars surface UV radiation conditions

    Science.gov (United States)

    Poch, Olivier; Dequaire, Tristan; Stalport, Fabien; Jaber, Maguy; Lambert, Jean-François; Szopa, Cyril; Coll, Patrice

    2015-04-01

    The search for organic carbon-containing molecules at the surface of Mars, as clues of past habitability or remnants of life, is a major scientific goal for Mars exploration. Several lines of evidence, including the detection of phyllosilicates, suggest that early Mars offered favorable conditions for long-term sustaining of water. As a consequence, we can assume that in those days, endogenous chemical processes, or even primitive life, may have produced organic matter on Mars. Moreover, exogenous delivery from small bodies or dust particles is likely to have brought fresh organic molecules to the surface of Mars up today. Organic matter is therefore expected to be present at the surface/subsurface of the planet. But the current environmental conditions at the surface - UV radiation, oxidants and energetic particles - generate physico-chemical processes that may affect organic molecules. On the other hand, on Earth, phyllosilicates are known to accumulate and preserve organic matter. But are phyllosilicates efficient at preserving organic molecules under the current environmental conditions at the surface of Mars? We have monitored the qualitative and quantitative evolutions of glycine, urea and adenine interacting with the Fe3+-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated Martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K) and pressure (6 ± 1 mbar) in a laboratory simulation setup. We have tested organic-rich samples which may be representative of the evaporation of a warm little pond of liquid water having concentrated organics on Mars. For each molecule, we have observed how the nontronite influences the quantum efficiency of its photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine: their efficiencies of photodecomposition are reduced by a factor

  3. Phosphate-bonded composite electrodes for hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Potvin, E.; Menard, H.; Lalancette, J.M. (Sherbrooke Univ., PQ (Canada). Dept. de Chimie); Brossard, L. (Institut de Recherche d' Hydro-Quebec, Varennes, PQ (Canada))

    1990-03-01

    A new process of cementing metallic powders to produce high surface area cathodes for alkaline water electrolysis is described. The binding compound is a tridimensional polymer of aluminium phosphate (AlPO{sub 4}). Phosphate-bonded composite electrodes give a low-polarization performance for hydrogen evolution in 1 M KOH aqueous solution in the case of 95wt% Pt and 98wt%Ni. When electrode materials are prepared with nickel powder, the electrocatalytic activity for the hydrogen evolution reaction, the chemical stability and the electrical conductivity depend on the Ni content and morphology of the electrode. The best performance and chemical stability with Ni as the starting material are obtained for spiky filamentary particles produced by the decomposition of nickel carbonyl. (author).

  4. Physical, chemical and mineralogical evolution of the Tolhuaca geothermal system, southern Andes, Chile: Insights into the interplay between hydrothermal alteration and brittle deformation

    Science.gov (United States)

    Sanchez-Alfaro, Pablo; Reich, Martin; Arancibia, Gloria; Pérez-Flores, Pamela; Cembrano, José; Driesner, Thomas; Lizama, Martin; Rowland, Julie; Morata, Diego; Heinrich, Christoph A.; Tardani, Daniele; Campos, Eduardo

    2016-09-01

    In this study, we unravel the physical, chemical and mineralogical evolution of the active Tolhuaca geothermal system in the Andes of southern Chile. We used temperature measurements in the deep wells and geochemical analyses of borehole fluid samples to constrain present-day fluid conditions. In addition, we reconstructed the paleo-fluid temperatures and chemistry from microthermometry and LA-ICP-MS analysis of fluid inclusions taken from well-constrained parageneses in vein samples retrieved from a 1000 m borehole core. Based on core logging, mineralogical observations and fluid inclusions data we identify four stages (S1-S4) of progressive hydrothermal alteration. An early heating event (S1) was followed by the formation of a clay-rich cap in the upper zone (propylitic alteration assemblage at greater depth (S2). Boiling, flashing and brecciation occurred later (S3), followed by a final phase of fluid mixing and boiling (S4). The evolution of hydrothermal alteration at Tolhuaca has produced a mineralogical, hydrological and structural vertical segmentation of the system through the development of a low-permeability, low-cohesion clay-rich cap at shallow depth. The quantitative chemical analyses of fluid inclusions and borehole fluids reveal a significant change in chemical conditions during the evolution of Tolhuaca. Whereas borehole (present-day) fluids are rich in Au, B and As, but Cu-poor (B/Na 100.5, As/Na 10- 1.1, Cu/Na 10- 4.2), the paleofluids trapped in fluid inclusions are Cu-rich but poor in B and As (B/Na 10- 1, As/Na 10- 2.5, Cu/Na 10- 2.5 in average). We interpret the fluctuations in fluid chemistry at Tolhuaca as the result of transient supply of metal-rich, magmatically derived fluids where As, Au and Cu are geochemically decoupled. Since these fluctuating physical and chemical conditions at the reservoir produced a mineralogical vertical segmentation of the system that affects the mechanical and hydrological properties of host rock, we explored

  5. The evolution of ethylene signaling in plant chemical ecology.

    Science.gov (United States)

    Groen, Simon C; Whiteman, Noah K

    2014-07-01

    Ethylene is a key hormone in plant development, mediating plant responses to abiotic environmental stress, and interactions with attackers and mutualists. Here, we provide a synthesis of the role of ethylene in the context of plant ecology and evolution, and a prospectus for future research in this area. We focus on the regulatory function of ethylene in multi-organismal interactions. In general, plant interactions with different types of organisms lead to reduced or enhanced levels of ethylene. This in turn affects not only the plant's response to the interacting organism at hand, but also to other organisms in the community. These community-level effects become observable as enhanced or diminished relationships with future commensals, and systemic resistance or susceptibility to secondary attackers. Ongoing comparative genomic and phenotypic analyses continue to shed light on these interactions. These studies have revealed that plants and interacting organisms from separate kingdoms of life have independently evolved the ability to produce, perceive, and respond to ethylene. This signature of convergent evolution of ethylene signaling at the phenotypic level highlights the central role ethylene metabolism and signaling plays in plant interactions with microbes and animals.

  6. Chemical Evolution of Mn in Three Dwarf Spheroidal Galaxies Men ...

    Indian Academy of Sciences (India)

    thesis and explosion rate of SNeIa and CCSNe, we studied Mn evolution for three local ... different types of supernovae and the time delay between the birth and death of supernovae .... We find the theory can explain most distribution of Mn.

  7. Chemical analysis of the Fornax Dwarf galaxy

    NARCIS (Netherlands)

    Letarte, Bruno

    2007-01-01

    This thesis is entitled “Chemical Analysis of the Fornax Dwarf Galaxy”, and it’s main goal is to determine what are the chemical elements present in the stars of this galaxy in order to try and understand it’s evolution. Galaxies are not “static” objects, they move, form stars and can interact with

  8. Chemical and spectroscopic characteristics of potassium white micas related to polystage evolution of the Central Western Carpathians orogenic wedge

    Science.gov (United States)

    Sulák, Marián; Kaindl, Reinhard; Putiš, Marián; Sitek, Jozef; Krenn, Kurt; Tóth, Ignác

    2009-12-01

    Potassium white micas in sheared basement and cover rocks from the Central Western Carpathians (CWC) were investigated by PL microscopy, electron microprobe (EMP) analysis, Mössbauer and micro-Raman spectroscopy. We specified chemical and spectroscopic characteristics, which allow distinction between celadonite-poor (muscovitic) and celadonite-rich (phengitic) white mica (Wmca). Wmca generations formed during a polystage evolution in changing P- T conditions ranging from the very low to medium temperatures at medium pressure within the Alpidic CWC orogenic wedge. BSE imaging, EMP analyses and X-ray element maps indicate chemical differences between muscovite and phengite, mainly in Al, Fe and Si contents. Mössbauer spectroscopy revealed their contrasting spectra, related to different hyperfine parameters, mainly of quadrupole splitting (QS of Ms: 2.6-2.7 mm/s, or 2.9-3.0 mm/s for Phg), corresponding to Fe 2+ and Fe 3+ contents. Blastomylonitic samples with a single dominating Wmca generation and finite-strain XZ sections were suitable for micro-Raman study. These data corroborate correlation between the frequencies of two vibrational modes of Wmca and Si content. The investigated Wmca generations indicate an enhanced transformation between Wmca phases in shear zones.

  9. OGLE-III MICROLENSING EVENTS AND THE STRUCTURE OF THE GALACTIC BULGE

    Energy Technology Data Exchange (ETDEWEB)

    Wyrzykowski, Łukasz; Rynkiewicz, Alicja E.; Skowron, Jan; Kozłowski, Szymon; Udalski, Andrzej; Szymański, Michał K.; Kubiak, Marcin; Soszyński, Igor; Pietrzyński, Grzegorz; Poleski, Radosław; Pietrukowicz, Paweł; Pawlak, Michał, E-mail: lw@astrouw.edu.pl [Warsaw University Astronomical Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland)

    2015-01-01

    We present and study the largest and most comprehensive catalog of microlensing events ever constructed. The sample of standard microlensing events comprises 3718 unique events from 2001-2009 with 1409 events that had not been detected before in real-time by the Early Warning System of the Optical Gravitational Lensing Experiment. The search pipeline uses machine learning algorithms to help find rare phenomena among 150 million objects and to derive the detection efficiency. Applications of the catalog can be numerous, from analyzing individual events to large statistical studies of the Galactic mass, kinematics distributions, and planetary abundances. We derive maps of the mean Einstein ring crossing time of events spanning 31 deg{sup 2} toward the Galactic center and compare the observed distributions with the most recent models. We find good agreement within the observed region and we see the signature of the tilt of the bar in the microlensing data. However, the asymmetry of the mean timescales seems to rise more steeply than predicted, indicating either a somewhat different orientation of the bar or a larger bar width. The map of events with sources in the Galactic bulge shows a dependence of the mean timescale on the Galactic latitude, signaling an increasing contribution from disk lenses closer to the plane relative to the height of the disk. Our data present a perfect set for comparing and enhancing new models of the central parts of the Milky Way and creating a three-dimensional picture of the Galaxy.

  10. Geochemical modelling of groundwater evolution using chemical equilibrium codes

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Pirhonen, V.

    1991-01-01

    Geochemical equilibrium codes are a modern tool in studying interaction between groundwater and solid phases. The most common used programs and application subjects are shortly presented in this article. The main emphasis is laid on the approach method of using calculated results in evaluating groundwater evolution in hydrogeological system. At present in geochemical equilibrium modelling also kinetic as well as hydrologic constrains along a flow path are taken into consideration

  11. Early evolution without a tree of life.

    Science.gov (United States)

    Martin, William F

    2011-06-30

    Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause.

  12. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    Science.gov (United States)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  13. Chemical Evolution of Strongly Interacting Quark-Gluon Plasma

    International Nuclear Information System (INIS)

    Pan, Ying-Hua; Zhang, Wei-Ning

    2014-01-01

    At very initial stage of relativistic heavy ion collisions a wave of quark-gluon matter is produced from the break-up of the strong color electric field and then thermalizes at a short time scale (~1 fm/c). However, the quark-gluon plasma (QGP) system is far out of chemical equilibrium, especially for the heavy quarks which are supposed to reach chemical equilibrium much late. In this paper a continuing quark production picture for strongly interacting QGP system is derived, using the quark number susceptibilities and the equation of state; both of them are from the results calculated by the Wuppertal-Budapest lattice QCD collaboration. We find that the densities of light quarks increase by 75% from the temperature T=400 MeV to T=150 MeV, while the density of strange quark annihilates by 18% in the temperature region. We also offer a discussion on how this late production of quarks affects the final charge-charge correlations

  14. Phase Evolution of YBa2Cu3O7-x films by all-chemical solution deposition route for coated conductors

    DEFF Research Database (Denmark)

    Yue, Zhao; Tang, Xiao; Wu, Wei

    2014-01-01

    In order to understand the all-chemical-solution-deposition (CSD) processes for manufacturing coated conductors, we investigated the phase evolution of YBa2Cu3O7 (YBCO) films deposited by a low-fluorine metal-organic solution deposition (LF-MOD) method on CSD derived Ce0.9La0.1O2/Gd2Zr2O7/Ni......W. It is shown that the phase transition from the pyrolyzed film to fully converted YBCO film in the LF-MOD process is similar to that in typical trifluoroacetates-metal organic deposition (TFA-MOD) processes even though the amount of TFA in the solution is reduced by almost one half compared with typical TFA...

  15. Compendium of NASA Data Base for the Global Tropospheric Experiment's Transport and Chemical Evolution Over the Pacific (TRACE-P). Volume 1; DC-8

    Science.gov (United States)

    Kleb, Mary M.; Scott, A. Donald, Jr.

    2003-01-01

    This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Transport and Chemical Evolution over the Pacific (TRACE-P) Mission. The broad goal of TRACE-P was to characterize the transit and evolution of the Asian outflow over the western Pacific. Conducted from February 24 through April 10, 2001, TRACE-P integrated airborne, satellite- and ground-based observations, as well as forecasts from aerosol and chemistry models. The format of this compendium utilizes data plots (time series) of selected data acquired aboard the NASA/Dryden DC-8 (vol. 1) and NASA/Wallops P-3B (vol. 2) aircraft during TRACE-P. The purpose of this document is to provide a representation of aircraft data that are available in archived format via NASA Langley s Distributed Active Archive Center (DAAC) and through the GTE Project Office archive. The data format is not intended to support original research/analyses, but to assist the reader in identifying data that are of interest.

  16. Stellar dynamics and galactic evolution

    International Nuclear Information System (INIS)

    Gilmore, G.; Kuijken, K.; Wyse, R.F.G.

    1989-01-01

    Solar neighbourhood observations have the unique capability of providing detailed study of the consequences of the early evolution of the Galaxy. Important examples of this capability include determination of the distribution of luminous and unseen mass in the Galaxy, and deduction of the rate of star formation and chemical evolution in the proto-Galaxy. We describe a new method to determine the distribution of mass in the Galactic disk. We reinvestigate determinations of the local volume mass density (the Oort limit) and show there to be serious internal inconsistencies in the available data. The most likely value for the local volume mass density, based on old stars and with kinematic models consistent with the age structure of the local disk is ∼ 0.1 solar mass pc -3 , though this value is still poorly determined. Thus, there is no significant evidence for any missing mass associated with the Galactic disk. We also reinvestigate observational data on the chemical abundances and kinematics of old stars in the Galaxy. The (Intermediate Population II) thick disk stars are most likely as old as the globular clusters, and kinematically distinct from the old disk. This favours models of thick disk origin involving a discrete disruptive event, such as the accretion of a satellite of the Galaxy early in the evolution of the Galactic disk. (author)

  17. Ages of the Bulge Globular Clusters NGC 6522 and NGC 6626 (M28) from HST Proper-motion-cleaned Color–Magnitude Diagrams

    Science.gov (United States)

    Kerber, L. O.; Nardiello, D.; Ortolani, S.; Barbuy, B.; Bica, E.; Cassisi, S.; Libralato, M.; Vieira, R. G.

    2018-01-01

    Bulge globular clusters (GCs) with metallicities [Fe/H] ≲ ‑1.0 and blue horizontal branches are candidates to harbor the oldest populations in the Galaxy. Based on the analysis of HST proper-motion-cleaned color–magnitude diagrams in filters F435W and F625W, we determine physical parameters for the old bulge GCs NGC 6522 and NGC 6626 (M28), both with well-defined blue horizontal branches. We compare these results with similar data for the inner halo cluster NGC 6362. These clusters have similar metallicities (‑1.3 ≤ [Fe/H] ≤ ‑1.0) obtained from high-resolution spectroscopy. We derive ages, distance moduli, and reddening values by means of statistical comparisons between observed and synthetic fiducial lines employing likelihood statistics and the Markov chain Monte Carlo method. The synthetic fiducial lines were generated using α-enhanced BaSTI and Dartmouth stellar evolutionary models, adopting both canonical (Y ∼ 0.25) and enhanced (Y ∼ 0.30–0.33) helium abundances. RR Lyrae stars were employed to determine the HB magnitude level, providing an independent indicator to constrain the apparent distance modulus and the helium enhancement. The shape of the observed fiducial line could be compatible with some helium enhancement for NGC 6522 and NGC 6626, but the average magnitudes of RR Lyrae stars tend to rule out this hypothesis. Assuming canonical helium abundances, BaSTI and Dartmouth models indicate that all three clusters are coeval, with ages between ∼12.5 and 13.0 Gyr. The present study also reveals that NGC 6522 has at least two stellar populations, since its CMD shows a significantly wide subgiant branch compatible with 14% ± 2% and 86% ± 5% for first and second generations, respectively. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute.

  18. Chemical and kinetic equilibrations via radiative parton transport

    International Nuclear Information System (INIS)

    Zhang Bin; Wortman, Warner A

    2011-01-01

    A hot and dense partonic system can be produced in the early stage of a relativistic heavy ion collision. How it equilibrates is important for the extraction of Quark-Gluon Plasma properties. We study the chemical and kinetic equilibrations of the Quark-Gluon Plasma using a radiative transport model. Thermal and Color-Glass-Condensate motivated initial conditions are used. We observe that screened parton interactions always lead to partial pressure isotropization. Different initial pressure anisotropies result in the same asymptotic evolution. Comparison of evolutions with and without radiative processes shows that chemical equilibration interacts with kinetic equilibration and radiative processes can contribute significantly to pressure isotropization.

  19. REDSHIFT EVOLUTION IN THE IRON ABUNDANCE OF THE INTRACLUSTER MEDIUM

    International Nuclear Information System (INIS)

    Anderson, Michael E.; Bregman, Joel N.; Butler, Suzanne C.; Mullis, C. R.

    2009-01-01

    Clusters of galaxies provide a closed box within which one can determine the chemical evolution of the gaseous baryons with cosmic time. We studied this metallicity evolution in the hot X-ray emitting baryons through an analysis of XMM-Newton observations of 29 galaxy clusters in the redshift range, 0.3 sun = (0.46 ± 0.05) - (0.38 ± 0.03)z. The greatest uncertainty in the evolution comes from poorly constrained metallicities in the highest redshift bin.

  20. Radiation and the evolution of life

    International Nuclear Information System (INIS)

    Gentner, N.E.; Myers, D.K.

    1980-08-01

    A general review is presented of the nature of various forms of radiation; radiant energy which reaches the earth from the sun; the role of this energy in prebiotic chemical evolution; current ideas on the origin of life; the dependence of living organisms upon radiant energy; the mechanisms responsible for the evolution of life, from the viewpoint of modern genetics and molecular biology; the biological consequences of alterations in the genetic material; and the role of ionizing radiation in production of genetic changes and in evolution. In the final analysis, the biosynthetic processes of life are driven by radiant energy from the sun. This overview is necessarily focussed on the infrared, visible and ultraviolet regions of the solar output spectrum since these particular radiations are responsible for most of the radiant energy that reaches the earth's surface. Ionizing radiation appears to have played at best a minor role in biological evolution. Small increments in the amounts of ionizing radiation are therefore unlikely to have a significant effect on life or its evolution. (auth)

  1. The ECLSS Advanced Automation Project Evolution and Technology Assessment

    Science.gov (United States)

    Dewberry, Brandon S.; Carnes, James R.; Lukefahr, Brenda D.; Rogers, John S.; Rochowiak, Daniel M.; Mckee, James W.; Benson, Brian L.

    1990-01-01

    Viewgraphs on Environmental Control and Life Support System (ECLSS) advanced automation project evolution and technology assessment are presented. Topics covered include: the ECLSS advanced automation project; automatic fault diagnosis of ECLSS subsystems descriptions; in-line, real-time chemical and microbial fluid analysis; and object-oriented, distributed chemical and microbial modeling of regenerative environmental control systems description.

  2. H2-dependent attachment kinetics and shape evolution in chemical vapor deposition graphene growth

    Science.gov (United States)

    Meca, Esteban; Shenoy, Vivek B.; Lowengrub, John

    2017-09-01

    Experiments on graphene growth through chemical vapor deposition (CVD) involving methane (CH4) and hydrogen (H2) gases reveal a complex shape evolution and a non-monotonic dependence on the partial pressure of H2 ({{p}{{\\text{H}2}}} ). To explain these intriguing observations, we develop a microkinetic model for the stepwise decomposition of CH4 into mobile radicals and consider two possible mechanisms of attachment to graphene crystals: CH radicals to hydrogen-decorated edges of the crystals and C radicals to bare crystal edges. We derive an effective mass flux and an effective kinetic coefficient, both of which depend on {{p}{{\\text{H}2}}} , and incorporate these into a phase field model. The model reproduces both the non-monotonic dependence on {{p}{{\\text{H}2}}} and the characteristic shapes of graphene crystals observed in experiments. At small {{p}{{\\text{H}2}}} , growth is limited by the kinetics of attachment while at large {{p}{{\\text{H}2}}} growth is limited because the effective mass flux is small. We also derive a simple analytical model that captures the non-monotone behavior, enables the two mechanisms of attachment to be distinguished and provides guidelines for CVD growth of defect-free 2D crystals.

  3. Tidal interaction, star formation and chemical evolution in blue compact dwarf galaxy Mrk 22

    Science.gov (United States)

    Paswan, A.; Omar, A.; Jaiswal, S.

    2018-02-01

    The optical spectroscopic and radio interferometric H I 21 cm-line observations of the blue compact dwarf galaxy Mrk 22 are presented. The Wolf-Rayet (WR) emission-line features corresponding to high ionization lines of He II λ4686 and C IV λ5808 from young massive stars are detected. The ages of two prominent star-forming regions in the galaxy are estimated as ∼10 and ∼ 4 Myr. The galaxy has non-thermal radio deficiency, which also indicates a young starburst and lack of supernovae events from the current star formation activities, consistent with the detection of WR emission-line features. A significant N/O enrichment is seen in the fainter star-forming region. The gas-phase metallicities [12 + log(O/H)] for the bright and faint regions are estimated as 7.98±0.07 and 7.46±0.09, respectively. The galaxy has a large diffuse H I envelop. The H I images reveal disturbed gas kinematics and H I clouds outside the optical extent of the galaxy, indicating recent tidal interaction or merger in the system. The results strongly indicate that Mrk 22 is undergoing a chemical and morphological evolution due to ongoing star formation, most likely triggered by a merger.

  4. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Wang, Chunhui [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Cheng, Laifei [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China); Zhang, Qing [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China)

    2015-06-15

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp{sup 3}/sp{sup 2} after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp{sup 3}/sp{sup 2} after laser treatment.

  5. Radiative Properties, Dynamics, and Chemical Evolution of the Smoke from the 1991 Kuwait Oil Fires.

    Science.gov (United States)

    Herring, John Allan

    The oil fields in Kuwait were the scene of a massive conflagration during much of 1991 that was started by Iraqi forces during the Gulf War. At this time, approximately 4 to 5 million barrels of oil were burning each day. The climatic impacts of the fires were limited by the fact that the smoke was generally confined to the lower 6 km of the atmosphere, where its removal by precipitation processes limited its lifetime. The optical properties of the smoke were such that it was an efficient absorber of solar radiation, with a single-scattering albedo of {~ }0.6. This led to rapid warming of the plume during the daytime. Instantaneous heating rates were calculated to be up to {~}90 K day ^{-1}. Because of the vertical distribution of the heating in the plume, the upper part of the plume became unstable and a turbulent mixed-layer developed. Conversely, the lower part of the plume became stably stratified due to the heating. This led to a general decoupling of the lower boundary layer, preventing the heating experienced by the plume from reaching the ground. The general warming of the plume led to mesoscale vertical transport of the plume as a whole. This mode of vertical transport was limited because of the large horizontal extent of the region of buoyant smoke. The mesoscale vertical transport occurred at roughly the same rate as the upward mixing of smoke due to smaller-scale turbulent motions. This vertical transport, however, did not occur rapidly enough to loft the smoke into the upper troposphere before it was dispersed by wind shear and the mixing caused by solar heating of the smoke. The chemical evolution of the plume was generally somewhat slow, due to the lack of ultraviolet radiation to initiate photochemistry within the smoke plume and to the generally low concentrations of nitrogen oxides, which act as catalysts for photochemical chain reactions. Heterogeneous chemical reactions between gases and black carbon particles produced by the fires were also not

  6. Origin and evolution of life on terrestrial planets.

    Science.gov (United States)

    Brack, A; Horneck, G; Cockell, C S; Bérces, A; Belisheva, N K; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Liseau, Réne; Lammer, Helmut; Selsis, Franck; Beichman, Charles; Danchi, William; Fridlund, Malcolm; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The ultimate goal of terrestrial planet-finding missions is not only to discover terrestrial exoplanets inside the habitable zone (HZ) of their host stars but also to address the major question as to whether life may have evolved on a habitable Earth-like exoplanet outside our Solar System. We note that the chemical evolution that finally led to the origin of life on Earth must be studied if we hope to understand the principles of how life might evolve on other terrestrial planets in the Universe. This is not just an anthropocentric point of view: the basic ingredients of terrestrial life, that is, reduced carbon-based molecules and liquid H(2)O, have very specific properties. We discuss the origin of life from the chemical evolution of its precursors to the earliest life-forms and the biological implications of the stellar radiation and energetic particle environments. Likewise, the study of the biological evolution that has generated the various life-forms on Earth provides clues toward the understanding of the interconnectedness of life with its environment.

  7. On the Chemical Mixing Induced by Internal Gravity Waves

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T. M. [School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne (United Kingdom); McElwaine, J. N. [Planetary Science Institute, Tucson, AZ 85721 (United States)

    2017-10-10

    Detailed modeling of stellar evolution requires a better understanding of the (magneto)hydrodynamic processes that mix chemical elements and transport angular momentum. Understanding these processes is crucial if we are to accurately interpret observations of chemical abundance anomalies, surface rotation measurements, and asteroseismic data. Here, we use two-dimensional hydrodynamic simulations of the generation and propagation of internal gravity waves in an intermediate-mass star to measure the chemical mixing induced by these waves. We show that such mixing can generally be treated as a diffusive process. We then show that the local diffusion coefficient does not depend on the local fluid velocity, but rather on the wave amplitude. We then use these findings to provide a simple parameterization for this diffusion, which can be incorporated into stellar evolution codes and tested against observations.

  8. The septal bulge--an early echocardiographic sign in hypertensive heart disease.

    Science.gov (United States)

    Gaudron, Philipp Daniel; Liu, Dan; Scholz, Friederike; Hu, Kai; Florescu, Christiane; Herrmann, Sebastian; Bijnens, Bart; Ertl, Georg; Störk, Stefan; Weidemann, Frank

    2016-01-01

    Patients in the early stage of hypertensive heart disease tend to have normal echocardiographic findings. The aim of this study was to investigate whether pathology-specific echocardiographic morphologic and functional parameters can help to detect subclinical hypertensive heart disease. One hundred ten consecutive patients without a history and medication for arterial hypertension (AH) or other cardiac diseases were enrolled. Standard echocardiography and two-dimensional speckle-tracking-imaging analysis were performed. Resting blood pressure (BP) measurement, cycle ergometer test (CET), and 24-hour ambulatory BP monitoring (ABPM) were conducted. Patients were referred to "septal bulge (SB)" group (basal-septal wall thickness ≥ 2 mm thicker than mid-septal wall thickness) or "no-SB" group. Echocardiographic SB was found in 48 (43.6%) of 110 patients. In this SB group, 38 (79.2%) patients showed AH either by CET or ABPM. In contrast, in the no-SB group (n = 62), 59 (95.2%) patients had no positive test for AH by CET or ABPM. When AH was solely defined by resting BP, SB was a reasonable predictive sign for AH (sensitivity 73%, specificity 76%). However, when AH was confirmed by CET or ABPM the echocardiographic SB strongly predicted clinical AH (sensitivity 93%, specificity 86%). In addition, regional myocardial deformation of the basal-septum in SB group was significantly lower than in no-SB group (14 ± 4% vs. 17 ± 4%; P heart disease. Sophisticated BP evaluation including resting BP, ABPM, and CET should be performed in all patients with an accidental finding of a SB in echocardiography. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Chemical weathering on Mars. Collection of papers. LPI-MSATT Workshop on Chemical Weathering on Mars, Cocoa Beach, FL (USA), 10 - 12 Sep 1992.

    Science.gov (United States)

    Burns, R. G.; Banin, A.

    1993-10-01

    The Workshop on Chemical Weathering on Mars consisted of thirty papers, extended abstracts of which were published in the LPI Technical Report, No. 92-04. The collection of seven papers in this issue report new data and interpretations about the chemical evolution of the Martian surface.

  10. Chemical communication, sexual selection, and introgression in wall lizards.

    Science.gov (United States)

    MacGregor, Hannah E A; Lewandowsky, Rachel A M; d'Ettorre, Patrizia; Leroy, Chloé; Davies, Noel W; While, Geoffrey M; Uller, Tobias

    2017-10-01

    Divergence in communication systems should influence the likelihood that individuals from different lineages interbreed, and consequently shape the direction and rate of hybridization. Here, we studied the role of chemical communication in hybridization, and its contribution to asymmetric and sexually selected introgression between two lineages of the common wall lizard (Podarcis muralis). Males of the two lineages differed in the chemical composition of their femoral secretions. Chemical profiles provided information regarding male secondary sexual characters, but the associations were variable and inconsistent between lineages. In experimental contact zones, chemical composition was weakly associated with male reproductive success, and did not predict the likelihood of hybridization. Consistent with these results, introgression of chemical profiles in a natural hybrid zone resembled that of neutral nuclear genetic markers overall, but one compound in particular (tocopherol methyl ether) matched closely the introgression of visual sexual characters. These results imply that associations among male chemical profiles, sexual characters, and reproductive success largely reflect transient and environmentally driven effects, and that genetic divergence in chemical composition is largely neutral. We therefore suggest that femoral secretions in wall lizards primarily provide information about residency and individual identity rather than function as sexual signals. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  11. Chemical defense of early life stages of benthic marine invertebrates.

    Science.gov (United States)

    Lindquist, Niels

    2002-10-01

    Accurate knowledge of factors affecting the survival of early life stages of marine invertebrates is critically important for understanding their population dynamics and the evolution of their diverse reproductive and life-history characteristics. Chemical defense is an important determinant of survival for adult stages of many sessile benthic invertebrates, yet relatively little consideration has been given to chemical defenses at the early life stages. This review examines the taxonomic breadth of early life-stage chemical defense in relation to various life-history and reproductive characteristics, as well as possible constraints on the expression of chemical defense at certain life stages. Data on the localization of defensive secondary metabolites in larvae and the fitness-related consequences of consuming even a small amount of toxic secondary metabolites underpin proposals regarding the potential for Müllerian and Batesian mimicry to occur among marine larvae. The involvement of microbial symbionts in the chemical defense of early life stages illustrates its complexity for some species. As our knowledge of chemical defenses in early life stages grows, we will be able to more rigorously examine connections among phylogeny, chemical defenses, and the evolution of reproductive and life-history characteristics among marine invertebrates.

  12. The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis

    Science.gov (United States)

    Siracusano, S.; Baglio, V.; Grigoriev, S. A.; Merlo, L.; Fateev, V. N.; Aricò, A. S.

    2017-10-01

    Nanosized Ir-black (3 nm) and Ir-oxide (5 nm) oxygen evolution electrocatalysts showing high performance in polymer electrolyte membrane (PEM) water electrolysis based on Aquivion® short-side chain ionomer membrane are investigated to understand the role of the Ir oxidation state on the electrocatalytic activity and stability. Despite the smaller mean crystallite size, the Ir-black electrocatalyst shows significantly lower initial performance than the Ir-oxide. During operation at high current density, the Ir-black shows a decrease of cell potential with time whereas the Ir-oxide catalyst shows increasing cell potential resulting in a degradation rate of about 10 μV/h, approaching 1000 h. The unusual behaviour of the Ir-black results from the oxidation of metallic Ir to IrOx. The Ir-oxide catalyst shows instead a hydrated structure on the surface and a negative shift of about 0.5 eV for the Ir 4f binding energy after 1000 h electrolysis operation. This corresponds to the formation of a sub-stoichiometric Ir-oxide on the surface. These results indicate that a hydrated IrO2 with high oxidation state on the surface is favourable in decreasing the oxygen evolution overpotential. Modifications of the Ir chemical oxidation state during operation can affect significantly the catalytic activity and durability of the electrolysis system.

  13. Evaluation method of iodine re-evolution from an in-containment water pool after a loss of coolant accident, Part II: Evaluation of pH and iodine re-evolution

    International Nuclear Information System (INIS)

    Kim, Tae Hyeon; Jeong, Ji Hwan

    2016-01-01

    Highlights: • It is required to evaluate re-evolved iodine from sump water after LOCA. • Transport of iodine and chemicals influencing pH were analyzed using CFD. • Chemical conditions of the iodine-rich region suppress iodine re-evolution. • The current evaluation method for I 2 re-evolution is excessively conservative. - Abstract: Radioactive iodine that is released during a postulated loss of coolant accident is dissolved into the containment spray water and transported into the in-containment refueling water storage tank (IRWST). The re-evolution of iodine from the water is a safety concern. In this study, three-dimensional computational fluid dynamics (CFD) analyses are conducted in order to analyze the transport of chemical species including iodine in the IRWST and to calculate the amount of iodine that re-evolves from the IRWST water. The CFD analyses demonstrate that the pH of water is high where the iodine concentration is high. Considering that the creation rate of molecular iodine declines as the pH increases, it can be understood that the iodine re-evolution is not so strong in practical situations because the chemical conditions of the iodine-rich region suppress the re-evolution of the iodine. In addition, four different methods for evaluating the amount of re-evolved iodine are examined. The amount of re-evolved iodine calculated using the total-volume-average values, which are currently used for safety analyses, appear to be significantly higher than those determined using other methods. The amount of re-evolved iodine estimated using a realistic method with a conservative assumption of volatilization appears to be approximately one thousandth of that evaluated using the current method. This implies that the current method is very conservative.

  14. From the Beginning: The "Journal of Chemical Education" and Secondary School Chemistry

    Science.gov (United States)

    Lagowski, Joseph J.

    2014-01-01

    The people, events, and issues that were involved in the beginning and the evolution of the "Journal of Chemical Education" and the Division of Chemical Education (DivCHED) are traced and discussed. The constitution of the American Chemical Society incorporates the roots of chemical education as an area of interest to the Society. Both…

  15. Compendium of NASA Data Base for the Global Tropospheric Experiment's Transport and Chemical Evolution Over the Pacific (TRACE-P). Volume 2; P-3B

    Science.gov (United States)

    Kleb, Mary M.; Scott, A. Donald, Jr.

    2003-01-01

    This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Transport and Chemical Evolution over the Pacific (TRACE-P) Mission. The broad goal of TRACE-P was to characterize the transit and evolution of the Asian outflow over the western Pacific. Conducted from February 24 through April 10, 2001, TRACE-P integrated airborne, satellite- and ground based observations, as well as forecasts from aerosol and chemistry models. The format of this compendium utilizes data plots (time series) of selected data acquired aboard the NASA/Dryden DC-8 (vol. 1) and NASA/Wallops P-3B (vol. 2) aircraft during TRACE-P. The purpose of this document is to provide a representation of aircraft data that are available in archived format via NASA Langley's Distributed Active Archive Center (DAAC) and through the GTE Project Office archive. The data format is not intended to support original research/analyses, but to assist the reader in identifying data that are of interest.

  16. CHEMICAL EVOLUTION OF THE UNIVERSE AT 0.7 < z < 1.6 DERIVED FROM ABUNDANCE DIAGNOSTICS OF THE BROAD-LINE REGION OF QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Sameshima, H. [Laboratory of Infrared High-resolution Spectroscopy, Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Yoshii, Y.; Kawara, K., E-mail: sameshima@cc.kyoto-su.ac.jp [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2017-01-10

    We present an analysis of Mg ii λ 2798 and Fe ii UV emission lines for archival Sloan Digital Sky Survey (SDSS) quasars to explore the diagnostics of the magnesium-to-iron abundance ratio in a broad-line region cloud. Our sample consists of 17,432 quasars selected from the SDSS Data Release 7 with a redshift range of 0.72 <  z  < 1.63. A strong anticorrelation between the Mg ii equivalent width (EW) and the Eddington ratio is found, while only a weak positive correlation is found between the Fe ii EW and the Eddington ratio. To investigate the origin of these differing behaviors of Mg ii and Fe ii emission lines, we perform photoionization calculations using the Cloudy code, where constraints from recent reverberation mapping studies are considered. We find from calculations that (1) Mg ii and Fe ii emission lines are created at different regions in a photoionized cloud, and (2) their EW correlations with the Eddington ratio can be explained by just changing the cloud gas density. These results indicate that the Mg ii/Fe ii flux ratio, which has been used as a first-order proxy for the Mg/Fe abundance ratio in chemical evolution studies with quasar emission lines, depends largely on the cloud gas density. By correcting this density dependence, we propose new diagnostics of the Mg/Fe abundance ratio for a broad-line region cloud. In comparing the derived Mg/Fe abundance ratios with chemical evolution models, we suggest that α -enrichment by mass loss from metal-poor intermediate-mass stars occurred at z  ∼ 2 or earlier.

  17. Thoughts on the cultural evolution of man. Developmental imprinting and transgenerational effect.

    Science.gov (United States)

    Csaba, György

    2007-01-01

    The biological evolution of man stopped since it has been conveyed to the objects, created by man. This paper introduces the concept of "conveyed evolution". Being part of the cultural evolution, the conveyed evolution is a continuation of the biological one. There are several similarities between the laws of biological and conveyed evolution, albeit the differences are important as well. Some laws of the conveyed evolution are described here. The conveyed evolution has man-made repair mechanisms (medicine, protection of environment) which defend man from harm. Man's fragility limits the progress of conveyed evolution. However, artificial compounds or environmental pollutants which are provoked by the conveyed evolution induce chemical (hormonal) imprinting in the developmental critical periods, which is transmitted to the progeny generations (transgenerational effect). This could cause evolutionary alterations without mutation.

  18. CAN GALACTIC CHEMICAL EVOLUTION EXPLAIN THE OXYGEN ISOTOPIC VARIATIONS IN THE SOLAR SYSTEM?

    International Nuclear Information System (INIS)

    Lugaro, Maria; Liffman, Kurt; Ireland, Trevor R.; Maddison, Sarah T.

    2012-01-01

    A number of objects in primitive meteorites have oxygen isotopic compositions that place them on a distinct, mass-independent fractionation line with a slope of one on a three-isotope plot. The most popular model for describing how this fractionation arose assumes that CO self-shielding produced 16 O-rich CO and 16 O-poor H 2 O, where the H 2 O subsequently combined with interstellar dust to form relatively 16 O-poor solids within the solar nebula. Another model for creating the different reservoirs of 16 O-rich gas and 16 O-poor solids suggests that these reservoirs were produced by Galactic chemical evolution (GCE) if the solar system dust component was somewhat younger than the gas component and both components were lying on the line of slope one in the O three-isotope plot. We argue that GCE is not the cause of mass-independent fractionation of the oxygen isotopes in the solar system. The GCE scenario is in contradiction with observations of the 18 O/ 17 O ratios in nearby molecular clouds and young stellar objects. It is very unlikely for GCE to produce a line of slope one when considering the effect of incomplete mixing of stellar ejecta in the interstellar medium. Furthermore, the assumption that the solar system dust was younger than the gas requires unusual timescales or the existence of an important stardust component that is not theoretically expected to occur nor has been identified to date.

  19. Physics, Formation and Evolution of Rotating Stars

    CERN Document Server

    Maeder, André

    2009-01-01

    Rotation is ubiquitous at each step of stellar evolution, from star formation to the final stages, and it affects the course of evolution, the timescales and nucleosynthesis. Stellar rotation is also an essential prerequisite for the occurrence of Gamma-Ray Bursts. In this book the author thoroughly examines the basic mechanical and thermal effects of rotation, their influence on mass loss by stellar winds, the effects of differential rotation and its associated instabilities, the relation with magnetic fields and the evolution of the internal and surface rotation. Further, he discusses the numerous observational signatures of rotational effects obtained from spectroscopy and interferometric observations, as well as from chemical abundance determinations, helioseismology and asteroseismology, etc. On an introductory level, this book presents in a didactical way the basic concepts of stellar structure and evolution in "track 1" chapters. The other more specialized chapters form an advanced course on the gradua...

  20. Effect of chemical pretreatment on the biodegradation of cyanides

    International Nuclear Information System (INIS)

    Aronstein, B.N.; Paterek, J.R.; Rice, L.E.; Srivastava, V.J.

    1995-01-01

    The application of Fenton's reagent (H 2 O 2 ; Fe 2+ ) as a chemical pretreatment for acceleration of biological degradation of cyanides in soil-containing systems has been studied. In slurries of topsoil freshly amended with radiolabeled free cyanide (K 14 CN) at pH 7.2, about 100% of the compound was removed from the system by the combination of chemical oxidation and biodegradation. In slurry of manufactured gas plant (MGP) soil, the extent of combined chemical-biological treatment was 50%. At the same time, approximately 15% of the cyanide was lost from the system by protonation and evolution of formed HCN. In slurries of both topsoil and MGP soil amended with radiolabeled K 4 [Fe(CN) 6 ], less than 20% was degraded. In soils previously equilibrated with free and complex cyanide, the highest extent of degradation resulted from chemical-biological treatment did not exceed 15%. To avoid massive evolution of HCN, the cyanide-amended topsoil was maintained at a pH of 10.0. At this pH, nearly 35% of the cyanides were removed from the system by combined chemical-biological treatment

  1. Morphological Evolution of a-GaN on r-Sapphire by Metalorganic Chemical Vapor Deposition

    International Nuclear Information System (INIS)

    Sang Ling; Liu Jian-Ming; Xu Xiao-Qing; Wang Jun; Zhao Gui-Juan; Liu Chang-Bo; Gu Cheng-Yan; Liu Gui-Peng; Wei Hong-Yuan; Liu Xiang-Lin; Yang Shao-Yan; Zhu Qin-Sheng; Wang Zhan-Guo

    2012-01-01

    The morphological evolution of a-GaN deposited by metalorganic chemical vapor deposition (MOCVD) on r-sapphire is studied. The influences of V/III ratio and growth temperature on surface morphology are investigated. V-pits and stripes are observed on the surface of a-GaN grown at 1050°C and 1100°C, respectively. The overall orientation and geometry of V-pits are uniform and independent on the V/III molar ratio in the samples grown at 1050°C, while in the samples grown at 1100°C, the areas of stripes decrease with the adding of V/III ratio. We deduce the origin of V-pits and stripes by annealing the buffer layers at different temperatures. Because of the existence of inclined (101-bar1) facets, V-pits are formed at 1050°C. The (101-bar1) plane is an N terminated surface, which is metastable at higher temperature, so stripes instead of V-pits are observed at 1100°C. Raman spectra suggest that the growth temperature of the first layer in the two-step process greatly affects the strain of the films. Hence, to improve the growth temperature of the first layer in the two-step method may be an effective way to obtain high quality a-GaN film on r-sapphire. (condensed matter: structure, mechanical and thermal properties)

  2. Strangeness Production in a Chemically Equilibrating Quark-Gluon Plasma

    Institute of Scientific and Technical Information of China (English)

    HE Ze-Jun; LONG Jia-Li; MA Yu-Gang; MA Guo-Liang

    2004-01-01

    @@ We study the strangeness of a chemically equilibrating quark-gluon plasma at finite baryon density based on the and will accelerate with the change of the initial system from a chemically non-equilibrated to an equilibrated system. We also find that the calculated strangeness is very different from the one in the thermodynamic equilibrium system. This study may be helpful to understand the formation of quark-gluon plasma via a chemically non-equilibrated evolution framework.

  3. Failure analysis of a barrel exposed to high temperature

    International Nuclear Information System (INIS)

    Usman, A.; Salam, I.; Rizvi, S.A.; Qasir, S.

    2005-01-01

    The paper deals with the study of a tank gun barrel which had failed after firing only a few rounds. The failure was in the form of bulging at the muzzle end (ME). The material of the barrel was characterized using different techniques including chemical and mechanical testing, optical microscopy and electron microscopy. Study disclosed that the barrel was subjected to excessively high temperature that resulted in its softening and consequent bulging under high pressure of the round. (author)

  4. Chemical modification of wood

    Science.gov (United States)

    Roger M. Rowell

    2007-01-01

    After millions of years of evolution, wood was designed to perform in a wet environment, and nature is programmed to recycle it, in a timely way, back to the basic building blocks of carbon dioxide and water through biological, thermal, aqueous, photochemical, chemical, and mechanical degradation. The properties of wood are, for the most part, a result of the chemistry...

  5. Model abstraction addressing long-term simulations of chemical degradation of large-scale concrete structures

    International Nuclear Information System (INIS)

    Jacques, D.; Perko, J.; Seetharam, S.; Mallants, D.

    2012-01-01

    This paper presents a methodology to assess the spatial-temporal evolution of chemical degradation fronts in real-size concrete structures typical of a near-surface radioactive waste disposal facility. The methodology consists of the abstraction of a so-called full (complicated) model accounting for the multicomponent - multi-scale nature of concrete to an abstracted (simplified) model which simulates chemical concrete degradation based on a single component in the aqueous and solid phase. The abstracted model is verified against chemical degradation fronts simulated with the full model under both diffusive and advective transport conditions. Implementation in the multi-physics simulation tool COMSOL allows simulation of the spatial-temporal evolution of chemical degradation fronts in large-scale concrete structures. (authors)

  6. Study with the sigma data base of the galactic bulge hard x-ray and gamma-ray sources

    International Nuclear Information System (INIS)

    Vargas, Marielle

    1997-01-01

    The Sigma coded-mask telescope on board the Granat spacecraft produces sky images in the hard X-ray and soft gamma-ray energy domain (30-1300 keV) with an angular resolution of 15 arc minutes. The observations of the 18 Angstroms x 17 Angstroms region around the Galactic Center, performed with Sigma regularly during seven years, allowed the detection of a cluster of 17 sources showing activity beyond 40 ke V. This cluster is identified with the Galactic Bulge and its core coincides with the Galactic Center. Each of these sources reveals matter accretion by a collapse star in binary system. Its nature is determined by the luminosity and the spectral behavior recorded beyond 40 keV. Three accreting black holes show peculiar transient activities and comparable flare luminosities providing a criterion to evaluate distance of other specimens located elsewhere in the Galaxy. No sign of activity has been detected from the very center of the Galaxy where a supermassive black hole would be placed and would accrete the surrounding matter. (author) [fr

  7. Carbonate landscapes evolution: Insights from 36Cl

    Science.gov (United States)

    Godard, Vincent; Thomas, Franck; Ollivier, Vincent; Bellier, Olivier; Shabanian, Esmaeil; Miramont, Cécile; Fleury, Jules; Benedetti, Lucilla; Guillou, Valéry; Aster Team

    2017-04-01

    Carbonate landscapes cover a significant fraction of the Earth surface, but their long-term dynamics is still poorly understood. When comparing with the situation in areas underlain by quartz-rich lithologies, where the routine use of 10Be-derived denudation rates has delivered fundamental insights on landscape evolution processes, this knowledge gap is particularly notable. Recent advances in the measurement of 36Cl and better understanding of its production pathways has opened the way to the development of a similar physically-based and quantitative analysis of landscape evolution in carbonate settings. However, beyond these methodological considerations, we still face fundamental geomorphological open questions, as for example the assessment of the importance of congruent carbonate dissolution in long-wavelength topographic evolution. Such unresolved problems concerning the relative importance of physical and chemical weathering processes lead to question the applicability of standard slope-dependent Geomorphic Transport Laws in carbonate settings. These issues have been addressed studying the geomorphological evolution of selected limestone ranges in Provence, SE France, where 36Cl concentration measurements in bedrock and stream sediment samples allow constraining denudation over 10 ka time-scale. We first identify a significant denudation contrast between the summit surface and the flanks of the ranges, pointing to a substantial contribution of gravity-driven processes to the landscape evolution, in addition to dissolution. Furthermore, a detailed analysis of the relationships between hillslope morphology and hilltop denudation allow to identify a fundamental transition between two regimes: (1) a dynamics where hillslope evolution is controlled by linear diffusive downslope regolith transport; and, (2) a domain where denudation is limited by the rate at which physical and chemical weathering processes can produce clasts and lower the hilltop. Such an abrupt

  8. The relationship between structural evolution and electrical percolation of the initial stages of tungsten chemical vapor deposition on polycrystalline TiN

    International Nuclear Information System (INIS)

    Rozenblat, A.; Haimson, S.; Shacham-Diamand, Y.; Horvitz, D.

    2012-01-01

    This paper presents experimental results and a geometric model of the evolution of sheet resistance and surface morphology during the transition from nucleation to percolation of tungsten chemical vapor deposition over ultrathin polycrystalline titanium nitride (TiN). We observed two mechanisms of reduction in sheet resistance. At deposition temperatures higher than 310 deg. C, percolation effect is formed at ∼35% of surface coverage, θ, and characterized with a sharp drop in resistance. At temperature below 310 deg. C, a reduction in resistance occurs in two steps. The first step occurs when θ = 35% and the second step at θ = 85%. We suggest a geometric model in which the electrical percolation pass is modulated by the thickness threshold of the islands at the instant of collision.

  9. Solution of the chemical master equation by radial basis functions approximation with interface tracking

    NARCIS (Netherlands)

    Kryven, I.; Röblitz, S; Schütte, C.

    2015-01-01

    Background: The chemical master equation is the fundamental equation of stochastic chemical kinetics. This differential-difference equation describes temporal evolution of the probability density function for states of a chemical system. A state of the system, usually encoded as a vector, represents

  10. Characterization of zinc alloy by sheet bulging test with analytical models and digital image correlation

    Science.gov (United States)

    Vitu, L.; Laforge, N.; Malécot, P.; Boudeau, N.; Manov, S.; Milesi, M.

    2018-05-01

    Zinc alloys are used in a wide range of application such as electronics, automotive and building construction. Their various shapes are generally obtained by metal forming operation such as stamping. Therefore, it is important to characterize the material with adequate characterization tests. Sheet Bulging Test (SBT) is well recognized in the metal forming community. Different theoretical models of the literature for the evaluation of thickness and radius of the deformed sheet in SBT have been studied in order to get the hardening curve of different materials. These theoretical models present the advantage that the experimental procedure is very simple. But Koç et al. showed their limitation, since the combination of thickness and radius evaluations depend on the material. As Zinc alloys are strongly anisotropic with a special crystalline structure, a procedure is adopted for characterizing the hardening curve of a Zinc alloy. The anisotropy is first studied with tensile test, and SBT with elliptical dies is also investigated. Parallel to this, Digital Image Correlation (DIC) measures are carried out. The results obtained from theoretical models and DIC measures are compared. Measures done on post-mortem specimens complete the comparisons. Finally, DIC measures give better results and the resulting hardening curve of the studied zinc alloy is provided.

  11. The chemical evolution of Kurnub Group paleowater in the Sinai-Negev province-a mass balance approach

    International Nuclear Information System (INIS)

    Rosenthal, E.; Jones, B.F.; Weinberger, G.

    1998-01-01

    The chemical evolution of the Kurnub Group paleowater was studied starting from rainwater in recharge areas of the Sinai and along groundwater flowpaths leading to the natural outlets of this regional aquifer. This was achieved by investigating the chemical composition of groundwater, ionic ratios, degrees of saturation with common mineral species, normative analysis of dissolved salts and by modeling of rock/water interaction and mixing processes occurring along groundwater flow paths. The initial groundwater composition used is from the Nakhel well in Sinai. It evolves from desert rainwater percolating through typical Kurnub Group lithology in Sinai. This rainwater dissolves mainly gypsum, halite and dolomite together with smaller amounts of marine aerosol and K-feldspar. At the same time it precipitates calcite, SiO 2 , smectite and degasses CO 2 . Between the area of Nakhel and the northern Negev the chemistry of Kurnub Group waters is influenced by dissolution of halite and lesser amounts of gypsum of surficial origin in recharge areas, small amounts of feldspars and of dolomite cement in sandstones eroded from the Arabo-Nubian igneous massif of Sinai and organic degradation-derived CO 2 . Concomitantly, there is precipitation of calcite, smectite, SiO 2 and probably analcime characteristic of sediments in continental closed basins. North of the Negev, the Kurnub Group fluids are diluted and altered by mixing with Judea Group aquifer groundwaters. On the E there is mixing with residual brines from the water body ancestral to the Dead Sea, prior to discharge into the Arava valley. Rock/water interaction indicated by NETPATH and PHREEQC modeling is in agreement with lithology and facies changes previously observed in the Kurnub Group sequence. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Early evolution without a tree of life

    Directory of Open Access Journals (Sweden)

    Martin William F

    201