WorldWideScience

Sample records for building thermal simulation

  1. Combining building thermal simulation methods and LCA methods

    DEFF Research Database (Denmark)

    Pedersen, Frank; Hansen, Klaus; Wittchen, Kim Bjarne

    2008-01-01

    of buildings (as expressed in EU Directive 2002/91/EC), may in the future be supplemented by requirements to the environmental impact of buildings. This can be seen by the fact that EU recently has given EN mandate to prepare standards for environmental assessment of buildings (CEN/TC 350).......Thsi paper describes recent efforts made by the Danish Building Research Institute regarding the integration of a life cycle assessment (LCA) method into a whole building hygro-thermal simulation tool. The motivation for the work is that the increased requirements to the energy performance...

  2. Thermal dynamic simulation of wall for building energy efficiency under varied climate environment

    Science.gov (United States)

    Wang, Xuejin; Zhang, Yujin; Hong, Jing

    2017-08-01

    Aiming at different kind of walls in five cities of different zoning for thermal design, using thermal instantaneous response factors method, the author develops software to calculation air conditioning cooling load temperature, thermal response factors, and periodic response factors. On the basis of the data, the author gives the net work analysis about the influence of dynamic thermal of wall on air-conditioning load and thermal environment in building of different zoning for thermal design regional, and put forward the strategy how to design thermal insulation and heat preservation wall base on dynamic thermal characteristic of wall under different zoning for thermal design regional. And then provide the theory basis and the technical references for the further study on the heat preservation with the insulation are in the service of energy saving wall design. All-year thermal dynamic load simulating and energy consumption analysis for new energy-saving building is very important in building environment. This software will provide the referable scientific foundation for all-year new thermal dynamic load simulation, energy consumption analysis, building environment systems control, carrying through farther research on thermal particularity and general particularity evaluation for new energy -saving walls building. Based on which, we will not only expediently design system of building energy, but also analyze building energy consumption and carry through scientific energy management. The study will provide the referable scientific foundation for carrying through farther research on thermal particularity and general particularity evaluation for new energy saving walls building.

  3. Building high-accuracy thermal simulation for evaluation of thermal comfort in real houses

    OpenAIRE

    Nguyen, Hoaison; Makino, Yoshiki; Lim, Azman Osman; Tan, Yasuo; Shinoda, Yoichi

    2013-01-01

    Thermal comfort is an essential aspect for the control and verification of many smart home services. In this research, we design and implement simulation which models thermal environment of a smart house testbed. Our simulation can be used to evaluate thermal comfort in various conditions of home environment. In order to increase the accuracy of the simulation, we measure thermal-related parameters of the house such as temperature, humidity, solar radiation by the use of sensors and perform p...

  4. Ventilated buildings optimisation by using a coupled thermal-airflow simulation program

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg; Remmen, Arne

    2011-01-01

    This work shows the optimization of natural ventilation within buildings at the stage of design and behaviour of the occupants. An evaluation is done by coupled multizone air modelling and thermal building simulation by using a deterministic set of input factors comprising among others climate, l...

  5. Simulation of thermal indoor climate in buildings by using human Projected Area Factors

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik

    2009-01-01

    Nowadays many new and old buildings in Denmark have large glass surfaces. This is a consequence of the technical development of windows with low U-values that has made it possible to build houses with windows from floor to ceiling in northern climates. On the other hand if one is sitting close to...... for dynamic building thermal analysis. The method is demonstrated in a newer apartment with windows from floor to ceiling and shows how impotent it is to include the radiant effect from the glass sur-faces and how it influences the indoor thermal climate significantly.......Nowadays many new and old buildings in Denmark have large glass surfaces. This is a consequence of the technical development of windows with low U-values that has made it possible to build houses with windows from floor to ceiling in northern climates. On the other hand if one is sitting close...... to these large windows on a cold winter day it is recognized that this can cause thermal discomfort. The calculation of this discomfort needs to be taken properly into account in the simulation of the thermal indoor climate and energy consumption of the rooms. The operative temperature can be used as a simple...

  6. Demand Shifting With Thermal Mass in Large Commercial Buildings:Field Tests, Simulation and Audits

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

    2005-09-01

    The principle of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling in the building thermal mass and thereby reducing cooling loads and reducing or shedding related electrical demand during the peak periods. Cost savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies (Braun 1990, Ruud et al. 1990, Conniff 1991, Andresen and Brandemuehl 1992, Mahajan et al. 1993, Morris et al. 1994, Keeney and Braun 1997, Becker and Paciuk 2002, Xu et al. 2003). This technology appears to have significant potential for demand reduction if applied within an overall demand response program. The primary goal associated with this research is to develop information and tools necessary to assess the viability of and, where appropriate, implement demand response programs involving building thermal mass in buildings throughout California. The project involves evaluating the technology readiness, overall demand reduction potential, and customer acceptance for different classes of buildings. This information can be used along with estimates of the impact of the strategies on energy use to design appropriate incentives for customers.

  7. Empirical Validation of Heat Transfer Performance Simulation of Graphite/PCM Concrete Materials for Thermally Activated Building System

    Directory of Open Access Journals (Sweden)

    Jin-Hee Song

    2017-01-01

    Full Text Available To increase the heat capacity in lightweight construction materials, a phase change material (PCM can be introduced to building elements. A thermally activated building system (TABS with graphite/PCM concrete hollow core slab is suggested as an energy-efficient technology to shift and reduce the peak thermal load in buildings. An evaluation of heat storage and dissipation characteristics of TABS in graphite/PCM concrete has been conducted using dynamic simulations, but empirical validation is necessary to acceptably predict the thermal behavior of graphite/PCM concrete. This study aimed to validate the thermal behavior of graphite/PCM concrete through a three-dimensional transient heat transfer simulation. The simulation results were compared to experimental results from previous studies of concrete and graphite/PCM concrete. The overall thermal behavior for both materials was found to be similar to experiment results. Limitations in the simulation modeling, which included determination of the indoor heat transfer coefficient, assumption of constant thermal conductivity with temperature, and assumption of specimen homogeneity, led to slight differences between the measured and simulated results.

  8. Building Thermal Models

    Science.gov (United States)

    Peabody, Hume L.

    2017-01-01

    This presentation is meant to be an overview of the model building process It is based on typical techniques (Monte Carlo Ray Tracing for radiation exchange, Lumped Parameter, Finite Difference for thermal solution) used by the aerospace industry This is not intended to be a "How to Use ThermalDesktop" course. It is intended to be a "How to Build Thermal Models" course and the techniques will be demonstrated using the capabilities of ThermalDesktop (TD). Other codes may or may not have similar capabilities. The General Model Building Process can be broken into four top level steps: 1. Build Model; 2. Check Model; 3. Execute Model; 4. Verify Results.

  9. Simulated thermal energy demand and actual energy consumption in refurbished and non-refurbished buildings

    Science.gov (United States)

    Ilie, C. A.; Visa, I.; Duta, A.

    2016-08-01

    The EU legal frame imposes the Nearly Zero Energy Buildings (nZEB) status to any new public building starting with January 1st, 2019 and for any other new building starting with 2021. Basically, nZEB represents a Low Energy Building (LEB) that covers more than half of the energy demand by using renewable energy systems installed on or close to it. Thus, two steps have to be followed in developing nZEB: (1) reaching the LEB status through state- of-the art architectural and construction solutions (for the new buildings) or through refurbishing for the already existent buildings, followed by (2) implementing renewables; in Romania, over 65% of the energy demand in a building is directly linked to heating, domestic hot water (DHW), and - in certain areas - for cooling. Thus, effort should be directed to reduce the thermal energy demand to be further covered by using clean and affordable systems: solar- thermal systems, heat pumps, biomass, etc. or their hybrid combinations. Obviously this demand is influenced by the onsite climatic profile and by the building performance. An almost worst case scenario is approached in the paper, considering a community implemented in a mountain area, with cold and long winters and mild summers (Odorheiul Secuiesc city, Harghita county, Romania). Three representative types of buildings are analysed: multi-family households (in blocks of flats), single-family houses and administrative buildings. For the first two types, old and refurbished buildings were comparatively discussed.

  10. Simulation of energy use, human thermal comfort and office work performance in buildings with moderately drifting operative temperatures

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Olesen, Bjarne W.

    2011-01-01

    ) supplemented with CAV ventilation. Simulations comprised moderate, hot–dry and hot–humid climate. Heavy and light wall construction and two orientations of the building (east–west and north–south) were considered. Besides the energy use, also capability of examined systems to keep a certain level of thermal......Annual primary energy use in a central module of an office building consisting of two offices separated with a corridor was estimated by means of dynamic computer simulations. The simulations were conducted for conventional all-air VAV ventilation system and thermo active building system (TABS...... comfort was examined. The results showed that with the moderate climate, the TABS decreased the primary energy use by about 16% as compared with the VAV. With hot–humid climate, the portion of the primary energy saved by TABS was ca. 50% even with the supply air dehumidification taken into account...

  11. Simulation of thermal behavior of residential buildings using fuzzy active learning method

    Directory of Open Access Journals (Sweden)

    Masoud Taheri Shahraein

    2015-01-01

    Full Text Available In this paper, a fuzzy modeling technique called Modified Active Learning Method (MALM was introduced and utilized for fuzzy simulation of indoor and inner surface temperatures in residential buildings using meteorological data and its capability for fuzzy simulation was compared with other studies. The case studies for simulations were two residential apartments in the Fakouri and Rezashahr neighborhoods of Mashhad, Iran. The hourly inner surface and indoor temperature data were accumulated during measurements taken in 2010 and 2011 in different rooms of the apartments under heating and natural ventilation conditions. Hourly meteorological data (dry bulb temperature, wind speed and direction and solar radiation were measured by a meteorological station and utilized with zero to three hours lags as input variables for the simulation of inner surface and indoor temperatures. The results of simulations demonstrated the capability of MALM to be used for nonlinear fuzzy simulation of inner surface and indoor temperatures in residential apartments.

  12. New methodology for the walls design in buildings by numerical simulation of the thermal convection

    Science.gov (United States)

    Benachour, Elhadj; Draoui, Belkacem; Imine, Bachir; Asnoune, Khadidja; Mohamed, Elmir

    Buildings are complex systems composed of several elements, which are assembled to respond to a number of needs functional and symbolic according to set of legal and environmental requirements and potentially accommodate users with different levels of demand. Predicting the conception of the external wall is beneficial in the design of house and building structures.in this study, an analogy was used for the functions which are discretized by the finite difference method and integrated in the CFD code which is based on the finite volume method. The CFD software is used as a technique to modelling the behaviour of fluid and the thermal convection in the external wall of the house with different Rayleigh numbers [103≤ Ra ≤105]. In the second phase, we change the thickness of the wall several times and calculate the Nusselt number and exchange coefficient of heat transfer aims to find a cloud point respectively for the thicknesses e = 0, L /40, L /20 and L /10. After, we developed a relationship that helps us to know the exchange ratio for each thickness ( e ) belongs to the interval [0, L /10] by the Lagrange polynomial interpolation method for Rayleigh number equal 104 , and then we developed a FORTRAN program to control the nonlinear equation of order three. This method for predicting exchange coefficient of convection for to optimize the design of walls in buildings.

  13. Simulated performance of the Thermo Active Building System (TABS) with respect to the provided thermal comfort and primary energy use

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Olesen, Bjarne W.; Toftum, Jørn

    2009-01-01

    The central module of an office building conditioned by a Thermo Active Building System (TABS) coupled with constant volume ventilation was evaluated by means of dynamic computer simulations. Additionally, the same building model was simulated with a conventional all air VAV ventilation system...

  14. Modeling a Naturally Ventilated Double Skin Façade with a Building Thermal Simulation Program

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Kalyanova, Olena; Heiselberg, Per

    2008-01-01

    to predict. This is manly due to the very transient and complex air flow in the naturally ventilated double skin façade cavity. In this paper the modelling of the DSF using a thermal simulation program, BSim, is discussed. The simulations are based on the measured weather boundary conditions......The use of Double Skin Façade (DSF) has increased during the last decade. There are many reasons for this including e.g. aesthetics, sound insulation, improved indoor environment and energy savings. However, the influence on the indoor environment and energy consumption are very difficult......, and the simulation results are compared to the measurement results like energy consumption for cooling, air temperature, temperature gradient and mass flow rate in the DSF cavity, etc. Details about the measurements are reported in \\Kalyanova et al. 2008\\. The thermal simulation program does not at the moment...

  15. Modeling a Naturally Ventilated Double Skin Façade with a Building Thermal Simulation Program

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Kalyanova, Olena; Heiselberg, Per

    2008-01-01

    The use of Double Skin Façade (DSF) has increased during the last decade. There are many reasons for this including e.g. aesthetics, sound insulation, improved indoor environment and energy savings. However, the influence on the indoor environment and energy consumption are very difficult...... to predict. This is manly due to the very transient and complex air flow in the naturally ventilated double skin façade cavity. In this paper the modelling of the DSF using a thermal simulation program, BSim, is discussed. The simulations are based on the measured weather boundary conditions......, and the simulation results are compared to the measurement results like energy consumption for cooling, air temperature, temperature gradient and mass flow rate in the DSF cavity, etc. Details about the measurements are reported in \\Kalyanova et al. 2008\\. The thermal simulation program does not at the moment...

  16. Integrating CFD and building simulation

    DEFF Research Database (Denmark)

    Bartak, M.; Beausoleil-Morrison, I.; Clarke, J.A.

    2002-01-01

    To provide practitioners with the means to tackle problems related to poor indoor environments, building simulation and computational 3uid dynamics can usefully be integrated within a single computational framework. This paper describes the outcomes from a research project sponsored by the European...... Commission, which furthered the CFD modelling aspects of the ESP-r system. The paper summarises the form of the CFD model, describes the method used to integrate the thermal and 3ow domains and reports the outcome from an empirical validation exercise. © 2002 Published by Elsevier Science Ltd....

  17. A numerical simulation method for analyzing the thermal improvement effect of super-hydrophilic photocatalyst-coated building surfaces with water film on the urban/built environment

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiang; Hoyano, Akira [Interdisciplinary Graduate School, Tokyo Institute of Technology, 4259-G5-2 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2008-07-01

    As an application of the super-hydrophilicity of a photocatalyst (TiO{sub 2}) coating, buildings are cooled by sprinkling water on their external surfaces coated with TiO{sub 2}. This is a new cooling technology that was recently developed in Japan. In order to make better use of this cooling system, quantitative prediction and evaluation of the cooling effect on the urban/built environment is required during design. In an attempt to provide a computer-aided simulation tool for supporting the above-mentioned design, we introduce a thermal simulation tool that was developed previously by the authors' group. The goal of the present study is to develop a numerical model by which to predict the temperature of a TiO{sub 2}-coated surface with a water film and integrate the calculation algorithm into the simulation tool. The availability of the proposed model was discussed in the present paper. Various urban districts in downtown Tokyo were selected for a discussion of the availability of the simulation tool in which the proposed model is integrated. Simulations were performed to quantify the thermal improvement effect of the cooling system in terms of surface temperature reduction, mean radiative temperature (MRT), heat island potential (HIP), indoor air temperature, and cooling load reduction. (author)

  18. Power Admission Control with Predictive Thermal Management in Smart Buildings

    DEFF Research Database (Denmark)

    Yao, Jianguo; Costanzo, Giuseppe Tommaso; Zhu, Guchuan

    2015-01-01

    This paper presents a control scheme for thermal management in smart buildings based on predictive power admission control. This approach combines model predictive control with budget-schedulability analysis in order to reduce peak power consumption as well as ensure thermal comfort. First...... appliances. The performance of the proposed control scheme is assessed by simulation based on the thermal dynamics of a real eight-room office building located at Danish Technical University....

  19. Whole-building Hygrothermal Simulation Model

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2003-01-01

    An existing integrated simulation tool for dynamic thermal simulation of building was extended with a transient model for moisture release and uptake in building materials. Validation of the new model was begun with comparison against measurements in an outdoor test cell furnished with single...... materials. Almost quasi-steady, cyclic experiments were used to compare the indoor humidity variation and the numerical results of the integrated simulation tool with the new moisture model. Except for the case with chipboard as furnishing, the predictions of indoor humidity with the detailed model were...

  20. Thermal comfort in residential buildings : Sensitivity to building parameters and occupancy

    NARCIS (Netherlands)

    Ioannou, A.; Itard, L.C.M.

    2014-01-01

    Dynamic simulation is widely used for assessing thermal comfort in dwellings. Simulation tools, though, have shortcomings due to false assumptions made during the design phase of buildings, limited information on the building's envelope and installations and misunderstandings over the role of the

  1. A simple method to estimate the urban heat island intensity in data sets used for the simulation of the thermal behaviour of buildings

    Directory of Open Access Journals (Sweden)

    Uwe Wienert

    2013-04-01

    Full Text Available Test Reference Years (TRY are data sets tailored for use in the context of simulations with respect to the thermal behaviour of buildings. They are based on measurements and observations from weather stations of the German Meteorological Service (Deutscher Wetterdienst, DWD and represent the climate conditions of a larger area with an order of magnitude of 100 km x 100 km. The data sets cannot, however, be readily applied to urban areas. The air temperature as one of the most important meteorological elements for the building-related simulations frequently is subject to an increase with respect to the conditions outside the city area due to what is called the urban heat island effect. Numerous field measurements have led to the development of empirical relations to assess the urban temperature modification. These relations were implemented in a straightforward method. It applies a set of easily accessible parameters in a combination of different empirical formulae to derive an estimate of the urban air temperature modification. An intercomparison of calculated versus measured air temperature data showed that this method might yield a realistic representation of the urban heat island intensity.

  2. Simulating Building Fires for Movies

    Science.gov (United States)

    Rodriguez, Ricardo C.; Johnson, Randall P.

    1987-01-01

    Fire scenes for cinematography staged at relatively low cost in method that combines several existing techniques. Nearly realistic scenes, suitable for firefighter training, produced with little specialized equipment. Sequences of scenes set up quickly and easily, without compromising safety because model not burned. Images of fire, steam, and smoke superimposed on image of building to simulate burning of building.

  3. The influence of thermal insulation position in building exterior walls on indoor thermal comfort and energy consumption of residential buildings in Chongqing

    Science.gov (United States)

    Wang, D.; Yu, W.; Zhao, X.; Dai, W.; Ruan, Y.

    2016-08-01

    This paper focused on the influence of using position of thermal insulation materials in exterior walls on the indoor thermal comfort and building energy consumption of residential building in Chongqing. In this study, four (4) typical residential building models in Chongqing were established, which have different usage of thermal insulation layer position in exterior walls. Indoor thermal comfort hours, cooling and heating energy consumption of each model were obtained by using a simulation tool, Energyplus. Based on the simulation data, the influence of thermal insulation position on indoor thermal comfort and building energy consumption in each season was analyzed. The results showed that building with internal insulation had the highest indoor thermal comfort hours and least cooling and heating energy consumption in summer and winter. In transitional season, the highest indoor thermal comfort hours are obtained when thermal insulation is located on the exterior side.

  4. Duct thermal performance models for large commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wray, Craig P.

    2003-10-01

    Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach

  5. Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engebrecht, Cheryn [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-09-01

    The House Simulation Protocol document was developed to track and manage progress toward Building America's multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent analytical reference point. This report summarizes the guidelines for developing and reporting these analytical results in a consistent and meaningful manner for all home energy uses using standard operating conditions.

  6. Method for simulating predictive control of building systems operation in the early stages of building design

    DEFF Research Database (Denmark)

    Petersen, Steffen; Svendsen, Svend

    2011-01-01

    A method for simulating predictive control of building systems operation in the early stages of building design is presented. The method uses building simulation based on weather forecasts to predict whether there is a future heating or cooling requirement. This information enables the thermal...... control systems of the building to respond proactively to keep the operational temperature within the thermal comfort range with the minimum use of energy. The method is implemented in an existing building simulation tool designed to inform decisions in the early stages of building design through...... parametric analysis. This enables building designers to predict the performance of the method and include it as a part of the solution space. The method furthermore facilitates the task of configuring appropriate building systems control schemes in the tool, and it eliminates time consuming manual...

  7. Evaluation on Thermal Environment and Energy Consumption of a Demonstration Building in Ningqiang

    Science.gov (United States)

    Wang, Chen; Ma, Jinghui

    2017-08-01

    The aim of this paper is to clarify the thermal performance and environment of a demonstration building in Ningqiang, China, utilizing building indoor temperature and energy consumption simulation program EnergyPlus. Compared with the existing building model, the energy saving rate of the demonstration building model is 42.42%, 6.92% higher than that of benchmark model, based on simulation analyses.

  8. Thermally activated building systems in context of increasing building energy efficiency

    Directory of Open Access Journals (Sweden)

    Stojanović Branislav V.

    2014-01-01

    Full Text Available One of the possible ways to provide heating to the building is to use thermally activated building systems. This type of heating, besides providing significant increase in building energy efficiency, allows using low-temperature heating sources. In this paper, special attention is given to opaque part of the building façade with integrated thermally activated building systems. Due to fact that this type of system strongly depends on temperature of this construction-thermal element and type and thickness of other materials of the façade, influence of these parameters on energy efficiency was analyzed in this paper. Since the simplest and most promising way of using geothermal energy is to use it directly, for our analysis this source of energy was selected. Building energy needs for heating were obtained for real residential multi-family building in Serbia by using EnergyPlus software. The building with all necessary input for simulation was modeled in Google SketchUp with aid of Open Studio Plug-in. Obtained results were compared with measured heating energy consumption. The results show that thermally activated building systems represent good way to increase building energy efficiency and that applying certain temperatures within this element, low-energy house standard can be achieved.

  9. Whole Year Optimization of Building Thermal Properties

    OpenAIRE

    Naeimi, Homa

    2014-01-01

    Along with improvement in buildings structure, developments in thermal design allow decreasing the energy demand of heating, cooling, and air conditioning of buildings. This thesis distinguishes and optimizes design elements that are essential in minimizing building heating /cooling loads. Optimum designs vary significantly for different areas due to different meteorological conditions between locations and seasonal changes at the same location. Considering the typical meteorological conditio...

  10. Effects of Building Design Elements on Residential Thermal Environment

    Directory of Open Access Journals (Sweden)

    Yingbao Yang

    2017-12-01

    Full Text Available Residential thermal environment affects the life of residents in terms of their physical and mental health. Many studies have shown that building design elements affect the urban thermal environment. In this study, Nanjing City was used as the study area. A three-dimensional microclimate model was used to simulate and analyze the effects of four main factors, namely, building height, density, layout and green ratio, on thermal environment in residential areas. Results showed that 25% building density obtained a low average air temperature (ATa and average predicted mean vote (APMV during 24 h. Thus, a higher building height indicates a lower ATa and APMV and better outdoor comfort level. In addition, peripheral layout had the lowest ATa and APMV, followed by the determinant and point group layouts. The green ratio increased from 0% to 50% with a 10% step and the ATa and APMV decreased gradually. However, when the green ratio increased from 30% to 40%, ATa and APMV decreased most. The effects of building height, density and green ratio on the thermal environment in residential areas were interactive. The effects of building density, green ratio and layout on hourly air temperature and hourly predicted mean vote in daytime varied from these indicators during night time. How the four building design elements interact with thermal environment were probed from two aspects of air temperature and thermal comfort based on the validated ENVI-met, which is the element of novelty in this study. However, thermal comfort has rarely been considered in the past studies about urban outdoor thermal environment.

  11. Thermographic measurement of thermal bridges in buildings under dynamic behavior

    Science.gov (United States)

    Ferrarini, G.; Bison, P.; Bortolin, A.; Cadelano, G.; De Carli, M.

    2016-05-01

    The accurate knowledge of the thermal performance could reduce significantly the impact of buildings on global energy consumption. Infrared thermography is widely recognized as one of the key technologies for building surveys, thanks to its ability to acquire at a glance thermal images of the building envelope. However, a spot measurement could be misleading when the building is under dynamic thermal conditions. In this case data should be acquired for hours or days, depending on the thermal properties of the walls. Long term thermographic monitoring are possible but imply strong challenges from a practical standpoint. This work investigates the possibilities and limitations of spot thermographic surveys coupled with contact probes, that are able to acquire continuously the thermal signal for days, to investigate the thermal bridges of a building. The goal is the estimation of the reliability and accuracy of the measurement under realistic environmental conditions. Firstly, numerical simulations are performed to determine the reference value of an experimental case. Then a long term thermographic survey is performed and integrated with the contact probe measurement, assessing the feasibility of the method.

  12. Thermal comfort assessment of buildings

    CERN Document Server

    Carlucci, Salvatore

    2013-01-01

    A number of metrics for assessing human thermal response to climatic conditions have been proposed in scientific literature over the last decades. They aim at describing human thermal perception of the thermal environment to which an individual or a group of people is exposed. More recently, a new type of “discomfort index” has been proposed for describing, in a synthetic way, long-term phenomena. Starting from a systematic review of a number of long-term global discomfort indices, they are then contrasted and compared on a reference case study in order to identify their similarities and differences and strengths and weaknesses. Based on this analysis, a new short-term local discomfort index is proposed for the American Adaptive comfort model. Finally, a new and reliable long-term general discomfort index is presented. It is delivered in three versions and each of them is suitable to be respectively coupled with the Fanger, the European Adaptive and the American Adaptive comfort models.

  13. Interior thermal insulation systems for historical building envelopes

    Science.gov (United States)

    Jerman, Miloš; Solař, Miloš; Černý, Robert

    2017-11-01

    The design specifics of interior thermal insulation systems applied for historical building envelopes are described. The vapor-tight systems and systems based on capillary thermal insulation materials are taken into account as two basic options differing in building-physical considerations. The possibilities of hygrothermal analysis of renovated historical envelopes including laboratory methods, computer simulation techniques, and in-situ tests are discussed. It is concluded that the application of computational models for hygrothermal assessment of interior thermal insulation systems should always be performed with a particular care. On one hand, they present a very effective tool for both service life assessment and possible planning of subsequent reconstructions. On the other, the hygrothermal analysis of any historical building can involve quite a few potential uncertainties which may affect negatively the accuracy of obtained results.

  14. Green Building Construction Thermal Isolation Materials (Rockwool)

    OpenAIRE

    M. Itewi

    2011-01-01

    Problem statement: Building insulation consisting roughly to anything in a structure that is utilizes as insulation for any reason. Thermal insulation in structures is a significant feature to attaining thermal comfort for its tenants. Approach: Insulation decreases unnecessary warmth loss or gain and can reduce the power burdens of heating and cooling structures. It does not automatically having anything to do with problems of sufficient exposure to air and might or might...

  15. Building thermal performance in Saharan climate

    Energy Technology Data Exchange (ETDEWEB)

    Belgaid, Brahim [Department of architecture, University of Batna, 05000- Batna (Algeria)

    2011-07-01

    The aim of this study is to present an analytical method of the contribution of the building's shape and orientation in the definition of a comfortable microclimate for the inhabitants of the warm regions of Algerian Sahara. Study is made by using the overheating, a concept allowing a fast estimation of the level of internal temperature. Calculations were performed for summer hot period for Biskra (a city of southern Algeria), situated in Sahara and characterized with a hot and dry climate. The influence of the shape and the orientation of the building are examined as a solution to improve the building's thermal performance.

  16. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Tryggvason, Tryggvi

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...... simulation program requires a detailed description of the energy flow in the air movement which can be obtained by a CFD program. The paper describes an energy consumption calculation in a large building, where the building energy simulation program is modified by CFD predictions of the flow between three...... program and a building energy performance simulation program will improve both the energy consumption data and the prediction of thermal comfort and air quality in a selected area of the building....

  17. Possibilities and Limitations of Thermally Activated Building Systems

    DEFF Research Database (Denmark)

    Behrendt, Benjamin

    The strong political market drive towards energy savings in the building sector calls for efficient solutions. Using so called low temperature heating and high temperature cooling systems such as for instance thermally activated building systems (TABS) has a significant impact on the required...... tool for the early assessment for the use of TABS in modern Buildings. Not only is it possible to runs simulations in accordance to ISO 11855-4 but also to determine the minimal required plant sizes for cooling, the duration until overheating, the maximum internal temperatures for insufficient plant...... will be mostly needed to operate the building within acceptable boundaries. It will also allow the user to see if dehumidification will be needed for undisturbed operation of TABS. With the combination of both tools it is possible to provide a holistic evaluation of a building proposal at a very early design...

  18. Smart Building: Decision Making Architecture for Thermal Energy Management

    Directory of Open Access Journals (Sweden)

    Oscar Hernández Uribe

    2015-10-01

    Full Text Available Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.

  19. Smart Building: Decision Making Architecture for Thermal Energy Management.

    Science.gov (United States)

    Uribe, Oscar Hernández; Martin, Juan Pablo San; Garcia-Alegre, María C; Santos, Matilde; Guinea, Domingo

    2015-10-30

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.

  20. Smart Building: Decision Making Architecture for Thermal Energy Management

    Science.gov (United States)

    Hernández Uribe, Oscar; San Martin, Juan Pablo; Garcia-Alegre, María C.; Santos, Matilde; Guinea, Domingo

    2015-01-01

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction. PMID:26528978

  1. Interstitial Condensation Risk at Thermal Rehabilitated Buildings

    Science.gov (United States)

    Baran, I.; Bliuc, I.; Iacob, A.; Dumitrescu, L.; Pescaru, R. A.; Helepciuc, C.

    2016-11-01

    The increasing thermal insulation degree of existing residential buildings, aiming to reduce the energy requirements for ensuring the indoor comfort, has as expected effect the elimination of condensation risk. However, in some cases this phenomenon occurs, both on the inner surface of the closing element and also in its structure. The surface condensation causes can be identified and can be easily removed. Instead, the causes and even the presence of interstitial condensation are more difficult to be observed. But the moistening of the insulation materials and the reduction of thermal insulation capacity or even its total degradation, contravene into a large extent or totally to the main purpose of the additional thermal protection. To avoid such situations, it is necessary to respect some principles concerning the structure, resulted from the knowledge of the water vapour diffusion behaviour of various materials. It is known that condensation vulnerability is higher for the additional thermal protection solutions by disposing the insulating material on the inside surface of the closing element. But practice has shown that the condensation phenomenon is not totally excluded neither in the case of outside thermal insulation - which is the current solution applied to the rehabilitation works - if the principles mentioned above are not known and respected. In this paper two models are compared on which the risk of interstitial condensation can be checked. The analysis made on two structures of exterior walls with thermal insulation demonstrates the need for additional verifications before proposing a solution for thermal rehabilitation of the envelope elements.

  2. The effect of the thermal inertia on the thermal transfer in building wall

    Science.gov (United States)

    Bellahcene, Lahcene; Cheknane, Ali; Bekkouche, SMA.; Sahel, Djemal

    2017-11-01

    In a hot and dry climate, the design and construction of buildings involve the adoption of combination between shape of building envelope and construction materials. The objective of this work is to study the thermal behavior of a multilayer wall submitted to varying climatic conditions. We have proposed four configurations of an element of an outer wall. A numerical simulation was used to understand the phenomenon of thermal inertia, especially its influence on the resulting temperatures. The study is based on the modeling of heat transfer in a 2D unsteady-state using a computational fluid dynamics (CFD) code. The comparison of numerical results was affected with an available experimental data and shows a satisfactory agreement. In addition, this work highlights the importance of the study of the thermal inertia of the wall in order to ensure a comfortable indoor climate of building located in hot and dry climate.

  3. Thermal mass impact on energy performance of a low, medium and heavy mass building in Belgrade

    Directory of Open Access Journals (Sweden)

    Anđelković Bojan V.

    2012-01-01

    Full Text Available Heavy mass materials used in building structures and architecture can significantly affect building energy performance and occupant comfort. The purpose of this study was to investigate if thermal mass can improve the internal environment of a building, resulting in lower energy requirements from the mechanical systems. The study was focused on passive building energy performance and compared annual space heating and cooling energy requirements for an office building in Belgrade with several different applications of thermal mass. A three-dimensional building model was generated to represent a typical office building. Building shape, orientation, glazing to wall ratio, envelope insulation thickness, and indoor design conditions were held constant while location and thickness of building mass (concrete was varied between cases in a series of energy simulations. The results were compared and discussed in terms of the building space heating and cooling energy and demand affected by thermal mass. The simulation results indicated that with addition of thermal mass to the building envelope and structure: 100% of all simulated cases experienced reduced annual space heating energy requirements, 67% of all simulated cases experienced reduced annual space cooling energy requirements, 83% of all simulated cases experienced reduced peak space heating demand and 50% of all simulated cases experienced reduced peak space cooling demand. The study demonstrated that there exists a potential for reducing space heating and cooling energy requirements with heavy mass construction in the analyzed climate region (Belgrade, Serbia.

  4. Rational use of energy by thermal insulation of residential buildings. Rationelle Energienutzung durch Waermeschutz von Wohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Feist, W. (Inst. Wohnen und Umwelt, Darmstadt (Germany))

    1992-01-01

    Processes in buildings need to be studied in detail to determine the technical potential of energy savings. Simulation models for thermal behaviour and simulation calculations prove that the technologies available today and the building input justifiable for the central-European climate will allow so-called passive-systems buildings to be built. Such a passive-systems building was built in Darmstadt Kranichstein. The heart of these passive-systems buildings is an excellent thermal insulation, its meticulous execution and the reduction of heat losses by ventilation. (BWI)

  5. First Swiss building and urban simulation conference. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Zweifel, G.; Citherlet, S.; Afjei, T.; Pahud, D.; Robinson, D.; Schaelin, A.

    2010-07-01

    These contributions presented at a conference, held in 2009 in Horw, near Lucerne, Switzerland, deal with the simulation of building technical services. Three contribution blocks dealt with thermal and heating, ventilation and air-conditioning (HVAC) simulation, airflow and stochastic modelling and urban simulation. In the thermal and HVAC simulation session, the potential and limitations of building energy performance simulation is examined from an engineering perspective, a parametric study of an air heat exchanger for the cooling of buildings is presented and a comparison of measured and estimated electric energy use and the impact of assumed occupancy patterns is made. Contributions on standard solutions for energy efficient heating and cooling with heat pumps, the validation and certification of dynamic building simulation tools, standards and tools for the energy performance of buildings with a simple chiller model and the system-simulation of a central solar heating plant with seasonal duct storage in Geneva, Switzerland, are presented. In the airflow and stochastic modelling session, the optimisation of air flow in operating theatres is examined, and air-flow phenomena in flats are explained with illustrations of computational fluid dynamics (CFD). Also, the comparison of test reference years to stochastically generated time series and a comprehensive stochastic model of window usage are discussed. Contributions on the simulation of air-flow patterns and wind loads on facades and the choice of appropriate simulation techniques for the thermal analysis of double skin facades complete the session. In the final Urban Simulation session, a new CFD approach for urban flow and pollution dispersion simulation is presented, a comprehensive micro-simulation of resource flows for sustainable urban planning, multi-scale modelling of the urban climate and the optimisation of urban energy demands using an evolutionary algorithm are discussed.

  6. High-rise Buildings versus Outdoor Thermal Environment in Chongqing.

    Science.gov (United States)

    Lu, Jun; Chen, Jin-Hua; Tang, Ying; Wang, Jin-Sha

    2007-10-11

    This paper gives a brief description of the over quick urbanization sinceChongqing, one of the biggest cities in China, has been a municipality directly under theCentral Government in 1997, excessive development and exceeding increase of high-risebuildings because of its special geographical position which finally leads to the worseningof the urban outdoor thermal environment. Then, this paper makes a bright balance to thefield measurement and simulated results of the wind speed field, temperature field of onemultifunctional high-rise building in Chongqing university located in the city center, andthe contrasted results validate the correctness of CFD in the outdoor thermal environmentalsimulation, expose the disadvantages of high-rise buildings on the aspects of blocking thewind field, decreasing wind speed which results in accumulation of the air-conditioningheat revolving around and periscian region where sunshine can not rip into. Finally, inorder to improve the urban outdoor thermal environment near the high-rise buildingsespecially for the angle of natural ventilation, this paper simulates the wind environment indifferent architectural compositions and architectural layouts by CFD, and the simulatedresults show that freestyle and tower buildings which can guarantee the wind speed andtake the air-conditioning heat away are much suitable and reasonable for the specialChongqing geography. These conclusions can also be used as a reference in othermountain cities, especially for the one with a great number of populations.

  7. High-rise Buildings versus Outdoor Thermal Environment in Chongqing

    Directory of Open Access Journals (Sweden)

    Jin-sha Wang

    2007-10-01

    Full Text Available This paper gives a brief description of the over quick urbanization sinceChongqing, one of the biggest cities in China, has been a municipality directly under theCentral Government in 1997, excessive development and exceeding increase of high-risebuildings because of its special geographical position which finally leads to the worseningof the urban outdoor thermal environment. Then, this paper makes a bright balance to thefield measurement and simulated results of the wind speed field, temperature field of onemultifunctional high-rise building in Chongqing university located in the city center, andthe contrasted results validate the correctness of CFD in the outdoor thermal environmentalsimulation, expose the disadvantages of high-rise buildings on the aspects of blocking thewind field, decreasing wind speed which results in accumulation of the air-conditioningheat revolving around and periscian region where sunshine can not rip into. Finally, inorder to improve the urban outdoor thermal environment near the high-rise buildingsespecially for the angle of natural ventilation, this paper simulates the wind environment indifferent architectural compositions and architectural layouts by CFD, and the simulatedresults show that freestyle and tower buildings which can guarantee the wind speed andtake the air-conditioning heat away are much suitable and reasonable for the specialChongqing geography. These conclusions can also be used as a reference in othermountain cities, especially for the one with a great number of populations.

  8. Thermal Models for Intelligent Heating of Buildings

    DEFF Research Database (Denmark)

    Thavlov, Anders; Bindner, Henrik W.

    2012-01-01

    The Danish government has set the ambitious goal that the share of the total Danish electricity consumption, covered by wind energy, should be increased to 50% by year 2020. This asks for radical changes in how we utilize and transmit electricity in the future power grid. To fully utilize the high...... share of renewable power generation, which is in general intermittent and non-controllable, the consumption side has to be much more flexible than today. To achieve such flexibility, methods for moving power consumption in time, within the hourly timescale, have to be developed. One approach currently...... being pursued is to use the heat capacity of the thermal mass in buildings to temporarily store excess power production by increasing the electrical heating. Likewise can the electrical heating be postponed in periods with lack of production. To exploit the potential in thermal storage and to ensure...

  9. Thermal analysis and design of passive solar buildings

    CERN Document Server

    Athienitis, AK

    2013-01-01

    Passive solar design techniques are becoming increasingly important in building design. This design reference book takes the building engineer or physicist step-by-step through the thermal analysis and design of passive solar buildings. In particular it emphasises two important topics: the maximum utilization of available solar energy and thermal storage, and the sizing of an appropriate auxiliary heating/cooling system in conjunction with good thermal control.Thermal Analysis and Design of Passive Solar Buildings is an important contribution towards the optimization of buildings as systems th

  10. Twenty Years On!: Updating the IEA BESTEST Building Thermal Fabric Test Cases for ASHRAE Standard 140

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Neymark, J. [J. Neymark & Associates, Golden, CO (United States)

    2013-07-01

    ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs applies the IEA BESTEST building thermal fabric test cases and example simulation results originally published in 1995. These software accuracy test cases and their example simulation results, which comprise the first test suite adapted for the initial 2001 version of Standard 140, are approaching their 20th anniversary. In response to the evolution of the state of the art in building thermal fabric modeling since the test cases and example simulation results were developed, work is commencing to update the normative test specification and the informative example results.

  11. The utilization of the storage of thermal energy in buildings. Underground heat storages - thermic simulation and profitability; Termisen energian varastoinnin hyvaeksikaeyttoemahdollisuudet rakennusten laemmityksessae ja jaeaehdytyksessae. Maanalaiset varastot - laempoetekninen simulointi ja taloudellinen kannattavuus

    Energy Technology Data Exchange (ETDEWEB)

    Suokas, M.; Heinonen, J.; Karola, A.; Laine, T.; Siren, K.

    1998-12-31

    Interest in different sources of free energy has significantly increased due to the possibility to decrease the consumption of fossil fuels and nuclear power. This can be reached, for example, with waste heat recovery and by utilising natural heat and cool energy sources. The main problem is that the supply and use of energy do not encounter and this causes a need for thermal energy storage. The earlier heat storage systems have utilised compressor heat pumps because the temperature levels of heat storages are not high enough for the ordinary heating and cooling systems. The disadvantage is the complexity of these systems which leads to increasing building costs. Therefore, this study deals with systems of low temperature levels used mainly for cooling purposes. The aim was to find out their usability, savings and profitability. The function and energy consumption of systems were simulated with models of buildings, soil heat storage and climate. The soil model simulates heat dynamic behaviour of the masses of soil. With the climate model it was possible to simulate transient heat losses of the storage and building. It was also possible to simulate various climatic conditions by changing input data of the climate model. In the simulated systems the emphasis is on the production of cooling energy by utilising the low temperature of the ground. The systems consist of heat storage and building. The cooling energy will be charged in winter to the storage when the heat energy charged in summer will be transferred to the supply air of ventilating unit. After the energy simulations the investment and usage costs of this kind of systems were compared with costs of ordinary compressor cooling systems. The buildings studied were an imaginary LVIS 2000 office building and the Messukeskus in Helsinki which is a large hall built for exhibitions. The types of soil were wet clay and granite. The LVIS 2000 office building needs a rock heat storage with capacity of 8 000-30 000 m

  12. The thermal performance of earth buildings

    Directory of Open Access Journals (Sweden)

    Heathcote, K.

    2011-09-01

    Full Text Available This paper examines the theoretical basis for the thermal performance of earth walls and links it to some test results on buildings constructed by the author, and to their predicted performance using a sophisticated computer modelling program. The analysis shows that for all earth walls the steady state thermal resistance is low but that for walls greater than about 450 mm thick the cyclic thermal resistance is high and increases exponentially. Whilst the steady state resistance of all thickness walls is low and results in higher than normal average temperatures in summer and lower than normal in winter the ability of thick earth walls to even out the swings in temperature is thought to be responsible for the materials reputation. The paper notes that good passive design principles (such as providing internal thermal mass and large areas of glazing for winter performance will greatly improve the performance of earth buildings with thin walls, but it is the author’s opinion that external earth walls should be at least 450 mm thick to gain the full benefit of thermal mass.

    Este artículo examina la base teórica del comportamiento térmico de las paredes de tierra y la relaciona con varios resultados de test realizados sobre edificios construidos por el autor, y con su comportamiento previsto utilizando un sofisticado programa de modelado por ordenador. El análisis muestra que la resistencia térmica constante es baja para todas las paredes de tierra, pero que para muros con un grosor mayor que 450 mm la resistencia térmica cíclica es alta y se incrementa exponencialmente. Mientras que la resistencia térmica constante de las paredes de cualquier grosor es baja y se traduce en temperaturas más altas que la media en verano y más bajas que la media en invierno, la capacidad de las paredes gruesas de tierra para amortiguar las variaciones de temperatura es la responsable de la reputación de los materiales. El artículo señala que los

  13. Comparative Validation of Building Simulation Software

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    The scope of this subtask is to perform a comparative validation of the building simulation software for the buildings with the double skin façade. The outline of the results in the comparative validation identifies the areas where is no correspondence achieved, i.e. calculation of the air flow r...... is that the comparative validation can be regarded as the main argument to continue the validation of the building simulation software for the buildings with the double skin façade with the empirical validation test cases.......The scope of this subtask is to perform a comparative validation of the building simulation software for the buildings with the double skin façade. The outline of the results in the comparative validation identifies the areas where is no correspondence achieved, i.e. calculation of the air flow...

  14. An Automatic System to Detect Thermal Leakages and Damages on Building Facade Using Thermal Images

    OpenAIRE

    Sirmacek, Beril; Hoegner, Ludwig; Stilla, Uwe

    2011-01-01

    In recent years, very high energy consumption is the major problem of the big cities. Most of the energy of the cities are disbursed to warm and cool buildings. Thus, detecting heat leakages on building walls is a new research problem. In this study, we propose a novel system to detect thermal leakages automatically from thermal camera images. To this end, we use sequential thermal images of buildings. First, we start with fusing thermal image sequences to obtain rectified building facade wit...

  15. Extravehicular mobility unit thermal simulator

    Science.gov (United States)

    Hixon, C. W.; Phillips, M. A.

    1973-01-01

    The analytical methods, thermal model, and user's instructions for the SIM bay extravehicular mobility unit (EMU) routine are presented. This digital computer program was developed for detailed thermal performance predictions of the crewman performing a command module extravehicular activity during transearth coast. It accounts for conductive, convective, and radiative heat transfer as well as fluid flow and associated flow control components. The program is a derivative of the Apollo lunar surface EMU digital simulator. It has the operational flexibility to accept card or magnetic tape for both the input data and program logic. Output can be tabular and/or plotted and the mission simulation can be stopped and restarted at the discretion of the user. The program was developed for the NASA-JSC Univac 1108 computer system and several of the capabilities represent utilization of unique features of that system. Analytical methods used in the computer routine are based on finite difference approximations to differential heat and mass balance equations which account for temperature or time dependent thermo-physical properties.

  16. Building ceramics with improved thermal insulation parameters

    Directory of Open Access Journals (Sweden)

    Rzepa Karol

    2016-01-01

    Full Text Available One of the most important performance characteristics of masonry units is their high thermal insulation. There are many different ways to improve this parameter, however the most popular methods in case of ceramic masonry units are: addition of pore-creating raw materials and application of proper hole pattern. This study was an attempt to improve thermal insulation of ceramics by applying thermal insulation additives. Perlite dust created as a subgrain from expansion of perlite rock was used. Perlite subgrain is not very popular among consumers, that’s why it’s subjected to granulation to obtain coarse grain. The authors presented concept of direct application of perlite dust for the production of building ceramics with improved thermal insulation. Fineness of this additive is asset for molding of ceramic materials from plastic masses. Based on the results it was found that about 70% perlite by volume can be added to obtain material with a coefficient of heat conductivity of 0,37 W/mK. Higher content of this additive in ceramic mass causes deterioration of its rheological properties. Mass loses its plasticity, it tears up and formed green bodies are susceptible to deformation. During sintering perlite takes an active part in compaction process. Higher sintering dynamics is caused by: high content of alkali oxides in perlite and glass nature of perlite. Alkali oxides generate creation of liquid phase which intensifies mass compaction processes. Active role of perlite in sintering process causes good connection of its grains with clay groundwork which is important factor for mechanical parameters of ceramic materials. It was also noted that addition of perlite above 40% by volume of mass effectively neutralized negative effect of efflorescence in ceramic materials.

  17. Comparison of Buildings\\' Thermal Loads against Building Orientations for Sustainable Housing in Pakistan

    Directory of Open Access Journals (Sweden)

    Arif Khan

    2012-07-01

    Full Text Available As the sustainable settlements have been included as a vital end product of all planning exercises, the architectural layouts should be well integrated with the sun path charts and the orientations of windows. Appropriate orientations can offer thermally indoor conditions besides physical and psychological comfort in any settlement at lesser energy demand. This investigation uses a vast number of computer simulations to visualize and make better decisions about heating and cooling requirements of a building and facades as a function of window orientation in composite climatic condition of Lahore. This study in particular evaluates the solar load in residential buildings responsive to the objective of sustainable new housing leading to thoughtful integration of architecture. The orientation of the buildings could then be essentially integrated to the current architectural and urban design practices in order to optimize the relationship between the given site ant the orientations for sustainable developments.

  18. Empirical Validation of Building Simulation Software

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group.......The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group....

  19. Collapse simulation of building constructions

    Directory of Open Access Journals (Sweden)

    Nekrest'yanov Viktor Nikolaevich

    Full Text Available The physical reasons for building structures destruction are both the forces arising at stress-strain state of construction elements and external influences arising at emergency situations, as well as their moments, impulses and periodic impulses with the frequencies close to of fluctuations frequencies of construction elements. We shall call the mathematical calculation models for the parameters-reasons of destructions the basic models. The basic models of destruction of building structures elements allow not only providing necessary level of reliability and survivability of the elements and the construction as a whole already at the stage of their design, but also giving the chance, at their corresponding completion, to provide rational decisions on the general need of recovery works and their volume depending on destruction level. Especially important for rational design decisions development, which ensure the demanded constructional safety of building structures, is library creation of the basic mathematical models of standard processes of bearing elements destructions for standard construction designs for the purpose of the further forecast (assessment of the level and probabilities of standard destructions. Some basic mathematical models of destructions processes of the standard elements of building structures are presented in the present article. A model of accounting for construction defects and a model of obtaining requirements to probabilities of partial destructions of a construction are given. Both of these models are probabilistic.

  20. Energy Supply In A Building Via A Photovoltaic-Thermal Power System

    Directory of Open Access Journals (Sweden)

    Saban Yilmaz

    2015-04-01

    Full Text Available Abstract The fact that a PV-thermal energy system can supply energy for hot water and heating in a building is of vital importance for the proliferation of renewable energy sources. Central heating boilers are used in case of insufficient solar energy. This study mainly focuses on the planning of a PV-thermal power system for optimal energy supply in a building and a simulated performance analysis.

  1. Building and simulating protein machines

    Science.gov (United States)

    Katebi, Ataur Rahim

    Glycolysis is a central metabolic pathway, present in almost all organisms, that produces energy. The pathway has been extensively investigated by biochemists. There is a significant body of structural and biochemical information about this pathway. The complete pathway is a ten step process. At each step, a specific chemical reaction is catalyzed by a specific enzyme. Fructose bisphosphate aldolase (FBA) and triosephosphate isomerase (TIM) catalyze the fourth and the fifth steps on the pathway. This thesis investigates the possible substrate transfer mechanism between FBA and TIM. FBA cleaves its substrate, the six-carbon fructose-1,6-bisphosphate (FBP), into two three-carbon products -- glyceraldehydes 3-phosphate (GAP) and dihydroxy acetone phosphate (DHAP). One component of these two products, DHAP, is the substrate for TIM and the other component GAP goes directly to GAPDH, the subsequent enzyme on the pathway. TIM converts DHAP to GAP and delivers the product to GAPDH. I employ Elastic Network Models (ENM) to investigate the mechanistic and dynamic aspects of the functionality of FBA and TIM enzymes -- (1) the effects of the oligomerization of these two enzymes on their functional dynamics and the coordination of the individual protein's structural components along the functional region; and (2) the mechanistic synchrony of these two protein machines that may enable them to operate in a coordinated fashion as a conjugate machine -- transferring the product from FBA as substrate to TIM. A macromolecular machine comprised of FBA and TIM will facilitate the substrate catalysis mechanism and the product flow between FBA and TIM. Such a machine could be used as a functional unit in building a larger a machine for the structural modeling of the whole glycolysis pathway. Building such machines for the glycolysis pathway may reveal the interplay of the enzymes as a complete machine. Also the methods and insights developed from the efforts to build such large machines

  2. Thermal Comfort Studies in Naturally Ventilated Buildings in Jakarta, Indonesia

    OpenAIRE

    Karyono, Tri; Sri, Elita; Sulistiawan, Jevi; Triswanti, Yenny

    2015-01-01

    Many thermal comfort studies have been conducted in offices, classrooms and dwellings, but few in public buildings such as cathedrals, museums and markets. A recent thermal comfort study has been conducted in three naturally ventilated (NV) buildings, a cathedral, a museum and a market, in Jakarta, between March and April 2014. There is a curiosity as to whether people doing slightly different activities with slightly different clothing insulation values, in different building types, might ha...

  3. Energy demand and thermal comfort of HVAC systems with thermally activated building systems as a function of user profile

    Directory of Open Access Journals (Sweden)

    Pałaszyńska Katarzyna

    2017-01-01

    Full Text Available Thermally Activated Building Systems (TABS are a way to use building structure as a thermal energy storage. As a result, renewable energy sources may be used more efficiently. The paper presents numerical analysis of a HVAC system with TABS energy demand and indoor thermal comfort of a representative room in a non-residential building (governmental, commercial, educational. The purpose of analysis is to investigate the influence of a user profile on system performance. The time span of the analysis is one year – a typical meteorological year. The model was prepared using a generally accepted simulation tool – TRNSYS 17. The results help to better understand the interaction of a user profile with TABS. Therefore they are important for the development of optimal control algorithms for energy efficient buildings equipped with such systems.

  4. Energy demand and thermal comfort of HVAC systems with thermally activated building systems as a function of user profile

    Science.gov (United States)

    Pałaszyńska, Katarzyna; Bandurski, Karol; Porowski, Mieczysław

    2017-11-01

    Thermally Activated Building Systems (TABS) are a way to use building structure as a thermal energy storage. As a result, renewable energy sources may be used more efficiently. The paper presents numerical analysis of a HVAC system with TABS energy demand and indoor thermal comfort of a representative room in a non-residential building (governmental, commercial, educational). The purpose of analysis is to investigate the influence of a user profile on system performance. The time span of the analysis is one year - a typical meteorological year. The model was prepared using a generally accepted simulation tool - TRNSYS 17. The results help to better understand the interaction of a user profile with TABS. Therefore they are important for the development of optimal control algorithms for energy efficient buildings equipped with such systems.

  5. Thermal comfort in residential buildings by the millions

    DEFF Research Database (Denmark)

    Østergård, Torben; Jensen, Rasmus Lund; Maagaard, Steffen

    2016-01-01

    In Danish building code and many design briefings, criteria regarding thermal comfort are defined for “critical” rooms in residential buildings. Identifying the critical room is both difficult and time-consuming for large, multistory buildings. To reduce costs and time, such requirement often cau...

  6. Numerical simulation of the LAGEOS thermal behavior and thermal accelerations

    NARCIS (Netherlands)

    Andrés, J.I.; Noomen, R.; Vecellio None, S.

    2006-01-01

    The temperature distribution throughout the LAGEOS satellites is simulated numerically with the objective to determine the resulting thermal force. The different elements and materials comprising the spacecraft, with their energy transfer, have been modeled with unprecedented detail. The radiation

  7. Modelling and simulation of thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eborn, J.

    1998-02-01

    Mathematical modelling and simulation are important tools when dealing with engineering systems that today are becoming increasingly more complex. Integrated production and recycling of materials are trends that give rise to heterogenous systems, which are difficult to handle within one area of expertise. Model libraries are an excellent way to package engineering knowledge of systems and units to be reused by those who are not experts in modelling. Many commercial packages provide good model libraries, but they are usually domain-specific and closed. Heterogenous, multi-domain systems requires open model libraries written in general purpose modelling languages. This thesis describes a model database for thermal power plants written in the object-oriented modelling language OMOLA. The models are based on first principles. Subunits describe volumes with pressure and enthalpy dynamics and flows of heat or different media. The subunits are used to build basic units such as pumps, valves and heat exchangers which can be used to build system models. Several applications are described; a heat recovery steam generator, equipment for juice blending, steam generation in a sulphuric acid plant and a condensing steam plate heat exchanger. Model libraries for industrial use must be validated against measured data. The thesis describes how parameter estimation methods can be used for model validation. Results from a case-study on parameter optimization of a non-linear drum boiler model show how the technique can be used 32 refs, 21 figs

  8. Building America House Simulation Protocols (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.; Engebrecht, C.

    2010-10-01

    The House Simulation Protocol document was developed to track and manage progress toward Building America's multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent analytical reference point. This report summarizes the guidelines for developing and reporting these analytical results in a consistent and meaningful manner for all home energy uses using standard operating conditions.

  9. A methodological study of environmental simulation in architecture and engineering. Integrating daylight and thermal performance across the urban and building scales

    DEFF Research Database (Denmark)

    Sattrup, Peter Andreas; Strømann-Andersen, Jakob Bjørn

    2011-01-01

    theories of environmental performance in architecture and engineering, and a range of simulation experiments by the authors. The framework is an open structure, which can continuously be renewed and contributed to by any author. The value of the framework is demonstrated, using it to map a series...... of simulation studies, emphazising the multidimensionality of environmental performance optimization. Clarifying the conceptual interconnectivity between architecture and engineering, - agency and physics, - not only enhances communicative power and the dissemination of knowledge, but becomes instrumental...

  10. Analysis of Thermal Comfort in an Intelligent Building

    Science.gov (United States)

    Majewski, Grzegorz; Telejko, Marek; Orman, Łukasz J.

    2017-06-01

    Analysis of thermal comfort in the ENERGIS Building, an intelligent building in the campus of the Kielce University of Technology, Poland is the focus of this paper. For this purpose, air temperature, air relative humidity, air flow rate and carbon dioxide concentration were measured and the mean radiant temperature was determined. Thermal sensations of the students occupying the rooms of the building were evaluated with the use of a questionnaire. The students used a seven-point scale of thermal comfort. The microclimate measurement results were used to determine the Predicted Mean Vote and the Predicted Percentage Dissatisfied indices.

  11. Sensitivity analysis for daily building operation from the energy and thermal comfort standpoint

    Directory of Open Access Journals (Sweden)

    Ignjatović Marko G.

    2016-01-01

    Full Text Available Improving energy performance of buildings is one of the most important tasks for reaching sustainability. Assessing building energy consumption is performed more often with specialized simulation tools. Sensitivity analysis proved to be a valuable tool for creating more reliable and realistic building energy models and better buildings. This paper briefly describes the methodology for running global sensitivity analysis and tools that can be used, and presents the results of such an analysis conducted for winter period, daily, on input variables covering a real building's operation, control and occupant related parameters that affect both thermal comfort and heating energy consumption. Two sets of inputs were created. The only difference between these sets is an addition of clothing insulation and occupant heat gain as input variables. The reference building was simulated for three distinctive winter weeks. Two additional input variables have an effect especially on thermal comfort, but they do not disturb the relative order of other influential input variables. The common influential variables for both energy consumption and thermal comfort were identified and are: air handling unit sup-ply temperature and airflow rate and control system related parameters. This can help in future research into implementing the simulation-assisted optimized operation in real buildings. [Projekat Ministarstva nauke Republike Srbije, br. TR-33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  12. Building ceramics with improved thermal insulation parameters

    OpenAIRE

    Rzepa Karol; Wons Wojciech; Reben Manuela

    2016-01-01

    One of the most important performance characteristics of masonry units is their high thermal insulation. There are many different ways to improve this parameter, however the most popular methods in case of ceramic masonry units are: addition of pore-creating raw materials and application of proper hole pattern. This study was an attempt to improve thermal insulation of ceramics by applying thermal insulation additives. Perlite dust created as a subgrain from expansion of perlite rock was used...

  13. Building energy analysis of Electrical Engineering Building from DesignBuilder tool: calibration and simulations

    Science.gov (United States)

    Cárdenas, J.; Osma, G.; Caicedo, C.; Torres, A.; Sánchez, S.; Ordóñez, G.

    2016-07-01

    This research shows the energy analysis of the Electrical Engineering Building, located on campus of the Industrial University of Santander in Bucaramanga - Colombia. This building is a green pilot for analysing energy saving strategies such as solar pipes, green roof, daylighting, and automation, among others. Energy analysis was performed by means of DesignBuilder software from virtual model of the building. Several variables were analysed such as air temperature, relative humidity, air velocity, daylighting, and energy consumption. According to two criteria, thermal load and energy consumption, critical areas were defined. The calibration and validation process of the virtual model was done obtaining error below 5% in comparison with measured values. The simulations show that the average indoor temperature in the critical areas of the building was 27°C, whilst relative humidity reached values near to 70% per year. The most critical discomfort conditions were found in the area of the greatest concentration of people, which has an average annual temperature of 30°C. Solar pipes can increase 33% daylight levels into the areas located on the upper floors of the building. In the case of the green roofs, the simulated results show that these reduces of nearly 31% of the internal heat gains through the roof, as well as a decrease in energy consumption related to air conditioning of 5% for some areas on the fourth and fifth floor. The estimated energy consumption of the building was 69 283 kWh per year.

  14. On the thermal interaction of building structure and heating and ventilation system

    Science.gov (United States)

    Hensen, Joannes Laurentius Maria

    Developments in the field of building performance evaluation tools for thermal interaction of building structure and heating and ventilating systems are described. The technique employed is computer simulation of the integrated dynamic system comprising the occupants, the building and its heating and ventilating system. Assessment criteria from a literature review in thermal comfort to examine acceptable fluctuations in indoor climate are defined. Building and plant energy simulation within the context of Computer Aided Building Design (CABD) is described. An exisiting energy simulation environment ESP(R) (Environmental Systems Performance (Research version)) is chosen. A fluid flow network simulation module is described. Extensions to ESP(R) to predict the dynamic behavior of the heating and ventilation system are described. The coupling of fluid flow, plant side energy and mass, and building side energy simulation into one integrated program is described. A multistage verification and validation methodology is demonstrated by examples addressing each successive step. Imaginary and real world cases are described to demonstrate application of the study in a modeling orientated and a building engineering context.

  15. Energy simulation and optimization for a small commercial building through Modelica

    Science.gov (United States)

    Rivas, Bryan

    Small commercial buildings make up the majority of buildings in the United States. Energy consumed by these buildings is expected to drastically increase in the next few decades, with a large percentage of the energy consumed attributed to cooling systems. This work presents the simulation and optimization of a thermostat schedule to minimize energy consumption in a small commercial building test bed during the cooling season. The simulation occurs through the use of the multi-engineering domain Dymola environment based on the Modelica open source programming language and is optimized with the Java based optimization program GenOpt. The simulation uses both physically based modeling utilizing heat transfer principles for the building and regression analysis for energy consumption. GenOpt is dynamically coupled to Dymola through various interface files. There are very few studies that have coupled GenOpt to a building simulation program and even fewer studies have used Dymola for building simulation as extensively as the work presented here. The work presented proves Dymola as a viable alternative to other building simulation programs such as EnergyPlus and MatLab. The model developed is used to simulate the energy consumption of a test bed, a commissioned real world small commercial building, while maintaining indoor thermal comfort. Potential applications include smart or intelligent building systems, predictive simulation of small commercial buildings, and building diagnostics.

  16. Integrated solar thermal facade component for building energy retrofit

    OpenAIRE

    Giovanardi, Alessia

    2012-01-01

    In the perspective of the "Net Zero Energy Buildings" as specified in the EPBP 2010/31/EU, herein a modular unglazed solar thermal facade component for facilitating the installation of active solar thermal facades has been conceived and designed to answer three considerations: (1) easily installable elements, offering high modularity to be sized for the specific needs of the buildings considered, (2) low-price unglazed technology, given by the industrial process already developed for the frid...

  17. Impact of Thermal Mass Oriented Measures Over CO2 Emissions Of a Thermally Insulated Lowrise Apartment Building in Izmir, Turkey

    Directory of Open Access Journals (Sweden)

    Mümine Gerçek

    2015-02-01

    Full Text Available Climate change has drawn the attention of many researchers and practitioners to focus on the methods to address the challenges in achieving low-carbon buildings and cities and in future developments. Nevertheless, few studies have explored the impacts of thermal mass applications for the lowest carbon emissions of building operational energy consumption. A comparative study of CO2 emissions due to different wall and floor compositions is presented in accordance with their lifespans for a hot-humid climate site. Aim of this study is to examine the relation between the energy oriented operations and carbon emissions of the building. Firstly, an existing low-rise building in İzmir is selected, then modelled in the dynamic simulation model software DesignBuilder v4 by synchronizing drawings with basic operational principles of the program. Furthermore, various influence factors of building envelope thermal characteristics are selected as follows: type, location, thickness and thermal specifications of materials used by keeping thermal conductivity value constant. At the end, the research presents remarkable influence of thermal mass oriented measures on reducing energy demands and carbon footprints.

  18. Energy consumption in buildings and female thermal demand

    Science.gov (United States)

    Kingma, Boris; van Marken Lichtenbelt, Wouter

    2015-12-01

    Energy consumption of residential buildings and offices adds up to about 30% of total carbon dioxide emissions; and occupant behaviour contributes to 80% of the variation in energy consumption. Indoor climate regulations are based on an empirical thermal comfort model that was developed in the 1960s (ref. ). Standard values for one of its primary variables--metabolic rate--are based on an average male, and may overestimate female metabolic rate by up to 35% (ref. ). This may cause buildings to be intrinsically non-energy-efficient in providing comfort to females. Therefore, we make a case to use actual metabolic rates. Moreover, with a biophysical analysis we illustrate the effect of miscalculating metabolic rate on female thermal demand. The approach is fundamentally different from current empirical thermal comfort models and builds up predictions from the physical and physiological constraints, rather than statistical association to thermal comfort. It provides a substantiation of the thermal comfort standard on the population level and adds flexibility to predict thermal demand of subpopulations and individuals. Ultimately, an accurate representation of thermal demand of all occupants leads to actual energy consumption predictions and real energy savings of buildings that are designed and operated by the buildings services community.

  19. 2014 Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, E. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Engebrecht, C. Metzger [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Horowitz, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hendron, R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2014-03-01

    As Building America has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocol (HSP) document provides guidance to program partners and managers so they can compare energy savings for new construction and retrofit projects. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  20. A simple method for estimating thermal response of building ...

    African Journals Online (AJOL)

    A simple method for estimating thermal response of building materials in tropical climate. ... It is concluded from the model's estimates that interior temperatures for thermal comfort can be realized through the appropriate application of passive systems. Global Journal of Pure and Applied Sciences Volume , No 1 January ...

  1. Impact of Building Design Parameters on Thermal Energy Flexibility in a Low-Energy Building

    DEFF Research Database (Denmark)

    Sarran, Lucile; Foteinaki, Kyriaki; Gianniou, Panagiota

    flexibility is assessed through a parameter variation on a building model. Different building designs are subjected to heat cut-offs, and flexibility is evaluated with respect to comfort preservation and heating power peak creation. Under the conditions of this study, the thermal transmittance of the envelope......This work focuses on demand-side management potential for the heating grid in residential buildings. The possibility to increase the flexibility provided to the heat network through specific building design is investigated. The role of different parts of the building structure on thermal...... appears to have the largest impact on thermal flexibility. The importance of window design, namely the size, U-value and orientation, is underlined due to its critical influence on solar gains and heat losses. It is eventually observed that thermal mass has a secondary influence on the evaluated...

  2. Energy flow and thermal comfort in buildings

    DEFF Research Database (Denmark)

    Le Dreau, Jerome

    insulated buildings (R > 5 m2.K/W). In case of single-storey building with a low level of insulation, the effectiveness of radiant terminals is lower due to the larger back losses, and an air-based terminal might be more energy-efficient than a radiant terminal (in terms of delivered energy). Regarding...... is based on both radiation and convection. Radiant terminals have the advantage of making use of low grade sources (i.e. low temperature heating and high temperature cooling), thus decreasing the primary energy consumption of buildings. But there is a lack of knowledge on the heat transfer from...... beam. The higher the air change rate and the warmer the outdoor air, the larger the savings achieved with a radiant cooling terminals. Therefore radiant terminals have a large potential of energy savings for buildings with high ventilation rates (e.g. shop, train station, industrial storage). Among...

  3. Method of systematic determination of specific thermal characteristics of building

    Directory of Open Access Journals (Sweden)

    Prokhorov Vitaliy

    2016-01-01

    Full Text Available In the paper the classical term «specific thermal characteristics of building» proposed by professor Chaplin V.M. for heating systems developing also for others heat-consuming system for building such as ventilation, air conditioning, hot-water supply system is observed. The followings attributing values are established: external building volume, temperature potential in annual crevice cycle.

  4. The effect of simplifying the building description on the numerical modeling of its thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Stetiu, Corina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1993-07-01

    A thermal building simulation program is a numerical model that calculates the response of the building envelopes to weather and human activity, simulates dynamic heating and cooling loads, and heating and cooling distribution systems, and models building equipment operation. The scope of the research is to supply the users of such programs with information about the dangers and benefits of simplifying the input to their models. The Introduction describes the advantages of modeling the heat transfer mechanisms in a building. The programs that perform this type of modeling have, however, limitations. The user is therefore often put in the situation of simplifying the floor plans of the building under study, but not being able to check the effects that this approximation introduces in the results of the simulation. Chapter 1 is a description of methods. It also introduces the floor plans for the office building under study and the ``reasonable`` floor plans simplifications. Chapter 2 presents DOE-2, the thermal building simulation program used in the sensitivity study. The evaluation of the accuracy of the DOE-2 program itself is also presented. Chapter 3 contains the sensitivity study. The complicated nature of the process of interpreting the temperature profile inside a space leads to the necessity of defining different building modes. The study compares the results from the model of the detailed building description with the results from the models of the same building having simplified floor plans. The conclusion is reached that a study of the effects of simplifying the floor plans of a building is important mainly for defining the cases in which this approximation is acceptable. Different results are obtained for different air conditioning/load regimes of the building. 9 refs., 24 figs.

  5. Radiation exchange between persons and surfaces for building energy simulations

    DEFF Research Database (Denmark)

    Vorre, Mette Havgaard; Jensen, Rasmus Lund; Dreau, Jerome Le

    2015-01-01

    Thermal radiation within buildings is a significant component of thermal comfort. Typically the methods applied for calculating view factors between a person and its building surfaces requires great computational time. This research developed a view factor calculation method suitable for building...

  6. Thermal Kinetics of Glass Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Corrales, Louis R.; Du, Jincheng

    2005-08-01

    Different glass quenching algorithms are used to create simulated silica glass and their effect on the final glass structure is determined. The most distinct changes are seen to occur in the medium-range structure, specifically in the population of the different ring sizes. Some differences in the number of defects formed are also observed. The implications are that modified glass forming algorithms create glasses that are at least as good as traditional simulated glass forming methods. The objective of using modified glass forming algorithms are to understand quenching rates of simulations in comparison to quenching rates of macroscopic real systems.

  7. Building Airport Surface HITL Simulation Capability

    Science.gov (United States)

    Chinn, Fay Cherie

    2016-01-01

    FutureFlight Central is a high fidelity, real-time simulator designed to study surface operations and automation. As an air traffic control tower simulator, FFC allows stakeholders such as the FAA, controllers, pilots, airports, and airlines to develop and test advanced surface and terminal area concepts and automation including NextGen and beyond automation concepts and tools. These technologies will improve the safety, capacity and environmental issues facing the National Airspace system. FFC also has extensive video streaming capabilities, which combined with the 3-D database capability makes the facility ideal for any research needing an immersive virtual and or video environment. FutureFlight Central allows human in the loop testing which accommodates human interactions and errors giving a more complete picture than fast time simulations. This presentation describes FFCs capabilities and the components necessary to build an airport surface human in the loop simulation capability.

  8. Methodology for Validating Building Energy Analysis Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Wortman, D.; O' Doherty, B.; Burch, J.

    2008-04-01

    The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

  9. Thermal comfort and ventilation criteria for low energy residential buildings in building codes

    DEFF Research Database (Denmark)

    Cao, Guangyu; Kurnitski, Jarek; Awbi, Hazim

    2012-01-01

    of the indoor air quality in such buildings. Currently, there are no global guidelines for specifying the indoor thermal environment in such low-energy buildings. The objective of this paper is to analyse the classification of indoor thermal comfort levels and recommended ventilation rates for different low......Indoor environmental quality and energy performance of buildings are becoming more and more important in the design and construction of low energy, passive and zero energy buildings. At the same time, improved insulation and air tightness have the potential to resulting in a deterioration...... energy buildings, and propose a set of indices that would enable better quantification and comparison among low energy buildings. In this study, the building codes and voluntary guidelines have been reviewed on the basis of experience of Finland, UK, Denmark, USA and Germany. The analysis in this paper...

  10. Twenty Years On!: Updating the IEA BESTEST Building Thermal Fabric Test Cases for ASHRAE Standard 140: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Neymark, J.

    2013-07-01

    ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs applies the IEA BESTEST building thermal fabric test cases and example simulation results originally published in 1995. These software accuracy test cases and their example simulation results, which comprise the first test suite adapted for the initial 2001 version of Standard 140, are approaching their 20th anniversary. In response to the evolution of the state of the art in building thermal fabric modeling since the test cases and example simulation results were developed, work is commencing to update the normative test specification and the informative example results.

  11. Energy system simulation in performance-based building design

    NARCIS (Netherlands)

    Wilde, P.J.C.J. de; Augenbroe, G.; Voorden, M. van der

    2002-01-01

    This paper discusses the requirements and possible solutions for the use of building simulation tools as instrument to support performance-based building design decisions. Use of an existing simulation tool to support a specific building design decision (the selection of energy saving building

  12. Quantification of Uncertainty in Thermal building Simulation

    DEFF Research Database (Denmark)

    Brohus, Henrik; Haghighat, F.; Frier, Christian

    This paper deals with the determination of the stochastic input loads. The importance of obtaining a proper statistical description of the input quantities to a stochastic model is addressed and exemplified by stochastic models for the external air temperature and the solar heat gain....

  13. Automated Translation and Thermal Zoning of Digital Building Models for Energy Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Nathaniel L. [Cornell University; McCrone, Colin J. [Cornell University; Walter, Bruce J. [Cornell University; Pratt, Kevin B. [Cornell University; Greenberg, Donald P. [Cornell University

    2013-08-26

    Building energy simulation is valuable during the early stages of design, when decisions can have the greatest impact on energy performance. However, preparing digital design models for building energy simulation typically requires tedious manual alteration. This paper describes a series of five automated steps to translate geometric data from an unzoned CAD model into a multi-zone building energy model. First, CAD input is interpreted as geometric surfaces with materials. Second, surface pairs defining walls of various thicknesses are identified. Third, normal directions of unpaired surfaces are determined. Fourth, space boundaries are defined. Fifth, optionally, settings from previous simulations are applied, and spaces are aggregated into a smaller number of thermal zones. Building energy models created quickly using this method can offer guidance throughout the design process.

  14. Thermal Mass & Dynamic Effects Danish Building Regulation

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Selman, Ayser Dawod; Heiselberg, Per

    will focus on three main aspects: ♦ Assess the robustness of the monthly calculation method by varying the input parameters (Part 3) ♦ Better take into consideration the thermal mass in the actual tool by updating the utilisation factors used for the calculation of cooling and heating (Part 3) ♦ Find...... a method to evaluate night-time ventilation in the monthly calculation (Part 4)...

  15. Indoor Air Quality and Thermal Comfort in School Buildings

    Science.gov (United States)

    Juhásová Šenitková, Ingrid

    2017-12-01

    This paper presents results to thermal comfort and environment quality questions in 21 school building rooms. Results show that about 80% of the occupants expressed satisfaction with their thermal comfort in only 11% of the buildings surveyed. Air quality scores were somewhat higher, with 26% of buildings having 80% or occupant satisfaction. With respect to thermal comfort and air quality performance goals set out by standards, most buildings appear to be falling far short. Occupant surveys offer a means to systematically measure this performance, and also to provide diagnostic information for building designers and operators. The odours from building materials as well as human odours were studied by field measurement. The odour intensity and indoor air acceptability were assessed by a sensory panel. The concentrations of total volatile organic compounds and carbon dioxide were measured. The odours from occupancy and building materials were studied under different air change rate. The case study of indoor air acceptability concerning to indoor odours and its effect on perceived air quality are also presented in this paper.

  16. Computer simulation of thermal plant operations

    CERN Document Server

    O'Kelly, Peter

    2012-01-01

    This book describes thermal plant simulation, that is, dynamic simulation of plants which produce, exchange and otherwise utilize heat as their working medium. Directed at chemical, mechanical and control engineers involved with operations, control and optimization and operator training, the book gives the mathematical formulation and use of simulation models of the equipment and systems typically found in these industries. The author has adopted a fundamental approach to the subject. The initial chapters provide an overview of simulation concepts and describe a suitable computer environment.

  17. The Significance of Temperature Based Approach Over the Energy Based Approaches in the Buildings Thermal Assessment

    Science.gov (United States)

    Albatayneh, Aiman; Alterman, Dariusz; Page, Adrian; Moghtaderi, Behdad

    2017-05-01

    The design of low energy buildings requires accurate thermal simulation software to assess the heating and cooling loads. Such designs should sustain thermal comfort for occupants and promote less energy usage over the life time of any building. One of the house energy rating used in Australia is AccuRate, star rating tool to assess and compare the thermal performance of various buildings where the heating and cooling loads are calculated based on fixed operational temperatures between 20 °C to 25 °C to sustain thermal comfort for the occupants. However, these fixed settings for the time and temperatures considerably increase the heating and cooling loads. On the other hand the adaptive thermal model applies a broader range of weather conditions, interacts with the occupants and promotes low energy solutions to maintain thermal comfort. This can be achieved by natural ventilation (opening window/doors), suitable clothes, shading and low energy heating/cooling solutions for the occupied spaces (rooms). These activities will save significant amount of operating energy what can to be taken into account to predict energy consumption for a building. Most of the buildings thermal assessment tools depend on energy-based approaches to predict the thermal performance of any building e.g. AccuRate in Australia. This approach encourages the use of energy to maintain thermal comfort. This paper describes the advantages of a temperature-based approach to assess the building's thermal performance (using an adaptive thermal comfort model) over energy based approach (AccuRate Software used in Australia). The temperature-based approach was validated and compared with the energy-based approach using four full scale housing test modules located in Newcastle, Australia (Cavity Brick (CB), Insulated Cavity Brick (InsCB), Insulated Brick Veneer (InsBV) and Insulated Reverse Brick Veneer (InsRBV)) subjected to a range of seasonal conditions in a moderate climate. The time required for

  18. A REVIEW OF COMPARATIVE EVALUATION OF THERMAL INSULATION MATERIALS FOR BUILDING WALL APPLICATIONS

    OpenAIRE

    Dr. RK. Jain *, Chouhan Balaji, Dhananjay Singh

    2016-01-01

    Attention towards the thermal performance of building materials, particularly thermal insulation systems for buildings, has grown in recent years. Thermal insulation of building walls has a significant effect on the reduction of thermal energy consumption in buildings Making a thermal insulation of a building external wall can in terms of economic aspects be approached as an investment. In this investment the cost is related to the purchase, transport and laying the insulation, whereas the pr...

  19. Importance of thermal comfort for library building in Kuching, Sarawak

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, S.H.; Baharun, A.; Abdul Mannan, M.D.; Abang Adenan, D.A. [Department of Civil Engineering, Faculty of Engineering, University Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak (Malaysia)

    2013-07-01

    Malaysian Government takes an initiative to provide library in housing areas to improve the quality of human capital. However, the government has to evaluate every aspect of their provision to ensure the services provided meet the demands of the users, including the aspect of thermal comfort in the building. For this study, a library constructed using Industrialised Building System (IBS) are selected for thermal comfort evaluation. The data were analyzed using Corrected Effective Temperature (CET) index. From the data analysis, it shows that thermal comfort in the library could not be achieved most of the time unless when the mechanical cooling is used. A series of technical design improvements are then recommended to improve the thermal comfort inside the library by incorporating construction details without increasing the cost.

  20. Thermal Bridges in Building Construction - Measurements and Calculations

    DEFF Research Database (Denmark)

    Rose, Jørgen

    The thesis investigates detailed calculation methods for evaluating heat loss through building envelope constructions, or more specific, thermal bridges. First a detailed description of the calculation methods, i.e. both calculation programs and guidelines, for calculating typical thermal bridges...... in building envelope constructions is given. After this a validation of both programs and guidelines is presented. The validation is performed by comparing calculated U-values with Guarded Hot Box measurements. The last part of the thesis discusses the possibilities of utilising the results of detailed...

  1. Indoor Thermal Environment in Tropical Climate Residential Building

    Directory of Open Access Journals (Sweden)

    Jamaludin Nazhatulzalkis

    2014-01-01

    Full Text Available Indoor thermal environment is one of the criteria in sustainable building. This criterion is important in ensuring a healthy indoor environment for the occupants. The consideration of environmental concerns at the early design stage would effectively integrate the sustainability of the building environment. Global climate changes such as global warming do affect human comfort since people spend most of their time and activities in the building. The increasing of urban population required additional housing for households, as well as places to shop, office and other facilities. Occupants are now more conscious the importance of sustainability for a better quality of life. Good thermal environment is essential for human wellness and comfort. A residential environment will influence residents’ health and safety. The global warming increase the earth’s temperature and greenhouse emission to the atmosphere cause adverse effects to the outdoor environment. Residential developments modify the materials, structure and energy balance in urban climate effects of human economic activities. As an indoor environment is influenced by the outdoor condition, the factors affecting indoor thermal environment are crucial in improving a comfortable and healthy environment in residential building. The microclimatic of a site such as temperature and relative humidity, and wind movement led to the variation of indoor thermal environment in the building.

  2. 2014 Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engebrecht-Metzger, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hendron, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-01

    As BA has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocol (HSP) document provides guidance to program partners and managers so they can compare energy savings for new construction and retrofit projects. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  3. Using thermal power plants waste for building materials

    Science.gov (United States)

    Feduik, R. S.; Smoliakov, A. K.; Timokhin, R. A.; Batarshin, V. O.; Yevdokimova, Yu G.

    2017-10-01

    The recycled use of thermal power plants (TPPs) wastes in the building materials production is formulated. The possibility of using of TPPs fly ash as part of the cement composite binder for concrete is assessed. The results of X-ray diffraction and differential thermal analysis as well as and materials photomicrographs are presented. It was revealed that the fly ash of TPPs of Russian Primorsky Krai is suitable for use as a filler in cement binding based on its chemical composition.

  4. Methodology for Thermal Behaviour Assessment of Homogeneous Façades in Heritage Buildings

    Directory of Open Access Journals (Sweden)

    Enrique Gil

    2017-01-01

    Full Text Available It is fundamental to study the thermal behaviour in all architectural constructions throughout their useful life, in order to detect early deterioration ensuring durability, in addition to achieving and maintaining the interior comfort with the minimum energy consumption possible. This research has developed a methodology to assess the thermal behaviour of façades in heritage buildings. This paper presents methodology validation and verification (V & V through a laboratory experiment. Guidelines and conclusions are extracted with the employment of three techniques in this experiment (thermal sensors, thermal imaging camera, and 3D thermal simulation in finite element software. A small portion of a homogeneous façade has been reproduced with indoor and outdoor thermal conditions. A closed chamber was constructed with wood panels and thermal insulation, leaving only one face exposed to the outside conditions, with a heat source inside the chamber that induces a temperature gradient in the wall. With this methodology, it is possible to better understand the thermal behaviour of the façade and to detect possible damage with the calibration and comparison of the results obtained by the experimental and theoretical techniques. This methodology can be extrapolated to the analysis of the thermal behaviour of façades in heritage buildings, usually made up of homogeneous material.

  5. Thermal simulation and validation of 8W LED lamp

    NARCIS (Netherlands)

    Jakovenko, J.; Werkhoven, R.J.; Formánek, J.; Kunen, J.M.G.; Bolt, P.J.; Kulha, P.

    2011-01-01

    This work deals with thermal simulation and characterization of solid state lightening (SSL) LED Lamp in order to get precise 3D thermal models for further lamp thermal optimization. Simulations are performed with ANSYS-CFX and CoventorWare software tools. The simulated thermal distribution has been

  6. Simplified Building Thermal Model Used for Optimal Control of Radiant Cooling System

    Directory of Open Access Journals (Sweden)

    Lei He

    2016-01-01

    Full Text Available MPC has the ability to optimize the system operation parameters for energy conservation. Recently, it has been used in HVAC systems for saving energy, but there are very few applications in radiant cooling systems. To implement MPC in buildings with radiant terminals, the predictions of cooling load and thermal environment are indispensable. In this paper, a simplified thermal model is proposed for predicting cooling load and thermal environment in buildings with radiant floor. In this thermal model, the black-box model is introduced to derive the incident solar radiation, while the genetic algorithm is utilized to identify the parameters of the thermal model. In order to further validate this simplified thermal model, simulated results from TRNSYS are compared with those from this model and the deviation is evaluated based on coefficient of variation of root mean square (CV. The results show that the simplified model can predict the operative temperature with a CV lower than 1% and predict cooling loads with a CV lower than 10%. For the purpose of supervisory control in HVAC systems, this simplified RC thermal model has an acceptable accuracy and can be used for further MPC in buildings with radiation terminals.

  7. Building Climate Energy Management in Smart Thermal Grids via Aquifer Thermal Energy Storage Systems

    NARCIS (Netherlands)

    Rostampour, Vahab; Jaxa-Rozen, M.; Bloemendal, J.M.; Keviczky, T.

    2016-01-01

    This paper proposes a building energy management framework, described by mixed logical dynamical systems due to operating constraints and logic rules, together with an aquifer thermal energy storage (ATES) model. We develop a deterministic model predictive control strategy to meet building

  8. Field test of a thermal active building system (tabs) in an office building in Denmark

    DEFF Research Database (Denmark)

    Raimondo, Daniela; Olesen, Bjarne W.; Corgnati, Stefano P.

    2013-01-01

    An increasing attention has been addressed in the last years to the assessment, at the same time, of energy performances and indoor environmental quality in buildings. Focusing on thermal comfort recent international standards as ISOEN7730 and EN15251 introduce criteria for using categories...... an experimental study in an office building in Denmark where cooling in summer is provided by thermally activated building systems (TABS). Indoor climate quality evaluation, cooling system performance and energy consumption for a specific room were analyzed with different levels of internal gains. The experiments...... in the indoor environmental assessment of a building. At the same time, also use of low temperature heating and high temperature cooling systems in non-residential buildings has increased, due to the energy efficiency and the economical cooling and heating performance of tins kind of plants. This paper presents...

  9. Optimization for energy efficiency of underground building envelope thermal performance in different climate zones of China

    Science.gov (United States)

    Shi, Luyang; Liu, Jing; Zhang, Huibo

    2017-11-01

    The object of this article is to investigate the influence of thermal performance of envelopes in shallow-buried buildings on energy consumption for different climate zones of China. For the purpose of this study, an effective building energy simulation tool (DeST) developed by Tsinghua University was chosen to model the heat transfer in underground buildings. Based on the simulative results, energy consumption for heating and cooling for the whole year was obtained. The results showed that the relationship between energy consumption and U-value of envelopes for underground buildings is different compared with above-ground buildings: improving thermal performance of exterior walls cannot reduce energy consumption, on the contrary, may result in more energy cost. Besides, it is can be derived that optimized U-values of underground building envelopes vary with climate zones of China in this study. For severe cold climate zone, the optimized U-value of underground building envelopes is 0.8W/(m2·K); for cold climate zone, the optimized U-value is 1.5W/(m2·K); for warm climate zone, the U-value is 2.0W/(m2·K).

  10. The ORC method. Effective modelling of thermal performance of multilayer building components

    Energy Technology Data Exchange (ETDEWEB)

    Akander, Jan

    2000-02-01

    The ORC Method (Optimised RC-networks) provides a means of modelling one- or multidimensional heat transfer in building components, in this context within building simulation environments. The methodology is shown, primarily applied to heat transfer in multilayer building components. For multilayer building components, the analytical thermal performance is known, given layer thickness and material properties. The aim of the ORC Method is to optimise the values of the thermal resistances and heat capacities of an RC-model such as to give model performance a good agreement with the analytical performance, for a wide range of frequencies. The optimisation procedure is made in the frequency domain, where the over-all deviation between model and analytical frequency response, in terms of admittance and dynamic transmittance, is minimised. It is shown that ORC's are effective in terms of accuracy and computational time in comparison to finite difference models when used in building simulations, in this case with IDA/ICE. An ORC configuration of five mass nodes has been found to model building components in Nordic countries well, within the application of thermal comfort and energy requirement simulations. Simple RC-networks, such as the surface heat capacity and the simple R-C-configuration are not appropriate for detailed building simulation. However, these can be used as basis for defining the effective heat capacity of a building component. An approximate method is suggested on how to determine the effective heat capacity without the use of complex numbers. This entity can be calculated on basis of layer thickness and material properties with the help of two time constants. The approximate method can give inaccuracies corresponding to 20%. In-situ measurements have been carried out in an experimental building with the purpose of establishing the effective heat capacity of external building components that are subjected to normal thermal conditions. The auxiliary

  11. IMPACT ON THE APPLICATION OF INSULATION IN BUILDINGS TO ACHIEVE THERMAL COMFORT (A CASE STUDY: LAUSER OFFICE BUILDING IN BANDA ACEH

    Directory of Open Access Journals (Sweden)

    Nova Purnama Lisa

    2014-12-01

    Full Text Available From the results of research studies on the impact of the use of insulation in buildings, reducing solar radiation on buildings to improve indoor comfort by applying the Principles of radiation reduction in buildings naturally using insulation application that serves as an insulator against the building materials, use of thermal insulation in particular mounted on the roof of the building and the walls are located on second floor and the third floor Lauser office building, Calculate the cooling load for each room that was on second floor and the third floor based on the geographical location or position of the building, climate data, building material data , and the intensity of the spatial characteristics which include lighting, solar radiation, user activity and electrical appliances being used. The calculation is done with the help of Ecotech v.5, 2011. The location and position on the third floor of a building with a flat roof cast concrete, so that the heat absorbed by the platform, and two times greater than the amount of heat radiation is absorbed by the material in the direction of the light falling the sun is at an angle <30°C. The simulation results on the building with the addition of thermal insulation on all walls and the roof of the inside of the foam material ultrafolmadehid, without changing the model building and similar activities in accordance with the existing condition and the condition of the room using the air conditioner at a temperature of 18-26°C, indicating a decrease in cooling load signifinikan in any space reaches 40% of the total cooling load required on the lauser office building. Comparing the simulation results Ecotech temperature v.5 2011 with field measurements as a validation of the simulation results in order to achieve thermal comfort in buildings and can menggurangi use energy consumption in buildings and can be used as a reference in planning space-based conditioning systems energy efficient.

  12. The correlation between thermal comfort in buildings and fashion products.

    Science.gov (United States)

    Giesel, Aline; de Mello Souza, Patrícia

    2012-01-01

    This article is about thermal comfort in the wearable product. The research correlates fashion and architecture, in so far as it elects the brise soleil - an architectural element capable of regulating temperature and ventilation inside buildings - as a study referential, in trying to transpose and adapt its mechanisms to the wearable apparel.

  13. The thermal environment and occupant perceptions in European office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Stoops, J.L. [Chalmers Univ. of Tech., Goeteborg (Sweden). Dept. of Building Services Engineering

    2002-02-01

    The results from a large field study of thermal comfort in European office buildings are reported. Environmental conditions and occupant perceptions were collected over fourteen months from twenty-six different office buildings located in France, Greece, Portugal, Sweden and the UK. This thesis focuses on the thermal measurements and occupant perceptions; however, some of the additional variables with strong connections to thermal sensation are also examined. A summary of human comfort is presented to help place this thesis in appropriate context. The summary presents thermal comfort issues within a broad framework of environmental comfort including physical, physiological, behavioural, psychological and other variables. A more narrowly focused overview of current thermal comfort research is also included. The work attempts to show relationships and produce useful information from the data set by using rather simple statistics and graphical methods. The objective is to quite literally use the data set to illustrate the actual thermal conditions in European office buildings and the occupant perceptions of those conditions. The data are examined in some detail with key relationships identified and explored. Significant differences between countries, both for the physical conditions and the perceptions of those conditions are identified. In addition, the variation over the course of the year for each country is explored. The variations occur in complex ways, which make simple, all encompassing explanations impossible. The nature and size of the variations make the application of simple Europe wide models of thermal comfort questionable. It appears that individuals in different European countries have different expectations for their indoor office thermal environment. This data set will be further explored in a more complete study, which will examine the other measured variables.

  14. A Method for more specific Simulation of Operative Temperature in Thermal Analysis Programmes

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik

    2008-01-01

    Simulation of energy consumption of buildings on hourly basis is closely connected to the thermal indoor climate. The operative temperature can be used as a simple measure for thermal environment. The operative temperature is a function of the air temperature, the mean radiant temperature...

  15. Model of natural ventilation by using a coupled thermal-airflow simulation program

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg; Remmen, Arne

    2012-01-01

    This article presents a model of natural ventilation of buildings at the stage of design and a consequence of the behaviour of the occupants. An evaluation is made by coupling multizone air modelling and thermal building simulation using a deterministic set of input factors comprising among others...

  16. Thermal Comfort in a Naturally-Ventilated Educational Building

    Directory of Open Access Journals (Sweden)

    David Mwale Ogoli

    2012-11-01

    Full Text Available A comprehensive study of thermal comfort in a naturally ventilated education building (88,000 ft2 in a Chicago suburb will be conducted with 120 student subjects in 2007. This paper discusses some recent trends in worldwide thermal comfort studies and presents a proposal of research for this building through a series of questionnaire tables. Two research methods used inthermal comfort studies are field studies and laboratory experiments in climate-chambers. The various elements that constitute a “comfortable” thermal environment include physical factors (ambient air temperature, mean radiant temperature, air movement and humidity, personal factors(activity and clothing, classifications (gender, age, education, etc. and psychological expectations (knowledge, experience, psychological effect of visual warmth by, say, a fireplace. Comparisons are made using data gathered from Nairobi, Kenya.Keywords: Comfort, temperature, humidity and ventilation

  17. Modeling energy flexibility of low energy buildings utilizing thermal mass

    DEFF Research Database (Denmark)

    Foteinaki, Kyriaki; Heller, Alfred; Rode, Carsten

    2016-01-01

    In the future energy system a considerable increase in the penetration of renewable energy is expected, challenging the stability of the system, as both production and consumption will have fluctuating patterns. Hence, the concept of energy flexibility will be necessary in order for the consumption...... to match the production patterns, shifting demand from on-peak hours to off-peak hours. Buildings could act as flexibility suppliers to the energy system, through load shifting potential, provided that the large thermal mass of the building stock could be utilized for energy storage. In the present study...... the load shifting potential of an apartment of a low energy building in Copenhagen is assessed, utilizing the heat storage capacity of the thermal mass when the heating system is switched off for relieving the energy system. It is shown that when using a 4-hour preheating period before switching off...

  18. Tests of thermal resistance of simulated walls with the reflective insulation

    Directory of Open Access Journals (Sweden)

    Piotrowski Jerzy Zb.

    2014-03-01

    Full Text Available The paper presents the thermal resistance characteristics of walls with multilayer reflective insulation. The tests have been performed using a heat flow meter to determine the resistivity of the layers simulating partition walls in buildings. A modification of the structure has also been proposed and analysed with a view to increase the thermal resistance and, consequently, reduce the heat flux transferred through the walls. Consequently, walls produced with layers that ensure higher thermal insulation lead to better thermal performance properties of the whole buildings, which reduce heating/cooling costs throughout the year.

  19. THERMAL PERFORMANCE OF BUILDINGS AND BUILDING ENVELOPE SYSTEMS: AN ANNOTATED BIBLIOGRAPHY

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, William L.

    1979-04-01

    A bibliography of published papers describing models, measurement techniques, apparatus, and data for the thermal performance of whole buildings and building envelope systems has been collected (aggregate energy consumption of whole buildings, performance of HVAC equipment, and solar technologies are not included). Summary descriptions of the content of each citation are provided. Measurements on whole buildings or on systems other than walls are sparse. However, new and recently completed measurement facilities are increasing these capabilities. Measurements under dynamic conditions are difficult to accomplish and few reliable data exist. Some analogs have been explored experimentally and analytically. Citations on analytical models are selective and concentrate on methodology that forms the basis of computer programs for whole-building energy analysis. Interesting future directions include new approaches to dynamic measurements, both in the laboratory and in the field, for envelope systems and for whole buildings.

  20. An overview of an integrated building simulation tool : designer's simulation toolkit (DeST)

    Energy Technology Data Exchange (ETDEWEB)

    Yan, D.; Jiang, Y. [Tsinghua Univ., Beijing (China). Dept. of Building Science, School of Architecture

    2005-07-01

    DeST is a simulation engine for handling building thermal calculations. It is capable of simulating a building's energy performance by stages. Among its many features, DeST uses base temperatures to couple building and energy systems to determine the relationship between thermal behaviour of buildings and dynamic performances of heating, ventilation and air conditioning (HVAC) systems. It offers design and simulation by stages and emphasizes the prediction of optimized performance of a system. It also compares user selected design conditions of a space and provides parameters for optimized control. DeSP uses a graphical interface and is adaptable to a compatible platform adopted to TRNSYS. DeST comprises several different modules for handling different functions and areas. These include the meteorological data producer for HVAC analysis (Medpha); VentPlus; computer aided building description (CABD); Bshadow; lighting; and, building analysis and simulation (BAS). When using the platform, designers have to choose the appropriate air handling unit for combined plant simulation. The DeST has been used for China's State Grand Theatre, the State Swimming Centre and also for renovation projects involving HVAC systems. 20 refs., 5 figs.

  1. Modeling and optimization of energy generation and storage systems for thermal conditioning of buildings targeting conceptual building design

    Energy Technology Data Exchange (ETDEWEB)

    Grahovac, Milica

    2012-11-29

    The thermal conditioning systems are responsible for almost half of the energy consump-tion by commercial buildings. In many European countries and in the USA, buildings account for around 40% of primary energy consumption and it is therefore vital to explore further ways to reduce the HVAC (Heating, Ventilation and Air Conditioning) system energy consumption. This thesis investigates the relationship between the energy genera-tion and storage systems for thermal conditioning of buildings (shorter: primary HVAC systems) and the conceptual building design. Certain building design decisions irreversibly influence a building's energy performance and, conversely, many generation and storage components impose restrictions on building design and, by their nature, cannot be introduced at a later design stage. The objective is, firstly, to develop a method to quantify this influence, in terms of primary HVAC system dimensions, its cost, emissions and energy consumption and, secondly, to enable the use of the developed method by architects during the conceptual design. In order to account for the non-stationary effects of the intermittent renewable energy sources (RES), thermal storage and for the component part load efficiencies, a time domain system simulation is required. An abstract system simulation method is proposed based on seven pre-configured primary HVAC system models, including components such as boil-ers, chillers and cooling towers, thermal storage, solar thermal collectors, and photovoltaic modules. A control strategy is developed for each of the models and their annual quasi-stationary simulation is performed. The performance profiles obtained are then used to calculate the energy consumption, carbon emissions and costs. The annuity method has been employed to calculate the cost. Optimization is used to automatically size the HVAC systems, based on their simulation performance. Its purpose is to identify the system component dimensions that provide

  2. Models for describing the thermal characteristics of building components

    DEFF Research Database (Denmark)

    Jimenez, M.J.; Madsen, Henrik

    2008-01-01

    Outdoor testing of buildings and building components under real weather conditions provides useful information about their dynamic performance. Such knowledge is needed to properly characterize the heat transfer dynamics and provides useful information for implementing energy saving strategies...... of these approaches may therefore be very useful for selecting a suitable approach for each particular case. This paper presents an overview of models that can be applied for modelling the thermal characteristics of buildings and building components using data from outdoor testing. The choice of approach depends......, for example. For the analysis of these tests, dynamic analysis models and methods are required. However, a wide variety of models and methods exists, and the problem of choosing the most appropriate approach for each particular case is a non-trivial and interdisciplinary task. Knowledge of a large family...

  3. Thermal models of buildings. Determination of temperatures, heating and cooling loads. Theories, models and computer programs

    Energy Technology Data Exchange (ETDEWEB)

    Kaellblad, K.

    1998-05-01

    The need to estimate indoor temperatures, heating or cooling load and energy requirements for buildings arises in many stages of a buildings life cycle, e.g. at the early layout stage, during the design of a building and for energy retrofitting planning. Other purposes are to meet the authorities requirements given in building codes. All these situations require good calculation methods. The main purpose of this report is to present the authors work with problems related to thermal models and calculation methods for determination of temperatures and heating or cooling loads in buildings. Thus the major part of the report deals with treatment of solar radiation in glazing systems, shading of solar and sky radiation and the computer program JULOTTA used to simulate the thermal behavior of rooms and buildings. Other parts of thermal models of buildings are more briefly discussed and included in order to give an overview of existing problems and available solutions. A brief presentation of how thermal models can be built up is also given and it is a hope that the report can be useful as an introduction to this part of building physics as well as during development of calculation methods and computer programs. The report may also serve as a help for the users of energy related programs. Independent of which method or program a user choose to work with it is his or her own responsibility to understand the limits of the tool, else wrong conclusions may be drawn from the results 52 refs, 22 figs, 4 tabs

  4. Solutions to Improve the Thermal Protection of the Administrative Building

    Directory of Open Access Journals (Sweden)

    Kostenko Valeriya

    2016-01-01

    Full Text Available At the end of the 90s, with the introduction of changes in the regulatory documents of the Russian Federation №3 to SNiP II-3-79*, regulatory requirements for thermal protection of buildings were revised towards increase. For this reason, the buildings built till 2000 don't conform to modern requirements. The actual solution of this problem is to carry out works on renovation of facades of the existing buildings with the use of innovative materials. As object of research one of educational cases of Peter the Great St. Petersburg Polytechnic University has been chosen, where by practical consideration the size of the actual thermal resistance of external walls has been determined by heat flux meter, the numerical value of which was significantly lower than the standard values. Based on the obtained data two modern ways of thermal insulation of facades (Ventilated Façade System (VFS and External Thermal Insulation Composite System (ETICS have been analyzed, the assessment of energy saving potential and the discounted payback period of the investments directed to warming of facades has been made.

  5. Multi-Variable Optimization of Building Thermal Design Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Joanna Ferdyn-Grygierek

    2017-10-01

    Full Text Available The building sector is one of the largest energy consumers in the world, comprising about 40% of the total energy consumption in numerous countries. Early design decisions have a significant impact on the energy performance of buildings. The paper presents the multi-variable optimization of the selected design parameters in a single-family building in temperate climate conditions. The influence of four types of windows, their size, building orientation, insulation of external wall, roof and ground floor and infiltration on the life cycle costs (LCC is analyzed. Optimal selection of the design parameters is carried out using genetic algorithms by coupling the building performance simulation program EnergyPlus with optimization environment. The simulations were conducted for seven optimization cases. The analysis is performed for two variants of a building with heating and cooling systems and with a heating system only. Depending on the analyzed case, the life cycle costs decreased from 7% to 34% LCC value of the reference building. In the case of temperate climate, the building optimization (in terms of heat demand only substantially reduces the heating costs, yet the summer thermal comfort conditions deteriorate significantly.

  6. A View on Future Building System Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  7. Features of Functioning the Integrated Building Thermal Model

    Directory of Open Access Journals (Sweden)

    Morozov Maxim N.

    2017-01-01

    Full Text Available A model of the building heating system, consisting of energy source, a distributed automatic control system, elements of individual heating unit and heating system is designed. Application Simulink of mathematical package Matlab is selected as a platform for the model. There are the specialized application Simscape libraries in aggregate with a wide range of Matlab mathematical tools allow to apply the “acausal” modeling concept. Implementation the “physical” representation of the object model gave improving the accuracy of the models. Principle of operation and features of the functioning of the thermal model is described. The investigations of building cooling dynamics were carried out.

  8. On a computational model of building thermal dynamic response

    Science.gov (United States)

    Jarošová, Petra; Vala, Jiří

    2016-07-01

    Development and exploitation of advanced materials, structures and technologies in civil engineering, both for buildings with carefully controlled interior temperature and for common residential houses, together with new European and national directives and technical standards, stimulate the development of rather complex and robust, but sufficiently simple and inexpensive computational tools, supporting their design and optimization of energy consumption. This paper demonstrates the possibility of consideration of such seemingly contradictory requirements, using the simplified non-stationary thermal model of a building, motivated by the analogy with the analysis of electric circuits; certain semi-analytical forms of solutions come from the method of lines.

  9. The integration of water loop heat pump and building structural thermal storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  10. Occupant performance and building energy consumption with different philosophies of determining acceptable thermal conditions

    DEFF Research Database (Denmark)

    Toftum, Jørn; Andersen, Rune Vinther; Jensen, Kasper Lynge

    2009-01-01

    configurations, especially in the tropical climate, the estimated performance differed only modestly between configurations. However, energy consumption was always lower in buildings without mechanical cooling, particularly so in the tropical climate. The findings indicate that determining acceptable indoor......Based on building energy and indoor environment simulations, this study uses a recently developed method relying on Bayesian Network theory to estimate and compare the consequences for occupant performance and energy consumption of applying temperature criteria set according to the adaptive model...... thermal environments with the adaptive comfort model may result in significant energy savings and at the same time will not have large consequences for the mental performance of occupants....

  11. Assessment of thermal insulation materials and systems for building applications

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The primary goal of the study was to provide a proper foundation for decision making by the federal government, industry, and consumer. The report may be used to identify areas where new test methods and standards are needed to establish new programs for improving thermal performance of buildings, and as a basis for setting new or improved standards after the recommended test programs have been completed.

  12. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds

    Directory of Open Access Journals (Sweden)

    Beatrice Castellani

    2014-09-01

    Full Text Available Increasing energy costs are at the origin of the great progress in the field of phase change materials (PCMs. The present work aims at studying the application of clathrate hydrates as PCMs in buildings. Clathrate hydrates are crystalline structures in which guest molecules are enclosed in the crystal lattice of water molecules. Clathrate hydrates can form also at ambient pressure and present a high latent heat, and for this reason, they are good candidates for being used as PCMs. The parameter that makes a PCM suitable to be used in buildings is, first of all, a melting temperature at about 25 °C. The paper provides an overview of groups of clathrate hydrates, whose physical and chemical characteristics could meet the requirements needed for their application in buildings. Simulations with a dynamic building simulation tool are carried out to evaluate the performance of clathrate hydrates in enhancing thermal comfort through the moderation of summer temperature swings and, therefore, in reducing energy consumption. Simulations suggest that clathrate hydrates have a potential in terms of improvement of indoor thermal comfort and a reduction of energy consumption for cooling. Cooling effects of 0.5 °C and reduced overheating hours of up to 1.1% are predicted.

  13. Development of a Standalone Thermal Wellbore Simulator

    Science.gov (United States)

    Xiong, Wanqiang

    With continuous developments of various different sophisticated wells in the petroleum industry, wellbore modeling and simulation have increasingly received more attention. Especially in unconventional oil and gas recovery processes, there is a growing demand for more accurate wellbore modeling. Despite notable advancements made in wellbore modeling, none of the existing wellbore simulators has been as successful as reservoir simulators such as Eclipse and CMG's and further research works on handling issues such as accurate heat loss modeling and multi-tubing wellbore modeling are really necessary. A series of mathematical equations including main governing equations, auxiliary equations, PVT equations, thermodynamic equations, drift-flux model equations, and wellbore heat loss calculation equations are collected and screened from publications. Based on these modeling equations, workflows for wellbore simulation and software development are proposed. Research works are conducted in key steps for developing a wellbore simulator: discretization, a grid system, a solution method, a linear equation solver, and computer language. A standalone thermal wellbore simulator is developed by using standard C++ language. This wellbore simulator can simulate single-phase injection and production, two-phase steam injection and two-phase oil and water production. By implementing a multi-part scheme which divides a wellbore with sophisticated configuration into several relative simple simulation running units, this simulator can handle different complex wellbores: wellbore with multistage casings, horizontal wells, multilateral wells and double tubing. In pursuance of improved accuracy of heat loss calculations to surrounding formations, a semi-numerical method is proposed and a series of FLUENT simulations have been conducted in this study. This semi-numerical method involves extending the 2D formation heat transfer simulation to include a casing wall and cement and adopting new

  14. A study of the passive cooling potential in simulated building in Latvian climate conditions

    Science.gov (United States)

    Prozuments, A.; Vanags, I.; Borodinecs, A.; Millers, R.; Tumanova, K.

    2017-10-01

    In this paper authors point out that overheating in buildings during summer season is a major problem in moderate and cold climates, not only in warm climate zones. Mostly caused by solar heat gains, especially in buildings with large glazed areas overheating is a common problem in recently constructed low-energy buildings. At the same time, comfort demands are increasing. While heating loads can be decreased by improving the insulation of the building envelope, cooling loads are also affecting total energy demand. Passive cooling solutions allow reduction of heat gains, and thus reducing the cooling loads. There is a significant night cooling potential with low temperatures at night during summer in moderate and cold climates. Night cooling is based on cooling of buildings thermal mass during the night and heat accumulation during the day. This approach allows to provide thermal comfort, reducing cooling loads during the day. Authors investigate thermal comfort requirements and causes for discomfort. Passive cooling methods are described. The simulation modeling is carried out to analyze impact of constructions and building orientation on energy consumption for cooling using the IDA-ICE software. Main criteria for simulation analysis are energy consumption for cooling and thermal comfort.

  15. An Empirical Validation of Building Simulation Software for Modelling of Double-Skin Facade (DSF)

    DEFF Research Database (Denmark)

    Larsen, Olena Kalyanova; Heiselberg, Per; Felsmann, Clemens

    2009-01-01

    Double-skin facade (DSF) buildings are being built as an attractive, innovative and energy efficient solution. Nowadays, several design tools are used for assessment of thermal and energy performance of DSF buildings. Existing design tools are well-suited for performance assessment of conventional...... buildings, but their accuracy might be limited in cases with DSFs because of the complexity of the heat and mass transfer processes within the DSF. To address this problem, an empirical validation of building models with DSF, performed with various building simulation tools (ESP-r, IDA ICE 3.0, VA114...... of DSF: 1. Thermal buffer mode (closed DSF cavity) and 2. External air curtain mode (naturally ventilated DSF cavity with the top and bottom openings open to outdoors). By carrying out the empirical tests, it was concluded that all models experience difficulties in predictions during the peak solar loads...

  16. Simulation-based support for integrated design of new low-energy office buildings

    DEFF Research Database (Denmark)

    Petersen, Steffen

    design disciplines (structural, fire, architecture etc.) to the integrated building design process. The research therefore revolves around the hypothesis that parametric analyses on the energy performance, indoor environment and total economy of rooms with respect to geometry and characteristics...... control systems, while improving thermal comfort for building occupants. The method furthermore automates the configuration of buildings systems operation. This eliminates time consuming manual configuration of building systems operation when using building simulation for parametric analyses in the design......This thesis reports on four years of research with the aim to contribute to the implementation of low-energy office buildings with high quality of indoor environment and good total economy. Focus has been on the design decisions made in the early stages of the building design process. The objective...

  17. Thermal stress fracturing of magma simulant materials

    Energy Technology Data Exchange (ETDEWEB)

    Wemple, R.P.; Longcope, D.B.

    1986-10-01

    Direct contact heat exchanger concepts for the extraction of energy from magma chambers are being studied as part of the DOE-funded Magma Energy Research Program at Sandia National Laboratories. These concepts require the solidification of molten material by a coolant circulated through a borehole drilled into the magma and subsequent fracture of the solid either as a natural consequence of thermal stress or by deliberate design (intentional flaws, high pressure, etc.). This report summarizes the results of several thermal stress fracturing experiments performed in the laboratory and compares the results with an analysis developed for use as a predictive tool. Information gained from this test series has been the basis for additional work now under way to simulate magma melt solidification processes.

  18. Numerical simulation of solar heating of buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Coffe, G.; Jannot, M.; Pellerin, J.F.

    1980-01-01

    This study is divided into two parts: First, the thermal modelling of a solar + electric heated building is presented; mathematical equations are established; numerical calculations are analyzed; and a calculation code in FORTRAN V is set down. Second, this calculation code was used to study the thermal performances of the solar + electric heated building in three European climates: Copenhagen (56/sup 0/ north latitude - Denmark), Trappes (48/sup 0/ north latitude - France), and Carpentras (44/sup 0/ north latitude - France).

  19. Assessment Framework of Building Facade in Optimizing Indoor Thermal Comfort of Green Building Index (GBI Certified Office Building

    Directory of Open Access Journals (Sweden)

    Abdul Tharim Asniza Hamimi

    2016-01-01

    Full Text Available During the past decade, the construction industry has seen a new trend in the development of “green” or “sustainable” construction concept around the world with vast support from prominent organization, together with the introduction of sustainable building codes. The establishment of green building certification systems worldwide is seen as one of the most efforts in the emerging green building movement. In order to support the development of the “green” and “sustainable” concept in Malaysia, Green Building Index (GBI was launched by the government on 21 May 2009 that created to promote sustainability in the built environment and raise awareness of environmental issues. However, the construction industry seems to have focused only on findings the “right mechanism” for an environmentally sustainable “final result” in order for the building to be certified as green with the lacking of continuous assessment on the building performance after the certifications. This study is purposely conducted to investigate the performance of various rated Green Building Index (GBI Non-Residential New Construction office buildings and the influence on Indoor Thermal Comfort (ITC of the selected buildings. The aim is to develop an assessment framework for optimum green building architectural façade to be used for office buildings in Malaysia as well as to analyse the occupants’ perception, satisfaction and performance in the selected Green Building Index (GBI rated office indoor environment. This research is still in its infancy; therefore the paper is focused on research aims, research scope and methodology, and expected deliverables for the proposed research.

  20. Advances in Thermal Insulation. Vacuum Insulation Panels and Thermal Efficiency to Reduce Energy Usage in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thorsell, Thomas

    2012-07-01

    We are coming to realize that there is an urgent need to reduce energy usage in buildings and it has to be done in a sustainable way. This thesis focuses on the performance of the building envelope; more precisely thermal performance of walls and super insulation material in the form of vacuum insulation. However, the building envelope is just one part of the whole building system, and super insulators have one major flaw: they are easily adversely affected by other problems in the built environment. Vacuum Insulation Panels are one fresh addition to the arsenal of insulation materials available to the building industry. They are composite material with a core and an enclosure which, as a composite, can reach thermal conductivities as low as 0.004 W/(mK). However, the exceptional performance relies on the barrier material preventing gas permeation, maintaining a near vacuum into the core and a minimized thermal bridge effect from the wrapping of barrier material round the edge of a panel. A serpentine edge is proposed to decrease the heat loss at the edge. Modeling and testing shows a reduction of 60 % if a reasonable serpentine edge is used. A diffusion model of permeation through multilayered barrier films with metallization coatings was developed to predict ultimate service life. The model combines numerical calculations with analytical field theory allowing for more precise determination than current models. The results using the proposed model indicate that it is possible to manufacture panels with lifetimes exceeding 50 years with existing manufacturing. Switching from the component scale to the building scale; an approach of integrated testing and modeling is proposed. Four wall types have been tested in a large range of environments with the aim to assess the hydrothermal nature and significance of thermal bridges and air leakages. The test procedure was also examined as a means for a more representative performance indicator than R-value (in USA). The

  1. Modeling of thermal mass energy storage in buildings with phase change materials

    Science.gov (United States)

    Delcroix, Benoit

    Building thermal mass is a key parameter defining the ability of a building to mitigate inside temperature variations and to maintain a better thermal comfort. Increasing the thermal mass of a lightweight building can be achieved by using Phase Change Materials (PCMs). These materials offer a high energy storage capacity (using latent energy) and a nearly constant temperature phase change. They can be integrated conveniently in net-zero energy buildings. The current interest for these buildings and for better power demand management strategies requires accurate transient simulation of heavy and highly insulated slabs or walls with short time-steps (lower than or equal to 5 minutes). This represents a challenge for codes that were mainly developed for yearly energy load calculations with a time-step of 1 hour. It is the case of the TRNSYS building model (called Type 56) which presents limitations when modeling heavy and highly insulated slabs with short time-steps. These limitations come from the method used by TRNSYS for modeling conduction heat transfer through walls which is known as the Conduction Transfer Function (CTF) method. In particular, problems have been identified in the generation of CTF coefficients used to model the walls thermal response. This method is also unable to define layers with variable thermophysical properties, as displayed by PCMs. PCM modeling is further hindered by the limited information provided by manufacturers: physical properties are often incomplete or incorrect. Finally, current models are unable to represent the whole complexity of PCM thermal behavior: they rarely include different properties for melting and solidification (hysteresis); they sometimes take into account variable thermal conductivity; but they never model subcooling effects. All these challenges are tackled in this thesis and solutions are proposed. The first part (chapter 4) focuses on improving the CTF method in TRNSYS through state-space modeling

  2. Co-simulation of innovative integrated HVAC systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Trcka, Marija; Hensena, Jan L.M.; Wetter, Michael

    2010-06-21

    Integrated performance simulation of buildings HVAC systems can help in reducing energy consumption and increasing occupant comfort. However, no single building performance simulation (BPS) tool offers sufficient capabilities and flexibilities to analyze integrated building systems and to enable rapid prototyping of innovative building and system technologies. One way to alleviate this problem is to use co-simulation, as an integrated approach to simulation. This article elaborates on issues important for co-simulation realization and discusses multiple possibilities to justify the particular approach implemented in the here described co-simulation prototype. The prototype is validated with the results obtained from the traditional simulation approach. It is further used in a proof-of-concept case study to demonstrate the applicability of the method and to highlight its benefits. Stability and accuracy of different coupling strategies are analyzed to give a guideline for the required coupling time step.

  3. Learning in a landscape : Simulation-building as reflexive intervention

    NARCIS (Netherlands)

    Beaulieu, Anne; Ratto, Matt; Scharnhorst, Andrea

    2013-01-01

    This article makes a dual contribution to scholarship in science and technology studies (STS) on simulation-building. It both documents a specific simulation-building project, and demonstrates a concrete contribution to interdisciplinary work of STS insights. The article analyses the struggles that

  4. Advanced wellbore thermal simulator GEOTEMP2 research report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.F.

    1982-02-01

    The development of the GEOTEMP2 wellbore thermal simulator is described. The major technical features include a general purpose air and mist drilling simulator and a two-phase steam flow simulator that can model either injection or production.

  5. Automated Comparison of Building Energy Simulation Engines (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Polly, B.; Horowitz, S.; Booten, B.; Kruis, N.; Christensen, C.

    2012-08-01

    This presentation describes the BEopt comparative test suite, which is a tool that facilitates the automated comparison of building energy simulation engines. It also demonstrates how the test suite is improving the accuracy of building energy simulation programs. Building energy simulation programs inform energy efficient design for new homes and energy efficient upgrades for existing homes. Stakeholders rely on accurate predictions from simulation programs. Previous research indicates that software tends to over-predict energy usage for poorly-insulated leaky homes. NREL is identifying, investigating, and resolving software inaccuracy issues. Comparative software testing is one method of many that NREL uses to identify potential software issues.

  6. The simulation of an industrial building demolition

    Directory of Open Access Journals (Sweden)

    Claudiu-Sorin Dragomir

    2013-06-01

    Full Text Available The paper present a way of checking and optimization of a demolition scenario at an industrial building based on controlled blasting method in order to transition to the actual demolition of the building in question. For this purpose we used a specialized computer system that describes the behaviour of the structure at exceptional actions, from the application of forces, the opening and propagation of cracks, the separation structural elements up to total collapse of the building.

  7. Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

    2010-08-01

    Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

  8. Integrated Thermal-Energy Analysis of Innovative Translucent White Marble for Building Envelope Application

    Directory of Open Access Journals (Sweden)

    Federica Rosso

    2014-08-01

    Full Text Available Marble is a natural material, used in the construction field since antiquity. It has always been used to communicate monumentality and solidity. Nowadays new technologies permit marble to express new languages: particularly, translucent marble technology overturns the concept of solidity. The main issue to address is the lack of thermal-energy performance of such a thin stone layer as the only facade component. Conversely, Bianco Carrara and Statuario marbles, for instance, have intrinsic benefits as natural cool materials, due to their high solar reflectance and thermal emissivity. Thus, this paper analyzes the thermal-energy and environmental behavior of marble facade for a new designed building in New York City. An integrated analysis of the energy performance of the marble skin is performed through a preliminary experimental characterization, carried out for two different types of naturally white marble, for comparative purposes. Then, a dynamic simulation model of the building is developed to evaluate year-round benefits and drawbacks of the translucent marble envelope in terms of indoor thermal comfort and air-conditioning requirement. The analysis showed how the proposed marble facade is able to decrease the energy requirement for cooling up to 6%, demonstrating possible relevant perspectives for marble-based facades, even in energy-efficient buildings.

  9. Reducing Residential Peak Electricity Demand with Mechanical Pre-Cooling of Building Thermal Mass

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Will [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Roux, Jordan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    This study uses an advanced airflow, energy and humidity modelling tool to evaluate the potential for residential mechanical pre-cooling of building thermal mass to shift electricity loads away from the peak electricity demand period. The focus of this study is residential buildings with low thermal mass, such as timber-frame houses typical to the US. Simulations were performed for homes in 12 US DOE climate zones. The results show that the effectiveness of mechanical pre-cooling is highly dependent on climate zone and the selected pre-cooling strategy. The expected energy trade-off between cooling peak energy savings and increased off-peak energy use is also shown.

  10. Experimental Study of Turbine Fuel Thermal Stability in an Aircraft Fuel System Simulator

    Science.gov (United States)

    Vranos, A.; Marteney, P. J.

    1980-01-01

    The thermal stability of aircraft gas turbines fuels was investigated. The objectives were: (1) to design and build an aircraft fuel system simulator; (2) to establish criteria for quantitative assessment of fuel thermal degradation; and (3) to measure the thermal degradation of Jet A and an alternative fuel. Accordingly, an aircraft fuel system simulator was built and the coking tendencies of Jet A and a model alternative fuel (No. 2 heating oil) were measured over a range of temperatures, pressures, flows, and fuel inlet conditions.

  11. PHOTOGRAMMETRIC 3D BUILDING RECONSTRUCTION FROM THERMAL IMAGES

    Directory of Open Access Journals (Sweden)

    E. Maset

    2017-08-01

    Full Text Available This paper addresses the problem of 3D building reconstruction from thermal infrared (TIR images. We show that a commercial Computer Vision software can be used to automatically orient sequences of TIR images taken from an Unmanned Aerial Vehicle (UAV and to generate 3D point clouds, without requiring any GNSS/INS data about position and attitude of the images nor camera calibration parameters. Moreover, we propose a procedure based on Iterative Closest Point (ICP algorithm to create a model that combines high resolution and geometric accuracy of RGB images with the thermal information deriving from TIR images. The process can be carried out entirely by the aforesaid software in a simple and efficient way.

  12. Photogrammetric 3d Building Reconstruction from Thermal Images

    Science.gov (United States)

    Maset, E.; Fusiello, A.; Crosilla, F.; Toldo, R.; Zorzetto, D.

    2017-08-01

    This paper addresses the problem of 3D building reconstruction from thermal infrared (TIR) images. We show that a commercial Computer Vision software can be used to automatically orient sequences of TIR images taken from an Unmanned Aerial Vehicle (UAV) and to generate 3D point clouds, without requiring any GNSS/INS data about position and attitude of the images nor camera calibration parameters. Moreover, we propose a procedure based on Iterative Closest Point (ICP) algorithm to create a model that combines high resolution and geometric accuracy of RGB images with the thermal information deriving from TIR images. The process can be carried out entirely by the aforesaid software in a simple and efficient way.

  13. Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network

    Energy Technology Data Exchange (ETDEWEB)

    Magnier, Laurent; Haghighat, Fariborz [Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W., BE-351, Montreal, Quebec H3G 1M8 (Canada)

    2010-03-15

    Building optimization involving multiple objectives is generally an extremely time-consuming process. The GAINN approach presented in this study first uses a simulation-based Artificial Neural Network (ANN) to characterize building behaviour, and then combines this ANN with a multiobjective Genetic Algorithm (NSGA-II) for optimization. The methodology has been used in the current study for the optimization of thermal comfort and energy consumption in a residential house. Results of ANN training and validation are first discussed. Two optimizations were then conducted taking variables from HVAC system settings, thermostat programming, and passive solar design. By integrating ANN into optimization the total simulation time was considerably reduced compared to classical optimization methodology. Results of the optimizations showed significant reduction in terms of energy consumption as well as improvement in thermal comfort. Finally, thanks to the multiobjective approach, dozens of potential designs were revealed, with a wide range of trade-offs between thermal comfort and energy consumption. (author)

  14. Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Peng; Yin, Rongxin; Brown, Carrie; Kim, DongEun

    2009-06-01

    The potential for using building thermal mass for load shifting and peak energy demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. Previous Lawrence Berkeley National Laboratory research has demonstrated that the approach is very effective in cool and moderately warm climate conditions (California Climate Zones 2-4). However, this method had not been tested in hotter climate zones. This project studied the potential of pre-cooling the building early in the morning and increasing temperature setpoints during peak hours to reduce cooling-related demand in two typical office buildings in hotter California climates ? one in Visalia (CEC Climate Zone 13) and the other in San Bernardino (CEC Climate Zone 10). The conclusion of the work to date is that pre-cooling in hotter climates has similar potential to that seen previously in cool and moderate climates. All other factors being equal, results to date indicate that pre-cooling increases the depth (kW) and duration (kWh) of the possible demand shed of a given building. The effectiveness of night pre-cooling in typical office building under hot weather conditions is very limited. However, night pre-cooling is helpful for office buildings with an undersized HVAC system. Further work is required to duplicate the tests in other typical buildings and in other hot climate zones and prove that pre-cooling is truly effective.

  15. High-rise Buildings versus Outdoor Thermal Environment in Chongqing

    OpenAIRE

    Lu, Jun; Chen, Jin-hua; Tang, Ying; Wang, Jin-sha

    2007-01-01

    This paper gives a brief description of the over quick urbanization sinceChongqing, one of the biggest cities in China, has been a municipality directly under theCentral Government in 1997, excessive development and exceeding increase of high-risebuildings because of its special geographical position which finally leads to the worseningof the urban outdoor thermal environment. Then, this paper makes a bright balance to thefield measurement and simulated results of the wind speed field, temper...

  16. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    OpenAIRE

    Alexandre Hugo; Radu Zmeureanu

    2012-01-01

    The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1) reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2) using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS softwar...

  17. Experimental and CFD modelling for thermal comfort and CO2 concentration in office building

    Science.gov (United States)

    Kabrein, H.; Hariri, A.; Leman, A. M.; Yusof, M. Z. M.; Afandi, A.

    2017-09-01

    Computational fluid dynamic CFD was used for simulating air flow, indoor air distribution and contamination concentration. Gases pollution and thermal discomfort affected occupational health and productivity of work place. The main objectives of this study are to investigate the impact of air change rate in CO2 concentration and to estimate the profile of CO2 concentration in the offices building. The thermal comfort and gases contamination are investigated by numerical analysis CFD which was validated by experiment. Thus the air temperature, air velocity and CO2 concentration were measured at several points in the chamber with four occupants. Comparing between experimental and numerical results showed good agreement. In addition, the CO2 concentration around human recorded high, compared to the other area. Moreover, the thermal comfort in this study is within the ASHRAE standard 55-2004.

  18. Hygrothermal Simulation: A Tool for Building Envelope Design Analysis

    Science.gov (United States)

    Samuel V. Glass; Anton TenWolde; Samuel L. Zelinka

    2013-01-01

    Is it possible to gauge the risk of moisture problems while designing the building envelope? This article provides a brief introduction to computer-based hygrothermal (heat and moisture) simulation, shows how simulation can be useful as a design tool, and points out a number of im-portant considerations regarding model inputs and limita-tions. Hygrothermal simulation...

  19. Implementation of Models for Building Envelope Air Flow Fields in a Whole Building Hygrothermal Simulation Tool

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2009-01-01

    phenomena which occur. However, there is still room for further development of such tools. This paper will present an attempt to integrate modelling of air flows in building envelopes into a whole building hygrothermal simulation tool. Two kinds of air flows have been considered: 1. Air flow in ventilated...... and moisture impact of these air flows which represent either (1) a part of the building envelope which has hitherto not been offered much focus in building simulation, or (2) a transport form which in most cases should be kept minimal but which has immense importance on the overall heat and moisture flows......Simulation tools are becoming available which predict the heat and moisture conditions in the indoor environment as well as in the envelope of buildings, and thus it has become possible to consider the important interaction between the different components of buildings and the different physical...

  20. High-resolution texturing of building facades with thermal images

    Science.gov (United States)

    Scaioni, Marco; Rosina, Elisabetta; Barazzetti, Luigi; Previtali, Mattia; Redaelli, Veronica

    2012-06-01

    This paper presents two methodologies able to map a block of IR thermal and RGB images on 3D models derived from terrestrial laser scanning surveying. Proposed methods stand out from other traditional approaches that are mainly based on the projection of single images through approximate models. The first method is a rigorous photogrammetric orientation through a bundle adjustment integrating both RGB and thermal data. Then, another complementary solution based on the use of a calibrated 'bi-camera' system is illustrated. Both methods allows one to texture building facades (reconstructed with 3D models) with their temperature values. Finally, several products can be extracted and managed in different data processing environments: triangulated models to visualize 3D spatial information and to analyze 3D heating diffusion on the surface; raster datasets (e.g. orthophotos or rectified images) with temperature as radiometric value. Both approaches were tested on different buildings of Politecnico di Milano University, where a restoration project of historical and modern facades is currently work in progress.

  1. Design of the Building Envelope: A Novel Multi-Objective Approach for the Optimization of Energy Performance and Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Fabrizio Ascione

    2015-08-01

    Full Text Available According to the increasing worldwide attention to energy and the environmental performance of the building sector, building energy demand should be minimized by considering all energy uses. In this regard, the development of building components characterized by proper values of thermal transmittance, thermal capacity, and radiative properties is a key strategy to reduce the annual energy need for the microclimatic control. However, the design of the thermal characteristics of the building envelope is an arduous task, especially in temperate climates where the energy demands for space heating and cooling are balanced. This study presents a novel methodology for optimizing the thermo-physical properties of the building envelope and its coatings, in terms of thermal resistance, capacity, and radiative characteristics of exposed surfaces. A multi-objective approach is adopted in order to optimize energy performance and thermal comfort. The optimization problem is solved by means of a Genetic Algorithm implemented in MATLAB®, which is coupled with EnergyPlus for performing dynamic energy simulations. For demonstration, the methodology is applied to a residential building for two different Mediterranean climates: Naples and Istanbul. The results show that for Naples, because of the higher incidence of cooling demand, cool external coatings imply significant energy savings, whereas the insulation of walls should be high but not excessive (no more than 13–14 cm. The importance of high-reflective coating is clear also in colder Mediterranean climates, like Istanbul, although the optimal thicknesses of thermal insulation are higher (around 16–18 cm. In both climates, the thermal envelope should have a significant mass, obtainable by adopting dense and/or thick masonry layers. Globally, a careful design of the thermal envelope is always necessary in order to achieve high-efficiency buildings.

  2. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Tryggvason, T.

    1998-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...... simulation program requires a detailed description of the energy flow in the air movement which can be obtained by a CFD program. The paper describes an energy consumption calculation in a large building, where the building energy simulation program is modified by CFD predictions of the flow between three...... zones connected by open areas with pressure and buoyancy driven air flow. The two programs are interconnected in an iterative procedure. The paper shows also an evaluation of the air quality in the main area of the buildings based on CFD predictions. It is shown that an interconnection between a CFD...

  3. Building Energy Assessment and Computer Simulation Applied to Social Housing in Spain

    Directory of Open Access Journals (Sweden)

    Juan Aranda

    2018-01-01

    Full Text Available The actual energy consumption and simulated energy performance of a building usually differ. This gap widens in social housing, owing to the characteristics of these buildings and the consumption patterns of economically vulnerable households affected by energy poverty. The aim of this work is to characterise the energy poverty of the households that are representative of those residing in social housing, specifically in blocks of apartments in Southern Europe. The main variables that affect energy consumption and costs are analysed, and the models developed for software energy-performance simulations (which are applied to predict energy consumption in social housing are validated against actual energy-consumption values. The results demonstrate that this type of household usually lives in surroundings at a temperature below the average thermal comfort level. We have taken into account that a standard thermal comfort level may lead to significant differences between computer-aided energy building simulation and actual consumption data (which are 40–140% lower than simulated consumption. This fact is of integral importance, as we use computer simulation to predict building energy performance in social housing.

  4. Building energy demand aggregation and simulation tools

    DEFF Research Database (Denmark)

    Gianniou, Panagiota; Heller, Alfred; Rode, Carsten

    2015-01-01

    Nowadays, the minimization of energy consumption and the optimization of efficiency of the overall energy grid have been in the agenda of most national and international energy policies. At the same time, urbanization has put cities under the microscope towards achieving cost-effective energy...... savings due to their compact and highly dense form. Thus, accurate estimation of energy demand of cities is of high importance to policy-makers and energy planners. This calls for automated methods that can be easily expandable to higher levels of aggregation, ranging from clusters of buildings...... to neighbourhoods and cities. Buildings occupy a key place in the development of smart cities as they represent an important potential to integrate smart energy solutions. Building energy consumption affects significantly the performance of the entire energy network. Therefore, a realistic estimation...

  5. INDOOR THERMAL CONDITION OF FACTORY BUILDING IN BANGLADESH

    Directory of Open Access Journals (Sweden)

    Muhammed Abdullah Al Sayem Khan

    2011-12-01

    Full Text Available Bangladesh is a developing country and has a lot of factories for different products for local use and also export to abroad. Garments industries are one of the top most items of exported items. A huge number of populations are working in garments industries. But these factories are not well designed in sense of the thermal environment. Workers experiences sickness related to indoor environment. The productions of these factories are affected due to employees’ health condition. The research is done in two different methods. One is empirical data collection using thermal data loggers and the other is questionnaire survey on the spots for three factory buildings. The field study was conducted in four different months of the same year during winter and summer period. Expected findings of this research are that the indoor environment is not comfortable for works at day time during summer season. This research will help the factory workers in providing a comfortable thermal environment and also help the employers or factory owners to increase their production margin.

  6. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo

    2012-10-01

    Full Text Available The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1 reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2 using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.

  7. Communication Capacity Building through Pharmacy Practice Simulation

    OpenAIRE

    Fejzic, Jasmina; Barker, Michelle; Hills, Ruth; Priddle, Alannah

    2016-01-01

    Objective. To examine the effectiveness of simulated learning modules (SLMs) encompassing EXcellence in Cultural Experiential Learning and Leadership (EXCELL) core competencies in enhancing pharmacy students’ professional communication skills.

  8. Demand Shifting with Thermal Mass in Light and Heavy Mass Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Peng; Zagreus, Leah

    2009-05-01

    The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. This project studied the potential of pre-cooling and demand limiting in a heavy mass and a light mass building in the Bay Area of California. The conclusion of the work to date is that pre-cooling has the potential to improve the demand responsiveness of commercial buildings while maintaining acceptable comfort conditions. Results indicate that pre-cooling increases the depth (kW) and duration (kWh) of the shed capacity of a given building, all other factors being equal. Due to the time necessary for pre-cooling, it is only applicable to day-ahead demand response programs. Pre-cooling can be very effective if the building mass is relatively heavy. The effectiveness of night pre-cooling under hot weather conditions has not been tested. Further work is required to quantify and demonstrate the effectiveness of pre-cooling in different climates. Research is also needed to develop screening tools that can be used to select suitable buildings and customers, identify the most appropriate pre-cooling strategies, and estimate the benefits to the customer and the utility.

  9. Design methodology and criteria for daylight and thermal comfort in nearly-zero energy office buildings in Nordic climate

    DEFF Research Database (Denmark)

    Karlsen, Line Røseth

    The objective of this PhD thesis was to arrange for an integrated building design with respect to thermal comfort, daylighting and energy use, applicable for office buildings in Nordic climate. In order to achieve this, it is suggested that modelling of mean radiant temperature (MRT) should...... into the simulation tool IDA ICE. Furthermore, the control of solar shading is given attention, since it is a crucial link between the thermal and daylighting performance. The thesis presents results of an occupant survey with 46 subjects, which was carried out to investigate occupants’ preferences towards...

  10. Energy Performance of a Novel System Combining Natural Ventilation with Diffuse Ceiling Inlet and Thermally Activated Building Systems (TABS)

    DEFF Research Database (Denmark)

    Yu, Tao

    As a response to new stringent energy policies in the building sector, office buildings have become well-insulated and highly-airtight, resulting in an increasing cooling need in both summer and winter. This study proposes a novel system combining natural ventilation with diffuse ceiling inlet...... and thermally activated building systems (TABS) for cooling and ventilation in future Danish office buildings. The new solution would have the special potential of using natural ventilation all year round even in the extremely cold seasons without any draught risk. The main focuses of this study are the energy...... saving potential and the steady-state and dynamic energy performance of this system. The presented work utilizes building simulation method to investigate the energy saving potential of this novel system. Afterwards, an experimental set-up is built in the laboratory to simulate a real office environment...

  11. Approaching Sentient Building Performance Simulation Systems

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer; Perkov, Thomas; Heller, Alfred

    2014-01-01

    Sentient BPS systems can combine one or more high precision BPS and provide near instantaneous performance feedback directly in the design tool, thus providing speed and precision of building performance in the early design stages. Sentient BPS systems are essentially combining: 1) design tools, 2...

  12. Measurement and simulation of transparent building components with sun-shading; Messung und Simulation von transparenten Bauteilen mit Sonnenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Simmler, H.; Manz, H.; Haas, A. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Favarolo, P.A. [Universita Technica delle Marche, Ancona (Italy)

    2004-12-15

    This paper takes a look at the construction and simulation of modern office buildings that often feature lightweight construction and a high proportion of glazing or even double building skins completely made of glass. In particular, those thermal comfort and cooling aspects are discussed that require that the solar attributes of facade elements are taken into account. Work done at the Swiss Federal materials institute EMPA as part of the International Energy Agency's IEA Task 27 'Performance, durability and sustainability of advanced windows and solar components for building envelopes' is discussed. The properties of glazing and shading systems are presented and discussed. Results obtained by calculation are compared with those obtained from measurements. Modules for the calculation of the properties of glazing elements and their simulation are discussed, as are transparent insulation systems.

  13. Space heating in buildings: thermal diagnosis of an industrial building; Chauffage des batiments: bilan thermique d`un batiment industriel

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, R.

    1996-12-31

    The various heat transfer equations used for calculations in thermal diagnosis of an industrial building are reviewed: calculation of the heat losses through walls as a function of building materials, calculation of the energy consumption for heating fresh air (as a function of the air pollution rate in the building), calculation of the total heat losses, the heating energy demand and the annual energy consumption. Data concerning building materials characteristics, insulation and heating loads in the various regions of France, are also presented

  14. Implementation of Models for Building Envelope Air Flow Fields in a Whole Building Hygrothermal Simulation Tool

    DEFF Research Database (Denmark)

    Sørensen, Karl Grau; Rode, Carsten

    2009-01-01

    phenomena that occur. However, there is still room for further development of such tools. This paper will present an attempt to integrate modelling of air flows in building envelopes into a whole building hygrothermal simulation tool. Two kinds of air flows have been considered: (1) Air flow in a ventilated......Simulation tools are becoming available which predict the heat and moisture conditions in the indoor environment as well as in the envelope of buildings, and thus it has become possible to consider the important interaction between the different components of buildings and the different physical...... cavity such as behind the exterior cladding of a building envelope, i.e. a flow which is parallel to the construction plane. (2) Infiltration/exfiltration of air through the building envelope, i.e. a flow which is perpendicular to the constructionplane. The paper presents the models and how they have...

  15. Draught risk index tool for building energy simulations

    DEFF Research Database (Denmark)

    Vorre, Mette Havgaard; Jensen, Rasmus Lund; Nielsen, Peter V.

    2014-01-01

    Flow elements combined with a building energy simulation tool can be used to indicate areas and periods when there is a risk of draught in a room. The study tests this concept by making a tool for post-processing of data from building energy simulations. The objective is to show indications of dr...... it usable in the early design stage to optimise the building layout. The tool provides an overview of the general draught pattern over a period, e.g. a whole year, and of how often there is a draught risk....

  16. Thermal transport properties of uranium dioxide by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Taku; Sinnott, Susan B. [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Tulenko, James S. [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Grimes, Robin W. [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom); Schelling, Patrick K. [AMPAC and Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Phillpot, Simon R. [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States)], E-mail: sphil@mse.ufl.edu

    2008-04-30

    The thermal conductivities of single crystal and polycrystalline UO{sub 2} are calculated using molecular dynamics simulations, with interatomic interactions described by two different potential models. For single crystals, the calculated thermal conductivities are found to be strongly dependent on the size of the simulation cell. However, a scaling analysis shows that the two models predict essentially identical values for the thermal conductivity for infinite system sizes. By contrast, simulations with the two potentials for identical fine polycrystalline structures yield estimated thermal conductivities that differ by a factor of two. We analyze the origin of this difference.

  17. Assessment of buildings with ventilated facade systems and evaluation of point thermal bridges

    OpenAIRE

    Šadauskienė, Jolanta; Šeduikytė, Lina; Juozas RAMANAUSKAS; Buska, Andrius

    2017-01-01

    Analyzes of influence of the point thermal bridges of buildings with ventilated facade systems on the thermal properties of envelops are presented in the paper. The relation between the separate components of the envelop were made: thermal properties and thickness of supporting wall's layer; value of thermal conductivity and thickness of insulation layer. Studies have shown, that the value of the point thermal transmittance, which depended on the thermal properties of the envelop and thicknes...

  18. Building Performance Simulation tools for planning of energy efficiency retrofits

    DEFF Research Database (Denmark)

    Mondrup, Thomas Fænø; Karlshøj, Jan; Vestergaard, Flemming

    2014-01-01

    Designing energy efficiency retrofits for existing buildings will bring environmental, economic, social, and health benefits. However, selecting specific retrofit strategies is complex and requires careful planning. In this study, we describe a methodology for adopting Building Performance...... to energy efficiency retrofits in social housing. To generate energy savings, we focus on optimizing the building envelope. We evaluate alternative building envelope actions using procedural solar radiation and daylight simulations. In addition, we identify the digital information flow and the information...... Simulation (BPS) tools as energy and environmentally conscious decision-making aids. The methodology has been developed to screen buildings for potential improvements and to support the development of retrofit strategies. We present a case study of a Danish renovation project, implementing BPS approaches...

  19. Abstract: Building a National Simulation Program in Rwanda ...

    African Journals Online (AJOL)

    Through this partnership former KHI, currently College of Medicine and Health Sciences of the University of Rwanda – ( UR-CMHS) was able to build an initial simulation program including an education plan, outfitting rooms, training standardized patients, purchasing and the setting up of equipment, and training simulation ...

  20. Combining a building simulation with energy systems analysis to assess the benefits of natural ventilation

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg; Remmen, Arne

    2013-01-01

    a thermal air flow simulation program - Into the energy systems analysis model. Descriptions of the energy systems in two geographical locations, i.e. Mexico and Denmark, are set up as inputs. Then, the assessment is done by calculating the energy impacts as well as environmental benefits in the energy......This article shows the combination of a thermal air flow simulation program with an energy systems analysis model in order to assess the use of natural ventilation as a method for saving energy within residential buildings in large-scale scenarios. The aim is to show the benefits for utilizing...... natural airflow instead of active systems such as mechanical ventilation or air-conditioning in buildings where the indoor temperature is over the upper limit of the comfort range. The combination is done by introducing the energy saving output - calculated with a model of natural ventilation using...

  1. Molecular Dynamics Simulations for Anisotropic Thermal Conductivity of Borophene

    OpenAIRE

    Jia, Yue; Li, Chun; Jiang, Jin-Wu; Wei, Ning; Chen, Yang; Zhang, Yongjie Jessica

    2017-01-01

    The present work carries out molecular dynamics simulations to compute the thermal conductivity of the borophene nanoribbon and the borophene nanotube using the Muller-Plathe approach. We investigate the thermal conductivity of the armchair and zigzag borophenes, and show the strong anisotropic thermal conductivity property of borophene. We compare the results of the borophene nanoribbon and the borophene nanotube, and find the thermal conductivity of the borophene is structure dependent.

  2. Multidisciplinary Energy Assessment of Tertiary Buildings: Automated Geomatic Inspection, Building Information Modeling Reconstruction and Building Performance Simulation

    Directory of Open Access Journals (Sweden)

    Faustino Patiño-Cambeiro

    2017-07-01

    Full Text Available There is an urgent need for energy efficiency in buildings within the European framework, considering its environmental implications, and Europe’s energy dependence. Furthermore, the need for enhancing and increasing productivity in the building industry turns new technologies and building energy performance simulation environments into extremely interesting solutions towards rigorous analysis and decision making in renovation within acceptable risk levels. The present work describes a multidisciplinary approach for the estimation of the energy performance of an educational building. The research involved data acquisition with advanced geomatic tools, the development of an optimized building information model, and energy assessment in Building Performance Simulation (BPS software. Interoperability issues were observed in the different steps of the process. The inspection and diagnostic phases were conducted in a timely, accurate manner thanks to automated data acquisition and subsequent analysis using Building Information Modeling based tools (BIM-based tools. Energy simulation was performed using Design Builder, and the results obtained were compared with those yielded by the official software tool established by Spanish regulations for energy certification. The discrepancies between the results of both programs have proven that the official software program is conservative in this sense. This may cause the depreciation of the assessed buildings.

  3. To Investigate the Influence of Building Envelope and Natural Ventilation on Thermal Heat Balance in Office Buildings in Warm and Humid Climate

    Science.gov (United States)

    Kini, Pradeep G.; Garg, Naresh Kumar; Kamath, Kiran

    2017-07-01

    India’s commercial building sector is witnessing robust growth. India continues to be a key growth market among global corporates and this is reflective in the steady growth in demand for prime office space. A recent trend that has been noted is the increase in demand for office spaces not just in major cities but also in smaller tier II and Tier III cities. Growth in the commercial building sector projects a rising trend of energy intensive mechanical systems in office buildings in India. The air conditioning market in India is growing at 25% annually. This is due to the ever increasing demand to maintain thermal comfort in tropical regions. Air conditioning is one of the most energy intensive technologies which are used in buildings. As a result India is witnessing significant spike in energy demand and further widening the demand supply gap. Challenge in India is to identify passive measures in building envelope design in office buildings to reduce the cooling loads and conserve energy. This paper investigates the overall heat gain through building envelope components and natural ventilation in warm and humid climate region through experimental and simulation methods towards improved thermal environmental performance.

  4. Integrated Building Energy Design of a Danish Office Building Based on Monte Carlo Simulation Method

    DEFF Research Database (Denmark)

    Sørensen, Mathias Juul; Myhre, Sindre Hammer; Hansen, Kasper Kingo

    2017-01-01

    and improve the collaboration efficiency. Monte Carlo Simulation method is adopted to simulate both the energy performance and indoor climate of the building. Building physics parameters, including characteristics of facades, walls, windows, etc., are taken into consideration, and thousands of combinations......The focus on reducing buildings energy consumption is gradually increasing, and the optimization of a building’s performance and maximizing its potential leads to great challenges between architects and engineers. In this study, we collaborate with a group of architects on a design project of a new...... office building located in Aarhus, Denmark. Building geometry, floor plans and employee schedules were obtained from the architects which is the basis for this study. This study aims to simplify the iterative design process that is based on the traditional trial and error method in the late design phases...

  5. Integrated Building Energy Design of a Danish Office Building Based on Monte Carlo Simulation Method

    DEFF Research Database (Denmark)

    Sørensen, Mathias Juul; Myhre, Sindre Hammer; Hansen, Kasper Kingo

    2017-01-01

    and improve the collaboration efficiency. Monte Carlo Simulation method is adopted to simulate both the energy performance and indoor climate of the building. Building physics parameters, including characteristics of facades, walls, windows, etc., are taken into consideration, and thousands of combinations...... fulfil the requirements and leaves additional design freedom for the architects. This study utilizes global design exploration with Monte Carlo Simulations, in order to form feasible solutions for architects and improves the collaboration efficiency between architects and engineers....... office building located in Aarhus, Denmark. Building geometry, floor plans and employee schedules were obtained from the architects which is the basis for this study. This study aims to simplify the iterative design process that is based on the traditional trial and error method in the late design phases...

  6. Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2010-08-22

    This article describes the implementation of the Building Controls Virtual Test Bed (BCVTB). The BCVTB is a software environment that allows connecting different simulation programs to exchange data during the time integration, and that allows conducting hardware in the loop simulation. The software architecture is a modular design based on Ptolemy II, a software environment for design and analysis of heterogeneous systems. Ptolemy II provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run-time. The BCVTB provides additions to Ptolemy II that allow the run-time coupling of different simulation programs for data exchange, including EnergyPlus, MATLAB, Simulink and the Modelica modelling and simulation environment Dymola. The additions also allow executing system commands, such as a script that executes a Radiance simulation. In this article, the software architecture is presented and the mathematical model used to implement the co-simulation is discussed. The simulation program interface that the BCVTB provides is explained. The article concludes by presenting applications in which different state of the art simulation programs are linked for run-time data exchange. This link allows the use of the simulation program that is best suited for the particular problem to model building heat transfer, HVAC system dynamics and control algorithms, and to compute a solution to the coupled problem using co-simulation.

  7. Influence of Three Dynamic Predictive Clothing Insulation Models on Building Energy Use, HVAC Sizing and Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Kwang Ho Lee

    2014-03-01

    Full Text Available In building energy simulation, indoor thermal comfort condition, energy use and equipment size are typically calculated based on the assumption that the clothing insulation is equal to a constant value of 0.5 clo during the cooling season and 1.0 clo during the heating season. The assumption is not reflected in practice and thus it may lead to errors. In reality, occupants frequently adjust their clothing depending on the thermal conditions, as opposed to the assumption of constant clothing values above, indicating that the clothing insulation variation should be captured in building simulation software to obtain more reliable and accurate results. In this study, the impact of three newly developed dynamic clothing insulation models on the building simulation is quantitatively assessed using the detailed whole-building energy simulation program, EnergyPlus version 6.0. The results showed that when the heating ventilation and air conditioning system (HVAC is controlled based on indoor temperature the dynamic clothing models do not affect indoor operative temperatures, energy consumption and equipment sizing. When the HVAC is controlled based on the PMV model the use of a fixed clothing insulation during the cooling (0.5 clo and heating (1.0 clo season leads to the incorrect estimation of the indoor operative temperatures, energy consumption and equipment sizing. The dynamic clothing models significantly (p < 0.0001 improve the ability of energy simulation tools to assess thermal comfort. The authors recommend that the dynamic clothing models should be implemented in dynamic building energy simulation software such as EnergyPlus.

  8. Assessment of Retrofitting Measures for a Large Historic Research Facility Using a Building Energy Simulation Model

    Directory of Open Access Journals (Sweden)

    Young Tae Chae

    2016-06-01

    Full Text Available A calibrated building simulation model was developed to assess the energy performance of a large historic research building. The complexity of space functions and operational conditions with limited availability of energy meters makes it hard to understand the end-used energy consumption in detail and to identify appropriate retrofitting options for reducing energy consumption and greenhouse gas (GHG emissions. An energy simulation model was developed to study the energy usage patterns not only at a building level, but also of the internal thermal zones, and system operations. The model was validated using site measurements of energy usage and a detailed audit of the internal load conditions, system operation, and space programs to minimize the discrepancy between the documented status and actual operational conditions. Based on the results of the calibrated model and end-used energy consumption, the study proposed potential energy conservation measures (ECMs for the building envelope, HVAC system operational methods, and system replacement. It also evaluated each ECM from the perspective of both energy and utility cost saving potentials to help retrofitting plan decision making. The study shows that the energy consumption of the building was highly dominated by the thermal requirements of laboratory spaces. Among other ECMs the demand management option of overriding the setpoint temperature is the most cost effective measure.

  9. Gas-Filled Panels: An update on applications in the building thermal envelope

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.T.; Arasteh, D.; Tuerler, D.

    1995-10-01

    This paper discusses the application of Gas-Filled Panels to the building thermal envelope. Gas-Filled Panels, or GFPs, are thermal insulating devices that retain a high concentration of a low- conductivity gas, at atmospheric pressure, within a multilayer infrared reflective baffle. The thermal performance of the panel depends on the type of gas fill and the baffle configuration. Heat- flow meter apparatus measurements have shown effective apparent thermal conductivities of 0.194 Btu{center_dot}in/h{center_dot}ft{sup 2}{center_dot}{degree}F with air as the gas fill, 0.138 Btu{center_dot}in/h{center_dot}ft{sup 2}{center_dot}{degree}F with argon, and 0.081 Btu{center_dot}in/h{center_dot}ft{sup 2}{center_dot}{degree}F with krypton. Calorimetric measurements have also shown total resistance levels of about R-12.6 h{center_dot}ft{sup 2}{center_dot}{degree}F/Btu for a 1.0-inch thick krypton panel, R-25.7 h{center_dot}ft{sup 2}{center_dot}{degree}F/Btu for a 2.0-inch krypton panel, and R-18.4 f{center_dot}ft{sup 2}{center_dot}{degree}F/Btu for a 10-inch xenon panel. GFPs are flexible, self-supporting and can be made in a variety of shapes and sizes to thoroughly fill most types of cavities in building walls and roofs, although the modular nature of the panels can lead to complications in installing them, especially for irregularly shaped cavities. We present computer simulation results showing the improvement in thermal resistance resulting from using an argon-GFP in place of glass fiber batt insulation in wood-frame construction. This report also presents estimates of the quantity and cost of material components needed to manufacture GFPs using current prototype designs.

  10. Sustainable construction building performance simulation and asset and maintenance management

    CERN Document Server

    2016-01-01

    This book presents a collection of recent research works that highlight best practice solutions, case studies and practical advice on the implementation of sustainable construction techniques. It includes a set of new developments in the field of building performance simulation, building sustainability assessment, sustainable management, asset and maintenance management and service-life prediction. Accordingly, the book will appeal to a broad readership of professionals, scientists, students, practitioners, lecturers and other interested parties.

  11. Validation of Solution Methods for Building Energy Simulation

    OpenAIRE

    Crowley, Michael

    2006-01-01

    The most commonly applied mathematical solution techniques for building energy simulation are response function methods and finite difference methods. The accepted validation methodology in this domain has as its main elements empirical validation, analytical verification and inter-model comparison. Of these, only analytical verification tests the solution method exclusively; but the test examples used are too confined to be representative of the building energy problem. A discriminating and ...

  12. The advantage of selection of mineral thermal insulation materials with the structural properties for thermal insulation in buildings

    Directory of Open Access Journals (Sweden)

    Janžekovič Ines M.

    2014-01-01

    Full Text Available The paper deals with the problem of energy efficiency in Serbia. It gives a general overview of the energy losses and focuses on energy losses in buildings, which is recognized as one of the most problematic sectors as the energy losses concerns. By the very fact there is a need for more efficient implementation of measures to reduce energy losses through education and increased awareness of citizens about the proper ways of performing thermal protection of buildings. The paper points out the problems that arise when selecting the inadequate solutions of performing thermal insulation of buildings and suggests some solutions for the proper selection of materials for thermal insulation and in setting the appropriate requirements for thermal envelope for buildings.

  13. A co-operating solver approach to building simulation

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, J.A.; Tang, D. [Strathclyde Univ., Glasgow (United Kingdom). Energy Systems Research Unit

    2004-07-01

    Multi-domain modelling is necessary to properly study whole building performance in terms of energy efficiency, comfort levels and indoor air quality. Users of programs such as the ESP-r system must identify the required domains for relevant design questions. Models must also be developed to interpret the large amounts of data obtained from simulations. Interdomain processes include the modelling of detailed air flow and dynamic building temperature variations with respect to heating, lighting, ventilation, moisture, HVAC, and electrical power flow. This paper presented a model that allows designers to optimize the design of such energy systems without unnecessary simplification of the real building response. 15 refs., 4 figs.

  14. MALAYSIAN WEATHER DATA (TRY) FOR ENERGY SIMULATIONS IN BUILDINGS

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter

    2001-01-01

    Detailed energy simulations for buildings in Malaysia have become possible after the recent construction of a Malaysian TRY (Test Reference Year) based on 21 years of hourly weather data from Subang Meteorological Station. The climatic parameters contained in the TRY are dry bulb temperature, wet...... bulb temperature, absolute humidity, relative humidity, cloud cover, wind speed, wind direction, sunshine hours, global, diffuse and beam solar radiation. The computer program TSBI3 uses the TRY to perform annual energy simulations for buildings hour by hour. The input and output are very detailed...

  15. Thermal properties of simulated Hanford waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carmen P. [Pacific Northwest National Laboratory, Richland Washington USA; Chun, Jaehun [Pacific Northwest National Laboratory, Richland Washington USA; Crum, Jarrod V. [Pacific Northwest National Laboratory, Richland Washington USA; Canfield, Nathan L. [Pacific Northwest National Laboratory, Richland Washington USA; Rönnebro, Ewa C. E. [Pacific Northwest National Laboratory, Richland Washington USA; Vienna, John D. [Pacific Northwest National Laboratory, Richland Washington USA; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington

    2017-03-20

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will vitrify the mixed hazardous wastes generated from 45 years of plutonium production. The molten glasses will be poured into stainless steel containers or canisters and subsequently quenched for storage and disposal. Such highly energy-consuming processes require precise thermal properties of materials for appropriate facility design and operations. Key thermal properties (heat capacity, thermal diffusivity, and thermal conductivity) of representative high-level and low-activity waste glasses were studied as functions of temperature in the range of 200 to 800°C (relevant to the cooling process), implementing simultaneous differential scanning calorimetry-thermal gravimetry (DSC-TGA), Xe-flash diffusivity, pycnometry, and dilatometry. The study showed that simultaneous DSC-TGA would be a reliable method to obtain heat capacity of various glasses at the temperature of interest. Accurate thermal properties from this study were shown to provide a more realistic guideline for capacity and time constraint of heat removal process, in comparison to the design basis conservative engineering estimates. The estimates, though useful for design in the absence measured physical properties, can now be supplanted and the measured thermal properties can be used in design verification activities.

  16. Pseudo-Bond Graph model for the analysis of the thermal behavior of buildings

    Directory of Open Access Journals (Sweden)

    Merabtine Abdelatif

    2013-01-01

    Full Text Available In this work, a simplified graphical modeling tool, which in some extent can be considered in halfway between detailed physical and Data driven dynamic models, has been developed. This model is based on Bond Graphs approach. This approach has the potential to display explicitly the nature of power in a building system, such as a phenomenon of storage, processing and dissipating energy such as Heating, Ventilation and Air-Conditioning (HVAC systems. This paper represents the developed models of the two transient heat conduction problems corresponding to the most practical cases in building envelope, such as the heat transfer through vertical walls, roofs and slabs. The validation procedure consists of comparing the results obtained with this model with analytical solution. It has shown very good agreement between measured data and Bond Graphs model simulation. The Bond Graphs technique is then used to model the building dynamic thermal behavior over a single zone building structure and compared with a set of experimental data. An evaluation of indoor temperature was carried out in order to check our Bond Graphs model.

  17. Using passive cooling strategies to improve thermal performance and reduce energy consumption of residential buildings in U.A.E. buildings

    Directory of Open Access Journals (Sweden)

    Hanan M. Taleb

    2014-06-01

    Full Text Available Passive design responds to local climate and site conditions in order to maximise the comfort and health of building users while minimising energy use. The key to designing a passive building is to take best advantage of the local climate. Passive cooling refers to any technologies or design features adopted to reduce the temperature of buildings without the need for power consumption. Consequently, the aim of this study is to test the usefulness of applying selected passive cooling strategies to improve thermal performance and to reduce energy consumption of residential buildings in hot arid climate settings, namely Dubai, United Arab Emirates. One case building was selected and eight passive cooling strategies were applied. Energy simulation software – namely IES – was used to assess the performance of the building. Solar shading performance was also assessed using Sun Cast Analysis, as a part of the IES software. Energy reduction was achieved due to both the harnessing of natural ventilation and the minimising of heat gain in line with applying good shading devices alongside the use of double glazing. Additionally, green roofing proved its potential by acting as an effective roof insulation. The study revealed several significant findings including that the total annual energy consumption of a residential building in Dubai may be reduced by up to 23.6% when a building uses passive cooling strategies.

  18. Design of energy-efficient buildings using interaction between Building Simulation Programme and Energy Supply Simulations for District Heating

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Dalla Rosa, Alessandro; Nagla, Inese

    demand density for which the connection to low-energy district heating networks is cost-effective and energy efficient. By using a dynamic energy simulation program for buildings it is possible to analyze the influence of the human behaviour for the building and link the results to the simulation program...... for district heating networks. The results show that human behaviour can lead to 50% higher heating demand and 60% higher peak loads than expected according to reference values in standardized calculation of energy demand pattern in energy-efficient buildings. The consequence is that in order to get the full...... that there is a large potential for distributing energy in areas with energy efficient buildings. As a measure for the feasibility of district heating, the linear heat density can be used as a representative value, and the results show that it is possible to supply heat with low-energy district heating networks...

  19. Experimental and Numerical Analysis of Thermal and Hygrometric Characteristics of Building Structures Employing Recycled Plastic Aggregates and Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Francesco Colangelo

    2013-11-01

    Full Text Available The correct estimation of building energy consumptions is assuming an always increasing importance, and a detailed reproduction of building structures, with all the single components involved, is necessary to achieve this aim. In addition, the current ecological development tries to limit the use of natural raw materials as building components, in favor of alternative (waste materials, which ensure significant advantages from the economic, energetic and environmental point of views. In this work, dynamic heat and vapor transport in a typical three-dimensional (3D building structure, involving different types of environmental-friendly concrete mixtures, have been simulated by using finite elements. In particular, the authors propose to substitute part of the aggregates with plastic waste and to use a fly ash based geopolymeric binder for the production of low conductivity concrete, to be employed in eco-efficient buildings. Concrete produced with natural limestone aggregates has been considered as the reference benchmark. The whole characterization of the different types of concrete tested in the present work has been obtained through laboratory experiments. The structure taken into account in the simulations is a 3D thermal bridge, typical of building envelopes. The thermal and hygrometric transient behavior of this structure, employing plastic waste in different percentages and geopolymer concrete, has been analyzed by the authors.

  20. Energy Consumption and Indoor Environment Predicted by a Combination of Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2003-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution is introduced for improvement of the predictions of both the energy consumption and the indoor environment.The article describes a calculation...... of the energy consumption in a large building where the building energy simulation program is modified by CFD predictions of the flow between three zones that are connected by pressure and buoyancy-driven air flow through open areas. The two programs are interconnected in an iterative procedure. The article...... shows also an evaluation of the air quality in the main area of the buildings based on CFD predictions. It is demonstrated that an interconnection between a CFD program and a building energy performance simulation program will improve both the energy consumption data and the prediction of thermal...

  1. An effective thermal circuit model for electro-thermal simulation of SOI analog circuits

    Science.gov (United States)

    Cheng, Ming-C.; Zhang, Kun

    2011-08-01

    A physics-based thermal circuit model is developed for electro-thermal simulation of SOI analog circuits. The circuit model integrates a non-isothermal device thermal circuit with interconnect thermal networks and is validated with high accuracy against finite element simulations in different layout structures. The non-isothermal circuit model is implemented in BSIMSOI to account for self-heating effect (SHE) in a Spice simulator, and applied to electro-thermal simulation of an SOI cascode current mirror constructed using different layouts. Effects of layout design on electric and thermal behaviors are investigated in detail. Influences of BOX thickness are also examined. It has been shown that the proposed non-isothermal approach is able to effectively account for influences of layout design, self-heating, high temperature gradients along the islands, interconnect temperature distributions, thermal coupling, and heat losses via BOX and interconnects, etc., in SOI current mirror structures. The model provides basic concepts and thermal circuits that can be extended to develop an effective model for electro-thermal simulation of SOI analog ICs.

  2. Contact Thermal Analysis and Wear Simulation of a Brake Block

    Directory of Open Access Journals (Sweden)

    Nándor Békési

    2013-01-01

    Full Text Available The present paper describes an experimental test and a coupled contact-thermal-wear analysis of a railway wheel/brake block system through the braking process. During the test, the friction, the generated heat, and the wear were evaluated. It was found that the contact between the brake block and the wheel occurs in relatively small and slowly moving hot spots, caused by the wear and the thermal effects. A coupled simulation method was developed including numerical frictional contact, transient thermal and incremental wear calculations. In the 3D simulation, the effects of the friction, the thermal expansion, the wear, and the temperature-dependent material properties were also considered. A good agreement was found between the results of the test and the calculations, both for the thermal and wear results. The proposed method is suitable for modelling the slowly oscillating wear caused by the thermal expansions in the contact area.

  3. CFD Simulation of Air Velocity Distribution in Occupied Livestock Buildings

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Zhang, G.; Bjerg, B.

    In modem livestock buildings the design of the ventilation systems is important in order to obtain good air distribution. The use of Computational Fluid Dynamics for predicting the air flow and air quality makes it possible to include the effect of room geometry, equipment and occupants in the de....... In this study laboratory measurements in a ventilated test room with "pig simulators" are compared with CFD-simulations....

  4. Thermal Mapping Airborne Simulator for Small Satellite Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A high performance, inexpensive, airborne simulator that will serve as the prototype for a small satellite based imaging system capable of mapping thermal anomalies...

  5. Bringing simulation to implementation: Presentation of a global approach in the design of passive solar buildings under humid tropical climates

    CERN Document Server

    Garde, François; Celaire, Robert

    2012-01-01

    In early 1995, a DSM pilot initiative has been launched in the French islands of Guadeloupe and Reunion through a partnership between several public and private partners (the French Public Utility EDF, the University of Reunion Island, low cost housing companies, architects, energy consultants, etc...) to set up standards to improve thermal design of new residential buildings in tropical climates. This partnership led to defining optimized bio-climatic urban planning and architectural designs featuring the use of passive cooling architectural principles (solar shading, natural ventilation) and components, as well as energy efficient systems and technologies. The design and sizing of each architectural component on internal thermal comfort in building has been assessed with a validated thermal and airflow building simulation software (CODYRUN). These technical specifications have been edited in a reference document which has been used to build over 300 new pilot dwellings through the years 1996-1998 in Reunion...

  6. Numerical simulation of heat transfer through the building facades of buildings located in the city of Bechar

    Directory of Open Access Journals (Sweden)

    A Missoum

    2016-12-01

    Full Text Available This study deals with the transient heat transfer in a multi-layered building wall through the facades of the buildings located in the city of Bechar (south-west Algeria. The physical model is presented to find the variation of the transient temperature in these structures and the heat flux through these elements, which depends on the air temperature of the inner surface and the instantaneous climatic conditions of the air outside. Comsol Multiphysics based on the finite element method is designed to perform numerical simulations. The measured hourly ambient air temperatures and the solar radiation flux on the horizontal surface for the city of Bechar Algeria are using during the hottest period (July 2015, and also using the properties Thermodynamics of each component of the structure. The validation of the analytical model with this simulation is verified in this document. The calculations carried out for different multilayer building walls which are commonly used in the south of Algeria to determine the thermal behavior of these structures and the influence of radiation heat flux on these elements.

  7. A Software Architecture for Simulation Support in Building Automation

    Directory of Open Access Journals (Sweden)

    Sergio Leal

    2014-07-01

    Full Text Available Building automation integrates the active components in a building and, thus, has to connect components of different industries. The goal is to provide reliable and efficient operation. This paper describes how simulation can support building automation and how the deployment process of simulation assisted building control systems can be structured. We look at the process as a whole and map it to a set of formally described workflows that can partly be automated. A workbench environment supports the process execution by means of improved planning, collaboration and deployment. This framework allows integration of existing tools, as well as manual tasks, and is, therefore, many more intricate than regular software deployment tools. The complex environment of building commissioning requires expertise in different domains, especially lighting, heating, ventilation, air conditioning, measurement and control technology, as well as energy efficiency; therefore, we present a framework for building commissioning and describe a deployment process that is capable of supporting the various phases of this approach.

  8. Overcoming Microsoft Excel's Weaknesses for Crop Model Building and Simulations

    Science.gov (United States)

    Sung, Christopher Teh Boon

    2011-01-01

    Using spreadsheets such as Microsoft Excel for building crop models and running simulations can be beneficial. Excel is easy to use, powerful, and versatile, and it requires the least proficiency in computer programming compared to other programming platforms. Excel, however, has several weaknesses: it does not directly support loops for iterative…

  9. Development of Dutch occupancy and heating profiles for building simulation

    NARCIS (Netherlands)

    Guerra Santin, O.; Silvester, S.

    2017-01-01

    Building simulations are often used to predict energy demand and to determine the financial feasibility of the low-carbon projects. However, recent research has documented large differences between actual and predicted energy consumption. In retrofit projects, this difference creates uncertainty

  10. Simulation of temperature in office with building integrated heating and cooling system

    DEFF Research Database (Denmark)

    Weitzmann, Peter

    2002-01-01

    by raising the temperature of the concrete to slightly above the desired room temperature. Another way of solving the problem of cooling is by using building integrated cooling in floors. This technique utilizes the thermal mass of concrete in the floors, by integrating PEX pipes in the floor. By maintaining...... the temperature of the concrete to a level slightly below the desired room temperature, the concrete will work as an absorber for the excess heat in the office. This can significantly reduce the need for air conditioning, which will give both improved indoor climate and lower energy costs in the building...... and thermal comfort parameters. The model is based on a numerical Finite Control Volume (FCV) method for the heat transfer in walls, ceiling, windows and floor. The model uses both convective and radiative heat transfer to the room air and between the room surfaces. The simulation model can be used...

  11. Structural Simulations and Conservation Analysis -Historic Building Information Model (HBIM)

    Science.gov (United States)

    Dore, C.; Murphy, M.; McCarthy, S.; Brechin, F.; Casidy, C.; Dirix, E.

    2015-02-01

    In this paper the current findings to date of the Historic Building Information Model (HBIM) of the Four Courts in Dublin are presented. The Historic Building Information Model (HBIM) forms the basis for both structural and conservation analysis to measure the impact of war damage which still impacts on the building. The laser scan survey was carried out in the summer of 2014 of the internal and external structure. After registration and processing of the laser scan survey, the HBIM was created of the damaged section of the building and is presented as two separate workflows in this paper. The first is the model created from historic data, the second a procedural and segmented model developed from laser scan survey of the war damaged drum and dome. From both models structural damage and decay simulations will be developed for documentation and conservation analysis.

  12. Wind Flow Simulation Around NASA KSC Vehicle Assembly Building

    Science.gov (United States)

    Vu, B. T.; Verdier, M. J.

    2004-01-01

    A model of the wind flow conditions around Kennedy Space Center (KSC) Vehicle Assembly Building (VA B) is presented. An incompressible Navier-Stokes flow solver was used to compute the flow field around fixed Launch Complex 39 (LC-39) buildings and structures. The 3-D flow field. including velocity magnitude and velocity vectors, was established to simulate the localized wind speeds and directions at specified locations in and around LC-39 buildings and structures. The results of this study not only help explain the physical phenomena of the flow patterns around LC-39 buildings but also are useful to the Shuttle personnel. Current Operations and Maintenance Requirements and Specifications (OMRS) for vehicle transfer operations are based on empirically derived historical data, and no detailed mathematical analysis of wind conditions around LC-39 structures has ever been accomplished.

  13. Improvement of energy performances of existing buildings by application of solar thermal systems

    Directory of Open Access Journals (Sweden)

    Krstić-Furundžić Aleksandra

    2009-01-01

    Full Text Available Improvement of energy performances of the existing buildings in the suburban settlement Konjarnik in Belgrade, by the application of solar thermal systems is the topic presented in this paper. Hypothetical models of building improvements are created to allow the benefits of applying solar thermal collectors to residential buildings in Belgrade climate conditions to be estimated. This case study presents different design variants of solar thermal collectors integrated into a multifamily building envelope. The following aspects of solar thermal systems integration are analyzed in the paper: energy, architectural, ecological and economic. The results show that in Belgrade climatic conditions significant energy savings and reduction of CO2 emissions can be obtained with the application of solar thermal collectors.

  14. Thermal performance of vertical greening system on the building façade: A review

    Science.gov (United States)

    Sari, Astri Anindya

    2017-09-01

    Over the last decade, research on the application of vertical greening system on the building façade has gained much attention. Those studies proved that installing a vertical greening system on the building facade has many advantages not only for the building but also for the city. Acting as a shading as well as thermal insulation in the building, reducing greenhouse gas emission, and improving the microclimate are some of the advantages of vertical greening system that already being proved. This study aims to review some studies related to the thermal performance of vertical greening system on the building façade. The review will provide comprehensive knowledge about the thermal performance of vertical greening system over different variations including climates, orientations, plant types, and the design of vertical greening system. Furthermore, this review is expected to be a reference in designing such vertical greening system which suitable for certain climate area that able to produce the best thermal performance.

  15. Hygrothermal Numerical Simulation Tools Applied to Building Physics

    CERN Document Server

    Delgado, João M P Q; Ramos, Nuno M M; Freitas, Vasco Peixoto

    2013-01-01

    This book presents a critical review on the development and application of hygrothermal analysis methods to simulate the coupled transport processes of Heat, Air, and Moisture (HAM) transfer for one or multidimensional cases. During the past few decades there has been relevant development in this field of study and an increase in the professional use of tools that simulate some of the physical phenomena that are involved in Heat, Air and Moisture conditions in building components or elements. Although there is a significant amount of hygrothermal models referred in the literature, the vast majority of them are not easily available to the public outside the institutions where they were developed, which restricts the analysis of this book to only 14 hygrothermal modelling tools. The special features of this book are (a) a state-of-the-art of numerical simulation tools applied to building physics, (b) the boundary conditions importance, (c) the material properties, namely, experimental methods for the measuremen...

  16. Building Interactive Simulations in Web Pages without Programming.

    Science.gov (United States)

    Mailen Kootsey, J; McAuley, Grant; Bernal, Julie

    2005-01-01

    A software system is described for building interactive simulations and other numerical calculations in Web pages. The system is based on a new Java-based software architecture named NumberLinX (NLX) that isolates each function required to build the simulation so that a library of reusable objects could be assembled. The NLX objects are integrated into a commercial Web design program for coding-free page construction. The model description is entered through a wizard-like utility program that also functions as a model editor. The complete system permits very rapid construction of interactive simulations without coding. A wide range of applications are possible with the system beyond interactive calculations, including remote data collection and processing and collaboration over a network.

  17. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    Directory of Open Access Journals (Sweden)

    Sabanskis A.

    2016-04-01

    Full Text Available Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  18. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    Science.gov (United States)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  19. Experimental study and advanced CFD simulation of fire safety performance of building external wall insulation system

    Directory of Open Access Journals (Sweden)

    Yan Zhenghua

    2013-11-01

    Full Text Available Large scale fire tests of building external wall insulation system were conducted. In the experiment, thermal-couples were mounted to measure the insulation system surface temperature and the gas temperature inside rooms at the second and third floors. Photos were also taken during the fire tests. The measurement provides information of the ignition and fire spread of the external insulation system which consists of surface protection layer, glass fibre net, bonding thin layer, anchor and the load bearing wall. Comprehensive simulations of the fire tests were carried out using an advanced CFD fire simulation software Simtec (Simulation of Thermal Engineering Complex [1, 2], which is now released by Simtec Soft Sweden, with the turbulent flow, turbulent combustion, thermal radiation, soot formation, convective heat transfer, the fully coupled three dimensional heat transfer inside solid materials, the ‘burn-out' of the surface protection layer and the pyrolysis of the insulation layer, etc, all computed. The simulation is compared with experimental measurement for validation. The simulation well captured the burning and fire spread of the external insulation wall.

  20. Computer Simulation in Problems of Thermal Strength

    Directory of Open Access Journals (Sweden)

    Olga I. Chelyapina

    2012-05-01

    Full Text Available This article discusses informative technology of using graphical programming environment LabVIEW 2009 when calculating and predicting the thermal strength of materials with an inhomogeneous structure. Algorithm for processing the experimental data was developed as part of the problem.

  1. New Concept for Museum Storage Buildings – Evaluation of Building Performance Model for Simulation of Storage

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Knudsen, Lise Ræder; Kollias, Christos Georgios

    2016-01-01

    is close to be CO2 neutral. The analysis shows very good agreement between simulations and measurements, meaning that the proposed methods can be used for designing museum storage buildings. The analysis also shows, that the weather conditions of previous years, affect the indoor environment...

  2. Performance Evaluation of Modern Building Thermal Envelope Designs in the Semi-Arid Continental Climate of Tehran

    Directory of Open Access Journals (Sweden)

    Shaghayegh Mohammad

    2013-10-01

    Full Text Available In this paper we evaluate the thermal performance of a range of modern wall constructions used in the residential buildings of Tehran in order to find the most appropriate alternative to the traditional un-fired clay and brick materials, which are increasingly being replaced in favor of more slender wall constructions employing hollow clay, autoclaved aerated concrete or light expanded clay aggregate blocks. The importance of improving the building envelope through estimating the potential for energy saving due to the application of the most energy-efficient wall type is presented and the wall constructions currently erected in Tehran are introduced along with their dynamic and steady-state thermal properties. The application of a dynamic simulation tool is explained and the output of the thermal simulation model is compared with the dynamic thermal properties of the wall constructions to assess their performance in summer and in winter. Finally, the best and worst wall type in terms of their cyclic thermal performance and their ability to moderate outdoor conditions is identified through comparison of the predicted indoor temperature and a target comfort temperature.

  3. Numerical simulation of thermal fracture in functionally graded ...

    Indian Academy of Sciences (India)

    Sahil Garg

    Abstract. In the present work, element-free Galerkin method (EFGM) has been extended and implemented to simulate thermal fracture in ... has been used in order to extract the stress intensity factors for the simulated problems. The present analysis ... different requirements at different locations within the same component.

  4. Indoor environment and energy consumption optimization using field measurements and building energy simulation

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Chasapis, Kleanthis; Gazovic, Libor

    2015-01-01

    Modern buildings are usually equipped with advanced climate conditioning systems to ensure comfort of their occupants. However, analysis of their actual operation usually identifies large potential for improvements with respect to their efficiency. Present study investigated potential...... for improvements in an existing office building – a Town Hall of Viborg, Denmark. Thorough field measurements of indoor environment and occupant satisfaction survey were conducted to identify and describe indoor environmental quality problems. Collected data were also used to calibrate computer simulation model......, which was used for optimization of building’s performance. Proposed optimization scenarios bring 21-37% reduction on heating consumption and thermal comfort improvement by 7-12%. The approach (procedure) can help to optimize building operation and shorten the adjustment period....

  5. Thermal Optical Properties of Lunar Dust Simulants and Their Constituents

    Science.gov (United States)

    Gaier, James R.; Ellis, Shaneise; Hanks, Nichole

    2011-01-01

    The total reflectance spectra of lunar simulant dusts (< 20 mm particles) were measured in order to determine their integrated solar absorptance (alpha) and their thermal emittance (epsilon) for the purpose of analyzing the effect of dust on the performance of thermal control surfaces. All of the simulants except one had a wavelength-dependent reflectivity (p (lambda)) near 0.10 over the wavelength range of 8 to 25 microns and so are highly emitting at room temperature and lower. The 300 K emittance (epsilon) of all the lunar simulants except one ranged from 0.78 to 0.92. The exception was Minnesota Lunar Simulant 1 (MLS-1), which has little or no glassy component. In all cases the epsilon was lower for the < 20 micron particles than for larger particles reported earlier. There was considerably more variation in the lunar simulant reflectance in the solar spectral range (250 to 2500 nm) than in the thermal infrared. As expected, the lunar highlands simulants were more reflective in this wavelength range than the lunar mare simulants. The integrated solar absorptance (alpha) of the simulants ranged from 0.39 to 0.75. This is lower than values reported earlier for larger particles of the same simulants (0.41 to 0.82), and for representative mare and highlands lunar soils (0.74 to 0.91). Since the of some mare simulants more closely matched that of highlands lunar soils, it is recommended that and values be the criteria for choosing a simulant for assessing the effects of dust on thermal control surfaces, rather than whether a simulant has been formulated as a highlands or a mare simulant.

  6. Synergetic Effect between Lighting Efficiency Enhancement and Building Energy Reduction Using Alternative Thermal Operating System of Indoor LED Lighting

    Directory of Open Access Journals (Sweden)

    Byung-Lip Ahn

    2015-08-01

    Full Text Available We investigated the synergetic effect between light-emitting diode (LED lighting efficiency and building energy savings in heating and cooling using an alternative thermal operating system (ATOS of indoor LED lighting integrated with the ventilation system of a building as an active cooling device. The heat generated from LED lighting and the indoor lighting illuminance were experimentally determined. The indoor heat gains in cooling and heating periods were determined using measurement data; the annual energy savings of an office building in heating and cooling were calculated through simulation. The LED lighting illuminance increased by approximately 40% and the lighting contribution for indoor heat gain was 7.8% in summer, while 69.8% in winter with the ATOS. Consequently, the annual total energy use of the office building could be reduced by 5.9%; the energy use in cooling and heating was reduced by 18.4% and 3.3%, respectively.

  7. How to measure thermal effects of personal cooling systems : Human, thermal manikin and human simulator study

    NARCIS (Netherlands)

    Bogerd, N.; Psikuta, A.; Daanen, H.A.M.; Rossi, R.M.

    2010-01-01

    Thermal effects, such as cooling power and thermophysiological responses initiated upon application of a personal cooling system, can be assessed with (i) humans, (ii) a thermal manikin and (iii) a thermophysiological human simulator. In order to compare these methods, a cooling shirt (mild cooling)

  8. Assessment of the thermal environment in a simulated aircraft cabin using thermal manikin exposure

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Zukowska, Daria; Jama, Agnieszka

    2007-01-01

    The thermal environment in a full-scale 21-seat section of an aircraft cabin installed in a climate chamber was investigated. Fourteen heated cylinders and two thermal manikins were used to simulate the heat load, buoyancy flow and flow obstruction from passengers in the cabin. Measurements were ...

  9. Addendum to the Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Engebrecht-Metzger, C.; Wilson, E.; Horowitz, S.

    2012-12-01

    As Building America (BA) has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocols (HSP) provides guidance to program partners and managers so that energy savings for new construction and retrofit projects can be compared alongside each other. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  10. Addendum to the Building America House Simulation Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Engebrecht, C. Metzger [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-12-01

    As DOE's Building America program has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program’s goals. The House Simulation Protocols (HSP) provide guidance to program partners and managers so that energy savings for new construction and retrofit projects can be compared alongside each other. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  11. Using DOE Commercial Reference Buildings for Simulation Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Field, K.; Deru, M.; Studer, D.

    2010-08-01

    The U.S. Department of Energy developed 256 EnergyPlus models for use in studies that aim to characterize about 70% of the U.S. commercial building stock. Sixteen building types - including restaurants, health care, schools, offices, supermarkets, retail, lodging, and warehouses - are modeled across 16 cities to represent the diversity of U.S. climate zones. Weighting factors have been developed to combine the models in proportions similar to those of the McGraw-Hill Construction Projects Starts Database for 2003-2007. This paper reviews the development and contents of these models and their applications in simulation studies.

  12. Simulation of morphologically structured photo-thermal neural stimulation

    Science.gov (United States)

    Weissler, Y.; Farah, N.; Shoham, S.

    2017-10-01

    Objective. Rational design of next-generation techniques for photo-thermal excitation requires the development of tools capable of modeling the effects of spatially- and temporally-dependent temperature distribution on cellular neuronal structures. Approach. We present a new computer simulation tool for predicting the effects of arbitrary spatiotemporally-structured photo-thermal stimulation on 3D, morphologically realistic neurons. The new simulation tool is based on interfacing two generic platforms, NEURON and MATLAB and is therefore suited for capturing different kinds of stimuli and neural models. Main results. Simulation results are validated using photo-absorber induced neuro-thermal stimulation (PAINTS) empirical results, and advanced features are explored. Significance. The new simulation tool could have an important role in understanding and investigating complex optical stimulation at the single-cell and network levels.

  13. Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings

    Directory of Open Access Journals (Sweden)

    Byung-Lip Ahn

    2015-06-01

    Full Text Available Light-emitting diode (LED lighting should be considered for lighting efficiency enhancement, however, waste heat from light-emitting diode (LED lighting increases the internal cooling load during the summer season. In order to solve this problem we propose a thermal management system for light-emitting diode (LED lighting with a heat exchanger module integrated with the building’s heating, ventilation, and air conditioning (HVAC system to move the lighting’s waste heat outdoors. An experiment was carried out to investigate the thermal effects in a test chamber and the heat exchange rate between the heat sink and the duct air. The heat generated by the light-emitting diode (LED lighting was calculated as 78.1% of light-emitting diode (LED input power and the heat exchange rate of the lighting heat exchange module was estimated to be between 86.5% and 98.1% according to the light-emitting diode (LED input power and the flow rate of air passing the heat sink. As a result, the average light-emitting diode (LED lighting heat contribution rate for internal heat gain was determined as 0.05; this value was used to calculate the heating and cooling energy demand of the office building through an energy simulation program. In the simulation results, the cooling energy demand was reduced by 19.2% compared with the case of conventionally installed light-emitting diode (LED lighting.

  14. Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jorissen, Filip; Wetter, Michael; Helsen, Lieve

    2015-09-21

    This paper presents an approach for speeding up Modelica models. Insight is provided into how Modelica models are solved and what determines the tool’s computational speed. Aspects such as algebraic loops, code efficiency and integrator choice are discussed. This is illustrated using simple building simulation examples and Dymola. The generality of the work is in some cases verified using OpenModelica. Using this approach, a medium sized office building including building envelope, heating ventilation and air conditioning (HVAC) systems and control strategy can be simulated at a speed five hundred times faster than real time.

  15. Experimental and numerical modelling of thermal performance of a residential building in Belgrade

    Directory of Open Access Journals (Sweden)

    Vučićević Biljana

    2009-01-01

    Full Text Available The main objective of this paper is to evaluate simulation of thermal performance of a residential 4 floors high building placed in the suburb of Belgrade (ground and 3 upper floors with it's total surface area of 1410 m2. It's supplied with liquid petroleum gas storage tank as a fuel reservoir since there is automatic gas boiler in each apartment. Measurements have been carried out in first floor apartment (68 m2 heating area in heating season period. Measured parameters are: inside and outside air temperature and U-value of apartment envelope. Weather data is obtained by using METEONORM, the software package for climatic data calculation based on last 10 years measurements. TRNSYS 16 has been used as the simulation tool. The behavior of the building in terms of heating loads for climate on a daily and monthly basis in heating season is investigated. The calculations show possibility for saving energy by optimization inside temperature during different gas boiler working regimes.

  16. Thermal Performance Analysis of Solar Collectors Installed for Combisystem in the Apartment Building

    Science.gov (United States)

    Žandeckis, A.; Timma, L.; Blumberga, D.; Rochas, C.; Rošā, M.

    2012-01-01

    The paper focuses on the application of wood pellet and solar combisystem for space heating and hot water preparation at apartment buildings under the climate of Northern Europe. A pilot project has been implemented in the city of Sigulda (N 57° 09.410 E 024° 52.194), Latvia. The system was designed and optimised using TRNSYS - a dynamic simulation tool. The pilot project was continuously monitored. To the analysis the heat transfer fluid flow rate and the influence of the inlet temperature on the performance of solar collectors were subjected. The thermal performance of a solar collector loop was studied using a direct method. A multiple regression analysis was carried out using STATGRAPHICS Centurion 16.1.15 with the aim to identify the operational and weather parameters of the system which cause the strongest influence on the collector's performance. The parameters to be used for the system's optimisation have been evaluated.

  17. Thermal Comfort and HVAC Systems Operation Challenges in a Modern Office Building - Case Study

    Science.gov (United States)

    Nemethova, Ema; Stutterecker, Werner; Schoberer, Thomas

    2016-12-01

    The aim of the study is to evaluate the indoor environment conditions in the new-built office building, Energetikum, and consequently suggest the control strategies, which can lead to determination of critical areas and elimination of thermal discomfort. Representative offices have been selected and equipped with portable sensor groups for monitoring of the indoor environment parameters. Contribution is presenting the data obtained from 6 selected rooms during 3 reference weeks - heating, transition and cooling period. The measured results indicate overheating of the rooms, particularly in the ones with the large glazed areas with higher solar gains. The values of indoor air temperature during heating and transition period could not meet the normative criteria according to standard EN 15251:2007 (the cat. II.) during 13 % - 49 % of evaluated time intervals. Consequently, the simulation model of the selected office was created and is pointing to the possibilities of the control system improvement, which can lead to an elimination of the problem with overheating.

  18. The Effect of Passive Design Strategies on Thermal Performance of Female Secondary School Buildings during Warm Season in Hot Dry Climate

    Directory of Open Access Journals (Sweden)

    Sahar eZahiri

    2016-03-01

    Full Text Available This paper describes a series of field studies and simulation analysis to improve the thermal performance of school buildings in the city of Tehran in Iran during warm season. The field studies used on-site measurement and questionnaire-based survey in the warm spring season in a typical female secondary school building. The on-site monitoring assessed the indoor air temperature and humidity levels of six classrooms while the occupants completed questionnaires covering their thermal sensations and thermal preferences. Moreover, thermal simulation analysis was also carried out to evaluate and improve the thermal performance of the classrooms based on the students’ thermal requirements and passive design strategies. In this study, the environmental design guidelines for female secondary school buildings were introduced for the hot and dry climate of Tehran, using passive design strategies. The study shows that the application of passive design strategies including south and south-east orientation, 10cm thermal insulation in wall and 5cm in the roof, and the combination of 30cm side fins and overhangs as a solar shading devices, as well as all-day ventilation strategy and the use of thermal mass materials with 25cm-30cm thickness, has considerable impact on indoor air temperatures in warm season in Tehran and keeps the indoor environment in an acceptable thermal condition. The results of the field studies also indicated that most of the occupants found their thermal environment not to be comfortable and the simulation results showed that passive design techniques had a significant influence on the indoor air temperature and can keep it in an acceptable range based on the female students’ thermal requirement. Therefore, in order to enhance the indoor environment and to increase the learning performance of the students, it is necessary to use the appropriate passive design strategies, which also reduce the need for mechanical systems and

  19. Adaptive implicit method for thermal compositional reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, A.; Tchelepi, H.A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Stanford Univ., Palo Alto (United States)

    2008-10-15

    As the global demand for oil increases, thermal enhanced oil recovery techniques are becoming increasingly important. Numerical reservoir simulation of thermal methods such as steam assisted gravity drainage (SAGD) is complex and requires a solution of nonlinear mass and energy conservation equations on a fine reservoir grid. The most currently used technique for solving these equations is the fully IMplicit (FIM) method which is unconditionally stable, allowing for large timesteps in simulation. However, it is computationally expensive. On the other hand, the method known as IMplicit pressure explicit saturations, temperature and compositions (IMPEST) is computationally inexpensive, but it is only conditionally stable and restricts the timestep size. To improve the balance between the timestep size and computational cost, the thermal adaptive IMplicit (TAIM) method uses stability criteria and a switching algorithm, where some simulation variables such as pressure, saturations, temperature, compositions are treated implicitly while others are treated with explicit schemes. This presentation described ongoing research on TAIM with particular reference to thermal displacement processes such as the stability criteria that dictate the maximum allowed timestep size for simulation based on the von Neumann linear stability analysis method; the switching algorithm that adapts labeling of reservoir variables as implicit or explicit as a function of space and time; and, complex physical behaviors such as heat and fluid convection, thermal conduction and compressibility. Key numerical results obtained by enhancing Stanford's General Purpose Research Simulator (GPRS) were also presented along with a list of research challenges. 14 refs., 2 tabs., 11 figs., 1 appendix.

  20. DNA - A Thermal Energy System Simulator

    DEFF Research Database (Denmark)

    2008-01-01

    DNA is a general energy system simulator for both steady-state and dynamic simulation. The program includes a * component model library * thermodynamic state models for fluids and solid fuels and * standard numerical solvers for differential and algebraic equation systems and is free and portable...... (open source, open use, standard FORTRAN77). DNA is text-based using whichever editor, you like best. It has been integerated with the emacs editor. This is usually available on unix-like systems. for windows we recommend the Installation instructions for windows: First install emacs and then run...

  1. Effect of highly reflective roofing sheet on building thermal loads for a school in Osaka

    Directory of Open Access Journals (Sweden)

    Yuan Jihui

    2017-01-01

    Full Text Available Currently, urban heat island (UHI phenomenon and building energy consumptions are becoming serious. Strategies to mitigate UHI and reduce building energy consumptions are implemented worldwide. In Japan, as an effective means of mitigating UHI and saving energy of buildings, highly reflective (HR and green roofs are increasingly used. In order to evaluate the effect of roofs with high reflection and thermal insulation on the energy conservation of buildings, we investigated the roof solar reflectivity of the subject school in Osaka, in which the HR roofing sheet was installed on the roof from 2010. Thermal loads, including cooling and heating loads of the top floor of school, were calculated using the thermal load calculation software, New HASP/ACLD-β. Comparing the thermal loads after HR roofing sheet installation to previous, the annual thermal load decreased about 25 MJ/m2-year and the cooling load decreased about 112 MJ/m2-year. However, the heating load increased about 87 MJ/m2-year in winter. To minimize the annual thermal load, thermal insulation of the roof was also considered be used together with HR roofing sheet in this study. The results showed that the combination of HR roofing sheet and high thermal insulation is more effective to reduce the annual thermal load.

  2. Building thermal loads: A case study for David Hellen Petta public secondary school

    CSIR Research Space (South Africa)

    Kumirai, T

    2013-03-01

    Full Text Available This chapter assesses the impact of appropriate passive interventions on building thermal loads. The passive interventions investigated are ceiling insulation, wall insulation, attic ventilation, natural ventilation and roof absorptance and also...

  3. Advanced thermal energy management: A thermal test bed and heat pipe simulation

    Science.gov (United States)

    Barile, Ronald G.

    1986-01-01

    Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.

  4. PCM/wood composite to store thermal energy in passive building envelopes

    Science.gov (United States)

    Barreneche, C.; Vecstaudza, J.; Bajare, D.; Fernandez, A. I.

    2017-10-01

    The development of new materials to store thermal energy in a passive building system is a must to improve the thermal efficiency by thermal-regulating the indoor temperatures. This fact will deal with the reduction of the gap between energy supply and energy demand to achieve thermal comfort in building indoors. The aim of this work was to test properties of novel PCM/wood composite materials developed at Riga Technical University. Impregnation of PCM (phase change material) in wood increases its thermal mass and regulates temperature fluctuations during day and night. The PCM used are paraffin waxes (RT-21 and RT-27 from Rubitherm) and the wood used was black alder, the most common wood in Latvia. The PCM distribution inside wood sample has been studied as well as its thermophysical, mechanical and fire reaction properties. Developed composite materials are promising in the field of energy saving in buildings.

  5. Effect of Moisture Content on Thermal Properties of Porous Building Materials

    Science.gov (United States)

    Kočí, Václav; Vejmelková, Eva; Čáchová, Monika; Koňáková, Dana; Keppert, Martin; Maděra, Jiří; Černý, Robert

    2017-02-01

    The thermal conductivity and specific heat capacity of characteristic types of porous building materials are determined in the whole range of moisture content from dry to fully water-saturated state. A transient pulse technique is used in the experiments, in order to avoid the influence of moisture transport on measured data. The investigated specimens include cement composites, ceramics, plasters, and thermal insulation boards. The effect of moisture-induced changes in thermal conductivity and specific heat capacity on the energy performance of selected building envelopes containing the studied materials is then analyzed using computational modeling of coupled heat and moisture transport. The results show an increased moisture content as a substantial negative factor affecting both thermal properties of materials and energy balance of envelopes, which underlines the necessity to use moisture-dependent thermal parameters of building materials in energy-related calculations.

  6. Rocks, Clays, Water, and Salts: Highly Durable, Infinitely Rechargeable, Eminently Controllable Thermal Batteries for Buildings

    OpenAIRE

    Rempel, Alan W.; Alexandra R. Rempel

    2013-01-01

    Materials that store the energy of warm days, to return that heat during cool nights, have been fundamental to vernacular building since ancient times. Although building with thermally rechargeable materials became a niche pursuit with the advent of fossil fuel-based heating and cooling, energy and climate change concerns have sparked new enthusiasm for these substances of high heat capacity and moderate thermal conductivity: stone, adobe, rammed earth, brick, water, concrete, and more recent...

  7. THERMAL INSULATION EFFECTS ON ENERGY EFFICIENCY OF BUILDING STRUCTURES

    OpenAIRE

    M. Cvetkovska; Knezevic, M.; Rogac, M.

    2012-01-01

    This paper presents the use of Finite Element Method for heat transfer analysis. Connections wall-beam-floor structures with different positions of the thermal insulation have been analyzed and conclusions about energy efficiency and energy loss are made. Keywords: heat transfer, numerical analysis, finite elements, thermal insulation, energy efficiency.

  8. 3D thermal climate monitoring in factory buildings

    NARCIS (Netherlands)

    Posselt, G.; Booij, P.S.; Thiede, S.; Fransman, J.E.; Driessen, B.J.F.; Herrmann, C.

    2015-01-01

    Guaranteeing defined conditions, such as the temperature levels inside the factory's building shell, is often important to produce high-quality products. Heating, ventilation and air conditioning (HVAC) equipment, as part of the technical building services, is energy intensive and accounts for a

  9. Effect of Thermal Bridges in Insulated Walls on Air-Conditioning Loads Using Whole Building Energy Analysis

    Directory of Open Access Journals (Sweden)

    Mohamed F. Zedan

    2016-06-01

    Full Text Available Thermal bridges in building walls are usually caused by mortar joints between insulated building blocks and by the presence of concrete columns and beams within the building envelope. These bridges create an easy path for heat transmission and therefore increase air-conditioning loads. In this study, the effects of mortar joints only on cooling and heating loads in a typical two-story villa in Riyadh are investigated using whole building energy analysis. All loads found in the villa, which broadly include ventilation, transmission, solar and internal loads, are considered with schedules based on local lifestyles. The thermal bridging effect of mortar joints is simulated by reducing wall thermal resistance by a percentage that depends on the bridges to wall area ratio (TB area ratio or Amj/Atot and the nominal thermal insulation thickness (Lins. These percentage reductions are obtained from a correlation developed by using a rigorous 2D dynamic model of heat transmission through walls with mortar joints. The reduction in thermal resistance is achieved through minor reductions in insulation thickness, thereby keeping the thermal mass of the wall essentially unchanged. Results indicate that yearly and monthly cooling loads increase almost linearly with the thermal bridge to wall area ratio. The increase in the villa’s yearly loads varies from about 3% for Amj/Atot = 0.02 to about 11% for Amj/Atot = 0.08. The monthly increase is not uniform over the year and reaches a maximum in August, where it ranges from 5% for Amj/Atot = 0.02 to 15% for Amj/Atot = 0.08. In winter, results show that yearly heating loads are generally very small compared to cooling loads and that heating is only needed in December, January and February, starting from late night to late morning. Monthly heating loads increase with the thermal bridge area ratio; however, the variation is not as linear as observed in cooling loads. The present results highlight the importance of

  10. Thermal comfort optimisation of vernacular rural buildings: passive solutions to retrofit a typical farmhouse in central Italy

    Directory of Open Access Journals (Sweden)

    Maria Elena Menconi

    2017-06-01

    Full Text Available An adequate retrofitting of traditional rural buildings requires to preserve their formal characteristics and to understand the constructive elements that compose them and which are different in different geographical areas. This paper analyses the typical farmhouses in central Italy. Starting from the definition of a vernacular building model, the paper analyses its performance in terms of thermal comfort and energy efficiency. The methodology involves the use of energy dynamic simulations coupled with optimisation techniques aimed to identify the best combinations of insulating materials in terms of choice of material and its optimal location in the envelope. The paper demonstrates the good thermal and energy performance of farmhouses in central Italy. The results of the optimisation process showed that in these buildings, with the addition of insulation materials with low conductivity the perceived discomfort in the inhabited areas of the building can be reduced by 79% and the energy consumption related to heating can be reduced by 77%. The level of insulation of the pavement that separates the ground and first floor needs to be more moderate to promote the heat flow between floors during summer. The sensitivity analysis shows that the most influential component for thermal comfort is the roof insulation.

  11. Numerical simulation for thermal shock resistance of thermal protection materials considering different operating environments.

    Science.gov (United States)

    Li, Weiguo; Li, Dingyu; Wang, Ruzhuan; Fang, Daining

    2013-01-01

    Based on the sensitivities of material properties to temperature and the complexity of service environment of thermal protection system on the spacecraft, ultrahigh-temperature ceramics (UHTCs), which are used as thermal protection materials, cannot simply consider thermal shock resistance (TSR) of the material its own but need to take the external constraint conditions and the thermal environment into full account. With the thermal shock numerical simulation on hafnium diboride (HfB2), a detailed study of the effects of the different external constraints and thermal environments on the TSR of UHTCs had been made. The influences of different initial temperatures, constraint strengths, and temperature change rates on the TSR of UHTCs are discussed. This study can provide a more intuitively visual understanding of the evolution of the TSR of UHTCs during actual operation conditions.

  12. Numerical Simulation for Thermal Shock Resistance of Thermal Protection Materials Considering Different Operating Environments

    Directory of Open Access Journals (Sweden)

    Weiguo Li

    2013-01-01

    Full Text Available Based on the sensitivities of material properties to temperature and the complexity of service environment of thermal protection system on the spacecraft, ultrahigh-temperature ceramics (UHTCs, which are used as thermal protection materials, cannot simply consider thermal shock resistance (TSR of the material its own but need to take the external constraint conditions and the thermal environment into full account. With the thermal shock numerical simulation on hafnium diboride (HfB2, a detailed study of the effects of the different external constraints and thermal environments on the TSR of UHTCs had been made. The influences of different initial temperatures, constraint strengths, and temperature change rates on the TSR of UHTCs are discussed. This study can provide a more intuitively visual understanding of the evolution of the TSR of UHTCs during actual operation conditions.

  13. Thermal Insulating Properties of Straw-Filled Environmentally Friendly Building Materials

    Science.gov (United States)

    Petkova-Slipets, Rositsa; Zlateva, Penka

    2017-06-01

    The paper presents results of a research for determination of a few general thermal-physical properties of environmentally friendly building materials made by clay, sand and straw. The aim of this study is to establish their heat insulating and energy-efficient capacity. All specific measurements were carried out by using the newest generation thermal conductivity analyser Mathis TCi. The results showed that the studied composite materials are good thermal insulators with thermal conductivity less than 0.5 W/m.K, which depends on the straw amount. Even less than 0.5 wt.% straw reflects on the insulating properties by decreasing the thermal conductivity coefficient with nearly 50 %.

  14. Large Eddy Simulation of Unstably Stratified Turbulent Flow over Urban-Like Building Arrays

    Directory of Open Access Journals (Sweden)

    Bobin Wang

    2013-01-01

    Full Text Available Thermal instability induced by solar radiation is the most common condition of urban atmosphere in daytime. Compared to researches under neutral conditions, only a few numerical works studied the unstable urban boundary layer and the effect of buoyancy force is unclear. In this paper, unstably stratified turbulent boundary layer flow over three-dimensional urban-like building arrays with ground heating is simulated. Large eddy simulation is applied to capture main turbulence structures and the effect of buoyancy force on turbulence can be investigated. Lagrangian dynamic subgrid scale model is used for complex flow together with a wall function, taking into account the large pressure gradient near buildings. The numerical model and method are verified with the results measured in wind tunnel experiment. The simulated results satisfy well with the experiment in mean velocity and temperature, as well as turbulent intensities. Mean flow structure inside canopy layer varies with thermal instability, while no large secondary vortex is observed. Turbulent intensities are enhanced, as buoyancy force contributes to the production of turbulent kinetic energy.

  15. Thermal Insulating Properties of Straw-Filled Environmentally Friendly Building Materials

    Directory of Open Access Journals (Sweden)

    Petkova-Slipets Rositsa

    2017-06-01

    Full Text Available The paper presents results of a research for determination of a few general thermal-physical properties of environmentally friendly building materials made by clay, sand and straw. The aim of this study is to establish their heat insulating and energy-efficient capacity. All specific measurements were carried out by using the newest generation thermal conductivity analyser Mathis TCi.

  16. Identification Approach to Alleviate Effects of Unmeasured Heat Gains for MIMO Building Thermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jie [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kim, Donghun [Purdue University; Braun, James E. [Purdue University

    2017-07-03

    It is important to have practical methods for constructing a good mathematical model for a building's thermal system for energy audits, retrofit analysis and advanced building controls, e.g. model predictive control. Identification approaches based on semi-physical model structures are popular in building science for those purposes. However conventional gray box identification approaches applied to thermal networks would fail when significant unmeasured heat gains present in estimation data. Although this situation is very common and practical, there has been little research to tackle this issue in building science. This paper presents an overall identification approach to alleviate influences of unmeasured disturbances, and hence to obtain improved gray-box building models. The approach was applied to an existing open space building and the performance is demonstrated.

  17. A control-oriented model for combined building climate comfort and aquifer thermal energy storage system

    NARCIS (Netherlands)

    Rostampour Samarin, V.; Bloemendal, J.M.; Jaxa-Rozen, M.; Keviczky, T.

    2016-01-01

    This paper presents a control-oriented model for combined building climate comfort and aquifer thermal energy storage (ATES) system. In particular, we first provide a description of building operational systems together with control framework variables. We then focus on the derivation of an

  18. Effects of acoustic ceiling units on the cooling performance of thermally activated building systems (TABS)

    DEFF Research Database (Denmark)

    Lacarte, Luis Marcos Domínguez; Rage, Niels; Kazanci, Ongun Berk

    2017-01-01

    Europe, with a building stock responsible for about 40% of the total energy use, needs to reduce the primary energy use in buildings in order to meet the 2020 energy targets of the European Union. High temperature cooling and low temperature heating systems, and as an example, Thermally Activated...

  19. Model for Naturally Ventilated Cavities on the Exteriors of Opaque Building Thermal Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.

    2006-11-01

    This paper describes a model for naturally ventilated cavities on the exterior of opaque building thermal envelopes that are formed by the presence of a lightweight baffle. The model can be used for building components that are slightly detached from the main envelope (but do not connect to the interior).

  20. DETERMINATION OF THERMAL RESPONSE OF CARRARA AND SNEZNIKOVSKY MARBLE USED AS A BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Veronika Petráňová

    2016-02-01

    Full Text Available Physical weathering of marble, widely used as a cladding material on buildings, is one of the most common damaging mechanism caused by anisotropic thermal expansion of calcite grains. The extent of marble deterioration depends mainly on stone fabric and texture. Dry cuboids of Carrara marble and marble from Dolni Morava quarry were subjected to microscopic analysis and thermal cycling, to determine the thermal expansion related to stone fabric and predominant lattice orientation of grains (i.e. texture.

  1. Grey-Box Based Optimal Control for Thermal Systems in Buildings - Unlocking Energy Efficiency and Flexibility

    OpenAIRE

    De Coninck, Roel

    2015-01-01

    Improving the energy efficiency of building energy systems is a key challenge for the mitigation of climate change. In particular, bad controlnbsp;operation often causes large energy efficiency losses, both in new and old buildings.nbsp;implementation of model predictive control (MPC) in buildings could enable an improved thermal comfort, lower operational costs and lower CO2 emissions. Moreover, such a controller can offer services to the energy market by using the flexibility of the buildin...

  2. Evaluating Different Green School Building Designs for Albania: Indoor Thermal Comfort, Energy Use Analysis with Solar Systems

    Science.gov (United States)

    Dalvi, Ambalika Rajendra

    Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of comfort-related HVAC and lighting systems. This research, which is a part of a larger research project, aims at evaluating different school building designs in Albania in terms of energy use and indoor thermal comfort, and identify energy efficient options of existing schools. We start by identifying three different climate zones in Albania; Coastal (Durres), Hill/Pre-mountainous (Tirana), mountainous (Korca). Next, two prototypical school building designs are identified from the existing stock. Numerous scenarios are then identified for analysis which consists of combinations of climate zone, building type, building orientation, building upgrade levels, presence of renewable energy systems (solar photovoltaic and solar water heater). The existing building layouts, initially outlined in CAD software and then imported into a detailed building energy software program (eQuest) to perform annual simulations for all scenarios. The research also predicted indoor thermal comfort conditions of the various scenarios on the premise that windows could be opened to provide natural ventilation cooling when appropriate. This study also estimated the energy generated from solar photovoltaic systems and solar water heater systems when placed on the available roof area to determine the extent to which they are able to meet the required electric loads (plug and lights) and building heating loads respectively. The results showed that there is adequate indoor comfort without the need for mechanical cooling for the three climate zones, and that only heating is needed during the winter months.

  3. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    Science.gov (United States)

    Emrich, William J., Jr.

    2014-01-01

    Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit

  4. Simulation and experimental study of thermal performance of a ...

    Indian Academy of Sciences (India)

    Chloride hexahydrate (CaCl26H2O) as a phase change material (PCM) for a room was proposed in this paper to control the indoor air temperature for a better thermal comfort for human beings. Building concrete roof with vertical cylindrical hole of 0.5 × 0.5 m and array of 3 × 3 filled with phase change material (PCM) was ...

  5. Guidelines for Energy Simulation of Commercial Buildings: Final.

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Michael; Caner, Phoebe

    1992-03-01

    This report distills the experience gained from intensive computer building simulation work for the Energy Edge project. The purpose of this report is twofold: to use that experience to guide conservation program managers in their use of modeling, and to improve the accuracy of design-phase computer models. Though the main emphasis of the report is on new commercial construction, it also addresses modeling as it pertains to retrofit construction. To achieve these purposes, this report will: (1) discuss the value of modeling for energy conservation programs; (2) discuss strengths and weaknesses of computer models; (3) provide specific guidelines for model input; (4) discuss input topics that are unusually large drivers of energy use and model inaccuracy; (5) provide guidelines for developing baseline models; (6) discuss types of energy conservation measures (ECMs) and building operation that are not suitable to modeling and present possible alternatives to modeling for analysis; and (7) provide basic requirements for model documentation. This project was initiated to determine whether commercial buildings can be designed and constructed to use at least 30% less energy than if they were designed and built to meet the current regional model energy code, the Model Conservation Standards (MCS) developed by the Pacific Northwest Electric Power and Conservation Planning Council. Secondary objectives of the project are to determine the incremental energy savings of a wide variety of ECMs and to compare the predictive accuracy of design-phase models with models that are carefully tuned to monitored building data.

  6. Review of thermal energy storage technologies based on PCM application in buildings

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Zhang, Yinping

    2013-01-01

    Thermal energy storage systems (TES), using phase change material (PCM) in buildings, are widely investigated technologies and a fast developing research area. Therefore, there is a need for regular and consistent reviews of the published studies. This review is focused on PCM technologies...... is paid to discussion and identification of proper methods to correctly determine the thermal properties of PCM materials and their composites and as well procedures to determine their energy storage and saving potential. The purpose of the paper is to highlight promising technologies for PCM application...... developed to serve the building industry. Various PCM technologies tailored for building applications are studied with respect to technological potential to improve indoor environment, increase thermal inertia and decrease energy use for building operation. What is more, in this review special attention...

  7. A life cycle cost analysis of large-scale thermal energy storage technologies for buildings using combined heat and power

    Energy Technology Data Exchange (ETDEWEB)

    Gaine, K.; Duffy, A.

    2010-07-01

    Full text: Buildings account for approximately 40% of energy consumption and greenhouse gas (GHG) emissions in developed economies, of which approximately 55% of building energy is used for heating and cooling. The reduction of building-related GHG emissions is a high international policy priority. For this reason and because there are many technical solutions for this, these polices should involve significant improvements in the uptake of small-scale energy efficient (EE) systems. However the widespread deployment of many technologies, must overcome a number of barriers, one of which is a temporal (diurnal or seasonal) mismatch between supply and demand. For example, in office applications, peak combined heat and power (CHP) thermal output may coincide with peak electrical demand in the late morning or afternoon, whereas heating may be required early in the morning. For this reason, cost-effective thermal storage solutions have the potential to improve financial performance, while simultaneously reducing associated GHG emissions. The aim of this paper is to identify existing thermal energy storage (TES) technologies and to present and asses the economic and technical performance of each for a typical large scale mixed development. Technologies identified include: Borehole Thermal Energy Storage (BTES); Aquifer Thermal Energy Storage (ATES); Pitt Thermal Energy Storage (PTES) and Energy Piles. Of these the most appropriate for large scale storage in buildings were BTES and ATES because of they are relatively cheap and are installed under a building and do not use valuable floor area A Heat transfer analyses and system simulations of a variety of BTES systems are carried out using a Finite Element Analysis package (ANSYS) and energy balance simulation software (TRNSYS) is to determine the optimal system design. Financial models for each system are developed, including capital, installation, running and maintenance costs. Using this information the unit costs of

  8. Envelope design guidelines for Federal office buildings: Thermal integrity and airtightness

    Energy Technology Data Exchange (ETDEWEB)

    Persily, A.K.

    1993-03-01

    Office building envelopes are generally successful in meeting a range of structural, aesthetic and thermal requirements. However, poor thermal envelope performance does occur due to the existence of defects in the envelope insulation, air barrier and vapor retarder systems. These defects result from designs that do not adequately account for heat, air and moisture transmission, with many being associated with inappropriate or inadequate detailing of the connections of envelope components. Other defects result from designs that appear adequate but can not be constructed in the field or will not maintain adequate performance over time. Despite the existence of these thermal envelope performance problems, information is available to design and construct envelopes that do perform well. In order to bridge the gap between available knowledge and current practice, NIST has developed thermal envelope design guidelines for federal office buildings for the General Services Administration. The goal of this project is to transfer the knowledge on thermal envelope design and performance from the building research, design and construction communities into a form that will be used by building design professionals. These guidelines are organized by envelope construction system and contain practical information on the avoidance of thermal performance problems such as thermal bridging, insulation system defects, moisture migration, and envelope air leakage.

  9. Weldability investigation steel P 91 by weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2015-07-01

    Full Text Available This paper elaborates results of hardness and impact energy of thermal cycle simulated specimens of high-alloy steel P 91 and their dependence on cooling time from 800 to 500 °C. Results were obtained by measuring hardness HV 1 and by experimental testing of Charpy notched specimens. Metallographic analysis of samples was performed on scanning electronic microscope.

  10. Impact of modified soil thermal characteristic on the simulated ...

    Indian Academy of Sciences (India)

    In the present study, the influence of soil thermal characteristics (STC) on the simulated monsoon climate over south Asia is analyzed. The study was motivated by a common warm temperature bias over the plains of northern India that has been noticed in several global and regional climate models. To address this warm ...

  11. Numerical simulation of thermal fracture in functionally graded ...

    Indian Academy of Sciences (India)

    In the present work, element-free Galerkin method (EFGM) has been extended and implemented to simulate thermal fracture in functionally graded materials. The thermo-elastic fracture problem is decoupled into two separate parts. Initially, the temperature distribution over the domain is obtained by solving the heat transfer ...

  12. Optical and thermal simulation chain for LED package

    NARCIS (Netherlands)

    Tapaninen, O.; Myohanen, P.; Majanen, M.; Sitomaniemi, A.; Olkkonen, J.; Hildenbrand, V.; Gielen, A.W.J.; Mackenzie, F.V.; Barink, M.; Smilauer, V.; Patzak, B.

    2016-01-01

    This paper presents a test case for coupling two physical aspects of an LED, optical and thermal, using specific simulation models coupled through an open source platform for distributed multi-physics modelling. The glue code for coupling is written with Python programming language including

  13. International Energy Agency building energy simulation test (BESTEST) and diagnostic method

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Neymark, J.

    1995-02-01

    This is a report on the Building Energy Simulation Test (BESTEST) project conducted by the Model Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 12 Subtask B, and the Energy Conservation in Buildings and Community Systems (BCS) Programme, Annex 21 Subtask C. Recognizing that the needs for model evaluation were similar in both IEA programmes, the combined Experts Group was approved by the Executive Committees in 1990. This is the first joint group organized by the respective IEA Executive Committees, and it has resulted in significant cost savings for all participating countries. The objective of this subtask has been to develop practical implementation procedures and data for an overall IEA validation methodology which has been under development by NREL since 1981, with refinements contributed by the United Kingdom. The methodology consists of a combination of empirical validation, analytical verification, and comparative analysis techniques. This report documents a comparative testing and diagnostic procedure for thermal models related to the architectural fabric of the building. Other projects (reported elsewhere) conducted by this group include work on empirical validation, analytical verification, and comparative test cases for commercial buildings. In the BESTEST project, a method was developed for systematically testing whole-building energy simulation programs and diagnosing the sources of predictive disagreement. Field trials of the method were conducted with a number of {open_quotes}reference{close_quotes} programs selected by the participants to represent the best state-of-the-art detailed simulation capability available in the United States and Europe. These included BLAST, DOE2, ESP, SERIRES, S3PAS, TASE, and TRNSYS.

  14. CryoModel: a cryostat thermal performance simulation tool

    CERN Document Server

    Pérez Caparrós, D

    2011-01-01

    In the design process of cryostats for accelerators equipment (magnets or RF cavities), it is of interest to estimate downtime for intervention. For this purpose, it is necessary to understand the temperature transients of the accelerator components during warm-up and cool-down processes. In this report, a mathematical model and a simulation tool to study the main heat transfer phenomena of a generic horizontal cryostat (radiation, with or without multilayer insulation system, actively cooled thermal shielding, thermal conduction through supporting systems, etc.) is presented. The thermal model and simulator have been benchmarked on experimental data from transients of the Large Hadron Collider (LHC). The presented tool is now being used to estimate the warm-up time needed for machine intervention in case of replacement of one cryomodule of the Superconducting Proton Linear accelerator (SPL).

  15. MHD simulations of coronal dark downflows considering thermal conduction

    Science.gov (United States)

    Zurbriggen, E.; Costa, A.; Esquivel, A.; Schneiter, M.; Cécere, M.

    2017-10-01

    While several scenarios have been proposed to explain supra-arcade downflows (SADs) observed descending through turbulent hot regions, none of them have systematically addressed the consideration of thermal conduction. The SADs are known to be voided cavities. Our model assumes that SADs are triggered by bursty localized reconnection events that produce non-linear waves generating the voided cavity. These subdense cavities are sustained in time because they are hotter than their surrounding medium. Due to the low density and large temperature values of the plasma we expect the thermal conduction to be an important process. Our main aim here is to study if it is possible to generate SADs in the framework of our model considering thermal conduction. We carry on 2D MHD simulations including anisotropic thermal conduction, and find that if the magnetic lines envelope the cavities, they can be isolated from the hot environment and be identified as SADs.

  16. Infrared Thermography Assessment of Thermal Bridges in Building Envelope: Experimental Validation in a Test Room Setup

    Directory of Open Access Journals (Sweden)

    Francesco Bianchi

    2014-10-01

    Full Text Available Thermal infrared imaging is a valuable tool to perform non-destructive qualitative tests and to investigate buildings envelope thermal-energy behavior. The assessment of envelope thermal insulation, ventilation, air leakages, and HVAC performance can be implemented through the analysis of each thermogram corresponding to an object surface temperature. Thermography also allows the identification of thermal bridges in buildings’ envelope that, together with windows and doors, constitute one of the weakest component increasing thermal losses. A quantitative methodology was proposed in previous researches by the authors in order to evaluate the effect of such weak point on the energy balance of the whole building. In the present work, in-field experimental measurements were carried out with the purpose of evaluating the energy losses through the envelope of a test room experimental field. In-situ thermal transmittance of walls, ceiling and roof were continuously monitored and each element was characterized by its own thermal insulation capability. Infrared thermography and the proposed quantitative methodology were applied to assess the energy losses due to thermal bridges. The main results show that the procedure confirms to be a reliable tool to quantify the incidence of thermal bridges in the envelope thermal losses.

  17. Enhancing the energy-efficient design of office buildings using a based-simulation design support system

    Science.gov (United States)

    Kassab, Mohamed Samy Moawad

    This thesis presents a comprehensive study for enhancing the energy efficiency of office buildings in Canada. Two models were used: the thermal model to develop the thermal-related alternatives, and the daylighting model to explore means for more effectively exploiting daylight in buildings through extending periods of illumination free from glare problems. The key concept is to quantify and examine the impact of developed design parameters on the buildings' performance. The University of Calgary's Information and Communication Technology (ICT) office building is used as a base model for which the innovative techniques are developed and presented in this study. Although simulation programs can evaluate the illuminance levels and energy consumption of buildings, they are predicting programs rather than optimizing tools. Moreover, the concept of energy efficiency includes more than the total energy consumption; therefore, the Simulation-Based Design Support System (SBDSS) was developed to decide on the optimum design solutions for office buildings. The SBDSS was established using the C++ program and based on the simulation results of the EnergyPlus and Desktop Radiance software programs. The thermal and daylighting models were developed first; then, the SBDSS automatically modified the design parameters of models according to information provided by users. A database was created that includes the entire simulation results, comprising a large number of design solutions. The alternatives include the variations of individual parameters and the available combinations among such parameters composing multi-dimensional groups. The evaluation of the design alternatives was based on the life-cycle approach. Three objective functions were used in this analysis, including the total energy consumption; life-cycle cost; and environmental impacts, evaluated in terms of the equivalent CO2 emissions. A selection tool, developed by Excel, was used to derive the optimum alternatives

  18. Human Thermal Comfort In Residential House Buildings Of Jimma Town Southwest Ethiopia.

    Directory of Open Access Journals (Sweden)

    Chali Yadeta

    2015-08-01

    Full Text Available Indoor human thermal comfort is an important factor in indoor air quality assessment. Thermal comfort affects human health work efficiency and overall wellbeing. Thermal discomfort in indoors lowers the emotional and physical health of the occupants. This paper targets to explore human thermal comfort in residential house buildings of Jimma town and state some possible mechanisms to improve the existing thermal discomfort in large number the houses. For the study 303 structured questionnaires were distributed to the residential houses in thirteen places of the town based on predetermined criteria. The study reveals that human thermal discomfort in residential houses Jimma town are mainly from poor architectural design and improper use of heat generating appliances in indoors. The uses architectural design that suites the present climatic conditions and use of materials that facilitates ventilations will enhance the realization of the required human thermal comfort in residential houses of the study area.

  19. Building automation: Photovoltaic assisted thermal comfort management system for energy saving

    Science.gov (United States)

    Reyasudin Basir Khan, M.; Jidin, Razali; Pasupuleti, Jagadeesh; Azwa Shaaya, Sharifah

    2013-06-01

    Building automation plays an important key role in the means to reduce building energy consumption and to provide comfort for building occupants. It is often that air conditioning system operating features ignored in building automation which can result in thermal discomfort among building occupants. Most automation system for building is expensive and incurs high maintenance cost. Such system also does not support electricity demand side management system such as load shifting. This paper discusses on centralized monitoring system for room temperature and photovoltaic (PV) output for feasibility study of PV assisted air conditioning system in small office buildings. The architecture of the system consists of PV modules and sensor nodes located at each room. Wireless sensor network technology (WSN) been used for data transmission. The data from temperature sensors and PV modules transmitted to the host personal computer (PC) wirelessly using Zigbee modules. Microcontroller based USB data acquisition device used to receive data from sensor nodes and displays the data on PC.

  20. Building Comprehensive Strategies for Obstetric Safety: Simulation Drills and Communication.

    Science.gov (United States)

    Austin, Naola; Goldhaber-Fiebert, Sara; Daniels, Kay; Arafeh, Julie; Grenon, Veronique; Welle, Dana; Lipman, Steven

    2016-11-01

    As pioneers in the field of patient safety, anesthesiologists are uniquely suited to help develop and implement safety strategies to minimize preventable harm on the labor and delivery unit. Most existing obstetric safety strategies are not comprehensive, lack input from anesthesiologists, are designed with a relatively narrow focus, or lack implementation details to allow customization for different units. This article attempts to address these gaps and build more comprehensive strategies by discussing the available evidence and multidisciplinary authors' local experience with obstetric simulation drills and optimization of team communication.

  1. Infrared scanners detect thermal gradients in building walls

    Science.gov (United States)

    Kantsios, A. G.

    1979-01-01

    Presents study on ability of infrared scanner used to detect thermal gradients in outside walls of two homes in Virginia Beach, Virginia under joint effort of Langley Research Center, Virginia Energy Office and Virginia Beach Energy Conservation Pilot Project. Details how study can be used to help minimize energy loss.

  2. Thermal comfort in naturally ventilated buildings in Maceio, Brazil

    Science.gov (United States)

    Djamila, Harimi

    2017-11-01

    This article presents the results from thermal comfort survey carried out in classrooms over two different seasons in Maceio, Brazil. The secondary data were collected from thermal comfort field study conducted in naturally ventilated classrooms. Objective and subjective parameters were explored to evaluate thermal comfort conditions. The potential effect of air movement on subjects' vote under neutrality was evaluated. Overall, the indoor climate of the surveyed location was classified warm and humid. Conflicting results were depicted when analyzing the effect of air movements on subjects' vote. The mean air temperature for subjects feeling hot was found to be lower than those feeling warm. A reasonable approach to tackle these two unpredictable results was suggested. Correlation matrix between selected thermal comfort variables was developed. Globe temperature recorded the highest correlation with subjects' response on ASHRAE seven-point scale. The correlation was significant at the 0.01 level. On the other hand, the correlation between air movement and subjects' response on ASHRAE seven-point scale was weak but significant. Further field studies on the current topic were recommended.

  3. Experimental and Numerical Study of the Effects of Acoustic Sound Absorbers on the Cooling Performance of Thermally Active Building Systems

    DEFF Research Database (Denmark)

    Domínguez, L. Marcos; Kazanci, Ongun Berk; Rage, Nils

    2017-01-01

    Free-hanging horizontal and vertical sound absorbers are commonly used in buildings for room acoustic control; however, when these sound absorbers are used in combination with Thermally Active Building Systems, they will decrease the cooling performance of Thermally Active Building Systems and th...

  4. Effects of Free-Hanging Horizontal Sound Absorbers on the Cooling Performance of Thermally Activated Building Systems

    DEFF Research Database (Denmark)

    Lacarte, Luis Marcos Domínguez; Rage, Nils; Kazanci, Ongun Berk

    2017-01-01

    Thermally Activated Building Systems (TABS) have proven to be an energy-efficient solution to provide buildings with an optimal indoor thermal environment. This solution uses the structure of the building to store heat, reduce the peak loads, and decrease the primary energy demand. TABS require t...

  5. Simulation Study of Building Integrated Solar Liquid PV-T Collectors

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2012-01-01

    Full Text Available Influence of building integration of polycrystalline PV modules on their performance and potential for use of active liquid cooling by use of BIPV-T collectors has been investigated by simulation analysis with a detailed model. Integration of PV modules into building envelope could reduce the annual production of electricity by a rate above 5% and negatively influence lifetime due to thermal stresses induced by high operation temperatures above 100°C in the case of warm climate and above 90°C in moderate climate. Two configurations of unglazed PV-T collectors (low-tech, high-tech and their ability to eliminate overheating of BIPV module have been discussed. Simulation study on combined heat and electricity production from given BIPV-T collectors has been presented for three typical applications (5°C: primary circuits of heat pumps; 15°C: cold water preheating; 25°C: pool water preheating. Thermal output of unglazed BIPV-T collectors is up to 10 times higher than electricity. Electricity production could be up to 25% higher than BIPV (without cooling for warm climate and up to 15% in moderate climate.

  6. Engineering-Based Thermal CFD Simulations on Massive Parallel Systems

    Directory of Open Access Journals (Sweden)

    Jérôme Frisch

    2015-05-01

    Full Text Available The development of parallel Computational Fluid Dynamics (CFD codes is a challenging task that entails efficient parallelization concepts and strategies in order to achieve good scalability values when running those codes on modern supercomputers with several thousands to millions of cores. In this paper, we present a hierarchical data structure for massive parallel computations that supports the coupling of a Navier–Stokes-based fluid flow code with the Boussinesq approximation in order to address complex thermal scenarios for energy-related assessments. The newly designed data structure is specifically designed with the idea of interactive data exploration and visualization during runtime of the simulation code; a major shortcoming of traditional high-performance computing (HPC simulation codes. We further show and discuss speed-up values obtained on one of Germany’s top-ranked supercomputers with up to 140,000 processes and present simulation results for different engineering-based thermal problems.

  7. Engineering-Based Thermal CFD Simulations on Massive Parallel Systems

    KAUST Repository

    Frisch, Jérôme

    2015-05-22

    The development of parallel Computational Fluid Dynamics (CFD) codes is a challenging task that entails efficient parallelization concepts and strategies in order to achieve good scalability values when running those codes on modern supercomputers with several thousands to millions of cores. In this paper, we present a hierarchical data structure for massive parallel computations that supports the coupling of a Navier–Stokes-based fluid flow code with the Boussinesq approximation in order to address complex thermal scenarios for energy-related assessments. The newly designed data structure is specifically designed with the idea of interactive data exploration and visualization during runtime of the simulation code; a major shortcoming of traditional high-performance computing (HPC) simulation codes. We further show and discuss speed-up values obtained on one of Germany’s top-ranked supercomputers with up to 140,000 processes and present simulation results for different engineering-based thermal problems.

  8. SIMULATION OF THERMAL DECOMPOSITION OF MINERAL INSULATING OIL

    Directory of Open Access Journals (Sweden)

    V. G. M. Cruz

    2015-09-01

    Full Text Available AbstractDissolved gas analysis (DGA has been applied for decades as the main predictive maintenance technique for diagnosing incipient faults in power transformers since the decomposition of the mineral insulating oil (MIO produces gases that remain dissolved in the liquid phase. Nevertheless, the most known diagnostic methods are based on findings of simplified thermodynamic and compositional models for the thermal decomposition of MIO, in addition to empirical data. The simulation results obtained from these models do not satisfactorily reproduce the empirical data. This paper proposes a flexible thermodynamic model enhanced with a kinetic approach and selects, among four compositional models, the one offering the best performance for the simulation of thermal decomposition of MIO. The simulation results obtained from the proposed model showed better adequacy to reported data than the results obtained from the classical models. The proposed models may be applied in the development of a phenomenologically-based diagnostic method.

  9. Thermal Comfort and Ventilation Criteria for low Energy Residential Buildings in Building Codes

    DEFF Research Database (Denmark)

    Cao, Guangyu; Kurnitski, Jarek; Awbi, Hazim

    2012-01-01

    Indoor environmental quality and energy performance of buildings are becoming more and more important in the design and construction of low energy, passive and zero energy buildings. At the same time, improved insulation and air tightness have the potential to resulting in a deterioration of the ...

  10. Simulation insights into thermally conductive graphene-based nanocomposites

    Science.gov (United States)

    Konatham, D.; Bui, K. N. D.; Papavassiliou, D. V.; Striolo, A.

    2011-01-01

    Dispersing nanoparticles in a polymer can enhance both mechanical and transport properties. Nanocomposites with high thermal conductivity could be obtained by using thermally conductive nanoparticles. Carbon-based nanoparticles are extremely promising, although high resistances to heat transfer from the nanoparticles to the polymer matrix could cause significant limitations. This work focuses on graphene sheets (GS) dispersed within n-octane. Although pristine GS agglomerate, equilibrium molecular dynamic simulations suggest that when the GS are functionalized with short branched hydrocarbons along the GS edges, they remain well dispersed. Results are reported from equilibrium and non-equilibrium molecular dynamics simulations to assess the effective interactions between dispersed GS, the self-assembly of GS, and the heat transfer through the GS-octane nanocomposite. Tools are designed to understand the effect of GS size, solvent molecular weight and molecular architecture on GS dispersability and GS-octane thermal conductivity. Evidence is provided for the formation of nematic phases when the GS volume fraction increases within octane. The atomic-level results are input for a coarse-grained Monte Carlo simulation that predicts anisotropic thermal conductivity for GS-based composites when the GS show nematic phases.

  11. The thermal impact of subsurface building structures on urban groundwater resources - A paradigmatic example.

    Science.gov (United States)

    Epting, Jannis; Scheidler, Stefan; Affolter, Annette; Borer, Paul; Mueller, Matthias H; Egli, Lukas; García-Gil, Alejandro; Huggenberger, Peter

    2017-10-15

    Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md-1 delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow

  12. Energy Modelling and Automated Calibrations of Ancient Building Simulations: A Case Study of a School in the Northwest of Spain

    Directory of Open Access Journals (Sweden)

    Ana Ogando

    2017-06-01

    Full Text Available In the present paper, the energy performance of buildings forming a school centre in the northwest of Spain was analyzed using a transient simulation of the energy model of the school, which was developed with TRNSYS, a software of proven reliability in the field of thermal simulations. A deterministic calibration approach was applied to the initial building model to adjust the predictions to the actual performance of the school, data acquired during the temperature measurement campaign. The buildings under study were in deteriorated conditions due to poor maintenance over the years, presenting a big challenge for modelling and simulating it in a reliable way. The results showed that the proposed methodology is successful for obtaining calibrated thermal models of these types of damaged buildings, as the metrics employed to verify the final error showed a reduced normalized mean bias error (NMBE of 2.73%. It was verified that a decrease of approximately 60% in NMBE and 17% in the coefficient of variation of the root mean square error (CV(RMSE was achieved due to the calibration process. Subsequent steps were performed with the aid of new software, which was developed under a European project that enabled the automated calibration of the simulations.

  13. Smart Building: Decision Making Architecture for Thermal Energy Management

    OpenAIRE

    Oscar Hernández Uribe; Juan Pablo San Martin; María C. Garcia-Alegre; Matilde Santos; Domingo Guinea

    2015-01-01

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, stora...

  14. Advances in Integrated Vehicle Thermal Management and Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-10-01

    Full Text Available With the increasing demands for vehicle dynamic performance, economy, safety and comfort, and with ever stricter laws concerning energy conservation and emissions, vehicle power systems are becoming much more complex. To pursue high efficiency and light weight in automobile design, the power system and its vehicle integrated thermal management (VITM system have attracted widespread attention as the major components of modern vehicle technology. Regarding the internal combustion engine vehicle (ICEV, its integrated thermal management (ITM mainly contains internal combustion engine (ICE cooling, turbo-charged cooling, exhaust gas recirculation (EGR cooling, lubrication cooling and air conditioning (AC or heat pump (HP. As for electric vehicles (EVs, the ITM mainly includes battery cooling/preheating, electric machines (EM cooling and AC or HP. With the rational effective and comprehensive control over the mentioned dynamic devices and thermal components, the modern VITM can realize collaborative optimization of multiple thermodynamic processes from the aspect of system integration. Furthermore, the computer-aided calculation and numerical simulation have been the significant design methods, especially for complex VITM. The 1D programming can correlate multi-thermal components and the 3D simulating can develop structuralized and modularized design. Additionally, co-simulations can virtualize simulation of various thermo-hydraulic behaviors under the vehicle transient operational conditions. This article reviews relevant researching work and current advances in the ever broadening field of modern vehicle thermal management (VTM. Based on the systematic summaries of the design methods and applications of ITM, future tasks and proposals are presented. This article aims to promote innovation of ITM, strengthen the precise control and the performance predictable ability, furthermore, to enhance the level of research and development (R&D.

  15. Analysis and thermal simulation of the traditional housing in the south west region of Algeria : hot and dry climate

    Energy Technology Data Exchange (ETDEWEB)

    Fezzioui, N.; Benyamine, M.; Dahou, Z.; Draoui, B. [Bechar Univ., (Algeria). Dept. of Exact Science; Khoukhi, M. [Sharjah Univ., (United Arab Emirates). Dept. of Architectural Engineering

    2009-07-01

    Energy consumption in buildings in the southern part of Algeria represents nearly 70 per cent of the total energy use during the summer months, since air conditioning is the only means to ensure thermal comfort for inhabitants. In this study, the TRNSYS computer program was used to model and simulate the thermal behaviour and energy flows of a traditional house in the Sahara. The objective was to determine which measures are best suited to reduce thermal loads. The energy simulation involved various components and different modes of heat transfer, taking into account of the effect of air infiltration. Energy use in a traditional house was compared with that of a modern house. The study revealed that typology and the choice of building envelope have a notable influence on energy consumption and thermal comfort. A wrong choice can be very costly in the long term with regard to energy expenditure to ensure thermal comfort inside the house. The best measures to improve energy efficiency were insulating the roof and choosing an appropriate material for the external walls. It was concluded that a material should not be considered according to its intrinsic thermal qualities, but by its location in the wall and its interaction with the other materials as well as the typology of the building itself. 12 refs., 11 tabs., 2 figs.

  16. Building intelligence in third-generation training and battle simulations

    Science.gov (United States)

    Jacobi, Dennis; Anderson, Don; von Borries, Vance; Elmaghraby, Adel; Kantardzic, Mehmed; Ragade, Rammohan

    2003-09-01

    Current war games and simulations are primarily attrition based, and are centered on the concept of force on force. They constitute what can be defined as "second generation" war games. So-called "first generation" war games were focused on strategy with the primary concept of mind on mind. We envision "third generation" war games and battle simulations as concentrating on effects with the primary concept being system on system. Thus the third generation systems will incorporate each successive generation and take into account strategy, attrition and effects. This paper will describe the principal advantages and features that need to be implemented to create a true "third generation" battle simulation and the architectural issues faced when designing and building such a system. Areas of primary concern are doctrine, command and control, allied and coalition warfare, and cascading effects. Effectively addressing the interactive effects of these issues is of critical importance. In order to provide an adaptable and modular system that will accept future modifications and additions with relative ease, we are researching the use of a distributed Multi-Agent System (MAS) that incorporates various artificial intelligence methods. The agent architecture can mirror the military command structure from both vertical and horizontal perspectives while providing the ability to make modifications to doctrine, command structures, inter-command communications, as well as model the results of various effects upon one another, and upon the components of the simulation. This is commonly referred to as "cascading effects," in which A affects B, B affects C and so on. Agents can be used to simulate units or parts of units that interact to form the whole. Even individuals can eventually be simulated to take into account the affect to key individuals such as commanders, heroes, and aces. Each agent will have a learning component built in to provide "individual intelligence" based on

  17. Calculation of the thermal solar contribution in facilities of ACS in buildings. Comparison between the method of strong simulation and F-Chart considering lost in the circuits; Calculo de la contribucion solar termica en instalaciones de ACS en edificios. Comparacion entre el metodo de simulacion dinamica y F-Chart considerando perdidas en los circuitos

    Energy Technology Data Exchange (ETDEWEB)

    Guillo, J. F.; Lucas, M.; Lucas, R.; Vicente, P. G.

    2008-07-01

    It has analyzed the impact of distribution losses in the size of solar installations by comparing two methods commonly used in calculating the contribution of solar residential building: f-chart and dynamic simulation. 3 schemes have been analysed in a building 22 houses and 70 occupants located in the IV and climate in the province of Alicante. For comparison between the two methodologies have been used for calculating the same values input from climate data as consumption of ACS. (Author)

  18. An Update of a Simulation Study of Passively Heated Residential Buildings

    Directory of Open Access Journals (Sweden)

    Ooi Koon Beng

    2016-12-01

    Full Text Available “A simulation study of passively heated residential buildings” published in Procedia Engineering 2015 showed how circulating 15-17°C water from a 50-m deep U-tube to a floor radiator and solar-heated water from a 30 evacuated tube solar collector and a 2-m3 indoor tank to a wall radiator could keep a 30-m2 Melbourne, Australia house thermally comfortable. This paper presents a summary of the ongoing review of publications together with three updates: - (1 Report on that water heated by a 100-metre deep U-tube is 22-24°C, i.e., 2-4 °C warmer than thermal comfort temperature. (2 May 2016 experimental validations of the simulated results which show that when the outdoors is below 10°C, the temperature of the floor radiator is 2-4°C less than the 15-17°C water heated by a 50-m deep U-tube and 25 W fish tank pumps could circulate the waters. (3 Simulations with the addition of phase change materials (PCM to inside faces show that though a PCM halves the diurnal indoor temperature variations, it confirms that such PCM does not significantly increase the 20°C temperature in a 2-m3 storage tank at the end of winter. Therefore, the size of intersessional thermal storage would be a problem for family-sized houses. German Guidelines indicate that 1-2 boreholes could provide enough heat for family-sized houses. The heat extracted in winter can be replenished in summer. Thus the geothermal heat from about 100-m deep boreholes with 22-24°C bottom temperature could sustainably keep residential buildings in cool climates similar to Melbourne's cool temperate thermally comfortable.

  19. Investigation of thermal effect on exterior wall surface of building material at urban city area

    Energy Technology Data Exchange (ETDEWEB)

    Md Din, Mohd Fadhil; Dzinun, Hazlini; Ponraj, M.; Chelliapan, Shreeshivadasan; Noor, Zainura Zainun [Institute of Environmental Water Resources and Management (IPASA), Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Remaz, Dilshah [Faculty of Built Environment, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Iwao, Kenzo [Nagoya Institute of Technology, Nagoya (Japan)

    2012-07-01

    This paper describes the investigation of heat impact on the vertical surfaces of buildings based on their thermal behavior. The study was performed based on four building materials that is commonly used in Malaysia; brick, concrete, granite and white concrete tiles. The thermal performances on the building materials were investigated using a surface temperature sensor, data logging system and infrared thermography. Results showed that the brick had the capability to absorb and store heat greater than other materials during the investigation period. The normalized heat (total heat/solar radiation) of the brick was 0.093 and produces high heat (51% compared to granite), confirming a substantial amount of heat being released into the atmosphere through radiation and convection. The most sensitive material that absorbs and stores heat was in the following order: brick > concrete > granite > white concrete tiles. It was concluded that the type of exterior wall material used in buildings had significant impact to the environment.

  20. Thermal Comfort and Energy Consumption Using Different Radiant Heating/Cooling Systems in a Modern Office Building

    Science.gov (United States)

    Nemethova, Ema; Stutterecker, Werner; Schoberer, Thomas

    2017-06-01

    The aim of the study is to evaluate the potential of enhancing thermal comfort and energy consumption created by three different radiant systems in the newly-built Energetikum office building. A representative office, Simulation room 1/1, was selected from 6 areas equipped with portable sensor groups for the indoor environment monitoring. The presented data obtained from 3 reference weeks; the heating, transition and cooling periods indicate overheating, particularly during the heating and transition period. The values of the indoor air temperature during the heating and transition period could not meet the normative criteria according to standard EN 15251:2007 (cat. II.) for 15-30% of the time intervals evaluated. Consequently, a simulation model of the selected office was created and points to the possibilities of improving the control system, which can lead to an elimination of the problem with overheating. Three different radiant systems - floor heating/ cooling, a thermally active ceiling, and a near-surface thermally active ceiling were implemented in the model. A comparison of their effects on thermal comfort and energy consumption is presented in the paper.

  1. Numerical Studies of Thermal Conditions in Cities - Systematic Model Simulations of Idealized Urban Domains

    Science.gov (United States)

    Heene, V.; Buchholz, S.; Kossmann, M.

    2016-12-01

    Numerical studies of thermal conditions in cities based on model simulations of idealized urban domains are carried out to investigate how changes in the characteristics of urban areas influence street level air temperatures. The simulated modifications of the urban characteristics represent possible adaptation measures for heat reduction in cities, which are commonly used in urban planning. Model simulations are performed with the thermodynamic version of the 3-dimensional micro-scale urban climate model MUKLIMO_3. The simulated idealized urban areas are designed in a simplistic way, i. e. defining homogeneous squared cities of one settlement type, without orography and centered in the model domain. To assess the impact of different adaptation measures the characteristics of the urban areas have been systematically modified regarding building height, albedo of building roof and impervious surfaces, fraction of impervious surfaces between buildings, and percentage of green roofs. To assess the impact of green and blue infrastructure in cities, different configurations for parks and lakes have been investigated - e. g. varying size and distribution within the city. The experiments are performed for different combinations of typical German settlement types and surrounding rural types under conditions of a typical summer day in July. The adaptation measures implemented in the experiments show different impacts for different settlement types mainly due to the differences in building density, building height or impervious surface fraction. Parks and lakes implemented as adaptation measure show strong potential to reduce daytime air temperature, with cooling effects on their built-up surroundings. At night lakes generate negative and positive effects on air temperature, depending on water temperature. In general, all adaptation measures implemented in experiments reveal different impacts on day and night air temperature.

  2. Design rules for interfacial thermal conductance: Building better bridges

    Science.gov (United States)

    Polanco, Carlos A.; Rastgarkafshgarkolaei, Rouzbeh; Zhang, Jingjie; Le, Nam Q.; Norris, Pamela M.; Ghosh, Avik W.

    2017-05-01

    We study the thermal conductance across solid-solid interfaces as the composition of an intermediate matching layer is varied. In the absence of phonon-phonon interactions, an added layer can make the interfacial conductance increase or decrease depending on the interplay between (1) an increase in phonon transmission due to better bridging between the contacts and (2) a decrease in the number of available conduction channels that must conserve their momenta transverse to the interface. When phonon-phonon interactions are included, the added layer is seen to aid conductance when the decrease in resistances at the contact-layer boundaries compensate for the additional layer resistance. For the particular systems explored in this work, the maximum conductance happens when the layer mass is close to the geometric mean of the contact masses. The surprising result, usually associated with coherent antireflection coatings, follows from a monotonic increase in the boundary resistance with the interface mass ratio. This geometric mean condition readily extends to a compositionally graded interfacial layer with an exponentially varying mass that generates the thermal equivalent of a broadband impedance matching network.

  3. Building performance simulation in the early design stage: An introduction to integrated dynamic models

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer

    2015-01-01

    Designing with building performance simulation feedback in the early design stage has existed since the early days of computational modeling. However, as a consequence of a fragmented building industry building performance simulations (BPSs) in the early design stage are closely related to who...

  4. Introducing Molecular Life Science Students to Model Building Using Computer Simulations

    Science.gov (United States)

    Aegerter-Wilmsen, Tinri; Kettenis, Dik; Sessink, Olivier; Hartog, Rob; Bisseling, Ton; Janssen, Fred

    2006-01-01

    Computer simulations can facilitate the building of models of natural phenomena in research, such as in the molecular life sciences. In order to introduce molecular life science students to the use of computer simulations for model building, a digital case was developed in which students build a model of a pattern formation process in…

  5. TERRA Battery Thermal Control Anomaly - Simulation and Corrective Actions

    Science.gov (United States)

    Grob, Eric W.

    2010-01-01

    The TERRA spacecraft was launched in December 1999 from Vandenberg Air Force Base, becoming the flagship of NASA's Earth Observing System program to gather data on how the planet's processes create climate. Originally planned as a 5 year mission, it still provides valuable science data after nearly 10 years on orbit. On October 13th, 2009 at 16:23z following a routine inclination maneuver, TERRA experienced a battery cell failure and a simultaneous failure of several battery heater control circuits used to maintain cell temperatures and gradients within the battery. With several cells nearing the minimum survival temperature, preventing the electrolyte from freezing was the first priority. After several reset attempts and power cycling of the control electronics failed to reestablish control authority on the primary side of the controller, it was switched to the redundant side, but anomalous performance again prevented full heater control of the battery cells. As the investigation into the cause of the anomaly and corrective action continued, a battery thermal model was developed to be used in determining the control ability remaining and to simulate and assess corrective actions. Although no thermal model or detailed reference data of the battery was available, sufficient information was found to allow a simplified model to be constructed, correlated against pre-anomaly telemetry, and used to simulate the thermal behavior at several points after the anomaly. It was then used to simulate subsequent corrective actions to assess their impact on cell temperatures. This paper describes the rapid development of this thermal model, including correlation to flight data before and after the anomaly., along with a comparative assessment of the analysis results used to interpret the telemetry to determine the extent of damage to the thermal control hardware, with near-term corrective actions and long-term operations plan to overcome the anomaly.

  6. The study of thermal processes in control systems of heat consumption of buildings

    Science.gov (United States)

    Tsynaeva, E.; A, Tsynaeva

    2017-11-01

    The article discusses the main thermal processes in the automated control systems for heat consumption (ACSHC) of buildings, schematic diagrams of these systems, mathematical models used for description of thermal processes in ACSHC. Conducted verification represented by mathematical models. It was found that the efficiency of the operation of ACSHC depend from the external and internal factors. Numerical study of dynamic modes of operation of ACSHC.

  7. Thermal properties of graphene from path-integral simulations

    Science.gov (United States)

    Herrero, Carlos P.; Ramírez, Rafael

    2018-03-01

    Thermal properties of graphene monolayers are studied by path-integral molecular dynamics simulations, which take into account the quantization of vibrational modes in the crystalline membrane and allow one to consider anharmonic effects in these properties. This system was studied at temperatures in the range from 12 to 2000 K and zero external stress, by describing the interatomic interactions through the LCBOPII effective potential. We analyze the internal energy and specific heat and compare the results derived from the simulations with those yielded by a harmonic approximation for the vibrational modes. This approximation turns out to be rather precise up to temperatures of about 400 K. At higher temperatures, we observe an influence of the elastic energy due to the thermal expansion of the graphene sheet. Zero-point and thermal effects on the in-plane and "real" surface of graphene are discussed. The thermal expansion coefficient α of the real area is found to be positive at all temperatures, in contrast to the expansion coefficient αp of the in-plane area, which is negative at low temperatures and becomes positive for T ≳ 1000 K.

  8. Evaluating local and overall thermal comfort in buildings using thermal manikins

    Energy Technology Data Exchange (ETDEWEB)

    Foda, E.

    2012-07-01

    Evaluation methods of human thermal comfort that are based on whole-body heat balance with its surroundings may not be adequate for evaluations in non-uniform thermal conditions. Under these conditions, the human body's segments may experience a wide range of room physical parameters and the evaluation of the local (segmental) thermal comfort becomes necessary. In this work, subjective measurements of skin temperature were carried out to investigate the human body's local responses due to a step change in the room temperature; and the variability in the body's local temperatures under different indoor conditions and exposures as well as the physiological steady state local temperatures. Then, a multi-segmental model of human thermoregulation was developed based on these findings to predict the local skin temperatures of individuals' body segments with a good accuracy. The model predictability of skin temperature was verified for steady state and dynamic conditions using measured data at uniform neutral, cold and warm as well as different asymmetric thermal conditions. The model showed very good predictability with average absolute deviation ranged from 0.3-0.8 K. The model was then implemented onto the control system of the thermal manikin 'THERMINATOR' to adjust the segmental skin temperature set-points based on the indoor conditions. This new control for the manikin was experimentally validated for the prediction of local and overall thermal comfort using the equivalent temperature measure. THERMINATOR with the new control mode was then employed in the evaluation of localized floor-heating system variants towards maximum energy efficiency. This aimed at illustrating a design strategy using the thermal manikin to find the optimum geometry and surface area of a floor-heater for a single seated person. Furthermore, a psychological comfort model that is based on local skin temperature was adapted for the use with the model of human

  9. Advanced wellbore thermal simulator: GEOTEMP2 user manual

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.F.

    1982-02-01

    GEOTEMP2 is a wellbore thermal simulator designed for geothermal well drilling and production problems. GEOTEMP2 includes the following features: fully transient heat conduction, wellbore fluid flow options, well completion options, and drilling-production histories. The data input format is given, along with input examples and comments on special features of the input. Ten examples that illustrate all of the flowing options and input options in GEOTEMP2 are included.

  10. The updated algorithm of the Energy Consumption Program (ECP): A computer model simulating heating and cooling energy loads in buildings

    Science.gov (United States)

    Lansing, F. L.; Strain, D. M.; Chai, V. W.; Higgins, S.

    1979-01-01

    The energy Comsumption Computer Program was developed to simulate building heating and cooling loads and compute thermal and electric energy consumption and cost. This article reports on the new additional algorithms and modifications made in an effort to widen the areas of application. The program structure was rewritten accordingly to refine and advance the building model and to further reduce the processing time and cost. The program is noted for its very low cost and ease of use compared to other available codes. The accuracy of computations is not sacrificed however, since the results are expected to lie within + or - 10% of actual energy meter readings.

  11. Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in Changsha, China.

    Science.gov (United States)

    Wu, Zhibin; Li, Nianping; Cui, Haijiao; Peng, Jinqing; Chen, Haowen; Liu, Penglong

    2017-09-21

    Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments' conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm) and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC) located in the hot summer and cold winter (HSCW) climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET*) was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.

  12. Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in Changsha, China

    Directory of Open Access Journals (Sweden)

    Zhibin Wu

    2017-09-01

    Full Text Available Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments’ conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC located in the hot summer and cold winter (HSCW climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET* was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.

  13. Mathematical modelling and simulation of the thermal performance of a solar heated indoor swimming pool

    Directory of Open Access Journals (Sweden)

    Mančić Marko V.

    2014-01-01

    Full Text Available Buildings with indoor swimming pools have a large energy footprint. The source of major energy loss is the swimming pool hall where air humidity is increased by evaporation from the pool water surface. This increases energy consumption for heating and ventilation of the pool hall, fresh water supply loss and heat demand for pool water heating. In this paper, a mathematical model of the swimming pool was made to assess energy demands of an indoor swimming pool building. The mathematical model of the swimming pool is used with the created multi-zone building model in TRNSYS software to determine pool hall energy demand and pool losses. Energy loss for pool water and pool hall heating and ventilation are analyzed for different target pool water and air temperatures. The simulation showed that pool water heating accounts for around 22%, whereas heating and ventilation of the pool hall for around 60% of the total pool hall heat demand. With a change of preset controller air and water temperatures in simulations, evaporation loss was in the range 46-54% of the total pool losses. A solar thermal sanitary hot water system was modelled and simulated to analyze it's potential for energy savings of the presented demand side model. The simulation showed that up to 87% of water heating demands could be met by the solar thermal system, while avoiding stagnation. [Projekat Ministarstva nauke Republike Srbije, br. III 42006: Research and development of energy and environmentally highly effective polygeneration systems based on using renewable energy sources

  14. Simulation Technology Laboratory Building 970 hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.L.; Starr, M.D.

    1994-11-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

  15. Study of an experimental methodology for thermal properties diagnostic of building envelop

    Science.gov (United States)

    Yang, Yingying; Sempy, Alain; Vogt Wu, Tingting; Sommier, Alain; Dumoulin, Jean; Batsale, Jean Christophe

    2017-04-01

    The building envelope plays a critical role in determining levels of comfort and building efficiency. Its real thermal properties characterization is of major interest to be able to diagnose energy efficiency performance of buildings (new construction and retrofitted existing old building). Research and development on a possible methodology for energy diagnostic of the building envelop is a hot topic and necessary trend. Many kinds of sensors and instruments are used for the studies. The application of infrared (IR) thermography in non-destructive evaluation has been widely employed for qualitative evaluations for building diagnostics; meanwhile, the IR thermography technology also has a large potentiality for the evaluation of the thermal characteristics of the building envelope. Some promising recent research studies have been carried out with such contactless measurement technique. Nevertheless, research efforts are still required for in situ measurements under natural environmental conditions. In order to develop new solutions for non-intrusive evaluation of local thermal performance, enabling quantitative assessment of thermal properties of buildings and materials, experiments were carried out on a multi-layer pratical scale wall fixed on a caisson placed in a climatic chamber. Six halogen lamps (1.5 kW for each lamp) placed in front of objective wall were used to emulate sunny conditions. The radiative heat flux emitted was monitored and modulated with time according to typical weather data set encountered in France. Both steady state and transient regime heat transfer were studied during these experiments. Contact sensors (thermocouples, heat flux meters, Peltier sensors) and non-contact sensors (thermal IR camera, pyranometer) were used to measure the temperatures and heat flux density evolution. It has to be noticed that the Peltier sensors have been tuned and used with a specific processing to set them compliant for heat flux density measurements. The

  16. Evaluating in situ thermal transmittance of green buildings masonries—A case study

    Directory of Open Access Journals (Sweden)

    Francesco Asdrubali

    2014-01-01

    The paper presents the results of a measurement campaign of in situ thermal transmittance, performed in some buildings in the Umbria Region (Italy, designed implementing bio-architecture solutions. The analyzed walls were previously monitored with thermographic surveys in order to assess the correct application of the sensors. Results of the investigation show that in situ thermal transmittance measurements and theoretical calculated U-value are not in perfect agreement. The mismatch becomes important for monolithic structures such as walls made of thermal blocks without insulating layers.

  17. Simulating past droughts and associated building damages in France

    Directory of Open Access Journals (Sweden)

    T. Corti

    2009-09-01

    Full Text Available Droughts can induce important building damages due to shrinking and swelling of soils, leading to costs as large as for floods in some regions. Previous studies have focused on damage data analysis, geological or constructional aspects. Here, a study investigating the climatic aspects of soil subsidence damage is presented for the first time. We develop a simple model to examine if the meteorology has a considerable impact on the interannual variability of damages from soil subsidence in France. We find that the model is capable of reproducing yearly drought-induced building damages for the time period 1989–2002, thus suggesting a strong meteorological influence. Furthermore, our results reveal a doubling of damages in these years compared to 1961–1990, mainly as a consequence of increasing temperatures. This indicates a link to climate change. We also apply the model to the extreme summer of 2003, which caused a further increase in damage by a factor four, according to a preliminary damage estimate. The simulation result for that year shows strong damage underestimation, pointing to additional sources of vulnerability. Damage data suggest a higher sensitivity to soil subsidence of regions first affected by drought in the 2003 summer, possibly due to a lack of preparedness and adaptation. This is of strong concern in the context of climate change, as densely populated regions in Central Europe and North America are expected to become newly affected by drought in the future.

  18. Dynamic thermal simulation on retrofitting scenarios for semi-extensive sheep farms

    Directory of Open Access Journals (Sweden)

    Maria E. Menconi

    2014-10-01

    Full Text Available Sheep and goat have a high adaptability to different climatic conditions. Nevertheless, even in extensive farming, these species benefit from the presence of structures that can mitigate stress from heat, cold and humidity changes. These shelters are used at night or for limited periods during the year. These are characterised by a low engineering and make extensive use of recycled material. Interesting innovation in rural areas could be represented by the re-development of these buildings in order to improve their internal microclimate. This work develops a thermal dynamic simulation model aimed at identifying the best solution to retrofit the envelope of existing livestock buildings. In this paper, three different solutions have been tested: insulation of vertical surfaces, insulation of roof and window type. Eight different materials have been considered for roof and vertical surfaces and four for the different kind of window glazing, analysing the building microclimate responses. As a reference building to compare the different solutions adopted has been chosen an extensive sheep farm located in the Italian Apennines. The results suggest that the best solution is to insulate the roof. The other elements offer negligible results in term of improving the internal microclimate conditions. For coating the roof it can also be considered a good response of all the analysed insulating materials, in order to increase the period of maintaining the temperature of comfort and not exceeding its critical values within the building.

  19. Thermal Performance of Typical Residential Building in Karachi with Different Materials for Construction

    Directory of Open Access Journals (Sweden)

    Nafeesa Shaheen

    2016-04-01

    Full Text Available This research work deals with a study of a residential building located in climatic context of Karachi with the objective of being the study of thermal performance based upon passive design techniques. The study helps in reducing the electricity consumption by improving indoor temperatures. The existing residential buildings in Karachi were studied with reference to their planning and design, analyzed and evaluated. Different construction?s compositions of buildings were identified, surveyed and analyzed in making of the effective building envelops. Autodesk® Ecotect, 2011 was used to determine indoor comfort conditions and HVAC (Heating, Ventilation, Air-Conditioning and Cooling loads. The result of the research depicted significant energy savings of 38.5% in HVAC loads with proposed building envelop of locally available materials and glazing.

  20. Investigation on Thermal Properties of Composite of Rice Husk, Corncob and Baggasse for Building Thermal Insulation

    OpenAIRE

    Kyauta E.E. Dauda D.M; Justin E

    2014-01-01

    The thermal properties of some Agricultural waste ( Rice Husk, Bagasse and Corncob) was investigated with the purpose of determining their use as insulators. Using varied composite percentages of each sample wastes at increasing and decreasing quantities to determine best mixtures has assisted in accurate recommendation. The work has explored the potentials for using composite samples of Rice Husk, Bagasse and Corncob as materials for thermal insulation, a solution which offers a reduction...

  1. Validation of a Simplified Building Cooling Load Model Using a Complex Computer Simulation Model

    OpenAIRE

    Stewart, Morgan Eugene

    2001-01-01

    Building energy simulation has become a useful tool for predicting cooling, heating and electrical loads for facilities. Simulation models have been validated throughout the years by comparing simulation results to actual measured values. The simulations have become more accurate as approaches were changed to be more comprehensive in their ability to model building features. These simulation models tend to require considerable experience in determining input parameters and large amounts of...

  2. Evaluation of Various Retrofitting Concepts of Building Envelope for Offices Equipped with Large Radiant Ceiling Panels by Dynamic Simulations

    Directory of Open Access Journals (Sweden)

    Sabina Jordan

    2015-09-01

    Full Text Available In order to achieve significant savings in energy and an improved level of thermal comfort in retrofitted existing buildings, specific retrofitting concepts that combine new technologies and design need to be developed and implemented. Large radiant surfaces systems are now among the most promising future technologies to be used both in retrofitted and in new low-energy buildings. These kinds of systems have been the topic of several studies dealing with thermal comfort and energy utilization, but some specific issues concerning their possible use in various concepts for retrofitting are still poorly understood. In the present paper, some results of dynamic simulations, with the transient system simulation tool (TRNSYS model, of the retrofitted offices equipped with radiant ceiling panels are presented and thoroughly analysed. Based on a precise comparison of the results of these simulations with actual measurements in the offices, certain input data for the model were added, so that the model was consequently validated. The model was then applied to the evaluation of various concepts of building envelopes for office retrofitting. By means of dynamic simulations of indoor environment it was possible to determine the benefits and limitations of individual retrofitting concepts. Some specific parameters, which are relevant to these concepts, were also identified.

  3. Experimental Study of an Integrated System with Diffuse Ceiling Ventilation and Thermally Activated Building Constructions

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per

    The experiments are carried out in a climate chamber located at the Department of Civil Engineering Aalborg University. The objective of the experiments is to evaluate the performance of the system combining diffuse ceiling ventilation and thermally activated building construction (TABS) in terms...

  4. Integrated Solution in an Office Room with Diffuse Ceiling Ventilation and Thermally Activated Building Constructions

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per Kvols; Pomianowski, Michal Zbigniew

    2015-01-01

    An integrated system is proposed in this study to combine diffuse ceiling ventilation with a thermally activated building construction (TABS), aiming to provide cooling/ heating and ventilation to an office room all year around. The performance of the integrated system is evaluated by full...

  5. Thermo-active building systems and sound absorbers: Thermal comfort under real operation conditions

    DEFF Research Database (Denmark)

    Köhler, Benjamin; Rage, Nils; Chigot, Pierre

    2018-01-01

    Radiant systems are established today and have a high ecological potential in buildings while ensuring thermal comfort. Free-hanging sound absorbers are commonly used for room acoustic control, but can reduce the heat exchange when suspended under an active slab. The aim of this study is to evalu...

  6. Identification of the main thermal characteristics of building components using MATLAB

    DEFF Research Database (Denmark)

    Jimenez, M.J.; Madsen, Henrik; Andersen, Klaus Kaae

    2008-01-01

    This paper presents the application of the IDENT Graphical User Interface of MATLAB to estimate the thermal properties of building components from outdoor dynamic testing, imposing appropriate physical constraints and assuming linear and time invariant parametric models. The theory is briefly...

  7. Thermal and Daylighting Performance of Energy-Efficient Windows in Highly Glazed Residential Buildings: Case Study in Korea

    Directory of Open Access Journals (Sweden)

    Chang Heon Cheong

    2014-10-01

    Full Text Available Cooling load in highly glazed residential building can be excessively large due to uncontrolled solar energy entering the indoor space. This study focuses on the cooling load reduction and changes in the daylighting properties via the application of a double window system (DWS with shading with various surface reflectivities in highly glazed residential buildings. Evaluation of thermal and daylighting performances is carried out using simulation tools. The reductions in cooling load and energy cost through the use of DWS are evaluated through a comparative simulation considering conventional windows: a single window and a double window. Three variables of window types, natural ventilation, and shading reflectivity are reflected in the study. According to our results, implementation of DWS reduced cooling load by 43%–61%. Electricity cost during the cooling period was reduced by a maximum of 24%. However, a shading device setting that prioritizes effective cooling load reduction can greatly decrease the daylighting factor and luminance level of indoor space. A DWS implementing shading device with highly reflective at all surfaces is appropriate option for the more comfortable thermal and visual environment, while a shading device with low reflectivity at rear of the surface can contribute an additional 4% cooling load reduction.

  8. Thermal hydraulic simulations, error estimation and parameter sensitivity studies in Drekar::CFD

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Thomas Michael; Shadid, John N; Pawlowski, Roger P; Cyr, Eric C; Wildey, Timothy Michael

    2014-01-01

    This report describes work directed towards completion of the Thermal Hydraulics Methods (THM) CFD Level 3 Milestone THM.CFD.P7.05 for the Consortium for Advanced Simulation of Light Water Reactors (CASL) Nuclear Hub effort. The focus of this milestone was to demonstrate the thermal hydraulics and adjoint based error estimation and parameter sensitivity capabilities in the CFD code called Drekar::CFD. This milestone builds upon the capabilities demonstrated in three earlier milestones; THM.CFD.P4.02 [12], completed March, 31, 2012, THM.CFD.P5.01 [15] completed June 30, 2012 and THM.CFD.P5.01 [11] completed on October 31, 2012.

  9. The Building of the Archean Superior Craton: Thermal Perspective

    Science.gov (United States)

    Jaupart, C. P.; Mareschal, J. C.

    2014-12-01

    The building of a craton involves the extraction of continental crust from the Earth's mantle and the lateral accretion of juvenile volcanic terranes. Ascertaining which conditions allow a newborn continental assemblage to survive requires information on its mechanical strength, which depends on the amount and vertical distribution of radioactive elements in the crust. There is thus a connection between crust formation mechanisms and a successful amalgamation process. To address outstanding questions concerning Archean cratons, the Superior province in Canada is the perfect region because it contains a well preserved geological record of accretion that provides compelling evidence for plate tectonic processes at 2.7 Ga. At almost the same time, the rate of continental growth decreased significantly, which may result from either slower crust formation or enhanced destruction through erosion and subduction. These issues are linked to the strength of the newborn continent. The extensive heat flow data set now available in the Superior Province reveals a clear demarcation between a chemically depleted and differentiated craton core and weakly differentiated enriched juvenile accreted terranes. The Superior craton was thus made of a strong core surrounded by weak terranes. This dichotomy implies that the accretion process could not involve complex imbrication of the accreted belts into the craton core. Subsequently, the craton may have been protected from convective disruption or delamination by its weak margins. Differences between the craton core and accreted terranes may be due to different crustal extraction processes, such as melting in a mantle plume or magmatism in a subduction zone. If subduction started at about 3 Ga, as advocated by several authors, the assembly and survival of large cratons may well be a consequence of this key shift in mantle activity. Alternatively, the chemical depletion of the craton core may be due to a prolonged history of internal

  10. Design and testing of botanical thermotropic actuator mechanisms in thermally adaptive building coverings

    Science.gov (United States)

    Barrett, Ronald M.; Barrett, Ronald P.; Barrett, Cassandra M.

    2017-09-01

    This paper lays out the inspiration, operational principles, analytical modeling and coupon testing of a new class of thermally adaptive building coverings. The fundamental driving concepts for these coverings are derived from various families of thermotropic plant structures. Certain plant cellular structures like those in Mimosa pudica (Sensitive Plant), Rhododendron leaves or Albizia julibrissin (Mimosa Tree), exhibit actuation physiology which depends on changes in cellular turgor pressures to generate motion. This form of cellular action via turgor pressure manipulation is an inspiration for a new field of thermally adaptive building coverings which use various forms of cellular foam to aid or enable actuation much like plant cells are used to move leaves. When exposed to high solar loading, the structures use the inherent actuation capability of pockets of air trapped in closed cell foam as actuators to curve plates upwards and outwards. When cold, these same structures curve back towards the building forming large convex pockets of dead air to insulate the building. This paper describes basic classical laminated plate theory models comparing theory and experiment of such coupons containing closed-cell foam actuators. The study concludes with a global description of the effectiveness of this class of thermally adaptive building coverings.

  11. Thermal Analysis of Nanofluids Using Modeling and Molecular Dynamics Simulation

    Science.gov (United States)

    Namboori, P. K. Krishnan; Vasavi, C. S.; Gopal, K. Varun; Gopakumar, Deepa; Ramachandran, K. I.; Narayanan, B. Sabarish

    2010-10-01

    Nanofluids are nanotechnology-based heat transfer fluids obtained by suspending nanometer-sized particles in conventional heat transfer fluids in a stable manner. In many of the physical phenomena such as boiling and properties such as latent heat, thermal conductivity and heat transfer coefficient, there is significant change on addition of nanoparticles. These exceptional qualities of Nanofluids mainly depend on the atomic level mechanisms, which in turn govern all mechanical properties like strength, Young's modulus, Poisson's ratio, compressibility etc. Control over the fundamental thermo physical properties of the working medium will help to understand these unique phenomena of nanofluids to a great extent. Macroscopic modeling approaches, which are based on conventional relations of thermodynamics, have been proved to be incompetent to explain this difference. Atomistic `modeling and simulation' has been emerged out as an efficient alternative for this. The enhancement of thermal conductivity of water by suspending nanoparticle inclusions has been experimented and proved to be an effective method of enhancing convective heat dissipation. This work mainly deals with characterization of the thermal conductivity of nanofluids. Nano particle sized aluminium oxide; copper oxide and titanium dioxide have been taken in this work for the analysis of thermal conductivity. The effect of thermal conductivity on parameters like volume concentration of the fluid, nature of particle material and size of the particle has been computationally formulated. It has been found that there is an increase in effective thermal conductivity of the fluid by the addition of nanomaterials ascertaining an improvement in the heat transfer behavior of nanofluids. This facilitates the reduction in size of such heat transfer systems (radiators) and lead to increased energy and fuel efficiency, lower pollution and improved reliability.

  12. Indoor Environment and Energy Use in Historic Buildings - Comparing Survey Results with Measurements and Simulations

    DEFF Research Database (Denmark)

    Rohdin, P.; Dalewski, M.; Moshfegh, B.

    2012-01-01

    Increasing demand for energy efficiency places new requirements on energy use in historic buildings. Efficient energy use is essential if a historic building is to be used and preserved, especially buildings with conventional uses such as residential buildings and offices. This paper presents...... results which combine energy auditing with building energy simulation and an indoor environment survey among the occupants of the building. Both when comparing simulations with measurements as well as with survey results good agreement was found. The two efficiency measures that are predicted to increase...

  13. Robotic Surgery Simulator: Elements to Build a Training Program.

    Science.gov (United States)

    Tillou, Xavier; Collon, Sylvie; Martin-Francois, Sandrine; Doerfler, Arnaud

    2016-01-01

    Face, content, and construct validity of robotic surgery simulators were confirmed in the literature by several studies, but elements to build a training program are still lacking. The aim of our study was to validate a progressive training program and to assess according to prior surgical experience the amount of training needed with a robotic simulator to complete the program. Exercises using the Da Vinci Skill Simulator were chosen to ensure progressive learning. A new exercise could only be started if a minimal score of 80% was achieved in the prior one. The number of repetitions to achieve an exercise was not limited. We devised a "performance index" by calculating the ratio of the sum of scores for each exercise over the number of repetitions needed to complete the exercise with at least an 80% score. The study took place at the François Baclesse Cancer Center. Participants all work at the primary care university Hospital located next to the cancer center. A total of 32 surgeons participated in the study- 2 experienced surgeons, 8 junior and 8 senior residents in surgery, 6 registrars, and 6 attending surgeons. There was no difference between junior and senior residents, whereas the registrars had better results (p surgery console in a specific and progressive order enables rapid progress. The level of prior experience in laparoscopic surgery affects outcomes. More advanced laparoscopic expertise seems to slow down learning, surgeons having to "unlearn" to acquire a new technique. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  14. Field study of thermal comfort in non-air-conditioned buildings in a tropical island climate.

    Science.gov (United States)

    Lu, Shilei; Pang, Bo; Qi, Yunfang; Fang, Kun

    2018-01-01

    The unique geographical location of Hainan makes its climate characteristics different from inland areas in China. The thermal comfort of Hainan also owes its uniqueness to its tropical island climate. In the past decades, there have been very few studies on thermal comfort of the residents in tropical island areas in China. A thermal environment test for different types of buildings in Hainan and a thermal comfort field investigation of 1944 subjects were conducted over a period of about two months. The results of the survey data show that a high humidity environment did not have a significant impact on human comfort. The neutral temperature for the residents in tropical island areas was 26.1 °C, and the acceptable temperature range of thermal comfort was from 23.1 °C to 29.1 °C. Residents living in tropical island areas showed higher heat resistance capacity, but lower cold tolerance than predicted. The neutral temperature for females (26.3 °C) was higher than for males (25.8 °C). Additionally, females were more sensitive to air temperature than males. The research conclusions can play a guiding role in the thermal environment design of green buildings in Hainan Province. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Analysis Thermal Comfort Condition in Complex Residential Building, Case Study: Chiangmai, Thailand

    Science.gov (United States)

    Juangjandee, Warangkana

    2017-10-01

    Due to the increasing need for complex residential buildings, it appears that people migrate into the high-density urban areas because the infrastructural facilities can be easily found in the modern metropolitan areas. Such rapid growth of urbanization creates congested residential buildings obstructing solar radiation and wind flow, whereas most urban residents spend 80-90% of their time indoor. Furthermore, the buildings were mostly built with average materials and construction detail. This causes high humidity condition for tenants that could promote mould growth. This study aims to analyse thermal comfort condition in complex residential building, Thailand for finding the passive solution to improve indoor air quality and respond to local conditions. The research methodology will be in two folds: 1) surveying on case study 2) analysis for finding the passive solution of reducing humidity indoor air The result of the survey indicated that the building need to find passive solution for solving humidity problem, that can be divided into two ways which raising ventilation and indoor temperature including increasing wind-flow ventilation and adjusting thermal temperature, for example; improving building design and stack driven ventilation. For raising indoor temperature or increasing mean radiant temperature, daylight can be passive solution for complex residential design for reducing humidity and enhance illumination indoor space simultaneous.

  16. Implementation of window shading models into dynamic whole-building simulation

    Science.gov (United States)

    Lomanowski, Bartosz Aleksander

    An important consideration in energy efficient building design is the management of solar gain, as it is the largest and most variable gain in a building. The design of buildings with highly glazed facades, as well as decreased energy transfer rates through better insulated and tighter envelopes are causing interior spaces to become highly sensitive to solar gain. Shading devices such as operable slat-type louver blinds are very effective in controlling solar gain, yet their impact on peak cooing loads and annual energy consumption is poorly understood. With the ever-increasing role of building energy simulation tools in the design of energy efficient buildings, there is a clear need to model windows with shading devices to assess their impact on building performance. Recent efforts at the University of Waterloo's Advanced Glazing Systems Laboratory (AGSL) in window shading research have produced a set of flexible shading models. These models were developed with emphasis on generality and computational efficiency, ideally suited for integration into building simulation. The objective of the current research is to develop a complex fenestration facility within a general purpose integrated building simulation software tool, ESP-r, using the AGSL shading models. The strategy for implementation of the AGSL shading models is the addition of a new multi-layer construction within ESP-r, the Complex Fenestration Construction (CFC). The CFC is based on the standard ESP-r multi-layer nodal structure and finite control volume numerical model, with additional measures for coping with the complexities that arise in the solar, convective and radiant exchanges between glazing/shading layers, the interior zone and exterior surroundings. The CFC algorithms process the solar, convective and radiant properties of the glazing/shading system at each time-step, making it possible to add control (e.g., changing the slat angle of a slat-type blind) at the time-step level. Thermal

  17. Investigating the adaptive model of thermal comfort for naturally ventilated school buildings in Taiwan.

    Science.gov (United States)

    Hwang, Ruey-Lung; Lin, Tzu-Ping; Chen, Chen-Peng; Kuo, Nai-Jung

    2009-03-01

    Divergence in the acceptability to people in different regions of naturally ventilated thermal environments raises a concern over the extent to which the ASHRAE Standard 55 may be applied as a universal criterion of thermal comfort. In this study, the ASHRAE 55 adaptive model of thermal comfort was investigated for its applicability to a hot and humid climate through a long-term field survey performed in central Taiwan among local students attending 14 elementary and high schools during September to January. Adaptive behaviors, thermal neutrality, and thermal comfort zones are explored. A probit analysis of thermal acceptability responses from students was performed in place of the conventional linear regression of thermal sensation votes against operative temperature to investigate the limits of comfort zones for 90% and 80% acceptability; the corresponding comfort zones were found to occur at 20.1-28.4 degrees C and 17.6-30.0 degrees C, respectively. In comparison with the yearly comfort zones recommended by the adaptive model for naturally ventilated spaces in the ASHRAE Standard 55, those observed in this study differ in the lower limit for 80% acceptability, with the observed level being 1.7 degrees C lower than the ASHRAE-recommended value. These findings can be generalized to the population of school children, thus providing information that can supplement ASHRAE Standard 55 in evaluating the thermal performance of naturally ventilated school buildings, particularly in hot-humid areas such as Taiwan.

  18. Investigating the adaptive model of thermal comfort for naturally ventilated school buildings in Taiwan

    Science.gov (United States)

    Hwang, Ruey-Lung; Lin, Tzu-Ping; Chen, Chen-Peng; Kuo, Nai-Jung

    2009-03-01

    Divergence in the acceptability to people in different regions of naturally ventilated thermal environments raises a concern over the extent to which the ASHRAE Standard 55 may be applied as a universal criterion of thermal comfort. In this study, the ASHRAE 55 adaptive model of thermal comfort was investigated for its applicability to a hot and humid climate through a long-term field survey performed in central Taiwan among local students attending 14 elementary and high schools during September to January. Adaptive behaviors, thermal neutrality, and thermal comfort zones are explored. A probit analysis of thermal acceptability responses from students was performed in place of the conventional linear regression of thermal sensation votes against operative temperature to investigate the limits of comfort zones for 90% and 80% acceptability; the corresponding comfort zones were found to occur at 20.1-28.4°C and 17.6-30.0°C, respectively. In comparison with the yearly comfort zones recommended by the adaptive model for naturally ventilated spaces in the ASHRAE Standard 55, those observed in this study differ in the lower limit for 80% acceptability, with the observed level being 1.7°C lower than the ASHRAE-recommended value. These findings can be generalized to the population of school children, thus providing information that can supplement ASHRAE Standard 55 in evaluating the thermal performance of naturally ventilated school buildings, particularly in hot-humid areas such as Taiwan.

  19. In Situ Thermal Transmittance Measurements for Investigating Differences between Wall Models and Actual Building Performance

    Directory of Open Access Journals (Sweden)

    Luca Evangelisti

    2015-08-01

    Full Text Available An accurate assessment of a building’s wall performance, defined through the thermal transmittance, is essential to compute the annual energy consumption. Analyzing opaque surfaces, the heat transfer across walls can be modeled by an electro-thermal analogy, based on resistors series, crossed by a one-dimensional heat flow. This analogy is well established and it refers to stratigraphy composed of homogeneous materials. When dealing with inhomogeneous materials, possibly including hollow bricks, the wall’s thermal transmittance is evaluated by means of an effective conductance. However, in order to verify the theoretical models effectiveness, a comparison with in situ measurements is needed. In this paper, three building walls characterized by different stratigraphy have been analyzed; by employing a heat flow meter investigation. Measurements results and estimated thermal transmittance values—calculated applying the standard UNI EN ISO 6946—have been compared.

  20. Occupant Time Period of Thermal Adaption to Change of Outdoor Air Temperature in Naturally Ventilated Buildings

    DEFF Research Database (Denmark)

    liu, weiwei; Wargocki, Pawel; Xiong, Jing

    2014-01-01

    The present work proposed a method to determine time period of thermal adaption of occupants in naturally ventilated building, based on the relationship between their neutral temperatures and running mean outdoor air temperature. Based on the data of the field investigation, the subjects’ time...... period of thermal adaption was obtained with the proposed method. The result revealed that the subjects needed to take 4.25 days to fully adapt to a step-change in outdoor air temperature. The time period of thermal adaption for the occupants in five European countries was also calculated and compared...... with the value of the subjects in this study. The comparison shows that the occupants in China had a shorter time period of thermal adaption than European occupants, which means that Chinese occupants can adapt to a new outdoor climate condition faster....

  1. Thermal Renovation of Buildings with the Use of Straw - European Experience

    Directory of Open Access Journals (Sweden)

    Golański Michał

    2016-12-01

    Full Text Available The selection of building materials to a huge extent shapes building impact on the environment. In the era of widespread awareness of health problems arising from toxicity of chemical substances, healthy and safe materials of organic origin are even more important. The work discusses examples of the use of straw-bales in thermal retrofitting of buildings located in Austria, Czech Republic and Hungary. The experience of the practical applications of this material in renovations of buildings located in similar climatic conditions indicate that these solutions can be used successfully in Poland. The prevalence of this technology can make a significant contribution to reduction of gaseous emissions, waste, as well as the emission of noise, vibration radiation.

  2. Thermal Analysis of a Structural Solution for Sustainable, Modular and Prefabricated Buildings

    Science.gov (United States)

    Isopescu, D. N.; Maxineasa, S. G.; Neculai, O.

    2017-06-01

    In the construction field, the design principles for an efficient and operational use of buildings and a minimal impact on the environment are essential aspects of sustainable development. In this regard, several aspects must be taken into consideration, such as: durability, easy maintenance, flexibility in interior design, and reduced energy consumption. Decreasing energy consumption in buildings during the service life (heating / cooling / drinking water / electricity) can mean lower costs, but also a lower impact on the environment. The paper presents the thermal analysis for a GF+1F height structure, consisting of several identical, adjacent and / or overlapped metallic cubic modules. The spaces inside this cubes ensemble solve the functionality of a family home building. The good carrying capacity, the rapidity of execution, the superior degree of thermal insulation and the minimum losses of material in execution were the main advantages provided by this structural solution. Regarding the thermal comfort for the users of this constructive system, the thermal analysis showed that the internal temperatures are constant and uniform, without cold surfaces or temperature fluctuations. In addition, humidity is controlled and there is no risk of condensation.

  3. Selecting Eco-Friendly Thermal Systems for the “Vittoriale Degli Italiani” Historic Museum Building

    Directory of Open Access Journals (Sweden)

    Davide Astiaso Garcia

    2015-09-01

    Full Text Available Thermal systems installed in museums should guarantee the maintenance of the optimal hygrothermal parameters ranges for the conservation of their collection materials. Considering the preservation of historic buildings, according to their historical and landscaping constraints, not all the thermal system typologies could be installed in these buildings’ typologies. Therefore, the main aim of this paper is to present some indications for the choice of the best thermal system solutions for a considered historic museum building, called Vittoriale degli Italiani, in the north of Italy, taking into account their installation feasibility and their related environmental impacts. The methodology includes a monitoring of the current hygrothermal parameters as well as the assessment of design heat and cooling loads related to the maintenance of the optimal hygrothermal parameters ranges for the conservation of collection materials. In addition, a Life Cycle Assessment (LCA of each selected system typology is considered for highlighting the most eco-friendly solution among the suitable ones. The obtained results highlights the feasible thermal system solutions able to maintain the hygrothermal parameters between the optimal ranges with a lower environmental impact in the Vittoriale degli Italiani historic museum building.

  4. Acoustical and thermal performance of multilayer closing panels used in steel-structured buildings

    Directory of Open Access Journals (Sweden)

    Rovadávia Aline de Jesus Ribas

    Full Text Available Abstract This article provides an evaluation of the acoustical and thermal performance of some closing systems by referencing materials such as cement plates, plasterboard walls, precast concrete panels and expanded polystyrene. Reverberation time is calculated by applying an empirical formula, which uses temperature and relative air humidity values obtained from simulations that were conducted using the computational simulation program ESP-r (Energy Simulation Program-research. The internal temperature presented by the ESP-r is an indicator of thermal performance. Using a simplified graphic method, the acoustical performance is also evaluated by estimating the loss of sound transmission that occurs through the closing panels. Combinations of these panels, which form multilayer panels mediated by a layer of air and with or without insulating material between them, are applied. The results show that multilayered closing systems, when filled with insulating material, are an efficient solution than can provide adequate acoustical and thermal performance.

  5. Ceramics and healthy heating and cooling systems: thermal ceramic panels in buildings. Conditions of comfort and energy demand versus convective systems

    Directory of Open Access Journals (Sweden)

    V. Echarri Iribarren

    2016-12-01

    Full Text Available Porcelain stoneware is a widely used building material. In recent years, its range of uses has expanded to encompass a new spectrum of innovative and inventive applications in architecture. In this research, we analysed the patented Thermal Ceramic Panel. This consists of a thin porcelain stoneware panel that incorporates a capillary system of polypropylene tubes measuring 3.5 mm in diameter embedded in a conductive ceramic interface. The system works with hot or cold water, producing healthy heating and cooling by means of radiant surfaces. Following an initial prototype test in which panels were placed on the walls of an office, we conducted simulations at the University of Alicante Museum using wall, ceiling and baffle panels, having previously monitored the state of the building. Thermal behaviour parameters were analysed and compared with those of other standard finishing materials, obtaining results for thermal comfort and energy savings in comparison with all-air systems.

  6. Optical and thermal simulation for wide acceptance angle CPV module

    Science.gov (United States)

    Ahmad, Nawwar; Ota, Yasuyuki; Araki, Kenji; Lee, Kan-Hua; Yamaguchi, Masafumi; Nishioka, Kensuke

    2017-09-01

    Concentrator photovoltaic (CPV) technology has the potential to decrease the cost of systems in the near future by using less expensive optical elements in the system which replace the receiving surface aperture and concentrate the sunlight onto small solar cells. One of the main concerns of CPV is the need for high precision tracking system and the relation to the acceptance angle. In this paper, we proposed a CPV module with concentration ratio larger than 100 times and wide acceptance angle. An optical simulation for the module with S-TIM2 glass as a lens material was conducted to estimate the optical performance of the module. Thermal and electrical simulation was also conducted using COMSOL Multiphysics and SPICE respectively to evaluate the working temperature and electrical characteristics of the multijunction solar cell under concentration conditions.

  7. Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems

    DEFF Research Database (Denmark)

    Finck, Christian; Li, Rongling; Kramer, Rick

    2018-01-01

    In the future due to continued integration of renewable energy sources, demand-side flexibility would be required for managing power grids. Building energy systems will serve as one possible source of energy flexibility. The degree of flexibility provided by building energy systems is highly...... restricted by power-to-heat conversion such as heat pumps and thermal energy storage possibilities of a building. To quantify building demand flexibility, it is essential to capture the dynamic response of the building energy system with thermal energy storage. To identify the maximum flexibility a building......’s energy system can provide, optimal control is required. In this paper, optimal control serves to determine in detail demand flexibility of an office building equipped with heat pump, electric heater, and thermal energy storage tanks. The demand flexibility is quantified using different performance...

  8. Thermal Simulation of the Fresh Food Compartment in a Domestic Refrigerator

    Directory of Open Access Journals (Sweden)

    Juan M. Belman-Flores

    2017-01-01

    Full Text Available In the field of domestic refrigeration, it is important to look for methods that can be used to simulate, and, thus, improve the thermal behavior of the fresh food compartment. In this sense, this study proposes some methods to model the thermal behavior of this compartment when the shelves’ positions are changed. Temperature measurements at specific locations in this compartment were obtained. Several shelf position combinations were performed to use three 2D interpolation methods in order to simulate the temperature mean and the temperature variance. The methods used were: Lagrange’s interpolation, cubic spline interpolation and bilinear interpolation. Two validation points were chosen to verify the proposed methods. By comparing the experimental results with the computer simulations, it was possible to conclude that the method of Lagrange’s interpolation provided values that were not close to the real measured values. On the other hand, it was observed that the method of bilinear interpolation offered the best results, estimating values which were very close to the actual experimental measurements. These interpolation methods were used to build color thermal graphs that can be used to find some of the most appropriate shelf position combinations in this type of refrigerator. By inspection of these thermal graphs, it can be seen that the lowest average temperature was obtained when one shelf was located at 24.5 cm while the second shelf was located at 29.5 cm measured from the top of the compartment. In the same way, it can be seen that the minimum temperature variance was obtained when only one shelf was inside the compartment and this shelf was located at 29.5 cm.

  9. Numerical Simulation of rivulet build up via lubrication equations

    Science.gov (United States)

    Suzzi, N.; Croce, G.

    2017-11-01

    A number of engineering problems involve the evolution of a thin layer of liquid over a non-wettable substrate. For example, CO2 chemical absorption is carried out in packed columns, where post-combustion CO2 flows up while liquid solvent falls down through a collection of corrugated sheets. Further application include, among others, in-flight icing simulations, moisture condensation on de-humidifier fins, fogging build up and removal. Here, we present a development of an in-house code solving numerically the 2D lubrication equation for a film flowing down an inclined plate. The disjoining pressure approach is followed, in order to model both the contact line discontinuity and the surface wettability. With respect to the original implementation, the full modeling of capillary pressure terms according to Young- Laplace relation allows to investigate contact angles close to π/2. The code is thus validated with literature numerical results, obtained by a fully 3D approach (VOF), showing satisfying agreement despite a strong reduction in terms of computational cost. Steady and unsteady wetting dynamics of a developing rivulet are investigated (and validated) under different load conditions and for different values of the contact angles.

  10. Solar thermal energy / exhaust air heat pump / wood pellet furnace for a sustainable heat supply of low energy buildings in older buildings; Solarthermie / Abluft-Waermepumpe / Pelletofen. Kombisysteme zur nachhaltigen Waermeversorgung von Niedrigenergiehaeusern im Gebaeudebestand

    Energy Technology Data Exchange (ETDEWEB)

    Diefenbach, Nikolaus; Born, Rolf [Institut Wohnen und Umwelt GmbH, Darmstadt (Germany); Staerz, Norbert [Ingenieurbuero inPlan, Pfungstadt (Germany)

    2009-11-13

    The research project under consideration reports on combination systems for a sustainable heat supply for low-energy buildings in older building. For this, a central and decentralized system configuration consisting of solar thermal energy, exhaust air heat pump and wood pellet furnace are presented. Solutions for an interaction of these three heat suppliers in one plant are designated regarding the control strategy. The fundamentals of the computerized simulations for the central and decentralized system are presented. A cost estimate with both variants of the combination system as well as a comparison with conventional energy-saving heat supply systems follow.

  11. Multi-layer structures with thermal and acoustic properties for building rehabilitation

    Science.gov (United States)

    Bessa, J.; Mota, C.; Cunha, F.; Merino, F.; Fangueiro, R.

    2017-10-01

    This work compares the use of different sustainable materials in the design of multilayer structures for the rehabilitation of buildings in terms of thermal and acoustic properties. These structures were obtained by compression moulding and thermal and acoustic tests were further carried out for the quantification of the respective insulation properties of composite materials obtained. The experimental results show that the use of polyurethane (PUR) foams and jute fabric reinforcing biocomposites promotes interesting properties of thermal and acoustic insulation. A multi-layer structure composed by PUR foam on the intermediate layer revealed thermal resistances until 0.272 m2 K W‑1. On the other hand, the use of jute fabric reinforcing biocomposites on exterior layer promoted a noise reduction at 500 Hz until 8.3 dB. These results allow to conclude that the use of PUR foams and jute fabric reinforcing biocomposites can be used successfully in rehabilitation of buildings, when the thermal and acoustic insulation is looked for.

  12. A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations

    DEFF Research Database (Denmark)

    Wu, Rui; Wang, Huai; Pedersen, Kristian Bonderup

    2016-01-01

    A basic challenge in the IGBT transient simulation study is to obtain the realistic junction temperature, which demands not only accurate electrical simulations but also precise thermal impedance. This paper proposed a transient thermal model for IGBT junction temperature simulations during short...... circuits or overloads. The updated Cauer thermal model with varying thermal parameters is obtained by means of FEM thermal simulations with temperature-dependent physical parameters. The proposed method is applied to a case study of a 1700 V/1000 A IGBT module. Furthermore, a testing setup is built up...

  13. Simulation of electromagnetic fluctuations in thermal magnetized plasma

    Science.gov (United States)

    López, Rodrigo A.; Yoon, Peter H.

    2017-11-01

    The present paper carries out a particle-in-cell (PIC) simulation in order to validate the recently formulated theory of electromagnetic fluctuations emitted spontaneously in thermal magnetized plasmas (Yoon and López 2017 Phys. Plasmas 24 022117). Numerical plots of theoretically constructed fluctuation spectra and computer simulated fluctuation spectra are compared. While the two results produce an overall favorable agreement for subluminous regime in angular frequency versus wave number space, namely, the domain characterized by phase speed less than the speed of light in vacuo, the present PIC simulation also shows that fluctuation spectra are highly enhanced in the close vicinity of linear eigenmodes, which includes superluminal range that does not satisfy the linear cyclotron wave-particle resonance condition. Since the theory of electromagnetic spontaneous emission, which is based upon linear plasma response and linear wave-particle resonant interactions, strictly forbids emissions in such a regime, the PIC code simulation can only be understood in terms of nonlinear wave-particle interaction. This calls for nonlinear generalization of the spontaneous emission theory.

  14. An evolving experience learned for modelling thermal dynamics of buildings from live experiments: the Flexhouse story

    DEFF Research Database (Denmark)

    Yu, Xingji; You, Shi; Jiang, Yuewen

    2017-01-01

    Abstract This paper shares an evolving experience learned for modelling the thermal dynamics of buildings from live experiments run in Flexhouse1 at Risø Campus of Technical University of Denmark (DTU). Among different trials, circuit based grey-box models approach have been developed and improved...... from time to time. Although the intension of modelling the thermal dynamics of Flexhouse1 remains unchanged, the details of experiments and applied modelling approach do evolve over time due to the increase of knowledge and the improvement made to the experimental platform. In addition to presenting...

  15. Parabolic Trough Photovoltaic/Thermal Collectors: Design and Simulation Model

    Directory of Open Access Journals (Sweden)

    Laura Vanoli

    2012-10-01

    Full Text Available This paper presents a design procedure and a simulation model of a novel concentrating PVT collector. The layout of the PVT system under investigation was derived from a prototype recently presented in literature and commercially available. The prototype consisted in a parabolic trough concentrator and a linear triangular receiver. In that prototype, the bottom surfaces of the receiver are equipped with mono-crystalline silicon cells whereas the top surface is covered by an absorbing surface. The aperture area of the parabola was covered by a glass in order to improve the thermal efficiency of the system. In the modified version of the collector considered in this paper, two changes are implemented: the cover glass was eliminated and the mono-crystalline silicon cells were replaced by triple-junction cells. In order to analyze PVT performance, a detailed mathematical model was implemented. This model is based on zero-dimensional energy balances. The simulation model calculates the temperatures of the main components of the system and the main energy flows Results showed that the performance of the system is excellent even when the fluid temperature is very high (>100 °C. Conversely, both electrical and thermal efficiencies dramatically decrease when the incident beam radiation decreases.

  16. Modelling, experimentation and simulation of a reversible HP/ORC unit to get a Positive Energy Building

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Quoilin, Sylvain

    2015-01-01

    This paper presents an innovative building comprising a heat pump connected to a solar roof and a geothermal heat exchanger. This unit is able to invert its cycle and operate as an Organic Rankine Cycle (ORC). The solar roof is producing large amount of heat throughout the year. This allows...... and fluid R134a shows promising performance with a net electrical energy produced over one year reaching 4030 kWh. Following that, a prototype has been built and has proven the feasibility of the technology. Finally, a simulation code including the building, the ground heat exchanger, the thermal energy...... storage, the solar roof and the reversible HP/ORC unit is developed and allows to perform a sensivity analysis. Annual results show that this technology leads to a Positive Energy Building....

  17. Analysis of the impact of simulation model simplifications on the quality of low-energy buildings simulation results

    Science.gov (United States)

    Klimczak, Marcin; Bojarski, Jacek; Ziembicki, Piotr; Kęskiewicz, Piotr

    2017-11-01

    The requirements concerning energy performance of buildings and their internal installations, particularly HVAC systems, have been growing continuously in Poland and all over the world. The existing, traditional calculation methods following from the static heat exchange model are frequently not sufficient for a reasonable heating design of a building. Both in Poland and elsewhere in the world, methods and software are employed which allow a detailed simulation of the heating and moisture conditions in a building, and also an analysis of the performance of HVAC systems within a building. However, these systems are usually difficult in use and complex. In addition, the development of a simulation model that is sufficiently adequate to the real building requires considerable time involvement of a designer, is time-consuming and laborious. A simplification of the simulation model of a building renders it possible to reduce the costs of computer simulations. The paper analyses in detail the effect of introducing a number of different variants of the simulation model developed in Design Builder on the quality of final results obtained. The objective of this analysis is to find simplifications which allow obtaining simulation results which have an acceptable level of deviations from the detailed model, thus facilitating a quick energy performance analysis of a given building.

  18. ANALYSIS OF SUFFICIENCY OF THE BEARING CAPACITY OF BUILDING STRUCTURES OF OPERATING SITES OF MAIN BUILDINGS OF THERMAL POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Alekseeva Ekaterina Leonidovna

    2012-10-01

    Full Text Available Upon examination of eleven main buildings of power plants, analysis of defects and damages of building structures was performed. Thereafter, the damageability of principal bearing structures of main buildings of thermal plants was analyzed. It was identified that the fastest growing defects and damages were concentrated in the structures of operating sites. The research of the rate of development of the most frequent damages and defects made it possible to conclude that internal corrosion of the reinforcing steel was the most dangerous defect, as far as the reinforced concrete elements of operating sites were concerned. Methods of mathematical statistics were applied to identify the reinforcing steel development pattern inside reinforced concrete elements of floors of operating sites. It was identified that the probability of corrosion of reinforced concrete elements of operating sites was distributed in accordance with the demonstrative law. Based on these data, calculation of strength of reinforced concrete slabs and metal beams was performed in terms of their regular sections, given the natural loads and the realistic condition of structures. As a result, dependence between the bearing capacity reserve ratio and the corrosion development pattern was identified for reinforced concrete slabs and metal beams of operating sites. In order to analyze the sufficiency of the bearing capacity of building structures of operating sites in relation to their time in commission, equations were derived to identify the nature of dependence between the sufficiency of the bearing capacity of reinforced concrete slabs and metal beams of the operating sites and their time in commission.

  19. Detection of thermal bridges from thermographic images for the analysis of buildings energy performance

    OpenAIRE

    Asdrubali, Francesco; Baldinelli, Giorgio; Bianchi, Francesco; Costarelli, Danilo; Rotili, Antonella; Seracini, Marco; Vinti, Gianluca

    2017-01-01

    In this paper, we develop a procedure for the detection of the contours of thermal bridges from thermographic images, in order to study the energetic performance of buildings. Two main steps of the above method are: the enhancement of the thermographic images by an optimized version of the mathematical algorithm for digital image processing based on the theory of sampling Kantorovich operators, and the application of a suitable thresholding based on the analysis of the histogram of the enhanc...

  20. Benefits of the use of thermal insulation in a naturally ventilated residential building in Brazilian temperate climate

    OpenAIRE

    Vinícius Linczuk; Fernando Simon Westphal

    2016-01-01

    The use of thermal insulation is not a common practice in civil construction in Brazil. The national standard for thermal performance and the energy efficiency labeling program do not require the use of thermal insulation in the building envelope, even for the hottest and for the coldest regions of the country. Brazil has a temperate climate region that covers 7.2% of its territory and contains important and populous cities. This paper explores the benefits of the use of thermal i...

  1. Hot Plate Method with Two Simultaneous Temperature Measurements for Thermal Characterization of Building Materials

    Science.gov (United States)

    Osséni, Sibiath O. G.; Ahouannou, Clément; Sanya, Emile A.; Jannot, Yves

    2017-07-01

    This paper presents a study of the hot plate method with two simultaneous temperature measurements, on the heated and unheated faces of a sample to characterize. The thermal properties of polyvinyl chloride, plaster and laterite were considered to be a representative range of building materials. A 1D quadrupolar model was developed to represent the temperature evolution on the two faces over time. Three-dimensional numerical modeling of a quarter of the testing device with COMSOL software allowed defining the domain of the 1D hypothesis validity. The analysis of estimation possibilities of materials' thermal characteristics, with the developed method, revealed that thermal effusivity can be accurately estimated by using the temperature of the heated face at the beginning of heating. We showed that the simultaneous use of two temperatures enables the estimation of the thermal conductivity with a greater accuracy and over a shorter time interval than using the temperature of the heated face alone. We also demonstrated that under certain conditions (samples with a high ratio of thickness to width) the method with two temperature measurements enabled the estimation of the thermal effusivity and conductivity, while the method with one temperature allowed only the thermal effusivity to be estimated, because of 3D effects. This conclusion was confirmed by experimental results obtained with a mortar sample.

  2. Thermal properties of a new ecological building material / Granular cork embedded in white cement

    Directory of Open Access Journals (Sweden)

    Cherki Abou-bakr

    2014-04-01

    Full Text Available Cork, natural and renewable product, has thermal and acoustic properties very interesting because of its microstructure and porosity representing a significant portion of its apparent volume; it’s coming from Moroccan Maamora’s forest. This work is a contribution to understand the thermal behaviour of the composite material based on granular cork embedded in white cement. An experimental investigation of its thermal properties was mainly performed using the asymmetrical device of transient Hot Plate method. The effect of granular cork size on the thermal properties of the mixture was studied. The experimental study of this sustainable material aims to characterize its thermal properties and then compare them with those of white cement without cork for motivate the proposal that this composite material will be used as walls insulator. A comparison of the energy performances of the composite material and white cement was made; it allows deducing a very interesting energy gain. The findings of the experiments indicate that the composite is better than white cement in term of thermal insulation, energy storage capacity and lightness. So, it can be used to realize the internal walls insulation. Its utilization should contribute to the improvement of the energy efficiency in building especially that this is a mixture based on a sustainable and renewable material.

  3. Optimisation of a thermal storage installation in Wollerau; Optimisation par simulation calee de l'installation de stockage Wollerau

    Energy Technology Data Exchange (ETDEWEB)

    Pahud, D.

    2003-07-01

    This final report for the Swiss Federal Office of Energy describes a dynamic simulation tool developed at the University of Applied Science of Southern Switzerland that was used for the simulation of a heating and cooling system which includes 32 borehole heat exchangers under an industrial building in Wollerau, Switzerland. The tool was calibrated using the measured heat balance of the building. The electrical energy of the circulation pumps was also taken into account and thus the global efficiency of the system was estimated. The simulation tool is documented. The thermal performance of the system is analysed and problems related to system sizing are discussed. The influence of the main system parameters are quantified and recommendations for system integration and sizing are made. Rules of thumb for the design of systems providing cooling are formulated.

  4. Effects of visco-thermal losses in metamaterials slabs based on rigid building units

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Garcia-Chocano, Victor Manuel; Sánchez-Dehesa, José

    2017-01-01

    units with subwavelength dimensions. It is shown that visco-thermal losses dissipate about 70% of the acoustic energy associated to the excitation of monopolar and dipolar resonances, leading to the suppression of negative refractive index. Our numerical simulations based on the Boundary Element Method...

  5. Thermal and airflow prediction in buildings by associating models with different levels of details within an object-oriented simulation environment; Prediction des performances thermo-aerauliques des batiments par association de modeles de differents niveaux de finesse au sein d'un environnement oriente objet

    Energy Technology Data Exchange (ETDEWEB)

    Mora, L.

    2003-09-01

    The design of innovative HVAC systems, as well as the evaluation of the comfort of occupants requires a detailed estimation of airflows and heat transfers within building zones. Zonal and CFD methods can in principal provide such details, but in practice they are difficult to apply to study a whole building over long periods of time. In this study, we propose a new simulation platform based on the object oriented simulation environment SPARK to treat most of building zones using the nodal approach. This modeling method considers each zone as a fully and instantaneously well mixed volume. In this case, each zone can be characterized by a unique computational node where temperature, pressure and concentration are determined. Then, some specific rooms are studied with more details. In order to see the impact of these details on the entire building model, we propose different coupling methods depending on models associations between the nodal approach, and zonal or CFD room models. After a brief presentation of the different modeling methods used in this study, we attempt to demonstrate the interest to use one method instead of another depending on the room characteristics or the modeler's objectives. We then present the developed platform in which we solve both nodal and zonal models, and we couple detailed room models with the first method. Finally, a few applications demonstrate some capabilities of the developed platform to not only adjust the level of detail for each room model, but also propose new ways of research. In fact, the last application shows a new coupling method between zonal and CFD methods. In this approach, the first method acquires the airflow structure from results obtained using a CFD model in the room. Consequently, the developed platform has numerous applications, to study the dynamics of heat and mass transfers in buildings as well as in their immediate surroundings. (author)

  6. Simulation and parametric optimisation of thermal power plant cycles

    Directory of Open Access Journals (Sweden)

    P. Ravindra Kumar

    2016-09-01

    Full Text Available The objective of the paper is to analyse parametric studies and optimum steam extraction pressures of three different (subcritical, supercritical and ultra-supercritical coal fired power plant cycles at a particular main steam temperature of 600 °C by keeping the reheat temperature at 537 °C and condenser pressure at 0.09 bar as constant. In order to maximize the heat rate gain possible with supercritical and ultra-supercritical steam conditions, eight stages of feed water heater arrangement with single reheater is considered. The system is optimized in such a way that the percentage exergetic losses are reduced for the increase of the exergetic efficiency and higher fuel utilization. The plant cycles are simulated and optimized by using Cycle Tempo 5.0 simulation software tool. From the simulation study, it is observed that the thermal efficiency of the three different power plant cycles obtained as 41.40, 42.48 and 43.03%, respectively. The specific coal consumption for three different power plant cycles are 0.56, 0.55 and 0.54 Tonnes/MWh. The improvement in feed water temperatures at the inlet of steam generator of respective cycles are 291, 305 and 316 °C.

  7. Rocks, Clays, Water, and Salts: Highly Durable, Infinitely Rechargeable, Eminently Controllable Thermal Batteries for Buildings

    Directory of Open Access Journals (Sweden)

    Alan W. Rempel

    2013-01-01

    Full Text Available Materials that store the energy of warm days, to return that heat during cool nights, have been fundamental to vernacular building since ancient times. Although building with thermally rechargeable materials became a niche pursuit with the advent of fossil fuel-based heating and cooling, energy and climate change concerns have sparked new enthusiasm for these substances of high heat capacity and moderate thermal conductivity: stone, adobe, rammed earth, brick, water, concrete, and more recently, phase-change materials. While broadly similar, these substances absorb and release heat in unique patterns characteristic of their mineralogies, densities, fluidities, emissivities, and latent heats of fusion. Current architectural practice, however, shows little awareness of these differences and the resulting potential to match materials to desired thermal performance. This investigation explores that potential, illustrating the correspondence between physical parameters and thermal storage-and-release patterns in direct-, indirect-, and isolated-gain passive solar configurations. Focusing on heating applications, results demonstrate the superiority of water walls for daytime warmth, the tunability of granite and concrete for evening warmth, and the exceptional ability of phase-change materials to sustain near-constant heat delivery throughout the night.

  8. Thermal characterization of a new effective building material based on clay and olive waste

    Directory of Open Access Journals (Sweden)

    Mohamed Lamrani

    2018-01-01

    Full Text Available The influence of thermophysical properties of wall materials on energy performance and comfort in traditional building was investigated. The clay is the most commonly used sustainable building material. The study looked at the effects of the addition of pomace olive on the thermophysical properties of clay bricks to improve the energy efficiency of this ecological material. An experimental measurement of thermal properties of clay mixed with pomace olive was carried out by using the transient and steady state hot-plate and flash methods. The experimental methods are applied to measure the thermal properties of the composite material. The estimation of these thermal characteristics is based on a one dimensional model and the experimental errors are found less than 3%. The composite samples were prepared with different granular classes and mass fractions of the pomace olive in the mixture. The results show that the density of the new material was not substantially influenced by the size of the pomace olive. However, the thermal conductivity and diffusivity decrease from 0.65 W.m-1.K-1 and 4.21×10-7 m2.s-1 to 0.29 W.m-1.K-1 and 2.47×10-7m2.s-1, respectively, according to the variation of the volume fraction of pomace olive from 0 (pure clay to 71% showing that the olive pomace can be used as effective secondary raw materials in the making of clay bricks.

  9. Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study

    Directory of Open Access Journals (Sweden)

    Xiangfei Kong

    2016-01-01

    Full Text Available This study is focused on the preparation and performance of a building energy storage panel (BESP. The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP, which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM was incorporated into expanded perlite (EP through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC, scanning electron microscope (SEM, best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1 the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2 the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3 in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency.

  10. Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study.

    Science.gov (United States)

    Kong, Xiangfei; Zhong, Yuliang; Rong, Xian; Min, Chunhua; Qi, Chengying

    2016-01-25

    This study is focused on the preparation and performance of a building energy storage panel (BESP). The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP), which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM) was incorporated into expanded perlite (EP) through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC), scanning electron microscope (SEM), best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1) the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2) the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3) in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency.

  11. Thermal Energy Storage for Building Load Management: Application to Electrically Heated Floor

    Directory of Open Access Journals (Sweden)

    Hélène Thieblemont

    2016-07-01

    Full Text Available In cold climates, electrical power demand for space conditioning becomes a critical issue for utility companies during certain periods of the day. Shifting a portion or all of it to off-peak periods can help reduce peak demand and reduce stress on the electrical grid. Sensible thermal energy storage (TES systems, and particularly electrically heated floors (EHF, can store thermal energy in buildings during the off-peak periods and release it during the peak periods while maintaining occupants’ thermal comfort. However, choosing the type of storage system and/or its configuration may be difficult. In this paper, the performance of an EHF for load management is studied. First, a methodology is developed to integrate EHF in TRNSYS program in order to investigate the impact of floor assembly on the EHF performance. Then, the thermal comfort (TC of the night-running EHF is studied. Finally, indicators are defined, allowing the comparison of different EHF. Results show that an EHF is able to shift 84% of building loads to the night while maintaining acceptable TC in cold climate. Moreover, this system is able to provide savings for the customer and supplier if there is a significant difference between off-peak and peak period electricity prices.

  12. Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study

    Science.gov (United States)

    Kong, Xiangfei; Zhong, Yuliang; Rong, Xian; Min, Chunhua; Qi, Chengying

    2016-01-01

    This study is focused on the preparation and performance of a building energy storage panel (BESP). The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP), which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM) was incorporated into expanded perlite (EP) through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC), scanning electron microscope (SEM), best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1) the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2) the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3) in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency. PMID:28787870

  13. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  14. Simulation Tests in Whole Building Heat and Moisture Transfer

    DEFF Research Database (Denmark)

    Rode, Carsten; Peuhkuri, Ruut Hannele; Woloszyn, Monika

    2006-01-01

    An important part of the International Energy Agency project, ECBCS, Annex 41 is about modelling the integral heat, air and moisture transfer processes that take place in “whole buildings”. Such modelling deals with all most relevant elements of buildings: The indoor air, the building envelope...

  15. High Energy-Efficient Windows with Silica Aerogel for Building Refurbishment: Experimental Characterization and Preliminary Simulations in Different Climate Conditions

    Directory of Open Access Journals (Sweden)

    Cinzia Buratti

    2017-01-01

    Full Text Available The paper deals with the potential of high energy-efficient windows with granular silica aerogel for energy saving in building refurbishment. Different glazing systems were investigated considering two kinds of granular silica aerogel and different glass layers. Thermal transmittance and optical properties of the samples were measured and used in building simulations. The aerogel impact on heat transfer is remarkable, allowing a thermal transmittance of 1.0–1.1 W/(m2·K with granular aerogel in interspace only 15 mm in thickness. A 63% reduction in U-value was achieved when compared to the corresponding conventional windows, together with a significant reduction (30% in light transmittance. When assembled with a low-e glass, the U-value reduction was lower (31%, but a moderate reduction in light transmittance (about 10% was observed for larger granules. Energy simulations for a case study in different climate conditions (hot, moderate, and cold showed a reduction in energy demand both for heating and cooling for silica aerogel glazing systems, when compared to the conventional ones. The new glazings are a suitable solution for building refurbishment, thanks to low U-values and total solar transmittance, also in warm climate conditions.

  16. A Building Energy Efficiency Optimization Method by Evaluating the Effective Thermal Zones Occupancy

    Directory of Open Access Journals (Sweden)

    Franco Cotana

    2012-12-01

    Full Text Available Building energy efficiency is strongly linked to the operations and control systems, together with the integrated performance of passive and active systems. In new high quality buildings in particular, where these two latter aspects have been already implemented at the design stage, users’ perspective, obtained through post-occupancy assessment, has to be considered to reduce whole energy requirement during service life. This research presents an innovative and low-cost methodology to reduce buildings’ energy requirements through post-occupancy assessment and optimization of energy operations using effective users’ attitudes and requirements as feedback. As a meaningful example, the proposed method is applied to a multipurpose building located in New York City, NY, USA, where real occupancy conditions are assessed. The effectiveness of the method is tested through dynamic simulations using a numerical model of the case study, calibrated through real monitoring data collected on the building. Results show that, for the chosen case study, the method provides optimized building energy operations which allow a reduction of primary energy requirements for HVAC, lighting, room-electricity, and auxiliary supply by about 21%. This paper shows that the proposed strategy represents an effective way to reduce buildings’ energy waste, in particular in those complex and high-efficiency buildings that are not performing as well as expected during the concept-design-commissioning stage, in particular due to the lack of feedback after the building handover.

  17. Mathematical modeling and simulation of a thermal system

    Science.gov (United States)

    Toropoc, Mirela; Gavrila, Camelia; Frunzulica, Rodica; Toma, Petrica D.

    2016-12-01

    The aim of the present paper is the conception of a mathematical model and simulation of a system formed by a heatexchanger for domestic hot water preparation, a storage tank for hot water and a radiator, starting from the mathematical equations describing this system and developed using Scilab-Xcos program. The model helps to determine the evolution in time for the hot water temperature, for the return temperature in the primary circuit of the heat exchanger, for the supply temperature in the secondary circuit, the thermal power for heating and for hot water preparation to the consumer respectively. In heating systems, heat-exchangers have an important role and their performances influence the energy efficiency of the systems. In the meantime, it is very important to follow the behavior of such systems in dynamic regimes. Scilab-Xcos program can be utilized to follow the important parameters of the systems in different functioning scenarios.

  18. Advanced wellbore thermal simulator GEOTEMP2 user manual

    Energy Technology Data Exchange (ETDEWEB)

    Mondy, L.A.; Duda, L.E.

    1984-11-01

    GEOTEMP2 is a wellbore thermal simulator computer code designed for geothermal drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward, and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with several different casing sizes and cement intervals can be modeled. The code allows variables suchas flow rate to change with time enabling a realistic treatment of well operations. This user manual describes the input required to properly operate the code. Ten sample problems are included which illustrate all the code options. Complete listings of the code and the output of each sample problem are provided.

  19. Thermal conductivity of cross-linked polyethylene from molecular dynamics simulation

    Science.gov (United States)

    Xiong, Xue; Yang, Ming; Liu, Changlin; Li, Xiaobo; Tang, Dawei

    2017-07-01

    The thermal conductivity of cross-linked bulk polyethylene is studied using molecular dynamics simulation. The atomic structure of the cross-linked polyethylene (PEX) is generated through simulated bond formation using LAMMPS. The thermal conductivity of PEX is studied with different degrees of crosslinking, chain length, and tensile strain. Generally, the thermal conductivity increases with the increasing degree of crosslinking. When the length of the primitive chain increases, the thermal conductivity increases linearly. When the polymer is stretched along one direction, the thermal conductivity increases in the stretched direction and decreases in the direction perpendicular to it. However, the thermal conductivity varies slightly when the polymer is stretched in three directions simultaneously.

  20. Thermal transport in phase-change materials from atomistic simulations

    Science.gov (United States)

    Sosso, Gabriele C.; Donadio, Davide; Caravati, Sebastiano; Behler, Jörg; Bernasconi, Marco

    2012-09-01

    We computed the thermal conductivity (κ) of amorphous GeTe by means of classical molecular dynamics and lattice dynamics simulations. GeTe is a phase change material of interest for applications in nonvolatile memories. An interatomic potential with close-to-ab initio accuracy was used as generated by fitting a huge ab initio database with a neural network method. It turns out that the majority of heat carriers are nonpropagating vibrations (diffusons), the small percentage of propagating modes giving a negligible contribution to the total value of κ. This result is in contrast with the properties of other amorphous semiconductors such as Si for which nonpropagating and propagating vibrations account for about one half of the value of κ each. This outcome suggests that the value of κ measured for the bulk amorphous phase can be used to model the thermal transport of GeTe and possibly of other materials in the same class also in nanoscaled memory devices. Actually, the contribution from propagating modes, which may endure ballistic transport at the scale of 10-20 nm, is negligible.

  1. Benefits of full scope simulators during solar thermal power plants design and construction

    Science.gov (United States)

    Gallego, José F.; Gil, Elena; Rey, Pablo

    2017-06-01

    In order to efficiently develop high-precision dynamic simulators for solar thermal power plants, Tecnatom adapted its simulation technology to consider solar thermal models. This effort and the excellent response of the simulation market have allowed Tecnatom to develop simulators with both parabolic trough and solar power tower technologies, including molten salt energy storage. These simulators may pursue different objectives, giving rise to training or engineering simulators. Solar thermal power market combines the need for the training of the operators with the potential benefits associated to the improvement of the design of the plants. This fact along with the simulation capabilities enabled by the current technology and the broad experience of Tecnatom present the development of an engineering+training simulator as a very advantageous option. This paper describes the challenge of the development and integration of a full scope simulator during the design and construction stages of a solar thermal power plant, showing the added value to the different engineering areas.

  2. User's manual for computer code SOLTES-1 (simulator of large thermal energy systems). [For CDC 6600

    Energy Technology Data Exchange (ETDEWEB)

    Fewell, M.E.; Grandjean, N.R.; Dunn, J.C.; Edenburn, M.W.

    1978-09-01

    SOLTES simulates the steady-state response of thermal energy systems to time-varying data such as weather and loads. Thermal energy system models of both simple and complex systems can easily be modularly constructed from a library of routines. These routines mathematically model solar collectors, pumps, switches, thermal energy storage, thermal boilers, auxiliary boilers, heat exchangers, extraction turbines, extraction turbine/generators, condensers, regenerative heaters, air conditioners, heating and cooling of buildings, process vapor, etc.; SOLTES also allows user-supplied routines. The analyst need only specify fluid names to obtain readout of property data for heat-transfer fluids and constants that characterize power-cycle working fluids from a fluid property data bank. A load management capability allows SOLTES to simulate total energy systems that simultaneously follow heat and power loads and demands. Generalized energy accounting is available, and values for system performance parameters may be automatically determined by SOLTES. Because of its modularity and flexibility, SOLTES can be used to simulate a wide variety of thermal energy systems such as solar power/total energy, fossil fuel power plants/total energy, nuclear power plants/total energy, solar energy heating and cooling, geothermal energy, and solar hot water heaters.

  3. Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Park, W. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)

  4. Thermal properties of adobe employed in Peruvian rural areas: Experimental results and numerical simulation of a traditional bio-composite material

    Directory of Open Access Journals (Sweden)

    Ginés A. Abanto

    2017-06-01

    Different adobes have been studied. Effective thermal conductivity and heat capacity were measured by means of a hot parallel-plate method. Density was estimated using a pycnometer and measuring physical dimensions and mass of each sample, which allowed the calculation of thermal effusivity and diffusivity. Some numerical simulation results displayed good agreement with experimental outcomes. The work presented here has implications for future studies of this traditional building material and might potentially help solving the problem of sustainable housing.

  5. Thermal Comfort in Simulated Office Environment with Four Convective and Radiant Cooling Systems

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Mustakallio, Panu; Kolencíková, Sona

    2013-01-01

    Experiments with 24 human subjects in a simulated office with four cooling systems were performed. The systems were: chilled beam (CB), chilled beam with integrated radiant panel (CBR), chilled ceiling with overhead mixing ventilation (CCMV) and four desk partition mounted radiant cooling panels...... with overhead mixing ventilation (MVRC). Whole body thermal sensation (TS) and whole body TS acceptability under the four systems in a simulated office room for one hour exposure were collected. The simulated two-man office (4.12 x 4.20 x 2.89 m, L x W x H) was kept at 26 oC room air temperature. Moderate heat...... load of 64 W/m2 was generated by simulated solar heat load, 2 laptops and 2 occupants, giving in total 1104 W. The supplied outdoor air temperature was kept at 16 oC. The supply air flow rate for CB, CBR and CCMV was set to 26 L/s (category II low-polluting building, EN 15251-2007). For MVRC supply...

  6. Comparison of simplified and advanced building simulation tool with measured data

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Schiønning, Peder; Dethlefsen, Espen

    2013-01-01

    In the future building design must progress to a format where CO 2 neutral societies are optimized as a whole and innovative technologies integrated. The purpose of this paper is to demonstrate the problems using a simplified design tool to simulate a complicated building and how this may not give...... sufficiently good results in terms of actual performance of the real building. This is illustrated by example of Viborg Town Hall using a simplified Danish tool Be10 and a dynamic Building Simulation Programme IES-VE. The model is evaluated based on actual weather data. In addition, IES-VE is evaluated using...

  7. On the Impact of Building Attenuation Models in VANET Simulations of Urban Scenarios

    Directory of Open Access Journals (Sweden)

    Luis Urquiza-Aguiar

    2015-01-01

    Full Text Available Buildings are important elements of cities for VANETs, since these obstacles may attenuate communications between vehicles. Consequently, the impact of buildings has to be considered as part of the attenuation model in VANET simulations of urban scenarios. However, the more elaborated the model, the more information needs to be processed during the simulation, which implies longer processing times. This complexity in simulations is not always worth it, because simplified channel models occasionally offer very accurate results. We compare three approaches to model the impact of buildings in the channel model of simulated VANETs in two urban scenarios. The simulation results for our evaluation scenarios of a traffic-efficiency application indicate that modeling the influence of buildings in urban areas as the total absence of communication between vehicles gives similar results to modeling such influence in a more realistic fashion and could be considered a conservative bound in the performance metrics.

  8. Effect of building renovation on energy use and indoor environment: Comparison of simulations and measurements in six apartment buildings

    DEFF Research Database (Denmark)

    Földváry, Veronika; Kolarik, Jakub; Bekö, Gabriel

    2016-01-01

    of the dwellings, they led to poorer indoor air quality (IAQ). Additional simulations revealed that a simple intervention, such as using exhaust systems in kitchens and bathrooms and at the same time keeping doors of rooms open, may improve the IAQ in retrofitted multifamily buildings....

  9. Thermal and Economic Analysis of Renovation Strategies for a Historic Building in Mediterranean Area

    Directory of Open Access Journals (Sweden)

    Simona Cirami

    2017-07-01

    Full Text Available Around 30% of the European building stock was built before 1950, when no regulations about energy efficiency were in force. Since only a small part of them has been renovated by now, the energy performance of this building stock is on average quite poor, resulting in a significant impact on the energy balance of European countries, as confirmed by data published by ISTAT (Italian National Statistical Institute. However, energy retrofit in historic edifices is a quite demanding issue as any intervention must take into account the need to preserve existing building materials and appearances while also allowing reversibility and low invasiveness. As an example, in these buildings it is not possible to apply an ETICS (External Thermal Insulation Composite System, since this would alter the historic and architectural value of the façade. On the other hand, internal insulation would have the drawback of reducing the net useful floor area, which also implies a loss of economic value. Moreover, internal insulation may induce overheating risks and mold formation. In this paper, all these issues are investigated with reference to an existing historic building located in southern Italy, showing that a retrofit strategy aimed at energy savings and cost-effectiveness is still possible if suitable materials and solutions are adopted.

  10. Pilot study on indoor climate investigation and computer simulation in historical museum building: Amerongen Castle, the Netherlands

    Directory of Open Access Journals (Sweden)

    Raha Sulaiman

    2010-12-01

    Full Text Available The indoor climate is one of the most important factors contributing to climate-induced damage to the building materials and cultural collections of a monumental building. The Dutch monumental building - Amerongen Castle, and the collections housed in it show severe deterioration caused by inappropriate historical indoor environment. Assessments of the indoor climate, especially on the room temperature and relative humidity, are necessary to analyze the causes and impacts of climate change. As the building was flooded in year 1993 and 1996, extra attention is paid to investigate the effects of flooding to it. This pilot study was aimed to identify the buildup linkages between the known past, historical data on indoor environment and indoor climate performance in the building through simulation based-prediction. This paper focuses on the methodology of indoor climate investigation from the past to the current situation. A hypothesis was developed on backcasting-based prediction simulation which can be used to identify the accepted historical indoor climate where during those times there probably was no damage to the building and the collection. A simulation method based on heat, air and moisture transport is used with the HAMBase program. The computer model representing the Grand Salon of Amerongen Castle was calibrated by comparing real measurements to simulation results. It shows that the differences were only to the minimum of -1.8C and maximum of 3.2C. The data for the historical outdoor weather files was obtained by interpolating outdoor ancient climatology constructed by MATLAB. Based on archival research, indoor thermal history was gathered as input for the profiles used in simulation. Further, the calibrated computer model can be used to simulate past indoor climate and investigate the process of the deterioration of the room and the collections mainly due to the fluctuation of indoor temperature and relative humidity. At the end

  11. The Implementation of Industry Foundation Classes in Simulation Tools for the Building Industry

    Energy Technology Data Exchange (ETDEWEB)

    Bazjanac, Vladimir; Crawley, Drury B.

    1997-06-01

    Industry Foundation Classes (IFC) provide an environment of interoperability among IFC-compliant software applications in the architecture, engineering, construction, and facilities management (AEC/FM) industry. They allow building simulation software to automatically acquire building geometry and other building data from project models created with IFC compliant CAD software. They also facilitate direct exchange of input and output data with other simulation software. This paper discusses how simulation software can be made compliant with version 1.5 of the IFC. It also describes the immediate plans for expansion of IFC and the process of definition and addition of new classes to the model.

  12. Simulations of Innovative Solutions for Energy Efficient Building Facades

    OpenAIRE

    Ahuja, Aashish

    2015-01-01

    The last decade has witnessed a heightened interest in making buildings more sustainable, which has been fueled largely by the relative increase in energy costs and advancements in manufacturing technology. Lighting consumes a substantial amount of the building energy consumption, making it necessary to look for alternative technology that depends more on natural lighting. A structural element for facades called the Translucent Concrete (TC) panel has been developed for capturing and deliveri...

  13. Thermal protection and refurbishment of an old building. Lectures; Waermeschutz und Altbausanierung. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the 22nd Hanseatic Reconstruction Symposium at the Baltic Seaside Heringsdorf/Usedom (Federal Republic of Germany) from 3rd to 5th November 2011, the following lectures were held: (1) Energetic refurbishment possibilities for building within existing properties by means of representative examples (F. Deitschum); (2) Constructional thermal insulation and indoor climate - for the good of the environment? (S. Groer); (3) Innovative insulating materials for the structural refurbishment? (O. Fechner); (4) Energetic half-timbering refurbishment (K. Lissner); (5) Wooden solar facades for existing buildings (U. Schwarz); (6) Timber beam bowls in a historic brickwork (U. Mueller); (7) Timber beam bowls and interior insulation (U. Ruisinger); (8) Innovative solutions for cavity filling insulations (A. Stefenelli); (9) Thermal insulating plaster - also for historical buildings (T. Stahl); (10) Experimental tension analysis of the structural behaviour of historical cross vaults (A.-J. Petereit); (10) Investigation of the increase of the flexural strength of stonework constructions with self-compacting steel fibre reinforced concrete (D. Haessler); (11) Dry and dense - the modified WTA leaflet 4-6, 'Subsequent sealing of components in contact with soil' - Content and innovations (R. Spirgatis); (12) What does the new standard DIN 68800 hold? (H. Willeitner); (13) News from the standard DIN 18195 waterproofing of buildings (H.-P. Sommer); (14) Liability of planning of the offering entrepreneur (H. Immoor); (15) Climate change and preservation of structures (W. Zillig); (16) Typical problems and deficiencies of the energetic refurbishment of old store buildings (H. Boehmer); (17) When do ex post horizontal sealings with injection agents make sense - Fundamentals for evaluation, planning and execution (F.-J. Hoelzen); (18) Drying up behaviour of stonework of different quality and at different variants of insulation (F. Antretter).

  14. Assessment of Thermal Comfort in Respect to Building Height in a High-Density City in the Tropics

    OpenAIRE

    Anisha N. Kakon; Mishima Nobuo; Shoichi Kojima; Taguchi Yoko

    2010-01-01

    Problem statement: The significance of urban design and planning in the tropics lies mostly on its climatic and regional concerns. Among many design parameters, building height is an important parameter which affects thermal climate in the city considerably. This study investigated the effect of building height on outdoor thermal comfort during the daytime in summer in Dhaka, Bangladesh which is a high density city located in tropical climate zone. This study emphasized on pedestrian comfort ...

  15. Experiences in heat pumps combined with thermal storage for buildings in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Hino, T. [Kajima Technical Research Institute, Tokyo (Japan)

    1996-11-01

    The mechanism, application, and benefits of thermal energy storage in Japan were explored. Thermal energy storage has had a long history in Japan, although ice storage buildings are a more recent innovation. There was evidence in the 1980s of industry reluctance to adopt ice storage, it being regarded as a poor performer, however, in more recent years this appears to be changing towards greater acceptance, driven by the proliferation of office automation machinery in buildings, and a corresponding decrease in heating loads. Various ice storage systems were briefly reviewed. The traditional direct-expansion static-ice system was considered superior to more modern systems because it consumes less energy while making ice, and because thermal resistance can be reduced if thinner tubes are used. Evaporating temperatures not lower than -5 degrees C were observed in a system developed as part of a solar-assisted air source. The coefficient of performance was further improved by decreasing the condensing temperature using ambient-energy radiators. The direct contact ice generator, which has the highest heat transfer without costly ice making heat exchangers, also looks very promising, and is generating considerable interest. 4 refs., 7 figs.

  16. Solar cooling - comparative study between thermal and electrical use in industrial buildings

    Science.gov (United States)

    Badea, N.; Badea, G. V.; Epureanu, A.; Frumuşanu, G.

    2016-08-01

    The increase in the share of renewable energy sources together with the emphasis on the need for energy security bring to a spotlight the field of trigeneration autonomous microsystems, as a solution to cover the energy consumptions, not only for isolated industrial buildings, but also for industrial buildings located in urban areas. The use of solar energy for cooling has been taken into account to offer a cooling comfort in the building. Cooling and air- conditioned production are current applications promoting the use of solar energy technologies. Solar cooling systems can be classified, depending on the used energy, in electrical systems using mechanical compression chillers and systems using thermal compression by absorption or adsorption. This comparative study presents the main strengths and weaknesses of solar cooling obtained: i) through the transformation of heat resulted from thermal solar panels combined with adsorption chillers, and ii) through the multiple conversion of electricity - photovoltaic panels - battery - inverter - combined with mechanical compression chillers. Both solutions are analyzed from the standpoints of energy efficiency, dynamic performances (demand response), and costs sizes. At the end of the paper, experimental results obtained in the climatic condition of Galafi city, Romania, are presented.

  17. Dynamic Simulation of the Green Roofs Impact on Building Energy Performance, Case Study of Antananarivo, Madagascar

    Directory of Open Access Journals (Sweden)

    Hery Tiana Rakotondramiarana

    2015-05-01

    Full Text Available Green roofs improve building energy performance and constitute an alternative to sustainable buildings. A green roof model is dynamically coupled with a building thermal model to assess its energy performance that takes into account the indoor air temperature dynamic changes. Under the climate conditions in Antananarivo, we compared green and conventional roofs. The present study shows that green roofs protect the roof structure under extreme temperature and large temperature fluctuations. For the case of Antananarivo, the amplitude of the temperature fluctuations at the top face of the support is reduced by 28 °C when using green roof. The impact of the green roof on indoor air temperature and energy demand is investigated. The vegetation decreases the maximum indoor air temperature and improves the building thermal comfort during summer days. It has no effect on the minimum indoor air temperature, but additional soil thickness can increase it. In addition, a global sensitivity analysis, which is carried out on the proposed model without considering any specific weather data, allows us to identify the most influential parameters on the energy demand. It has been found that green roofs have almost insignificant thermal impact in insulated buildings; however, their potential prevails over the building envelope and weather characteristics in the case of non-insulated building.

  18. Building simulations supporting decision making in early design – A review

    DEFF Research Database (Denmark)

    Østergård, Torben; Jensen, Rasmus Lund; Maagaard, Steffen

    2016-01-01

    The building design community is challenged by continuously increasing energy demands, which are often combined with ambitious goals for indoor environment, for environmental impact, and for building costs. To aid decision-making, building simulation is widely used in the late design stages......, but its application is still limited in the early stages in which design decisions have a major impact on final building performance and costs. The early integration of simulation software faces several challenges, which include time-consuming modeling, rapid change of the design, conflicting requirements......, input uncertainties, and large design variability. In addition, building design is a multi-collaborator discipline, where design decisions are influenced by architects, engineers, contractors, and building owners. This review covers developments in both academia and in commercial software industry...

  19. Solid state phase change materials for thermal energy storage in passive solar heated buildings

    Science.gov (United States)

    Benson, D. K.; Christensen, C.

    1983-11-01

    A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.

  20. Collapsed carbon nanotubes as building blocks for high-performance thermal materials

    Science.gov (United States)

    Al-Ghalith, Jihong; Xu, Hao; Dumitricǎ, Traian

    2017-10-01

    The influence of collapsed shape on the thermal transport of carbon nanotubes is studied by nonequilibrium molecular dynamics. Nanotubes of different lengths, diameters, chiralities, and degrees of twist are simulated in the regime in which the thermal transport extends from ballistic to diffusive. In contrast with graphene nanoribbons, which are known to exhibit substantial rough-edge and cross-plain phonon scatterings, the collapsed tubes preserve the quasiballistic phononic transport encountered in cylindrical nanotubes. Stacked-collapsed nanotube architectures, closely related with the strain-induced aligned tubes occurring in stretched nanotube sheets, are shown to inherit the ultrahigh thermal conductivities of individual tubes, and are therefore proposed to form highways for efficient heat transport in lightweight composite materials.

  1. Bottom-up nanoarchitecture of semiconductor nano-building blocks by controllable in situ SEM-FIB thermal soldering method

    KAUST Repository

    Zhang, Xuan

    2017-08-10

    Here we demonstrate that the building blocks of semiconductor WO3 nanowires can be controllably soldered together by a novel nano-soldering technique of in situ SEM-FIB thermal soldering, in which the soldering temperature can precisely remain in an optimal range to avoid a strong thermal diffusion.

  2. Rigidly framed earth retaining structures thermal soil structure interaction of buildings supporting unbalanced lateral earth pressures

    CERN Document Server

    Aboumoussa, Walid

    2014-01-01

    Structures placed on hillsides often present a number of challenges and a limited number of economical choices for site design. An option sometimes employed is to use the building frame as a retaining element, comprising a Rigidly Framed Earth Retaining Structure (RFERS). The relationship between temperature and earth pressure acting on RFERS, is explored in this monograph through a 4.5 year monitoring program of a heavily instrumented in service structure. The data indicated that the coefficient of earth pressure behind the monitored RFERS had a strong linear correlation with temperature. The study also revealed that thermal cycles, rather than lateral earth pressure, were the cause of failure in many structural elements. The book demonstrates that depending on the relative stiffness of the retained soil mass and that of the structural frame, the developed lateral earth pressure, during thermal expansion, can reach magnitudes several times larger than those determined using classical earth pressure theories....

  3. Exterior Space Retrofitting Planning with Possible Effect on Building Thermal Characteristics

    Science.gov (United States)

    Berezin, D. V.

    2017-11-01

    The problems of mass housing which was serially designed and produced throughout Eastern European and former Soviet cities in the middle of the 20th century, in regard to its solar-related thermal conditions improvement by refurbishing are raised in the paper. The impact of functional zones’ dimensions (based on the dwellers’ domestic actions) on shading properties of balconies and loggias is analyzed. As a result, the ratios of exterior space area (as a complex of shading elements related to balconies/loggias) to the windows area that reflect the frequency of the indoor air overheating are determined which can serve as a simple evaluative thermal comfort-related tool for projected and existing buildings under a real solar activity between the geographic latitudes 55° – 56°.

  4. Five really easy steps to build a homemade low-cost simulator.

    Science.gov (United States)

    Moreira-Pinto, João; Silva, João Guilherme; Ribeiro de Castro, João Luís; Correia-Pinto, Jorge

    2013-02-01

    The aim of this study was to evaluate how simple it is to build a homemade low-cost simulator using a simple 5-step scheme. A scheme explaining how to build an endoscopic surgery simulator in 5 easy steps was presented to 26 surgeons. The simulator required a pair of scissors and easy-to-find materials. Its total cost was less than €35. The participants assessed the simulator using common endoscopic training toys or ex vivo tissue and completed an anonymous query comparing it with other commercial simulators that they had experienced before. In all, 84.6% found the simulator really easy to build. Every participant felt that he or she could do the same simulator themselves. Comparing with other commercial available box simulators, the majority of participants found the homemade simulator easier to (a) mount and dismount, (b) transport, (c) clean, and (d) use when practicing alone. Anyone can build its own simulator for a small amount of money.

  5. A First-Order Study of Reduced Energy Consumption via Increased Thermal Capacitance with Thermal Storage Management in a Micro-Building

    Directory of Open Access Journals (Sweden)

    Mary B. Wilson

    2015-10-01

    Full Text Available This study uses a first-order approximation of a micro-building to investigate the major factors determining how increased thermal capacitance (ITC with thermal storage management (TSM can reduce energy consumption in locations with relatively mild weather conditions such as the southeastern part of the United States of America. In this study, ITC is achieved through water circulation between a large storage tank and pipes embedded within the building envelope. Although ITC results in a larger dominant time constant for the thermal response of a building, an adaptive allocation and control of the added capacitance through TSM significantly improves the benefits of the extra capacitance. This paper compares two first-order models for a micro-building: a reference case model with a single lumped thermal capacitance associated with the building, and another model, with the building’s capacitance plus the capacitance of the water system. Results showed that the ITC/TSM system reduced the cost of conditioning the building by reducing the operating time of both the cooling and the heating systems. May through September, the air conditioning operating time was reduced by an average of 70%, and October through April, the operation of the heating system was reduced by an average of 25%.

  6. Issues to Be Solved for Energy Simulation of An Existing Office Building

    Directory of Open Access Journals (Sweden)

    Ki Uhn Ahn

    2016-04-01

    Full Text Available With the increasing focus on low energy buildings and the need to develop sustainable built environments, Building Energy Performance Simulation (BEPS tools have been widely used. However, many issues remain when applying BEPS tools to existing buildings. This paper presents the issues that need to be solved for the application of BEPS tools to an existing office building. The selected building is an office building with 33 stories above ground, six underground levels, and a total floor area of 91,898 m2. The issues to be discussed in this paper are as follows: (1 grey data not ready for simulation; (2 subjective assumptions and judgments on energy modeling; (3 stochastic characteristics of building performance and occupants behavior; (4 verification of model fidelity-comparison of aggregated energy; (5 verification of model fidelity-calibration by trial and error; and (6 use of simulation model for real-time energy management. This study investigates the aforementioned issues and explains the factors that should be considered to address these issues when developing a dynamic simulation model for existing buildings.

  7. Properties of Agro-Industrial Aerated Concrete as Potential Thermal Insulation for Building

    Directory of Open Access Journals (Sweden)

    Aminudin Eeydzah

    2016-01-01

    Full Text Available The present paper is aiming to provide an actual state of the development of non autoclaved Agro-Industrial aerated concrete by using multiple ashes as improvement of thermal behavior for building. The feasibility of Agro-Industrial wastes as lightweight concrete by utilizing the Palm Oil Fuel Ash (POFA as binder replacement and bottom ash as fine aggregate was investigated in this paper. Portland cement, bottom ash, aluminum powder and lime (Ca(OH2 were used in this study. The POFA was used to replace Portland cement and Hydrated Lime at 0%, 5%, 10% and 15% by weight and aluminum powder was added at 0.75% dry weight in order to form bubbles. The compressive strength, water absorption, porosity and the thermal conductivity test were carried out after the concrete were water cured for 7 days and later being exposed to the air and water until 28days. The results show that the 20% replacements give the optimum strength of 7.143MPa and 30% give the best thermal conductivity with 0.48W/mK. Hence, this study aim, was to develop an agro-industrial aerated concrete good in insulation but having an optimum strength. Hence, it has been found that the more the percentage of POFA is added the lower the thermal conductivity since the pore structure is increasing and by the optimization done, 30% replacement has been chosen as the best mix design for Agro-Industrial Aerated Concrete.

  8. Experimental and numerical characterization of thermal bridges in prefabricated building walls

    Energy Technology Data Exchange (ETDEWEB)

    Zalewski, Laurent; Lassue, Stephane; Boukhalfa, Kamel [Univ Lille Nord de France, F-59000 Lille (France); UArtois, LGCgE, F-62400 Bethune (France); Rousse, Daniel [Department of Mechanical Engineering, Ecole de Technologie Superieure, Montreal (Canada)

    2010-12-15

    This work is a contribution to the characterization of the thermal efficiency of complex walls of buildings with respect to the ever increasing requirements in thermal insulation. The work specifically concerns the quantitative evaluation of heat losses by thermal bridges. The support of the study is the envelope of industrial light construction walls containing a metal framework, an insulating material inserted in between metal trusses, water and vapor barriers, and the internal and external facings. This article presents first the infrared thermography method which is used to visualize the thermal bridges as well as a genuine complementary experimental method allowing for the determination of the quantitative aspects of the heat losses through the envelope. Tangential-gradient heat fluxmeters, which create little disturbance in the measurements, are used in the context of laboratory and in full-scale insitu experiments. Then, the article presents a simple yet accurate prediction with a three-dimensional numerical method that could be used for the design of specific installations and parametric studies. (author)

  9. Composite Building Materials: Thermal and Mechanical Performances of Samples Realized with Hay and Natural Resins

    Directory of Open Access Journals (Sweden)

    Maria La Gennusa

    2017-03-01

    Full Text Available Recent years have seen an increasing public interest in issues related to energy saving and environmental pollution reduction in the building sector. As a result, many directives have been issued, the most important being the Directive 2010/31/EU (EPBD Recast on the energy performance of buildings, which requires that “Member States shall ensure that by 31 December 2020 all new buildings are nearly zero-energy buildings”. This goal can be obtained not only by reducing energy demand for heating and cooling, but also, for example, by improving building envelope performances. In this work, a first analysis of the thermal and structural behaviour of a biocomposite material, constituted by a natural resin (rosin and vegetal fibres (hay, has been performed, with particular attention to the share of fibres and the granulometry in the mixture. The biocomposite has shown both good insulation properties and mechanical resistance. However, the results show that further analyses should be performed on the optimisation of the samples’ preparation process.

  10. Thermal energy storage with phase change materials (PCMs) for the improvement of the energy performance of buildings

    Science.gov (United States)

    Soares, Nelson

    The improvement of the energy efficiency of buildings during their operational phase is an active area of research. The markets are looking for new technologies, namely new thermal energy storage (TES) systems, which can be used to reduce buildings' dependency on fossil fuels, to make use of renewable energy sources and to contribute to match energy supply and demand efficiently. The main goals of this thesis are: (i) to evaluate the heat transfer with solid-liquid phase-change through small TES units filled with phase-change materials (PCMs), providing experimental data to be used in the design of new TES systems for buildings and in the validation of numerical models, and (ii) to provide some guidelines for the incorporation of PCM-drywalls in buildings aiming to reduce the energy demand for heating and cooling by making use of the latent heat from the phase-change processes of PCMs. The first part of this thesis refers to the experimental study of the heat transfer through a vertical stack of metallic rectangular cavities filled with different PCMs (a microencapsulated and a free-form PCM). The research carried out aims: (i) to analyze the melting and solidification processes of the PCM within the enclosures, (ii) to evaluate the influence of the aspect ratio of the cavities on the heat transfer and (iii) to discuss which type of PCM is better for specific cases. As a result, a big amount of experimental data for benchmarking and validation of numerical models is made available to the scientific community. Moreover, the results allow discussing which arrangement of the TES unit is better for specific applications considering the thermal regulation effect during charging, the influence of subcooling during discharging, and the influence of natural convection during both processes. It is shown that the effect of natural convection in the free-form PCM must be considered in any simulation to better describe the charging process. During discharging, subcooling must

  11. Weldability prediction of high strength steel S960QL after weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2014-10-01

    Full Text Available This paper presents weld thermal cycle simulation of high strength steel S960QL, and describes influence of cooling time t8/5 on hardness and impact toughness of weld thermal cycle simulated specimens. Furthermore, it presents analysis of characteristic fractions done by electron scanning microscope which can contribute to determination of welding parameters for S960QL steel.

  12. Poverty Simulations: Building Relationships among Extension, Schools, and the Community

    Science.gov (United States)

    Franck, Karen L.; Barnes, Shelly; Harrison, Julie

    2016-01-01

    Poverty simulations can be effective experiential learning tools for educating community members about the impact of poverty on families. The project described here includes survey results from three simulations with community leaders and teachers. This project illustrated how such workshops can help Extension professionals extend their reach and…

  13. Urban weather data and building models for the inclusion of the urban heat island effect in building performance simulation

    Directory of Open Access Journals (Sweden)

    M. Palme

    2017-10-01

    Full Text Available This data article presents files supporting calculation for urban heat island (UHI inclusion in building performance simulation (BPS. Methodology is used in the research article “From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect” (Palme et al., 2017 [1]. In this research, a Geographical Information System (GIS study is done in order to statistically represent the most important urban scenarios of four South-American cities (Guayaquil, Lima, Antofagasta and Valparaíso. Then, a Principal Component Analysis (PCA is done to obtain reference Urban Tissues Categories (UTC to be used in urban weather simulation. The urban weather files are generated by using the Urban Weather Generator (UWG software (version 4.1 beta. Finally, BPS is run out with the Transient System Simulation (TRNSYS software (version 17. In this data paper, four sets of data are presented: 1 PCA data (excel to explain how to group different urban samples in representative UTC; 2 UWG data (text to reproduce the Urban Weather Generation for the UTC used in the four cities (4 UTC in Lima, Guayaquil, Antofagasta and 5 UTC in Valparaíso; 3 weather data (text with the resulting rural and urban weather; 4 BPS models (text data containing the TRNSYS models (four building models.

  14. Urban weather data and building models for the inclusion of the urban heat island effect in building performance simulation.

    Science.gov (United States)

    Palme, M; Inostroza, L; Villacreses, G; Lobato, A; Carrasco, C

    2017-10-01

    This data article presents files supporting calculation for urban heat island (UHI) inclusion in building performance simulation (BPS). Methodology is used in the research article "From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect" (Palme et al., 2017) [1]. In this research, a Geographical Information System (GIS) study is done in order to statistically represent the most important urban scenarios of four South-American cities (Guayaquil, Lima, Antofagasta and Valparaíso). Then, a Principal Component Analysis (PCA) is done to obtain reference Urban Tissues Categories (UTC) to be used in urban weather simulation. The urban weather files are generated by using the Urban Weather Generator (UWG) software (version 4.1 beta). Finally, BPS is run out with the Transient System Simulation (TRNSYS) software (version 17). In this data paper, four sets of data are presented: 1) PCA data (excel) to explain how to group different urban samples in representative UTC; 2) UWG data (text) to reproduce the Urban Weather Generation for the UTC used in the four cities (4 UTC in Lima, Guayaquil, Antofagasta and 5 UTC in Valparaíso); 3) weather data (text) with the resulting rural and urban weather; 4) BPS models (text) data containing the TRNSYS models (four building models).

  15. A method to compare computational fluid dynamics (CFD) and multizonal dynamics simulations in buildings physics

    OpenAIRE

    Deltour, Jade; Van Moeseke, Geoffrey; Barbason, Mathieu; Reiter, Sigrid

    2011-01-01

    This paper focuses on the development of a new evaluation method that combines data obtained by two different approaches: “multizonal dynamics” and “computational fluid dynamics (CFD)”. This research is a part of a project whose the main objective is to define guidelines for architects and buildings engineers. This guidelines aims at determining the adequate approach needed to evaluate the occupant thermal comfort and the building energy consumption for cooling and heating. Peer review...

  16. Building America House Simulation Protocols - Revised October 2010

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    This document was developed to track and manage progress toward multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent reference point. This report corrects editorial errors that were in the original publication.

  17. Predictive performance simulations for a sustainable lecture building complex

    CSIR Research Space (South Africa)

    Conradie, Dirk CU

    2012-06-01

    Full Text Available during operational hours. The following process was used to model the ventilation performance of this mixed-mode building: 1) An insolation analysis was undertaken to establish the effect of cumulative exposure of the Trombe wall surface to solar...

  18. Role-play Simulation of Building Design Projects.

    Science.gov (United States)

    Holgate, Alan

    1987-01-01

    Describes the development of an "executive game" which is designed to give students of civil engineering some impression of the wider context of the design of a building project in which the client, architect, contractor, regulatory authorities and community interest groups all play a part. (CW)

  19. Integration of thermal photovoltaic hybrid sensors to the building. Final report july 2004. Integrated research project 6.2; Integration de capteurs hybrides photovoltaiques thermiques au bati. Rapport final juillet 2004. Projet de recherche integre 6.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The electricity and the heat are two complementary energies necessary for the accommodation. A thermal solar installation needs the electric power for the coolant fluid flow. This research project concerns the optimization of integrated solutions to the building, providing simultaneously these two energies. This document presents the proposed researches programs: analysis of the socio-economic aspects, the physical phenomena knowledge, simulation of the behavior, experimentation, hybrid components integration, simulation of the photovoltaic modules operating and thermal simulation of an electric converter. (A.L.B.)

  20. Thermal comfort in air-conditioned buildings in hot and humid climates--why are we not getting it right?

    Science.gov (United States)

    Sekhar, S C

    2016-02-01

    While there are plenty of anecdotal experiences of overcooled buildings in summer, evidence from field studies suggests that there is indeed an issue of overcooling in tropical buildings. The findings suggest that overcooled buildings are not a consequence of occupant preference but more like an outcome of the HVAC system design and operation. Occupants' adaptation in overcooled indoor environments through additional clothing cannot be regarded as an effective mitigating strategy for cold thermal discomfort. In the last two decades or so, several field studies and field environmental chamber studies in the tropics provided evidence for occupants' preference for a warmer temperature with adaptation methods such as elevated air speeds. It is important to bear in mind that indoor humidity levels are not compromised as they could have an impact on the inhaled air condition that could eventually affect perceived air quality. This review article has attempted to track significant developments in our understanding of the thermal comfort issues in air-conditioned office and educational buildings in hot and humid climates in the last 25 years, primarily on occupant preference for thermal comfort in such climates. The issue of overcooled buildings, by design intent or otherwise, is discussed in some detail. Finally, the article has explored some viable adaptive thermal comfort options that show considerable promise for not only improving thermal comfort in tropical buildings but are also energy efficient and could be seen as sustainable solutions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Going DEEP: guidelines for building simulation-based team assessments.

    Science.gov (United States)

    Grand, James A; Pearce, Marina; Rench, Tara A; Chao, Georgia T; Fernandez, Rosemarie; Kozlowski, Steve W J

    2013-05-01

    Whether for team training, research or evaluation, making effective use of simulation-based technologies requires robust, reliable and accurate assessment tools. Extant literature on simulation-based assessment practices has primarily focused on scenario and instructional design; however, relatively little direct guidance has been provided regarding the challenging decisions and fundamental principles related to assessment development and implementation. The objective of this manuscript is to introduce a generalisable assessment framework supplemented by specific guidance on how to construct and ensure valid and reliable simulation-based team assessment tools. The recommendations reflect best practices in assessment and are designed to empower healthcare educators, professionals and researchers with the knowledge to design and employ valid and reliable simulation-based team assessments. Information and actionable recommendations associated with creating assessments of team processes (non-technical 'teamwork' activities) and performance (demonstration of technical proficiency) are presented which provide direct guidance on how to Distinguish the underlying competencies one aims to assess, Elaborate the measures used to capture team member behaviours during simulation activities, Establish the content validity of these measures and Proceduralise the measurement tools in a way that is systematically aligned with the goals of the simulation activity while maintaining methodological rigour (DEEP). The DEEP framework targets fundamental principles and critical activities that are important for effective assessment, and should benefit healthcare educators, professionals and researchers seeking to design or enhance any simulation-based assessment effort.

  2. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    Science.gov (United States)

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.

  3. Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram; Zhang, Chao; Sprague, Michael A.; Pesaran, Ahmad

    2016-06-01

    Models capture the force response for single-cell and cell-string levels to within 15%-20% accuracy and predict the location for the origin of failure based on the deformation data from the experiments. At the module level, there is some discrepancy due to poor mechanical characterization of the packaging material between the cells. The thermal response (location and value of maximum temperature) agrees qualitatively with experimental data. In general, the X-plane results agree with model predictions to within 20% (pending faulty thermocouples, etc.); the Z-plane results show a bigger variability both between the models and test-results, as well as among multiple repeats of the tests. The models are able to capture the timing and sequence in voltage drop observed in the multi-cell experiments; the shapes of the current and temperature profiles need more work to better characterize propagation. The cells within packaging experience about 60% less force under identical impact test conditions, so the packaging on the test articles is robust. However, under slow-crush simulations, the maximum deformation of the cell strings with packaging is about twice that of cell strings without packaging.

  4. Numerical Simulations of Thermal Convection in Rapidly Rotating Spherical Shell

    Energy Technology Data Exchange (ETDEWEB)

    Nenkov, Constantine; Peltier, Richard, E-mail: nenkov@atmosp.physics.utoronto.ca, E-mail: peltier@atmosp.physics.utoronto.ca [Department of Physics, University of Toronto Toronto, Ontario, M5S 1A7 (Canada)

    2010-11-01

    We present a novel numerical model used to simulate convection in the atmospheres of the Gas Giant planets Jupiter and Saturn. Nonlinear, three-dimensional, time-dependant solutions of the anelastic hydrodynamic equations are presented for a stratified, rotating spherical fluid shell heated from below. This new model is specified in terms of a grid-point based methodology which employs a hierarchy of tessellations of the regular icosahedron onto the sphere through the process of recurrent dyadic refinements of the spherical surface. We describe discretizations of the governing equations in which all calculations are performed in Cartesian coordinates in the local neighborhoods of the almost uniform icosahedral grid, a methodology which avoids the potential mathematical and numerical difficulties associated with the pole problem in spherical geometry. Using this methodology we have built our model in primitive equations formulation, whereas the three-dimensional vector velocity field and temperature are directly advanced in time. We show results of thermal convection in rapidly rotating spherical shell which leads to the formation of well pronounced prograde zonal jets at the equator, results which previous experiments with two-dimensional models in the limit of freely evolving turbulence were not able to achieve.

  5. Integration of Building energy and energy supply simulations for low-energy district heating supply to energy-efficient buildings

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro

    2012-01-01

    of the human behaviour regarding the building and link the results to the simulation program for DH networks. The results show that human behaviour can lead to 50% higher heating demand and 60% higher peak loads than expected according to reference values in standardized calculation of energy demand....... The analysis also shows that the connection of low-energy buildings to DH networks is potentially a good solution in Denmark for reaching the climatic goals, but a high degree of connection must be reached, especially for detached houses, where most of the buildings in a typical community must be connected......The future will demand implementation of C02 neutral communities, the consequences being a far more complex design of the whole energy system, since the future energy infrastructures will be dynamic and climate responsive systems. Software able to work with such level of complexity is at present...

  6. Building Blocks for the Rapid Development of Parallel Simulations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Scientists need to be able to quickly develop and run parallel simulations without paying the high price of writing low-level message passing codes using compiled...

  7. Building

    OpenAIRE

    Seavy, Ryan

    2014-01-01

    Building for concrete is temporary. The building of wood and steel stands against the concrete to give form and then gives way, leaving a trace of its existence behind. Concrete is not a building material. One does not build with concrete. One builds for concrete. MARCH

  8. Computer Simulation of Buildings Cooled by Natural Ventilation.

    Science.gov (United States)

    1983-05-01

    performance of a building, the influence of natural infiltration on mechanical ventilation systems, and the study of smoke in the event of a fire...natural infiltration on mechanical ventilation systems, and the study of smoke in the event of a fire. Unclassified SECURITY CLASSIrIcATION OF TIIS PAGE...whether open or closed). Other influences include the operation of mechanical ventilation systems and the transient effects caused by opening and

  9. Bio-susceptibility of materials and thermal insulation systems used for historical buildings

    Science.gov (United States)

    Sterflinger, Katja; Ettenauer, Joerg; Pinar, Guadalupe

    2013-04-01

    In historical buildings of Northern countries high levels of energy are necessary to reach comfortable temperatures especially during the cold season. For this reason historical buildings are now also included in country specific regulations and ordinances to enhance the "energy - efficiency". Since an exterior insulation - as it is commonly used for modern architecture - is incompatible with monument protection, several indoor insulation systems based on historical and ecological materials, are on the market that should improve the thermic performance of a historical building. However, using organic materials as cellulose, loam, weed or wood, bears the risk of fungal growth and thus may lead to health problems in indoor environments. For this reason 5 different ecological indoor insulations systems were tested for their bio-susceptibility against various fungi both under natural conditions - after 2 years of installation in an historical building - and under laboratory conditions with high levels of relative humidity. Fungal growth was evaluated by classical isolation and cultivation as well as by molecular methods. The materials turned out to have a quite different susceptibility towards fungal contamination. Whereas insulations made of bloated Perlite (plaster and board) did not show any fungal growth after 2 years of exposition, the historical insulation made of loam and weed had high cell counts of various fungi. In laboratory experiments wooden softboard represented the best environment for fungal growth. As a result from this study, plaster and board made of bloated Perlite are presented as being the most appropriate materials for thermal insulation at least from the microbiological and hygienic point of view. For future investigations and for the monitoring of fungi in insulation and other building materials we suggest a molecular biology approach with a common protocol for quantitative DNA-extraction and amplification.

  10. The effect of diffuse ceiling panel on the energy performance of thermally activated building construction

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per Kvols; Pomianowski, Michal Zbigniew

    2016-01-01

    An integrated system combining diffuse ceiling ventilation with thermally activated building construction (TABS) was proposed recently. In this system, TABS is encapsulated by diffuse ceiling panel and cannot have directly heat exchange with the room. The aim of this study is to investigate the e...... an opposite effect on the heating and cooling capacity of TABS. In addition, a numerical model is built and validated by the measured data. The validated model is further applied to conduct a paramedical study on the materials of the diffuse ceiling panel.......An integrated system combining diffuse ceiling ventilation with thermally activated building construction (TABS) was proposed recently. In this system, TABS is encapsulated by diffuse ceiling panel and cannot have directly heat exchange with the room. The aim of this study is to investigate...... the effect of diffuse ceiling panel on the energy performance of TABS in both heat and cooling mode. Experiments are carried out in a full-scale test facility with the integrated system, and the cases without diffuse ceiling are also measured as references. The results indicate that the diffuse ceiling has...

  11. Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit

    Science.gov (United States)

    Godfroy, Thomas; Dickens, Ricky; Houts, Michael; Pearson, Boise; Webster, Kenny; Gibson, Marc; Qualls, Lou; Poston, Dave; Werner, Jim; Radel, Ross

    2011-01-01

    The Nuclear Systems Team at NASA Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and Mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program, which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter for tests at MSFC. When tested at NASA Glenn Research Center (GRC) the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumentation (temperature, pressure, flow) for data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.

  12. Analytical tools for thermal infrared engineerig: a thermal sensor simulation package

    Science.gov (United States)

    Jaggi, Sandeep

    1992-09-01

    The Advanced Sensor Development Laboratory (ASDL) at the Stennis Space Center develops, maintains and calibrates remote sensing instruments for the National Aeronautics & Space Administration. To perform system design trade-offs, analysis, and establish system parameters, ASDL has developed a software package for analytical simulation of sensor systems. This package called 'Analytical Tools for Thermal InfraRed Engineering'--ATTIRE, simulates the various components of a sensor system. The software allows each subsystem of the sensor to be analyzed independently for its performance. These performance parameters are then integrated to obtain system level information such as SNR, NER, NETD etc. This paper describes the uses of the package and the physics that were used to derive the performance parameters. In addition, ATTIRE can be used as a tutorial for understanding the distribution of thermal flux or solar irradiance over selected bandwidths of the spectrum. This spectrally distributed incident flux can then be analyzed as it propagates through the subsystems that constitute the entire sensor. ATTIRE provides a variety of functions ranging from plotting black-body curves for varying bandwidths and computing the integral flux, to performing transfer function analysis of the sensor system. The package runs from a menu- driven interface in a PC-DOS environment. Each sub-system of the sensor is represented by windows and icons. A user-friendly mouse-controlled point-and-click interface allows the user to simulate various aspects of a sensor. The package can simulate a theoretical sensor system. Trade-off studies can be easily done by changing the appropriate parameters and monitoring the effect of the system performance. The package can provide plots of system performance versus any system parameter. A parameter (such as the entrance aperture of the optics) could be varied and its effect on another parameter (e.g., NETD) can be plotted. A third parameter (e.g., the

  13. HAM-Tools – a whole building simulation tool in Annex 41

    DEFF Research Database (Denmark)

    2008-01-01

    HAM-Tools is a building simulation software. The main task of this tool is to simulate transfer processes related to building physics, i.e. heat, air and moisture transport in buildings and building components in operating conditions. The scope of the ECBCS Annex 41 “Whole Building Heat, Air...... and Moisture Response” was of a high relevance for the testing, development, validation and promotion of the HAM-Tools. The majority of the numerical studies made by this programme were provided for Subtask 1 “Modelling principles and common exercises”. This paper gives an overview of the modelling...... capabilities of HAM-Tools and some results provided for Subtask 1....

  14. Simulation of Power Produced by a Building Added PV System in Indonesia using virtual reality

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, Angelina H.M.E.

    2014-01-01

    In this study a PV system will be simulated using virtual reality software for PV system simulations -called VR4PV - to show the effectiveness of the modelling of PV systems on buildings which are placed in the tropics. The PV system used for this study has been installed in Papua, Indonesia and

  15. Correlation between subjective assessments of local thermal discomfort and thermal manikin measurements in a simulated aircraft cabin

    DEFF Research Database (Denmark)

    Zukowska, Daria; Strøm-Tejsen, Peter; Jama, Agnieszka

    2005-01-01

    The thermal environment in a 21-seat simulated section of an aircraft cabin installed in a climate chamber was investigated. Using two thermal manikins and fourteen heated cylin-ders to represent passengers, measurements were carried out at cabin temperatures of 20.6°C, 23.3°C and 26.1°C (69°F, 74...

  16. Building a Community Thermal Model for Southern California Using Heat Flow, Geologic, Seismologic and Petrologic Constraints I: Thermophysical Parameters

    Science.gov (United States)

    Chapman, D. S.; Thatcher, W. R.; Williams, C. F.

    2016-12-01

    We are building a community thermal model (CTM) for Southern California that will provide temperatures and their uncertainties throughout the lithosphere. The CTM is an essential ingredient for a community rheologic model to simulate lithospheric deformation and constrain earthquake cycle movements in southern California. Lithospheric geotherms parametric in surface heat flow include: (1) models of conductive heat transfer in the lithosphere, (2) lithology of the crust and lithospheric mantle, and (3) thermophysical properties (thermal conductivity, k, and radiogenic heat production, A) to be assigned in the lithologic model. Inexact knowledge of the lithology of the crust can lead to large temperature uncertainties. Lab measurements show that thermal conductivity can vary from 1 to 6 W m-1 K-1 in near-surface rocks depending primarily on quartz vs clay content, but varies only from 2 to 3 W m-1 K-1 for mafic rocks of the lower crust and ultramafic rocks of the upper mantle. Likewise, heat production is highly variable at the surface but decreases progressively by three orders of magnitude between likely upper crustal felsic rocks, the more mafic rocks of the lower crust, and ultramafic mantle rocks. In southern California the lithologic model is constrained by mapped surface geology and subsurface structure is guided by seismic investigations. Where direct sampling of the crust and upper mantle is not possible we apply empirical fits between seismic velocity and thermophysical parameters. As a test case we apply our thermophysical parameter assignment along the LARSE 1 seismic transect. Even along this relatively well studied transect the model uncertainties are large, forcing us to seek bounds on deeper lithospheric temperatures. As shown in our companion poster (Thatcher et al., this meeting) seismic estimates of lithosphere-asthenosphere boundary depth and temperature inferred from petrologic bounds on asthenospheric melting provide useful additional

  17. SIMULATION OF TSUNAMI FORCE ON ROWS OF BUILDINGS IN ACEH REGION AFTER TSUNAMI DISASTER IN 2004

    Directory of Open Access Journals (Sweden)

    Radianta Triatmadja

    2014-10-01

    Full Text Available After the Indian Ocean Tsunami 2004 in Aceh, houses and other buildings were reconstructed by government and Non-Governmental Organizations (NGO. The new buildings near the coastline are open directly to similar tsunami attack. The layout of such new residential are normally arranged and aligned as rows of buildings. The front rows of the buildings suffer more tsunami force due to their location that are closer to the beach and the effect of the reflection from the adjacent buildings. This research aims to analyze the tsunami force on buildings of different types, and the effect of other buildings nearby. The research was conducted using a physical model at the Hydraulic and Hydrology Laboratory, Research Centre for Engineering Science, Universitas Gadjah Mada Indonesia. The physical model simulations were carried out in a flume of 24 m long, 1.45 m wide, and 1.5 m high, that was facilitated with tsunami generator based on dam break system. The models of the buildings were made of plywood and were placed in a row perpendicular to the flume. The distance between the buildings was varied to observe the effect of the gaps. The results show that the force on the building depends on the gap between the buildings. Although the effect of the gap was more significant on low buildings, the effect of force on high buildings was more sensitive to the change of the gap size. Simple equation for practical use is proposed to calculate the tsunami force on building with the effect of nearby buildings.

  18. Evaluation of Moisture Buffer Effects by Performing Whole-Building Simulations

    DEFF Research Database (Denmark)

    Rode, Carsten; Mendes, Nathan; K., Grau

    2004-01-01

    The humidity of rooms and the moisture conditions of materials in the enclosure of buildings depend much on each other because of the moisture exchange that takes place over the interior surfaces. These moisture influences also depend strongly on the thermal conditions of indoor spaces and enclos...

  19. The new research centre of the Brazilian Petroleum Company in Rio de Janeiro, Brazil: The achievements in the thermal performance of air-conditioned buildings in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Rafael; Marcondes, Monica Pereira; De Benedetto, Gisele S.; Goncalves, Joana Carla Soares; Duarte, Denise Helena Silva; Ramos, Jose Ovidio [Laboratorio de Conforto Ambiental e Eficiencia Energetica (LABAUT), Departamento de Tecnologia da Arquitetura (AUT), Faculdade de Arquitetura e Urbanismo, Universidade de Sao Paulo (FAUUSP), Sao Paulo, Brasil, Rua do Lago, 876, Cidade Universitaria, 05508-900 Sao Paulo, SP (Brazil)

    2008-07-01

    The study on the thermal performance of the air-conditioned buildings of the new research centre of the Brazilian Petroleum Company, in the tropical climate of Rio de Janeiro, was part of a bigger research and consultancy project involving environmental issues. The architectural design was the subject of a national competition in 2004, encompassing over 100,000 m{sup 2}. According to the design brief, out of the 10 buildings of the new research centre, 7 have to be either completely or partially air-conditioned, due to specific occupation requirements. The challenge for better thermal performance was related to systems' energy efficiency, to the introduction of natural ventilation and to the notion of adaptive comfort, which were verified with the support of thermal dynamic simulations. At the early stages of the assessments, the potential for natural ventilation in the working spaces considering the mixed-mode strategy achieved 30% of occupation hours. However, the development of the design project led to fully air-conditioned working spaces, due to users' references regarding the conventional culture of the office environment. Nevertheless, the overall architectural approach in accordance to the climatic conditions still showed a contribution to the buildings' energy efficiency. (author)

  20. Improving indoor air quality and thermal comfort in office building by using combination filters

    Science.gov (United States)

    Kabrein, H.; Yusof, M. Z. M.; Hariri, A.; Leman, A. M.; Afandi, A.

    2017-09-01

    Poor indoor air quality and thermal comfort condition in the workspace affected the occupants’ health and work productivity, especially when adapting the recirculation of air in heating ventilation and air-conditioning (HVAC) system. The recirculation of air was implemented in this study by mixing the circulated returned indoor air with the outdoor fresh air. The aims of this study are to assess the indoor thermal comfort and indoor air quality (IAQ) in the office buildings, equipped with combination filters. The air filtration technique consisting minimum efficiency reporting value (MERV) filter and activated carbon fiber (ACF) filter, located before the fan coil units. The findings of the study show that the technique of mixing recirculation air with the fresh air through the combination filters met the recommended thermal comfort condition in the workspace. Furthermore, the result of the post-occupancy evaluation (POE) and the environmental measurements comply with the ASHRAE 55 standard. In addition, the level of CO2 concentration continued to decrease during the period of the measurement.

  1. Steady-State Thermal Properties of Rectangular Straw-Bales (RSB for Building

    Directory of Open Access Journals (Sweden)

    Leonardo Conti

    2016-10-01

    Full Text Available Straw is an inevitable product of cereal production and is available in huge quantities in the world. In order to use straw-bales as a building material, the characteristic values of the thermal performances should be determined. To not lose the benefits of the cheapness and sustainability of the material, the characteristics must be determined with simple and inexpensive means and procedures. This research aims to implement tools and methods focused at the determination of the thermal properties of straw-bales. For this study, the guidelines dictated by ASTM and ISO were followed. A measurement system consisting of a Metering Chamber (MC was realized. The MC was placed inside a Climate Chamber (CC. During the test, a known quantity of energy is introduced inside MC. When the steady-state is reached, all the energy put into MC passes through its walls in CC, where it is absorbed by the air-conditioner. A series of thermopiles detect the temperature of the surfaces of the measurement system and of the specimen. Determining the amount of energy transmitted by the various parts of MC and by the specimen, it is possible to apply Fourier’s law to calculate the thermal conductivity of the specimen.

  2. Computational Fluid Dynamic Modelling of Thermal Periodic Stabilized Regime in Passive Buildings

    Directory of Open Access Journals (Sweden)

    Fabio Nardecchia

    2016-11-01

    Full Text Available The periodic stabilized regime is the condition where the temperature of each point of a certain environment varies following a periodic law. This phenomenon occurs in many practical applications, such as passive or ancient buildings not equipped with Heating, Ventilating and Air Conditioning HVAC systems and located in latitudes where the temperature greatly varies with Earth’s daily cycles. Despite that, the study of transient phenomena is often simplified, i.e., considering negligible the thermal response of the indoor microclimate. An exact solution to enclosures whose microclimate is free to evolve under a periodic stabilized regime does not exist nowadays, also from an analytical point of view. The aim of this study is to parametrically analyze the thermal variations inside a room when a transient periodic temperature is applied on one side. The phenomenon has been numerically studied through Computational Fluid Dynamics (CFD and analytically validated using a function that reproduces the daily variation of the outdoor temperature. The results of this research would lay the groundwork to develop analytical correlations to solve and predict the thermal behavior of environments subject to a periodic stabilized regime.

  3. Thermal and lighting perception in four fully glazed office buildings in Santiago, Chile

    Directory of Open Access Journals (Sweden)

    Claudio Vásquez Záldivar

    2013-12-01

    Full Text Available This paper is part of a general research project whose main objective is to establish a baseline for post-occupancy energy consumption and indoor environmental quality for office buildings in Santiago, Chile. This study aims at understanding how architectonical variables relate to, and can even determine, user comfort perception.  Thus, one-year continuous monitoring in several floors at four office buildings was performed and seasonal surveys were completed.  Survey participants were asked a series of questions regarding spatial orientation and comfort perception in their workspace.The data from the comfort survey and onsite measurements such as season of the year, case study, type of workspace and possibility of an outdoor view from the workstation were contrasted with the components obtained by a Principal Component Analysis (PCA. Three components were selected from the PCA, and three Maps of Perception (MP were produced. These maps were then analyzed and interpreted so as to obtain information on the general perception of thermal and lighting comfort at workspaces within several office buildings in Santiago.

  4. Thermal and lighting perception in four fully glazed office buildings in Santiago, Chile

    Directory of Open Access Journals (Sweden)

    Claudio Vásquez

    2013-12-01

    Full Text Available Corresponding author: Claudio Vásquez, School of Architecture, Catholic University of Chile. 1916 El Comendador str. Providencia, Santiago, ZIP: 7530091, Chile. Tel.: +56 9 92826305; E-mail: clvasque@uc.cl This paper is part of a general research project whose main objective is to establish a baseline for post-occupancy energy consumption and indoor environmental quality for office buildings in Santiago, Chile. This study aims at understanding how architectonical variables relate to, and can even determine, user comfort perception. Thus, one-year continuous monitoring in several floors at four office buildings was performed and seasonal surveys were completed. Survey participants were asked a series of questions regarding spatial orientation and comfort perception in their workspace. The data from the comfort survey and onsite measurements such as season of the year, case study, type of workspace and possibility of an outdoor view from the workstation were contrasted with the components obtained by a Principal Component Analysis (PCA. Three components were selected from the PCA, and three Maps of Perception (MP were produced. These maps were then analyzed and interpreted so as to obtain information on the general perception of thermal and lighting comfort at workspaces within several office buildings in Santiago.

  5. Redesigning Terraced Social Housing in the UK for Flexibility Using Building Energy Simulation with Consideration of Passive Design

    Directory of Open Access Journals (Sweden)

    Hasim Altan

    2015-05-01

    Full Text Available A chosen case study house forms the basis of this paper, which is a pilot energy-efficient social housing project, completed by one of the largest housing developers in the UK. The main aim of this study is to inform the redesign of flexible energy-efficient housing units. The housing, designed for social tenants, was built by the Accent Group in 2005, using modern construction methods and sustainable materials, based on extensive research from the adaptable and “Grow Home” principles of Avi Friedman as well as open building implementation. The first pilot scheme was designed in collaboration with the Building Energy Analysis Unit at the University of Sheffield, together with the Goddard Wybor Practise, and was a successful housing development with respect to being environmentally friendly and a low-energy design scheme for the UK climate. This paper presents redesigning of flexible terraced housing units, and their performance evaluation, using a building simulation method as well as the passive-house planning package. The aim was to plan a row of terraced houses that can not only utilize a flexible design concept in floor planning layout, but also to reduce energy consumption with a passive design with particular attention paid to material selection. In addition, building simulation work has been carried out with the use of DesignBuilder software for both thermal and energy performance evaluation. The study examines the annual energy performance and comfort conditions in the designed house to be situated in the Northeast of England, UK. A terraced house unit design is considered a flexible home that can adjust to the needs of different tenants for the purpose of achieving a sustainable building under different aspects, such as low energy, low carbon, use of renewables, and low impact materials, with flexibility by design.

  6. Biology Students Building Computer Simulations Using StarLogo TNG

    Science.gov (United States)

    Smith, V. Anne; Duncan, Ishbel

    2011-01-01

    Confidence is an important issue for biology students in handling computational concepts. This paper describes a practical in which honours-level bioscience students simulate complex animal behaviour using StarLogo TNG, a freely-available graphical programming environment. The practical consists of two sessions, the first of which guides students…

  7. Building insightful simulation models using Petri Nets - A structured approach

    NARCIS (Netherlands)

    van der Zee, D.J.

    Petri Nets have essential strengths in capturing a system's static structure and dynamics, its mathematical underpinning, and providing a graphical representation. However, visual simulation models of realistic systems based on Petri Nets are often perceived as too large and too complex to be easily

  8. The Building Fabric Thermal Performance of Passivhaus Dwellings—Does It Do What It Says on the Tin?

    Directory of Open Access Journals (Sweden)

    David Johnston

    2016-01-01

    Full Text Available The Passivhaus (or Passive House Standard is one of the world’s most widely known voluntary energy performance standards. For a dwelling to achieve the Standard and be granted Certification, the building fabric requires careful design and detailing, high levels of thermal insulation, building airtightness, close site supervision and careful workmanship. However, achieving Passivhaus Certification is not a guarantee that the thermal performance of the building fabric as designed will actually be achieved in situ. This paper presents the results obtained from measuring the in situ whole building heat loss coefficient (HLC of a small number of Certified Passivhaus case study dwellings. They are located on different sites and constructed using different technologies in the UK. Despite the small and non-random nature of the dwelling sample, the results obtained from the in situ measurements revealed that the thermal performance of the building fabric, for all of the dwellings, performed very close to the design predictions. This suggests that in terms of the thermal performance of the building fabric, Passivhaus does exactly what it says on the tin.

  9. Feedback effect of human physical and psychological adaption on time period of thermal adaption in naturally ventilated building

    DEFF Research Database (Denmark)

    liu, weiwei; Huangfu, Hao; Xiong, Jing

    2014-01-01

    This study proposed a method to determine time period of thermal adaption for occupants in naturally ventilated building, and analyzed the synergistic and separate feedback effect of the physical and psychological adaption modes on the time period of thermal adaption. Using the method, the values...... indicated that the psychological adaption mode can speed up the process of thermal adaption to the variation in the outdoor climate condition. This study presented a new insight into the feedback from the thermal adaption modes to occupant thermal comfort.......This study proposed a method to determine time period of thermal adaption for occupants in naturally ventilated building, and analyzed the synergistic and separate feedback effect of the physical and psychological adaption modes on the time period of thermal adaption. Using the method, the values......, under the synergistic feedback effect of the physical and psychological adaption modes. The time period of thermal adaption increased to 13 days, if only the feedback effect of the physical adaption mode was accounted for. The difference between the two values of the time period of thermal adaption...

  10. Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions

    Directory of Open Access Journals (Sweden)

    Yunsong Han

    2017-12-01

    Full Text Available In the current context of increasing energy demand, timber-glass buildings will become a necessary trend in sustainable architecture in the future. Especially in severe cold zones of China, energy consumption and the visual comfort of residential buildings have attracted wide attention, and there are always trade-offs between multiple objectives. This paper aims to propose a simulation-based multiobjective optimization method to improve the daylighting, energy efficiency, and economic performance of timber-glass buildings in severe cold regions. Timber-glass building form variables have been selected as the decision variables, including building width, roof height, south and north window-to-wall ratio (WWR, window height, and orientation. A simulation-based multiobjective optimization model has been developed to optimize these performance objectives simultaneously. The results show that Daylighting Autonomy (DA presents negative correlations with Energy Use Intensity (EUI and total cost. Additionally, with an increase in DA, Useful Daylighting Illuminance (UDI demonstrates a tendency of primary increase and then decrease. Using this optimization model, four building performances have been improved from the initial generation to the final generation, which proves that simulation-based multiobjective optimization is a promising approach to improve the daylighting, energy efficiency, and economic performances of timber-glass buildings in severe cold regions.

  11. A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes

    Science.gov (United States)

    Li, Shuang; Yu, Xiaohui; Zhang, Yanjuan; Zhai, Changhai

    2018-01-01

    Casualty prediction in a building during earthquakes benefits to implement the economic loss estimation in the performance-based earthquake engineering methodology. Although after-earthquake observations reveal that the evacuation has effects on the quantity of occupant casualties during earthquakes, few current studies consider occupant movements in the building in casualty prediction procedures. To bridge this knowledge gap, a numerical simulation method using refined cellular automata model is presented, which can describe various occupant dynamic behaviors and building dimensions. The simulation on the occupant evacuation is verified by a recorded evacuation process from a school classroom in real-life 2013 Ya'an earthquake in China. The occupant casualties in the building under earthquakes are evaluated by coupling the building collapse process simulation by finite element method, the occupant evacuation simulation, and the casualty occurrence criteria with time and space synchronization. A case study of casualty prediction in a building during an earthquake is provided to demonstrate the effect of occupant movements on casualty prediction.

  12. Dongsha Atoll: A potential thermal refuge for reef-building corals in the South China Sea.

    Science.gov (United States)

    Tkachenko, Konstantin S; Soong, Keryea

    2017-06-01

    Dongsha Atoll (also known as the Pratas Islands), the northernmost atoll in the South China Sea, experiences two contrasting physical phenomena: repetitive anomalies of the sea surface temperature exceeding the coral bleaching threshold and regular effects of the world's strongest internal waves resulting in the rhythmic upwelling of cold deep waters at the outer reef slopes of the atoll. This unique combination may result in significant differences in coral species composition and structure between the lagoon and forereef. Surveys conducted in August-September 2016 at 12 study sites in the 2-15 m depth range at Dongsha Atoll revealed a clear spatial separation between 'thermally-susceptible' stony coral genera, including Acropora, Pocillopora and Montipora, which mainly inhabited the forereef, and 'thermally-resistant' genera, including massive Porites, foliaceous Echinopora, Pavona and Turbinaria, which mainly resided in the lagoon. The mean coral cover and species richness on the forereef were respectively 1.8 and 1.4 times higher than those in the lagoon (61.3% and 98 species on the forereef vs. 34.2% and 69 species in the lagoon). Coral mortality rates, expressed as the ratio of dead to live stony corals, showed the same pattern (0.4 in the lagoon vs. 0.009 on the forereef). Furthermore, in a laboratory experiment, 'thermally-susceptible' taxa from the lagoon, (e.g. Pocillopora verrucosa and P. damicornis), exhibited higher resistance to bleaching than did their counterparts from the forereef. The present findings indicate that Dongsha Atoll is a potential thermal refuge for reef-building corals in the northern South China Sea and reveal the development of resilience and resistance to bleaching in coral communities of the lagoon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A Fast Electro-Thermal Co-Simulation Modeling Approach for SiC Power MOSFETs

    DEFF Research Database (Denmark)

    Ceccarelli, Lorenzo; Bahman, Amir Sajjad; Iannuzzo, Francesco

    2017-01-01

    the FEM simulation of the DUT’s structure, performed in ANSYS Icepack. A MATLAB script is used to process the simulation data and feed the needed settings and parameters back into the simulation. The parameters for a CREE 1.2 kV/30 A SiC MOSFET have been identified and the electro-thermal model has been...

  14. Simulation of thermo-Elastics Properties of Thermal Barrier Coatings ...

    African Journals Online (AJOL)

    Thermal barrier coatings are used to protect different parts in compressors and turbines from heat. They are generally composed of two layers, one metallic layer providing resistance to heat corrosion and oxidation, and one thermally insulating ceramic layer. Two different techniques are industrially used. Plasma spray ...

  15. Thermal Conductivity of UO2 Fuel: Predicting Fuel Performance from Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Phillpot, Simon R.; El-Azab, Anter; Chernatynskiy, Aleksandr; Tulenko, James S.

    2011-08-19

    Recent progress in understanding the thermal-transport properties of UO₂ for fission reactors is reviewed from the perspective of computer simulations. A path to incorporating more accurate materials models into fuel performance codes is outlined. In particular, it is argued that a judiciously integrated program of atomic-level simulations and mesoscale simulations offers the possibility of both better predicting the thermal-transport properties of UO₂ in light-water reactors and enabling the assessment of the thermal performances of novel fuel systems for which extensive experimental databases are not available.

  16. Thermal responses and its relation with the building outdoor conditions; Respuestas termicas y su relacion con la envolvente del edificio

    Energy Technology Data Exchange (ETDEWEB)

    Marincic, Irene [Universidad de Sonora, Hermosillo, Sonora (Mexico); Isalgue, Antoni [Universidad Politecnica de Cataluna, Barcelona (Spain)

    2000-07-01

    In order to understand and to control the indoor thermal behavior in buildings, it is necessary to know the origin of the energies coming into and outside the building, identifying the geometric factors and physical properties, that can modify the thermal balance of the system. In this work, we analyze the thermal behavior of a building experimentally, related with its exterior conditions. Specifically, we analyze the thermal response indoors at different distances from the building envelope, which implies different thermal insulation situations. Supported on temperature measurements in a residential building, which is representative of local construction styles (adjacent other buildings), we analyze the thermal response effects depending on the distances between the considered points and the envelope and on the insulation between both. Applying a methodology based on experimental transfer functions of buildings, the thermal behavior in the temporary and frequency domains is evaluated. With this methodology, it is possible to visualize certain phenomena and to obtain thermal parameters that characterize the dynamic aspects of the thermal response. The main scope is to extract information from the building analysis, in order to extrapolate the behavior conclusions to a proper thermal design of similar constructions. From the thermal responses analysis at different spatial localization, we conclude that the distance from the building envelope (and also its properties) has a great influence on thermal inertia effects, which can modify importantly the thermal response. This phenomena has a parallelism with the skin effect of the magnetic fields penetration in conductors. The spatial localization implies a certain thermal mass involved in each case, which controls the penetration of exterior thermal oscillation. [Spanish] Para poder entender y controlar los comportamientos termicos en el interior de los edificios, es necesario conocer el origen de las energias que

  17. Simulating vulnerability functions and seismic damage probability matrix for reinforced concrete frame buildings

    Directory of Open Access Journals (Sweden)

    Esperanza Maldonado Rondón

    2008-09-01

    Full Text Available This paper outlines vulnerability functions and seismic damage probability matrixes being constructed for reinforced concrete frame buildings. These functions and matrixes were based on simulation techniques and experts’ opinion. The proposed functions and matrixes relate a building’s vulnerability to the level of damage which might be incurred, depending on an earthquake’s motion. Vulnerability was defined by estimating an index proposed by expert opinion. Damage was defined by means of a da-mage index depending on nonlinear static analysis. Simulation techniques were used for constructing hypothetical buildings and thereby to building the functions and matrixes. Such buildings represented the typical characteristics of Colombian cities’ reinforced concrete frame system (Bucaramanga for example. A set of tools was made for constructing and applying these functions and matrixes, allowing us to determine the level of seismic damage by using the buildings’ characteristics for specific seismic action.

  18. Building a virtual reality temporal bone dissection simulator.

    Science.gov (United States)

    Kuppersmith, R B; Johnston, R; Moreau, D; Loftin, R B; Jenkins, H

    1997-01-01

    The temporal bone is one of seven bones that comprise the human skull, and has an intimate relationship with many vital structures. Anatomically, its three-dimensional relationships make it one of the most challenging areas for surgeons to understand and master. In addition, the temporal bone contains minute structures that are among the most sophisticated and delicate in the human body. These structures include the cochlea and vestibular organs, which are responsible for hearing and balance; the middle ear, including the ossicles, which conduct acoustic energy to the cochlea; and the facial nerve, which is responsible for controlling the muscles of facial expression, and contributes to the sensation of taste. Additionally, the temporal bone forms a major portion of the skull base, and has intimate relationships to vital structures including the carotid artery, jugular vein, cerebral cortex, brainstem, and cranial nerves. Surgical procedures performed on the temporal bone include: procedures to eradicate chronic and acute infections; procedures to remove malignant and benign tumors within the temporal bone, from the skull base, or from the posterior cranial fossa; procedures to restore the hearing mechanism; procedures to eliminate balance disorders; and procedures to correct congenital anomalies. For surgeons-in-training, and even surgeons-in-practice, mastery of the anatomy of the temporal bone and the many complex approaches necessary to treat patients takes years of focused endeavor. This is typically accomplished through the dissection of human cadaver temporal bones, which are scarce, and require a dedicated laboratory facility. Efforts are currently underway to develop a realistic simulator for temporal bone procedures. Users immersed in the simulator will interact with a three-dimensional temporal bone, derived from patient-specific data, using a haptic interface to simulate traditional surgical procedures. Feedback from experts in otologic surgery will be

  19. Influence of orientation, glazing proportion and zone aspect ratio on the thermal performance of buildings during the winter period.

    Science.gov (United States)

    Zenginis, Dimitrios G; Kontoleon, Karolos J

    2017-07-25

    The objective of this study is to assess the effect of orientation, glazing proportion and aspect ratio of building zones on heat fluxes through their surfaces, under specific environmental conditions. The investigation is carried out for thermally-insulated building zones with a varying facade orientation corresponding to each cardinal point, during the winter period in the northern Greek region. For this purpose, three glazing-to-facade ratios (GR) are taken into account; along with the glazing ratio the influence of the glazing U value is also considered. Regarding the impact of the fenestration layout geometry, five different building aspect ratio profiles are examined. Thermal fluxes are assessed for two different indoor temperature settings, while the operation of the heating unit is assumed to be continuous. The transient thermal analysis with its mathematical formulation and solution are based on the thermal-network modelling approach, while the solar heat gain through glazing relies on the sunlit-pattern approach; in this way, the stricken by the solar rays glazing area is projected onto any interior surfaces to form the so called "sunlit" areas. As the orientation, glazing proportion and aspect ratio of the building zone vary, so do the sizes and shapes of the illuminated "sunlit" areas. Accordingly, the delivered into the zone direct solar energy and its diffused and ground reflected components can be determined. The adopted methodology provides a more accurate determination of solar heat gain with respect to glazing proportion and orientation as well as zone aspect ratio. With regard to surface orientation, glazing proportion and aspect ratio, computer results demonstrate the improvement of the thermal performance for a building zone with a south oriented glazing surface, as well as the deterioration for the other surface orientations; relative increases/decreases in the energy fluxes of a rectangular shaped building zone compared to a square

  20. Investigation of energy efficiency of innovate thermal insulating materials and their influence on the building heat regime

    Directory of Open Access Journals (Sweden)

    Morozov Maxim N.

    2015-01-01

    Full Text Available A complex model of heat supply system of building was developed by using Matlab. The model allows conducting for a wide range of research related to improving the energy efficiency of buildings. In this work the investigations of energy efficiency of several advanced insulation materials, which is characterized by different thermal characteristics, were carried out. Conclusions about the impact of the thermal protective envelope on the room thermal regime were made. Prognostic heat consumptions values of rooms with different characteristics of thermal insulation materials and main base-load envelopes were determined. Researches were conducted for the winter climatic conditions of Western Siberia: the average daily outdoor temperature is -22 °C, the amplitude of temperature oscillation is 8 °C.

  1. Thermal energy storage - A review of concepts and systems for heating and cooling applications in buildings

    DEFF Research Database (Denmark)

    Pavlov, Georgi Krasimiroy; Olesen, Bjarne W.

    2012-01-01

    period required, economic viability, and operating conditions. One of the main issues impeding the utilization of the full potential of natural and renewable energy sources, e.g., solar and geothermal, for space heating and space cooling applications is the development of economically competitive......The use of thermal energy storage (TES) in buildings in combination with space heating and/or space cooling has recently received much attention. A variety of TES techniques have developed over the past decades. TES systems can provide short-term storage for peak-load shaving as well as long......-term (seasonal) storage for the introduction of natural and renewable energy sources. TES systems for heating or cooling are utilized in applications where there is a time mismatch between the demand and the most economically favorable supply of energy. The selection of a TES system mainly depends on the storage...

  2. Influence of measurement uncertainty on classification of thermal environment in buildings according to European Standard EN 15251

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Olesen, Bjarne W.

    2015-01-01

    European Standard EN 15 251 in its current version does not provide any guidance on how to handle uncertainty of long term measurements of indoor environmental parameters used for classification of buildings. The objective of the study was to analyse the uncertainty for field measurements...... of operative temperature and evaluate its effect on categorization of thermal environment according to EN 15251. A data-set of field measurements of operative temperature four office buildings situated in Denmark, Italy and Spain was used. Data for each building included approx. one year of continuous...... measurements of operative temperature at two measuring points (south/south-west and north/northeast orientation). Results of the present study suggest that measurement uncertainty needs to be considered during assessment of thermal environment in existing buildings. When expanded standard uncertainty was taken...

  3. Towards a continuum of computational building simulation tools to support the design and evaluation of complex built environments

    CSIR Research Space (South Africa)

    Conradie, Dirk CU

    2007-05-01

    Full Text Available This paper describes the development of a Computational Building Simulation (CBS) tool, termed KRONOS that is being used to work on advanced architectural research questions such as user behaviour in buildings. The intention is to provide better...

  4. A Thermal Runaway Simulation on a Lithium Titanate Battery and the Battery Module

    Directory of Open Access Journals (Sweden)

    Man Chen

    2015-01-01

    Full Text Available Based on the electrochemical and thermal model, a coupled electro-thermal runaway model was developed and implemented using finite element methods. The thermal decomposition reactions when the battery temperature exceeds the material decomposition temperature were embedded into the model. The temperature variations of a lithium titanate battery during a series of charge-discharge cycles under different current rates were simulated. The results of temperature and heat generation rate demonstrate that the greater the current, the faster the battery temperature is rising. Furthermore, the thermal influence of the overheated cell on surrounding batteries in the module was simulated, and the variation of temperature and heat generation during thermal runaway was obtained. It was found that the overheated cell can induce thermal runaway in other adjacent cells within 3 mm distance in the battery module if the accumulated heat is not dissipated rapidly.

  5. A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations

    DEFF Research Database (Denmark)

    Wu, Rui; Wang, Huai; Ma, Ke

    2014-01-01

    Thermal impedance of IGBT modules may vary with operating conditions due to that the thermal conductivity and heat capacity of materials are temperature dependent. This paper proposes a Cauer thermal model for a 1700 V/1000 A IGBT module with temperature-dependent thermal resistances and thermal...... relevant reliability aspect performance. A test bench is built up with an ultra-fast infrared (IR) camera to validate the proposed thermal impedance model....... capacitances. The temperature effect is investigated by Finite Element Method (FEM) simulation based on the geometry and material information of the IGBT module. The developed model is ready for circuit-level simulation to achieve an improved accuracy of the estimation on IGBT junction temperature and its...

  6. A prototype data archive for the PIER 'thermal distribution systems in commercial buildings' project

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Rick C.; Wray, Craig P.; Smith, Brian V.; Dickerhoff, Darryl J.; Matson, Nance E.; Cox, Skylar A.

    2004-01-01

    A prototype archive for a selection of building energy data on thermal distribution systems in commercial buildings was developed and pilot tested. While the pilot demonstrated the successful development of the data archive prototype, several questions remain about the usefulness of such an archive. Specifically, questions on the audience, frequency of use, maintenance, and updating of the archive would need to be addressed before this prototype is taken to the next level.

  7. A method of determining the thermal power demand of buildings connected to the district heating system with usage of heat accumulation

    Science.gov (United States)

    Turski, Michał; Sekret, Robert

    2017-11-01

    The paper presents a new method of determining the thermal power demand of buildings connected to the district heating system, which included the actual heat demand and the possibility of balancing the thermal power using the thermal storage capacity of district heating network and internal heat capacity of buildings. Moreover, the analysis of the effect of incidence of external air temperature and duration of episodes with the lowest outdoor temperatures on the thermal power demand of district heating system was conducted.

  8. Coupled Aeroheating and Ablative Thermal Response Simulation Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A predictive tool with tight coupling of the fluid and thermal physics will give insights into the conservatism of the uncoupled design process and could lead to...

  9. CFD simulation of effects of dimension changes of buildings on pollution dispersion in the built environment

    Directory of Open Access Journals (Sweden)

    Ehsan Bijad

    2016-12-01

    Full Text Available As pollutions impose adverse effects on human health and environment, assessment of their dispersion within the urban regions can much help to control them. In urban regions, dynamics of pollutants will be affected by buildings and barriers, and to investigate the dispersion of the pollutants, these barriers must be considered. In this article, CFD simulation is done by applying the 3D approach, the k − ε Realizable turbulence model and two Schmidt numbers (0.3 and 0.7. It has seen that height, length and width of the building in front of the wind, and, the distance between the two buildings back to the main building (the building on which the stack is present, have much influence on the concentration of pollutions. Although there are some differences between the results with different Schmidt numbers, the trend of changes of the concentration in different locations is identical for the two Schmidt numbers.

  10. Transient Simulation of Line-Focus Solar Thermal Power Plants

    OpenAIRE

    do amaral Burghi, Ana Carolina

    2016-01-01

    Concentrated Solar Power (CSP) is a utility scale technology that pro duces electricity using the thermal energy of the sun. Due to the varying intensity of the solar irradiation, there is a constant change in the op eration point for solar thermal power plants. In order to optimize the process, a complex relation between irradiation intensity, fluid mass fl ow and collector focus must be considered and appropriate control strategies should take into account the transient...

  11. PCB-level Electro thermal Coupling Simulation Analysis

    Science.gov (United States)

    Zhou, Runjing; Shao, Xuchen

    2017-10-01

    Power transmission network needs to transmit more current with the increase of the power density. The problem of temperature rise and the reliability is becoming more and more serious. In order to accurately design the power supply system, we must consider the influence of the power supply system including Joule heat, air convection and other factors. Therefore, this paper analyzes the relationship between the electric circuit and the thermal circuit on the basis of the theory of electric circuit and thermal circuit.

  12. Impact of vacancies on the thermal conductivity of graphene nanoribbons: A molecular dynamics simulation study

    National Research Council Canada - National Science Library

    Noshin, Maliha; Khan, Asir Intisar; Navid, Ishtiaque Ahmed; Uddin, H. M. Ahsan; Subrina, Samia

    2017-01-01

    Equilibrium molecular dynamics simulation using 2nd generation Reactive Bond Order interatomic potential has been performed to model the thermal transport of nanometer sized zigzag defected graphene nanoribbons (GNRs...

  13. Simulating a thermal water quality trading market for education and model development.

    Science.gov (United States)

    Bier, Asmeret

    2010-12-01

    Thermal water quality trading is an emerging policy tool that allows thermal polluters to comply with effluent restrictions by paying landowners to plant shade trees. A simulation game was created to help participants understand the structure, dynamics, benefits, and drawbacks of thermal water quality trading markets. Simulation participants negotiate to make trades, and their decisions are entered into a system dynamics model that simulates tree growth and water temperature. A debriefing session allows the participants to discuss outcomes and strategies. The exercise has been performed twice and has proven to be a useful teaching tool. These simulations provided valuable insight into decision-making strategies in thermal water quality trading markets, suggesting decision rules that the researchers used for subsequent model development. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Simulation of Solar Energy Use in Livelihood of Buildings

    Science.gov (United States)

    Lvocich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.

    2017-11-01

    Solar energy can be considered as the most technological and economical type of renewable energy. The purpose of the paper is to increase the efficiency of solar energy utilization on the basis of the mathematical simulation of the solar collector. A mathematical model of the radiant heat transfer vacuum solar collector is clarified. The model was based on the process of radiative heat transfer between glass and copper walls with the defined blackness degrees. A mathematical model of the ether phase transition point is developed. The dependence of the reservoir walls temperature change on the ambient temperature over time is obtained. The results of the paper can be useful for the development of prospective sources using solar energy.

  15. Identification of thermal properties distribution in building wall using infrared thermography

    Science.gov (United States)

    Brouns, Jordan; Dumoulin, Jean

    2016-04-01

    [1] L. Ibos, J-P. Monchau, V. Feuillet, Y. Candau, A comparative study of in-situ measurement methods of a building wall thermal resistance using infrared thermography, in Proc. SPIE 9534, Twelfth International Conference on Quality Control by Artificial Vision 2015, 95341I (April 30, 2015); doi:10.1117/12.2185126 [2] Nassiopoulos, A., Bourquin, F., On-site building walls characterization, Numerical Heat Transfer, Part A : Applications, 63(3) :179 :200, 2013 [3] J. Brouns, Développement d'outils numériques pour l'audit énergétique des bâtiments, PhD thesis, Université Paris-Est, SIE, 2014 [4] J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Book, Dunod editor, 1968.

  16. Basal accretion, a major mechanism for mountain building in Taiwan revealed in rock thermal history

    Science.gov (United States)

    Chen, Chih-Tung; Chan, Yu-Chang; Lo, Ching-Hua; Malavieille, Jacques; Lu, Chia-Yu; Tang, Jui-Ting; Lee, Yuan-Hsi

    2018-02-01

    Deep tectonic processes are key integral components in the evolution of mountain belts, while observations of their temporal development are generally obscured by thermal resetting, retrograde alteration and structural overprinting. Here we recorded an integrated rock time-temperature history for the first time in the pro-wedge part of the active Taiwan arc-continent collision starting from sedimentation through cleavage-forming state to its final exhumation. The integrated thermal and age results from the Raman Spectroscopy of Carbonaceous Material (RSCM) method, zircon U-Pb laser ablation dating, and in-situ40Ar/39Ar laser microprobe dating suggest that the basal accretion process was crucial to the development of the Taiwanese orogenic wedge. The basal accretion process commenced early in the mountain building history (∼6 Ma) and gradually migrated to greater depths, as constrained by persistent plate convergence and cleavage formation under nearly isothermal state at similar depths until ∼ 2.5 Ma recorded in the early-accreted units. Such development essentially contributed to mountain root growth by the increased depth of the wedge detachment and the downward wedge thickening during the incipient to full collision stages in the Taiwan mountain belt.

  17. The Modeling and Simulation of Thermal Analysis at Hydro Generator Stator Winding Insulation

    Directory of Open Access Journals (Sweden)

    Mihaela Raduca

    2006-10-01

    Full Text Available This paper presents the modelling and simulation of thermal analysis at hydro generator stator winding. The winding stator is supplied at high voltage of 11 kV for high power hydro generator. To present the thermal analysis for stator winding is presented at supply of coil by 11 kV, when coil is heat and thermal transfer in insulation at ambient temperature.

  18. Climatic zoning for the calculation of the thermal demand of buildings in Extremadura (Spain)

    Science.gov (United States)

    Moral, Francisco J.; Pulido, Elena; Ruíz, Antonio; López, Fernando

    2017-08-01

    The present work reports on a methodology to assess the climatic severity of a particular geographic region as compared to specific information available in the current regulations. The viability for each of the 387 municipalities in the Autonomous Community of Extremadura (Spain) is analysed, making a distinction between those with reliable climate reports and those for which no such information is available. In the case study, although the weather conditions in Extremadura are quite homogeneous according to the Spanish Technical Building Code (STBC 2015) classification and most areas are associated to zone C4 (soft winters and hot summers), the southern area in the region is associated to zone D1, similar to the north of Spain, where winters and summers are cool, which does not coincide with the actual climate in the south of Extremadura. The general climatic homogeneity in Extremadura was also highlighted with the new procedure, predominating zone C4, but unexpected or unreal climatic zoning was not generated, giving place to a consistent spatial distribution of zones throughout the region. Consequently, the proposed method allows a more accurate climatic zoning of any region in agreement with the Spanish legislation on energy efficiency in buildings, which would enhance the setting of thermal demand rates according to the actual climatic characterisation of the area in which a particular municipality is located.

  19. Water vapor flow and high thermal resistance insulation systems for metal buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, R.M.

    1983-01-01

    In response to increasing energy costs, high thermal resistance insulation systems are being marketed for pre-engineered metal buildings. Historically, blanket insulation has been installed between the skin and the structure of these buildings. The new insulation systems generally are installed inside the structure; thus the structure is colder and, unless an effective retarder is included, water vapor condensation problems can result. While the vapor permeance of various insulation facing materials is documented, the effect of such field conditions as seams and penetrations is less well known. Permeance tests were performed on samples of foil-kraft paper insulation facing with two seams and two penetration configurations. The tests show that seams can multiply the permeance of the vapor retarder by factors of 1.2 or more and penetrations can multiply the permeance by 3 or more. The theory of vapor flow analysis is reviewed and compared with the test results and presented graphically. Possible applications and suggestions for further investigation are discussed.

  20. Water vapor flow and high thermal resistance insulation systems for metal buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, R.M.

    1981-12-01

    In response to increasing energy costs, high thermal resistance insulation systems are being marketed for pre-engineered metal buildings. Historically, blanket insulation has been installed between the skin and the structure of these buildings. The new insulation systems generally are installed inside the structure; thus the structure is colder and, unless an effective retarder is included, water vapor condensation problems can result. While the vapor permeance of various insulation facing materials is documented, the effect of such field conditions as seams and penetrations is less well known. Permeance tests were performed on samples of foil-kraft paper insulation facing with two seams and two penetration configurations. The tests show that seams can multiply the permeance of the vapor retarder by factors of 1.2 or more and penetrations can multiply the permeance by 3 or more. The theory of vapor flow analysis is reviewed and compared with the test results and presented graphically. Possible applications and suggestions for further investigation are discussed.

  1. An Automated BIM Model to Conceptually Design, Analyze, Simulate, and Assess Sustainable Building Projects

    Directory of Open Access Journals (Sweden)

    Farzad Jalaei

    2014-01-01

    Full Text Available Quantifying the environmental impacts and simulating the energy consumption of building’s components at the conceptual design stage are very helpful for designers needing to make decisions related to the selection of the best design alternative that would lead to a more energy efficient building. Building Information Modeling (BIM offers designers the ability to assess different design alternatives at the conceptual stage of the project so that energy and life cycle assessment (LCA strategies and systems are attained. This paper proposes an automated model that links BIM, LCA, energy analysis, and lighting simulation tools with green building certification systems. The implementation is within developing plug-ins on BIM tool capable of measuring the environmental impacts (EI and embodied energy of building components. Using this method, designers will be provided with a new way to visualize and to identify the potential gain or loss of energy for the building as a whole and for each of its associated components. Furthermore, designers will be able to detect and evaluate the sustainability of the proposed buildings based on Leadership in Energy and Environmental Design (LEED rating system. An actual building project will be used to illustrate the workability of the proposed methodology.

  2. Simulation-based coefficients for adjusting climate impact on energy consumption of commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Makhmalbaf, Atefe; Srivastava, Viraj; Hathaway, John E.

    2016-11-23

    This paper presents a new technique for and the results of normalizing building energy consumption to enable a fair comparison among various types of buildings located near different weather stations across the U.S. The method was developed for the U.S. Building Energy Asset Score, a whole-building energy efficiency rating system focusing on building envelope, mechanical systems, and lighting systems. The Asset Score is calculated based on simulated energy use under standard operating conditions. Existing weather normalization methods such as those based on heating and cooling degrees days are not robust enough to adjust all climatic factors such as humidity and solar radiation. In this work, over 1000 sets of climate coefficients were developed to separately adjust building heating, cooling, and fan energy use at each weather station in the United States. This paper also presents a robust, standardized weather station mapping based on climate similarity rather than choosing the closest weather station. This proposed simulated-based climate adjustment was validated through testing on several hundreds of thousands of modeled buildings. Results indicated the developed climate coefficients can isolate and adjust for the impacts of local climate for asset rating.

  3. High-surface Thermally Stable Mesoporous Gallium Phosphates Constituted by Nanoparticles as Primary Building Blocks

    Energy Technology Data Exchange (ETDEWEB)

    V Parvulescu; V Parvulescu; D Ciuparu; C Hardacre; H Garcia

    2011-12-31

    In constant, search for micro/mesoporous materials, gallium phosphates, have attracted continued interest due to the large pore size reported for some of these solids in comparison with analogous aluminum phosphates. However up to now, the porosity of gallium phosphates collapsed upon template removal or exposure to the ambient moisture. In the present work, we describe high-surface thermally stable mesoporous gallium phosphates synthesized from gallium propoxide and PCl{sub 3} and different templating agents such as amines (dipropylamine, piperidine and aminopiperidine) and quaternary ammonium salts (C{sub 16}H{sub 33}(CH{sub 3})3NBr and C{sub 16}PyCl). These highly reactive precursors have so far not been used as gallium and phosphate sources for the synthesis of gallophosphates. Conceptually, our present synthetic procedure is based on the fast formation of gallium phosphate nanoparticles via the reaction of gallium propoxide with PCl{sub 3} and subsequent construction of the porous material with nanoparticles as building blocks. The organization of the gallophosphate nanoparticles in stable porous structures is effected by the templates. Different experimental procedures varying the molar composition of the sol-gel, pH and the pretreatment of gallium precursor were assayed, most of them leading to satisfactory materials in terms of thermal stability and porosity. In this way, a series of gallium phosphates with surface are above 200 m{sup 2} g{sup -1}, and narrow pore size from 3 to 6 nm and remarkable thermal stability (up to 550 C) have been prepared. In some cases, the structure tends to show some periodicity and regularity as determined by XRD. The remarkable stability has allowed us to test the catalytic activity of gallophosphates for the aerobic oxidation of alkylaromatics with notable good results. Our report reopens the interest for gallophosphates in heterogeneous catalysis.

  4. Sensitivity of calcification to thermal stress varies among genera of massive reef-building corals.

    Science.gov (United States)

    Carricart-Ganivet, Juan P; Cabanillas-Terán, Nancy; Cruz-Ortega, Israel; Blanchon, Paul

    2012-01-01

    Reductions in calcification in reef-building corals occur when thermal conditions are suboptimal, but it is unclear how they vary between genera in response to the same thermal stress event. Using densitometry techniques, we investigate reductions in the calcification rate of massive Porites spp. from the Great Barrier Reef (GBR), and P. astreoides, Montastraea faveolata, and M. franksi from the Mesoamerican Barrier Reef (MBR), and correlate them to thermal stress associated with ocean warming. Results show that Porites spp. are more sensitive to increasing temperature than Montastraea, with calcification rates decreasing by 0.40 g cm(-2) year(-1) in Porites spp. and 0.12 g cm(-2) year(-1) in Montastraea spp. for each 1°C increase. Under similar warming trends, the predicted calcification rates at 2100 are close to zero in Porites spp. and reduced by 40% in Montastraea spp. However, these predictions do not account for ocean acidification. Although yearly mean aragonite saturation (Ω(ar)) at MBR sites has recently decreased, only P. astreoides at Chinchorro showed a reduction in calcification. In corals at the other sites calcification did not change, indicating there was no widespread effect of Ω(ar) changes on coral calcification rate in the MBR. Even in the absence of ocean acidification, differential reductions in calcification between Porites spp. and Montastraea spp. associated with warming might be expected to have significant ecological repercussions. For instance, Porites spp. invest increased calcification in extension, and under warming scenarios it may reduce their ability to compete for space. As a consequence, shifts in taxonomic composition would be expected in Indo-Pacific reefs with uncertain repercussions for biodiversity. By contrast, Montastraea spp. use their increased calcification resources to construct denser skeletons. Reductions in calcification would therefore make them more susceptible to both physical and biological breakdown

  5. Sensitivity of calcification to thermal stress varies among genera of massive reef-building corals.

    Directory of Open Access Journals (Sweden)

    Juan P Carricart-Ganivet

    Full Text Available Reductions in calcification in reef-building corals occur when thermal conditions are suboptimal, but it is unclear how they vary between genera in response to the same thermal stress event. Using densitometry techniques, we investigate reductions in the calcification rate of massive Porites spp. from the Great Barrier Reef (GBR, and P. astreoides, Montastraea faveolata, and M. franksi from the Mesoamerican Barrier Reef (MBR, and correlate them to thermal stress associated with ocean warming. Results show that Porites spp. are more sensitive to increasing temperature than Montastraea, with calcification rates decreasing by 0.40 g cm(-2 year(-1 in Porites spp. and 0.12 g cm(-2 year(-1 in Montastraea spp. for each 1°C increase. Under similar warming trends, the predicted calcification rates at 2100 are close to zero in Porites spp. and reduced by 40% in Montastraea spp. However, these predictions do not account for ocean acidification. Although yearly mean aragonite saturation (Ω(ar at MBR sites has recently decreased, only P. astreoides at Chinchorro showed a reduction in calcification. In corals at the other sites calcification did not change, indicating there was no widespread effect of Ω(ar changes on coral calcification rate in the MBR. Even in the absence of ocean acidification, differential reductions in calcification between Porites spp. and Montastraea spp. associated with warming might be expected to have significant ecological repercussions. For instance, Porites spp. invest increased calcification in extension, and under warming scenarios it may reduce their ability to compete for space. As a consequence, shifts in taxonomic composition would be expected in Indo-Pacific reefs with uncertain repercussions for biodiversity. By contrast, Montastraea spp. use their increased calcification resources to construct denser skeletons. Reductions in calcification would therefore make them more susceptible to both physical and biological

  6. Novel Mold-Resistant Building Materials Impregnated with Thermally Reduced Nano-Silver.

    Science.gov (United States)

    Chen, Yen-Chi; Yu, Kuo-Pin; Shao, Wen-Cheng; Tseng, Chao-Heng; Pan, Wen-Chi

    2017-12-11

    In this study, we evaluated the long-term antifungal effectiveness of 3 types of interior building materials (gypsum board (GB), cement board (CB) and softwood plywood (S-PW)) impregnated with thermally reduced silver nanoparticles supported by titanium dioxide (AgNPs/TiO2 ) under 95% relative humidity for four weeks. AgNPs/TiO2 was synthesized at two thermal reduction temperatures (TRTs, 120 and 200°C) with two different AgNP weight percentages (2 and 5 wt%). Four different silver loading levels (SLLs, 0.025, 0.05, and 0.5 μg/cm2 and the critical concentration required to inhibit fungal growth on agar plates) and three fungal species (A. niger, P. spinulosum and S. chartarum) were used in the experiments. Higher temperature reduced more ionic Ag+ to metallic Ag0 and increased the dispersion of Ag on TiO2 surface. The 200°C thermally reduced AgNPs/TiO2 demonstrated excellent antifungal efficiency: mold growth was almost completely inhibited for 28 days at the low SLL of 0.5 μg/cm2 . Additionally, AgNPs/TiO2 exhibited higher antifungal activity on GB and CB than on S-PW. The stepwise regression results indicated that the TRT of AgNPs/TiO2 (β =-0.739--0.51), the SLL (β =-0.477--0.269), and the Ag0 level in the AgNPs (β=-0.379--0.136) were the major factors influencing antifungal activity and TRT might be the most significant one. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Monte Carlo analysis: error of extrapolated thermal conductivity from molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-07

    In this short report, we give an analysis of the extrapolated thermal conductivity of UO2 from earlier molecular dynamics (MD) simulations [1]. Because almost all material properties are functions of temperature, e.g. fission gas release, the fuel thermal conductivity is the most important parameter from a model sensitivity perspective [2]. Thus, it is useful to perform such analysis.

  8. Impact of geometry of a sedentary occupant simulator on the generated thermal plume

    DEFF Research Database (Denmark)

    Zukowska-Tejsen, Daria; Melikov, Arsen; Popiolek, Zbigniew

    2012-01-01

    The characteristics of the thermal plume generated by a sitting person were experimentally studied using four human body simulators with different complexities of geometry but equal surface area and heat generation: a vertical cylinder, a rectangular box, a dummy, and a thermal manikin. The exper...

  9. Thermal simulation of different construction types in six climatic regions on heating and cooling loads

    CSIR Research Space (South Africa)

    Kumirai, T

    2012-10-01

    Full Text Available ) and weather files (generated from Meteonorm) for the six climatic regions selected (Figure 5) were used. Additionally, new material composites were introduced in the materials database to represent typical building materials used in the construction... model used in thermal analysis Figure 5: Map identifying regions selected Combinations of materials with high thermal mass and high insulation were used to come up with nine different cases; the details of which are set out in Table 1. These cases...

  10. Energy efficiency and comfort conditions in passive solar buildings: Effect of thermal mass at equatorial high altitudes

    Science.gov (United States)

    Ogoli, David Mwale

    This dissertation is based on the philosophy that architectural design should not just be a function of aesthetics, but also of energy-efficiency, advanced technologies and passive solar strategies. A lot of published literature is silent regarding buildings in equatorial highland regions. This dissertation is part of the body of knowledge that attempts to provide a study of energy in buildings using thermal mass. The objectives were to establish (1) effect of equatorial high-altitude climate on thermal mass, (2) effect of thermal mass on moderating indoor temperatures, (3) effect of thermal mass in reducing heating and cooling energy, and (4) the amount of time lag and decrement factor of thermal mass. Evidence to analyze the effect of thermal mass issues came from three sources. First, experimental physical models involving four houses were parametrically conducted in Nairobi, Kenya. Second, energy computations were made using variations in thermal mass for determining annual energy usage and costs. Third, the data gathered were observed, evaluated, and compared with currently published research. The findings showed that: (1) Equatorial high-altitude climates that have diurnal temperature ranging about 10--15°C allow thermal mass to moderate indoor temperatures; (2) Several equations were established that indicate that indoor mean radiant temperatures can be predicted from outdoor temperatures; (3) Thermal mass can reduce annual energy for heating and cooling by about 71%; (4) Time lag and decrement of 200mm thick stone and concrete thermal mass can be predicted by a new formula; (5) All windows on a building should be shaded. East and west windows when shaded save 51% of the cooling energy. North and south windows when fully shaded account for a further 26% of the cooling energy; (6) Insulation on the outside of a wall reduces energy use by about 19.6% below the levels with insulation on the inside. The basic premise of this dissertation is that decisions that

  11. Simulation-based education for building clinical teams.

    Science.gov (United States)

    Marshall, Stuart D; Flanagan, Brendan

    2010-10-01

    Failure to work as an effective team is commonly cited as a cause of adverse events and errors in emergency medicine. Until recently, individual knowledge and skills in managing emergencies were taught, without reference to the additional skills required to work as part of a team. Team training courses are now becoming commonplace, however their strategies and modes of delivery are varied. Just as different delivery methods of traditional education can result in different levels of retention and transfer to the real world, the same is true in team training of the material in different ways in traditional forms of education may lead to different levels of retention and transfer to the real world, the same is true in team training. As team training becomes more widespread, the effectiveness of different modes of delivery including the role of simulation-based education needs to be clearly understood. This review examines the basis of team working in emergency medicine, and the components of an effective emergency medical team. Lessons from other domains with more experience in team training are discussed, as well as the variations from these settings that can be observed in medical contexts. Methods and strategies for team training are listed, and experiences in other health care settings as well as emergency medicine are assessed. Finally, best practice guidelines for the development of team training programs in emergency medicine are presented.

  12. Simulation of The Heat Transfer Process Inside The Thatch Walls with The Aim of Saving Energy in The Buildings

    Directory of Open Access Journals (Sweden)

    Hadi Baseri

    2016-07-01

    Full Text Available The insulation is one of the emphasized methods in recent years to reduce energy consumption in buildings. As an insulator, thatch has the advantages such as the accessibility of the site, the least energy consumption in its construction (low cost, recyclability and compatible with the nature and the environment. The aim of this study is determining of the heat transfer coefficient and thatch mechanical properties So that due to its advantages it used as insulation and thereby reducing energy consumption in buildings considered and used. In this study, the heat transfer process in a cylindrical turn of thatch was studied. In the conducted experiments the temperature changes inside a cylinder turn were determined for different values of the ratio of the Straw to the used soil and then the obtained results were simulated using the version 2.4 of the COMSOL software. The compressive strength and mechanical properties of thatch were tested. By increasing the consumed Straw weight of 50 to 90 kg per 1 cubic meter of soil, the heat conductivity coefficient from about 1.1 decreased to about 0.3 (W/m K, the contraction percentage decreased and the porous, the compressive strength and the thatch deformability increased in the failure. Thermal insulation and the mechanical properties of the thatch were improved by the mixing of appropriate ratio of straw to soil in the construction of thatch. It can be used in the plaster of the walls and the internal and external ceilings of the building.

  13. Energy and Microclimate Simulation in a Heritage Building: Further Studies on the Malatestiana Library

    Directory of Open Access Journals (Sweden)

    Lamberto Tronchin

    2017-10-01

    Full Text Available Historical and heritage (especially UNESCO buildings need a specific, peculiar approach regarding energy performance, energy behavior, and indoor microclimate. Comparing a new building with a historical (UNESCO building, it is evident that the degrees of freedom for implementing energy efficiency in historical buildings are strongly limited. Several constraints about the materials, the geometry, and the structures do not allow a comprehensive enhancement of energy performance or microclimate parameters. In this paper, we describe an energy building performance criterion adopted in order to find out the energy behavior in the Malatestiana Library. The challenge consists of optimizing energy efficiency and microclimate as well as a full preservation of ancient manuscripts. The study adopts Google Sketchup software to model three-dimensional (3D buildings, and IESVE software to simulate an indoor microclimate. Software building models allow for the evaluation of different types of natural ventilation and section forms, e.g., original, without attic, and without ground floor. The results of the software modeling allow for a comparison of several building use modality effects and the effect of the presence of an attic and ground floor on indoor microclimate parameters in order to conserve and preserve ancient manuscripts.

  14. Development of a Computational Simulation Model for Conflict Management in Team Building

    OpenAIRE

    Wang, W. M.; S. L. Ting

    2011-01-01

    Conflict management is one of the most important issues in leveraging organizational competitiveness. However, traditional social scientists built theories or models in this area which were mostly expressed in words and diagrams are insufficient. Social science research based on computational modeling and simulation is beginning to augment traditional theory building. Simulation provides a method for people to try their actions out in a way that is cost effective, fast...

  15. Thermal Simulation of a Contactor with Feedback Controlled Magnet System

    Science.gov (United States)

    Ji, Liang; Chen, Degui; Liu, Yingyi; Li, Xingwen

    Similarities and differences of the thermal analysis issues between the intelligent and general AC contactors are analyzed. Heat source model of the magnet system is established according to the unique control mode of the intelligent AC contactor. Linking with the features common of the two kinds of contactors, the extension of the thermal analysis method of the general AC contactor to the intelligent AC contactor is demonstrated. Consequently, a comprehensive thermal analysis model considering heat sources of both main circuit and magnet system is constructed for the intelligent AC contactor. With this model, the steady-state temperature rise of the intelligent AC contactor is calculated and compared with the measurements of an actual intelligent AC contactor.

  16. Thermal Forming of Glass — Experiment vs. Simulation

    Directory of Open Access Journals (Sweden)

    L. Švéda

    2011-01-01

    Full Text Available Thermal forming is a technique for forming glass foils precisely into a desired shape. It is widely used in the automotive industry. It can also be used for shaping X-ray mirror substrates for space missions, as in our case. This paper presents the initial results of methods used for automatic data processing of in-situ measurements of the thermal shaping process and a comparison of measured and simulatated values. It also briefly describes improvements of the overall experimental setup currently being made in order to obtain better and more precise results.

  17. Building of Nuclear Ship Engineering Simulation System development of the simulator for the integral type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Teruo; Shimazaki, Junya; Yabuuchi, Noriaki; Fukuhara, Yosifumi; Kusunoki, Takeshi; Ochiai, Masaaki [Department of Nuclear Energy Systems, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Nakazawa, Toshio [Department of HTTR Project, Oarai Research Establishment, Japan Atomic Energy Research Institute, Oarai, Ibaraki (Japan)

    2000-03-01

    JAERI had carried out the design study of a light-weight and compact integral type reactor of power 100 MW{sub th} with passive safety as a power source for the future nuclear ships, and completed an engineering design. To confirm the design and operation performance and to utilize the study of automation of the operations of reactor, we developed a real-time simulator for the integral type reactor. This simulator is a part of Nuclear Ship Engineering Simulation System (NESSY) and on the same hardware as 'Mutsu' simulator which was developed to simulate the first Japanese nuclear ship Mutsu'. Simulation accuracy of 'Mutsu' simulator was verified by comparing the simulation results With data got in the experimental voyage of 'Mutsu'. The simulator for the integral type reactor uses the same programs which were used in 'Mutsu' simulator for the separate type PWR, and the simulated results are approximately consistent with the calculated values using RELAP5/MOD2 (The later points are reported separately). Therefore simulation accuracy of the simulator for the integral type reactor is also expected to be reasonable, though it is necessary to verify by comparing with the real plant data or experimental data in future. We can get the perspectives to use as a real-time engineering simulator and to achieve the above-mentioned aims. This is a report on development of the simulator for the integral type reactor mainly focused on the contents of the analytical programs expressed the structural features of reactor. (author)

  18. Experimental study of diffuse ceiling ventilation coupled with a thermally activated building construction in an office room

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per Kvols; Pomianowski, Michal Zbigniew

    2015-01-01

    This paper presents and analyses the performance of an integrated system with diffuse ceiling ventilation and a thermally activated building construction. A full-scale experiment is carried out in a hot box with an office setup. The performance of the integrated system is evaluated under different...

  19. The physical environment and occupant thermal perceptions in office buildings. An evaluation of sampled data from five European countries

    Energy Technology Data Exchange (ETDEWEB)

    Stoops, J.L. [Chalmers Univ. of Tech., Goeteborg (Sweden). Dept. of Building Services Engineering

    2002-02-01

    The results from a large field study of thermal comfort in European office buildings are reported. Measurements of physical environmental conditions and occupant perceptions were collected over sixteen months from twenty-six different office buildings located in France, Greece, Portugal, Sweden and the UK. This thesis focuses on the physical environmental measurements and occupant thermal perceptions; however, additional variables with connections to environmental satisfaction are also examined. An overview of human comfort theory is presented to help place this thesis in appropriate context. The overview presents thermal comfort issues within a broad framework of human response to the environment including physical, physiological. behavioural, psychological and other variables. A more narrowly focused overview of current thermal comfort research is also included. The work attempts to show relationships and produce useful information from the data set using graphical methods, especially lowess, a locally weighted regression based scatter plot smoothing technique. The objective of using this approach is to literally show the relationships visually. This approach allows the data set itself to illustrate the actual thermal conditions in European office buildings and the occupant perceptions of those conditions along with illustrating relationships. The data is examined in some detail with key relationships identified and explored. Significant differences between countries, both for the physical conditions and the perceptions of those conditions are identified. In addition, the variation over the course of the year for each country is explored. The relationship of daily average outdoor temperatures to indoor temperatures and indoor temperature perceptions is found to be critically important. The relationships, which appear to drive perceptions of thermal comfort, occur in complex ways, making simple, all encompassing explanations impossible. The nature and size of the

  20. Towards evaluation and prediction of building sustainability using life cycle behaviour simulation

    Directory of Open Access Journals (Sweden)

    Marzouk Mohamed

    2017-01-01

    Full Text Available Nowadays researchers and practitioners are oriented towards questioning how effective are the different building life cycle activities contribution to preserving the environment and fulfilling the need for equilibrium. Terminologies such as Building sustainability and Green Buildings have long been adopted yet the evaluation of such has been driven through the use of rating systems. LEED of the United States, BREEAM of the United Kingdom, and Pearl of the United Arab Emirates are namely good examples of these rating systems. This paper introduces a new approach for evaluation of building life cycle sustainability through simulation of activities interaction and studying its behaviour. The effort focuses on comprehending impact and effect of suitability related activities over the whole building life cycle or period of time. The methodology includes gathering a pool of parameters through benchmarking of five selected rating systems, analytical factorization for the gathered parameters is used to elect the most influencing parameters. Followed by simulation modelling using System dynamics to capture the interaction of the considered parameters. The resulting behaviour obtained from simulation is studied and used in designing a tool for prediction of sustainability.