WorldWideScience

Sample records for building thermal insulation mechanisms

  1. Building ceramics with improved thermal insulation parameters

    Directory of Open Access Journals (Sweden)

    Rzepa Karol

    2016-01-01

    Full Text Available One of the most important performance characteristics of masonry units is their high thermal insulation. There are many different ways to improve this parameter, however the most popular methods in case of ceramic masonry units are: addition of pore-creating raw materials and application of proper hole pattern. This study was an attempt to improve thermal insulation of ceramics by applying thermal insulation additives. Perlite dust created as a subgrain from expansion of perlite rock was used. Perlite subgrain is not very popular among consumers, that’s why it’s subjected to granulation to obtain coarse grain. The authors presented concept of direct application of perlite dust for the production of building ceramics with improved thermal insulation. Fineness of this additive is asset for molding of ceramic materials from plastic masses. Based on the results it was found that about 70% perlite by volume can be added to obtain material with a coefficient of heat conductivity of 0,37 W/mK. Higher content of this additive in ceramic mass causes deterioration of its rheological properties. Mass loses its plasticity, it tears up and formed green bodies are susceptible to deformation. During sintering perlite takes an active part in compaction process. Higher sintering dynamics is caused by: high content of alkali oxides in perlite and glass nature of perlite. Alkali oxides generate creation of liquid phase which intensifies mass compaction processes. Active role of perlite in sintering process causes good connection of its grains with clay groundwork which is important factor for mechanical parameters of ceramic materials. It was also noted that addition of perlite above 40% by volume of mass effectively neutralized negative effect of efflorescence in ceramic materials.

  2. Advances in Thermal Insulation. Vacuum Insulation Panels and Thermal Efficiency to Reduce Energy Usage in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thorsell, Thomas

    2012-07-01

    We are coming to realize that there is an urgent need to reduce energy usage in buildings and it has to be done in a sustainable way. This thesis focuses on the performance of the building envelope; more precisely thermal performance of walls and super insulation material in the form of vacuum insulation. However, the building envelope is just one part of the whole building system, and super insulators have one major flaw: they are easily adversely affected by other problems in the built environment. Vacuum Insulation Panels are one fresh addition to the arsenal of insulation materials available to the building industry. They are composite material with a core and an enclosure which, as a composite, can reach thermal conductivities as low as 0.004 W/(mK). However, the exceptional performance relies on the barrier material preventing gas permeation, maintaining a near vacuum into the core and a minimized thermal bridge effect from the wrapping of barrier material round the edge of a panel. A serpentine edge is proposed to decrease the heat loss at the edge. Modeling and testing shows a reduction of 60 % if a reasonable serpentine edge is used. A diffusion model of permeation through multilayered barrier films with metallization coatings was developed to predict ultimate service life. The model combines numerical calculations with analytical field theory allowing for more precise determination than current models. The results using the proposed model indicate that it is possible to manufacture panels with lifetimes exceeding 50 years with existing manufacturing. Switching from the component scale to the building scale; an approach of integrated testing and modeling is proposed. Four wall types have been tested in a large range of environments with the aim to assess the hydrothermal nature and significance of thermal bridges and air leakages. The test procedure was also examined as a means for a more representative performance indicator than R-value (in USA). The

  3. Interior thermal insulation systems for historical building envelopes

    Science.gov (United States)

    Jerman, Miloš; Solař, Miloš; Černý, Robert

    2017-11-01

    The design specifics of interior thermal insulation systems applied for historical building envelopes are described. The vapor-tight systems and systems based on capillary thermal insulation materials are taken into account as two basic options differing in building-physical considerations. The possibilities of hygrothermal analysis of renovated historical envelopes including laboratory methods, computer simulation techniques, and in-situ tests are discussed. It is concluded that the application of computational models for hygrothermal assessment of interior thermal insulation systems should always be performed with a particular care. On one hand, they present a very effective tool for both service life assessment and possible planning of subsequent reconstructions. On the other, the hygrothermal analysis of any historical building can involve quite a few potential uncertainties which may affect negatively the accuracy of obtained results.

  4. Thermal insulation of buildings is worth the effort

    International Nuclear Information System (INIS)

    Novotny, A.

    1999-01-01

    Thermal insulation of buildings became a vital measure of keeping control of utility bills, elimination of hygienic and visual defects, of water penetration into the structural components and thus prevention, and of thermal stress reduction of the load-carrying structures. Thermal insulation became a substantial part of the residential housing renewal. The current housing status implies that no more time can be wasted in implementing this programme, and its immediate application should be much more extensive than the past attempts. The Reduced Power Consumption Programme proposed in 1990 for the general operation of buildings was addressed in 1991/1995. It was meant to stipulate conditions and demonstrate a reduced power demand for residential heating by 30 %, or subsequent reduction of the power demand to the level of 9.3, 7.3 to 3.1 MWh/standard flat annually (130, 102 and 84 kWh/m 2 year respectively. The assessment of the existing residential housing prove its high power intensity. The real power consumption is in the range of 160-195 kWh/m 2 year. The benefit of the thermal insulation programme is primarily in a reduced need for the state subsidies for the residential heating by at least 1703 slovak crowns per flat. The utility bills savings from insulating two flats are sufficient to heat a third flat. Further benefits can be seen in lower demand on primary power sources and in creating new jobs as well as in positive environmental effects

  5. Cardboard Based Packaging Materials as Renewable Thermal Insulation of Buildings: Thermal and Life Cycle Performance

    OpenAIRE

    Čekon, Miroslav; Struhala, Karel; Slávik, Richard

    2017-01-01

    Cardboard based packaging components represent a material with a significant potential of renewable exploitation in buildings. This study presents the results of thermal and environmental analysis of existing packaging materials compared with standard conventional thermal insulations. Experimental measurements were performed to identify the thermal performance of studied cardboard packaging materials. Real-size samples were experimentally tested in laboratory measurements. The thermal resi...

  6. Influence of PCMs in thermal insulation on thermal behaviour of building envelopes

    Science.gov (United States)

    Dydek, K.; Furmański, P.; Łapka, P.

    2016-09-01

    A model of heat transfer through a wall consisting of a layer of concrete and PCM enhanced thermal insulation is considered. The model accounts for heat conduction in both layers, thermal radiation and heat absorption/release due to phase change in the insulation as well as time variation in the ambient temperature and insolation. Local thermal equilibrium between encapsulated PCM and light-weight thermal insulation was assumed. Radiation emission, absorption and scattering were also accounted for in the model. Comparison of different cases of heat flow through the building envelope was carried out. These cases included presence or absence of PCM and thermal radiation in the insulation, effect of emissivity of the PCM microcapsules as well as an effect of solar radiation or its lack on the ambient side of the envelope. Two ways of the PCM distribution in thermal insulation were also considered. The results of simulations were presented for conditions corresponding to the mean summer and winter seasons in Warsaw. It was found that thermal radiation plays an important role in heat transfer through thermal insulation layer of the wall while the presence of the PCM in it significantly contributes to damping of temperature fluctuations and a decrease in heat fluxes flowing into or lost by the interior of the building. The similar effect was observed for a decrease in emissivity of the microcapsules containing PCM.

  7. Structure, Mechanism, and Application of Vacuum Insulation Panels in Chinese Buildings

    Directory of Open Access Journals (Sweden)

    Changhai Peng

    2016-01-01

    Full Text Available Thermal insulation is one of the most used approaches to reduce energy consumption in buildings. Vacuum insulation panels (VIPs are new thermal insulation materials that have been used in the domestic and overseas market in the last 20 years. Due to the vacuum thermal insulation technology of these new materials, their thermal conductivity can be as low as 0.004 W/(m·K at the center of panels. In addition, VIPs that are composites with inorganic core and an envelope out of commonly three metallized PET layers and a PE sealing layer can provide B class fire resistance (their core materials are not flammable and are classified as A1. Compared with other conventional thermal insulation materials, the thermal insulation and fire resistance performances form the foundation of VIP’s applications in the construction industry. The structure and thermal insulation mechanism of VIP and their application potential and problems in Chinese buildings are described in detail.

  8. Thermal insulation

    International Nuclear Information System (INIS)

    Aspden, G.J.; Howard, R.S.

    1988-01-01

    The patent concerns high temperature thermal insulation of large vessels, such as the primary vessel of a liquid metal cooled nuclear reactor. The thermal insulation consists of multilayered thermal insulation modules, and each module comprises a number of metal sheet layers sandwiched between a back and front plate. The layers are linked together by straps and clips to control the thickness of the module. (U.K.)

  9. Thermal insulation

    International Nuclear Information System (INIS)

    Pinsky, G.P.

    1977-01-01

    Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures

  10. Thermal insulating system particularly adapted for building construction

    International Nuclear Information System (INIS)

    Dyar, H.G.

    1985-01-01

    This disclosure relates to an insulating system which is particularly adapted for insulating the walls, floors, ceilings and like structure of buildings and includes a panel having a hollow chamber or interior under negative pressure (vacuum) and being of a variety of external peripheral sizes and shapes to fit within areas defined by wall and/or floor and/or ceiling studs, beams, or the like, a plurality of springs, chains or the like for supporting the panel in generally spaced relationship to an associated building wall, ceiling, floor or like structure, and a plurality of pin-like elements of relatively small cross-sectional configuration normally spaced from the exterior surface of the panel for contacting a limited exterior surface area of the panel only upon the springs, chains or the like becoming inoperative which would in the absence of the pin-like elements result in direct contact between the panel and the associated building wall, ceiling, floor or like structure and thus reduce the insulating efficiency thereof

  11. Structure, Mechanism, and Application of Vacuum Insulation Panels in Chinese Buildings

    OpenAIRE

    Peng, Changhai; Yang, Jianqiang

    2016-01-01

    Thermal insulation is one of the most used approaches to reduce energy consumption in buildings. Vacuum insulation panels (VIPs) are new thermal insulation materials that have been used in the domestic and overseas market in the last 20 years. Due to the vacuum thermal insulation technology of these new materials, their thermal conductivity can be as low as 0.004 W/(m·K) at the center of panels. In addition, VIPs that are composites with inorganic core and an envelope out of commonly three me...

  12. Thermal insulation

    International Nuclear Information System (INIS)

    Durston, J.G.; Birch, W.; Facer, R.I.; Stuart, R.A.

    1977-01-01

    Reference is made to liquid metal cooled nuclear reactors. In the arrangement described the reactor vessel is clad with thermal insulation comprising a layer of insulating blocks spaced from the wall and from each other; each block is rigidly secured to the wall, and the interspaces are substantially closed against convectional flow of liquid by resilient closure members. A membrane covering is provided for the layer of blocks, with venting means to allow liquid from the reactor vessel to penetrate between the covering and the layer of blocks. The membrane covering may comprise a stainless steel sheet ribbed in orthogonal pattern to give flexibility for the accommodation of thermal strain. The insulating blocks may be comprised of stainless steel or cellular or porous material and may be hollow shells containing ceramic material or gas fillings. (U.K.)

  13. Thermal insulation. Non-utilized energy need not be generated. Four rules for a successful thermal insulation by means of building insulation; Waermedaemmung. Energie, die nicht gebraucht wird, muss man nicht erzeugen. Vier Regeln fuer erfolgreichen Waermeschutz durch Gebaeudedaemmung

    Energy Technology Data Exchange (ETDEWEB)

    Patschke, Markus [3E-Consult, Nordkirchen (Germany); Drewer, Arnold [IpeG-Institut, Paderborn (Germany)

    2011-07-15

    The heat supply of buildings causes nearly one third of the energy consumption of an industrialized country. In 2006, the climate-adjusted heat consumption of private households in Germany amounted nearly 600 billion kWh. This consumption caused more than 167 million tons of CO{sub 2}. Heat insulation measures in buildings are required for all heat-transferring enveloping surface. Under this aspect, the contribution under consideration reports on four fundamental rules for a cost-efficient building insulation: (a) Only heated rooms should be insulated thermally; (b) Location and thermal insulation of cavities; (c) Selection of a suitable insulating material; (d) Consideration of an economic sustainability.

  14. Thermal and Energy Performance of Conditioned Building Due To Insulated Sloped Roof

    Science.gov (United States)

    Irwan, Suhandi Syiful; Ahmed, Azni Zain; Zakaria, Nor Zaini; Ibrahim, Norhati

    2010-07-01

    For low-rise buildings in equatorial region, the roof is exposed to solar radiation longer than other parts of the envelope. Roofs are to be designed to reject heat and moderate the thermal impact. These are determined by the design and construction of the roofing system. The pitch of roof and the properties of construction affect the heat gain into the attic and subsequently the indoor temperature of the living spaces underneath. This finally influences the thermal comfort conditions of naturally ventilated buildings and cooling load of conditioned buildings. This study investigated the effect of insulated sloping roof on thermal energy performance of the building. A whole-building thermal energy computer simulation tool, Integrated Environmental Solution (IES), was used for the modelling and analyses. A building model with dimension of 4.0 m × 4.0 m × 3.0 m was designed with insulated roof and conventional construction for other parts of the envelope. A 75 mm conductive insulation material with thermal conductivity (k-value) of 0.034 Wm-1K-1 was installed underneath the roof tiles. The building was modelled with roof pitch angles of 0° , 15°, 30°, 45°, 60° and simulated for the month of August in Malaysian climate conditions. The profile for attic temperature, indoor temperature and cooling load were downloaded and evaluated. The optimum roof pitch angle for best thermal performance and energy saving was identified. The results show the pitch angle of 0° is able to mitigate the thermal impact to provide the best thermal condition with optimum energy savings. The maximum temperature difference between insulated and non-insulted roof for attic (AtticA-B) and indoor condition (IndoorA-B) is +7.8 °C and 0.4 °C respectively with an average energy monthly savings of 3.9 %.

  15. Parametric fuselage design : Integration of mechanics and acoustic & thermal insulation

    NARCIS (Netherlands)

    Krakers, L.A.

    2009-01-01

    Designing a fuselage is a very complex process, which involves many different aspects like strength and stability, fatigue, damage tolerance, fire resistance, thermal and acoustic insulation but also inspection, maintenance, production and repair aspects. It is difficult to include all design

  16. Bio-susceptibility of materials and thermal insulation systems used for historical buildings

    Science.gov (United States)

    Sterflinger, Katja; Ettenauer, Joerg; Pinar, Guadalupe

    2013-04-01

    In historical buildings of Northern countries high levels of energy are necessary to reach comfortable temperatures especially during the cold season. For this reason historical buildings are now also included in country specific regulations and ordinances to enhance the "energy - efficiency". Since an exterior insulation - as it is commonly used for modern architecture - is incompatible with monument protection, several indoor insulation systems based on historical and ecological materials, are on the market that should improve the thermic performance of a historical building. However, using organic materials as cellulose, loam, weed or wood, bears the risk of fungal growth and thus may lead to health problems in indoor environments. For this reason 5 different ecological indoor insulations systems were tested for their bio-susceptibility against various fungi both under natural conditions - after 2 years of installation in an historical building - and under laboratory conditions with high levels of relative humidity. Fungal growth was evaluated by classical isolation and cultivation as well as by molecular methods. The materials turned out to have a quite different susceptibility towards fungal contamination. Whereas insulations made of bloated Perlite (plaster and board) did not show any fungal growth after 2 years of exposition, the historical insulation made of loam and weed had high cell counts of various fungi. In laboratory experiments wooden softboard represented the best environment for fungal growth. As a result from this study, plaster and board made of bloated Perlite are presented as being the most appropriate materials for thermal insulation at least from the microbiological and hygienic point of view. For future investigations and for the monitoring of fungi in insulation and other building materials we suggest a molecular biology approach with a common protocol for quantitative DNA-extraction and amplification.

  17. Application of Nanotechnology-Based Thermal Insulation Materials in Building Construction

    Directory of Open Access Journals (Sweden)

    Bozsaky David

    2016-03-01

    Full Text Available Nanotechnology-based materials have previously been used by space research, pharmaceuticals and electronics, but in the last decade several nanotechnology-based thermal insulation materials have appeared in building industry. Nowadays they only feature in a narrow range of practice, but they offer many potential applications. These options are unknown to most architects, who may simply be afraid of these materials owing to the incomplete and often contradictory special literature. Therefore, they are distrustful and prefer to apply the usual and conventional technologies. This article is intended to provide basic information about nanotechnology-based thermal insulation materials for designers. It describes their most important material properties, functional principles, applications, and potential usage options in building construction.

  18. Economically optimal thermal insulation

    Energy Technology Data Exchange (ETDEWEB)

    Berber, J.

    1978-10-01

    Exemplary calculations to show that exact adherence to the demands of the thermal insulation ordinance does not lead to an optimal solution with regard to economics. This is independent of the mode of financing. Optimal thermal insulation exceeds the values given in the thermal insulation ordinance.

  19. Vacuum insulation - Panel properties and building applications. HiPTI - High Performance Thermal Insulation - IEA/ECBCS Annex 39 - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Erb, M. (ed.)

    2005-12-15

    This paper takes a look at the properties of vacuum insulation panels (VIP) that have already been developed some time ago for use in appliances such as refrigerators and deep-freezers. Their insulation performance is a factor of five to ten times better than that of conventional insulation. The paper discusses the use of such panels in buildings to provide thin, highly-insulating constructions for walls, roofs and floors. The motivation for examining the applicability of high performance thermal insulation in buildings is discussed, including solutions where severe space limitations and other technical and aesthetic considerations exist. The use of nano-structured materials and laminated foils is examined and discussed. The questions arising from the use of such panels in buildings is discussed and the open questions and risks involved are examined. Finally, an outlook on the introduction of VIP technology is presented and quality assurance aspects are examined. This work was done within the framework of the Task 39 'High Performance Thermal Insulation' of the 'Energy Conservation in Buildings and Community Systems ECBCS' programme of the International Energy Agency IEA.

  20. Properties of Agro-Industrial Aerated Concrete as Potential Thermal Insulation for Building

    Directory of Open Access Journals (Sweden)

    Aminudin Eeydzah

    2016-01-01

    Full Text Available The present paper is aiming to provide an actual state of the development of non autoclaved Agro-Industrial aerated concrete by using multiple ashes as improvement of thermal behavior for building. The feasibility of Agro-Industrial wastes as lightweight concrete by utilizing the Palm Oil Fuel Ash (POFA as binder replacement and bottom ash as fine aggregate was investigated in this paper. Portland cement, bottom ash, aluminum powder and lime (Ca(OH2 were used in this study. The POFA was used to replace Portland cement and Hydrated Lime at 0%, 5%, 10% and 15% by weight and aluminum powder was added at 0.75% dry weight in order to form bubbles. The compressive strength, water absorption, porosity and the thermal conductivity test were carried out after the concrete were water cured for 7 days and later being exposed to the air and water until 28days. The results show that the 20% replacements give the optimum strength of 7.143MPa and 30% give the best thermal conductivity with 0.48W/mK. Hence, this study aim, was to develop an agro-industrial aerated concrete good in insulation but having an optimum strength. Hence, it has been found that the more the percentage of POFA is added the lower the thermal conductivity since the pore structure is increasing and by the optimization done, 30% replacement has been chosen as the best mix design for Agro-Industrial Aerated Concrete.

  1. Determination of the Thermal Insulation for the Model Building Approach and the Global Effects in Turkey

    Directory of Open Access Journals (Sweden)

    Cenk Onan

    2014-08-01

    Full Text Available One of the most important considerations to be considered in the design of energy efficient buildings is the thickness of the insulation to be applied to the building. In this study the existing building stock in Turkey has been investigated depending on parameters such as the height and the area. A model building has been created covering all of these buildings. Fuel emission reduction of combustion system was calculated in the case of insulation applied to this model building. Heat loss of the existing building stock and exhaust emissions and the contribution to the country's economy with the model building methodology are also determined. The results show that the optimum insulation thicknesses vary between 3.21 and 7.12 cm, the energy savings vary between 9.23 US$/m2 and43.95 US$/m2, and the payback periods vary between 1 and 8.8 years depending on the regions. As a result of the study when the optimum insulation thickness is applied in the model building, the total energy savings for the country are calculated to be 41.7 billion US$. And also total CO2 emissions for the country are calculated to be 57.2 billion kg CO2 per year after insulation.

  2. Vulcanization Kinetics and Mechanical Properties of Ethylene Propylene Diene Monomer Thermal Insulation

    Directory of Open Access Journals (Sweden)

    Mohamad Irfan Fathurrohman

    2015-07-01

    Full Text Available The vulcanization kinetics of Ethylene-propylene diene monomer (EPDM rubber thermal insulation was studied by using rheometer under isothermal condition at different temperatures. The rheometry analysis was used to determining the cure kinetic parameters and predicting the cure time of EPDM thermal insulation. The experimental results revealed that the curing curves of EPDM thermal insulation were marching and the optimum curing time decreased with increasing the temperature. The kinetic parameters were determined from the autocatalytic model showed close fitting with the experimental results, indicating suitability of autocatalytic model in characterizing the cure kinetics. The activation energy was determined from the autocatalytic model is 46.3661 kJ mol-1. The cure time were predicted from autocatalytic model and the obtained kinetic parameter by using the relationship among degree of conversion, cure temperature, and cure time. The predictions of cure time provide information for the actual curing characteristic of EPDM thermal insulation. The mechanical properties of EPDM thermal insulation with different vulcanization temperatures showed the same hardness, tensile strength and modulus at 300%, except at temperature 70 °C, while the elongation at breaking point decreased with increasing temperature of vulcanization. © 2015 BCREC UNDIP. All rights reservedReceived: 8th April 2014; Revised: 7th January 2015; Accepted: 16th January 2015How to Cite: Fathurrohman, M.I., Maspanger, D.R., Sutrisno, S. (2015. Vulcanization Kinetics and Mechanical Properties of Ethylene Propylene Diene Monomer Thermal Insulation. Bulletin of Chemi-cal Reaction Engineering & Catalysis, 10 (2, 104-110. (doi:10.9767/bcrec.10.2.6682.104-110Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.6682.104-110 

  3. Effect of thermal-treatment sequence on sound absorbing and mechanical properties of porous sound-absorbing/thermal-insulating composites

    Directory of Open Access Journals (Sweden)

    Huang Chen-Hung

    2016-01-01

    Full Text Available Due to recent rapid commercial and industrial development, mechanical equipment is supplemented massively in the factory and thus mechanical operation causes noise which distresses living at home. In livelihood, neighborhood, transportation equipment, jobsite construction noises impact on quality of life not only factory noise. This study aims to preparation technique and property evaluation of porous sound-absorbing/thermal-insulating composites. Hollow three-dimensional crimp PET fibers blended with low-melting PET fibers were fabricated into hollow PET/low-melting PET nonwoven after opening, blending, carding, lapping and needle-bonding process. Then, hollow PET/low-melting PET nonwovens were laminated into sound-absorbing/thermal-insulating composites by changing sequence of needle-bonding and thermal-treatment. The optimal thermal-treated sequence was found by tensile strength, tearing strength, sound-absorbing coefficient and thermal conductivity coefficient tests of porous composites.

  4. Transparent thermal insulation - new developments in the field of building technology?; Transparente Waermedaemmung - neue Trends in der Gebaeudetechnik?

    Energy Technology Data Exchange (ETDEWEB)

    Bieler, P.

    1995-12-31

    In chapter 10 of the anthology about building control transparent thermal insulation is described as a possible new trend in the field of building technology. An answer is given to the question to which extent facades can be applied as technical building equipment. Furthermore the passive use of solar energy is discussed and the measuring results of a test cell building are presented. (BWI) [Deutsch] Kapitel 10 des Sammelbandes ueber Building Control stellt die transparente Waermedaemmung als moeglichen neuen Trend der Gebaeudetechnik vor. In diesem Zusammenhang wird die Frage aufgeworfen, inwieweit Fassaden als Technische Gebaeudeausruestung eingesetzt und angesehen werden koennen. Ferner werden die passive Solarenergienutzungen angesprochen und Messergebnisse eines Testzellengebaeudes vorgestellt. (BWI)

  5. IMPACT ON THE APPLICATION OF INSULATION IN BUILDINGS TO ACHIEVE THERMAL COMFORT (A CASE STUDY: LAUSER OFFICE BUILDING IN BANDA ACEH

    Directory of Open Access Journals (Sweden)

    Nova Purnama Lisa

    2014-12-01

    Full Text Available From the results of research studies on the impact of the use of insulation in buildings, reducing solar radiation on buildings to improve indoor comfort by applying the Principles of radiation reduction in buildings naturally using insulation application that serves as an insulator against the building materials, use of thermal insulation in particular mounted on the roof of the building and the walls are located on second floor and the third floor Lauser office building, Calculate the cooling load for each room that was on second floor and the third floor based on the geographical location or position of the building, climate data, building material data , and the intensity of the spatial characteristics which include lighting, solar radiation, user activity and electrical appliances being used. The calculation is done with the help of Ecotech v.5, 2011. The location and position on the third floor of a building with a flat roof cast concrete, so that the heat absorbed by the platform, and two times greater than the amount of heat radiation is absorbed by the material in the direction of the light falling the sun is at an angle <30°C. The simulation results on the building with the addition of thermal insulation on all walls and the roof of the inside of the foam material ultrafolmadehid, without changing the model building and similar activities in accordance with the existing condition and the condition of the room using the air conditioner at a temperature of 18-26°C, indicating a decrease in cooling load signifinikan in any space reaches 40% of the total cooling load required on the lauser office building. Comparing the simulation results Ecotech temperature v.5 2011 with field measurements as a validation of the simulation results in order to achieve thermal comfort in buildings and can menggurangi use energy consumption in buildings and can be used as a reference in planning space-based conditioning systems energy efficient.

  6. Energy conservation through thermally insulated structures

    International Nuclear Information System (INIS)

    Abu-Dayyeh, Ayoub

    2006-01-01

    The propose of this paper is to explicate its title through investigating the different available thermal insulating materials and the various techniques of application, as practiced in Jordan, in particular, and as practiced in many parts of the world in general, which will satisfy Jordanian standards in terms of heat transmittance and thermal comfort. A brief comparison with international standards will shed some light on the stringent measures enforced in the developed world and on our striving aspirations to keep pace. The paper consists of four main parts, pseudoally divided. The first part will deal with the mechanism of heat loss and heat gain in structures during summer and winter. It will also explain the Time-lag phenomenon which is vital for providing thermal comfort inside the dwellings. The second part will evaluate the damages induced by the temperature gradients on the different elements of the structure, particularly next to exterior opening. The paper will also demonstrate the damages induced by water condensation and fungus growth on the internal surfaces of the structure and within its skeleton. A correlation between condensation and thermal insulation will be established. The third part of the paper will evaluate the different available thermal insulating materials and the application techniques which will satisfy the needs for thermal insulating and thermal comfort at the least cost possible. The criteria of an economical design shall be established. As a conclusion, the paper infers answers to the following different criteria discussed throughout the different parts of the paper. The main theme of questions can be summarized as follows: 1)How energy conservation is possible due to thermal insulation? 2)The feasibility of investing in thermal insulation? 3)Is thermal comfort and a healthy atmosphere possible inside the dwellings during all season! What are the conditions necessary to sustain them? 4)What environmental impacts can exist due to

  7. Thermal insulating panel

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J.T.

    1985-09-11

    A panel of thermal insulation material has at least one main portion which comprises a dry particulate insulation material compressed within a porous envelope so that it is rigid or substantially rigid and at least one auxiliary portion which is secured to and extends along at least one of the edges of the main portions. The auxiliary portions comprise a substantially uncompressed dry particulate insulation material contained within an envelope. The insulation material of the auxiliary portion may be the same as or may be different from the insulation material of the main portion. The envelope of the auxiliary portion may be made of a porous or a non-porous material. (author).

  8. Multi-criteria thermal evaluation of wall enclosures of high-rise buildings insulated products based on modified fibers

    Science.gov (United States)

    Pavlov, Alexey; Pavlova, Larisa; Pavlova, Lyudmila

    2018-03-01

    In article results of research of versions of offered types of heaters on the basis of products from the modified fibers for designing energy efficient building enclosures residential high-rise buildings are presented. Traditional building materials (reinforced concrete, brick, wood) are not able to provide the required value of thermal resistance in areas with a temperate and harsh Russia climate in a single-layered enclosing structure. It can be achieved in a multi-layered enclosing structure, where the decisive role is played by new insulating materials with high thermal properties. In general, modern design solutions for external walls are based on the use of new effective thermal insulation materials with the use of the latest technology. The relevance of the proposed topic is to research thermoinsulation properties of new mineral heaters. Theoretical researches of offered heaters from mineral wool on slime-colloidal binder, bentocolloid and microdispersed binders are carried out. In addition, theoretical studies were carried out with several types of facade systems. Comprehensive studies were conducted on the resistance to heat transfer, resistance to vapor permeation and air permeability. According to the received data, recommendations on the use of insulation types depending on the number of storeys of buildings are proposed.

  9. Transparent thermal insulation for prefabricated school buildings; Einsatz transparenter Waermedaemmung an Schulgebaeuden in praefabrizierter Bauweise

    Energy Technology Data Exchange (ETDEWEB)

    Russ, C. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany). Gruppe Solares Bauen; Buchmann, R. [Leipzigprojekt GmbH, Leipzig (Germany); Duesterhoeft, A. [Holz- und Leichtmetallbau GmbH, Leipzig (Germany)

    1997-12-31

    The existing schools in the new federal states built from prefabricated elements need to be modernized in order to reduce their energy demand. Fitting some 300 square metres of transparent thermal insulation to the south side of a house front may lead to a cut in its thermal energy demand by 74 per cent. This energy consumption is by 12 kWh per square metre lower than the one obtained with opaque thermal insulation. The results of the first demonstration project are described. (MSK) [Deutsch] Die in den neuen Bundeslaendern vorhandenen Schulen in vorgefertigter Bauweise sind energetisch sanierungsbeduerftig. Werden im Rahmen einer Sanierung ca. 300qm transparente Waermedaemmung an der suedorientierten Fassade eingesetzt, so kann der Heizwaermebedarf um 74% herabgesetzt werden. Das sind 12 kWh/qm weniger als bei dem vergleichsweisen Einsatz einer opaken Waermedaemmung. Im Folgenden werden die Ergebnisse des ersten Demonstrationsprojekts beschrieben.

  10. Survey of thermal insulation systems

    International Nuclear Information System (INIS)

    Kinoshita, Izumi

    1983-01-01

    Better thermal insulations have been developed to meet the growing demands of industry, and studies on thermal insulation at both high temperature and low temperature have been widely performed. The purpose of this survey is to summarize data on the performances and characteristics of thermal insulation materials and thermal insulation structures (for instance, gas cooled reactors, space vehicles and LNG storage tanks), and to discuss ravious problems regarding the design of thermal insulation structures of pool-type LMFBRs. (author)

  11. Evaluation of mechanical and thermal properties of insulation materials for HTS power devices at liquid nitrogen temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyung Seop; Diaz, Mark Angelo [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of)

    2017-06-15

    In superconducting power devices including power cables in which high temperature superconducting (HTS) tapes are utilized, a reliable electrical insulation should be achieved for its maximum performance. For an efficient design of HTS superconducting devices, a comparative evaluation of the mechanical and thermal propperties for various insulation materials at cryogenic temperatures is required. Especially, in the process of the property evaluation of the sheet-shaped insulation materials, anisotropy according to the machining direction should be considered because the mechanical and thermal properties are significantly influenced by the sample orientation. In this study, the cryogenic thermal and mechanical properties of various insulation material sheets such as PPLP, Cryoflex, Teflon, and Kapton were determined considering sample orientation. All samples tested at cryogenic temperature showed significantly higher tensile strength as compared with that of room temperature. The ultimate tensile strength at both temperature conditions significantly depended upon the sample orientation. The thermal properties of the insulation materials exhibited a slight difference among samples depending on the orientation: for the PPLP and Cryoflex, the CD orientation showed larger thermal contraction up to 77 K as compared to the MD one. MD samples in PPLP and Cryoflex showed a lower CTE and thermal contraction which made it more promising as an insulation material due to its comparable CTE with HTS CC tapes.

  12. Carbon footprint of a reflective foil and comparison with other solutions for thermal insulation in building envelope

    International Nuclear Information System (INIS)

    Proietti, Stefania; Desideri, Umberto; Sdringola, Paolo; Zepparelli, Francesco

    2013-01-01

    Highlights: ► Environmental and energy assessment of thermal insulating materials in building envelope. ► Carbon footprint of a reflective foil, conceived and produced by an Italian company. ► Study conducted according to principles of LCA – Life Cycle Assessment. ► Identification of main impacting processes and measures for reducing emissions. ► Comparison with traditional insulating materials (EPS and rockwool). - Abstract: The present study aims at assessing environmental and energy compatibility of different solutions of thermal insulation in building envelope. In fact a good insulation results in a reduction of heating/cooling energy consumptions; on the other hand construction materials undergo production, transformation and transport processes, whose energy and resources consumptions may lead to a significant decrease of the environmental benefits. The paper presents a detailed carbon footprint of a product (CFP, defined as the sum of greenhouse gas emissions and removals of a product system, expressed in CO 2 equivalents), which is a reflective foil conceived and produced by an Italian company. CFP can be seen as a Life Cycle Assessment with climate change as the single impact category; it does not assess other potential social, economic and environmental impacts arising from the provision of products. The analysis considers all stages of the life cycle, from the extraction of raw materials to the product’s disposal, i.e. “from cradle to grave”; it was carried out according to UNI EN ISO 14040 and 14044, and LCA modelling was performed using SimaPro software tool. On the basis of obtained results, different measures have been proposed in order to reduce emissions in the life cycle and neutralize residual carbon footprint. The results allowed to make an important comparison concerning the environmental performance of the reflective foil in comparison with other types of insulating materials

  13. Facility for endurance tests of thermal insulations

    International Nuclear Information System (INIS)

    Mauersberger, R.

    1984-01-01

    In the following report the design and construction of an experimental facility for endurance tests of thermal insulations is presented. It's name in abbreviation is 'ADI' standing for the German words A nlage zum Dauertest von Isolierungen . This test facility was build by HRB in order to investigate the performance of thermal insulation systems of hot gas ducts for the process heat-reactor-project. The tests are intended to simulate the conditions of reactor operation. They include short-time experiments for selection of insulation-concepts and in a second step long-time experiments as performance tests. During these tests are measured the effective heat conductivity the local heat losses the temperature profiles of the insulation, of the fixing elements and along the wall of the duct. The design-data required to perform all these tasks are shown in the first picture: The gas-atmosphere must be Helium in tests like in reactor with regard to the special thermal and hydraulic properties of Helium and to the influence of Helium on mechanic friction and wear. The hot gas temperature in the PNP-reactor will be 950 deg. C and should be equal in the experiments. The temperature on the cold side of the insulation has to be adjustable from 50 deg. C up to 300 deg. C. The Helium pressure in the hot gas ducts of a HTR-plant is about 42 bar. The ADI was laid out for 70 bar to cover the hole range of interest. A Helium mass flow has to stream through the insulated test duct in order to realize equal temperatures on the hot side of the insulation. A flow rate of 4,5 kg/s is sufficient for this requirement. The axial pressure gradient along the insulation must be the same as in the reactor, because this has an essential influence on the heat losses. This pressure gradient is about 40 Pa/m

  14. HiPTI - High Performance Thermal Insulation, Annex 39 to IEA/ECBCS-Implementing Agreement. Vacuum insulation in the building sector. Systems and applications

    Energy Technology Data Exchange (ETDEWEB)

    Binz, A.; Moosmann, A.; Steinke, G.; Schonhardt, U.; Fregnan, F. [Fachhochschule Nordwestschweiz (FHNW), Muttenz (Switzerland); Simmler, H.; Brunner, S.; Ghazi, K.; Bundi, R. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Heinemann, U.; Schwab, H. [ZAE Bayern, Wuerzburg (Germany); Cauberg, H.; Tenpierik, M. [Delft University of Technology, Delft (Netherlands); Johannesson, G.; Thorsell, T. [Royal Institute of Technology (KTH), Stockholm (Sweden); Erb, M.; Nussbaumer, B. [Dr. Eicher und Pauli AG, Basel and Bern (Switzerland)

    2005-07-01

    This final report on vacuum insulation panels (VIP) presents and discusses the work done under IEA/Energy Conservation in Buildings and Community Systems (ECBCS) Annex 39, subtask B on the basis of a wide selection of reports from practice. The report shows how the building trade deals with this new material today, the experience gained and the conclusions drawn from this work. As well as presenting recommendations for the practical use of VIP, the report also addresses questions regarding the effective insulation values to be expected with current VIP, whose insulation performance is stated as being a factor of five to eight times better than conventional insulation. The introduction of this novel material in the building trade is discussed. Open questions and risks are examined. The fundamentals of vacuum insulation panels are discussed and the prerequisites, risks and optimal application of these materials in the building trade are examined.

  15. Thermal mass vs. insulation building envelope design in six climatic regions of South Africa

    CSIR Research Space (South Africa)

    Kumirai, T

    2012-02-01

    Full Text Available is defined in Ecotect as a homogenous enclosed volume of air. In most cases this corresponds to a single room. It is assumed that the air within a zone is able to mix freely. Every room in the simulation model was defined as distinct thermal zone... of the Ecotect simulation model and simulation of houses with base case characteristics and energy efficient measures in six South African cities. 3.1 Building infiltration rate measurements High infiltration rates means a leaky building meaning...

  16. Economical evaluation of damaged vacuum insulation panels in buildings

    Science.gov (United States)

    Kim, Y. M.; Lee, H. Y.; Choi, G. S.; Kang, J. S.

    2015-12-01

    In Korea, thermal insulation standard of buildings have been tightened annually to satisfy the passive house standard from the year 2009. The current domestic policies about disseminating green buildings are progressively conducted. All buildings should be the zero energy building in the year 2025, obligatorily. The method is applied to one of the key technologies for high-performance insulation for zero energy building. The vacuum insulation panel is an excellent high performance insulation. But thermal performance of damaged vacuum insulation panels is reduced significantly. In this paper, the thermal performance of damaged vacuum insulation panels was compared and analyzed. The measurement result of thermal performance depends on the core material type. The insulation of building envelope is usually selected by economic feasibility. To evaluate the economic feasibility of VIPs, the operation cost was analyzed by simulation according to the types and damaged ratio of VIPs

  17. Thermal insulation of buildings classified as historical monuments with particular emphasis on moisture protection; Hygrisch motivierter Waermeschutz von Altbauten mit denkmalgeschuetzter Fassade

    Energy Technology Data Exchange (ETDEWEB)

    Haeupl, P.; Martin, R.; Fechner, H.; Neue, J. [Technische Univ. Dresden (Germany). Inst. fuer Bauklimatik

    1997-12-31

    Buildings classified as historical must not be fitted with external thermal insulation elements. This project investigates a `gentle` type of an internal thermal insulation system with capillary activity permitting diffusion. A 120-year-old building with a historical house-front was thermally insulated at the inside using a 30-millimetre-thick calcium silicate plate with embedded fibres having capillary activity. The paper discusses the heat flow densities between the internal thermal insulation and the original part of the structure. Moisture fields in the wall in the case of mineral wool insulation and internal thermal insulation with capillary activity are compared. Moisture distribution in the area of the juncture between masonry and window and in the area of the beam head is shown by means of diagrams. (MSK) [Deutsch] Weil bei denkmalgeschuetzten Fassanden ein aussen angebrachtes Thermoverbundsystem nicht moeglich ist, wird in diesem Projekt eine sanfte kapillaraktive, diffusionsoffene Innendaemmung untersucht. Als Referenzobjekt wurde ein etwa 120 Jahre altes Gruenderzeithaus mit denkmalgeschuetzter Fassade mit einer 30mm dicken faserdotierten kapillaraktiven Calciumsilikatplatte innenseitig gedaemmt. Im Folgenden werden die Waermestromdichten zwischen Innendaemmung und Altkonstruktion erlaeutert. Die Feuchtefelder in der Wand bei Mineralwolleindaemmung und bei kapillaraktiver Innendaemmung werden verglichen. Die Feuchteverteilung im Bereich des Fenteranschlusses und des Balkenkopfes wird in Diagrammen dargestellt.

  18. Handleable shapes of thermal insulation material

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J. T.

    1989-01-17

    Handleable and machineable shapes of thermal insulation material are made by compacting finely divided thermal insulation material into the cells of a reinforcing honeycomb insulation material into the cells of a reinforcing honeycomb structure. The finely divided thermal insulation material may be, for example, silica aerogel, pyrogenic silica, carbon black, silica gel, volatilised silica, calcium silicate, vermiculate or perlite, or finely divided metal oxides such as alumina or titania. The finely divided thermal insulation material may include an infra-red opacifier and/or reinforcing fibres. The reinforcing honeycomb structure may be made from, for example, metals such as aluminium foil, inorganic materials such as ceramics, organic materials such as plastics materials, woven fabrics or paper. A rigidiser may be employed. The shapes of thermal insulation material are substantially rigid and may be machines, for example by mechanical or laser cutting devices, or may be formed, for example by rolling, into curved or other shaped materials. 12 figs.

  19. Translucent insulating building envelope

    DEFF Research Database (Denmark)

    Rahbek, Jens Eg

    1997-01-01

    A new type of translucent insulating material has been tested. This material is made of Celulose-Acetat and have a honey-comb structure. The material has a high solar transmittance and is highly insulating. The material is relatively cheap to produce. Danish Title: Translucent isolerende klimaskærm....

  20. Thermal insulation properties of walls

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2014-05-01

    Full Text Available Heat-protective qualities of building structures are determined by the qualities of the used materials, adequate design solutions and construction and installation work of high quality. This rule refers both to the structures made of materials similar in their structure and nature and mixed, combined by a construction system. The necessity to ecaluate thermal conductivity is important for a product and for a construction. Methods for evaluating the thermal protection of walls are based on the methods of calculation, on full-scale tests in a laboratory or on objects. At the same time there is a reason to believe that even deep and detailed calculation may cause deviation of the values from real data. Using finite difference method can improve accuracy of the results, but it doesn’t solve all problems. The article discusses new approaches to evaluating thermal insulation properties of walls. The authors propose technique of accurate measurement of thermal insulation properties in single blocks and fragments of walls and structures.

  1. Large displacement spring-like electro-mechanical thermal actuators with insulator constraint beams

    Science.gov (United States)

    Luo, J. K.; Fu, Y. Q.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.

    2005-07-01

    A number of in-plane spring-like micro-electro-thermal-actuators with large displacements were proposed. The devices take the advantage of the large difference in the thermal expansion coefficients between the conductive arms and the insulator clamping beams. The constraint beams in one type (the spring) of these devices are horizontally positioned to restrict the expansion of the active arms in the x-direction, and to produce a displacement in the y-direction only. In other two types of actuators (the deflector and the contractor), the constraint beams are positioned parallel to the active arms. When the constraint beams are on the inside of the active arms, the actuator produces an outward deflection in the y-direction. When they are on the outside of the active arms, the actuator produces an inward contraction. Analytical model and finite element analysis were used to simulate the performances. It showed that at a constant temperature, analytical model is sufficient to predict the displacement of these devices. The displacements are all proportional to the temperature and the number of the chevron sections. A two-mask process is under development to fabricate these devices, using Si3N4 as the insulator beams, and electroplated Ni as the conductive beams.

  2. Using of Aerogel to Improve Thermal Insulating Properties of Windows

    Science.gov (United States)

    Valachova, Denisa; Zdrazilova, Nada; Panovec, Vladan; Skotnicova, Iveta

    2018-06-01

    For the best possible thermal-technical properties of building structures it is necessary to use materials with very low thermal conductivity. Due to the increasing thermal-technical requirements for building structures, the insulating materials are developed. One of the modern thermal insulating materials is so-called aerogel. Unfortunately, this material is not used in the field of external thermal insulation composite systems because of its price and its properties. The aim of this paper is to present possibilities of using this insulating material in the civil engineering - specifically a usage of aerogel in the production of windows.

  3. Growing and testing mycelium bricks as building insulation materials

    Science.gov (United States)

    Xing, Yangang; Brewer, Matthew; El-Gharabawy, Hoda; Griffith, Gareth; Jones, Phil

    2018-02-01

    In order to improve energy performance of buildings, insulation materials (such as mineral glass and rock wools, or fossil fuel-based plastic foams) are being used in increasing quantities, which may lead to potential problem with materials depletions and landfill disposal. One sustainable solution suggested is the use of bio-based, biodegradable materials. A number of attempts have been made to develop biomaterials, such as sheep wood, hemcrete or recycled papers. In this paper, a novel type of bio insulation materials - mycelium is examined. The aim is to produce mycelium materials that could be used as insulations. The bio-based material was required to have properties that matched existing alternatives, such as expanded polystyrene, in terms of physical and mechanical characteristics but with an enhanced level of biodegradability. The testing data showed mycelium bricks exhibited good thermal performance. Future work is planned to improve growing process and thermal performance of the mycelium bricks.

  4. Lightweight, Thermally Insulating Structural Panels

    Science.gov (United States)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  5. Investigation of the Mechanical Properties of Hybrid Carbon-Hemp Laminated Composites Used as Thermal Insulation for Different Industrial Applications

    Directory of Open Access Journals (Sweden)

    M. L. Scutaru

    2014-04-01

    Full Text Available Carbon-hemp composite laminate provides good thermal properties. For this reason this type of material is presently being used for various applications like insulator for airplanes, spaceships, nuclear reactors, and so forth. Unfortunately their mechanical properties are less studied. These characteristics are very important since they should be guaranteed also for important mechanical stress in addition to the thermal one. The present paper presents a study regarding the impact testing of some hybrid composite laminate panels based on polyester resin reinforced with both carbon and hemp fabric. The effects of different impact speeds on the mechanical behavior of these panels have been analyzed. The paper lays stress on the characterization of this hybrid composite laminate regarding the impact behavior of these panels by dropping a weight with low velocity.

  6. Thermal insulation performance of green roof systems

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Serdar; Morgan, Susan; Retzlaff, William; Once, Orcun [southern Illinois University (United States)], e-mail: scelik@siue.edu, e-mail: smorgan@siue.edu, e-mail: wretzla@siue.edu, e-mail: oonce@siue.edu

    2011-07-01

    With the increasing costs of energy, good building insulation has become increasingly important. Among existing insulation techniques is the green roof system, which consists of covering the roof of a building envelop with plants. The aim of this paper is to assess the impact of vegetation type and growth media on the thermal performance of green roof systems. Twelve different green roof samples were made with 4 different growth media and 3 sedum types. Temperature at the sample base was recorded every 15 minutes for 3 years; the insulation behavior was then analysed. Results showed that the insulation characteristics were achieved with a combination of haydite and sedum sexangulare. This study demonstrated that the choice of growth media and vegetation is important to the green roof system's performance; further research is required to better understand the interactions between growth media and plant roots.

  7. Design and testing of botanical thermotropic actuator mechanisms in thermally adaptive building coverings

    Science.gov (United States)

    Barrett, Ronald M.; Barrett, Ronald P.; Barrett, Cassandra M.

    2017-09-01

    This paper lays out the inspiration, operational principles, analytical modeling and coupon testing of a new class of thermally adaptive building coverings. The fundamental driving concepts for these coverings are derived from various families of thermotropic plant structures. Certain plant cellular structures like those in Mimosa pudica (Sensitive Plant), Rhododendron leaves or Albizia julibrissin (Mimosa Tree), exhibit actuation physiology which depends on changes in cellular turgor pressures to generate motion. This form of cellular action via turgor pressure manipulation is an inspiration for a new field of thermally adaptive building coverings which use various forms of cellular foam to aid or enable actuation much like plant cells are used to move leaves. When exposed to high solar loading, the structures use the inherent actuation capability of pockets of air trapped in closed cell foam as actuators to curve plates upwards and outwards. When cold, these same structures curve back towards the building forming large convex pockets of dead air to insulate the building. This paper describes basic classical laminated plate theory models comparing theory and experiment of such coupons containing closed-cell foam actuators. The study concludes with a global description of the effectiveness of this class of thermally adaptive building coverings.

  8. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties.

    Science.gov (United States)

    Seantier, Bastien; Bendahou, Dounia; Bendahou, Abdelkader; Grohens, Yves; Kaddami, Hamid

    2016-03-15

    Bio-composite aerogels based on bleached cellulose fibers (BCF) and cellulose nanoparticles having various morphological and physico-chemical characteristics are prepared by a freeze-drying technique and characterized. The various composite aerogels obtained were compared to a BCF aerogel used as the reference. Severe changes in the material morphology were observed by SEM and AFM due to a variation of the cellulose nanoparticle properties such as the aspect ratio, the crystalline index and the surface charge density. BCF fibers form a 3D network and they are surrounded by the cellulose nanoparticle thin films inducing a significant reduction of the size of the pores in comparison with a neat BCF based aerogel. BET analyses confirm the appearance of a new organization structure with pores of nanometric sizes. As a consequence, a decrease of the thermal conductivities is observed from 28mWm(-1)K(-1) (BCF aerogel) to 23mWm(-1)K(-1) (bio-composite aerogel), which is below the air conductivity (25mWm(-1)K(-1)). This improvement of the insulation properties for composite materials is more pronounced for aerogels based on cellulose nanoparticles having a low crystalline index and high surface charge (NFC-2h). The significant improvement of their insulation properties allows the bio-composite aerogels to enter the super-insulating materials family. The characteristics of cellulose nanoparticles also influence the mechanical properties of the bio-composite aerogels. A significant improvement of the mechanical properties under compression is obtained by self-organization, yielding a multi-scale architecture of the cellulose nanoparticles in the bio-composite aerogels. In this case, the mechanical property is more dependent on the morphology of the composite aerogel rather than the intrinsic characteristics of the cellulose nanoparticles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The Effect of Mechanical Load on the Thermal Conductivity of Building Materials

    Directory of Open Access Journals (Sweden)

    J. Toman

    2000-01-01

    Full Text Available The effect of mechanical load on the thermal conductivity of building materials in the design of envelope parts of building structures is studied. A typical building material is chosen in the practical investigation of this effect, namely the cement mortar. It is concluded that in the range of hygroscopic moisture content, lower levels of mechanical load, typically up to 90 % of compressive strength (CS, are not dangerous from the point of view of worsening the designed thermal properties, but in the overhygroscopic region, the load as low as 57 % of CS may be dangerous. The higher levels of loading are found to be always significant because they lead to marked increase of thermal conductivity which is always a negative information for a building designer.

  10. Thermal insulation of fuel elements

    International Nuclear Information System (INIS)

    Dubrovcak, P.; Pec, V.; Pitonak, J.

    1978-01-01

    The claim of the invention concerns thermal insulation of fuel elements heated for measurement of uranium fuel physical properties. For this, layers of aluminium film and of glass fibre are wound onto the inner tube of the element cladding. The space between the inner and the outer tubes is evacuated and the tubes are spaced using spacer wires. (M.S.)

  11. Air-Filled Nanopore Based High-Performance Thermal Insulation Materials

    OpenAIRE

    Gangåssæter, Haakon Fossen; Jelle, Bjørn Petter; Alex Mofid, Sohrab; Gao, Tao

    2017-01-01

    State-of-the-art thermal insulation solutions like vacuum insulation panels (VIP) and aerogels have low thermal conductivity, but their drawbacks may make them unable to be the thermal insulation solutions that will revolutionize the building industry regarding energy-efficient building envelopes. Nevertheless, learning from these materials may be crucial to make new and novel high-performance thermal insulation products. This study presents a review on the state-of-the-art air-filled thermal...

  12. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    Directory of Open Access Journals (Sweden)

    Smajo Sulejmanovic

    2014-11-01

    Full Text Available This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to reduce in usage of fossil fuels and would help protection of an environment and reduce effects of global warming, etc.

  13. VIP A B C. Vacuum Insulation Panels Applied in Building Constructions

    Energy Technology Data Exchange (ETDEWEB)

    Tenpierik, M.J.

    2010-02-01

    -scale application of VIPs in the building industry. However, integration of VIPs into buildings must be performed very meticulously for several reasons; first, due to its nature a VIP cannot be processed on site and needs careful planning in advance; second, it is very sensitive to mechanical damage thus requiring careful handling; third, thermal bridges along the panel's edges reduce its performance; fourth, the composite system is highly subjected to aging. This dissertation therefore looks into many of these aspects, presents several calculation tools and shows how VIPs can be applied in facade panels, EPS insulation boards and as under-floor insulation. With the wide-spread proliferation of VIPs in buildings a more sustainable and healthy environment can then be achieved.

  14. Effect of Thermal Environment on the Mechanical Behaviors of Building Marble

    Directory of Open Access Journals (Sweden)

    Haijian Su

    2018-01-01

    Full Text Available High temperature and thermal environment can influence the mechanical properties of building materials worked in the civil engineering, for example, concrete, building rock, and steel. This paper examines standard cylindrical building marble specimens (Φ50 × 100 mm that were treated with high temperatures in two different thermal environments: vacuum (VE and airiness (AE. Uniaxial compression tests were also carried out on those specimens after heat treatment to study the effect that the thermal environment has on mechanical behaviors. With an increase in temperature, the mechanical behavior of marble in this study indicates a critical temperature of 600°C. Both the peak stress and elasticity modulus were larger for the VE than they were for the AE. The thermal environment has an obvious influence on the mechanical properties, especially at temperatures of 450∼750°C. The failure mode of marble specimens under uniaxial compression is mainly affected by the thermal environment at 600°C.

  15. Vacuum insulation panels for building applications: A review and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Baetens, Ruben [Department of Building Materials and Structures, SINTEF Building and Infrastructure, NO-7465 Trondheim (Norway); Department of Civil and Transport Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Laboratory of Building Physics, Department of Civil Engineering, Catholic University of Leuven (KUL), BE-3001 Heverlee (Belgium); Jelle, Bjoern Petter [Department of Building Materials and Structures, SINTEF Building and Infrastructure, NO-7465 Trondheim (Norway); Department of Civil and Transport Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Thue, Jan Vincent [Department of Civil and Transport Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Tenpierik, Martin J. [Faculty of Architecture, Urbanism and Building Sciences, Delft University of Technology, Julianalaan 134, 2628 BL Delft (Netherlands); Grynning, Steinar; Uvsloekk, Sivert [Department of Building Materials and Structures, SINTEF Building and Infrastructure, NO-7465 Trondheim (Norway); Gustavsen, Arild [Department of Architectural Design, History and Technology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway)

    2010-02-15

    Vacuum insulation panels (VIPs) are regarded as one of the most promising high performance thermal insulation solutions on the market today. Thermal performances three to six times better than still-air are achieved by applying a vacuum to an encapsulated micro-porous material, resulting in a great potential for combining the reduction of energy consumption in buildings with slim constructions. However, thermal bridging due to the panel envelope and degradation of thermal performance through time occurs with current technology. Furthermore, VIPs cannot be cut on site and the panels are fragile towards damaging. These effects have to be taken into account for building applications as they may diminish the overall usability and thermal performance. This paper is as far as the authors know the first comprehensive review on VIPs. Properties, requirements and possibilities of foil encapsulated VIPs for building applications are studied based on available literature, emphasizing thermal bridging and degradation through time. An extension is made towards gas-filled panels and aerogels, showing that other high performance thermal insulation solutions do exist. Combining the technology of these solutions and others may lead to a new leap forward. Feasible paths beyond VIPs are investigated and possibilities such as vacuum insulation materials (VIMs) and nano insulation materials (NIMs) are proposed. (author)

  16. Environmental safety providing during heat insulation works and using thermal insulation materials

    Directory of Open Access Journals (Sweden)

    Velichko Evgeny

    2017-01-01

    Full Text Available This article considers the negative effect of thermal insulating materials and products on human health and environment pollution, particularly in terms of the composition of environmentally hazardous construction products. The authors have analyzed the complex measures for providing ecological safety, sanitary and epidemiological requirements, rules and regulations both during thermal insulation works and throughout the following operation of buildings and premises. The article suggests the protective and preventive measures to reduce and eliminate the negative impact of the proceeding of thermal insulation works on the natural environment and on human health.

  17. Effects of aging on the structural, mechanical, and thermal properties of the silicone rubber current transformer insulation bushing for a 500 kV substation.

    Science.gov (United States)

    Wang, Zhigao; Zhang, Xinghai; Wang, Fangqiang; Lan, Xinsheng; Zhou, Yiqian

    2016-01-01

    In order to analyze the cracking and aging reason of the silicone rubber current transformer (CT) insulation bushing used for 8 years from a 500 kV alternating current substation, characteristics including Fourier transform infrared (FTIR) spectroscopy, mechanical properties analysis, hardness, and thermo gravimetric analysis have been carried out. The FTIR results indicated that the external surface of the silicone rubber CT insulation bushing suffered from more serious aging than the internal part, fracture of side chain Si-C bond was much more than the backbone. Mechanical properties and thermal stability results illustrated that the main aging reasons were the breakage of side chain Si-C bond and the excessive cross-linking reaction of the backbone. This study can provide valuable basis for evaluating degradation mechanism and aging state of the silicone rubber insulation bushing in electric power field.

  18. Layered Thermal Insulation Systems for Industrial and Commercial Applications

    Science.gov (United States)

    Fesmire, James E.

    2015-01-01

    From the high performance arena of cryogenic equipment, several different layered thermal insulation systems have been developed for industrial and commercial applications. In addition to the proven areas in cold-work applications for piping and tanks, the new Layered Composite Insulation for Extreme Environments (LCX) has potential for broader industrial use as well as for commercial applications. The LCX technology provides a unique combination of thermal, mechanical, and weathering performance capability that is both cost-effective and enabling. Industry applications may include, for example, liquid nitrogen (LN2) systems for food processing, liquefied natural gas (LNG) systems for transportation or power, and chilled water cooling facilities. Example commercial applications may include commercial residential building construction, hot water piping, HVAC systems, refrigerated trucks, cold chain shipping containers, and a various consumer products. The LCX system is highly tailorable to the end-use application and can be pre-fabricated or field assembled as needed. Product forms of LCX include rigid sheets, semi-flexible sheets, cylindrical clam-shells, removable covers, or flexible strips for wrapping. With increasing system control and reliability requirements as well as demands for higher energy efficiencies, thermal insulation in harsh environments is a growing challenge. The LCX technology grew out of solving problems in the insulation of mechanically complex cryogenic systems that must operate in outdoor, humid conditions. Insulation for cold work includes equipment for everything from liquid helium to chilled water. And in the middle are systems for LNG, LN2, liquid oxygen (LO2), liquid hydrogen (LH2) that must operate in the ambient environment. Different LCX systems have been demonstrated for sub-ambient conditions but are capable of moderately high temperature applications as well.

  19. Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls

    Directory of Open Access Journals (Sweden)

    Omer Kaynakli

    2011-06-01

    Full Text Available Numerous studies have estimated the optimum thickness of thermal insulation materials used in building walls for different climate conditions. The economic parameters (inflation rate, discount rate, lifetime and energy costs, the heating/cooling loads of the building, the wall structure and the properties of the insulation material all affect the optimum insulation thickness. This study focused on the investigation of these parameters that affect the optimum thermal insulation thickness for building walls. To determine the optimum thickness and payback period, an economic model based on life-cycle cost analysis was used. As a result, the optimum thermal insulation thickness increased with increasing the heating and cooling energy requirements, the lifetime of the building, the inflation rate, energy costs and thermal conductivity of insulation. However, the thickness decreased with increasing the discount rate, the insulation material cost, the total wall resistance, the coefficient of performance (COP of the cooling system and the solar radiation incident on a wall. In addition, the effects of these parameters on the total life-cycle cost, payback periods and energy savings were also investigated.

  20. Energy savings due to building insulation of different thickness

    Directory of Open Access Journals (Sweden)

    Orzechowski Tadeusz

    2017-01-01

    Full Text Available In the plans of thermo-modernisation of historic buildings, strict requirements on energy performance are often relaxed. Detailed analyses are performed to select thermal upgrading technology that would ensure maximum environmental benefits while preserving the historic value of the building. The analysis of the costs of thermal upgrading with the use of heat-preserving plasters having different insulation properties is made for a coal-fired boiler plant. Optimal and advantageous ranges of insulation materials application are shown in reference to coal savings in boilers with variable and constant efficiency. Climatic conditions and environmental benefits are indicated.

  1. Modeling of Dynamic Responses in Building Insulation

    Directory of Open Access Journals (Sweden)

    Anna Antonyová

    2015-10-01

    Full Text Available In this research a measurement systemwas developedfor monitoring humidity and temperature in the cavity between the wall and the insulating material in the building envelope. This new technology does not disturb the insulating material during testing. The measurement system can also be applied to insulation fixed ten or twenty years earlier and sufficiently reveals the quality of the insulation. A mathematical model is proposed to characterize the dynamic responses in the cavity between the wall and the building insulation as influenced by weather conditions.These dynamic responses are manifested as a delay of both humidity and temperature changes in the cavity when compared with the changes in the ambient surrounding of the building. The process is then modeled through numerical methods and statistical analysis of the experimental data obtained using the new system of measurement.

  2. An experimental study on thermal properties of composite insulation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gyoung-Seok [Building and Urban Research Department, Korea Institute of Construction Technology, 2311 Daehwa-Dong, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do 411-712 (Korea); College of Architecture, Hanyang University, 17, Hangdang-Dong, Sungdong-Gu, Seoul 133-791 (Korea); Kang, Jae-Sik; Jeong, Young-Sun; Lee, Seung-Eon [Building and Urban Research Department, Korea Institute of Construction Technology, 2311 Daehwa-Dong, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do 411-712 (Korea); Sohn, Jang-Yeul [College of Architecture, Hanyang University, 17, Hangdang-Dong, Sungdong-Gu, Seoul 133-791 (Korea)

    2007-04-01

    In accordance with the insulation standards reinforced since 2001 and the compulsory standards on floor impact sound insulation that have been enforced since 2004, insulation materials for actual buildings have been converted to composite materials and new insulation materials have been released in the market. However, Korea is lagging behind the world in fundamental experimental studies and resources. In case of some composite insulation materials, there also have been problems of distorted performance occurring as a result of tests being conducted without having verification and evaluation on the accuracy and inaccuracy of such tests. Therefore, this study grasped the thermal properties of composite insulation materials using thermal conductivity test equipment by heat flux method, and performed quantitative evaluation on the measurement precision and uncertainty of composite materials. (author)

  3. Competitive landscape of the EU’s insulation materials industry for energy-efficient buildings

    OpenAIRE

    PAVEL CLAUDIU; BLAGOEVA DARINA

    2017-01-01

    Insulation materials could contribute significantly to improving the overall energy efficiency and sustainability of the buildings, especially by reducing the energy losses through the building envelope (walls, roofs, floors, etc.). The global demand for thermal insulation materials in building applications is projected to increase at a CAGR of 4.5 % between 2016 and 2027. In the EU the demand for thermal insulation materials is estimated at 3.48 % (2015-2027). Wool minerals (glass and stone ...

  4. Simulation of energy- efficient building prototype using different insulating materials

    Science.gov (United States)

    Ouhaibi, Salma; Belouaggadia, Naoual; Lbibb, Rachid; Ezzine, Mohammed

    2018-05-01

    The objective of this work is to analyze the energetic efficiency of an individual building including an area of 130 m2 multi-zone, located in the region of FEZ which is characterized by a very hot and dry climate in summer and a quite cold one in winter, by incorporating insulating materials. This study was performed using TRNSYS V16 simulation software during a typical year of the FEZ region. Our simulation consists in developing a comparative study of two types of polystyrene and silica-aerogel insulation materials, in order to determine the best thermal performance. The results show that the thermal insulation of the building envelope is among the most effective solutions that give a significant reduction in energy requirements. Similarly, the use of silica-aerogels gives a good thermal performance, and therefore a good energy gain.

  5. Handbook of Thermal Insulation Applications.

    Science.gov (United States)

    1983-01-01

    Wiuppuoror *tIe beamsWiefag ln~ td ~oair ilmstool beams Plate 18. Metal Building Ceilings - A 18b: Fir* hataird rathge may limit the use of foam Insulation...RFCTANGUI.AR SOL TD A = 2(WxL+LxH+HxW) B V = WxLxH H L TRAPEZOID A 2 (A + B) x H A CONE A -n xRxS+ i xR 2 B V =( /3)x R2 x H TRIANGLE A BxH A- 2 CYLI NDER H 2...FABRICATIIG RECTANGULAR HEATING AND COOLING DUCTWORK. FIBERGLAS DUCT BOARD OWENS-CORNING FIBERGLAS CORP GLASS FIBER RIGID BOARD WITH ALUMINUM 4bD FOIL VAPOR

  6. Local Thermal Insulating Materials For Thermal Energy Storage ...

    African Journals Online (AJOL)

    Thermal insulation is one of the most important components of a thermal energy storage system. In this paper the thermal properties of selected potential local materials which can be used for high temperature insulation are presented. Thermal properties of seven different samples were measured. Samples consisted of: ...

  7. Quantitative analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    This work concerns the development of simulation tools for mapping of insulation properties of thermal insulation coatings based on selected functional filler materials. A mathematical model, which includes the underlying physics (i.e. thermal conductivity of a heterogeneous two-component coating...

  8. Study of thermal conductivity of multilayer insulation

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, D; Sundaram, S; Nath, G K; Sethuram, N P; Chandrasekharan, T; Varadarajan, T G [Heavy Water Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    This paper presents experimental determination of the apparent thermal conductivity of multilayer insulation for a cryogenic system. The variation of thermal conductivity with residual gas pressure is studied and the optimum vacuum for good insulating performance is determined. Evaporation loss technique for heat-inleak determination is employed. (author). 3 refs., 3 figs.

  9. Study of thermal conductivity of multilayer insulation

    International Nuclear Information System (INIS)

    Dutta, D.; Sundaram, S.; Nath, G.K.; Sethuram, N.P.; Chandrasekharan, T.; Varadarajan, T.G.

    1994-01-01

    This paper presents experimental determination of the apparent thermal conductivity of multilayer insulation for a cryogenic system. The variation of thermal conductivity with residual gas pressure is studied and the optimum vacuum for good insulating performance is determined. Evaporation loss technique for heat-inleak determination is employed. (author)

  10. Effect of thermal insulation on the electrical characteristics of NbOx threshold switches

    Science.gov (United States)

    Wang, Ziwen; Kumar, Suhas; Wong, H.-S. Philip; Nishi, Yoshio

    2018-02-01

    Threshold switches based on niobium oxide (NbOx) are promising candidates as bidirectional selector devices in crossbar memory arrays and building blocks for neuromorphic computing. Here, it is experimentally demonstrated that the electrical characteristics of NbOx threshold switches can be tuned by engineering the thermal insulation. Increasing the thermal insulation by ˜10× is shown to produce ˜7× reduction in threshold current and ˜45% reduction in threshold voltage. The reduced threshold voltage leads to ˜5× reduction in half-selection leakage, which highlights the effectiveness of reducing half-selection leakage of NbOx selectors by engineering the thermal insulation. A thermal feedback model based on Poole-Frenkel conduction in NbOx can explain the experimental results very well, which also serves as a piece of strong evidence supporting the validity of the Poole-Frenkel based mechanism in NbOx threshold switches.

  11. Method of manufacturing a thermally insulating body

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, J.A.; Morgan, D.E.; Jackson, J.D.

    1988-10-11

    A method of manufacturing a microporous thermally insulating body comprises mixing together a finely divided microporous insulating material such as silica aerogel or pyrogenic silica and a solid ammonia-generating compound in particulate form, and compressing the mixture to form a thermally insulating body. The ammonia-generating compound is dispersed evenly throughout the insulating material and may comprise, for example, ammonium carbonate, ammonium acetate or urea. Preferably, the ammonia-generating compound comprises a mixture of about one third by weight of ammonium carbonate and about two thirds by weight of ammonium bicarbonate together with a small proportion of magnesium oxide. Experiments are described which illustrate the manufacturing process. 6 tabs.

  12. Foam/Aerogel Composite Materials for Thermal and Acoustic Insulation and Cryogen Storage

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Weiser, Erik S. (Inventor); Sass, Jared P. (Inventor)

    2011-01-01

    The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N.sub.2 or H.sub.2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.

  13. Thermal insulation of high temperature reactors

    International Nuclear Information System (INIS)

    Cornille, Y.

    1975-01-01

    Operating conditions of HTR thermal insulation are given and heat insulators currently developed are described (fibers kept in position by metallic structures). For future applications and higher temperatures, research is directed towards solutions using ceramics or associating fibers and ceramics [fr

  14. Insulation systems of the building construtions

    Directory of Open Access Journals (Sweden)

    Rumiantcev Boris

    2016-01-01

    Full Text Available Constructions of the exterior insulation and decoration combines materials of different functionality and constructive solutions allows to these materials to demonstrate their efficiency to the great extent. Fire safety of buildings is mandatory requirement for building systems. Some insulating material may belong to the group of combustible, but their use in structures so as to minimize the risk of fire. On the other hand, there are special designs, in which non-flammable insulation acts as a flame retardant barrier. In the article carried systematization of construction systems used in the flat and pitched roof during the insulation and wall covering and facades. Taking into account the experience of leading firms were considered the application features of using exterior finish systems: construction solutions, requirements for materials and recommendations about the installation these systems.The article deals with the construction ventilated roofing system of two types: flat roof and pitched roof seam. In the first case, the ventilation system is created using milled insulation boards in the second - by a ventilated gap. In both cases the natural convection of air in the air cavities. Ensuring operational stability insulation is laid on the stages of production of heat-insulating materials. It is important: firstly responsible execution of all process operations associated with providing regulatory properties of materials and secondly, the performance of additional operations associated with the produc-tion of materials, working in a specific design. An example of a material whose properties can modify for a particular application, are milled mineral wool (with air channels for systems of ventilated flat roof.

  15. Correlations in hydrothermal properties of building insulation

    International Nuclear Information System (INIS)

    Antonyová, A

    2013-01-01

    The contribution comprises analysis that is based on scientific work as a part of participation on the international research project carried out at the University of Prešov in Prešov and Vienna University of Technology entitled 'Detection and Management of Risk Processes in Building Insulation' and numbered SRDA SK-AT-0008-10. Statistical approach with correlations among humidity, time and temperature values in the space between the wall and building insulation uses the set of data obtained during the measurement series as testing using a new technology with equipment that does not influence the environment properties in the space. Therefore such real mapping can bring a real picture of possible condensation as a risk process in the building envelope.

  16. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    Science.gov (United States)

    Zhou, Ao; Wong, Kwun-Wah

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718

  17. Improved Thermal-Insulation Systems for Low Temperatures

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stanislaw D.

    2003-01-01

    Improved thermal-insulation materials and structures and the techniques for manufacturing them are undergoing development for use in low-temperature applications. Examples of low-temperature equipment for which these thermal insulation systems could provide improved energy efficiency include storage tanks for cryogens, superconducting electric-power-transmission equipment, containers for transport of food and other perishable commodities, and cold boxes for low-temperature industrial processes. These systems could also be used to insulate piping used to transfer cryogens and other fluids, such as liquefied natural gas, refrigerants, chilled water, crude oil, or low-pressure steam. The present thermal-insulation systems are layer composites based partly on the older class of thermal-insulation systems denoted generally as multilayer insulation (MLI). A typical MLI structure includes an evacuated jacket, within which many layers of radiation shields are stacked or wrapped close together. Low-thermal-conductivity spacers are typically placed between the reflection layers to keep them from touching. MLI can work very well when a high vacuum level (less than 10(exp-4) torr) is maintained and utmost care is taken during installation, but its thermal performance deteriorates sharply as the pressure in the evacuated space rises into the soft vacuum range [pressures greater than 0.1 torr (greater than 13 Pa)]. In addition, the thermal performance of MLI is extremely sensitive to mechanical compression and edge effects and can easily decrease from one to two orders of magnitude from its ideal value even when the MLI is kept under high vacuum condition. The present thermal-insulation systems are designed to perform well under soft vacuum level, in particular the range of 1 to 10 torr. They are also designed with larger interlayer spacings to reduce vulnerability to compression (and consequent heat leak) caused by installation and use. The superiority of these systems is the

  18. Impact of Moistened Bio-insulation on Whole Building Energy Use

    Directory of Open Access Journals (Sweden)

    Latif Eshrar

    2017-01-01

    Full Text Available One of the key properties of hemp insulation is its moisture adsorption capacity. Adsorption of moisture can increase both thermal conductivity and heat capacity of the insulation. The current study focuses on the effect of moisture induced thermal mass of installed hemp insulation on the whole building energy use. Hygrothermal and thermal simulations were performed using the CIBSE TRY weather data of Edinburgh and Birmingham with the aid of following simulation tools: WUFI and IES. Following simplified building types were considered: building-1 with dry hemp wall and loft insulations, building-2 with moistened hemp wall and loft insulation and building-3 with stone wool insulation. It was observed that the overall conditioning load of building-1 was 1.2 to 2.3% higher than building-2 and 3. However, during the summer season, the cooling load of building-2 was 3-7.5% lower than the other buildings. It implies that, moistened insulation can potentially mitigate the effect of increasing cooling degree days induced by global warming.

  19. Nuclear reactor vessel fuel thermal insulating barrier

    Science.gov (United States)

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  20. Artificial heart system thermal insulation component development

    International Nuclear Information System (INIS)

    Svedberg, R.C.; Buckman, R.W. Jr.

    1975-01-01

    A concentric cup vacuum multifoil insulation system has been selected by virtue of its size, weight, and thermal performance to insulate the hot radioisotope portion of the thermal converter of an artificial implantable heart system. A factor of 2 improvement in thermal performance, based on the heat loss per number of foil layers (minimum system weight and volume) has been realized over conventional spiral wrapped multifoil vacuum insulation. This improvement is the result of the concentric cup construction to maintain a uniform interfoil spacing and the elimination of corner heat losses. Based on external insulation system dimensions (surface area in contact with host body), heat losses of 0.019 W/ cm 2 at 1140 0 K (1600 0 F) and 0.006 W/cm 2 at 920 0 K (1200 0 F) have been achieved. Factors which influence thermal performance of the nickel foil concentric cup insulation system include the number of cups, configuration and method of application of zirconia (ZrO 2 ) spacer material, system pressure, emittance of the cups, and operating temperature

  1. Optically Transparent Thermally Insulating Silica Aerogels for Solar Thermal Insulation.

    Science.gov (United States)

    Günay, A Alperen; Kim, Hannah; Nagarajan, Naveen; Lopez, Mateusz; Kantharaj, Rajath; Alsaati, Albraa; Marconnet, Amy; Lenert, Andrej; Miljkovic, Nenad

    2018-04-18

    Rooftop solar thermal collectors have the potential to meet residential heating demands if deployed efficiently at low solar irradiance (i.e., 1 sun). The efficiency of solar thermal collectors depends on their ability to absorb incoming solar energy and minimize thermal losses. Most techniques utilize a vacuum gap between the solar absorber and the surroundings to eliminate conduction and convection losses, in combination with surface coatings to minimize reradiation losses. Here, we present an alternative approach that operates at atmospheric pressure with simple, black, absorbing surfaces. Silica based aerogels coated on black surfaces have the potential to act as simple and inexpensive solar thermal collectors because of their high transmission to solar radiation and low transmission to thermal radiation. To demonstrate their heat-trapping properties, we fabricated tetramethyl orthosilicate-based silica aerogels. A hydrophilic aerogel with a thickness of 1 cm exhibited a solar-averaged transmission of 76% and thermally averaged transmission of ≈1% (at 100 °C). To minimize unwanted solar absorption by O-H groups, we functionalized the aerogel to be hydrophobic, resulting in a solar-averaged transmission of 88%. To provide a deeper understanding of the link between aerogel properties and overall efficiency, we developed a coupled radiative-conductive heat transfer model and used it to predict solar thermal performance. Instantaneous solar thermal efficiencies approaching 55% at 1 sun and 80 °C were predicted. This study sheds light on the applicability of silica aerogels on black coatings for solar thermal collectors and offers design priorities for next-generation solar thermal aerogels.

  2. Soup Cooking by Thermal Insulation Method

    OpenAIRE

    佐藤, 辰江; 根本, 勢子; サトウ, タツエ; ネモト, セイコ; TATSUE, SATO; SEIKO, NEMOTO

    1992-01-01

    In order to examine the thermal insulation method of soup cooking, we cooked two kinds of soup. The soup cooked by thermal insulation method was compared with the soup cooked by standard boiling method. ln sensory test, it was more aromatic and palatable than the soup by boiling, and some panels commented that it was rather mild. The measured values of pH, specific gravity, acidity and amount of dry weight of souble solids, total-N, formal-N of the soup cooked by the two methods mentioned abo...

  3. Sprayable Aerogel Bead Compositions With High Shear Flow Resistance and High Thermal Insulation Value

    Science.gov (United States)

    Ou, Danny; Trifu, Roxana; Caggiano, Gregory

    2013-01-01

    A sprayable aerogel insulation has been developed that has good mechanical integrity and lower thermal conductivity than incumbent polyurethane spray-on foam insulation, at similar or lower areal densities, to prevent insulation cracking and debonding in an effort to eliminate the generation of inflight debris. This new, lightweight aerogel under bead form can be used as insulation in various thermal management systems that require low mass and volume, such as cryogenic storage tanks, pipelines, space platforms, and launch vehicles.

  4. Improved thermal monitoring of rotating machine insulation

    International Nuclear Information System (INIS)

    Stone, G.C.; Sedding, H.G.; Bernstein, B.S.

    1991-01-01

    Aging of motor and generator insulation is most often induced as a result of operation at high temperatures. In spite of this knowledge, stator and rotor temperatures are only crudely monitored in existing machines. In EPRI project RP2577-1, three new means of detecting machine temperatures were successfully developed. Two of the techniques, the Electronic Rotor Temperature Sensor and the Passive Rotor Temperature Sensor, were specifically developed to give point temperature readings on turbine generator rotor windings. The Insulation Sniffer allows operators to determine when any electrical insulation in a motor is overheating. Another electronic device, called the Thermal Life Indicator, helps operators and maintenance personnel determine how accumulated operation has affected the remaining life of the insulation in rotating machines. These new devices permit nuclear station operators to avoid hazardous operating conditions and will help to determine priorities for maintenance and plant life extension programs

  5. High performance thermal insulation systems (HiPTI). Vacuum insulated products (VIP). Proceedings of the international conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, M.; Bertschinger, H.

    2001-07-01

    These are the proceedings of the International Conference and Workshop held at EMPA Duebendorf, Switzerland, in January 2001. The papers presented at the conference's first day included contributions on the role of high-performance insulation in energy efficiency - providing an overview of available technologies and reviewing physical aspects of heat transfer and the development of thermal insulation as well as the state of the art of glazing technologies such as high-performance and vacuum glazing. Also, vacuum-insulated products (VIP) with fumed silica, applications of VIP systems in technical building systems, nanogels, VIP packaging materials and technologies, measurement of physical properties, VIP for advanced retrofit solutions for buildings and existing and future applications for advanced low energy building are discussed. Finally, research and development concerning VIP for buildings are reported on. The workshops held on the second day covered a preliminary study on high-performance thermal insulation materials with gastight porosity, flexible pipes with high performance thermal insulation, evaluation of modern insulation systems by simulation methods as well as the development of vacuum insulation panels with a stainless steel envelope.

  6. Characterization and comparative investigation of thermally insulating layers for the turbine and engine construction

    International Nuclear Information System (INIS)

    Steffens, H.D.; Fischer, U.

    1987-01-01

    The aim of the research project was to subject commercially produced thermal insulation layer systems, the use of which seems promising for engine and turbine construction, to standardized characterisation, testing and comparison. Suitable methods and procedures for this had to be developed, in order to be able to derive instructions for optimisation guidelines for the production of improved thermal insulation systems from the results of investigations. In the context of the research project, a computer-controlled thermal shock test rig was first developed, designed and built. This test rig was designed so that important test conditions, such as the heating and cooling speed could be varied reproducibly over wide ranges. Methods and procedures were worked out, which permit a comparative qualitative and quantitative characterisation of layers of thermal insulation. From metallographic investigations, the layer build-up, layer structure, porosity and crack morphology of the layers in the delivered state and after testing could be assessed and compared. X-ray fine structure investigations gave information on the type and quantity of the phases occurring in the ceramic layers. The results of thermal shock tests which were done at different temperature intervals depending on the substrate, could be correlated with the build-up of layers and supplied information on damage mechanisms and the course of failure. (orig.) With 57 figs., 16 tabs., 89 refs [de

  7. Thermal resistances of air in cavity walls and their effect upon the thermal insulation performance

    Energy Technology Data Exchange (ETDEWEB)

    Bekkouche, S.M.A.; Cherier, M.K.; Hamdani, M.; Benamrane, N. [Application of Renewable Energies in Arid and Semi Arid Environments /Applied Research Unit on Renewable Energies/ EPST Development Center of Renewable Energies, URAER and B.P. 88, ZI, Gart Taam Ghardaia (Algeria); Benouaz, T. [University of Tlemcen, BP. 119, Tlemcen R.p. 13000 (Algeria); Yaiche, M.R. [Development Center of Renewable Energies, CDER and B.P 62, 16340, Route de l' Observatoire, Bouzareah, Algiers (Algeria)

    2013-07-01

    The optimum thickness in cavity walls in buildings is determined under steady conditions; the heat transfer has been calculated according to ISO 15099:2003. Two forms of masonry units are investigated to conclude the advantage of high thermal emissivity. The paper presents also some results from a study of the thermal insulation performance of air cavities bounded by thin reflective material layer 'eta = 0.05'. The results show that the most economical cavity configuration depends on the thermal emissivity and the insulation material used.

  8. High sensitivity thermal sensors on insulating diamond

    Energy Technology Data Exchange (ETDEWEB)

    Job, R. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Denisenko, A.V. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Zaitsev, A.M. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Melnikov, A.A. [Belarussian State Univ., Minsk (Belarus). HEII and FD; Werner, M. [VDI/VDE-IT, Teltow (Germany); Fahrner, W.R. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices

    1996-12-15

    Diamond is a promising material to develop sensors for applications in harsh environments. To increase the sensitivity of diamond temperature sensors the effect of thermionic hole emission (TE) over an energetic barrier formed in the interface between highly boron-doped p-type and intrinsic insulating diamond areas has been suggested. To study the TE of holes a p-i-p diode has been fabricated and analyzed by electrical measurements in the temperature range between 300 K and 700 K. The experimental results have been compared with numerical simulations of its electrical characteristics. Based on a model of the thermionic emission of carriers into an insulator it has been suggested that the temperature sensitivity of the p-i-p diode on diamond is strongly affected by the re-emission of holes from a group of donor-like traps located at a level of 0.7-1.0 eV above the valence band. The mechanism of thermal activation of the current includes a spatial redistribution of the potential, which results in the TE regime from a decrease of the immobilized charge of the ionized traps within the i-zone of the diode and the correspondent lowering of the forward biased barrier. The characteristics of the p-i-p diode were studied with regard to temperature sensor applications. The temperature coefficient of resistance (TCR=-0.05 K{sup -1}) for temperatures above 600 K is about four times larger than the maximal attainable TCR for conventional boron-doped diamond resistors. (orig.)

  9. Thermally assisted ordering in Mott insulators

    Science.gov (United States)

    Sims, Hunter; Pavarini, Eva; Koch, Erik

    2017-08-01

    Landau theory describes phase transitions as the competition between energy and entropy: The ordered phase has lower energy, while the disordered phase has larger entropy. When heating the system, ordering is reduced entropically until it vanishes at the critical temperature. This picture implicitly assumes that the energy difference between the ordered and disordered phases does not change with temperature. We show that for orbital ordering in the Mott insulator KCuF3, this assumption fails qualitatively: entropy plays a negligible role, while thermal expansion energetically stabilizes the orbitally ordered phase to such an extent that no phase transition is observed. To understand this strong dependence on the lattice constant, we need to take into account the Born-Mayer repulsion between the ions. It is the latter, and not the Jahn-Teller elastic energy, which determines the magnitude of the distortion. This effect will be seen in all materials where the distortion expected from the Jahn-Teller mechanism is so large that the ions would touch. Our mechanism explains not only the absence of a phase transition in KCuF3, but even suggests the possibility of an inverted transition in closed-shell systems, where the ordered phase emerges only at high temperatures.

  10. Utilization of Baggase Waste Based Materials as Improvement for Thermal Insulation of Cement Brick

    Directory of Open Access Journals (Sweden)

    Aminudin Eeydzah

    2017-01-01

    Full Text Available Building materials having low thermal load and low thermal conductivity will provide thermal comforts to the occupants in building. In an effort to reduce the use of high energy and waste products from the agricultural industry, sugarcane bagasse and banana bagasse has been utilize as an additive in the manufacture of cement brick. The aim of this study is to investigate the insulation and mechanical properties of brick that has been mixed with bagasse and its effectiveness as thermal insulation using heat flow meter. Waste bagasse is being treated using sodium hydroxide (NaOH and is characterized using SEM and XRF. The samples produced with two different dimensions of 50 mm × 50 mm × 50 mm and 215mm × 102.5mm × 65mm for thermal conductivity test. Next, the sample varies from 0% (control sample, 2%, 4%, 6%, 8% and 10% in order to determine the best mix proportion. The compressive strength is being tested for 7, 14 and 28 days of water curing. Results showed that banana bagasse has lower thermal conductivity compared to sugarcane bagasse used, with compressive strength of 15.6MPa with thermal conductivity 0.6W/m.K.

  11. Exploration of porous SiC nanostructures as thermal insulator with high thermal stability and low thermal conductivity

    Institute of Scientific and Technical Information of China (English)

    Peng; WAN; Jingyang; WANG

    2016-01-01

    The crucial challenge for current nanoscale thermal insulation materials,such as Al2O3 and SiO2 aerogel composites,is to solve the trade-off between extremely low thermal conductivity and unsatisfied thermal stability.Typical high-temperature ceramic SiC possesses excellent mechanical properties and

  12. Wood moisture monitoring during log house thermal insulation mounting

    Directory of Open Access Journals (Sweden)

    Pavla Kotásková

    2011-01-01

    Full Text Available The current designs of thermal insulation for buildings concentrate on the achievement of the required heat transmission coefficient. However, another factor that cannot be neglected is the assessment of the possible water vapour condensation inside the construction. The aim of the study was to find out whether the designed modification of the cladding structure of an existing log house will or will not lead to a risk of possible water vapour condensation in the walls after an additional thermal insulation mounting. The condensation could result in the increase in moisture of the walls and consequently the constructional timber, which would lead to the reduction of the timber construction strength, wood degradation by biotic factors – wood-destroying insects, mildew or wood-destroying fungi. The main task was to compare the theoretically established values of moisture of the constructional timber with the values measured inside the construction using a specific example of a thermal insulated log house. Three versions of thermal insulation were explored to find the solution of a log house reconstruction which would be the optimum for living purposes. Two versions deal with the cladding structure with the insulation from the interior, the third version deals with an external insulation.In a calculation model the results can be affected to a great degree by input values (boundary conditions. This especially concerns the factor of vapour barrier diffusion resistance, which is entered in accordance with the producer’s specifications; however, its real value can be lower as it depends on the perfectness and correctness of the technological procedure. That is why the study also includes thermal technical calculations of all designed insulation versions in the most unfavourable situation, which includes the degradation of the vapour barrier down to 10% efficiency, i.e. the reduction of the diffusion resistance factor to 10% of the original value

  13. Thermal properties of a sandwich construction insulated with Polyurethane (DC-System)

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Dreau, Jerome Le

    Rigid polyurethane foam (PUR) is a good thermal insulation product for buildings, mainly due to its low thermal conductivity (λ ≈ 20 mW/m.K), low permeability to water and stability over time. The other types of insulation products available on the market have a significantly higher thermal...... conductivity: + 50% for expanded polystyrene (λ ≈ 30 mW/m.K), + 75% for mineral wools (λ ≈ 35 mW/m.K), etc. Despite its low thermal conductivity, polyurethane foam (PUR) is not much used as insulation material for walls because of its low resistance to fire. The most common PUR boards are classified C-s2-d0...

  14. Graded thermal insulation layer systems; Gradierte Waermedaemmschichtsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Leushake, U.; Krell, T. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany). Inst. fuer Werkstoff-Forschung

    1996-12-31

    Graded thermal insulation systems reduce local stresses between two layers. Grading usually involves a concentration variation in a second phase but may also involve variations of the microstructure or chemical composition. The contribution discusses the application of this technique for thermal protection of turbine blades in aircraft propulsion systems. [Deutsch] Mit Hilfe gradierter Waermeschichtsysteme ist es moeglich die lokalen Spannungen zwischen zwei Schichten zu verringern. Die Gradierung umfasst meistens eine Variation des Gehaltes einer zweiten Phase, kann aber auch die Variation der Mikrostruktur oder der chemischen Zusammensetzung beinhalten. In diesem Beitrag wird auf die Anwendung als thermischer Schutz von Turbinenschaufeln fuer Flugtriebwerke eingegangen.

  15. Optimization of thermal insulation to achieve energy savings in low energy house (refurbishment)

    International Nuclear Information System (INIS)

    Bojić, Milorad; Miletić, Marko; Bojić, Ljubiša

    2014-01-01

    Highlights: • For buildings that require heating, a thickness of their thermal insulation is optimized. • The objective was to improve energy efficiency of the building. • The optimization is performed by using EnergyPlus and Hooke–Jeeves method. • The embodied energy of thermal insulation and the entire life cycle of the house are taken into account. - Abstract: Due to the current environmental situation, saving energy and reducing CO 2 emission have become the leading drive in modern research. For buildings that require heating, one of the solutions is to optimize a thickness of their thermal insulation and thus improve energy efficiency and reduce energy needs. In this paper, for a small residential house in Serbia, an optimization in the thickness of its thermal insulation layer is investigated by using EnergyPlus software and Hooke–Jeeves direct search method. The embodied energy of thermal insulation is taken into account. The optimization is done for the entire life cycle of thermal insulation. The results show the optimal thickness of thermal insulation that yields the minimum primary energy consumption

  16. Overview of thermal conductivity models of anisotropic thermal insulation materials

    Science.gov (United States)

    Skurikhin, A. V.; Kostanovsky, A. V.

    2017-11-01

    Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.

  17. Thermal insulation product for insulation, especially in nuclear power engineering, and method of its production

    International Nuclear Information System (INIS)

    Veselovsky, P.; Zink, S.; Balacek, P.; Mares, I.

    1989-01-01

    The insulation consists of a sewn fabric cover made of inorganic fibers, in which the fiber filling is reinforced mechanically by dense point interweaving. The inorganic fibers, 1 to 5 μm in diameter, consist of min. 97 wt.% mixture of aluminium and silicon oxides in the vitreous state. The fibers making up the cover consist of min. 95% silicon, aluminium, calcium, magnesium and boron oxides in the vitreous state; the rest can consist of alloy steel fibres. The bulk density of the insulation is 70 to 150 kg/m 3 . The product is highly resistant to temperature and to the action of chemicals, water, and acid and alkaline deactivation solutions. Its manufacture is fast and undemanding. It is designed for thermal insulation of pipes, tanks and valves in nuclear power plants. (M.D.). 2 figs

  18. Improvement of methods for calculation of sound insulation in buildings

    OpenAIRE

    Mašović, Draško B.

    2015-01-01

    The main object of this work are the methods for calculation of sound insulation based on the classical model of sound propagation in buildings and single-number rating of sound insulation. The aim of the work is inspection of the possibilities for improvement of standard methods for quantification and calculation of sound insulation, in order to achieve higher accuracy of the obtained numerical values and their correlation with subjective impression of the acoustic comfort in buildings. Proc...

  19. Thermally-insulating layer for nuclear reactors

    International Nuclear Information System (INIS)

    1975-01-01

    The thermally-insulating layer has been designed both for insulating surfaces within the core of a nuclear reactor and transmitting loads such as the core-weight. Said layer comprises a layer of bricks and a layer of tiles with smaller clearance between the tiles than between the bricks, the latter having a reduced cross-section against the tiles so as to be surrounded by relatively large interconnected ducts forming a continuous chamber behind the tile-layer in order to induce a substantial decreases in the transverse flow of the reactor-core coolant. The core preferably comprises hexagonal columns supported by rhomb-shaped plates, with channels distributed so as to mix the coolant of twelve columns. The plates are separated from support-tiles by means of pillars [fr

  20. The efficacy of a highly insulated building in KwaZulu-Natal

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2013-10-01

    Full Text Available The CSIR undertook an energy and thermal performance research project in 2011 on a house constructed with the Imison 3 Building System. The purpose was to analyse the energy and thermal performance of a highly insulated house in Pretoria. The scope...

  1. Basal accretion, a major mechanism for mountain building in Taiwan revealed in rock thermal history

    Science.gov (United States)

    Chen, Chih-Tung; Chan, Yu-Chang; Lo, Ching-Hua; Malavieille, Jacques; Lu, Chia-Yu; Tang, Jui-Ting; Lee, Yuan-Hsi

    2018-02-01

    Deep tectonic processes are key integral components in the evolution of mountain belts, while observations of their temporal development are generally obscured by thermal resetting, retrograde alteration and structural overprinting. Here we recorded an integrated rock time-temperature history for the first time in the pro-wedge part of the active Taiwan arc-continent collision starting from sedimentation through cleavage-forming state to its final exhumation. The integrated thermal and age results from the Raman Spectroscopy of Carbonaceous Material (RSCM) method, zircon U-Pb laser ablation dating, and in-situ40Ar/39Ar laser microprobe dating suggest that the basal accretion process was crucial to the development of the Taiwanese orogenic wedge. The basal accretion process commenced early in the mountain building history (∼6 Ma) and gradually migrated to greater depths, as constrained by persistent plate convergence and cleavage formation under nearly isothermal state at similar depths until ∼ 2.5 Ma recorded in the early-accreted units. Such development essentially contributed to mountain root growth by the increased depth of the wedge detachment and the downward wedge thickening during the incipient to full collision stages in the Taiwan mountain belt.

  2. Foundation heat transfer analysis for buildings with thermal piles

    International Nuclear Information System (INIS)

    Almanza Huerta, Luis Enrique; Krarti, Moncef

    2015-01-01

    Highlights: • A numerical transient thermal model for thermo-active foundations is developed. • Thermal interactions between thermal piles and building foundations are evaluated. • A simplified analysis method of thermal interactions between thermal piles and building foundations is developed. - Abstract: Thermal piles or thermo-active foundations utilize heat exchangers embedded within foundation footings to heat and/or cool buildings. In this paper, the impact of thermal piles on building foundation heat transfer is investigated. In particular, a simplified analysis method is developed to estimate the annual ground-coupled foundation heat transfer when buildings are equipped with thermal piles. First, a numerical analysis of the thermal performance of thermo-active building foundations is developed and used to assess the interactions between thermal piles and slab-on-grade building foundations. The impact of various design parameters and operating conditions is evaluated including foundation pile depth, building slab width, foundation insulation configuration, and soil thermal properties. Based on the results of a series of parametric analyses, a simplified analysis method is presented to assess the impact of the thermal piles on the annual heat fluxes toward or from the building foundations. A comparative evaluation of the predictions of the simplified analysis method and those obtained from the detailed numerical analysis indicated good agreement with prediction accuracy lower than 5%. Moreover, it is found that thermal piles can affect annual building foundation heat loss/gain by up to 30% depending on foundation size and insulation level

  3. Building thermal loads: A case study for David Hellen Petta public secondary school

    CSIR Research Space (South Africa)

    Kumirai, T

    2013-03-01

    Full Text Available This chapter assesses the impact of appropriate passive interventions on building thermal loads. The passive interventions investigated are ceiling insulation, wall insulation, attic ventilation, natural ventilation and roof absorptance and also...

  4. Experiment on thermal insulation and sodium deposition of shield plug

    International Nuclear Information System (INIS)

    Hashiguchi, K.; Honda, M.; Shiratori, H.; Ozaki, O.; Suzuki, M.

    1986-01-01

    A series of experiments on temperature distribution and thermal insulation characteristics was conducted using a reduced scale model of LMFBR shield plug. Observation and measurement of sodium deposition were also conducted on the model after the experiment. The effect of annulus natural convection was clarified for temperature and the thermal insulation characteristics from evaluating the result. Temperature distribution analysis was conducted successfully by combining the general purpose structural analysis program NASTRAN and vertical annulus natural convection analysis program VANAC. Moreover, significant effect was substantiated for the annulus convection barrier to increase the thermal insulation performance, narrow horizontal gap structure to prevent sodium deposition and thermal insulation plates. (author)

  5. Thermal insulation coating based on water-based polymer dispersion

    Directory of Open Access Journals (Sweden)

    Panchenko Iuliia

    2018-01-01

    Full Text Available For Russia, due to its long winter period, improvement of thermal insulation properties of envelope structures by applying thermal insulation paint and varnish coating to its inner surface is considered perspective. Thermal insulation properties of such coatings are provided by adding aluminosilicate microspheres and aluminum pigment to their composition. This study was focused on defining the effect of hollow aluminosilicate microspheres and aluminum pigment on the paint thermal insulation coating based on water-based polymer dispersion and on its optimum filling ratio. The optimum filling ratio was determined using the method of critical pigment volume concentration (CPVC. The optimum filling ratio was found equal to 55%.

  6. Optimum Insulation Thickness for Walls and Roofs for Reducing Peak Cooling Loads in Residential Buildings in Lahore

    Directory of Open Access Journals (Sweden)

    SIBGHA SIDDIQUE SIDDIQUE

    2016-10-01

    Full Text Available Thermal insulation is the most effective energy saving measure for cooling in buildings. Therefore, the main subject of many engineering investigations is the selection and determination of the optimum insulation thickness. In the present study, the optimum insulation thickness on external walls and roofs is determined based on the peak cooling loads for an existing residential building in Lahore, Pakistan. Autodesk® Revit 2013 is used for the analysis of the building and determination of the peak cooling loads. The analysis shows that the optimum insulation thickness to reduce peak cooling loads up to 40.1% is 1 inch for external walls and roof respectively.

  7. Optimum Insulation Thickness for Walls and Roofs for Reducing Peak Cooling Loads in Residential Buildings in Lahore

    International Nuclear Information System (INIS)

    Siddique, S.; Arif, S.; Khan, A.; Alam, A.T.

    2016-01-01

    Thermal insulation is the most effective energy saving measure for cooling in buildings. Therefore, the main subject of many engineering investigations is the selection and determination of the optimum insulation thickness. In the present study, the optimum insulation thickness on external walls and roofs is determined based on the peak cooling loads for an existing residential building in Lahore, Pakistan. Autodesk at the rate Revit 2013 is used for the analysis of the building and determination of the peak cooling loads. The analysis shows that the optimum insulation thickness to reduce peak cooling loads up to 40.1 percent is 1 inch for external walls and roof respectively. (author)

  8. Characterization of systems for external insulation and retrofitting with emphasis on the thermal performance

    DEFF Research Database (Denmark)

    Rudbeck, Claus; Rose, Jørgen

    1999-01-01

    During the last decade retrofitting of buildings has received increased attention not only in northern Europe but throughout the world. Retrofitting of buildings is usually performed to solve one or more of the following problems: poor indoor climate, excessive heat losses, insufficient durability...... a building designer with such a choice, key parameters for insulation systems are described in a uniform manner stating their performance with regards to aesthetics, heat transfer, moisture, durability, fire and economy. Parameters given for the total insulation capability enable the building designer...... to include the effect of thermal bridges by performing simple calculations, a task which normally requires the use of numerical models. The results show that thermal bridges in external insulation systems may decrease their thermal resistance by more than 25%.Key parameters was calculated by the use...

  9. Preparation, Mechanical and Thermal Properties of Cement Board with Expanded Perlite Based Composite Phase Change Material for Improving Buildings Thermal Behavior

    Directory of Open Access Journals (Sweden)

    Rongda Ye

    2015-11-01

    Full Text Available Here we demonstrate the mechanical properties, thermal conductivity, and thermal energy storage performance of construction elements made of cement and form-stable PCM-Rubitherm® RT 28 HC (RT28/expanded perlite (EP composite phase change materials (PCMs. The composite PCMs were prepared by adsorbing RT28 into the pores of EP, in which the mass fraction of RT28 should be limited to be no more than 40 wt %. The adsorbed RT28 is observed to be uniformly confined into the pores of EP. The phase change temperatures of the RT28/EP composite PCMs are very close to that of the pure RT28. The apparent density and compression strength of the composite cubes increase linearly with the mass fraction of RT28. Compared with the thermal conductivity of the boards composed of cement and EP, the thermal conductivities of the composite boards containing RT28 increase by 15%–35% with the mass fraction increasing of RT28. The cubic test rooms that consist of six boards were built to evaluate the thermal energy storage performance, it is found that the maximum temperature different between the outside surface of the top board with the indoor temperature using the composite boards is 13.3 °C higher than that of the boards containing no RT28. The thermal mass increase of the built environment due to the application of composite boards can contribute to improving the indoor thermal comfort and reducing the energy consumption in the buildings.

  10. Preparation, Mechanical and Thermal Properties of Cement Board with Expanded Perlite Based Composite Phase Change Material for Improving Buildings Thermal Behavior.

    Science.gov (United States)

    Ye, Rongda; Fang, Xiaoming; Zhang, Zhengguo; Gao, Xuenong

    2015-11-13

    Here we demonstrate the mechanical properties, thermal conductivity, and thermal energy storage performance of construction elements made of cement and form-stable PCM-Rubitherm® RT 28 HC (RT28)/expanded perlite (EP) composite phase change materials (PCMs). The composite PCMs were prepared by adsorbing RT28 into the pores of EP, in which the mass fraction of RT28 should be limited to be no more than 40 wt %. The adsorbed RT28 is observed to be uniformly confined into the pores of EP. The phase change temperatures of the RT28/EP composite PCMs are very close to that of the pure RT28. The apparent density and compression strength of the composite cubes increase linearly with the mass fraction of RT28. Compared with the thermal conductivity of the boards composed of cement and EP, the thermal conductivities of the composite boards containing RT28 increase by 15%-35% with the mass fraction increasing of RT28. The cubic test rooms that consist of six boards were built to evaluate the thermal energy storage performance, it is found that the maximum temperature different between the outside surface of the top board with the indoor temperature using the composite boards is 13.3 °C higher than that of the boards containing no RT28. The thermal mass increase of the built environment due to the application of composite boards can contribute to improving the indoor thermal comfort and reducing the energy consumption in the buildings.

  11. Treating Fibrous Insulation to Reduce Thermal Conductivity

    Science.gov (United States)

    Zinn, Alfred; Tarkanian, Ryan

    2009-01-01

    A chemical treatment reduces the convective and radiative contributions to the effective thermal conductivity of porous fibrous thermal-insulation tile. The net effect of the treatment is to coat the surfaces of fibers with a mixture of transition-metal oxides (TMOs) without filling the pores. The TMO coats reduce the cross-sectional areas available for convection while absorbing and scattering thermal radiation in the pores, thereby rendering the tile largely opaque to thermal radiation. The treatment involves a sol-gel process: A solution containing a mixture of transition-metal-oxide-precursor salts plus a gelling agent (e.g., tetraethylorthosilicate) is partially cured, then, before it visibly gels, is used to impregnate the tile. The solution in the tile is gelled, then dried, and then the tile is fired to convert the precursor salts to the desired mixed TMO phases. The amounts of the various TMOs ultimately incorporated into the tile can be tailored via the concentrations of salts in the solution, and the impregnation depth can be tailored via the viscosity of the solution and/or the volume of the solution relative to that of the tile. The amounts of the TMOs determine the absorption and scattering spectra.

  12. Thermal Insulation System for Non-Vacuum Applications Including a Multilayer Composite

    Science.gov (United States)

    Fesmire, James E. (Inventor)

    2017-01-01

    The thermal insulation system of the present invention is for non-vacuum applications and is specifically tailored to the ambient pressure environment with any level of humidity or moisture. The thermal insulation system includes a multilayered composite including i) at least one thermal insulation layer and at least one compressible barrier layer provided as alternating, successive layers, and ii) at least one reflective film provided on at least one surface of the thermal insulation layer and/or said compressible barrier layer. The different layers and materials and their combinations are designed to provide low effective thermal conductivity for the system by managing all modes of heat transfer. The thermal insulation system includes an optional outer casing surrounding the multilayered composite. The thermal insulation system is particularly suited for use in any sub-ambient temperature environment where moisture or its adverse effects are a concern. The thermal insulation system provides physical resilience against damaging mechanical effects including compression, flexure, impact, vibration, and thermal expansion/contraction.

  13. Sprayable Thermal Insulation for Cryogenic Tanks, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Sprayable Thermal Insulation for Cryogenic Tanks (STICT) is a thermal management system applied by either an automated or manual spraying process with less...

  14. CFC alternatives for thermal insulation foams

    Energy Technology Data Exchange (ETDEWEB)

    Shankland, I.R. (Allied-Signal Inc., Buffalo, NY (US))

    1990-03-01

    Low density polymeric foam materials expanded with chlorofluorocarbon (CFC) blowing agents have found widespread use as highly efficient thermal insulation materials in the construction, refrigeration appliance and transportation industries. The advent of regulations which are reducing the production and consumption of the fully halogenated CFCs for environmental reasons has prompted the development of environmentally acceptable substitutes for the CFC blowing agents. This paper summarizes the physical properties and performance of the leading alternatives for CFC-11, which is used to expand rigid polyurethane and polyisocyanurate foams, and the leading alternatives for CFC-12 which is used to expand extruded polystyrene board foam. Although the alternatives, HCFC-123 and HCFC-14lb for CFC-11 and HCFC142b and HCFC-124 for CFC-12, are not perfect matches from the performance viewpoint, they represent the optimum choice given the constraints on environmental acceptability, toxicity, flammability and performance. (author).

  15. Periodic thermal response of multi-layer walls in a building. Materials of different types used for insulation, both internal and external

    Energy Technology Data Exchange (ETDEWEB)

    Elchinger, M F; Martin, C; Fauchais, P [UER des Sciences, Limoges (France)

    1982-05-01

    The authors analyze the temperature distribution in a wall built of several layers, heated on the inside, and whose outside wall temperatures exhibit a sine distribution: development of a simulation program and validation by comparison with experimental results. They determine the influence of the positioning and thickness of the insulation, the heat flux required to keep the inside surface of a 3, 4 or 5-layer wall at a fixed temperature, and make a comparison between heavy walls and light-weight structure walls. Finally, the study concludes with the determination of the most interesting insulation (external) for slack periods, night and weekend.

  16. Development of fly ash boards with thermal, acoustic and fire insulation properties.

    Science.gov (United States)

    Leiva, C; Arenas, C; Vilches, L F; Alonso-Fariñas, B; Rodriguez-Galán, M

    2015-12-01

    This paper presents an experimental analysis on a new board composed of gypsum and fly ashes from coal combustion, which are mutually compatible. Physical and mechanical properties, sound absorption coefficient, thermal properties and leaching test have been obtained. The mechanical properties showed similar values to other commercial products. As far as the acoustic insulation characteristics are concerned, sound absorption coefficients of 0.3 and 0.8 were found. The board presents a low thermal conductivity and a fire resistance higher than 50 min (for 4 cm of thickness). The leaching of trace elements was below the leaching limit values. These boards can be considered as suitable to be used in building applications as partitions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The Improvement of Thermal Insulating Concrete Panel

    Directory of Open Access Journals (Sweden)

    Mohammed Ali Nasser Ali

    2018-05-01

    Full Text Available The Iraqi houses flattening the roof by a concrete panel, and because of the panels on the top directly exposed to the solar radiation become unbearably hot and cold during the summer and winter. The traditional concrete panel components are cement, sand, and aggregate, which have a poor thermal property. The usage of materials with low thermal conductivity with no negative reflects on its mechanical properties gives good improvements to the thermal properties of the concrete panel. The practical part of this work was built on a multi-stage mixing plan. In the first stage the mixing ratio based on the ratios of the sand to cement. The second stage mixing ratios based on replacing the coarse aggregate quantities with the Alabaster aggregates, and the third stage the mixing ratios based on the replacement of wood ash instead of the sand. While the fourth stage mixing ratios based on decreasing the thermal conductivity and increasing mechanical properties by adding a multilayer of a plastic net. The result shows that using a concrete panel with components (cement, sand, coarse aggregate, wood ash, and Alabaster aggregates with a mass ratio of (1:1:2:1:1 and 3-plastic layers, gives the best improvement of the thermal properties. Where, the thermal conductivity is reduced by 42% and the specific heat increased by 41.2% as compared to the traditional concrete panel mixing ratio, with mechanical properties are agreed with the Iraqi standards.

  18. Heat-insulating mortars for older buildings. Problem solutions for all kinds of building materials. Waermedaemmputze in der Altbausanierung. Problemloesungen auf allen Untergruenden

    Energy Technology Data Exchange (ETDEWEB)

    Bresch, C M

    1988-01-01

    The book is a guideline for the renovation and sanitation of outer walls with improved thermal insulation. Heat-insulating mortars are described, and machines and equipment for efficient roughcasting are listed. Subjects: Heat-insulating mortars; protective cover and thermal insulation; surfaces to be plastered (old brick walls, house fronts, wall cracks); renovation or sanitation; colours and structures; manual and mechanized roughcasting; calculations; an exemplary case of sanitation, solutions for constructional details; light-weight mortar; heat-insulating mortars in Austria. (HWJ).

  19. Optimization of transport thermal insulation and heat storage systems in consideration of thermal and hygric damage to the building. Pt. 2. Final report; Optimierung von TWD-Speichersystemen unter Beachtung der Bauschadensfreitheit (thermisch-hygrisch). T. 2. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U.; Mueller, K.

    2002-01-01

    Thermal and hygric loads and damage of transparent thermal insulation systems were investigated using the FEM code Abaqus, which enables 2D calculations of thermal stresses and strains in layered structures (e.g. external walls). The influence of hygric swelling and shrinking had to be implemented separately. In addition to the calculations, two variants were investigated experimentally in order to validate the theoretical results. In the case of climate-induced thermal and hygromechanical loads, the dynamic heat and moisture transport processes must be taken into account. [German] Es war das Ziel des ausgefuehrten Forschungsprojektes, TWD-bestueckte Fassadenelemente hinsichtlich thermisch-hygrisch verursachter Belastungen und Schaeden zu untersuchen. Zu diesem Zweck fand das FEM-Programm Abaqus Verwendung. Es gestattet zweidimensionale thermisch verursachte Spannungs-Dehnungs-Berechnungen von geschichteten Strukturen (z.B. Fassaden). Der Einfluss des hygrischen Quellens und Schwindens musste allerdings gesondert implementiert werden. Neben den Berechnungen sind zwei Ausfuehrungsvarianten experimentell untersucht worden, um durch die Ergebnisse die Resultate der Berechnungen abzusichern. Fuer die klimatisch verursachten thermo- und hygromechanischen Belastungen muessen die dynamischen Waerme- und Feuchtetransportprozesse ins Blickfeld gerueckt werden. (orig.)

  20. Optimization of transport thermal insulation and heat storage systems in consideration of thermal and hygric damage to the building. Final report; Optimierung von TWD-Speichersystemen unter Beachtung der Bauschadensfreiheit (thermisch-hygrisch). Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U.

    2001-01-01

    Thermal and hygric loads and damage of transparent thermal insulation systems were investigated using the FEM code Abaqus, which enables 2D calculations of thermal stresses and strains in layered structures (e.g. external walls). The influence of hygric swelling and shrinking had to be implemented separately. In addition to the calculations, two variants were investigated experimentally in order to validate the theoretical results. In the case of climate-induced thermal and hygromechanical loads, the dynamic heat and moisture transport processes must be taken into account. [German] Es war das Ziel des ausgefuehrten Forschungsprojektes, TWD-bestueckte Fassadenelemente hinsichtlich thermisch-hygrisch verursachter Belastungen und Schaeden zu untersuchen. Zu diesem Zweck fand das FEM-Programm Abaqus Verwendung. Es gestattet zweidimensionale thermisch verursachte Spannungs-Dehnungs-Berechnungen von geschichteten Strukturen (z.B. Fassaden). Der Einfluss des hygrischen Quellens und Schwindens musste allerdings gesondert implementiert werden. Neben den Berechnungen sind zwei Ausfuehrungsvarianten experimentell untersucht worden, um durch die Ergebnisse die Resultate der Berechnungen abzusichern. Fuer die klimatisch verursachten thermo- und hygromechanischen Belastungen muessen die dynamischen Waerme- und Feuchtetransportprozesse ins Blickfeld gerueckt werden. (orig.)

  1. Tubular House - Form Follows Technology, Concrete Shell Structure with Inner Thermal Insulation

    Science.gov (United States)

    Idem, Robert; Kleczek, Paweł; Pawłowski, Krzysztof; Chudoba, Piotr

    2017-10-01

    The aim of this paper is the theoretical analysis of the possibilities and limitations of using an unconventional technology and the original architectural form stemming from it - the building with external construction and internal insulation. In Central European climatic conditions, the traditional solution for the walls of heated buildings relies on using external thermal insulation. This stems from building physics: it prevents interstitial condensation of water vapour in the wall. Internal insulation is used exceptionally. This is done e.g. in historical buildings undergoing thermal modernization (due to the impossibility of interfering with facade). In such cases, a thermal insulation layer is used on the internal wall surface, along with an additional layer of vapour barrier. The concept of building concerns the intentional usage of an internal insulation. In this case, the construction is a tight external reinforced concrete shell. The architectural form of such building is strongly interrelated with the technology, which was used to build it. The paper presents the essence of this concept in descriptive and drawing form. The basic elements of such building are described (the external construction, the internal insulation and ventilation). As a case study, authors present a project of a residential building along with the description of the applied materials and installation solutions, and the results obtained from thermal, humidity and energetic calculations. The discussion presents the advantages and disadvantages of the proposed concept. The basic advantage of this solution is potentially low building cost. This stems from minimizing the ground works, the simplicity of the joints and the outer finish, as well as from the possibility of prefabrication of the elements. The continuity of the thermal insulation allows to reduce the amount of thermal bridges. The applied technology and form are applicable most of all for small buildings, due to limited

  2. Thermal-Insulation Properties of Multilayer Textile Packages

    Directory of Open Access Journals (Sweden)

    Matusiak Małgorzata

    2014-12-01

    Full Text Available Thermal-insulation properties of textile materials play a significant role in material engineering of protective clothing. Thermal-insulation properties are very important from the point of view of thermal comfort of the clothing user as well as the protective efficiency against low or high temperature. Thermal protective clothing usually is a multilayer construction. Its thermal insulation is a resultant of a number of layers and their order, as well as the thermalinsulation properties of a single textile material creating particular layers. The aim of the presented work was to investigate the relationships between the thermal-insulation properties of single materials and multilayer textile packages composed of these materials. Measurement of the thermal-insulation properties of single and multilayer textile materials has been performed with the Alambeta. The following properties have been investigated: thermal conductivity, resistance and absorptivity. Investigated textile packages were composed of two, three and four layers made of woven and knitted fabrics, as well as nonwovens. On the basis of the obtained results an analysis has been carried out in order to assess the dependency of the resultant values of the thermal-insulation properties of multilayer packages on the appropriate values of particular components.

  3. Temperature and press load stimulation on thermal transport in fibrous and porous composite insulators

    International Nuclear Information System (INIS)

    Rehman, M.A.; Maqsood, A.

    2006-01-01

    Thermal transport properties of synthetic pliable insulators are measured as a function of applied pressure at constant temperatures. Advantageous Transient Plane Source (ATPS) method is used for the simultaneous measurement of thermal conductivity and thermal diffusivity of these materials and heat capacity per unit volume is then calculated. Three samples namely foam, closed cell foam and fiber glass are subjected to press load, taking into account the flexibility and sustainability of the samples and the requirements of the technique used. The thermal data of the samples were determined within the temperature range (300-414K) and pressure range (Normal -15kPa). These materials are used for thermal insulation and temperature control of air-conditioned space, acoustic and sound insulation, agriculture and fishery, sports and leisure goods, building and civil engineering, industrial packaging cold storage ware house, boiler work and other electric appliances, so they are helpful in reducing energy losses. (author)

  4. INSUL, Calculation of Thermal Insulation of Various Materials Immersed in He

    International Nuclear Information System (INIS)

    Kinkead, A.N.; Pitchford, B.E.

    1977-01-01

    1 - Nature of the physical problem solved: Performance of thermal insulation immersed in helium. 2 - Method of solution: Mineral fibre, metal fibre and metallic multi-layer foils are studied. An approximate analysis for performance evaluation of multi-layer insulation in vertical gas spaces including the regime between fully suppressed natural convection and that for which an accepted power relationship applies is included

  5. The Wick-Concept for Thermal Insulation of Cold Piping

    DEFF Research Database (Denmark)

    Koverdynsky, Vit; Korsgaard, Vagn; Rode, Carsten

    2006-01-01

    the wick-concept in either of two variations: the self-drying or the self-sealing system. Experiments have been carried out using different variations of the two systems to investigate the conditions for exploiting the drying capabilities of the systems, and the results are presented. The results show......The wick-concept for thermal insulation of cold piping is based on capillary suction of a fiber fabric to remove excess water from the pipe surface by transporting it to the outer surface of the insulation. From the surface of the insulation jacket, the water will evaporate to the ambient air....... This will prevent long-term accumulation of moisture in the insulation material. The wick keeps the hydrophobic insulation dry, allowing it to maintain its thermal performance. The liquid moisture is kept only in the wick fabric. This article presents the principle of operation of cold pipe insulation using...

  6. Vacuum Insulation Panels Applied in Building Constructions

    NARCIS (Netherlands)

    Tenpierik, M.J.

    2010-01-01

    Due to sustainability and due to international treaties, it is desired and required to reduce greenhouse gas emissions drastically. One contributor to these emissions is the burning of fossil fuels for generating power and electricity to be used in and for buildings. Buildings and building-related

  7. Estimation of thermal insulation performance in multi-layer insulator for liquid helium pipe

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Kuriyama, Masaaki; Shibata, Takemasa

    1991-01-01

    For a multi-layer insulator around the liquid helium pipes for cryopumps of JT-60 NBI, a multi-layer insulator composed of 10 layers, which can be wound around the pipe at the same time and in which the respective layers are in concentric circles by shifting them in arrangement, has been developed and tested. As the result, it was shown that the newly developed multi-layer insulator has better thermal insulation performance than the existing one, i.e. the heat load of the newly developed insulator composed of 10 layers was reduced to 1/3 the heat load of the existing insulator, and the heat leak at the joint of the insulator in longitudinal direction of the pipe was negligible. In order to clarify thermal characteristics of the multi-layer insulator, the heat transfer through the insulator has been analyzed considering the radiation heat transfer by the netting spacer between the reflectors, and the temperature dependence on the emissivities and the heat transmission coefficients of these two components of the insulator. The analytical results were in good agreements with the experimental ones, so that the analytical method was shown to be valid. Concerning the influence of the number of layers and the layer density on the insulation performance of the insulator, analytical results showed that the multi-layer insulator with the number of layer about N = 20 and the layer density below 2.0 layer/mm was the most effective for the liquid helium pipe of a JT-60 cryopump. (author)

  8. Comparative study of thermal insulation boards from leaf and bark ...

    African Journals Online (AJOL)

    Thus, several researches have succeeded in using these plants and agro waste fibres in developing renewable and environmentally friendly thermal insulation products. The aim of this study was to compare the performance of insulation boards made from leave and bark fibres of Pilios tigma thonningii L.in terms of density, ...

  9. Simultaneous reconstruction of thermal degradation properties for anisotropic scattering fibrous insulation after high temperature thermal exposures

    International Nuclear Information System (INIS)

    Zhao, Shuyuan; Zhang, Wenjiao; He, Xiaodong; Li, Jianjun; Yao, Yongtao; Lin, Xiu

    2015-01-01

    To probe thermal degradation behavior of fibrous insulation for long-term service, an inverse analysis model was developed to simultaneously reconstruct thermal degradation properties of fibers after thermal exposures from the experimental thermal response data, by using the measured infrared spectral transmittance and X-ray phase analysis data as direct inputs. To take into account the possible influence of fibers degradation after thermal exposure on the conduction heat transfer, we introduced a new parameter in the thermal conductivity model. The effect of microstructures on the thermal degradation parameters was evaluated. It was found that after high temperature thermal exposure the decay rate of the radiation intensity passing through the material was weakened, and the probability of being scattered decreased during the photons traveling in the medium. The fibrous medium scattered more radiation into the forward directions. The shortened heat transfer path due to possible mechanical degradation, along with the enhancement of mean free path of phonon scattering as devitrification after severe heat treatment, made the coupled solid/gas thermal conductivities increase with the rise of heat treatment temperature. - Highlights: • A new model is developed to probe conductive and radiative properties degradation of fibers. • To characterize mechanical degradation, a new parameter is introduced in the model. • Thermal degradation properties are reconstructed from experiments by L–M algorithm. • The effect of microstructures on the thermal degradation parameters is evaluated. • The analysis provides a powerful tool to quantify thermal degradation of fiber medium

  10. Design and assembly technology for the thermal insulation of the W7-X cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Risse, K., E-mail: konrad.risse@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik (IPP), Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Nagel, M.; Pietsch, M.; Braatz, A. [Max-Planck-Institut fuer Plasmaphysik (IPP), Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Binni, A. [MAN Diesel and Turbo SE, Dpt. OSA, Werftstrasse 17, D-94469 Deggendorf (Germany); Posselt, H. [Linde AG Engineering Div., Dr.-Carl-von-Linde-Strasse 6-14, D-82049 Hoellriegelskreuth (Germany)

    2011-10-15

    The Max-Planck-Institut fuer Plasmaphysik in Greifswald is building up the stellarator fusion experiment Wendelstein 7-X (W7-X). To operate the superconducting magnet system the vacuum and the cold structures are protected by a thermal insulated cryostat. The plasma vessel forms the inner cryostat wall, the outer wall is realised by a thermal insulated outer vessel. In addition 254 thermal insulated ports are fed through the cryogenic vacuum to allow the access to the plasma vessel for heating systems, supply lines or plasma diagnostics. The thermal insulation is being manufactured and assembled by MAN Diesel and Turbo SE (Germany). It consists of a multi-layer insulation (MLI) made of aluminized Kapton with a silk like fibreglass spacer and a thermal shield covering the inner cryostat surfaces. The shield on the plasma vessel is made of fibreglass reinforced epoxy resin with integrated copper meshes. The outer vessel insulation is made of brass panels with an average size of 3.3 x 2.0 m{sup 2}. Cooling loops made of stainless steel are connected via copper strips to the brass panels. Especially the complex 3 D shape of the plasma vessel, the restricted space inside the cryostat and the consideration of the operational component movements influenced the design work heavily. The manufacturing and the assembly has to fulfil stringent geometrical tolerances e.g. for the outer vessel panels +3/-2 mm.

  11. Design and assembly technology for the thermal insulation of the W7-X cryostat

    International Nuclear Information System (INIS)

    Risse, K.; Nagel, M.; Pietsch, M.; Braatz, A.; Binni, A.; Posselt, H.

    2011-01-01

    The Max-Planck-Institut fuer Plasmaphysik in Greifswald is building up the stellarator fusion experiment Wendelstein 7-X (W7-X). To operate the superconducting magnet system the vacuum and the cold structures are protected by a thermal insulated cryostat. The plasma vessel forms the inner cryostat wall, the outer wall is realised by a thermal insulated outer vessel. In addition 254 thermal insulated ports are fed through the cryogenic vacuum to allow the access to the plasma vessel for heating systems, supply lines or plasma diagnostics. The thermal insulation is being manufactured and assembled by MAN Diesel and Turbo SE (Germany). It consists of a multi-layer insulation (MLI) made of aluminized Kapton with a silk like fibreglass spacer and a thermal shield covering the inner cryostat surfaces. The shield on the plasma vessel is made of fibreglass reinforced epoxy resin with integrated copper meshes. The outer vessel insulation is made of brass panels with an average size of 3.3 x 2.0 m 2 . Cooling loops made of stainless steel are connected via copper strips to the brass panels. Especially the complex 3 D shape of the plasma vessel, the restricted space inside the cryostat and the consideration of the operational component movements influenced the design work heavily. The manufacturing and the assembly has to fulfil stringent geometrical tolerances e.g. for the outer vessel panels +3/-2 mm.

  12. Sprayable Thermal Insulation for Cryogenic Tanks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation addressed in this proposal is Sprayable Thermal Insulation for Cryogenic Tanks, or STICT. This novel system could be applied in either an automated or...

  13. Model-based analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    Thermal insulation properties of coatings based on selected functional filler materials are investigated. The underlying physics, thermal conductivity of a heterogeneous two-component coating, and porosity and thermal conductivity of hollow spheres (HS) are quantified and a mathematical model for...

  14. Thermal performances of an insulating structure for a reactor vessel

    International Nuclear Information System (INIS)

    Aranovitch, E.; Crutzen, S.; Le Det, M.; Denis, R.

    1974-12-01

    This report describes the thermal and technological tests performed on a multilayer thermal insulation system for high temperature gas reactors. It includes the description of test facilities, global tests, interpretation of data, and technological tests. Results obtained make it possible to predetermine with a satisfactory precision thermal performances under various nominal conditions

  15. Vacuum Insulation Panels - Study on VIP-components and panels for service life prediction of VIP in building applications (Subtask A)

    Energy Technology Data Exchange (ETDEWEB)

    Simmler, H.; Brunner, S. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Heinemann, U.; Schwab, H. [Bavarian Centre for Applied Energy Research (ZAE Bayern), Garching (Germany); Kumaran, K.; Mukhopadhyaya, P. [National Research Council, Institute for Research in Construction (NRC-IRC), Ottawa (Canada); Quenard, D.; Sallee, H. [Scientific and Technical Centre for Construction (CSTB), Marne la Vallee (France); Noller, K.; Kuecuekpinar-Niarchos, E.; Stramm, C. [Fraunhofer Institute for Process Engineering and Packaging (IVV), Freising (Germany); Tenpierik, M.; Cauberg, H. [Technical University of Delft, Delft (Netherlands); Erb, M. [Dr. Eicher und Pauli AG (Switzerland)

    2005-09-15

    This comprehensive paper takes a look at the properties of vacuum insulation panels (VIP) and was presented as a contribution to the IEA's ECBCS (Energy Conservation in Buildings and Community Systems) Annex 39. The various institutions in Switzerland, Germany, Canada, France, Sweden and the Netherlands participating in the task and their activities are listed. The paper describes the concept of vacuum insulation for buildings and examines the physics involved and core materials that can be used. The physical, mechanical and thermal properties of the core materials are examined and the requirements placed on the envelope of the panels are looked at. Tests made on materials as well as on the complete vacuum insulation panels are described in detail. The results obtained are presented and reviewed. Service-life and quality assurance aspects are also discussed. A comprehensive appendix completes the report.

  16. A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO2

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Arthur [Industrial Science & Technology Network, Inc., Lancaster, PA (United States); Domszy, Roman [Industrial Science & Technology Network, Inc., Lancaster, PA (United States); Yang, Jeff [Industrial Science & Technology Network, Inc., Lancaster, PA (United States)

    2016-03-30

    Advanced thermal insulation is among the most effective technologies in transforming our nation’s energy system and contributing to DOE’s stated goal of 50% less building energy consumption by 2030. The installation of an advanced thermal insulation would prevent energy waste without the need for any maintenance, and ISTN conservatively estimates that the commercialization of such a new technology would contribute to annual U.S. energy savings of 0.361 Quads and $8 billion in annual economic savings. The key challenge to improving building insulation is to maintain and surpass the industry standard of R-5 per inch insulation value in a cost-competitive manner. Improvements in R-value without cost-efficiency are not likely to impact the market given the cost-sensitive nature of the construction industry (insulation is already the lowest-cost component of the building envelope). However, significantly higher insulating value at competitive costs is extremely appealing to the market given the greater potential to save on energy consumption and costs over the long-term. Thus, our goal is to develop a super-thermal insulation with 50% greater insulation value (R-9 to R-10 per inch) and manufacturing costs that are equal on a per-R-value basis (< $0.70/ft2).

  17. Use of XPS thermal insulator boards in design of educational spaces

    African Journals Online (AJOL)

    Heating and cooling equipment capacity becomes smaller than half after proper implementation of thermal insulation. As air conditioning equipment becomes small, implementation of optimization not only becomes free but also reduces the overall cost of construction. Keywords: School, modern materials, Building and ...

  18. Animal thermoregulation: a review of insulation, physiology and behaviour relevant to temperature control in buildings.

    Science.gov (United States)

    McCafferty, D J; Pandraud, G; Gilles, J; Fabra-Puchol, M; Henry, P-Y

    2017-12-28

    Birds and mammals have evolved many thermal adaptations that are relevant to the bioinspired design of temperature control systems and energy management in buildings. Similar to many buildings, endothermic animals generate internal metabolic heat, are well insulated, regulate their temperature within set limits, modify microclimate and adjust thermal exchange with their environment. We review the major components of animal thermoregulation in endothermic birds and mammals that are pertinent to building engineering, in a world where climate is changing and reduction in energy use is needed. In animals, adjustment of insulation together with physiological and behavioural responses to changing environmental conditions fine-tune spatial and temporal regulation of body temperature, while also minimizing energy expenditure. These biological adaptations are characteristically flexible, allowing animals to alter their body temperatures to hourly, daily, or annual demands for energy. They exemplify how buildings could become more thermally reactive to meteorological fluctuations, capitalising on dynamic thermal materials and system properties. Based on this synthesis, we suggest that heat transfer modelling could be used to simulate these flexible biomimetic features and assess their success in reducing energy costs while maintaining thermal comfort for given building types.

  19. Thermal Transport in High-Strength Polymethacrylimide (PMI) Foam Insulations

    Science.gov (United States)

    Qiu, L.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Yang, S. Y.; Hu, A. J.; Wang, L. L.; Li, S. S.

    2015-11-01

    Thermal transport in high-strength polymethacrylimide (PMI) foam insulations is described, with special emphasis on the density and temperature effects on the thermal transport performance. Measurements of the effective thermal conductivity are performed by a freestanding sensor-based 3ω method. A linear relationship between the density and the effective thermal conductivity is observed. Based on the analysis of the foam insulation morphological structures and the corresponding geometrical cell model, the quantitative contribution of the solid conductivity and the gas conductivity as well as the radiative conductivity to the total effective thermal conductivity as a function of the density and temperature is calculated. The agreement between the curves of the results from the developed model and experimental data indicate the model can be used for PMI foam insulating performance optimization.

  20. Thermal mass impact on energy performance of a low, medium and heavy mass building in Belgrade

    Directory of Open Access Journals (Sweden)

    Anđelković Bojan V.

    2012-01-01

    Full Text Available Heavy mass materials used in building structures and architecture can significantly affect building energy performance and occupant comfort. The purpose of this study was to investigate if thermal mass can improve the internal environment of a building, resulting in lower energy requirements from the mechanical systems. The study was focused on passive building energy performance and compared annual space heating and cooling energy requirements for an office building in Belgrade with several different applications of thermal mass. A three-dimensional building model was generated to represent a typical office building. Building shape, orientation, glazing to wall ratio, envelope insulation thickness, and indoor design conditions were held constant while location and thickness of building mass (concrete was varied between cases in a series of energy simulations. The results were compared and discussed in terms of the building space heating and cooling energy and demand affected by thermal mass. The simulation results indicated that with addition of thermal mass to the building envelope and structure: 100% of all simulated cases experienced reduced annual space heating energy requirements, 67% of all simulated cases experienced reduced annual space cooling energy requirements, 83% of all simulated cases experienced reduced peak space heating demand and 50% of all simulated cases experienced reduced peak space cooling demand. The study demonstrated that there exists a potential for reducing space heating and cooling energy requirements with heavy mass construction in the analyzed climate region (Belgrade, Serbia.

  1. Vacuum Insulation Panels (VIPs) for building construction industry - A review of the contemporary developments and future directions

    International Nuclear Information System (INIS)

    Alam, M.; Singh, H.; Limbachiya, M.C.

    2011-01-01

    Highlights: → Vacuum Insulation Panels (VIP), a high thermal resistance building insulation. → Review of research into VIPs for building applications. → High cost and uncertainty of service life are two barriers for VIP use in buildings. → SiO 2 /SiN x coated PET laminate- candidate for high barrier VIP envelope. → The optimum combination of VIP core and envelope yet to be determined. -- Abstract: Demand for energy efficient buildings has increased drastically in recent years and this trend will continue in the future. Insulating building elements will play a key role in meeting this demand by reducing heat losses through the building fabric. Due to their higher thermal resistance, Vacuum Insulation Panels (VIPs) would be a more energy efficient alternative to conventional building insulation materials. Thus, efforts to develop VIPs with characteristics suitable for applications to new and existing buildings are underway. This paper provides a review of important contemporary developments towards producing VIPs using various materials such as glass fibre, foams, perlite and fibre/powder composites. The limitations of the materials currently used to fabricate VIPs have not been emphasised in detail in previous review papers published. Selection criteria, methods to measure important properties of VIPs and analytical and numerical models presented in the past have been detailed. Limitations of currently employed design tools along with potential future materials such as Nano/microcellular foams and SiO x /SiN x coatings for use in VIPs are also described.

  2. Thermal analysis of building roof assisted with water heater and ...

    Indian Academy of Sciences (India)

    D Prakash

    2018-03-14

    Mar 14, 2018 ... Thermal analysis; building roof; solar water heating system; roof ... These solar collec- ... several benefits, such as its wide range of storage temper- ... rugated plate, rear plate and back insulation material [12]. ..... [7] Weiss W and Rommel M 2008 Process heat collectors. State of the art within Task 33/IV.

  3. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide

    Science.gov (United States)

    Wicklein, Bernd; Kocjan, Andraž; Salazar-Alvarez, German; Carosio, Federico; Camino, Giovanni; Antonietti, Markus; Bergström, Lennart

    2015-03-01

    High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m-1 K-1, which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.

  4. Thermal highly porous insulation materials made of mineral raw materials

    Science.gov (United States)

    Mestnikov, A.

    2015-01-01

    The main objective of the study is to create insulating foam based on modified mineral binders with rapid hardening. The results of experimental studies of the composition and properties of insulating foam on the basis of rapidly hardening Portland cement (PC) and gypsum binder composite are presented in the article. The article proposes technological methods of production of insulating foamed concrete and its placement to the permanent shuttering wall enclosures in monolithic-frame construction and individual energy-efficient residential buildings, thus reducing foam shrinkage and improving crack-resistance.

  5. Saving millions by thermal insulation; Miljoenen besparen door goede isolatie

    Energy Technology Data Exchange (ETDEWEB)

    Van der Velden, U. [Nederlands Centrum voor Technische Isolatie NCTI, spijkenisse (Netherlands)

    2009-07-15

    Corrosion under insulation (CUI) can be reduced by the application of a correctly designed, installed and maintained insulation system. In refrigeration plants a heat flow will occur from the warm outside towards the cold inside. Hot air, containing more moisture, will be distributed to the cold components of the installation, such as separators, intermediate coolers, piping and valves, thus not only facilitating CUI, but also seriously compromising the thermal performance of the system. Furthermore, this moisture could condensate or freeze and compromise the integrity of the installation. Insulation in cold systems is built up with closed cell materials, such as elastomeric foam, PIR (polyisocyanurate) or cellular glass. On the outside a vapor barrier (e.g. reinforced aluminium foil) is essential to prevent hot moist air from penetrating the system. For protection against weather influences and/or mechanical damage, the system should be finished with a (non)metal cladding. [Dutch] Corrosie onder isolatie (CUI) kan worden beperkt door toepassing van een correct ontworpen, geinstalleerd en onderhouden isolatiesysteem. Bij koude-isolatiesystemen treedt een warmtestroom van buiten naar binnen op. Warme lucht - die meer vocht bevat - dringt naar installatiecomponenten, zoals afscheiders, tussenkoelers, leidingen en afstuiters, waarbij niet alleen het risico op CUI aanzienlijk toeneemt, maar ook de isolatiewaarde van het systeem gereduceerd wordt. Vocht kan hierbij ook nog condenseren of bevriezen en de integriteit van de hele installatie in gevaar brengen. Koude-isolatiesystemen dienen te worden opgebouwd met gesloten cel-materiaal, zoals elastomeer schuim, PIR (polyisocyanurate) of cellulair glas. Het systeem dient aan de buitenzijde te worden voorzien van een dampremmende laag (van bijvoorbeeld versterkt aluminiumfolie) om binnendringend vocht te blokkeren. In buitencondities moet het systeem worden voorzien van een (metalen of niet-metalen) eindafwerking, die

  6. Polyimide-Foam/Aerogel Composites for Thermal Insulation

    Science.gov (United States)

    Williams, Martha; Fesmire, James; Sass, Jared; Smith, Trent; Weoser. Erol

    2009-01-01

    Composites of specific types of polymer foams and aerogel particles or blankets have been proposed to obtain thermal insulation performance superior to those of the neat polyimide foams. These composites have potential to also provide enhanced properties for vibration dampening or acoustic attenuation. The specific type of polymer foam is denoted "TEEK-H", signifying a series, denoted H, within a family of polyimide foams that were developed at NASA s Langley Research Center and are collectively denoted TEEK (an acronym of the inventors names). The specific types of aerogels include Nanogel aerogel particles from Cabot Corporation in Billerica, MA. and of Spaceloft aerogel blanket from Aspen Aerogels in Northborough, MA. The composites are inherently flame-retardant and exceptionally thermally stable. There are numerous potential uses for these composites, at temperatures from cryogenic to high temperatures, in diverse applications that include aerospace vehicles, aircraft, ocean vessels, buildings, and industrial process equipment. Some low-temperature applications, for example, include cryogenic storage and transfer or the transport of foods, medicines, and chemicals. Because of thermal cycling, aging, and weathering most polymer foams do not perform well at cryogenic temperatures and will undergo further cracking over time. The TEEK polyimides are among the few exceptions to this pattern, and the proposed composites are intended to have all the desirable properties of TEEK-H foams, plus improved thermal performance along with enhanced vibration or acoustic-attenuation performance. A composite panel as proposed would be fabricated by adding an appropriate amount of TEEK friable balloons into a mold to form a bottom layer. A piece of flexible aerogel blanket material, cut to the desired size and shape, would then be placed on the bottom TEEK layer and sandwiched between another top layer of polyimide friable balloons so that the aerogel blanket would become

  7. Research on thermal insulation for hot gas ducts

    International Nuclear Information System (INIS)

    Broeckerhoff, P.

    1984-01-01

    The inner surfaces of prestressed reactor vessels and hot gas ducts of Gas Cooled High Temperature Reactors need internal thermal insulation to protect the pressure bearing walls from high temperatures. The design parameters of the insulation depend on the reactor type. In a PNP-plant temperature and pressure of the cooling medium helium are proposed to be 950 deg. C and 40 bars, respectively. The experimental work was started at KFA in 1971 for the HHT-project using three test facilities. At first metallic foil insulation and stuffed fibre insulating systems, the hot gas ducting shrouds of which were made of metal, have been tested. Because of the elevated helium temperature in case of PNP and the resulting lower strength of the metallic parts the interest was directed to rigid ceramic materials for the spacers and the inner shrouds. This led to modified structures designed by the INTERATOM company. Tests were performed at KFA. The main object of the investigations was to study the influence of temperature, pressure and axial pressure gradients on the thermal efficiency of the structures. Moreover, the temperatures within the insulation, at the pressure tube, and at the elements which bear the inner shrouds were measured. Thermal fluxes and effective thermal conductivities in axial and circumferential direction of the pressure tube are given, mainly for the INTERATOM-design with spherical spacers. (author)

  8. Bio-based polyurethane foams toward applications beyond thermal insulation

    International Nuclear Information System (INIS)

    Gama, Nuno V.; Soares, Belinda; Freire, Carmen S.R.; Silva, Rui; Neto, Carlos P.; Barros-Timmons, Ana; Ferreira, Artur

    2015-01-01

    Highlights: • Coffee grounds wastes were successfully liquefied yielding a bio-based polyol. • Coffee grounds derived foams formulations were optimized by tuning reagents’ contents. • The viscoelastic properties of these foams are promising to expand their applications. - Abstract: In this work the preparation of viscoelastic bio-based polyurethane foams (PUFs) using polyols obtained via acid liquefaction of coffee grounds wastes has been optimized. In a first stage, the effect of different ratios of isocyanate content to hydroxyl number (0.6, 0.7 and 0.8) and of three distinct percentages of catalyst (3%, 5% and 7%) on the extent of the polymerization reaction was studied by infrared spectroscopy. Next, different percentages of surfactant (14%, 16% and 18%) and blowing agent (12%, 14% and 16%) were used to assess their effect on the density, thermal conductivity and mechanical properties of the foams, including their recovery time. The mechanical properties of the ensuing foams proved to be very interesting due to their viscoelastic behavior. PUFs were also characterized by scanning electron microscopy (SEM) revealing a typical cellular structure and by thermogravimetric analysis (TGA) which proved that these materials are thermally stable up to 190 °C. These results suggest other potential applications for these materials beyond heat insulation in areas where damping properties can be an added value

  9. Straw insulated buildings. Nature building materials; Strohgedaemmte Gebaeude. Naturbaustoffe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Straw is one of the major agricultural by-products and is mainly used as litter in animal husbandry and to compensate the balance of humus. A relatively recent development is the use of straw bales for the construction of buildings. The brochure under consideration documents the technical development of straw construction in Germany. Possibilities of the use of straw in single family homes up to commercial buildings are described.

  10. Thermal performance of various multilayer insulation systems below 80K

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1992-04-01

    The SSC collider dipole cryostat consists of a vacuum shell operating at room temperature, two thermal shields operating near 80K and 20K respectively, and the superconducting magnet assembly operating near 4K. The cryostat design incorporates multilayer insulation (MLI) blankets to limit radiant heat transfer into the 80K and 20K thermal shields. Also, an MLI blanket is used to impede heat transfer through residual gas conduction into the 4K superconducting magnet assembly. A measurement facility at Fermilab has been used to experimentally optimize the thermal insulation system for the dipole cryostat. Previous thermal measurements have been used to define the 80K MLI system configuration and verify system performance. With the 80K MLI system defined, the current effort has focused on experimentally defining the optimum insulation scheme for the 20K thermal shield. The SSC design specification requires that radiant heat transfer be limited to 0.093 W/m 2 at an insulating vacuum of 10 -6 torr

  11. Detection of insulation flaws and thermal bridges in insulated truck box panels

    OpenAIRE

    Lei, Lei; Bortolin, Alessandro; Bison, Paolo ©; Maldague, X.

    2017-01-01

    This paper focuses on the detection of defects and thermal bridges in insulated truck box panels, utilising infrared thermography. Unlike the traditional way in which passive thermography is applied, this research uses both heating and cooling methods in active thermography configurations. Lamp heating is used as the hot external stimulation, while a compressed air jet is applied as the cold external stimulation. A thermal camera captures the whole process. In addition, numerical simulations ...

  12. Building America Case Study: Trade-Friendly Retrofit Insulated Panels for Existing Buildings, Albany, New York

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This project evaluated the effectiveness and affordability of integrating retrofit insulated panels into a re-siding project. The Partnership for Home Innovation (PHI) teamed with New York State Energy Research and Development Authority (NYSERDA), the Albany Housing Authority (AHA), and the New York State Weatherization Assistance Program (WAP) administered by Albany Community Action Partnership to demonstrate an energy retrofit and siding upgrade on a two-story, seven unit, multifamily building in Albany New York (CZ 5). The project focused on accomplishing three goals - doubling the existing wall thermal resistance (from approximately R-13 to a weighted average of R-27), reduction of building air leakage, and completion of the retrofit within a budget where the additional cost for upgrading wall's thermal resistance is equal to the cost of the standard re-siding effort (i.e., the total cost of the energy efficient re-siding scope of work is not more than double the cost of the standard re-siding effort). Lessons learned from the project strongly indicate that the retrofit panel technology can be installed using common installation practices and with minimal training. Other lessons learned include limitation on the use of standard air sealing materials during cold weather installations and the need to develop better installation guidance for trades working with the level of tolerances that may be present in the existing structure. This technology demonstration showed that exterior retrofit panels provide a viable and reasonable option for the siding trades to increase market opportunities and achieve synergistic benefits for aesthetic upgrades to a building's exterior.

  13. An experimental study on damping characteristics of thermal insulation

    International Nuclear Information System (INIS)

    Chiba, Toshio; Kobayashi, Hiroe; Aida, Shigekazu; Wada, Hidetoshi

    1984-01-01

    The damping ratio is one of the most important parameters in seismic analysis of piping systems in a nuclear power plant. Thermal insulation is considered contributing to the damping characteristics of piping systems. At the 6th SMiRT and 1983 ASME PVP conferences, the damping effect and damping estimating formula were presented as a result of regression analysis using the component test data for 2,4 and 8B diameter piping and the proof model test for 1,2 and 4B piping system. In this study, in order to clarify the damping characteristics of a larger diameter piping than 8B,the component test of 12 and 20B diameter piping with insulation was performed. From the results of these tests and the data survey of the previous papers, it was found that the damping ratio of anactual piping system with thermal insulation is at minimum 1% for all size diameter piping. (author)

  14. An experimental study on damping characteristics of thermal insulation

    International Nuclear Information System (INIS)

    Chiba, T.; Kobayashi, H.

    1985-01-01

    The damping ratio is one of the most important parameters in seismic analysis of nuclear power plant piping systems. Thermal Insulation is considered to contribute to the damping characteristics of piping systems. In the 6th SMiRT conference and 1983 ASME PVP, the damping effect and damping estimating formula was presented as a result of regression analysis from the component tests of 2'' , 4'', and 8'' diameter piping and the proof model test of 1'', 2'' and 4'' piping. In this study, in order to clarify the damping characteristics of larger diameter piping than 8'', the component test of 12'' and 20'' diameter piping with insulation was performed. From the results of these tests and the data survey of the previous papers it was found that the damping ratio of actual piping system with thermal insulation is at least 1% for all size diameter piping

  15. The impact of thermal bridges on the energy demand of buildings with double brick wall constructions

    Energy Technology Data Exchange (ETDEWEB)

    Theodosiou, T.G. [Department of Engineering and Management of Energy Resources, University of Western Macedonia, GR-50100 Kozani (Greece); Papadopoulos, A.M. [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University Thessaloniki, GR-54124 Thessaloniki (Greece)

    2008-07-01

    The implementation of the European Directive on the Energy Performance of Buildings (EPBD) is a milestone towards the improvement of energy efficiency in the building sector. However, even in cases where impressive measures can be implemented in the densely built urban environment, the less glamorous measure of building's envelope thermal insulation remains a prerequisite towards the improvement of the building's energy efficiency. Despite the insulation requirements specified by national regulations, thermal bridges in the building's envelope remain a weak spot in the constructions. Moreover, in many countries construction practices tend to implement only partially the insulation measures foreseen by regulations. As a result, thermal losses are in practice greater than those predicted during the design stage. This paper presents a study on representative wall thermal insulation configurations used in Greek buildings, in order to investigate the impact of the thermal bridges on the energy consumption. The double wall construction, used widely in Greece and not only there, is rather susceptible to the occurrence of thermal bridges, in contrast to a typical thermal insulating facade, like the one applied in Central Europe. The analysis of the thermal bridges' impact will in that sense also highlight the potential for energy renovation measures in older buildings. (author)

  16. Interior insulation – Experimental investigation of hygrothermal conditions and damage evaluation of solid masonry façades in a listed building

    DEFF Research Database (Denmark)

    Odgaard, Tommy; Bjarløv, Søren Peter; Rode, Carsten

    2018-01-01

    Exterior walls in historic multi-storey buildings compared to walls in modern buildings have low thermal resistance, resulting in high energy loss and cold surfaces/floors in cold climates. When restrictions regarding alteration of the exterior appearance exist, interior insulation might be the o......Exterior walls in historic multi-storey buildings compared to walls in modern buildings have low thermal resistance, resulting in high energy loss and cold surfaces/floors in cold climates. When restrictions regarding alteration of the exterior appearance exist, interior insulation might...... be the only possibility to increase occupant comfort. This paper describes an investigation of the hygrothermal influence when applying 100 mm of diffusion open interior insulation to a historic multi-storey solid masonry spandrel. The dormitory room with the insulated spandrel had a normal indoor climate...... showed no risk of damage from the changed hygrothermal conditions when applying interior insulation to a solid masonry spandrel....

  17. Electrically and Thermally Insulated Joint for Liquid Nitrogen Transfer

    DEFF Research Database (Denmark)

    Rasmussen, Carsten; Jensen, Kim Høj; Holbøll, Joachim T.

    1999-01-01

    A prototype of a superconducting cable is currently under construction. The cable conductor is cooled by liquid nitrogen in order to obtain superconductivity. The peripheral cooling circuit is kept at ground potential. This requires a joint which insulates both electrically and thermally...

  18. Integration of thermal insulation coating and moving-air-cavity in a cool roof system for attic temperature reduction

    International Nuclear Information System (INIS)

    Yew, M.C.; Ramli Sulong, N.H.; Chong, W.T.; Poh, S.C.; Ang, B.C.; Tan, K.H.

    2013-01-01

    Highlights: • A novel integrated cool roof system for attic temperature reduction is introduced. • 13 °C temperature reduction achieved due to its efficient heat transfer mechanism. • Aluminium tube cavity of the roof is able to reduce the attic temperature. • This positive result is due to its efficient heat reflection and hot air rejection. • Thermal insulation coating incorporates the usage of eggshell waste as bio-filler. - Abstract: Cool roof systems play a significant role in enhancing the comfort level of occupants by reducing the attic temperature of the building. Heat transmission through the roof can be reduced by applying thermal insulation coating (TIC) on the roof and/or installing insulation under the roof of the attic. This paper focuses on a TIC integrated with a series of aluminium tubes that are installed on the underside of the metal roof. In this study, the recycled aluminium cans were arranged into tubes that act as a moving-air-cavity (MAC). The TIC was formulated using titanium dioxide pigment with chicken eggshell (CES) waste as bio-filler bound together by a polyurethane resin binder. The thermal conductivity of the thermal insulation paint was measured using KD2 Pro Thermal Properties Analyzer. Four types of cool roof systems were designed and the performances were evaluated. The experimental works were carried out indoors by using halogen light bulbs followed by comparison of the roof and attic temperatures. The temperature of the surrounding air during testing was approximately 27.5 °C. The cool roof that incorporated both TIC and MAC with opened attic inlet showed a significant improvement with a reduction of up to 13 °C (from 42.4 °C to 29.6 °C) in the attic temperature compared to the conventional roof system. The significant difference in the results is due to the low thermal conductivity of the thermal insulation paint (0.107 W/mK) as well as the usage of aluminium tubes in the roof cavity that was able to transfer

  19. Thermal Transmittance and the Embodied Energy of Timber Frame Lightweight Walls Insulated with Straw and Reed

    Science.gov (United States)

    Miljan, M.; Miljan, J.

    2015-11-01

    Sustainable energy use has become topical in the whole world. Energy gives us comfort we are used to. EU and national regulations determine energy efficiency of the buildings. This is one side of the problem - energy efficiency of houses during exploitation. But the other side is primary energy content of used materials and more rational use of resources during the whole life cycle of a building. The latter value constitutes about 8 - 20% from the whole energy content. Calculations of energy efficiency of materials lead us to energy efficiency of insulation materials and to comparison of natural and industrial materials taking into account their thermal conductivity as well as their primary energy content. Case study of the test house (built in 2012) insulated with straw bales gave the result that thermal transmittance of investigated straw bale walls was according to the minimum energy efficiency requirements set in Estonia U = 0.12 - 0.22 W/m2K (for walls).

  20. Thermal insulator made of ultra fine particles of silica. Chobiryushi silica kei dannetsuzai

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, T.

    1991-05-30

    An overview was presented of properties and applications of thermal insulator made of ultra fine powder of silica, MICROTHERM. The thermal conductivity of MICROTHERM is as low as (1/3) - (1/4) of that of conventional thermal insulator, because it is mainly composed of fumed silica or aero gel and formed into porous structure. In addition, metal oxide of special particle size is added to it in order to reject the radiative heat. The thermal insulation property and the mechanical strength of MICROTHERM is not affected by a sudden change in temperature and moisture. The standard type of MICROTHERM can be used at a temperature up to 950 {degree}C, while the high temperature type MICROTHERM can stand a high temperature up to 1025 {degree}C for long period of time. The thickness of insulator can be reduced markedly by using MICROTHERM as compared with the use of conventional insulating materials. Many new products in which MICROTHERM is used came into market. New type kilt, Semi-cylindrical block, Super high temperature MICROTHERM are just a few examples. Variety of application and energy saving effect are attracting public attention. 11 figs.

  1. Thermal spray coating for corrosion under insulation (CUI) prevention

    Science.gov (United States)

    Fuad, Mohd Fazril Irfan Ahmad; Razak, Khalil Abdul; Alias, Nur Hashimah; Othman, Nur Hidayati; Lah, Nik Khairul Irfan Nik Ab

    2017-12-01

    Corrosion under insulation (CUI) is one of the predominant issues affecting process of Oil and Gas and Petrochemical industries. CUI refers to external corrosion, but it is difficult to be detected as the insulation cover masks the corrosion problem. One of the options to prevent CUI is by utilizing the protective coating systems. Thermal spray coating (TSC) is an advanced coating system and it shows promising performance in harsh environment, which could be used to prevent CUI. However, the application of TSC is not attractive due to the high initial cost. This work evaluates the potential of TSC based on corrosion performance using linear polarization resistance (LPR) method and salt spray test (SST). Prior to the evaluation, the mechanical performance of TSC was first investigated using adhesion test and bend test. Microstructure characterization of the coating was investigated using Scanning Electron Microscope (SEM). The LPR test results showed that low corrosion rate of 0.05 mm/years was obtained for TSC in compared to the bare steel especially at high temperature of 80 °C, where usually normal coating would fail. For the salt spray test, there was no sign of corrosion products especially at the center (fully coated region) was observed. From SEM images, no corrosion defects were observed after 336 hours of continuous exposure to salt fog test. This indicates that TSC protected the steel satisfactorily by acting as a barrier from a corrosive environment. In conclusion, TSC can be a possible solution to minimize the CUI in a long term. Further research should be done on corrosion performance and life cycle cost by comparing TSC with other conventional coating technology.

  2. Thermal insulation layer for the vacuum containers of a thermonuclear device

    International Nuclear Information System (INIS)

    Nishikawa, Masana; Yamada, Masao; Kameari, Akihisa; Niikura, Setsuo.

    1980-01-01

    Purpose: To prevent temperature rise of a thermal insulation layer for a vacuum container of a thermonuclear device higher than allowable value when irradiated by neutron by constructing the layer of a cooling unit in thermal insulation material. Constitution: A metal plate attached with cooling pipes is buried in a thermal insulation material forming a thermal insulation layer to form the layer provided between a vacuum container of a thermonuclear device and a shield. (Yoshihara, H.)

  3. Workshop on technical assessment of industrial thermal insulation materials: summary

    International Nuclear Information System (INIS)

    Peterson, S.

    1976-07-01

    Over 80 participants representing 50 organizations met to discuss the report, Industrial Thermal Insulation--An Assessment, ORNL/TM-5283. Presentations on the performance of available materials, economic considerations, and measurement problems were followed by discussion. A final wrap-up session concluded that the report was valuable in pointing the direction for needed effort in the area, confirmed the indicated actions needed to further industrial application of insulation, and called for future meetings to continue the dialogue between the various facets of the industry

  4. Experimental performance evaluation of solid concrete and dry insulation materials for passive buildings in hot and humid climatic conditions

    International Nuclear Information System (INIS)

    Rehman, Hassam Ur

    2017-01-01

    Highlights: • Experimental investigation of building insulation materials in UAE from 2012–2014. • Four same calorimeters with different south walls were built in open air laboratory. • Heat flux was reduced by 22–75% in steady state analysis during summer by insulation. • Hence, energy consumption for cooling was reduced by an average 7.6–25.3%. • Heat flow was steady in free floating analysis in winter through insulated walls. - Abstract: It is known that enhancement of building energy efficiency can help in reducing energy consumption. The use of the solar insulating materials are the most efficient and cost effective passive methods for reducing the cooling requirements of the buildings. Apart from theoretical studies, no detailed experimental studies were performed in the UAE on energy savings by using solar insulation materials on buildings. Four (3 m × 3 m × 3 m) solar calorimeters were built in RAK, UAE in order to perform an open air outdoor test for energy savings obtained with solar insulating materials. The design is aimed to determine the heat flux reduction and the energy savings achieved with and without different solar insulating materials, mounted at the south wall of solar calorimeters with similar indoor and ambient conditions. Experimental results are discussed to evaluate the thermal performance during high temperature conditions in summer’s period when cooling demand of the building is at its peak and also in winters when there is no cooling demand. The test is from 2012 to 2014. The controlled-temperature experimental study at a set point of 24 °C showed that if the standard building material, i.e. solid concrete, is retrofitted with polyisocyanurate (PIR) and reflective coatings or completely replaced with energy-efficient dry insulation material walls such as exterior insulation finishing system (EIFS), energy savings up to an average of 7.6–25.3% can be achieved. This is due to the reduction of heat flux by an

  5. Requirements for thermal insulation on prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Neylan, A.J.; Wistrom, J.D.

    1979-01-01

    During the past decade, extensive design, construction, and operating experience on concrete pressure vessels for gas-cooled reactor applications has accumulated. Excellent experience has been obtained to date on the structural components (concrete, prestressing systems, liners, penetrations, and closures) and the thermal insulation. Three fundamentally different types of insulation systems have been employed to ensure the satisfactory performance of this component, which is critical to the overall success of the prestressed concrete reactor vessel (PCRV). Although general design criteria have been published, the requirements for design, materials, and construction are not rigorously addressed in any national or international code. With the more onerous design conditions being imposed by advanced reactor systems, much greater attention has been directed to advance the state of the art of insulation systems for PCRVs. This paper addresses some of the more recent developments in this field being performed by General Atomic Company and others. (author)

  6. Thermal Properties of Algerian Diatomite, Study of the Possibility to Its Use in the Thermal Insulation

    Science.gov (United States)

    Hamdi, Boualem; Hamdi, Safia

    The chemical and physical properties of a Algerian diatomite were given before and after heat treatment and chemical with an aim of a use in the heat insulation of constructions. The preliminary results obtained showed that this material is extremely porous (porosity >70 %), characterized of a low density and a very low thermal conductivity. These promising properties support the use of this local material in the thermal insulation.

  7. 5th Duisburg thermal insulation days. Fuenfte Duisburger Waermedaemm-Tage

    Energy Technology Data Exchange (ETDEWEB)

    Agst, J. (ed.)

    1989-01-01

    This volume contains 18 specialist lectures mainly about the problems of thermal insulation in industrial furnaces and facility engineering. Among the subjects are: formed parts, monolithic lining materials and fillers of vermiculite; pyro-block-modular systems for furnaces (of the company DYKO-Morgan Fasertechnik); microporous insulating materials (KAOWOOL); properties of lightweight refractory bricks; thermal insulation in induction furnaces; vacuum moulded parts in electric furnace engineering; high temperature insulating materials with ceramic fibres; microtherm insulating materials. (MM).

  8. Performance investigation of heat insulation solar glass for low-carbon buildings

    International Nuclear Information System (INIS)

    Cuce, Erdem; Young, Chin-Huai; Riffat, Saffa B.

    2014-01-01

    Highlights: • U-value of HISG is found to be 1.10 W/m 2 K. • Maximum temperature difference is achieved by HISG with 12.70 °C. • HISG provides two times better insulation than standard double glazed windows. • HISG generates over 40 W electricity from a glazing surface of 0.66 m 2 . • 100% of UV in incoming solar radiation is absorbed by HISG. - Abstract: Heat insulation solar glass (HISG), which has been recently developed by Professor Chin-Huai Young in Taiwan is an extraordinary glazing technology for low/zero carbon buildings. HISG differs from traditional glazing technologies with its ability of producing electricity. It also offers some additional features such as thermal insulation, sound insulation, self-cleaning and energy saving. In this work, thermal insulation, power generation and optical performance of HISG are experimentally investigated. Thermal insulation performance of HISG is analysed through standardized co-heating test methodology, and the results are compared with different traditional double glazed window samples. For the power generation and optical performance of HISG, two samples (air filled HISG and Argon filled HISG) are experimentally investigated in real and simulated operating conditions. The results indicate that both configurations show similar performance in terms of power generation. Under a solar intensity of 850 W/m 2 , over 40 W electrical power is achieved from HISG samples with a glazing area of 0.66 m 2 . Performance of samples under solar simulator is not found to be promising due to the absence of UV and IR parts in the artificial light source. In terms of thermal insulation ability, HISG is also found to be attractive. The average U-value of HISG is determined to be 1.10 W/m 2 K, which is two times better than standard double glazed windows. Some simulation results for two different cities (Taipei, Taiwan and Nottingham, UK) demonstrating the energy saving potential of HISG are also presented

  9. Technology of Double Thermal Insulation for the Repair and Energy Optimization of Existing Thermal Insulation Composite Systems

    Science.gov (United States)

    Belániová, Barbora; Antošová, Naďa

    2017-06-01

    The theme of improvement thermal proprieties of external cladding according to the New EU Directive is still a hot topic, which needs to be answered necessarily till December 2020. Maintenance and repair of existing ETICS became to also an actual open theme in search solutions for existing constructions. The aim of the research in this review is to analyze influence of layers the alternative thermal materials in technology "double thermal insulation". Humidity and temperature conditions will be further examined in connection with the development and colonization of microorganisms on surface construction.

  10. Sodium alginate adhesives as binders in wood fibers/textile waste fibers biocomposites for building insulation.

    Science.gov (United States)

    Lacoste, Clément; El Hage, Roland; Bergeret, Anne; Corn, Stéphane; Lacroix, Patrick

    2018-03-15

    Alginate derived from seaweed is a natural polysaccharide able to form stable gel through carbohydrate functional groups largely used in the food and pharmaceutical industry. This article deals with the use of sodium alginate as an adhesive binder for wood fibres/textile waste fibres biocomposites. Several aldehyde-based crosslinking agents (glyoxal, glutaraldehyde) were compared for various wood/textile waste ratios (100/0, 50/50, 60/40, 70/30 and 0/100 in weight). The fully biomass derived composites whose properties are herewith described satisfy most of the appropriate requirements for building materials. They are insulating with a thermal conductivity in the range 0.078-0.089 W/m/K for an average density in the range 308-333 kg/m3 according to the biocomposite considered. They are semi-rigid with a maximal mechanical strength of 0.84 MPa under bending and 0.44 MPa under compression for 60/40 w/w wood/textile waste biocomposites with a glutaraldehyde crosslinking agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Quantitative analysis of silica aerogel-based thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2015-01-01

    containing intact hollow glass or polymer spheres showed that silica aerogel particles are more efficient in an insulation coating than hollow spheres. In a practical (non-ideal) comparison, the ranking most likely cannot be generalized. A parameter study demonstrates how the model can be used, qualitatively......A mathematical heat transfer model for a silica aerogel-based thermal insulation coating was developed. The model can estimate the thermal conductivity of a two-component (binder-aerogel) coating with potential binder intrusion into the nano-porous aerogel structure. The latter is modelled using...... a so-called core–shell structure representation. Data from several previous experimental investigations with silica aerogels in various binder matrices were used for model validation. For some relevant cases with binder intrusion, it was possible to obtain a very good agreement between simulations...

  12. Space heating in buildings: thermal diagnosis of an industrial building; Chauffage des batiments: bilan thermique d`un batiment industriel

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, R.

    1996-12-31

    The various heat transfer equations used for calculations in thermal diagnosis of an industrial building are reviewed: calculation of the heat losses through walls as a function of building materials, calculation of the energy consumption for heating fresh air (as a function of the air pollution rate in the building), calculation of the total heat losses, the heating energy demand and the annual energy consumption. Data concerning building materials characteristics, insulation and heating loads in the various regions of France, are also presented

  13. Preliminary data evaluation for thermal insulation characterization testing

    International Nuclear Information System (INIS)

    DeClue, J.F.; Moses, S.D.; Tollefson, D.A.

    1991-01-01

    The purpose of Thermal Insulation Characterization Testing is to provide physical data to support certain assumptions and calculational techniques used in the criticality safety calculations in Section 6 of the Safety Analysis Reports for Packaging (SARPs) for drum-type packaging for Department of Energy's (DOE) Oak Ridge Y-12 Plant, managed by Martin Marietta Energy Systems, Inc. Results of preliminary data evaluation regarding the fire-test condition reveal that realistic weight loss consideration and residual material characterization in developing calculational models for the hypothetical accident condition is necessary in order to prevent placement of unduly conservative restrictions on shipping requirements as a result of overly conservative modeling. This is particularly important for fast systems. Determination of the geometric arrangement of residual material is of secondary importance. Both the methodology used to determine the minimum thermal insulation mass remaining after the fire test and the treatment of the thermal insulation in the criticality safety calculational models requires additional evaluation. Specific testing to be conducted will provide experimental data with which to validate the mass estimates and calculational modeling techniques for extrapolation to generic drum-type containers

  14. Comparative experimental and numerical studies of usual insulation materials and PCMs in buildings at Casablanca

    Science.gov (United States)

    Mourid, Amina; El Alami, Mustapha

    2018-05-01

    In this paper, we present a comparative thermal study of the usual insulation materials used in the building as well as the innovate one like phase change materials (PCMs). Both experimental study and numerical approach were applied in this work for summer season. In the experimental study the PCM was installed on the outer surface on the ceiling of one of two full-scale rooms located at FSAC, Casablanca. A simulation model was performed with TRNSYS’17 software. We have established as a criterion of comparison the internal temperatures. An economic study also has been carried out. Based on this latter, that the PCM is most efficient.

  15. Technology Solutions for Existing Homes Case Study: Trade-Friendly Retrofit Insulated Panels for Existing Buildings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    For this project with the U.S. Department of Energy Building America team Home Innovation Research Labs, the retrofit insulated panels relied on an enhanced expanded polystyrene (EPS) for thermal resistance of R-4.5/inch, which is an improvement of 10% over conventional (white-colored) EPS. EPS, measured by its life cycle, is an alternative to commonly used extruded polystyrene and spray polyurethane foam. It is a closed-cell product made up of 90% air, and it requires about 85% fewer petroleum products for processing than other rigid foams.

  16. Effect of Nanoclay on Mechanical Properties and Ablation Behavior of a Nitrile-Based Heat Insulator

    Directory of Open Access Journals (Sweden)

    Fatemeh Arabgol

    2013-02-01

    Full Text Available Thermal insulation of rocket motor chamber is one of the most important functions of elastomeric ablative material. Combustion of solid rocket motor propellant produces turbulent media containing gases with a velocity more than 1000 m/s, temperature and pressure more than 3000°C and 10 MPa, respectively,which destroys all metallic alloys. Elastomeric nanocomposite heat insulators are more attractive subjects in comparison to their non-elastomeric counterparts, due to their excellent thermal stresses and larger deformation bearing capacity. Nitrile rubber with high thermal properties is a proper candidate in such applications. Development in ablation performance of these heat shields is considered as an important challenge nowadays. A few works have been recently carried out using organoclay to enhancethe ablation and mechanical properties of heat insulators. In this work, an elastomeric heat insulator with superior ablative and mechanical properties was presented using nanotechnology. The results showed that an elastomeric nanocomposite heat insulator containing 15 wt% organoclay exhibits superior characteristics compared to its composite counterpart such as: 46% more tensile strength, 60% more elongationat-break, 1.7 times higher modulus (at 100% strain, 62% higher “insulating index number” and 36% lower mass ablation and erosion rates under a standard test with a heat flux of 2500 kW/m2 for 15 s.

  17. Thermal dynamic simulation of wall for building energy efficiency under varied climate environment

    Science.gov (United States)

    Wang, Xuejin; Zhang, Yujin; Hong, Jing

    2017-08-01

    Aiming at different kind of walls in five cities of different zoning for thermal design, using thermal instantaneous response factors method, the author develops software to calculation air conditioning cooling load temperature, thermal response factors, and periodic response factors. On the basis of the data, the author gives the net work analysis about the influence of dynamic thermal of wall on air-conditioning load and thermal environment in building of different zoning for thermal design regional, and put forward the strategy how to design thermal insulation and heat preservation wall base on dynamic thermal characteristic of wall under different zoning for thermal design regional. And then provide the theory basis and the technical references for the further study on the heat preservation with the insulation are in the service of energy saving wall design. All-year thermal dynamic load simulating and energy consumption analysis for new energy-saving building is very important in building environment. This software will provide the referable scientific foundation for all-year new thermal dynamic load simulation, energy consumption analysis, building environment systems control, carrying through farther research on thermal particularity and general particularity evaluation for new energy -saving walls building. Based on which, we will not only expediently design system of building energy, but also analyze building energy consumption and carry through scientific energy management. The study will provide the referable scientific foundation for carrying through farther research on thermal particularity and general particularity evaluation for new energy saving walls building.

  18. Two-dimensional thermal analysis of liquid hydrogen tank insulation

    Energy Technology Data Exchange (ETDEWEB)

    Babac, Gulru; Sisman, Altug [Istanbul Technical University, Energy Institute, Ayazaga campus, 34469 Maslak, Istanbul (Turkey); Cimen, Tolga [Jaguar and Landrover, Banbury Road, Gaydon, Warwick CV35 0RR (United Kingdom)

    2009-08-15

    Liquid hydrogen (LH{sub 2}) storage has the advantage of high volumetric energy density, while boil-off losses constitute a major disadvantage. To minimize the losses, complicated insulation techniques are necessary. In general, Multi Layer Insulation (MLI) and a Vapor-Cooled Shield (VCS) are used together in LH{sub 2} tanks. In the design of an LH{sub 2} tank with VCS, the main goal is to find the optimum location for the VCS in order to minimize heat leakage. In this study, a 2D thermal model is developed by considering the temperature dependencies of the thermal conductivity and heat capacity of hydrogen gas. The developed model is used to analyze the effects of model considerations on heat leakage predictions. Furthermore, heat leakage in insulation of LH{sub 2} tanks with single and double VCS is analyzed for an automobile application, and the optimum locations of the VCS for minimization of heat leakage are determined for both cases. (author)

  19. Thermal Analysis of Low Layer Density Multilayer Insulation Test Results

    Science.gov (United States)

    Johnson, Wesley L.

    2011-01-01

    Investigation of the thermal performance of low layer density multilayer insulations is important for designing long-duration space exploration missions involving the storage of cryogenic propellants. Theoretical calculations show an analytical optimal layer density, as widely reported in the literature. However, the appropriate test data by which to evaluate these calculations have been only recently obtained. As part of a recent research project, NASA procured several multilayer insulation test coupons for calorimeter testing. These coupons were configured to allow for the layer density to be varied from 0.5 to 2.6 layer/mm. The coupon testing was completed using the cylindrical Cryostat-l00 apparatus by the Cryogenics Test Laboratory at Kennedy Space Center. The results show the properties of the insulation as a function of layer density for multiple points. Overlaying these new results with data from the literature reveals a minimum layer density; however, the value is higher than predicted. Additionally, the data show that the transition region between high vacuum and no vacuum is dependent on the spacing of the reflective layers. Historically this spacing has not been taken into account as thermal performance was calculated as a function of pressure and temperature only; however the recent testing shows that the data is dependent on the Knudsen number which takes into account pressure, temperature, and layer spacing. These results aid in the understanding of the performance parameters of MLI and help to complete the body of literature on the topic.

  20. Modeling thermal performance of exterior walls retrofitted from insulation and modified laterite based bricks materials

    Science.gov (United States)

    Wati, Elvis; Meukam, Pierre; Damfeu, Jean Claude

    2017-12-01

    Uninsulated concrete block walls commonly found in tropical region have to be retrofitted to save energy. The thickness of insulation layer used can be reduced with the help of modified laterite based bricks layer (with the considerably lower thermal conductivity than that of concrete block layer) during the retrofit building fabrics. The aim of this study is to determine the optimum location and distribution of different materials. The investigation is carried out under steady periodic conditions under the climatic conditions of Garoua in Cameroon using a Simulink model constructed from H-Tools (the library of Simulink models). Results showed that for the continuous air-conditioned space, the best wall configuration from the maximum time lag, minimum decrement factor and peak cooling transmission load perspective, is dividing the insulation layer into two layers and placing one at the exterior surface and the other layer between the two different massive layers with the modified laterite based bricks layer at the interior surface. For intermittent cooling space, the best wall configuration from the minimum energy consumption depends on total insulation thickness. For the total insulation thickness less than 8 cm approximately, the best wall configuration is placing the half layer of insulation material at the interior surface and the other half between the two different massive layers with the modified earthen material at the exterior surface. Results also showed that, the optimum insulation thickness calculated from the yearly cooling transmission (estimated only during the occupied period) and some economic considerations slightly depends on the location of that insulation.

  1. Transparent thermal insulation systems in industrial buildings. Rational energy use and low-energy buildings. Measured variables (g value, k value, long-term measurements), influence of building design and weather on the function of thermal insulation systems, behaviour in fire, exemplary applications (industrial buildings, school buildings, indoor swimming pools, etc.); Transparente Waermedaemmung im Industriebau. Rationelle Energieverwendung und Niedrigenergie-Gebaeude. Messdaten (g-Wert, k-Wert, Langzeitbeobachtung), Einfluss von Bauweise und Witterung auf die Funktion der TWD, Brandverhalten. Anwendungsbeispiele (Gewerbliche Bauten, Industriehallen, Schulen, Schwimmbaeder, etc.)

    Energy Technology Data Exchange (ETDEWEB)

    Bucher, W. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Koeln (Germany); Bertram, H.G. [eds.] [Forschungszentrum Juelich GmbH (DE). Projekttraeger Biologie, Energie, Oekologie (BEO)

    1998-07-01

    The increasing concern about an early depletion of available energy resources have led to world-wide considerations about possible energy conservation. Based on this aspect it seemed to be interesting to evaluate the possibilities and limits for the use of transparent thermal insulation in the field of industrial construction at a workshop and to question them in a detailed discussion. The workshop was held at the ''Crew Trainings Center'' (CTC) at the DLR in Cologne, which is an example of a successful application of transparent thermal insulation. The validity of different criteria for individual decisions in terms of construction and the necessity to consider advantages and disadvantages can be explained with this example. Furthermore a proof is given that a successful architectural design can very well be accomplished taking into account the facts in terms of construction physics. (orig.) [German] Zunehmende Besorgnis gegenueber einer vorzeitigen Erschoepfung der verfuegbaren Energieressourcen fuehrt weltweit zu Ueberlegungen hinsichtlich moeglicher Energieeinsparung. Unter diesem Aspekt schien es attraktiv, Moeglichkeiten und Grenzen fuer den Einsatz der Transparenten Waermedaemmung (TWD) im Industriebau im Rahmen eines Workshops auszuloten und in einer eingehenden Diskussion zu hinterfragen. Den aeusseren Rahmen fuer diese Veranstaltung gab das 'Crew Trainings Center' (CTC) beim DLR in Koeln ab, ein fruehes Beispiel einer gelungenen Anwendung der TWD. Die Gueltigkeit unterschiedlicher Kriterien fuer einzelne bauliche Entscheidungen und die Notwendigkeit einer Abwaegung von Vor- und Nachteilen lassen sich an diesem Einzelfall exemplarisch verdeutlichen. Darueber hinaus aber wird hier ein Beleg dafuer geboten, dass ein architektonisch gelungener Wurf die Beruecksichtigung bauphysikalischer Gegebenheiten keineswegs ausschliesst. (orig.)

  2. Use of Several Thermal Analysis Techniques to Study the Cracking of an Nitrile Butadiene Rubber (NBR) Insulator on the Booster Separation Motor (BSM) of the Space Shuttle

    Science.gov (United States)

    Wingard, Charles D.; Whitaker, Ann F. (Technical Monitor)

    2000-01-01

    Two different vendor rubber formulations have been used to produce the silica-filled NBR insulators for the BSM used on both of the Solid Rocket Boosters (SRBs) of the Space Shuttle. A number of lots of the BSM insulator in 1998-99 exhibited surface cracks and/or crazing. Each insulator is bonded to the BSM aluminum aft closure with an epoxy adhesive. Induced insulator stresses from adhesive cure are likely greatest where the insulator/adhesive contour is the greatest, thus showing increased insulator surface cracking in this area. Thermal analysis testing by Dynamic Mechanical Analyzer (DMA) and Thermomechanical Analysis (TMA) was performed on one each of the two vendor BSM insulators previously bonded that exhibited the surface cracking. The TMA data from the film/fiber technique yielded the most meaningful results, with thin insulator surface samples containing cracks having roughly the same modulus (stiffness) as thin insulator bulk samples just underneath.

  3. Naturally cured foamed concrete with improved thermal insulation properties

    Directory of Open Access Journals (Sweden)

    Mashkin Nikolay

    2018-01-01

    Full Text Available The paper is dedicated to investigation on improvement of thermal insulation properties of non-autoclaved concrete by increasing aggregate stability of foamed concrete mixture. The study demonstrates influence of mineral admixtures on the foam stability index in the mortar mixture and on decrease of foamed concrete density and thermal conductivity. The effect of mineral admixtures on thermal conductivity properties of non-autoclaved concrete was assessed through different ways of their addition: to the foam and to the mortar mixture. The admixtures were milled up to the specific surface area of 300 and 600 m2/kg using an AГO-9 centrifugal attrition mill with continuous operation mode (Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk. Laboratory turbulent foam concrete mixer was used to prepare foamed concrete. Thermal conductivity coefficient was defined by a quick method using “ИTП-MГ 4 “Zond” thermal conductivity meter in accordance with the regulatory documents. The impact of modifiers on the foam structure stability was defined using the foam stability index for the mortar mixture. The research demonstrated the increase in stability of porous structure of non-autoclaved concrete when adding wollastonite and diopside. Improvement of thermal and physical properties was demonstrated, the decrease of thermal conductivity coefficient reaches 0.069 W/(m×°C

  4. Concerning the sound insulation of building elements made up of light concretes. [acoustic absorption efficiency calculations

    Science.gov (United States)

    Giurgiu, I. I.

    1974-01-01

    The sound insulating capacity of building elements made up of light concretes is considered. Analyzing differentially the behavior of light concrete building elements under the influence of incident acoustic energy and on the basis of experimental measurements, coefficients of correction are introduced into the basic formulas for calculating the sound insulating capacity for the 100-3,2000 Hz frequency band.

  5. State of the art on historic building insulation materials and retrofit strategies

    DEFF Research Database (Denmark)

    Blumberga, Andra; Kass, Kristaps; Kamendere, Edite

    2016-01-01

    This report provides an analysis and evaluation of a state-of-the-art of internal insulation materials and methods for application in historic buildings, and review on methods, tools and guidelines used as decision making tools for implementation of internal insulation in historic buildings. Hist...

  6. Mechanisms of natural ventilation in livestock buildings

    DEFF Research Database (Denmark)

    Rong, Li; Bjerg, Bjarne; Batzanas, Thomas

    2016-01-01

    Studies on the mechanisms of natural ventilation in livestock buildings are reviewed and influences on discharge and pressure coefficients are discussed. Compared to studies conducted on buildings for human occupation and industrial buildings which focus on thermal comfort, ventilation systems......, indoor air quality, building physics and energy etc., our understanding of the mechanisms involved in natural ventilation of livestock buildings are still limited to the application of the orifice equation. It has been observed that the assumptions made for application of the orifice equation...... are not valid for wind-induced cross ventilation through large openings. This review identifies that the power balance model, the concept of stream tube and the local dynamic similarity model has helped in the fundamental understanding of wind-induced natural ventilation in buildings for human occupation...

  7. Edge forward mechanical protection for porcelain insulators

    Energy Technology Data Exchange (ETDEWEB)

    deCasseres, D.K.

    1987-12-01

    Vandal damage to exposed outdoor insulators of all types has become an increasing problem. Porcelain is susceptible to impact fracture, and Area Boards have frequently found it necessary to protect expensive and often highly vulnerable terminating assemblies from the unwelcome attention of hooligans. Various means of physical protection can be used, but many of these are highly demanding in terms of maintenance. This article discusses the 'state of the art' in insulator protection, and describes the design and development of a new concept in the field-the Shed Protector-a number of which are now installed on 132kV sealing ends throughout the Electricity Supply Industry.

  8. A Thermally Insulating Textile Inspired by Polar Bear Hair.

    Science.gov (United States)

    Cui, Ying; Gong, Huaxin; Wang, Yujie; Li, Dewen; Bai, Hao

    2018-04-01

    Animals living in the extremely cold environment, such as polar bears, have shown amazing capability to keep warm, benefiting from their hollow hairs. Mimicking such a strategy in synthetic fibers would stimulate smart textiles for efficient personal thermal management, which plays an important role in preventing heat loss and improving efficiency in house warming energy consumption. Here, a "freeze-spinning" technique is used to realize continuous and large-scale fabrication of fibers with aligned porous structure, mimicking polar bear hairs, which is difficult to achieve by other methods. A textile woven with such biomimetic fibers shows an excellent thermal insulation property as well as good breathability and wearability. In addition to passively insulating heat loss, the textile can also function as a wearable heater, when doped with electroheating materials such as carbon nanotubes, to induce fast thermal response and uniform electroheating while maintaining its soft and porous nature for comfortable wearing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Radiative contribution to the thermal conductivity of fibrous insulations

    Science.gov (United States)

    Linford, R. M. F.; Schmitt, R. J.; Hughes, T. A.

    1974-01-01

    An approach is shown for using a simple two-flux model to interpret infrared transmission data for a variety of reuseable surface insulations materials and to calculate the radiation transmission. A description is given of preliminary experiments on mullite and silica-based materials. The calculated parameters are compared with the measured values of the total thermal conductivity, as determined on guarded hot plate equipment. It is pointed out that for many samples the newly developed four-flux model must be utilized because the scattering properties of the fibers are often dependent on the wavelength of the radiation.

  10. Thermal Performance of Cryogenic Multilayer Insulation at Various Layer Spacings

    Science.gov (United States)

    Johnson, Wesley Louis

    2010-01-01

    Multilayer insulation (MLI) has been shown to be the best performing cryogenic insulation system at high vacuum (less that 10 (exp 3) torr), and is widely used on spaceflight vehicles. Over the past 50 years, many investigations into MLI have yielded a general understanding of the many variables that are associated with MLI. MLI has been shown to be a function of variables such as warm boundary temperature, the number of reflector layers, and the spacer material in between reflectors, the interstitial gas pressure and the interstitial gas. Since the conduction between reflectors increases with the thickness of the spacer material, yet the radiation heat transfer is inversely proportional to the number of layers, it stands to reason that the thermal performance of MLI is a function of the number of layers per thickness, or layer density. Empirical equations that were derived based on some of the early tests showed that the conduction term was proportional to the layer density to a power. This power depended on the material combination and was determined by empirical test data. Many authors have graphically shown such optimal layer density, but none have provided any data at such low densities, or any method of determining this density. Keller, Cunnington, and Glassford showed MLI thermal performance as a function of layer density of high layer densities, but they didn't show a minimal layer density or any data below the supposed optimal layer density. However, it was recently discovered that by manipulating the derived empirical equations and taking a derivative with respect to layer density yields a solution for on optimal layer density. Various manufacturers have begun manufacturing MLI at densities below the optimal density. They began this based on the theory that increasing the distance between layers lowered the conductive heat transfer and they had no limitations on volume. By modifying the circumference of these blankets, the layer density can easily be

  11. RESEARCHES REGARDING USE OF TEXTILE MATERIALS FOR THERMAL INSULATION AT NEGATIVE TEMPERATURES

    Directory of Open Access Journals (Sweden)

    IOSUB Andrei

    2014-05-01

    Full Text Available Using thermal insulation in negative temperature acts to reduce heat flow to the cooled space or to objects that have a temperature below ambient temperature. To achieve economic operation of the space to be cooled insulation thickness and quality is an important factor. In this article we want to compare three products used in thermal insulation at negative temperatures: expanded polystyrene, non-woven and wool coats. The materials will be tested with a mechanical vapor compression refrigerator capable of producing temperatures in the range +4 .. -35 ° C, managed by a programmer Dixel capable of recording values between +40. .. -60 °C. Refrigeration insulation enclosure was made with 100 mm expanded polystyrene. On one side of the enclosure will be a cut of 250 * 250 mm, chosen in a central position where the material will be introduced to be tested. The dimensions of the samples are 250 * 250 * 60 mm. To check the insulation properties of materials it will be used a temperature logger capable of recording with two probes temperatures between +125...-40° C. One of the probes will be inserted inside the refrigerator and the second probe will be positioned to the outside of the test material adhered to an aluminum plate, in order to read a average temperature. The difference in thickness of the insulation shall be filled with non-woven material. Hardening the assembly will be made using a 6 mm thick OSB board. The materials will be tested in an identical ambient temperature and humidity.

  12. Design Considerations for Thermally Insulating Structural Sandwich Panels for Hypersonic Vehicles

    Science.gov (United States)

    Blosser, Max L.

    2016-01-01

    Simplified thermal/structural sizing equations were derived for the in-plane loading of a thermally insulating structural sandwich panel. Equations were developed for the strain in the inner and outer face sheets of a sandwich subjected to uniaxial mechanical loads and differences in face sheet temperatures. Simple equations describing situations with no viable solution were developed. Key design parameters, material properties, and design principles are identified. A numerical example illustrates using the equations for a preliminary feasibility assessment of various material combinations and an initial sizing for minimum mass of a sandwich panel.

  13. Thermal-performance study of liquid metal fast breeder reactor insulation

    International Nuclear Information System (INIS)

    Shiu, K.K.

    1980-09-01

    Three types of metallic thermal insulation were investigated analytically and experimentally: multilayer reflective plates, multilayer honeycomb composite, and multilayer screens. Each type was subjected to evacuated and nonevacuated conditions, where thermal measurements were made to determine thermal-physical characteristics. A variation of the separation distance between adjacent reflective plates of multilayer reflective plates and multilayer screen insulation was also experimentally studied to reveal its significance. One configuration of the multilayer screen insulation was further selected to be examined in sodium and sodium oxide environments. The emissivity of Type 304 stainless steel used in comprising the insulation was measured by employing infrared technology. A comprehensive model was developed to describe the different proposed types of thermal insulation. Various modes of heat transfer inherent in each type of insulation were addressed and their relative importance compared. Provision was also made in the model to allow accurate simulation of possible sodium and sodium oxide contamination of the insulation. The thermal-radiation contribution to heat transfer in the temperature range of interest for LMFBR's was found to be moderate, and the suppression of natural convection within the insulation was vital in preserving its insulating properties. Experimental data were compared with the model and other published results. Moreover, the three proposed test samples were assessed and compared under various conditions as viable LMFBR thermal insulations

  14. Mechanisms of Thermal Tolerance in Reef-Building Corals across a Fine-Grained Environmental Mosaic: Lessons from Ofu, American Samoa

    Directory of Open Access Journals (Sweden)

    Luke Thomas

    2018-02-01

    Full Text Available Environmental heterogeneity gives rise to phenotypic variation through a combination of phenotypic plasticity and fixed genetic effects. For reef-building corals, understanding the relative roles of acclimatization and adaptation in generating thermal tolerance is fundamental to predicting the response of coral populations to future climate change. The temperature mosaic in the lagoon of Ofu, American Samoa, represents an ideal natural laboratory for studying thermal tolerance in corals. Two adjacent back-reef pools approximately 500 m apart have different temperature profiles: the highly variable (HV pool experiences temperatures that range from 24.5 to 35°C, whereas the moderately variable (MV pool ranges from 25 to 32°C. Standardized heat stress tests have shown that corals native to the HV pool have consistently higher levels of bleaching resistance than those in the MV pool. In this review, we summarize research into the mechanisms underlying this variation in bleaching resistance, focusing on the important reef-building genus Acropora. Both acclimatization and adaptation occur strongly and define thermal tolerance differences between pools. Most individual corals shift physiology to become more heat resistant when moved into the warmer pool. Lab based tests show that these shifts begin in as little as a week and are equally sparked by exposure to periodic high temperatures as constant high temperatures. Transcriptome-wide data on gene expression show that a wide variety of genes are co-regulated in expression modules that change expression after experimental heat stress, after acclimatization, and even after short term environmental fluctuations. Population genetic scans show associations between a corals' thermal environment and its alleles at 100s to 1000s of nuclear genes and no single gene confers strong environmental effects within or between species. Symbionts also tend to differ between pools and species, and the thermal tolerance

  15. Vibration damage testing of thermal barrier fibrous blanket insulation

    International Nuclear Information System (INIS)

    Black, W.E.; Betts, W.S.

    1984-01-01

    GA Technologies is engaged in a long-term, multiphase program to determine the vibration characteristics of thermal barrier components leading to qualification of assemblies for High Temperature Gas-Cooled Reactor (HTGR) service. The phase of primary emphasis described herein is the third in a series of acoustic tests and uses as background the more elemental tests preceding it. Two sizes of thermal barrier coverplates with one fibrous blanket insulation type were tested in an acoustic environment at sound pressure levels up to 160 dB. Three tests were conducted using sinusoidal and random noise for up to 200 h duration at room temperature. Frequent inspections were made to determine the progression of degradation using definition of stages from a prior test program. Initially the insulation surface adjacent to the metallic seal sheets (noise side) assumed a chafed or polished appearance. This was followed by flattening of the as-received pillowed surface. This stage was followed by a depression being formed in the vicinity of the free edge of the coverplate. Next, loose powder from within the blanket and from fiber erosion accumulated in the depression. Prior experience showed that the next stage of deterioration exhibited a consolidation of the powder to form a local crust. In this test series, this last stage generally failed to materialize. Instead, surface holes generated by solid ceramic particulates (commonly referred to as 'shot') constituted the stage following powdering. With the exception of some manufacturing-induced anomalies, the final stage, namely, gross fiber breakup, did not occur. It is this last stage that must be prevented for the thermal barrier to maintain its integrity. (orig./GL)

  16. Determination of Optimum Thermal Insulation Thicknesses for External Walls Considering the Heating, Cooling and Annual Energy Requirement

    Directory of Open Access Journals (Sweden)

    Ömer KAYNAKLI

    2016-06-01

    Full Text Available In this study, optimization of thermal insulation thickness applied to the external walls of buildings has been carried out comparatively based on the seasonal (space-heating and cooling and the annual energy requirements considering solar radiation effect. This study has been performed for four degree-day regions of Turkey, namely, Iskenderun (in the first region, Istanbul (in the second region, Ankara (in the third region and Ardahan (in the fourth region. By determining the sol-air temperatures for each region and maximizing the present worth value of seasonal and annual energy savings, the optimum thermal insulation thicknesses have been calculated. The effects of solar radiation on heating-cooling energy requirements, the variation of optimum insulation thicknesses and payback periods with respect to degree-day regions, the differences between the analyses based on seasonal and annual have been presented in tabular and graphical form.

  17. Quantification of Uncertainty in Thermal Building Simulation

    DEFF Research Database (Denmark)

    Brohus, Henrik; Haghighat, F.; Frier, Christian

    In order to quantify uncertainty in thermal building simulation stochastic modelling is applied on a building model. An application of stochastic differential equations is presented in Part 1 comprising a general heat balance for an arbitrary number of loads and zones in a building to determine...

  18. Surface Thermal Insulation and Pipe Cooling of Spillways during Concrete Construction Period

    Directory of Open Access Journals (Sweden)

    Wang Zhenhong

    2014-01-01

    Full Text Available Given that spillways adopt a hydraulic thin concrete plate structure, this structure is difficult to protect from cracks. The mechanism of the cracks in spillways shows that temperature stress is the major reason for cracks. Therefore, an effective way of preventing cracks is a timely and reasonable temperature-control program. Studies show that one effective prevention method is surface thermal insulation combined with internal pipe cooling. The major factors influencing temperature control effects are the time of performing thermal insulation and the ways of internal pipe cooling. To solve this problem, a spillway is taken as an example and a three-dimensional finite element program and pipe cooling calculation method are adopted to conduct simulation calculation and analysis on the temperature fields and stress fields of concretes subject to different temperature-control programs. The temperature-control effects are then compared. Optimization results show that timely and reasonable surface thermal insulation and water-flowing mode can ensure good temperature-control and anticrack effects. The method has reference value for similar projects.

  19. Needle-Bonded Electromagnetic Shielding Thermally Insulating Nonwoven Composite Boards: Property Evaluations

    Directory of Open Access Journals (Sweden)

    Jia-Horng Lin

    2016-10-01

    Full Text Available Complicated environmental problems inevitably arise when technology advances. One major environmental problem is the presence of electromagnetic radiation. Long-term exposure to electromagnetic radiation can damage people’s health in many ways. Therefore, this study proposes producing composite boards with electromagnetic shielding effectiveness and thermal insulation by utilizing the structures and properties of materials. Different combinations of flame-retardant polyester fiber (FR fiber, recycled far-infrared polyester fiber (FI fiber, and 4D low-melting-point fibers (LM fiber were made into flame-retardant and thermally insulating matrices. The matrices and carbon fiber (CF woven fabric in a sandwich-structure were needle-punched in order to be tightly compact, and then circularly heat dried in order to have a heat set and reinforced structure. The test results indicate that Polyester (PET/CF composite boards are mechanically strong and have thermal insulation and electromagnetic shielding effectiveness at a frequency between 0.6 MHz and 3 GHz.

  20. Acoustics. Measurement of sound insulation in buildings and of building elements. Laboratory measurements of the reduction of transmitted impact noise by floor coverings on a heavyweight standard floor

    CERN Document Server

    British Standards Institution. London

    1998-01-01

    Acoustics. Measurement of sound insulation in buildings and of building elements. Laboratory measurements of the reduction of transmitted impact noise by floor coverings on a heavyweight standard floor

  1. Application and feasibility of coal fly ash and scrap tire fiber as wood wall insulation supplements in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Van de Lindt, J.W.; Carraro, J.A.H.; Heyliger, P.R.; Choi, C. [Colorado State University, Department of Civil and Environmental Engineering, Fort Collins, CO (United States)

    2008-08-15

    Each year, nearly 55% of the fly ash (FA) produced by coal burning power plants in the United States is disposed of in landfills and ash ponds, while the amount of recycled fiber from scrap tires that is beneficially used in end-user markets is virtually negligible. This paper presents the results of a study carried out to investigate whether it might be possible to increase the thermal efficiency of a light-frame residential structure through addition of a fly ash-scrap tire fiber composite to traditional fiberglass insulation in light-frame wood residential construction. This type of construction represents more than 80% of the building stock in North America. The results of this study suggest that the fly ash-scrap tire fiber composite provides a sustainable supplement to traditional insulation that not only increases the efficiency of traditional insulation but can also help significantly reduce the environmental issues associated with disposal of these waste products. (author)

  2. Application and feasibility of coal fly ash and scrap tire fiber as wood wall insulation supplements in residential buildings

    International Nuclear Information System (INIS)

    Van de Lindt, J.W.; Carraro, J.A.H.; Heyliger, P.R.; Choi, C.

    2008-01-01

    Each year, nearly 55% of the fly ash (FA) produced by coal burning power plants in the United States is disposed of in landfills and ash ponds, while the amount of recycled fiber from scrap tires that is beneficially used in end-user markets is virtually negligible. This paper presents the results of a study carried out to investigate whether it might be possible to increase the thermal efficiency of a light-frame residential structure through addition of a fly ash-scrap tire fiber composite to traditional fiberglass insulation in light-frame wood residential construction. This type of construction represents more than 80% of the building stock in North America. The results of this study suggest that the fly ash-scrap tire fiber composite provides a sustainable supplement to traditional insulation that not only increases the efficiency of traditional insulation but can also help significantly reduce the environmental issues associated with disposal of these waste products. (author)

  3. Standard Practice for Evaluating Thermal Insulation Materials for Use in Solar Collectors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 This practice sets forth a testing methodology for evaluating the properties of thermal insulation materials to be used in solar collectors with concentration ratios of less than 10. Tests are given herein to evaluate the pH, surface burning characteristics, moisture adsorption, water absorption, thermal resistance, linear shrinkage (or expansion), hot surface performance, and accelerated aging. This practice provides a test for surface burning characteristics but does not provide a methodology for determining combustibility performance of thermal insulation materials. 1.2 The tests shall apply to blanket, rigid board, loose-fill, and foam thermal insulation materials used in solar collectors. Other thermal insulation materials shall be tested in accordance with the provisions set forth herein and should not be excluded from consideration. 1.3 The assumption is made that elevated temperature, moisture, and applied stresses are the primary factors contributing to the degradation of thermal insulation mat...

  4. Rigid Polyurethane Foam Thermal Insulation Protected with Mineral Intumescent Mat

    Directory of Open Access Journals (Sweden)

    Kirpluks Mikelis

    2014-12-01

    Full Text Available One of the biggest disadvantages of rigid polyurethane (PU foams is its low thermal resistance, high flammability and high smoke production. Greatest advantage of this thermal insulation material is its low thermal conductivity (λ, which at 18-28 mW/(m•K is superior to other materials. To lower the flammability of PU foams, different flame retardants (FR are used. Usually, industrially viable are halogenated liquid FRs but recent trends in EU regulations show that they are not desirable any more. Main concern is toxicity of smoke and health hazard form volatiles in PU foam materials. Development of intumescent passive fire protection for foam materials would answer problems with flammability without using halogenated FRs. It is possible to add expandable graphite (EG into PU foam structure but this increases the thermal conductivity greatly. Thus, the main advantage of PU foam is lost. To decrease the flammability of PU foams, three different contents 3%; 9% and 15% of EG were added to PU foam formulation. Sample with 15% of EG increased λ of PU foam from 24.0 to 30.0 mW/(m•K. This paper describes the study where PU foam developed from renewable resources is protected with thermally expandable intumescent mat from Technical Fibre Products Ltd. (TFP as an alternative to EG added into PU material. TFP produces range of mineral fibre mats with EG that produce passive fire barrier. Two type mats were used to develop sandwich-type PU foams. Also, synergy effect of non-halogenated FR, dimethyl propyl phosphate and EG was studied. Flammability of developed materials was assessed using Cone Calorimeter equipment. Density, thermal conductivity, compression strength and modulus of elasticity were tested for developed PU foams. PU foam morphology was assessed from scanning electron microscopy images.

  5. A protocol for lifetime energy and environmental impact assessment of building insulation materials

    International Nuclear Information System (INIS)

    Shrestha, Som S.; Biswas, Kaushik; Desjarlais, Andre O.

    2014-01-01

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist, which provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different building insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines. - Highlights: • We proposed a protocol to evaluate the environmental impacts of insulation materials. • The protocol considers all life cycle stages of an insulation material. • Both the direct environmental impacts and the indirect impacts are defined. • Standardized calculation methods for the ‘avoided operational energy’ is defined. • Standardized calculation methods for the ‘avoided environmental impact’ is defined

  6. A Network Model for the Effective Thermal Conductivity of Rigid Fibrous Refractory Insulations

    Science.gov (United States)

    Marschall, Jochen; Cooper, D. M. (Technical Monitor)

    1995-01-01

    A procedure is described for computing the effective thermal conductivity of a rigid fibrous refractory insulation. The insulation is modeled as a 3-dimensional Cartesian network of thermal conductance. The values and volume distributions of the conductance are assigned to reflect the physical properties of the insulation, its constituent fibers, and any permeating gas. The effective thermal conductivity is computed by considering the simultaneous energy transport by solid conduction, gas conduction and radiation through a cubic volume of model insulation; thus the coupling between heat transfer modes is retained (within the simplifications inherent to the model), rather than suppressed by treating these heat transfer modes as independent. The model takes into account insulation composition, density and fiber anisotropy, as well as the geometric and material properties of the constituent fibers. A relatively good agreement, between calculated and experimentally derived thermal conductivity values, is obtained for a variety of rigid fibrous insulations.

  7. Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model

    International Nuclear Information System (INIS)

    Daouas, Naouel

    2016-01-01

    Highlights: • An efficient tool is proposed for a rigorous energy analysis of building envelope. • The longwave radiation has an important impact on the energy requirements. • Optimum insulation thickness for roofs is rigorously determined in a cost analysis. • The present method is more accurate than the sol–air degree hours method. • The proposed model is applicable to the study of the efficiency of cool roofs. - Abstract: In Tunisia, the building sector is considered as a major issue of energy consumption. A special attention should be drawn to improve the thermal quality of the building envelope with real consideration of the Tunisian climate specificity. One of the most effective measures is the roof insulation. Therefore, the present study is concerned with the determination of the optimum insulation thickness and the resulting energy savings and payback period for two typical roof structures and two types of insulation materials. An efficient analytical dynamic model based on the Complex Finite Fourier Transform (CFFT) is proposed and validated in order to handle the nonlinear longwave radiation (LWR) exchange with the sky. This model provides a short computational time solution of the transient heat transfer through multilayer roofs, which could be a good alternative to some numerical methods. Both heating and cooling annual loads are rigorously estimated and used as inputs to a life-cycle cost analysis. Among the studied cases, the most economical one is the hollow terracotta-based roof insulated with rock wool, where the optimum insulation thickness is estimated to be 7.9 cm, with a payback period of 6.06 years and energy savings up to 58.06% of the cost of energy consumed without insulation. The impact of the LWR exchange component is quantified and the results show its important effect on the annual transmission loads and, consequently, on optimum insulation thickness. A sensitivity analysis shows the efficiency of cool roofs in the Tunisian

  8. Effect of highly reflective roofing sheet on building thermal loads for a school in Osaka

    Directory of Open Access Journals (Sweden)

    Yuan Jihui

    2017-01-01

    Full Text Available Currently, urban heat island (UHI phenomenon and building energy consumptions are becoming serious. Strategies to mitigate UHI and reduce building energy consumptions are implemented worldwide. In Japan, as an effective means of mitigating UHI and saving energy of buildings, highly reflective (HR and green roofs are increasingly used. In order to evaluate the effect of roofs with high reflection and thermal insulation on the energy conservation of buildings, we investigated the roof solar reflectivity of the subject school in Osaka, in which the HR roofing sheet was installed on the roof from 2010. Thermal loads, including cooling and heating loads of the top floor of school, were calculated using the thermal load calculation software, New HASP/ACLD-β. Comparing the thermal loads after HR roofing sheet installation to previous, the annual thermal load decreased about 25 MJ/m2-year and the cooling load decreased about 112 MJ/m2-year. However, the heating load increased about 87 MJ/m2-year in winter. To minimize the annual thermal load, thermal insulation of the roof was also considered be used together with HR roofing sheet in this study. The results showed that the combination of HR roofing sheet and high thermal insulation is more effective to reduce the annual thermal load.

  9. Electric cable insulation pyrolysis and ignition resulting from potential hydrogen burn scenarios for nuclear containment buildings

    International Nuclear Information System (INIS)

    Berlad, A.L.; Jaung, R.; Pratt, W.T.

    1982-01-01

    Electric cable insulation in nuclear containment buildings may participate in pyrolysis and combustion processes engendered by hydrogen burn phenomena. This paper examines these pyrolysis/ignition processes of those polymeric materials present in the electric cable insulation and their possible relation to hydrogen burn scenarios

  10. A thermal insulation system intended for a prestressed concrete vessel

    International Nuclear Information System (INIS)

    Aubert, Gilles; Petit, Guy.

    1975-01-01

    The description is given of a thermal insulation system withstanding the pressure of a vaporisable fluid for a prestressed concrete vessel, particularly the vessel of a boiling water nuclear reactor. The ring in the lower part of the vessel has, between the fluid inlet pipes and the bottom of the vessel, an annular opening of which the bottom edge is integral with an annular part rising inside the ring and parallel to it. This ring is hermetically connected to the bottom of the vessel and is coated with a metal lagging, at least facing the annular opening. This annular opening is made in the ring half-way up between the fluid inlet pipes and the bottom of the vessel. It is connected to the bottom of the vessel through the internal structure enveloping the reactor core [fr

  11. Thermal insulation of the high-temperature helium-cooled reactors

    International Nuclear Information System (INIS)

    Kharlamov, A.G.; Grebennik, V.N.

    1979-01-01

    Unlike the well-known thermal insulation methods, development of high-temperature helium reactors (HTGR) raises quite new problems. To understand these problems, it is necessary to consider behaviour of thermal insulation inside the helium circuit of HTGR and requirements imposed on it. Substantiation of these requirements is given in the presented paper

  12. Building America Top Innovations 2013 Profile – Exterior Rigid Insulation Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-01

    In this Top Innovation profile, field and lab studies by BSC, PHI, and NorthernSTAR characterize the thermal, air, and vapor resistance properties of rigid foam insulation and describe best practices for their use on walls, roofs, and foundations.

  13. Safety distance for preventing hot particle ignition of building insulation materials

    OpenAIRE

    Jiayun Song; Supan Wang; Haixiang Chen

    2014-01-01

    Trajectories of flying hot particles were predicted in this work, and the temperatures during the movement were also calculated. Once the particle temperature decreased to the critical temperature for a hot particle to ignite building insulation materials, which was predicted by hot-spot ignition theory, the distance particle traveled was determined as the minimum safety distance for preventing the ignition of building insulation materials by hot particles. The results showed that for sphere ...

  14. Synergic effects of thermal mass and natural ventilation on the thermal behaviour of traditional massive buildings

    Science.gov (United States)

    Gagliano, A.; Nocera, F.; Patania, F.; Moschella, A.; Detommaso, M.; Evola, G.

    2016-05-01

    The energy policies about energy efficiency in buildings currently focus on new buildings and on existing buildings in case of energy retrofit. However, historic and heritage buildings, that are the trademark of numerous European cities, should also deserve attention; nevertheless, their energy efficiency is nowadays not deeply investigated. In this context, this study evaluates the thermal performance of a traditional massive building situated in a Mediterranean city. Dynamic numerical simulations were carried out on a yearly basis through the software DesignBuilder, both in free-running conditions and in the presence of an air-conditioning (AC) system. The results highlight that the massive envelope of traditional residential buildings helps in maintaining small fluctuations of the indoor temperature, thus limiting the need for AC in the mid-season and in summer. This feature is highly emphasised by exploiting natural ventilation at night, which allows reducing the building energy demand for cooling by about 30%.The research also indicates that, for Mediterranean climate, the increase in thermal insulation does not always induce positive effects on the thermal performance in summer, and that it might even produce an increase in the heat loads due to the transmission through the envelope.

  15. Influence of light masonry mortar on the thermal insulation of a solid brick wall

    Energy Technology Data Exchange (ETDEWEB)

    Kupke, C

    1980-12-01

    For calculations of the thermal insulation of structural components according to DIN 4108 and to the Thermal Insulation Ordinance, characteristic data of thermal conductivity are used which are contained in DIN 4108 and in the Bundesanzeiger in Supplements to the publication of material characteristics for the calculation of thermal insulation according to the Thermal Insulation Ordinance. For masonry, this value is equivalent to the thermal conductivity of the bricks, including mortar joints. The mortar considered is standard mortar, group II, according to DIN 1053. In the last few years, in order to improve the thermal insulation, mortars of low thermal conductivity and low volume weight - so-called light masonry mortars - have been used to an increasing extent. The improvement in thermal conductivity as compared with standard mortar is referred to as ..delta..lambda; it depends mostly on the thermal conductivity of the light mortar and the bricks. In the article, the laws governing the influence of light masonry mortar on the thermal insulation of masonry of solid bricks and solid blocks are reviewed.

  16. Performance Analysis of Cool Roof, Green Roof and Thermal Insulation on a Concrete Flat Roof in Tropical Climate

    OpenAIRE

    Zingre, Kishor T.; Yang, Xingguo; Wan, Man Pun

    2015-01-01

    In the tropics, the earth surface receives abundant solar radiation throughout the year contributing significantly to building heat gain and, thus, cooling demand. An effective method that can curb the heat gains through opaque roof surfaces could provide significant energy savings. This study investigates and compares the effectiveness of various passive cooling techniques including cool roof, green roof and thermal insulation for reducing the heat gain through a flat concrete roof in tropic...

  17. Property comparisons of commercially available silica-based microporous insulations I. Machinability and thermal dimensional stability

    International Nuclear Information System (INIS)

    Kramer, Daniel P.; McNeil, Dennis C.; Ruhkamp, Joseph D.; Wells, Donna J.; Stringer, Robert L.; Howell, Edwin I.

    2002-01-01

    Maximizing the thermal to electrical conversion efficiency of a nuclear space power system requires that all of the available thermal energy be utilized in the most efficient manner. Microporous insulations are attractive for application in space power systems due to their very low thermal conductivity. Over the last few years, several new silica-based microporous insulating materials have become commercially available. Property comparisons of the various insulations obtained from company literature and experiments on microporous sample specimens are discussed. The results demonstrate that their machinability and thermal dimensional stability as a function of time at temperature and atmosphere are dependent on the particular material

  18. Use of Several Thermal Analysis Techniques to Study the Cracking of a Nitrile Butadiene Rubber (NBR) Insulator on the Booster Separation Motor (BSM) of the Space Shuttle

    Science.gov (United States)

    Wingard, Charles D.

    1999-01-01

    Two different vendor rubber formulations have been used to produce the silica-filled NBR insulators for the BSM of each of the two Solid Rocket Boosters (SRBs) on the Space Shuttle. Each cured insulator is bonded to the BSM aluminum aft closure with an epoxy adhesive, and some of the curved areas in the rubber may have significant residual stresses. A number of recently bonded NBR insulators have shown fine surface cracks, and stressed insulator areas may be aging at a faster rate than unstressed areas, thus hastening the surface cracking. Thermal analysis data on both vendor insulators by Dynamic Mechanical Analysis (DMA) through a temperature/frequency sweep from 24 to 74 C have shown a higher flexural storage modulus and Arrhenius activation energy for the stressed area than for the unstressed area. Other thermal analysis techniques are being used to study the insulator surface vs. bulk interior for better understanding this anomaly.

  19. Investigation of properties of low-strength lightweight concrete for thermal insulation

    Energy Technology Data Exchange (ETDEWEB)

    UEnal, Osman; Uygunoglu, Tayfun [Construction Department, Technical Education Faculty, Afyon Kocatepe University, 03200 Afyon (Turkey); Yildiz, Ahmet [Afyon Kocatepe University, Engineering Faculty, 03200 Afyon (Turkey)

    2007-02-15

    In this study, block elements with diatomite, which have different aggregate granulometries and cement contents, were produced and the effect of these parameters on physical and mechanical properties of block elements were investigated. Diatomite samples were taken from the region of Afyon. In the mixes, water/cement ratio was kept at 0.15. Analyses include compressive strength, thermal conductivity, ultrasonic velocity tests, bulk density and specific porosity. According to experimental results, while dry unit weight is varied between 900 and 1190kg/m{sup 3}, compressive strength of 7-56 days specimens ranged from 2.5 to 8MPa. Materials with a ratio of 30% fine, 40% medium and 30% coarse size have the best compressive strength and thermal insulation in all series. Due to low thermal conductivity, lightweight aggregate concrete with diatomite can be used to prove high isolation in the structure. (author)

  20. Dynamic Heat Production Modeling for Life Cycle Assessment of Insulation in Danish Residential Buildings

    DEFF Research Database (Denmark)

    Sohn, Joshua L.; Kalbar, Pradip; Birkved, Morten

    2017-01-01

    insulation in a Danish single-family detached home. This single family house, is based on averages of current Danish construction practices with building heat losses estimated using Be10. To simulate a changing district heating grid mix, heat supply fuel sources are modeled according to Danish energy mix...... for space heating without insulation over the lifespan of a building. When the energy sources for insulation production are similar to the energy mix that supplies heat, this logic is valid to very high level of insulation. However, in Denmark, as well as many other countries this assumption is becoming...... increasingly incorrect. Given the generally long service life of buildings, the significance of future energy mixes, which are expected/intended to have a smaller environmental impact, can be great. In this paper, a reference house is used to assess the life cycle environmental impacts of mineral wool...

  1. Life-cycle based dynamic assessment of mineral wool insulation in a Danish residential building application

    DEFF Research Database (Denmark)

    Sohn, Joshua L.; Kalbar, Pradip; Banta, Gary T.

    2017-01-01

    There has been significant change in the way buildings are constructed and the way building energy performance is evaluated. Focus on solely the use phase of a building is beginning to be replaced by a life-cycle based performance assessment. This study assesses the environmental impact trade......-offs between the heat produced to meet a building's space heating load and insulation produced to reduce its space heating load throughout the whole life-cycle of a building. To obtain a more realistic valuation of this tradeoff, a dynamic heat production model, which accounts for political projections...... grid, which is potentially promoted at present in Danish regulation. It is further concluded that improvement of the mineral wool insulation production process could allow for greater levels of environmentally beneficial insulation and would also help in reducing the overall environmental burden from...

  2. Integrating a vented airspace into a spray-foam insulated solid masonry historic building in a cold climate: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Tzekova, Ekaterina; Pressnail, K.D.; Binkley, Clarissa [Department of Civil Engineering, University of Toronto (Canada); Pearson, Nastassja [Halsall Associates Limited (Canada); Pasqualini, Paul [Engineering Link Inc (Canada); Aikin, Craig [Halcrow Yolles (Canada)

    2011-07-01

    Thermal insulation was not included during the construction of historic brick buildings in Canada. Although thermal retrofits can improve building energy performance and occupant comfort, heritage requirements restrict the use of internal insulation. This paper presents an innovative Vented Masonry Retrofit (VMR), which consists of creating a vented airspace by incorporating Mortairvent between the insulation and the masonry. A numerical model and a field trial involving a three-storey heritage building were performed to compare the hygrothermal performance of the VMR with that of standard interior insulation. Temperature and relative humidity were collected during the winter months in foam-insulated, side-by-side wall assemblies along the east and south facing walls using both approaches. Modeling results predicted that using VMR assemblies would reduce the moisture content in both east and south elevations to below that obtained with standard insulation. However, the field trial showed improvement only along the south facade. Long term performance evaluation is required far a better evaluation of the VMR approach.

  3. Building materials and systems with vacuum insulation panels for external walls; Bauelemente und Systeme mit VIP fuer Aussenwandkonstruktionen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Binz, A; Steinke, G

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at materials and systems using vacuum insulation panels (VIP) for the construction of external walls. The aim of this research project was the development, practical use and market introduction of VIP systems that take account of the special properties of VIP. Along with partners in industry, applications involving external and internal insulation were examined. The need for protecting the vacuum panels against mechanical damage is stressed. The specific needs for the protection of external and internal applications are discussed. The dynamic developments in this relatively new area are commented on. Various mounting systems are examined and commented on. The thermal properties of such insulation systems and applications are noted and commented on.

  4. Lighter touch keeps in the heat. [Advantages of low-thermal-mass insulation

    Energy Technology Data Exchange (ETDEWEB)

    Pipes, A.

    1979-04-01

    Low-thermal-mass insulation of ceramic fibers and light refractory materials is more suitable to applications with intermittent processes and lower-temperature melting and retreating, where the heat-retention requirements do not require traditional furnace design. Old furnaces can be retrofitted by replacing bricks with insulation or by veneering. Insulating materials include ceramic, alumina, and quartz fibers, and microtherm in the form of blocks, blankets and other shapes. 4 figures. (DCK)

  5. Investigation of cryogenic irradiation influence on mechanical and physical properties of ITER magnetic system insulation materials

    International Nuclear Information System (INIS)

    Kozlov, A.V.; Scherbacov, E.N.; Dudchenko, N.A.; Shihalev, V.S.; Bedin, V.V.; Paltusov, N.A.; Korsunskiy, V.E.

    1998-01-01

    A set of methods of cryogenic irradiation influence test on mechanical and physical properties of insulation of ITER magnetic system are presented in this paper. Investigations are carried out without intermediate warming up of samples. A Russian insulating composite material was irradiated in the IVV-2M reactor. The ratio of energy absorbed by insulation materials from neutron irradiation to that from gamma irradiation can be varied from ∝(25:75)% to ∝(50:50)% in the reactor. The test results on the thermal expansion, thermal conductivity and gas evolution of the above material are presented. It was shown, that cryogenic irradiation up to the fluence ∝2 x 10 22 n/m 2 (E ≥ 0.1 MeV) leads to 0.27% linear size changes along layers of fiber-glass, the thermal conductivity coefficient is decreased on 15% at 100 k in perpendicular direction to fiber-glass plane, and thermal coefficient of linear expansion (TCLE) has anomalous temperature dependence. (orig.)

  6. Thermal test of the insulation structure for LH 2 tank by using the large experimental apparatus

    Science.gov (United States)

    Kamiya, S.; Onishi, K.; Konshima, N.; Nishigaki, K.

    Conceptual designs of large mass LH 2 (liquid hydrogen) storage systems, whose capacity is 50,000 m3, have been studied in the Japanese hydrogen project, World Energy Network (WE-NET) [K. Fukuda, in: WE-NET Hydrogen Energy Symposium, 1999, P1-P41]. This study has concluded that their thermal insulation structures for the huge LH 2 tanks should be developed. Their actual insulation structures comprise not only the insulation material but also reinforced members and joints. To evaluate their thermal performance correctly, a large test specimen including reinforced members and joints will be necessary. After verifying the thermal performance of a developed large experimental apparatus [S. Kamiya, Cryogenics 40 (1) (2000) 35] for measuring the thermal conductance of various insulation structures, we tested two specimens, a vacuum multilayer insulation (MLI) with a glass fiber reinforced plastic (GFRP) support and a vacuum solid insulation (microtherm ®) with joints. The thermal background test for verifying the thermal design of the experimental apparatus showed that the background heat leak is 0.1 W, small enough to satisfy apparatus performance requirement. The thermal conductance measurements of specimens also showed that thermal heat fluxes of MLI with a GFRP support and microtherm ® are 8 and 5.4 W/m2, respectively.

  7. Sound insulation between dwellings - Descriptors applied in building regulations in Europe

    DEFF Research Database (Denmark)

    Rasmussen, Birgit; Rindel, Jens Holger

    2010-01-01

    Regulatory sound insulation requirements for dwellings have existed since the 1950s in some countries and descriptors for evaluation of sound insulation have existed for nearly as long. However, the descriptors have changed considerably over time, from simple arithmetic averaging of frequency bands...... was carried out of legal sound insulation requirements in 24 countries in Europe. The comparison of requirements for sound insulation between dwellings revealed significant differences in descriptors as well as levels. This paper focuses on descriptors and summarizes the history of descriptors, the problems...... of the present situation and the benefits of consensus concerning descriptors for airborne and impact sound insulation between dwellings. The descriptors suitable for evaluation should be well-defined under practical situations in buildings and be measurable. Measurement results should be reproducible...

  8. Mechanical, Thermal and Functional Properties of Green Lightweight Foamcrete

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2012-09-01

    Full Text Available In recent times, the construction industry has revealed noteworthy attention in the use of lightweight foamcrete as a building material due to its many favourable characteristics such as lighter weight, easy to fabricate, durable and cost effective. Foamcrete is a material consisting of Portland cement paste or cement filler matrix (mortar with a homogeneous pore structure created by introducing air in the form of small bubbles. With a proper control in dosage of foam and methods of production, a wide range of densities (400 – 1600 kg/m 3 of foamcrete can be produced thus providing flexibility for application such as structural elements, partition, insulating materials and filling grades. Foamcrete has so far been applied primarily as a filler material in civil engineering works. However, its good thermal and acoustic performance indicates its strong potential as a material in building construction. The focus of this paper is to classify literature on foamcrete in terms of its mechanical, thermal and functional properties.

  9. Numerical analysis of the influence of thermal mass, phase change materials and furniture / indoor content on building energy flexibility (long abstract)

    DEFF Research Database (Denmark)

    Johra, Hicham

    investigating the influence of the different types of thermal inertia on buildings energy flexibility. Although the insulation level and thermal mass of a building envelope are the dominant parameters, it appears that indoor content cannot be neglected for lightweight structure building simulations. Finally...

  10. Numerical Analysis of the Impact of Thermal Inertia from the Furniture / Indoor Content and Phase Change Materials on the Building Energy Flexibility

    DEFF Research Database (Denmark)

    Johra, Hicham; Heiselberg, Per Kvols; Le Dréau, Jérôme

    investigating the influence of the different types of thermal inertia on buildings energy flexibility. Although the insulation level and thermal mass of a building envelope are the dominant parameters, it appears that indoor content cannot be neglected for lightweight structure building simulations. Finally...

  11.  Thermal Insulation System Made of Wood and Paper for Use in Residential Construction

    Science.gov (United States)

    Zoltán Pásztory; Tibor Horváth; Samuel V. Glass; Samuel L. Zelinka

    2015-01-01

    This article introduces an insulation system that takes advantage of the low thermal conductivity of still air and is made of wood and paper. The insulation, called the Mirrorpanel, is constructed as a panel of closely spaced layers of coated paper and held together in a frame of wood or fiberboard. Panels have been fabricated and tested at the laboratory scale, whole...

  12. Investigation of the sensitivity of MIS-sensor to thermal decomposition products of cables insulation

    Science.gov (United States)

    Filipchuk, D. V.; Litvinov, A. V.; Etrekova, M. O.; Nozdrya, D. A.

    2017-12-01

    Sensitivity of the MIS-sensor to products of thermal decomposition of insulation and jacket of the most common types of cables is investigated. It is shown that hydrogen is evolved under heating the insulation to temperatures not exceeding 250 °C. Registration of the evolved hydrogen by the MIS-sensor can be used for detection of fires at an early stage.

  13. Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications.

    Science.gov (United States)

    Stegmaier, Thomas; Linke, Michael; Planck, Heinrich

    2009-05-13

    Solar thermal collectors used at present consist of rigid and heavy materials, which are the reasons for their immobility. Based on the solar function of polar bear fur and skin, new collector systems are in development, which are flexible and mobile. The developed transparent heat insulation material consists of a spacer textile based on translucent polymer fibres coated with transparent silicone rubber. For incident light of the visible spectrum the system is translucent, but impermeable for ultraviolet radiation. Owing to its structure it shows a reduced heat loss by convection. Heat loss by the emission of long-wave radiation can be prevented by a suitable low-emission coating. Suitable treatment of the silicone surface protects it against soiling. In combination with further insulation materials and flow systems, complete flexible solar collector systems are in development.

  14. Thermal comfort assessment of buildings

    CERN Document Server

    Carlucci, Salvatore

    2013-01-01

    A number of metrics for assessing human thermal response to climatic conditions have been proposed in scientific literature over the last decades. They aim at describing human thermal perception of the thermal environment to which an individual or a group of people is exposed. More recently, a new type of “discomfort index” has been proposed for describing, in a synthetic way, long-term phenomena. Starting from a systematic review of a number of long-term global discomfort indices, they are then contrasted and compared on a reference case study in order to identify their similarities and differences and strengths and weaknesses. Based on this analysis, a new short-term local discomfort index is proposed for the American Adaptive comfort model. Finally, a new and reliable long-term general discomfort index is presented. It is delivered in three versions and each of them is suitable to be respectively coupled with the Fanger, the European Adaptive and the American Adaptive comfort models.

  15. An Innovative Use of Renewable Ground Heat for Insulation in Low Exergy Building Systems

    Directory of Open Access Journals (Sweden)

    Hansjürg Leibundgut

    2012-08-01

    Full Text Available Ground heat is a renewable resource that is readily available for buildings in cool climates, but its relatively low temperature requires the use of a heat pump to extract it for heating. We developed a system that uses low temperature ground heat directly in a building wall to reduce transmission heat losses. The Active Low Exergy Geothermal Insulation Systems (ALEGIS minimizes exergy demand and maximizes the use of renewable geothermal heat from the ground. A fluid is pumped into a small pipe network in an external layer of a wall construction that is linked to a ground heat source. This decouples the building from the outside temperature, therefore eliminating large peak demands and reducing the primary energy demand. Our steady-state analysis shows that at a design temperature of −10 °C the 6 cm thick active insulation system has equivalent performance to 11 cm of passive insulation. Our comparison of heating performance of a building with our active insulation system versus a building with static insulation of the same thickness shows a 15% reduction in annual electricity demand, and thus exergy input. We present an overview of the operation and analysis of our low exergy concept and its modeled performance.

  16. Thermography Control of Heat Insulation and Tightness of Buildings,

    Science.gov (United States)

    1980-11-01

    construction. The method is pedagogical . Results from thermography studies are suitable for use when giving experience feedback. (Excellent complement...visual inspection Instrument Various tools and measures. Principle The construction is opened, and the workmanship of insulation and tight- ness is...most IR cameras. At -196 C (77K) it is sensitive within the wavelength range 0 - 5.6 jam. The lower - 24 - FIGURE 3: Photography with IR camera, AGA

  17. Absolute measurement of the thermal conductivity of insulating materials at high temperature

    International Nuclear Information System (INIS)

    Liermann, J.

    1975-01-01

    A device was developed at the CEA for the absolute measurement of the thermal conductivity of insulators. It can operate in controlled atmospheres (air, CO 2 , Ar, He) and between 100 and 1050 deg C [fr

  18. CO2 Insulation for Thermal Control of the Mars Science Laboratory

    Science.gov (United States)

    Bhandari, Pradeep; Karlmann, Paul; Anderson, Kevin; Novak, Keith

    2011-01-01

    The National Aeronautics and Space Administration (NASA) is sending a large (>850 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars in 2011. The rover's primary power source is a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) that generates roughly 2000 W of heat, which is converted to approximately 110 W of electrical power for use by the rover electronics, science instruments, and mechanism-actuators. The large rover size and extreme thermal environments (cold and hot) for which the rover is designed for led to a sophisticated thermal control system to keep it within allowable temperature limits. The pre-existing Martian atmosphere of low thermal conductivity CO2 gas (8 Torr) is used to thermally protect the rover and its components from the extremely cold Martian environment (temperatures as low as -130 deg C). Conventional vacuum based insulation like Multi Layer Insulation (MLI) is not effective in a gaseous atmosphere, so engineered gaps between the warm rover internal components and the cold rover external structure were employed to implement this thermal isolation. Large gaps would lead to more thermal isolation, but would also require more of the precious volume available within the rover. Therefore, a balance of the degree of thermal isolation achieved vs. the volume of rover utilized is required to reach an acceptable design. The temperature differences between the controlled components and the rover structure vary from location to location so each gap has to be evaluated on a case-by-case basis to arrive at an optimal thickness. For every configuration and temperature difference, there is a critical thickness below which the heat transfer mechanism is dominated by simple gaseous thermal conduction. For larger gaps, the mechanism is dominated by natural convection. In general, convection leads to a poorer level of thermal isolation as compared to conduction. All these considerations play important roles in the

  19. A New Ultra Fast Conduction Mechanism in Insulating Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Xu

    2011-01-01

    Full Text Available A brand new phenomenon, namely, electrical conduction via soliton-like ultra fast space charge pulses, recently identified in unfilled cross-linked polyethylene, is shown for the first time to occur in insulating polymer nanocomposites and its characteristics correlated with the electromechanical properties of nanostructured materials. These charge pulses are observed to cross the insulation under low electrical field in epoxy-based nanocomposites containing nanosilica particles with relative weights of 1%, 5%, 10%, and 20% at speeds orders of magnitude higher than those expected for carriers in insulating polymers. The characteristics of mobility, magnitude and repetition rate for both positive and negative charge pulses are studied in relation to nanofiller concentration. The results show that the ultra fast charge pulses (packets are affected significantly by the concentration of nanoparticles. An explanation is presented in terms of a new conduction mechanism where the mechanical properties of the polymer and movement of polymer chains play an important role in the injection and transport of charge in the form of pulses. Here, the charge transport is not controlled by traps. Instead, it is driven by the contribution of polarization and the resultant electromechanical compression, which is substantially affected by the introduction of nanoparticles into the base polymer.

  20. Foam nests provide context-dependent thermal insulation to embryos of three leptodactylid frogs.

    Science.gov (United States)

    Méndez-Narváez, J; Flechas, S V; Amézquita, A

    2015-01-01

    The choice of adequate breeding habitat and its associated thermoregulatory conditions are thought to be important in the evolution of amphibian reproductive strategies. Among leptodactylid frogs, there is a terrestrial cline in the oviposition sites chosen to build foam nests for eggs. Although several functions have been attributed to foam nests, their role in temperature regulation for embryos is unclear. Here we tested the hypothesis that foam nests buffer embryos from variation in air temperature. We examined the degree of terrestrial nest sites in three species, finding a terrestrial cline of sites in terms of distance from water. We tested whether this nest-insulation effect varied among these species that differ in the degree of terrestrial nest sites and whether translocating nests impacted embryonic mortality. Our results demonstrate a negative effect of translocating aquatic nests to land, inferred from the highest hatching success in natural nests sites. All nests attenuated environmental thermal variation, but more terrestrial nests buffered embryos from a greater range of temperatures than did aquatic ones. Altogether, our data indicate that foam nests insulate embryos from daily temperature fluctuations among leptodactylid frogs with different degrees of terrestrial nests, which may well have contributed to the evolution of this reproductive strategy.

  1. The correlation between thermal comfort in buildings and fashion products.

    Science.gov (United States)

    Giesel, Aline; de Mello Souza, Patrícia

    2012-01-01

    This article is about thermal comfort in the wearable product. The research correlates fashion and architecture, in so far as it elects the brise soleil - an architectural element capable of regulating temperature and ventilation inside buildings - as a study referential, in trying to transpose and adapt its mechanisms to the wearable apparel.

  2. Thermal performance measurement and application of a multilayer insulator for emergency architecture

    International Nuclear Information System (INIS)

    Salvalai, Graziano; Imperadori, Marco; Scaccabarozzi, Diego; Pusceddu, Cristina

    2015-01-01

    Lightness coupled with a quick assembly method is crucial for emergency architecture in post-disaster area where accessibility and action time play a huge barer to rescue people. In this prospective, the following work analyses the potentiality (technological and thermal performances) of multilayer insulator for a new shelter envelope able to provide superior thermal comfort for the users. The thermal characteristics are derived experimentally by means of a guard ring apparatus under different working temperatures. Tests are performed on the multilayer insulator itself and on a composite structure, made of the multilayer insulator and two air gaps wrapped by a polyester cover, which is the core of a new lightweight emergency architecture. Experimental results show good agreement with literature data, providing a thermal conductivity and transmittance of about 0.04 W/(m °C) and 1.6 W/(m 2  °C) for the tested multilayer. The composite structure called Thermo Reflective Multilayer System (TRMS) shows better insulation performances, providing a thermal transmittance set to 0.85 W/(m 2  °C). A thermal model of an emergency tent based on the new insulating structure (TRMS) has been developed and its thermal performances have been compared with those of a UNHCR traditional emergency shelter. The shelter model was simulated (Trnsys v.17 environment) in the winter season considering the climate of Belgrade and using only the casual gains from occupant and solar radiation through opaque wall. Numerical simulations evidenced that the new insulating composite envelope reduces required heating load of about two and four times with respect to the traditional insulation. The study sets a starting point to develop a lightweight emergency architecture made with a combination between multilayer, air, polyester and vulcanized rubber. - Highlights: • Multilayer insulator tested by means of a guard ring apparatus. • Thermo reflective multilayer system (TRMS) development

  3. Control performances of a piezoactuator direct drive valve system at high temperatures with thermal insulation

    Science.gov (United States)

    Han, Yung-Min; Han, Chulhee; Kim, Wan Ho; Seong, Ho Yong; Choi, Seung-Bok

    2016-09-01

    This technical note presents control performances of a piezoactuator direct drive valve (PDDV) operated at high temperature environment. After briefly discussing operating principle and mechanical dimensions of the proposed PDDV, an appropriate size of the PDDV is manufactured. As a first step, the temperature effect on the valve performance is experimentally investigated by measuring the spool displacement at various temperatures. Subsequently, the PDDV is thermally insulated using aerogel and installed in a large-size heat chamber in which the pneumatic-hydraulic cylinders and sensors are equipped. A proportional-integral-derivative feedback controller is then designed and implemented to control the spool displacement of the valve system. In this work, the spool displacement is chosen as a control variable since it is directly related to the flow rate of the valve system. Three different sinusoidal displacements with different frequencies of 1, 10 and 50 Hz are used as reference spool displacement and tracking controls are undertaken up to 150 °C. It is shown that the proposed PDDV with the thermal insulation can provide favorable control responses without significant tracking errors at high temperatures.

  4. Hydrogen removal from LWR containments by catalytic-coated thermal insulation elements (THINCAT)

    International Nuclear Information System (INIS)

    Fischer, K.; Broeckerhoff, P.; Ahlers, G.; Gustavsson, V.; Herranz, L.; Polo, J.; Dominguez, T.; Royl, P.

    2003-01-01

    In the THINCAT project, an alternative concept for hydrogen mitigation in a light water reactor (LWR) containment is being developed. Based on catalytic coated thermal insulation elements of the main coolant loop components, it could be considered either as an alternative to backfitting passive autocatalytic recombiner devices, or as a reinforcement of their preventive effect. The present paper summarises the results achieved at about project mid-term. Potential advantages of catalytic thermal insulation studied in the project are:-reduced risk of unintended ignition,;-no work space obstruction in the containment,;-no need for seismic qualification of additional equipment,;-improved start-up behaviour of recombination reaction. Efforts to develop a suitable catalytic layer resulted in the identification of a coating procedure that ensures high chemical reactivity and mechanical stability. Test samples for use in forthcoming experiments with this coating were produced. Models to predict the catalytic rates were developed, validated and applied in a safety analysis study. Results show that an overall hydrogen concentration reduction can be achieved which is comparable to the reduction obtained using conventional recombiners. Existing experimental information supports the argument of a reduced ignition risk

  5. Fracture Toughness Evaluation of Space Shuttle External Tank Thermal Protection System Polyurethane Foam Insulation Materials

    Science.gov (United States)

    McGill, Preston; Wells, Doug; Morgan, Kristin

    2006-01-01

    Experimental evaluation of the basic fracture properties of Thermal Protection System (TPS) polyurethane foam insulation materials was conducted to validate the methodology used in estimating critical defect sizes in TPS applications on the Space Shuttle External Fuel Tank. The polyurethane foam found on the External Tank (ET) is manufactured by mixing liquid constituents and allowing them to react and expand upwards - a process which creates component cells that are generally elongated in the foam rise direction and gives rise to mechanical anisotropy. Similarly, the application of successive foam layers to the ET produces cohesive foam interfaces (knitlines) which may lead to local variations in mechanical properties. This study reports the fracture toughness of BX-265, NCFI 24-124, and PDL-1034 closed-cell polyurethane foam as a function of ambient and cryogenic temperatures and knitline/cellular orientation at ambient pressure.

  6. Concrete elements with better insulation and less thermal bridge effect; Betonelementer med bedre isolering og mindre kuldebroer

    Energy Technology Data Exchange (ETDEWEB)

    Monefeldt Tommerup, H

    2000-09-01

    In this project new concrete sandwich panel solutions with better thermal properties have been developed, usable for highly-insulated buildings, responding to the needs that occur when the demands to the permissible energy consumption for heating is further increased. This is expected to happen in 2005. The improved thermal properties have been obtained without increasing the costs more than of the extra insulation. Removing concrete ribs at window reveals and at horizontal joints enables a thermal improvement as well as reduced costs due to simpler manufacturing of the panel. A natural grouping of concrete sandwich panels into two categories formed the basis of the work. One is panels with covering concrete reveals as typically used in residential housing and office buildings. The other is about panels with load bearing ribs serving as columns, typically used in industrial and commercial building. Of course there are panels that are a combination of the two categories, but this fact has not been crucial for the analyses. (au)

  7. Determination of optimum insulation thicknesses using economical analyse for exterior walls of buildings with different masses

    Directory of Open Access Journals (Sweden)

    Okan Kon

    2017-07-01

    Full Text Available In this study, five different cities were selected from the five climatic zones according to Turkish standard TS 825, and insulation thicknesses of exterior walls of sample buildings were calculated by using optimization. Vertical perforated bricks with density of 550 kg/m3 and 1000 kg/m3 were chosen within the study content. Glass wool, expanded polystyrene (XPS, extruded polystyrene (EPS were considered as insulation materials. Additionally, natural gas, coal, fuel oil and LPG were utilized as fuel for heating process while electricity was used for cooling.  Life cycle cost (LCC analysis and degree-day method were the approaches for optimum insulation thickness calculations. As a result, in case of usage vertical perforated bricks with density of 550 kg/m3 and 1000 kg/m3 resulted different values in between 0.005-0.007 m (5-7 mm in the optimum insulation thickness calculations under different insulation materials.  Minimum optimum insulation thickness was calculated in case XPS was preferred as insulation material, and the maximum one was calculated in case of using glass wool.

  8. Thermal characteristic of insulation for optimum design of RI transport package

    International Nuclear Information System (INIS)

    Lee, J. C.; Bang, K. S.; Seo, K. S.

    2002-01-01

    A package to transport the high level radioactive materials in required to withstand the hypothetical accident conditions as well as normal transport conditions according to IAEA and domestic regulations. The regulations require that the package should maintain the shielding, thermal and structural integrities to release no radioactive material. Thermal characteristics of insulations were evaluated and optimum insulation thickness was deduced for RI transport package. The package has a maximum capacity of 600 Curies for Ir-192 sealed source. The insulation thickness was decided with 10 mm of polyurethane form to maintain the thermal safety under fire accident condition. Thermal analysis was carried out for RI transport package, and it was shown that the thermal integrity of the package was maintained. The results obtained this study will be applied to a basic data for design of RI transport cask

  9. A Facile Approach to Evaluate Thermal Insulation Performance of Paper Cups

    Directory of Open Access Journals (Sweden)

    Yudi Kuang

    2015-01-01

    Full Text Available Paper cups are ubiquitous in daily life for serving water, soup, coffee, tea, and milk due to their convenience, biodegradability, recyclability, and sustainability. The thermal insulation performance of paper cups is of significance because they are used to supply hot food or drinks. Using an effective thermal conductivity to accurately evaluate the thermal insulation performance of paper cups is complex due to the inclusion of complicated components and a multilayer structure. Moreover, an effective thermal conductivity is unsuitable for evaluating thermal insulation performance of paper cups in the case of fluctuating temperature. In this work, we propose a facile approach to precisely analyze the thermal insulation performance of paper cups in a particular range of temperature by using an evaluation model based on the MISO (Multiple-Input Single-Output technical theory, which includes a characterization parameter (temperature factor and a measurement apparatus. A series of experiments was conducted according to this evaluation model, and the results show that this evaluation model enables accurate characterization of the thermal insulation performance of paper cups and provides an efficient theoretical basis for selecting paper materials for paper cups.

  10. The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study.

    Science.gov (United States)

    Long, Linshuang; Ye, Hong

    2016-04-07

    A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials.

  11. On the Effects of Variation of Thermal Conductivity in Buildings in the Italian Construction Sector

    Directory of Open Access Journals (Sweden)

    Umberto Berardi

    2018-04-01

    Full Text Available Stationary and dynamic heat and mass transfer analyses of building components are an essential part of energy efficient design of new and retrofitted buildings. Generally, a single constant thermal conductivity value is assumed for each material layer in construction components. However, the variability of thermal conductivity may depend on many factors; temperature and moisture content are among the most relevant ones. A linear temperature dependence of thermal conductivity has been found experimentally for materials made of inorganic fibers such as rockwool or fiberglass, showing lower thermal conductivities at lower temperatures. On the contrary, a nonlinear temperature dependence has been found for foamed insulation materials like polyisocyanurate, with a significant deviation from linear behavior. For this reason, thermal conductivity assumptions used in thermal calculations of construction components and in whole-building performance simulations have to be critically questioned. This study aims to evaluate how temperature affects thermal conductivity of materials in building components such as exterior walls and flat roofs in different climate conditions. Therefore, experimental conductivities measured for four common insulation materials have been used as a basis to simulate the behavior of typical construction components in three different Italian climate conditions, corresponding to the cities of Turin, Rome, and Palermo.

  12. Thermal protection and refurbishment of an old building. Lectures; Waermeschutz und Altbausanierung. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the 22nd Hanseatic Reconstruction Symposium at the Baltic Seaside Heringsdorf/Usedom (Federal Republic of Germany) from 3rd to 5th November 2011, the following lectures were held: (1) Energetic refurbishment possibilities for building within existing properties by means of representative examples (F. Deitschum); (2) Constructional thermal insulation and indoor climate - for the good of the environment? (S. Groer); (3) Innovative insulating materials for the structural refurbishment? (O. Fechner); (4) Energetic half-timbering refurbishment (K. Lissner); (5) Wooden solar facades for existing buildings (U. Schwarz); (6) Timber beam bowls in a historic brickwork (U. Mueller); (7) Timber beam bowls and interior insulation (U. Ruisinger); (8) Innovative solutions for cavity filling insulations (A. Stefenelli); (9) Thermal insulating plaster - also for historical buildings (T. Stahl); (10) Experimental tension analysis of the structural behaviour of historical cross vaults (A.-J. Petereit); (10) Investigation of the increase of the flexural strength of stonework constructions with self-compacting steel fibre reinforced concrete (D. Haessler); (11) Dry and dense - the modified WTA leaflet 4-6, 'Subsequent sealing of components in contact with soil' - Content and innovations (R. Spirgatis); (12) What does the new standard DIN 68800 hold? (H. Willeitner); (13) News from the standard DIN 18195 waterproofing of buildings (H.-P. Sommer); (14) Liability of planning of the offering entrepreneur (H. Immoor); (15) Climate change and preservation of structures (W. Zillig); (16) Typical problems and deficiencies of the energetic refurbishment of old store buildings (H. Boehmer); (17) When do ex post horizontal sealings with injection agents make sense - Fundamentals for evaluation, planning and execution (F.-J. Hoelzen); (18) Drying up behaviour of stonework of different quality and at different variants of insulation (F. Antretter).

  13. Importance of thermal comfort for library building in Kuching, Sarawak

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, S.H.; Baharun, A.; Abdul Mannan, M.D.; Abang Adenan, D.A. [Department of Civil Engineering, Faculty of Engineering, University Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak (Malaysia)

    2013-07-01

    Malaysian Government takes an initiative to provide library in housing areas to improve the quality of human capital. However, the government has to evaluate every aspect of their provision to ensure the services provided meet the demands of the users, including the aspect of thermal comfort in the building. For this study, a library constructed using Industrialised Building System (IBS) are selected for thermal comfort evaluation. The data were analyzed using Corrected Effective Temperature (CET) index. From the data analysis, it shows that thermal comfort in the library could not be achieved most of the time unless when the mechanical cooling is used. A series of technical design improvements are then recommended to improve the thermal comfort inside the library by incorporating construction details without increasing the cost.

  14. Vibrometry Assessment of the External Thermal Composite Insulation Systems Influence on the Façade Airborne Sound Insulation

    Directory of Open Access Journals (Sweden)

    Daniel Urbán

    2018-05-01

    Full Text Available This paper verifies the impact of the use of an external thermal composite system (ETICS on air-borne sound insulation. For optimum accuracy over a wide frequency range, classical microphone based transmission measurements are combined with accelerometer based vibrometry measurements. Consistency is found between structural resonance frequencies and bending wave velocity dispersion curves determined by vibrometry on the one hand and spectral features of the sound reduction index, the ETICS mass-spring-mass resonance induced dip in the acoustic insulation spectrum, and the coincidence induced dip on the other hand. Scanning vibrometry proves to be an effective tool for structural assessment in the design phase of ETICS systems. The measured spectra are obtained with high resolution in wide frequency range, and yield sound insulation values are not affected by the room acoustic features of the laboratory transmission rooms. The complementarity between the microphone and accelerometer based results allows assessing the effect of ETICS on the sound insulation spectrum in an extended frequency range from 20 Hz to 10 kHz. The modified engineering ΔR prediction model for frequency range up to coincidence frequency of external plaster layer is recommended. Values for the sound reduction index obtained by a modified prediction method are consistent with the measured data.

  15. Highly insulating glazing in new multi-storey buildings; Hoejisolerende glaspartier i nye etageboliger

    Energy Technology Data Exchange (ETDEWEB)

    Engelund Thomsen, K.; Schmidt, H.; Aggerholm, S.

    2001-07-01

    The purpose of this report is to illustrate how highly insulating types of glazing can be used in multi-storey buildings for housing in new ways. These are energy efficient and provide good indoor climate and also satisfy requirements to high architectural quality. The project has resulted in a number of design proposal demonstrating how new types of glazing can be fitted into multi-storey buildings and how new facade expressions, space and lighting effects can be obtained by using highly insulating glass areas. The project is collaboration between the architects Boje Lundgaard and Lene Tranberg's Tegnestue, KAB Bygge og Boligadministration and Danish Building and Urban Research. Calculations of heat demand suggest that it is possible to meet the targets outlined in the Danish Government's action plan for energy. Energy 21 by using new types of highly insulating glazing in new buildings. Another 33% reduction of the heating demand is targeted in relation to existing requirements in the Danish Building Regulations 1995 (BR 95) and the Danish Building Regulations for Small Dwellings 1998 (BR-S 98). The project builds on experience gained from 'High-insulated Glass House' (Wittchen and Aggerholm, 1999) built on the housing estage Egebjerggaard in Ballerup, a suburb of Copenhagen. Examples of existing multi-storey buildings with glass facades show extensive use of glazing as early as 1830 in Spain. Walls preceding the curtain wall were built from wood and glass and rested on stone corbels at about 1 m from the load-bearing facade. The first multi-storey buildings with facades entirely made from glass date from the 1920s. The architect Le Corbusier was the first to create a building system that facilitated the construction of non-loadbearing facades. Various conditions must be especially considered at the design of facades with highly insulating glass areas, i.a. type of glass and glazing, solar shadings, frame constructions and airtightness

  16. The thermal insulation difference of clothing ensembles on the dry and perspiration manikins

    International Nuclear Information System (INIS)

    Xiaohong, Zhou; Chunqin, Zheng; Yingming, Qiang; Holmér, Ingvar; Gao, Chuansi; Kuklane, Kalev

    2010-01-01

    There are about a hundred manikin users around the world. Some of them use the manikin such as 'Walter' and 'Tore' to evaluate the comfort of clothing ensembles according to their thermal insulation and moisture resistance. A 'Walter' manikin is made of water and waterproof breathable fabric 'skin', which simulates the characteristics of human perspiration. So evaporation, condensation or sorption and desorption are always accompanied by heat transfer. A 'Tore' manikin only has dry heat exchange by conduction, radiation and convection from the manikin through clothing ensembles to environments. It is an ideal apparatus to measure the thermal insulation of the clothing ensemble and allows evaluation of thermal comfort. This paper compares thermal insulation measured with dry 'Tore' and sweating 'Walter' manikins. Clothing ensembles consisted of permeable and impermeable clothes. The results showed that the clothes covering the 'Walter' manikin absorbed the moisture evaporated from the manikin. When the moisture transferred through the permeable clothing ensembles, heat of condensation could be neglected. But it was observed that heavy condensation occurred if impermeable clothes were tested on the 'Walter' manikin. This resulted in a thermal insulation difference of clothing ensembles on the dry and perspiration manikins. The thermal insulation obtained from the 'Walter' manikin has to be modified when heavy condensation occurs. The modified equation is obtained in this study

  17. Thermal transport across metal–insulator interface via electron–phonon interaction

    International Nuclear Information System (INIS)

    Zhang, Lifa; Wang, Jian-Sheng; Li, Baowen; Lü, Jing-Tao

    2013-01-01

    The thermal transport across a metal–insulator interface can be characterized by electron–phonon interaction through which an electron lead is coupled to a phonon lead if phonon–phonon coupling at the interface is very weak. We investigate the thermal conductance and rectification between the electron part and the phonon part using the nonequilibrium Green’s function method. It is found that the thermal conductance has a nonmonotonic behavior as a function of average temperature or the coupling strength between the phonon leads in the metal part and the insulator part. The metal–insulator interface shows a clear thermal rectification effect, which can be reversed by a change in average temperature or the electron–phonon coupling. (paper)

  18. Thermal and Mechanical Optimization of Structural Thermal Insulation Composites

    Data.gov (United States)

    National Aeronautics and Space Administration — Space exploration and lunar habitation is currently limited by factors such as the extreme lunar environment and costs of shipping. Materials are needed that are...

  19. Thermal performance of an insulating structure for a reactor vessel

    International Nuclear Information System (INIS)

    Aranovitch, E.; Crutzen, S.; LeDet, M.; Denis, R.

    This report describes the installations used to test the HTGR reactor vessel insulating structure called ''Casali'' and details the experimental results in 3 groups: general experiments, systematic study, and technological experiments. The results obtained make it possible to satisfactorily predict the behavior of the structure in a practical application

  20. Tunable metal-insulator transitions in bilayer graphene by thermal annealing

    OpenAIRE

    Kalon, Gopinadhan; Shin, Young Jun; Yang, Hyunsoo

    2012-01-01

    Tunable and highly reproducible metal-insulator transitions have been observed in bilayer graphene upon thermal annealing at 400 K under high vacuum conditions. Before annealing, the sample is metallic in the whole temperature regime of study. Upon annealing, the conductivity changes from metallic to that of an insulator and the transition temperature is a function of annealing time. The pristine metallic state can be reinstated by exposing to air thereby inducing changes in the electronic pr...

  1. Elastomeric Thermal Insulation Design Considerations in Long, Aluminized Solid Rocket Motors

    Science.gov (United States)

    Martin, Heath T.

    2017-01-01

    An all-new sounding rocket was designed at NASA's Marshall Space Flight Center that featured an aft finocyl, aluminized solid propellant grain and silica-filled ethylene-propylene-diene monomer (SFEPDM) internal insulation. Upon the initial static firing of the first of this new design, the solid rocket motor (SRM) case failed thermally just upstream of the aft closure early in the burn time. Subsequent fluid modeling indicated that the high-velocity combustion-product jets emanating from the fin-slots in the propellant grain were likely inducing a strongly swirling flow, thus substantially increasing the severity of the convective environment on the exposed portion of the SFEPDM insulation in this region. The aft portion of the fin-slots in another of the motors were filled with propellant to eliminate the possibility of both direct jet impingement on the exposed SFEPDM and the appearance of strongly swirling flow in the aft region of the motor. When static-fired, this motor's case still failed in the same axial location, and, though somewhat later than for the first static firing, still in less than 1/3rd of the desired burn duration. These results indicate that the extreme material decomposition rates of the SFEPDM in this application are not due to gas-phase convection or shear but rather to interactions with burning aluminum or alumina slag. Further comparisons with between SFEPDM performance in this design and that in other hot-fire tests provide insight into the mechanisms of SFEPDM decomposition in SRM aft domes that can guide the upcoming redesign effort, as well as other future SRM designs. These data also highlight the current limitations of modeling elastomeric insulators solely with diffusion-controlled, gas-phase thermochemistry in SRM regions with significant viscous shear and/or condense-phase impingement or flow.

  2. Thermal support elements (TTE) made of high-tensile fibre-reinforced material and integrated vacuum-insulation panels (VIP) - Final report; Thermotragelemente (TTE) aus hochfestem Faserverbundstoff und integrierten Vakuumisolationspaneelen (VIP) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Motavalli, M.; Ghazi Wakili, K.; Gsell, D.; Herwig, A.

    2008-07-01

    In this project, the static and thermal characteristics of the balcony connection element TTE (load carrying thermo-element) of the Hitek Construction Company AG were investigated. The TTE is an innovative element, which minimises thermal bridges that always exist in the vicinity of balcony connections. The concept of the element relies of the ability of fibre reinforced composites with superior thermal and mechanical characteristics to transfer the high mechanical loads from the balcony, through the layer of insulation, to the building. From a mechanical point-of-view, only very limited use of fibre reinforced composites has been seen for this type of construction application, therefore necessitating a detailed investigation of the element. In a first step, component tests of the individual load carrying elements were carried out, in which the elements showed an entirely satisfactory short-term behaviour. Furthermore, several assembly tests were carried out whereby parts of the balcony were reproduced, loaded and observed over longer term. During the investigations it was seen that very high stresses occur in the compression zone of the concrete deck and that the element must be modified in the future. From a thermal point-of-view, the TTE element offers a considerable improvement as compared with concrete decks without a thermal discontinuity. The thermal properties of the TTE element can be considered similar to or slightly better than other thermally discontinuous systems with the same load carrying capacity. This is understandable, since a thicker insulating layer with a thermal resistance of 2.5 m{sup 2} K/W was partially replaced through a thinner, yet more efficient insulation with a thermal resistance of 1.9 m{sup 2} K/W. Moreover, the glass fibre reinforced polymer has a larger thermal resistance than steel. The results obtained from the mechanical and thermal tests point to the need for further optimisation of the TTE element. It has been seen, however

  3. Thermal paint production: the techno-economic evaluation of muscovite as insulating additive.

    Directory of Open Access Journals (Sweden)

    Gabriela Fernandes Ribas

    2016-09-01

    Full Text Available Muscovite is known by its thermal and electrical insulating properties. Based on this, it was hypothesized that its addition on paints should increase the thermal resistance. The use of muscovite as mineral insulating is pointed out as advantageous due to its low cost compared to other materials used for this purpose, such as the ceramic microsphere. The use of a low cost material could open the access to the medium and low income families, implying two aspects: the life quality increase by thermal comfort and the increase of energy saving. Thus, this part of the population could open a new market to thermal paints. Aiming to contribute to this issue, this work evaluated the thermal insulation performance of commercial paints containing muscovite additions and determined the economic evaluation for its industrial production. The thermal paint was formulated by adding 10%, 20% and 40% of muscovite to the commercial paint. This was applied on steel reinforced mortar boards. Thermal insulation tests were carried out in bench scale using an adapted box. The economic evaluation of the industrial production of muscovite-based thermal paint was conducted, considering the Brazilian economic market in this activity. The results showed its ability as an insulating agent due to a reduction of 0.667 °C/mm board by the addition of 40% muscovite. The economic analysis also demonstrated the feasibility of the thermal paint industrial production. The payback is favorable to 5 years when compared to the Selic short-term lending rate, with 21.53% of internal rate return and a net present value of US$ 15,085.76.

  4. The Modeling and Simulation of Thermal Analysis at Hydro Generator Stator Winding Insulation

    Directory of Open Access Journals (Sweden)

    Mihaela Raduca

    2006-10-01

    Full Text Available This paper presents the modelling and simulation of thermal analysis at hydro generator stator winding. The winding stator is supplied at high voltage of 11 kV for high power hydro generator. To present the thermal analysis for stator winding is presented at supply of coil by 11 kV, when coil is heat and thermal transfer in insulation at ambient temperature.

  5. Effect of the insulation materials filling on the thermal performance of sintered hollow bricks under the air-conditioning intermittent operation

    Directory of Open Access Journals (Sweden)

    Chaoping Hou

    2018-06-01

    Full Text Available Wall insulation performance is an important factor affecting building energy consumption and indoor comfortable level. This study proposes that the insulation materials are filled into the cavities of the sintered hollow brick to replace the single insulation layer. The physical models of typical walls were built by the hollow bricks filled with expanding polystyrene board (EPS in cavities and wall thermal performance is numerically analyzed by the Finite Volume Method under air-conditioning intermittent operation, which conforms to the actual operation rules of air-conditioning. Results show that filling EPS in cavities is beneficial to improve the thermal performance of the bricks, and the larger the EPS filling ratio, the higher the thermal performance improvement. The EPS filling ratio increase has the higher sensitivity on inner surface heat flow under the low EPS filling ratio, and filling EPS in the external cavities is optimum with the decrement rate 5.92% higher than filling EPS in internal cavities for the EPS filling ratio of 20%, while filling EPS in internal and external cavities simultaneously is optimum with decrement rate 2.45%–6.87% higher than that with filling EPS in the internal cavities for the EPS filling ratio of 40%–80%. Keywords: Insulation filling ratio, Insulation filling location, Thermal performance, Sintered hollow bricks

  6. Parametric study of the thermal performance of a typical administrative building in the six thermal zones according to the RTCM, using TRNSYS

    Directory of Open Access Journals (Sweden)

    Abdelghafour LAMRANI

    2018-01-01

    Full Text Available In this work, we present a parametric study of a new administrative building, located in El-Ksar El Kebir region (Morocco. In order to have a building that complies with the RTCM in a technically and economically sound manner, we have carried out a number of interventions to insulate the components of the building, namely external walls, exposed roofs and openings. In this perspective, we have modelled the building envelope as a multi-zone building in TRNSYS and we have adopted an occupation scenario for this type of building. After determining the optimal insulation solutions, we simulated the administrative building in the five other thermal zones, to determine its feasibility in the latter.

  7. Experimental assessment of improvements in thermal performance from insulating the thermal bridge at the edge of a floor slab

    Directory of Open Access Journals (Sweden)

    N. Arias Jiménez

    2017-06-01

    Full Text Available The problematic of the article rises from the need of improving the thermal quality of the built envelope in the wall complex, specifically in the case of reinforced concrete (most used material in high-rise housing in Chile. Considering the use of insulation on the inside face of the wall, interrupts the continuity of the insulating material where the mezzanine slab and the perimeter walls meet, generating a thermal bridge known as mezzanine front. The purpose then, is to know the impact of the mentioned thermal bridge studying its properties through experimental tests on a thermal chamber. Later, the results will be integrated to a case of study that allows establishing the incidence of the bridge in the overall energetic behavior of through the integration of the results into the Thermal Analysis Simulation software (Tas. Finally, it is concluded a low incidence in the inner heat loses, becoming relevant the behavior of the superficial temperatures.

  8. ANALYSIS OF THERMAL PROPERTIES AND HEAT LOSS IN CONSTRUCTION AND ISOTHERMAL MATERIALS OF MULTILAYER BUILDING WALLS

    Directory of Open Access Journals (Sweden)

    Arkadiusz Urzędowski

    2017-06-01

    Full Text Available The article discusses the impact of vertical partition, technology on thermal insulation of the building, and the resulting savings and residents thermal comfort. The study is carried out as an analysis of three selected design solutions including such materials as: aerated concrete elements, polystyrene, ceramic elements, concrete, mineral plaster. Simulation results of heat transfer in a multi-layered wall, are subjected to detailed analysis by means of thermal visual methods. The study of existing structures, helped to identify the local point of heat loss by means of infrared technology leading to determination of U-value reduction by 36% in maximum for the described 3 types of structure.

  9. Evaluating in situ thermal transmittance of green buildings masonries—A case study

    Directory of Open Access Journals (Sweden)

    Francesco Asdrubali

    2014-01-01

    The paper presents the results of a measurement campaign of in situ thermal transmittance, performed in some buildings in the Umbria Region (Italy, designed implementing bio-architecture solutions. The analyzed walls were previously monitored with thermographic surveys in order to assess the correct application of the sensors. Results of the investigation show that in situ thermal transmittance measurements and theoretical calculated U-value are not in perfect agreement. The mismatch becomes important for monolithic structures such as walls made of thermal blocks without insulating layers.

  10. Infrared survey of 50 buildings constructed during 100 years: thermal performances and damage conditions

    Science.gov (United States)

    Ljungberg, Sven-Ake

    1995-03-01

    Different building constructions and craftsmanship give rise to different thermal performance and damage conditions. The building stock of most industrial countries consists of buildings of various age, and constructions, from old historic buildings with heavy stone or wooden construction, to new buildings with heavy or light concrete construction, or modern steel or wooden construction. In this paper the result from a detailed infrared survey of 50 buildings from six Swedish military camps is presented. The presentation is limited to a comparison of thermal performance and damage conditions of buildings of various ages, functions, and constructions, of a building period of more than 100 years. The result is expected to be relevant even to civilian buildings. Infrared surveys were performed during 1992-1993, with airborne, and mobile short- and longwave infrared systems, out- and indoor thermography. Interpretation and analysis of infrared data was performed with interactive image and analyzing systems. Field inspections were carried out with fiber optics system, and by ocular inspections. Air-exchange rate was measured in order to quantify air leakages through the building envelope, indicated in thermograms. The objects studied were single-family houses, barracks, office-, service-, school- and exercise buildings, military hotels and restaurants, aircraft hangars, and ship factory buildings. The main conclusions from this study are that most buildings from 1880 - 1940 have a solid construction with a high quality of craftsmanship, relatively good thermal performance, due to extremely thick walls, and adding insulation at the attic floor. From about 1940 - 1960 the quality of construction, thermal performance and craftsmanship seem to vary a lot. Buildings constructed during the period of 1960 - 1990 have in general the best thermal performance due to a better insulation capacity, however, also one finds here the greatest variety of problems. The result from this

  11. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide

    International Nuclear Information System (INIS)

    Ito, Kota; Nishikawa, Kazutaka; Iizuka, Hideo

    2016-01-01

    Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO 2 ) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO 2 film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management

  12. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp; Nishikawa, Kazutaka; Iizuka, Hideo [Toyota Central Research and Development Labs, Nagakute, Aichi 480-1192 (Japan)

    2016-02-01

    Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO{sub 2}) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO{sub 2} film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management.

  13. Repairing the deteriorated thermal insulation in the serpentine - moderator tank - SLCD assemblies

    International Nuclear Information System (INIS)

    Gyongyosi, Tiberiu

    2004-01-01

    Deterioration during operation of the thermal insulation at the upper serpentines in the serpentine assembly in the moderator tank of SLCD (the system of localising the failed fuel) can create problems when one scans the fuel channels in case of failure of one of the ventilated air refrigerator in the rooms of the LAC 10 reactor. Recovering the thermal insulation is absolutely necessary but it is difficult to execute because the loading operation with the granulated layer of diatomaceous filtering agent must be effected directly on the moderator tank after some 24 h from the reactor shut down. The paper presents two possible methods of repairing together with the necessary technological facilities

  14. Improvement of the thermal behavior of linear motors through insulation layer

    International Nuclear Information System (INIS)

    Eun, I. U.; Lee, C. M.; Chung, W. J.; Choi, Y. H.

    2001-01-01

    Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools, because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, heat sources of a synchronous linear motor with high velocity and force are measured and analyzed. To improve the thermal stiffness of the linear motor, an insulation layer with low thermal conductivity is inserted between cooler and machine table. Some effects of the insulation layer are presented

  15. Thermal spin current generation and spin transport in Pt/magnetic-insulator/Py heterostructures

    Science.gov (United States)

    Chen, Ching-Tzu; Safranski, Christopher; Krivorotov, Ilya; Sun, Jonathan

    Magnetic insulators can transmit spin current via magnon propagation while blocking charge current. Furthermore, under Joule heating, magnon flow as a result of the spin Seeback effect can generate additional spin current. Incorporating magnetic insulators in a spin-orbit torque magnetoresistive memory device can potentially yield high switching efficiencies. Here we report the DC magneto-transport studies of these two effects in Pt/magnetic-insulator/Py heterostructures, using ferrimagnetic CoFexOy (CFO) and antiferromagnet NiO as the model magnetic insulators. We observe the presence and absence of the inverse spin-Hall signals from the thermal spin current in Pt/CFO/Py and Pt/NiO/Py structures. These results are consistent with our spin-torque FMR linewidths in comparison. We will also report investigations into the magnetic field-angle dependence of these observations.

  16. Low conductive support for thermal insulation of a sample holder of a variable temperature scanning tunneling microscope.

    Science.gov (United States)

    Hanzelka, Pavel; Vonka, Jakub; Musilova, Vera

    2013-08-01

    We have designed a supporting system to fix a sample holder of a scanning tunneling microscope in an UHV chamber at room temperature. The microscope will operate down to a temperature of 20 K. Low thermal conductance, high mechanical stiffness, and small dimensions are the main features of the supporting system. Three sets of four glass balls placed in vertices of a tetrahedron are used for thermal insulation based on small contact areas between the glass balls. We have analyzed the thermal conductivity of the contacts between the balls mutually and between a ball and a metallic plate while the results have been applied to the entire support. The calculation based on a simple model of the setup has been verified with some experimental measurements. In comparison with other feasible supporting structures, the designed support has the lowest thermal conductance.

  17. The experiment study of the thermal insulation of the roof-slab of the main vessel of a LMFBR

    International Nuclear Information System (INIS)

    Wang Zhifeng; Wang Zhou; Yang Xianyong

    1995-01-01

    The effects of composition of insulation, i.e., reflective multi-plate thermal insulator, protecting the roof-slab of the vessel of the LMFBR on the heat transfer performance has been studied experimentally for CEFR. A economical form of the thermal insulation is suggested for CEFR. In addition, the scheme without reflective thermal insulator which has only a forced convection cooling system has been studied experimentally and a formula to calculate the average Nusselt number of the flow channel, which is valuable for CEFR design, has been raised

  18. Thermal mixtures in stochastic mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, F [Rome Univ. (Italy). Ist. di Matematica; Loffredo, M I [Salerno Univ. (Italy). Ist. di Fisica

    1981-01-17

    Stochastic mechanics is extended to systems in thermal equilibrium. The resulting stochastic processes are mixtures of Nelson processes. Their Markov property is investigated in some simple cases. It is found that in order to inforce Markov property the algebra of observable associated to the present must be suitably enlarged.

  19. Minimization of thermal insulation thickness taking into account condensation on external walls

    Directory of Open Access Journals (Sweden)

    Nurettin Yamankaradeniz

    2015-09-01

    Full Text Available Condensation occurs in the inner layers of construction materials at whatever point the partial pressure of water vapor diffuses and reaches its saturation pressure. Condensation, also called sweating, damages materials, reduces thermal resistance, and by increasing the total heat transfer coefficient, results in unwanted events such as increased heat loss. This study applied minimization of thermal insulation thickness with consideration given to condensation in the external walls. The calculations of heat and mass transfers in the structure elements are expressed in a graphical form. While there was an increase in the required thermal insulation thickness subsequent to an increase in the internal environment’s temperature, relative humidity, and the external environment’s relative humidity, the required thickness decreased with an increase in the external environment’s temperature. The amount of water vapor transferred varied with internal or external conditions and the thickness of the insulation. A change in the vapor diffusion resistance of the insulation material can increase the risk of condensation on the internal or external surfaces of the insulation.

  20. Safety distance for preventing hot particle ignition of building insulation materials

    Directory of Open Access Journals (Sweden)

    Jiayun Song

    2014-01-01

    Full Text Available Trajectories of flying hot particles were predicted in this work, and the temperatures during the movement were also calculated. Once the particle temperature decreased to the critical temperature for a hot particle to ignite building insulation materials, which was predicted by hot-spot ignition theory, the distance particle traveled was determined as the minimum safety distance for preventing the ignition of building insulation materials by hot particles. The results showed that for sphere aluminum particles with the same initial velocities and diameters, the horizontal and vertical distances traveled by particles with higher initial temperatures were higher. Smaller particles traveled farther when other conditions were the same. The critical temperature for an aluminum particle to ignite rigid polyurethane foam increased rapidly with the decrease of particle diameter. The horizontal and vertical safety distances were closely related to the initial temperature, diameter and initial velocity of particles. These results could help update the safety provision of firework display.

  1. A metric for characterizing the effectiveness of thermal mass in building materials

    International Nuclear Information System (INIS)

    Talyor, Robert A.; Miner, Mark

    2014-01-01

    Highlights: • Proposes a metric for interior thermal mass materials (floors, walls, counters). • Simple, yet effective, metric composed of easily calculated ‘local’ and ‘global’ variables. • Like Energy Star, the proposed metric gives a single number to aid consumer choice. • The metric is calculated and compared for selected, readily available data. • Drywall, concrete flooring, and wood paneling are quite effective thermal mass. - Abstract: Building energy use represents approximately 25% of the average total global energy consumption (for both residential and commercial buildings). Heating, ventilation, and air conditioning (HVAC) – in most climates – embodies the single largest draw inside our buildings. In many countries around the world a concerted effort is being made towards retrofitting existing buildings to improve energy efficiency. Better windows, insulation, and ducting can make drastic differences in the energy consumption of a building HVAC system. Even with these improvements, HVAC systems are still required to compensate for daily and seasonal temperature swings of the surrounding environment. Thermal mass inside the thermal envelope can help to alleviate these swings. While it is possible to add specialty thermal mass products to buildings for this purpose, commercial uptake of these products is low. Common building interior building materials (e.g. flooring, walls, countertops) are often overlooked as thermal mass products, but herein we propose and analyze non-dimensional metrics for the ‘benefit’ of selected commonly available products. It was found that location-specific variables (climate, electricity price, material price, insolation) can have more than an order of magnitude influence in the calculated metrics for the same building material. Overall, this paper provides guidance on the most significant contributors to indoor thermal mass, and presents a builder- and consumer-friendly metric to inform decisions about

  2. Adaptive thermal comfort for buildings in Portugal based on occupants' thermal perception

    Energy Technology Data Exchange (ETDEWEB)

    Matias, L.; Pina Santos, C.; Rebelo, M. [LNEC National Laboratory for Civil Engineering, Lisbon (Portugal); Almeida, S. [FCT Foundation for Science and Technology, Lisbon (Portugal); Correia Guedes, M. [IST Higher Technical Inst., Lisbon (Portugal)

    2009-07-01

    The use of air conditioning systems in Portugal has increased in recent years. Most new service buildings are equipped with mechanical air conditioning systems, either due to commercial reasons, productivity, or due to high internal thermal loads, and solar gains through windows. However, a large percentage of older service buildings are still naturally ventilated. In ASHRAE 55 thermal comfort standard, an adaptive model was adopted as an optional method for determining acceptable thermal conditions in naturally conditioned spaces. Recently, Portugal's National Laboratory for Civil Engineering (LNEC) initiated an interdisciplinary research study in this field. The research team of physicists, social scientists, and civil engineers developed better modeling of adaptive thermal strategies. This paper described the adaptive approach that defined indoor thermal comfort requirements applicable to Portuguese buildings. The study focused on assessing, in real use conditions, indoor environments and the response of occupants of office and educational buildings, and homes for the elderly. The results were obtained from 285 field surveys carried out on 40 buildings and a set of 2367 questionnaires completed by occupants. Field surveys assessed and measured the main indoor environmental parameters during summer, winter and mid-season. This paper included the results of the analysis to the occupants' thermal perception and expectation, by relating them to both measured and collected indoor thermal environments and outdoor climate. The relation between the occupants' thermal sensation and preference was analysed for different types of activities, throughout different seasons. Results showed that occupants may tolerate broader temperature ranges than those indicated in current standards, particularly in the heating season. 10 refs., 3 tabs., 9 figs.

  3. Complex evaluation of properties for some thermal insulating materials of NPP

    International Nuclear Information System (INIS)

    Yurchenko, V.G.; Nazarova, G.A.; Yakunichev, V.N.; Potulov, V.V.; Kazakova, K.A.

    1991-01-01

    The effects of the main operational factors (temperature, ionizing radiation, increased humidity) on some most widely applied fibrous materials are investigated. The samples were irradiated by 60 Co gamma photons at the PKhM-gamma-20 device in air at temperature of 40±1 deg C in order to analyze the radiation resistance of thermal insulating materials. The analysis and generalization of the results of laboratory tests give an opportunity to make the following conclusions. The thermal insulation articles and constructions made of superfine basalt fiber may be used in the zones of rigorous regime. The superfine glass fibers (GF) are recommended to be used for equipment and pipeline shielding in the zones of rigorous control only as a part of multilayer insulation as the second or next layers and only in places where leaks are impossible

  4. A Literature Review of Sealed and Insulated Attics—Thermal, Moisture and Energy Performance

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Levinson, Ronnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-01

    In this literature review and analysis, we focus on the thermal, moisture and energy performance of sealed and insulated attics in California climates. Thermal. Sealed and insulated attics are expected to maintain attic air temperatures that are similar to those in the house within +/- 10°F. Thermal stress on the assembly, namely high shingle and sheathing temperatures, are of minimal concern. In the past, many sealed and insulated attics were constructed with insufficient insulation levels (~R-20) and with too much air leakage to outside, leading to poor thermal performance. To ensure high performance, sealed and insulated attics in new California homes should be insulated at levels at least equivalent to the flat ceiling requirements in the code, and attic envelopes and ducts should be airtight. We expect that duct systems in well-constructed sealed and insulated attics should have less than 2% HVAC system leakage to outside. Moisture. Moisture risk in sealed and insulated California attics will increase with colder climate regions and more humid outside air in marine zones. Risk is considered low in the hot-dry, highly populated regions of the state, where most new home construction occurs. Indoor humidity levels should be controlled by following code requirements for continuous whole-house ventilation and local exhaust. Pending development of further guidance, we recommend that the air impermeable insulation requirements of the International Residential Code (2012) be used, as they vary with IECC climate region and roof finish. Energy. Sealed and insulated attics provide energy benefits only if HVAC equipment is located in the attic volume, and the benefits depend strongly on the insulation and airtightness of the attic and ducts. Existing homes with leaky, uninsulated ducts in the attic should have major savings. When compared with modern, airtight duct systems in a vented attic, sealed and insulated attics in California may still provide substantial benefit

  5. Thermal Jacket Design Using Cellulose Aerogels for Heat Insulation Application of Water Bottles

    Directory of Open Access Journals (Sweden)

    Hai M. Duong

    2017-11-01

    Full Text Available Thermal jacket design using eco-friendly cellulose fibers from recycled paper waste is developed in this report. Neoprene as an outmost layer, cellulose aerogels in the middle and Nylon as an innermost layer can form the best sandwiched laminate using the zigzag stitching method for thermal jacket development. The temperature of the ice slurry inside the water bottle covered with the designed thermal jackets remains at 0.1 °C even after 4 h, which is the average duration of an outfield exercise. Interestingly, the insulation performance of the designed thermal jackets is much better than the commercial insulated water bottles like FLOE bottles and is very competition to that of vacuum flasks for a same period of 4 h and ambient conditions.

  6. The Effect of Passive Design Strategies on Thermal Performance of Female Secondary School Buildings during Warm Season in Hot Dry Climate

    Directory of Open Access Journals (Sweden)

    Sahar eZahiri

    2016-03-01

    Full Text Available This paper describes a series of field studies and simulation analysis to improve the thermal performance of school buildings in the city of Tehran in Iran during warm season. The field studies used on-site measurement and questionnaire-based survey in the warm spring season in a typical female secondary school building. The on-site monitoring assessed the indoor air temperature and humidity levels of six classrooms while the occupants completed questionnaires covering their thermal sensations and thermal preferences. Moreover, thermal simulation analysis was also carried out to evaluate and improve the thermal performance of the classrooms based on the students’ thermal requirements and passive design strategies. In this study, the environmental design guidelines for female secondary school buildings were introduced for the hot and dry climate of Tehran, using passive design strategies. The study shows that the application of passive design strategies including south and south-east orientation, 10cm thermal insulation in wall and 5cm in the roof, and the combination of 30cm side fins and overhangs as a solar shading devices, as well as all-day ventilation strategy and the use of thermal mass materials with 25cm-30cm thickness, has considerable impact on indoor air temperatures in warm season in Tehran and keeps the indoor environment in an acceptable thermal condition. The results of the field studies also indicated that most of the occupants found their thermal environment not to be comfortable and the simulation results showed that passive design techniques had a significant influence on the indoor air temperature and can keep it in an acceptable range based on the female students’ thermal requirement. Therefore, in order to enhance the indoor environment and to increase the learning performance of the students, it is necessary to use the appropriate passive design strategies, which also reduce the need for mechanical systems and

  7. Novel load responsive multilayer insulation with high in-atmosphere and on-orbit thermal performance

    Science.gov (United States)

    Dye, S.; Kopelove, A.; Mills, G. L.

    2012-04-01

    Aerospace cryogenic systems require lightweight, high performance thermal insulation to preserve cryopropellants both pre-launch and on-orbit. Current technologies have difficulty meeting all requirements, and advances in insulation would benefit cryogenic upper stage launch vehicles, LH2 fueled aircraft and ground vehicles, and provide capabilities for sub-cooled cryogens for space-borne instruments and orbital fuel depots. This paper reports the further development of load responsive multilayer insulation (LRMLI) that has a lightweight integrated vacuum shell and provides high thermal performance both in-air and on-orbit. LRMLI is being developed by Quest Product Development and Ball Aerospace under NASA contract, with prototypes designed, built, installed and successfully tested. A 3-layer LRMLI blanket (0.63 cm thick, 77 K cold, 295 K hot) had a measured heat leak of 6.6 W/m2 in vacuum and 40.6 W/m2 in air at one atmosphere. In-air LRMLI has an 18× advantage over Spray On Foam Insulation (SOFI) in heat leak per thickness and a 16× advantage over aerogel. On-orbit LRMLI has a 78× lower heat leak than SOFI per thickness and 6× lower heat leak than aerogel. The Phase II development of LRMLI is reported with a modular, flexible, thin vacuum shell and improved on-orbit performance. Structural and thermal analysis and testing results are presented. LRMLI mass and thermal performance is compared to SOFI, aerogel and MLI over SOFI.

  8. Numerical Simulation of Natural Convection in a Vertically Installed Wet Thermal Insulator

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Kim, Seong H.; Seo, Jae K.; Kim, Young I. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Natural convection in an enclosure with disconnected vertical partitions inside is thought of as major concerns in the design of thermal insulators. For example, in a system-integrated modular advanced reactor (SMART), vertical partitions are disposed inside the so-called wet thermal insulator with gaps at the top and bottom ends to compensate for thermal expansion . In such a case, buoyancy driven flow circulates throughout the enclosure, i.e., fluid rises up in the hot-side layers, passing through the gap at the top, moving downward in the vertical channels near the cold side, and returning to the hot-side layers via the gap at the bottom. Compared with the case of connected partitions, this often causes an undesirable increase in the circulation flow rate and heat transfer within the enclosure, thus deteriorating the thermal insulation performance. In this study, laminar natural convection in a tall rectangular enclosure with disconnected vertical partitions inside is investigated numerically. The effects of main governing parameters such as the modified Rayleigh number, enclosure height to width ratio, and number of fluid layers are scrutinized along with a discussion of the heat transfer regimes. This study investigates the laminar natural convection in a tall rectangular enclosure having isothermal side walls of different temperatures and insulated top and bottom walls with disconnected vertical partitions inside.

  9. Numerical Simulation of Natural Convection in a Vertically Installed Wet Thermal Insulator

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Seong H.; Seo, Jae K.; Kim, Young I.

    2016-01-01

    Natural convection in an enclosure with disconnected vertical partitions inside is thought of as major concerns in the design of thermal insulators. For example, in a system-integrated modular advanced reactor (SMART), vertical partitions are disposed inside the so-called wet thermal insulator with gaps at the top and bottom ends to compensate for thermal expansion . In such a case, buoyancy driven flow circulates throughout the enclosure, i.e., fluid rises up in the hot-side layers, passing through the gap at the top, moving downward in the vertical channels near the cold side, and returning to the hot-side layers via the gap at the bottom. Compared with the case of connected partitions, this often causes an undesirable increase in the circulation flow rate and heat transfer within the enclosure, thus deteriorating the thermal insulation performance. In this study, laminar natural convection in a tall rectangular enclosure with disconnected vertical partitions inside is investigated numerically. The effects of main governing parameters such as the modified Rayleigh number, enclosure height to width ratio, and number of fluid layers are scrutinized along with a discussion of the heat transfer regimes. This study investigates the laminar natural convection in a tall rectangular enclosure having isothermal side walls of different temperatures and insulated top and bottom walls with disconnected vertical partitions inside

  10. Determination of physical properties of fibrous thermal insulation

    Directory of Open Access Journals (Sweden)

    Jeandel G.

    2012-10-01

    Full Text Available The objective of this study is to characterize both experimentally and theoretically, conductive and radiative heat transfer within polyester batting. This material is derived from recycled bottles (PET with fibres of constant diameters. Two other mineral and plant fibrous insulation materials, (glass wool and hemp wool are also characterized for comparative purposes. To determine the overall thermophysical properties of the tested materials, heat flux measurement are carried out using a device developed in house. The radiative properties of the material are determined by an inverse method based on measurements of transmittance and reflectance using a FTIR spectrometer and by solving the equation of radiative heat transfer. These measures are compared to results of numerical simulations.

  11. Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module

    Science.gov (United States)

    2015-02-01

    executed with SolidWorks Flow Simulation , a computational fluid-dynamics code. The graph in Fig. 2 shows the timing and amplitudes of power pulses...defined a convective flow of air perpendicular to the bottom surface of the mounting plate, with a velocity of 10 ft/s. The thermal simulations were...Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module by Gregory K Ovrebo ARL-TR-7210

  12. Minimization of thermal insulation thickness taking into account condensation on external walls

    OpenAIRE

    Nurettin Yamankaradeniz

    2015-01-01

    Condensation occurs in the inner layers of construction materials at whatever point the partial pressure of water vapor diffuses and reaches its saturation pressure. Condensation, also called sweating, damages materials, reduces thermal resistance, and by increasing the total heat transfer coefficient, results in unwanted events such as increased heat loss. This study applied minimization of thermal insulation thickness with consideration given to condensation in the external walls. The calcu...

  13. Analysis of Lightning-induced Impulse Magnetic Fields in the Building with an Insulated Down Conductor

    Science.gov (United States)

    Du, Patrick Y.; Zhou, Qi-Bin

    This paper presents an analysis of lightning-induced magnetic fields in a building. The building of concern is protected by the lightning protection system with an insulated down conductor. In this paper a system model for metallic structure of the building is constructed first using the circuit approach. The circuit model of the insulated down conductor is discussed extensively, and explicit expressions of the circuit parameters are presented. The system model was verified experimentally in the laboratory. The modeling approach is applied to analyze the impulse magnetic fields in a full-scale building during a direct lightning strike. It is found that the impulse magnetic field is significantly high near the down conductor. The field is attenuated if the down conductor is moved to a column in the building. The field can be reduced further if the down conductor is housed in an earthed metal pipe. Recommendations for protecting critical equipment against lightning-induced magnetic fields are also provided in the paper.

  14. The homeostasis solution – Mechanical homeostasis in architecturally homeostatic buildings

    International Nuclear Information System (INIS)

    Wang, Lin-Shu; Ma, Peizheng

    2016-01-01

    Highlights: • Architectural homeostatic buildings (AHBs) make sense because of the laws of physics. • However, high efficiency can be obtained only with AHBs and equipment considered as systems. • Mechanical homeostasis facilitates AHB-equipment system synergy with heat extraction. • Entropically speaking a building needs neither energy nor a fixed amount of heat, but its homeostatic existence. • Homeostatic buildings can reduce building energy consumption from 80% to 90%. - Abstract: We already know, for energy-saving potential, the necessary architectural features in well-designed buildings: high performance building envelope, sufficient interior thermal mass, and hydronic-network activated radiant surfaces for cooling and heating. Buildings with these features may be referred to as architecturally homeostatic buildings (AHBs); such a building-system is thermally semi-autonomous in the sense that its temperature variation stays within a certain range even without conditioning equipment, and, with conditioning equipment in operation, its thermal regulation is handled by its hydronic heat-distribution-network for controlling the temperature level of the building. At the present time conventional HVAC equipment is used for maintaining the heat-distribution-network: this arrangement, however, has resulted in great energy saving only for AHBs with accessible natural water bodies. In operation of general AHBs, a case is made here for a new kind of mechanical equipment having the attribute of mechanical homeostasis (MH). MH is a new energy transformation concept in a triadic framework. Superlative energy efficiency is predicted as a result of combined improvements in higher triadCOPs and lower total (inducted + removed) heat rates—evincing existence of synergy in architectural and mechanical homeostasis, which together will be referred to as the homeostasis solution.

  15. Thermal analysis and design of passive solar buildings

    CERN Document Server

    Athienitis, AK

    2013-01-01

    Passive solar design techniques are becoming increasingly important in building design. This design reference book takes the building engineer or physicist step-by-step through the thermal analysis and design of passive solar buildings. In particular it emphasises two important topics: the maximum utilization of available solar energy and thermal storage, and the sizing of an appropriate auxiliary heating/cooling system in conjunction with good thermal control.Thermal Analysis and Design of Passive Solar Buildings is an important contribution towards the optimization of buildings as systems th

  16. Thermal and Economic Analysis of Renovation Strategies for a Historic Building in Mediterranean Area

    Directory of Open Access Journals (Sweden)

    Simona Cirami

    2017-07-01

    Full Text Available Around 30% of the European building stock was built before 1950, when no regulations about energy efficiency were in force. Since only a small part of them has been renovated by now, the energy performance of this building stock is on average quite poor, resulting in a significant impact on the energy balance of European countries, as confirmed by data published by ISTAT (Italian National Statistical Institute. However, energy retrofit in historic edifices is a quite demanding issue as any intervention must take into account the need to preserve existing building materials and appearances while also allowing reversibility and low invasiveness. As an example, in these buildings it is not possible to apply an ETICS (External Thermal Insulation Composite System, since this would alter the historic and architectural value of the façade. On the other hand, internal insulation would have the drawback of reducing the net useful floor area, which also implies a loss of economic value. Moreover, internal insulation may induce overheating risks and mold formation. In this paper, all these issues are investigated with reference to an existing historic building located in southern Italy, showing that a retrofit strategy aimed at energy savings and cost-effectiveness is still possible if suitable materials and solutions are adopted.

  17. The thermal performance of earth buildings

    Directory of Open Access Journals (Sweden)

    Heathcote, K.

    2011-09-01

    Full Text Available This paper examines the theoretical basis for the thermal performance of earth walls and links it to some test results on buildings constructed by the author, and to their predicted performance using a sophisticated computer modelling program. The analysis shows that for all earth walls the steady state thermal resistance is low but that for walls greater than about 450 mm thick the cyclic thermal resistance is high and increases exponentially. Whilst the steady state resistance of all thickness walls is low and results in higher than normal average temperatures in summer and lower than normal in winter the ability of thick earth walls to even out the swings in temperature is thought to be responsible for the materials reputation. The paper notes that good passive design principles (such as providing internal thermal mass and large areas of glazing for winter performance will greatly improve the performance of earth buildings with thin walls, but it is the author’s opinion that external earth walls should be at least 450 mm thick to gain the full benefit of thermal mass.

    Este artículo examina la base teórica del comportamiento térmico de las paredes de tierra y la relaciona con varios resultados de test realizados sobre edificios construidos por el autor, y con su comportamiento previsto utilizando un sofisticado programa de modelado por ordenador. El análisis muestra que la resistencia térmica constante es baja para todas las paredes de tierra, pero que para muros con un grosor mayor que 450 mm la resistencia térmica cíclica es alta y se incrementa exponencialmente. Mientras que la resistencia térmica constante de las paredes de cualquier grosor es baja y se traduce en temperaturas más altas que la media en verano y más bajas que la media en invierno, la capacidad de las paredes gruesas de tierra para amortiguar las variaciones de temperatura es la responsable de la reputación de los materiales. El artículo señala que los

  18. Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites

    International Nuclear Information System (INIS)

    Sarathi, R.; Sahu, R.K.; Rajeshkumar, P.

    2007-01-01

    In the present work, the electrical, mechanical and thermal properties of epoxy nanocomposite materials were studied. The electrical insulation characteristics were analyzed through short time breakdown voltage test, accelerated electrical ageing test, and by tracking test. The breakdown voltage increases with increase in nano-clay content up to 5 wt%, under AC and DC voltages. The volume resistivity, permittivity and tan(δ) of the epoxy nanocomposites were measured. The Weibull studies indicate that addition of nanoclay upto 5 wt% enhances the characteristic life of epoxy nanocomposite insulation material. The tracking test results indicate that the tracking time is high with epoxy nanocomposites as compared to pure epoxy. Ageing studies were carried out to understand the surface characteristic variation through contact angle measurement. The hydrophobicity of the insulating material was analysed through contact angle measurement. The diffusion coefficients of the material with different percentage of clay in epoxy nanocomposites were calculated. The exfoliation characteristics in epoxy nanocomposites were analyzed through wide angle X-ray diffraction (WAXD) studies. The thermal behaviour of the epoxy nanocomposites was analyzed by carrying out thermo gravimetric-differential thermal analysis (TG-DTA) studies. Heat deflection temperature of the material was measured to understand the stability of the material for intermittent temperature variation. The dynamic mechanical analysis (DMA) results indicated that storage modulus of the material increases with small amount of clay in epoxy resin. The activation energy of the material was calculated from the DMA results

  19. Thermal simulation of different construction types in six climatic regions on heating and cooling loads

    CSIR Research Space (South Africa)

    Kumirai, T

    2012-10-01

    Full Text Available reduces its heating and cooling loads the most. 3. Applying both roof and ceiling insulation should always be avoided. 4. Building insulation is an effective intervention in all climatic regions. 5. Slightly increasing the thermal mass of a wall... were designed to evaluate the following: ? Case A ? base case ? Case B ? insulated walls ? Case C ? insulated walls and insulated ceiling ? Case D ? insulated walls, insulated ceiling and roof ? Case E ? increased thermal mass wall and insulated...

  20. Effect of Nano Al2O3 Doping on Thermal Aging Properties of Oil-Paper Insulation

    Directory of Open Access Journals (Sweden)

    Ningchuan Liang

    2018-05-01

    Full Text Available The thermal aging property of oil-paper insulation is a key factor affecting the service life of transformers. In this study, nano-Al2O3 was added to insulating paper to improve its anti-thermal aging property and delay the aging rate of the insulating oil. The composite paper containing 2% nano-Al2O3 had the highest tensile strength and therefore was selected for the thermal aging test. The composite and normal papers were treated with an accelerated thermal aging experiment at the temperature of 130 °C for 56 days. The variations of the degree of polymerization (DP and tensile strength of the insulating papers with aging time were obtained. The characteristics of the insulating oil, including color, acid content, breakdown voltage, and dielectric loss were analyzed. The results revealed that compared with a plain paper, the composite paper maintained a higher DP, and its tensile strength decreased more slowly during the aging process. The oil-impregnated composite paper presented a lighter-colored oil, less viscosity changes, and a considerably lower quantity of thermal aging products. In addition, nano-Al2O3 can effectively adsorb copper compounds and keep part of the acid products and water away from the thermal aging process. This characteristic restrained the catalysis of copper compounds and H+ in the thermal aging reaction and reduced the thermal aging speed of both the insulating paper and the insulating oil.

  1. Effectiveness of duct sealing and duct insulation in multi-family buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Karins, N.H.; Tuluca, A.; Modera, M.

    1997-07-01

    This research investigated the cost-effectiveness of sealing and insulating the accessible portions of duct systems exposed to unconditioned areas in multifamily housing. Airflow and temperature measurements were performed in 25 apartments served by 10 systems a 9 multi-family properties. The measurements were performed before and after each retrofit, and included apartment airflow (supply and return), duct system temperatures, system fan flow and duct leakage area. The costs for each retrofit were recorded. The data were analyzed and used to develop a prototypical multifamily house. This prototype was used in energy simulations (DOE-2.1E) and air infiltration simulations (COMIS 2.1). The simulations were performed for two climates: New York City and Albany. In each climate, one simulation was performed assuming the basement was tight, and another assuming the basement was leaky. Simulation results and average retrofit costs were used to calculate cost-effectiveness. The results of the analysis indicate that sealing leaks of the accessible ductwork is cost-effective under all conditions simulated (simple payback was between 3 and 4 years). Insulating the accessible ductwork, however, is only cost-effective for buildings with leaky basement, in both climates (simple paybacks were less than 5 years). The simple payback period for insulating the ducts in buildings with tight basements was greater than 10 years, the threshold of cost-effectiveness for this research. 13 refs., 5 figs., 27 tabs.

  2. PHYSICAL AND MECHANICAL CHARACTERISTICS OF BUILDING MATERIALS OF HISTORIC BUILDINGS

    Directory of Open Access Journals (Sweden)

    Jiří Witzany

    2017-12-01

    Full Text Available The article presents partial results of laboratory research into physical and mechanical characteristics of materials most commonly used as walling units in masonry structures of historic and heritage buildings. Core boreholes and specimens for the laboratory research of selected characteristics were sampled from accessible places of historic buildings, which had not been restored or reconstructed. The results of the research brought new knowledge about the unreliability (variance of the properties of historical, mainly natural building materials, and, at the same time, pointed out the need for further research and extension of knowledge necessary for the assessment of residual physical and mechanical characteristics of historic masonry structures.

  3. Sensitivity analysis for daily building operation from the energy and thermal comfort standpoint

    Directory of Open Access Journals (Sweden)

    Ignjatović Marko G.

    2016-01-01

    Full Text Available Improving energy performance of buildings is one of the most important tasks for reaching sustainability. Assessing building energy consumption is performed more often with specialized simulation tools. Sensitivity analysis proved to be a valuable tool for creating more reliable and realistic building energy models and better buildings. This paper briefly describes the methodology for running global sensitivity analysis and tools that can be used, and presents the results of such an analysis conducted for winter period, daily, on input variables covering a real building's operation, control and occupant related parameters that affect both thermal comfort and heating energy consumption. Two sets of inputs were created. The only difference between these sets is an addition of clothing insulation and occupant heat gain as input variables. The reference building was simulated for three distinctive winter weeks. Two additional input variables have an effect especially on thermal comfort, but they do not disturb the relative order of other influential input variables. The common influential variables for both energy consumption and thermal comfort were identified and are: air handling unit sup-ply temperature and airflow rate and control system related parameters. This can help in future research into implementing the simulation-assisted optimized operation in real buildings. [Projekat Ministarstva nauke Republike Srbije, br. TR-33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  4. Thermal conductivity of magnetic insulators with strong spin-orbit coupling

    Science.gov (United States)

    Stamokostas, Georgios; Lapas, Panteleimon; Fiete, Gregory A.

    We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.

  5. Improving Thermal Insulation Properties for Prefabricated Wall Components Made Of Lightweight Aggregate Concrete with Open Structure

    Science.gov (United States)

    Abramski, Marcin

    2017-10-01

    Porous concrete is commonly used in civil engineering due to its good thermal insulation properties in comparison with normal concrete and high compression strength in comparison with other building materials. Reducing of the concrete density can be obviously obtained by using lightweight aggregate (e.g. pumice). The concrete density can be further minimized by using specially graded coarse aggregate and little-to-no fine aggregates. In this way a large number of air voids arise. The aggregate particles are coated by a cement paste and bonded together with it just in contact points. Such an extremely porous concrete, called ‘lightweight aggregate concrete with open structure’ (LAC), is used in some German plants to produce prefabricated wall components. They are used mainly in hall buildings, e.g. supermarkets. The need of improving thermal insulation properties was an inspiration for the prefabrication plant managers, engineers and a scientific staff of the Technical University of Kaiserslautern / Germany to realise an interesting project. Its aim was to reduce the heat transfer coefficient for the wall components. Three different wall structure types were designed and compared in full-scale laboratory tests with originally produced wall components in terms of load-carrying capacity and stiffness. The load was applied perpendicularly to the wall plane. As the components are not originally used for load-bearing walls, but for curtain walls only, the wind load is the main load for them. The wall components were tested in horizontal position and the load was applied vertically. Totally twelve wall components 8.00 × 2.00 × 0.25m (three for every series) were produced in the prefabrication plant and tested in the University of Kaiserslautern laboratory. The designed and tested components differed from each other in the amount of expanded polystyrene (EPS), which was placed in the plant inside the wall structure. The minimal amount of it was designed in the

  6. Thermal studies on a mechanical prototype of A BIS MDT chamber

    CERN Document Server

    Petridou, C; Wotschack, J; Zisis, A

    1998-01-01

    The deformations of a BIS MDT chamber owing to temperature gradients between the two multilayers and between the two Faraday cages were studied on a mechanical prototype. The influence of thermal insulation on the thermal behaviour of the chamber is also reported.

  7. Transient thermal sensation and comfort resulting from adjustment of clothing insulation

    DEFF Research Database (Denmark)

    Goto, Tomonobu; Toftum, Jørn; Fanger, Povl Ole

    2003-01-01

    This study investigated the transient effects on human thermal responses of clothing adjustments. Two different levels of activity were tested, and the temperature was set to result in a warm or cool thermal sensation at each activity level. The subjects (12 females and 12 males) wore identical...... uniforms and were asked to take off or don a part of the uniform after they had adapted to the experimental conditions for more than 20 minutes. The results showed that the thermal sensation votes responded immediately to the adjustment of clothing insulation and reached a new steady-state level within 5...

  8. Thermal comfort optimisation of vernacular rural buildings: passive solutions to retrofit a typical farmhouse in central Italy

    Directory of Open Access Journals (Sweden)

    Maria Elena Menconi

    2017-06-01

    Full Text Available An adequate retrofitting of traditional rural buildings requires to preserve their formal characteristics and to understand the constructive elements that compose them and which are different in different geographical areas. This paper analyses the typical farmhouses in central Italy. Starting from the definition of a vernacular building model, the paper analyses its performance in terms of thermal comfort and energy efficiency. The methodology involves the use of energy dynamic simulations coupled with optimisation techniques aimed to identify the best combinations of insulating materials in terms of choice of material and its optimal location in the envelope. The paper demonstrates the good thermal and energy performance of farmhouses in central Italy. The results of the optimisation process showed that in these buildings, with the addition of insulation materials with low conductivity the perceived discomfort in the inhabited areas of the building can be reduced by 79% and the energy consumption related to heating can be reduced by 77%. The level of insulation of the pavement that separates the ground and first floor needs to be more moderate to promote the heat flow between floors during summer. The sensitivity analysis shows that the most influential component for thermal comfort is the roof insulation.

  9. Cement blocks with EVA waste for extensive modular green roof: contribution of the components for thermal insulation

    Directory of Open Access Journals (Sweden)

    A. B. DE MELO

    Full Text Available Abstract Green roofs can contribute in many ways to the quality of the environment, being known for reducing the heat transfer to the interior of the buildings. Amongst the available techniques for the execution of this type of covering, the use of light cement blocks which are compatible with the system of extensive modular green roofs is proposed. For the light cement blocks, produced with EVA aggregates (waste from the footwear industry, an additional contribution in the capacity of thermal insulation of the proposed green roof is expected. In the present article, the demonstration of such contribution is intended through measurements carried out in prototypes in hot and humid climates. After characterizing the capacity of thermal insulation of the proposed green roof, with different types of conventional covering as a reference, an additional contribution of the component used in this green roof was identified by making comparisons with measurements collected from another green roof, executed with cement blocks without the presence of the EVA aggregates. In the experiments, external and internal surface temperatures were measured in each of the prototypes' coverings, as well as the air temperatures in the internal and external environments. From the analysis of the data for a typical summer day, it was possible to prove that the proposed green roof presented the lowest temperature ranges, considering the internal air and surface temperatures. The presence of the EVA aggregates in the proposed blocks contributed to the decrease of the internal temperatures.

  10. Switchable insulation for using solar energy in buildings. Final report; Schaltbare Waermedaemmung (SWD) zur Nutzung der Sonnenenergie in Gebaeuden. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stark, C.; Horn, R.; Hetfleisch, J.; Fricke, J.

    2003-02-25

    Solar energy can be used in buildings via use of transparent insulations. But thereby problems occur, like overheating of building walls in summer and heat losses in the cold season. To solve these problems ZAE Bayern has designed and optimized the switchable insulation SWD, the thermal conductivity of which can be changed from highly insulating to conducting. A computer routine was developed to calculate and to optimize the heat gains. The SWD is switched by desorbing/adsorbing as small amount of hydrogen gas. Desorption is facilitated with an electric heating element. The thermal conductivity of the filling can be varied by about a factor of 40. Several SWD-modules were produced and installed in an outside measuring facility. The heat gains and the durability were investigated for three years. The results of the simulation could be verified and ageing did not occur. For an optimal system the heat gains are in the range of 150 kWh/(m{sup 2}a). The mounting of these panels at south facades is simple, especially for post bolt systems. Contrary to transparent systems the loss of heat in winter is very small and the overheating of the walls behind the SWD in summer can be avoided. (orig.) [German] Zur Nutzung der Sonnenenergie in Gebaeuden werden bisher transparente Waermedaemmsysteme eingebaut, die jedoch oft mit Problemen wie Wandueberhitzung im Sommer und Waermeverlusten in der kalten Jahreszeit behaftet sind. Zur Loesung dieser Probleme wurde am ZAE Bayern eine schaltbare Waermedaemmung entwickelt und optimiert, deren Daemmeigenschaft je nach Sonneneinstrahlung und Waermebedarf variiert werden kann. Es wurde ein Programm entwickelt, mit dem die Waermegewinne berechnet und optimiert werden koennen. Die Schaltbarkeit wird durch einen Getter ermoeglicht, der eine ungefaehrliche Menge Wasserstoffgas reversibel aufnehmen und abgeben kann. Die Wasserstoff-Austreibung erfolgt mittels elektrischer Heizung und veraendert die Waermeleitfaehigkeit der Fuellung um einen

  11. Experimental Study on Hygrothermal Deformation of External Thermal Insulation Cladding Systems with Glazed Hollow Bead

    Directory of Open Access Journals (Sweden)

    Houren Xiong

    2016-01-01

    Full Text Available This research analyzes the thermal and strain behavior of external thermal insulation cladding systems (ETICS with Glazed Hollow Beads (GHB thermal insulation mortar under hygrothermal cycles weather test in order to measure its durability under extreme weather (i.e., sunlight and rain. Thermometers and strain gauges are placed into different wall layers to gather thermal and strain data and another instrument measures the crack dimensions after every 4 cycles. The results showed that the finishing coat shrank at early stage (elastic deformation and then the finishing coat tends to expand and become damaged at later stage (plastic deformation. The deformation of insulation layer is similar to that of the finishing coat but its variation amplitude is smaller. Deformation of substrate expanded with heat and contracted with cold due to the small temperature variation. The length and width of cracks on the finishing coat grew as the experiment progressed but with a decreasing growth rate and the cracks stopped growing around 70 cycles.

  12. [Preventive effects of sound insulation windows on the indoor noise levels in a street residential building in Beijing].

    Science.gov (United States)

    Guo, Bin; Huang, Jing; Guo, Xin-biao

    2015-06-18

    To evaluate the preventive effects of sound insulation windows on traffic noise. Indoor noise levels of the residential rooms (on both the North 4th ring road side and the campus side) with closed sound insulation windows were measured using the sound level meter, and comparisons with the simultaneously measured outdoor noise levels were made. In addition, differences of indoor noise levels between rooms with closed sound insulation windows and open sound insulation windows were also compared. The average outdoor noise levels of the North 4th ring road was higher than 70 dB(A), which exceeded the limitation stated in the "Environmental Quality Standard for Noise" (GB 3096-2008) in our country. However, with the sound insulation windows closed, the indoor noise levels reduced significantly to the level under 35 dB(A) (Pwindows had significant influence on the indoor noise levels (Pwindow, when the sound insulation windows were closed, the indoor noise levels reduced 18.8 dB(A) and 8.3 dB(A) in residential rooms facing North 4th ring road side and campus side, respectively. The results indicated that installation of insulation windows had significant noise reduction effects on street residential buildings especially on the rooms facing major traffic roads. Installation of the sound insulation windows has significant preventive effects on indoor noise in the street residential building.

  13. Photoacoustic emission from Au nanoparticles arrayed on thermal insulation layer.

    Science.gov (United States)

    Namura, Kyoko; Suzuki, Motofumi; Nakajima, Kaoru; Kimura, Kenji

    2013-04-08

    Efficient photoacoustic emission from Au nanoparticles on a porous SiO(2) layer was investigated experimentally and theoretically. The Au nanoparticle arrays/porous SiO(2)/SiO(2)/Ag mirror sandwiches, namely, local plasmon resonators, were prepared by dynamic oblique deposition (DOD). Photoacoustic measurements were performed on the local plasmon resonators, whose optical absorption was varied from 0.03 (3%) to 0.95 by varying the thickness of the dielectric SiO(2) layer. The sample with high absorption (0.95) emitted a sound that was eight times stronger than that emitted by graphite (0.94) and three times stronger than that emitted by the sample without the porous SiO(2) layer (0.93). The contribution of the porous SiO(2) layer to the efficient photoacoustic emission was analyzed by means of a numerical method based on a one-dimensional heat transfer model. The result suggested that the low thermal conductivity of the underlying porous layer reduces the amount of heat escaping from the substrate and contributes to the efficient photoacoustic emission from Au nanoparticle arrays. Because both the thermal conductivity and the spatial distribution of the heat generation can be controlled by DOD, the local plasmon resonators produced by DOD are suitable for the spatio-temporal modulation of the local temperature.

  14. Methodology for Thermal Behaviour Assessment of Homogeneous Façades in Heritage Buildings

    Directory of Open Access Journals (Sweden)

    Enrique Gil

    2017-01-01

    Full Text Available It is fundamental to study the thermal behaviour in all architectural constructions throughout their useful life, in order to detect early deterioration ensuring durability, in addition to achieving and maintaining the interior comfort with the minimum energy consumption possible. This research has developed a methodology to assess the thermal behaviour of façades in heritage buildings. This paper presents methodology validation and verification (V & V through a laboratory experiment. Guidelines and conclusions are extracted with the employment of three techniques in this experiment (thermal sensors, thermal imaging camera, and 3D thermal simulation in finite element software. A small portion of a homogeneous façade has been reproduced with indoor and outdoor thermal conditions. A closed chamber was constructed with wood panels and thermal insulation, leaving only one face exposed to the outside conditions, with a heat source inside the chamber that induces a temperature gradient in the wall. With this methodology, it is possible to better understand the thermal behaviour of the façade and to detect possible damage with the calibration and comparison of the results obtained by the experimental and theoretical techniques. This methodology can be extrapolated to the analysis of the thermal behaviour of façades in heritage buildings, usually made up of homogeneous material.

  15. Energy and global warming impacts of CFC alternative technologies for foam building insulations

    International Nuclear Information System (INIS)

    Fischer, S.K.; Fairchild, P.D.; Hughes, P.J.

    1992-01-01

    Chlorofluorocarbons (CFCS) have been used as blowing agents in foam insulation, as the working fluids in cooling and refrigeration equipment, and as solvents in general and precision cleaning applications since their introduction in the 1930s. The number of applications and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s, but in the mid-1980s it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric zone and that they are the primary cause of the CFCs have also been found to be second only to carbon dioxide as a factor causing increased greenhouse warming. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFCs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of those alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects of carbon dioxide emissions resulting from energy use for commercial and residential building insulation, household and commercial refrigeration, building and automobile air conditioning, and general metal and electronics solvent cleaning. This paper focuses on those aspects of the study relevant to building insulation. In general the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon alternatives for CFCs lead to large and sometimes dramatic reductions in total equivalent warming impact, lifetime equivalent C0 2 emissions (TEWI). Most of the reductions result from decreased direct effects without significant changes in energy use

  16. Thermal Performance Testing of Cryogenic Multilayer Insulation with Silk Net Spacers

    International Nuclear Information System (INIS)

    Johnson, W L; Frank, D J; Nast, T C; Fesmire, J E

    2015-01-01

    Early comprehensive testing of cryogenic multilayer insulation focused on the use of silk netting as a spacer material. Silk netting was used for multiple test campaigns that were designed to provide baseline thermal performance estimates for cryogenic insulation systems. As more focus was put on larger systems, the cost of silk netting became a deterrent and most aerospace insulation firms were using Dacron (or polyester) netting spacers by the early 1970s. In the midst of the switch away from silk netting there was no attempt to understand the difference between silk and polyester netting, though it was widely believed that the silk netting provided slightly better performance. Without any better reference for thermal performance data, the silk netting performance correlations continued to be used. In order to attempt to quantify the difference between the silk netting and polyester netting, a brief test program was developed. The silk netting material was obtained from Lockheed Martin and was tested on the Cryostat-100 instrument in three different configurations, 20 layers with both single and double netting and 10 layers with single netting only. The data show agreement within 15 - 30% with the historical silk netting based correlations and show a substantial performance improvement when compared to previous testing performed using polyester netting and aluminum foil/fiberglass paper multilayer insulation. Additionally, the data further reinforce a recently observed trend that the heat flux is not directly proportional to the number of layers installed on a system. (paper)

  17. Health impacts due to personal exposure to fine particles caused by insulation of residential buildings in Europe

    Science.gov (United States)

    Gens, Alexandra; Hurley, J. Fintan; Tuomisto, Jouni T.; Friedrich, Rainer

    2014-02-01

    The insulation of residential buildings affects human exposure to fine particles. According to current EU guidelines, insulation is regulated for energy saving reasons. As buildings become tighter, the air exchange rate is reduced and, thus, the indoor concentration of pollutants is increased if there are significant indoor sources. While usually the effects of heat insulation and increase of the air-tightness of buildings on greenhouse gas emissions are highlighted, the negative impacts on human health due to higher indoor concentrations are not addressed. Thus, we investigated these impacts using scenarios in three European countries, i. e. Czech Republic, Switzerland and Greece. The assessment was based on modelling the human exposure to fine particles originating from sources of particles within outdoor and indoor air, including environmental tobacco smoke. Exposure response relationships were derived to link (adverse) health effects to the exposure. Furthermore, probable values for the parameters influencing the infiltration of fine particles into residential buildings were modelled. Results show that the insulation and increase of the air-tightness of residential buildings leads to an overall increase of the mean population exposure - and consequently adverse health effects - in all considered countries (ranging for health effects from 0.4% in Czech Republic to 11.8% in Greece for 100% insulated buildings) due to an accumulation of particles indoors, especially from environmental tobacco smoke. Considering only the emission reductions in outdoor air (omitting changes in infiltration parameters) leads to a decrease of adverse health effects. This study highlights the importance of ensuring a sufficient air exchange rate when insulating buildings, e. g. by prescribing heat ventilation and air conditioning systems in new buildings and information campaigns on good airing practice in renovated buildings. It also shows that assessing policy measures based on the

  18. Relationship of Cure Temperature to Mechanical, Physical, and Dielectric Performance of PDMS Glass Composite for Electric Motor Insulation

    Science.gov (United States)

    Miller, Sandi G.; Becker, Kathleen; Williams, Tiffany S.; Scheiman, Daniel A.; McCorkle, Linda S.; Heimann, Paula J.; Ring, Andrew; Woodworth, Andrew

    2017-01-01

    Achieving NASAs aggressive fuel burn and emission reduction for N-plus-3 aircraft will require hybrid electric propulsion system in which electric motors driven by either power generated from turbine or energy storage system will power the fan for propulsion. Motors designed for hybrid electric aircraft are expected to operate at medium to high voltages over long durations in a high altitude service environment. Such conditions have driven research toward the development of wire insulation with improved mechanical strength, thermal stability and increased breakdown voltage. The silicone class of materials has been considered for electric wire insulation due to its inherent thermal stability, dielectric strength and mechanical integrity. This paper evaluates the dependence of these properties on the cure conditions of a polydimethyl-siloxane (PDMS) elastomer; where both cure temperature and base-to-catalyst ratio were varied. The PDMS elastomer was evaluated as a bulk material and an impregnation matrix within a lightweight glass veil support. The E-glass support was selected for mechanical stiffness and dielectric strength. This work has shown a correlation between cure conditions and material physical properties. Tensile strength increased with cure temperature whereas breakdown voltage tended to be independent of process variations. The results will be used to direct material formulation based on specific insulation requirements.

  19. Development of a cellulose-based insulating composite material for green buildings: Case of treated organic waste (paper, cardboard, hash)

    Science.gov (United States)

    Ouargui, Ahmed; Belouaggadia, Naoual; Elbouari, Abdeslam; Ezzine, Mohammed

    2018-05-01

    Buildings are responsible for 36% of the final energy consumption in Morocco [1-2], and a reduction of this energy consumption of buildings is a priority for the kingdom in order to reach its energy saving goals. One of the most effective actions to reduce energy consumption is the selection and development of innovative and efficient building materials [3]. In this work, we present an experimental study of the effect of adding treated organic waste (paper, cardboard, hash) on mechanical and thermal properties of cement and clay bricks. Thermal conductivity, specific heat and mechanical resistance were investigated in terms of content and size additives. Soaking time and drying temperature were also taken into account. The results reveal that thermal conductivity decreases as well in the case of the paper-cement mixture as that of the paper-clay and seems to stabilize around 40%. In the case of the composite paper-cement, it is found that, for an additives quantity exceeding 15%, the compressive strength exceeds the standard for the hollow non-load bearing masonry. However, the case of paper-clay mixture seems to give more interesting results, related to the compressive strength, for a mass composition of 15% in paper. Given the positive results achieved, it seems possible to use these composites for the construction of walls, ceilings and roofs of housing while minimizing the energy consumption of the building.

  20. Selenide isotope generator for the Galileo Mission: SIG thermal insulation evaluaion tests

    International Nuclear Information System (INIS)

    1979-06-01

    Since the SIG program required the use of very high performance thermal insulation materials in rather severe thermal and environmental conditions, a thorough screening and testing program was performed. Several types of materials were included in the preliminary survey. Most promising were oxide and carbonaceous fibrous insulations, oxide and carbonaceous foamed materials, and multilayer materials with both powder and cloth spacers. The latter were only viable for the vacuum option. In all, over one hundred materials from more than sixty manufacturers were evaluated from literature and manufacturers' data. The list was pared to eighteen candidates in seven basic types, i.e., fibrous microporous SiO 2 , fibrous SiO 2 /Al 2 O 3 , fibrous ZrO 2 , fibrous carbon, foamed SiO 2 , foamed carbon, and multilayer. Test results are presented

  1. Potential of Hollow Glass Microsphere as Cement Replacement for Lightweight Foam Concrete on Thermal Insulation Performance

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron

    2017-01-01

    Full Text Available Global warming can be defined as a gradual increase in the overall temperature of the earth’s atmosphere. A lot of research work has been carried out to reduce that heat inside the residence such as the used of low density products which can reduce the self-weight, foundation size and construction costs. Foamed concrete it possesses high flow ability, low self-weight, minimal consumption of aggregate, controlled low strength and excellent thermal insulation properties. This study investigate the characteristics of lightweight foamed concrete where Portland cement (OPC was replaced by hollow glass microsphere (HGMs at 0%, 3%, 6%, 9% by weight. The density of wet concrete is 1000 kg/m3 were tested with a ratio of 0.55 for all water binder mixture. Lightweight foamed concrete hollow glass microsphere (HGMs produced were cured by air curing and water curing in tank for 7, 14 and 28 days. A total of 52 concrete cubes of size 100mm × 100mm × 100mm and 215mm × 102.5mm × 65mm were produced. Furthermore, Scanning Electron Microscope (SEM and X-ray fluorescence (XRF were carried out to study the chemical composition and physical properties of crystalline materials in hollow glass microspheres. The experiments involved in this study are compression strength, water absorption test, density and thermal insulation test. The results show that the compressive strength of foamed concrete has reached the highest in 3% of hollow glass microsphere with less water absorption and less of thermal insulation. As a conclusion, the quantity of hollow glass microsphere plays an important role in determining the strength and water absorption and also thermal insulation in foamed concrete and 3% hollow glass microspheres as a replacement for Portland cement (OPC showed an optimum value in this study as it presents a significant effect than other percentage.

  2. Improving thermal insulation of TC4 using YSZ-based coating and SiO2 aerogel

    OpenAIRE

    Jin, Lei; Li, Peizhong; Zhou, Haibin; Zhang, Wei; Zhou, Guodong; Wang, Chun

    2015-01-01

    In this paper, air plasmas spray (APS) was used to prepare YSZ and Sc2O3–YSZ (ScYSZ) coating in order to improve the thermal insulation ability of TC4 alloy. SiO2 aerogel was also synthesized and affixed on TC4 titanium alloy to inhabit thermal flow. The microstructures, phase compositions and thermal insulation performance of three coatings were analyzed in detail. The results of thermal diffusivity test by a laser flash method showed that the thermal diffusivities of YSZ, Sc2O3–YSZ and SiO2...

  3. Fabrication of Ge-on-insulator wafers by Smart-CutTM with thermal management for undamaged donor Ge wafers

    Science.gov (United States)

    Kim, Munho; Cho, Sang June; Jayeshbhai Dave, Yash; Mi, Hongyi; Mikael, Solomon; Seo, Jung-Hun; Yoon, Jung U.; Ma, Zhenqiang

    2018-01-01

    Newly engineered substrates consisting of semiconductor-on-insulator are gaining much attention as starting materials for the subsequent transfer of semiconductor nanomembranes via selective etching of the insulating layer. Germanium-on-insulator (GeOI) substrates are critically important because of the versatile applications of Ge nanomembranes (Ge NMs) toward electronic and optoelectronic devices. Among various fabrication techniques, the Smart-CutTM technique is more attractive than other methods because a high temperature annealing process can be avoided. Another advantage of Smart-CutTM is the reusability of the donor Ge wafer. However, it is very difficult to realize an undamaged Ge wafer because there exists a large mismatch in the coefficient of thermal expansion among the layers. Although an undamaged donor Ge wafer is a prerequisite for its reuse, research related to this issue has not yet been reported. Here we report the fabrication of 4-inch GeOI substrates using the direct wafer bonding and Smart-CutTM process with a low thermal budget. In addition, a thermo-mechanical simulation of GeOI was performed by COMSOL to analyze induced thermal stress in each layer of GeOI. Crack-free donor Ge wafers were obtained by annealing at 250 °C for 10 h. Raman spectroscopy and x-ray diffraction (XRD) indicated similarly favorable crystalline quality of the Ge layer in GeOI compared to that of bulk Ge. In addition, Ge p-n diodes using transferred Ge NM indicate a clear rectifying behavior with an on and off current ratio of 500 at ±1 V. This demonstration offers great promise for high performance transferrable Ge NM-based device applications.

  4. MARCKO thermal insulation layers. Life predictions for thermal insulation and antioxidant layers. Final report; MARCKO-Waermedaemmschichten. Methoden zur Lebensdauervorhersage von Waermedaemm- und Oxidationsschutzschichten. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schuetze, M.

    2003-07-01

    The project was carried out by MTU, Rolls-Royce and Siemens as industrial partners and FZ-Juelich, DLR and DECHEMA as institutes for the purpose of developing a life model for monocrystalline gas turbine blades with metal coatings. This model was to provide reliable information on the life of the ceramic and coupling agent layers. This report describes the activities of the Karl-Winnacker Institute of DECHEMA e.V.: Isothermal oxidation experiments were carried out in the laboratory at 950-1100 degrees centigrade, followed by a characterisation of the oxidation characteristics on the basis of metallographic sections. Particular interest was taken in the development of the TGO (thermally grown oxide) layers, aluminium depletion in the bond coat on the oxide side, and physical defects in the form of pores, pore populations and microcracks within the TGO or in its immediate vicinity. For the first time ever, these microcracks were classified post-experimentally using SEM pictures, and the maximum dimensions of the cracks were quantified as a function of ageing. Kinetics were established for all these parameters. Growth-induced lateral stresses in the TGO were assessed on the basis of the bending of a thin metal foil of pure bond coat material. In the framework of a sub-project carried out by Rolls-Royce, the mechanical characteristics of APS-sprayed thermal insulation layers was investigated in uniaxial pressure experiments on free, hollow cylindrical annular probes. On the one hand, their thermoelastic characteristics were established using path-controlled cyclic load tests; on the other hand, the thermoplastic characteristics were established using load-controlled creep experiments. Samples were used both in the initial and the sintered state in order to assess the effect of sintering, which was described on the basis of porosity as measured in ceramographic sections. The methods and results are presented in this report. [German] In diesem Verbundprojekt, an dem MTU

  5. Description and characterization of systems for external insulation and retrofitting for Denmark with emphasis on the thermal performance

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Svendsen, Sv Aa Højgaard

    1998-01-01

    Lately there has been quite a large focus on retrofitting of the Danish buildings. The retrofitting of the building is done in order to solve one or more of the following problems: bad indoor climate, large use of energy for heating, insufficient durability or architectural unsatisfactory.In order...... to solve these problems insulation is often part of the retrofitting. As internal insulation has many disadvantages with regards to heat and moisture only systems for external insulation will be mentioned here.As there are several different systems for external insulation, each with different properties......, there is a need for a systematic approach when the building designer chooses which system should be used on the building which is to be retrofitted....

  6. EVALUATION OF THERMAL INSULATION FOR THREE DIFFERENT MATERIALS USED IN CONSTRUCTION AND COMPLETION OF EXTERNAL WALLS

    Directory of Open Access Journals (Sweden)

    Marcio Carlos Navroski

    2010-05-01

    Full Text Available Summers increasingly hot are bringing large thermal problems within homes and businesses, leading to increased demand for installation of air conditioners and the consequent high energy consumption. Constructions with thermal insulation on its external walls thatcould reduce energy use or even supply the use of such equipment. Due to these factors the present study was to evaluate the insulation in three boxes built with different materials, one made of wooden boards with plain walls, and two built with plywood, wall insulation andinterior walls filled with rice husk and Styrofoam®. The boxes were built after placed in drying oven at 40 °C, then noted the temperature inside the same interval every five minutes using a digital thermometer. The box with inner Styrofoam® showed the lowest variation among the three evaluated, followed by the box of rice husk. These two materials also showed good thermal initial, unlike the box built only with wood, which showed a large interiorheating, lay in a drying oven.

  7. Effect of Insulation Thickness on Thermal Stratification in Hot Water Tanks

    Directory of Open Access Journals (Sweden)

    Burak KURŞUN

    2018-03-01

    Full Text Available One of the important factors to be considered in increasing the efficiency of hot water storage tanks used for thermal energy storage is thermal stratification. Reducing the temperature of the water at the base of the tank provides more utilization of the energy of the heat source during the heating of the water and improves the efficiency of the system. In this study, the effect of the insulation thickness on the outer surface of the tank and the ratio of the tank diameter to the height (D/H on the thermal stratification was investigated numerically. Numerical analyzes were carried out for the condition that the insulation thickness was constant and variable in the range of D/H=0,3-1. Water was used as the heat storage fluid and the analysis results were obtained for eight hours cooling period. Numerical results showed that the temperature difference between the bottom and top surfaces of the tank increased between 7-9 ° C for the range of D / H = 0,3-1 with changing the insulation thickness.

  8. Micro thermal diode with glass thermal insulation structure embedded in a vapor chamber

    Science.gov (United States)

    Tsukamoto, Takashiro; Hirayanagi, Takashi; Tanaka, Shuji

    2017-04-01

    This paper reports a micro thermal diode based on one-way working fluid circulation driven by surface tension force. In forward mode, working fluid evaporates and condenses at a heated and cooled area, respectively, and the condensed liquid returns to the evaporation area due to the wettability difference. By this vapor-liquid phase change mechanism, the overall heat transfer coefficient becomes high. On the other hand, in reverse mode, no continuous evaporation-condensation cycle exists. The conductive heat loss in reverse mode was minimized by an embedded glass thermal isolation structure, which makes overall heat transfer coefficient low. The test device was made by a standard MEMS process combined with glass reflow and gold bump sealing. The overall heat transfer coefficients of 13 300 \\text{W}~{{\\text{m}}-2}~\\text{K} for forward mode and 4790 \\text{W}~{{\\text{m}}-2}~\\text{K} for reverse mode were measured. The performance index of the micro thermal diode was about 2.8.

  9. Investigation of deterioration mechanism of electrical ceramic insulating materials under high temperature

    International Nuclear Information System (INIS)

    Mizutani, Yoshinobu; Ito, Tetsuo; Okamoto, Tatsuki; Kumazawa, Ryoji; Aizawa, Rie; Moriyama, Hideshige

    2000-01-01

    It is thought that ceramic insulator can be applied to electric power equipments that are under high temperature not to be able use organic materials. Our research has suggested components of mica-alumina combined insulation. As the results of and carried out temperature accelerating test, combined insulation life is expected long term over 40 years at over 500-Celsius degrees. However to construct high reliable insulating system, it is clarified deterioration mechanism on combined insulation and evaluates life of that. Therefore we carried out metal behavior test and voltage aging test using mica-sheet and alumina-cloth that are components of combined insulation under high temperature in nitrogen gas atmosphere. It is cleared two metal behavior mechanisms: One is that the opening of insulator are filled up with copper that is oxidized, the other is the metal diffuses in alumina-cloth through surface. And distance of metal behavior is able to be estimated at modulate temperature and in modulate time. It is also cleared that alumina-cloth is deteriorated by metal behavior into alumina-cloth. These results indicate that combined insulation is deteriorated from electrode side by metal behavior and is finally broken down through alumina-cloth. (author)

  10. Transient plane source (tps) sensors for simultaneous measurements of thermal conductivity and thermal diffusivity of insulators, fluids and conductors

    Science.gov (United States)

    Maqsood, Asghari; Anis-ur-Rehman, M.

    2013-12-01

    Thermal conductivity and thermal diffusivity are two important physical properties for designing any food engineering processes1. The knowledge of thermal properties of the elements, compounds and different materials in many industrial applications is a requirement for their final functionality. Transient plane source (tps) sensors are reported2 to be useful for the simultaneous measurement of thermal conductivity, thermal diffusivity and volumetric heat capacity of insulators, conductor liquids3 and high-TC superconductors4. The tps-sensor consists of a resistive element in the shape of double spiral made of 10 micrometer thick Ni-foils covered on both sides with 25 micrometer thick Kapton. This sensor acts both as a heat source and a resistance thermometer for recording the time dependent temperature increase. From the knowledge of the temperature co-efficient of the metal spiral, the temperature increase of the sensor can be determined precisely by placing the sensor in between two surfaces of the same material under test. This temperature increase is then related to the thermal conductivity, thermal diffusivity and volumetric heat capacity by simple relations2,5. The tps-sensor has been used to measure thermal conductivities from 0.001 Wm-1K-1to 600 Wm-1K-1 and temperature ranges covered from 77K- 1000K. This talk gives the design, advantages and limitations of the tpl-sensor along with its applications to the measurementof thermal properties in a variety of materials.

  11. Transient plane source (tps) sensors for simultaneous measurements of thermal conductivity and thermal diffusivity of insulators, fluids and conductors

    International Nuclear Information System (INIS)

    Maqsood, Asghari; Anis-ur-Rehman, M

    2013-01-01

    Thermal conductivity and thermal diffusivity are two important physical properties for designing any food engineering processes 1 . The knowledge of thermal properties of the elements, compounds and different materials in many industrial applications is a requirement for their final functionality. Transient plane source (tps) sensors are reported 2 to be useful for the simultaneous measurement of thermal conductivity, thermal diffusivity and volumetric heat capacity of insulators, conductor liquids 3 and high-T C superconductors 4 . The tps-sensor consists of a resistive element in the shape of double spiral made of 10 micrometer thick Ni-foils covered on both sides with 25 micrometer thick Kapton. This sensor acts both as a heat source and a resistance thermometer for recording the time dependent temperature increase. From the knowledge of the temperature co-efficient of the metal spiral, the temperature increase of the sensor can be determined precisely by placing the sensor in between two surfaces of the same material under test. This temperature increase is then related to the thermal conductivity, thermal diffusivity and volumetric heat capacity by simple relations 2,5 . The tps-sensor has been used to measure thermal conductivities from 0.001 Wm −1 K −1 to 600 Wm −1 K −1 and temperature ranges covered from 77K– 1000K. This talk gives the design, advantages and limitations of the tpl-sensor along with its applications to the measurementof thermal properties in a variety of materials

  12. Methodology for characterization of corrosive agents of thermal insulating foams; Desenvolvimento de metodologia para caracterizacao de agentes corrosivos de espumas de isolamento termico

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Flavio V. Vasques de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Fundacao Coordenacao de Projetos, Pesquisas e Estudos Tecnologicos - COPPETEC; Mattos, Oscar R.; Mota, Rafael O. da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Metalurgica e de Materiais; Margarit-Mattos, Isabel C.P. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica. Dept. de Processos Organicos; Quintela, Joaquim P. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Vieira, Magda M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2005-07-01

    Warming up oil and derivatives is a required procedure to make their transportation more efficient due to the increase in fluidity. Therefore, the use of thermally insulated pipeline becomes essential. The commonly practice has been the use of pipelines covered with an optional anticorrosive coating, followed by a polyurethane foam layer, as thermal insulator, and a polyethylene top coating for mechanical protection. During the life time of the pipeline, local ruptures of the polyethylene coating frequently occur, allowing the water permeation throughout the thermal insulator. This water may cause foam leaching that would release corrosive agents on the external wall pipe. The objective of the present work was to investigate the effects of the blowing agents, the addition of flame retardant to the foam as well as operating temperatures on the generation of corrosive solutions on the external wall of thermally insulated pipes. In this sense, polyurethane foams expanded with HCFC-141b, CFC-11 and CO{sub 2}, with and without flame retardant, were evaluated at the temperatures of 80 and 120 deg C. (author)

  13. Extreme temperature stability of thermally insulating graphene-mesoporous-silicon nanocomposite

    Science.gov (United States)

    Kolhatkar, Gitanjali; Boucherif, Abderraouf; Rahim Boucherif, Abderrahim; Dupuy, Arthur; Fréchette, Luc G.; Arès, Richard; Ruediger, Andreas

    2018-04-01

    We demonstrate the thermal stability and thermal insulation of graphene-mesoporous-silicon nanocomposites (GPSNC). By comparing the morphology of GPSNC carbonized at 650 °C as-formed to that after annealing, we show that this nanocomposite remains stable at temperatures as high as 1050 °C due to the presence of a few monolayers of graphene coating on the pore walls. This does not only make this material compatible with most thermal processes but also suggests applications in harsh high temperature environments. The thermal conductivity of GPSNCs carbonized at temperatures in the 500 °C-800 °C range is determined through Raman spectroscopy measurements. They indicate that the thermal conductivity of the composite is lower than that of silicon, with a value of 13 ± 1 W mK-1 at room temperature, and not affected by the thin graphene layer, suggesting a role of the high concentration of carbon related-defects as indicated by the high intensity of the D-band compared to G-band of the Raman spectra. This morphological stability at high temperature combined with a high thermal insulation make GPSNC a promising candidate for a broad range of applications including microelectromechanical systems and thermal effect microsystems such as flow sensors or IR detectors. Finally, at 120 °C, the thermal conductivity remains equal to that at room temperature, attesting to the potential of using our nanocomposite in devices that operate at high temperatures such as microreactors for distributed chemical conversion, solid oxide fuel cells, thermoelectric devices or thermal micromotors.

  14. Internal insulation applied in heritage multi-storey buildings with wooden beams embedded in solid masonry brick facades

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2016-01-01

    The use of internal insulation is investigated in a heritage building block with wooden beam construction and masonry brick walls as part of an energy renovation. Measurements were carried out and compared to results from a hygrothermal simulation model. The risk of mould growth in the wooden beams...... insulation on north-orientated walls, since the drying potential is reduced. Additionally, caution should be exercised also with west-orientated walls....

  15. Cryogenic foam insulation: Abstracted publications

    Science.gov (United States)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  16. Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition

    Energy Technology Data Exchange (ETDEWEB)

    Menges, F.; Spieser, M.; Riel, H.; Gotsmann, B., E-mail: bgo@zurich.ibm.com [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Dittberner, M. [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Novotny, L. [Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Passarello, D.; Parkin, S. S. P. [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States)

    2016-04-25

    The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, and the sphere temperatures were varied in a range between 100 and 200 °C. The measurements were performed using a vacuum-based scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.

  17. THERMAL INSULATION PROPERTIES RESEARCH OF THE COMPOSITE MATERIAL WATER GLASS–GRAPHITE MICROPARTICLES

    Directory of Open Access Journals (Sweden)

    V. A. Gostev

    2014-05-01

    Full Text Available Research results for the composite material (CM water glass–graphite microparticles with high thermal stability and thermal insulation properties are given. A composition consisting of graphite (42 % by weight, water glass Na2O(SiO2n (50% by weight and the hardener - sodium silicofluoric Na2SiF6 (8% by weight. Technology of such composition receipt is suggested. Experimental samples of the CM with filler particles (graphite and a few microns in size were obtained. This is confirmed by a study of samples by X-ray diffraction and electron microscopy. The qualitative and quantitative phase analysis of the CM structure is done. Load limit values leading to the destruction of CM are identified. The character of the rupture surface is detected. Numerical values of specific heat and thermal conductivity are defined. Dependence of the specific heat capacity and thermal conductivity on temperature at monotonic heating is obtained experimentally. Studies have confirmed the increased thermal insulation properties of the proposed composition. CM with such characteristics can be recommended as a coating designed to reduce heat losses and resistant to high temperatures. Due to accessibility and low cost of its components the proposed material can be produced on an industrial scale.

  18. A novel highly porous ceramic foam with efficient thermal insulation and high temperature resistance properties fabricated by gel-casting process

    Science.gov (United States)

    Yu, Jiahong; Wang, Guixiang; Tang, Di; Qiu, Ya; Sun, Nali; Liu, Wenqiao

    2018-01-01

    The design of super thermal insulation and high-temperature resistant materials for high temperature furnaces is crucial due to the energy crisis and the huge wasting. Although it is told that numerous studies have been reported about various of thermal insulation materials prepared by different methods, the applications of yttria-stabilized zirconia (YSZ) ceramic foams fabricated through tert-butyl alcohol (TBA)-based gel-casting process in bulk thermal isolators were barely to seen. In this paper, highly porous yttria-stabilized zirconia (YSZ) ceramic foams were fabricated by a novel gel-casting method using tert-butyl alcohol (TBA) as solvent and pore-forming agent. Different raw material ratio, sintering temperature and soaking time were all investigated to achieve optimal thermal insulation and mechanical properties. We can conclude that porosity drops gradually while compressive strength increases significantly with the rising temperature from 1000-1500°C. With prolonged soaking time, there is no obvious change in porosity but compressive strength increases gradually. All specimens have uniformly distributed pores with average size of 0.5-2μm and show good structural stability at high temperature. The final obtained ceramic foams displayed an outstanding ultra-low thermal conductivity property with only 200.6 °C in cold surface while the hot side was 1000 °C (hold 60 min to keep thermal balance before testing) at the thickness of 10 mm.

  19. Thermal conductivity of spray-on foam insulations for aerospace applications

    Science.gov (United States)

    Barrios, Matt; Vanderlaan, Mark; Van Sciver, Steven

    2012-06-01

    A guarded-hot-plate apparatus [1] has been developed to measure the thermal conductivity of spray-on foam insulations (SOFI) at temperatures ranging from 30 K to 300 K. The foam tested in the present study is NCFI 24-124, a polyisocyanurate foam used on the External Tanks of the Space Shuttle. The foam was tested first in ambient pressure air, then evacuated and tested once more. These thermal conductivities were compared to the thermal conductivity taken from a sample immediately after being subjected to conditions similar to those experienced by the foam while on the launch pad at Kennedy Space Center. To mimic the conditions experienced on the launch pad, an apparatus was built to enclose one side of the foam sample in a warm, humid environment while the other side of the sample contacts a stainless steel surface held at 77 K. The thermal conductivity data obtained is also compared to data found in the literature.

  20. Thermal comfort in residential buildings by the millions

    DEFF Research Database (Denmark)

    Østergård, Torben; Maagaard, Steffen; Jensen, Rasmus Lund

    2016-01-01

    In Danish building code and many design briefings, criteria regarding thermal comfort are defined for “critical” rooms in residential buildings. Identifying the critical room is both difficult and time-consuming for large, multistory buildings. To reduce costs and time, such requirement often...

  1. Analysis of the optical and thermal properties of transparent insulating materials containing gas bubbles

    International Nuclear Information System (INIS)

    Cai, Qilin; Ye, Hong; Lin, Qizhao

    2016-01-01

    Highlights: • Transparent insulating medium containing gas bubbles was proposed. • Radiative transfer and thermal conduction models were constructed. • Bulk transmittance increases first and then decreases with the bubble number. • Effective thermal conductivity decreases with increasing filling ratio. • High filling ratio with large bubbles is preferred for good performance. - Abstract: As a medium of low absorption and low thermal conduction, introducing gas bubbles into semitransparent mediums, such as glass and polycarbonate (PC), may simultaneously improve their light transmission and thermal insulation performances. However, gas bubbles can also enhance light scattering, which is in competition with the effect of the absorption decrease. Moreover, the balance between the visible light transmittance and the effective thermal conductivity should also be considered in the material design. Therefore, a radiative transfer model and the Maxwell–Eucken model for such material were employed to analyze the optical and thermal performances, respectively. The results demonstrate that the transmittance increases when the bubble radius (r) increases with a fixed volume fraction of the gas bubbles (f_v) due to the increased scattering intensity. In addition, the effective thermal conductivity always decreases with increasing f_v. Thus, to achieve both good optical and thermal performances, high f_v with large r is preferred. When f_v=0.5, the transmittance can be kept larger than 50% as long as r ≥ 0.7 mm. To elucidate the application performance, the heat transfer of a freezer adopting the glass or PC with gas bubbles as a cover was analyzed and the energy saving can be nearly 10%.

  2. Design of the Building Envelope: A Novel Multi-Objective Approach for the Optimization of Energy Performance and Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Fabrizio Ascione

    2015-08-01

    Full Text Available According to the increasing worldwide attention to energy and the environmental performance of the building sector, building energy demand should be minimized by considering all energy uses. In this regard, the development of building components characterized by proper values of thermal transmittance, thermal capacity, and radiative properties is a key strategy to reduce the annual energy need for the microclimatic control. However, the design of the thermal characteristics of the building envelope is an arduous task, especially in temperate climates where the energy demands for space heating and cooling are balanced. This study presents a novel methodology for optimizing the thermo-physical properties of the building envelope and its coatings, in terms of thermal resistance, capacity, and radiative characteristics of exposed surfaces. A multi-objective approach is adopted in order to optimize energy performance and thermal comfort. The optimization problem is solved by means of a Genetic Algorithm implemented in MATLAB®, which is coupled with EnergyPlus for performing dynamic energy simulations. For demonstration, the methodology is applied to a residential building for two different Mediterranean climates: Naples and Istanbul. The results show that for Naples, because of the higher incidence of cooling demand, cool external coatings imply significant energy savings, whereas the insulation of walls should be high but not excessive (no more than 13–14 cm. The importance of high-reflective coating is clear also in colder Mediterranean climates, like Istanbul, although the optimal thicknesses of thermal insulation are higher (around 16–18 cm. In both climates, the thermal envelope should have a significant mass, obtainable by adopting dense and/or thick masonry layers. Globally, a careful design of the thermal envelope is always necessary in order to achieve high-efficiency buildings.

  3. Impact sound insulation descriptors in the Nordic building regulations – Overview special rules and benefits of changing descriptors

    DEFF Research Database (Denmark)

    Hagberg, Klas; Rasmussen, Birgit

    2010-01-01

    All Nordic countries have sound insulation requirements specified in the building regulations or in sound classification schemes, Class C, referred to in the regulations and published as national standards, which all originate from a common Nordic INSTA-B proposal from the 90’s, thus having a lot...... insulation requirements and is related to an equivalent paper about airborne sound insulation requirements. The papers also describe the major benefits of reducing the number of special rules and of changing descriptors to those which best support protection of the residents and development of the building....... These national rules are not easy to find, unless all details of standards and other documents are known and studied carefully, and they cause problems since the building industry is not national anymore. This paper gives an overview of special national rules in the Nordic countries regarding impact sound...

  4. Airborne sound insulation descriptors in the Nordic building regulations - Overview special rules and benefits of changing descriptors

    DEFF Research Database (Denmark)

    Helimäki, Heikki; Rasmussen, Birgit

    2010-01-01

    All Nordic countries have sound insulation requirements specified in the building regulations or in sound classification schemes, Class C, referred to in the regulations and published as national standards, which all originate from a common Nordic INSTA-B proposal from the 90’s, thus having a lot...... insulation requirements and is related to an equivalent paper about impact sound insulation requirements. The papers also describe the major benefits of reducing the number of special rules and of changing descriptors to those which best support protection of the residents and development of the building....... These national rules are not easy to find, unless all details of standards and other documents are known and studied carefully, and they cause problems since the building industry is not national anymore. This paper gives an overview of special national rules in the Nordic countries regarding airborne sound...

  5. Rapid growth of single-layer graphene on the insulating substrates by thermal CVD

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Y. [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Dai, D.; Chen, G.X.; Yu, J.H. [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Nishimura, K. [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Advanced Nano-processing Engineering Lab, Mechanical Systems Engineering, Kogakuin University (Japan); Lin, C.-T. [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Jiang, N., E-mail: jiangnan@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhan, Z.L., E-mail: zl_zhan@sohu.com [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2015-08-15

    Highlights: • A rapid thermal CVD process has been developed to directly grow graphene on the insulating substrates. • The treating time consumed is ≈25% compared to conventional CVD procedure. • Single-layer and few-layer graphene can be formed on quartz and SiO{sub 2}/Si substrates, respectively. • The formation of thinner graphene at the interface is due to the fast precipitation rate of carbon atoms during cooling. - Abstract: The advance of CVD technique to directly grow graphene on the insulating substrates is particularly significant for further device fabrication. As graphene is catalytically grown on metal foils, the degradation of the sample properties is unavoidable during transfer of graphene on the dielectric layer. Moreover, shortening the treatment time as possible, while achieving single-layer growth of graphene, is worthy to be investigated for promoting the efficiency of mass production. Here we performed a rapid heating/cooling process to grow graphene films directly on the insulating substrates by thermal CVD. The treating time consumed is ≈25% compared to conventional CVD procedure. In addition, we found that high-quality, single-layer graphene can be formed on quartz, but on SiO{sub 2}/Si substrate only few-layer graphene can be obtained. The pronounced substrate effect is attributed to the different dewetting behavior of Ni films on the both substrates at 950 °C.

  6. Impact of building forms on thermal performance and thermal comfort conditions in religious buildings in hot climates: a case study in Sharjah city

    Science.gov (United States)

    Mushtaha, Emad; Helmy, Omar

    2017-11-01

    The common system used for thermal regulation in mosques of United Arab Emirates (UAE) is the heating, ventilating and air-conditioning (HVAC) system. This system increases demands on energy consumption and increases CO2 emission. A passive design approach is one of the measures to reduce these problems. This study involved an analytical examination of building forms, followed by testing the impact of these forms on its thermal performance and indoor thermal comfort. The tests were conducted using energy simulations software packages. Passive parameters such as shading devices, thermal insulation and natural ventilation were applied in six cases, including the baseline case within each form. The obtained results showed a significant effect of mosque forms as well as passive design techniques on the thermal comfort within the structures. The findings confirmed that the use of passive design alone would not help achieve thermal comfort, but reduce the annual energy consumption by10%. By integrating a hybrid air-conditioning system as another supporting approach, the annual energy consumption could be reduced by 67.5%, which allows for the designing of a much smaller HVAC system.

  7. Comparative Analysis of the Thermal Insulation of Traditional and Newly Designed Protective Clothing for Foundry Workers

    Directory of Open Access Journals (Sweden)

    Iwona Frydrych

    2016-09-01

    Full Text Available An objective of the undertaken research was checking the applicability of aluminized basalt fabrics for the production of clothing for foundry workers. The results of flammability, the resistance to contact, convective and radiation heat, as well as the resistance to big molten metal splashes confirmed the thesis of applicability of the packages with the use of aluminized basalt fabric content for the assumed purpose; therefore, such protective clothing was produced. Thermal comfort of foundry workers is very important and related to many factors, i.e., the structure of the protective clothing package, the number of layers, their thickness, the distance between the body and appropriate underwear. In the paper, a comparison of the results of thermal insulation measurement of two kinds of protective clothing is presented: the traditional one made of aluminized glass fabrics and the new one made of aluminized basalt fabrics. Measurements of clothing thermal insulation were conducted using a thermal manikin dressed in the protective clothing and three kinds of underwear products covering the upper and lower part of the manikin.

  8. A lime based mortar for thermal insulation of medieval church vaults

    DEFF Research Database (Denmark)

    Larsen, P.K.; Hansen, Tessa Kvist

    A new mortar for thermal insulation of medieval church vaults was tested in a full scale experiment in Annisse Church, DK. The mortar consists of perlite, a highly porous aggregate, mixed with slaked lime. These materials are compatible with the fired clay bricks and the lime mortar joints....... The lambda-value of the insulation mortar is 0.08 W/m K or twice the lambda-value for mineral wool. The water vapour permeability is equal to a medieval clay brick, and it has three times higher capacity for liquid water absorption. The mortar was applied to the top side of the vaults in a thickness of 10 cm......, despite a water vapour pressure gradient up to 500 Pa between the nave and attic. There was no reduction in energy consumption the first winter, possibly due to the increased heat loss related to the drying of the mortar....

  9. A system for the thermal insulation of a pre-stressed concrete vessel

    International Nuclear Information System (INIS)

    Aubert, Gilles; Petit, Guy.

    1975-01-01

    This invention concerns the thermal insulation of a pre-stressed concrete vessel for a pressurised water nuclear reactor, this vessel being fitted internally with a leak-proof metal lining. Two rings are placed at the lower and upper parts of the vessel respectively. The upper ring is closed with a cover. These rings differ in diameter, are fitted with a metal insulating and mark the limits of a chamber between the vaporisable fluid and the internal wall of the vessel. This chamber is filled with a fluid in the liquid phase up to the liquid/vapor interface level of the fluid and with a gas above that level, the covering of the rings forming a cold fluid liquid seal. Each ring is supported by the vessel. Leak-proof components take up the radial expansion of the rings [fr

  10. Study on electrochemical corrosion mechanism of steel foot of insulators for HVDC lines

    Science.gov (United States)

    Zheng, Weihua; Sun, Xiaoyu; Fan, Youping

    2017-09-01

    The main content of this paper is the mechanism of electrochemical corrosion of insulator steel foot in HVDC transmission line, and summarizes five commonly used artificial electrochemical corrosion accelerated test methods in the world. Various methods are analyzed and compared, and the simulation test of electrochemical corrosion of insulator steel feet is carried out by water jet method. The experimental results show that the experimental environment simulated by water jet method is close to the real environment. And the three suspension modes of insulators in the actual operation, the most serious corrosion of the V type suspension hardware, followed by the tension string suspension, and the linear string corrosion rate is the slowest.

  11. Impact of Building Design Parameters on Thermal Energy Flexibility in a Low-Energy Building

    OpenAIRE

    Sarran, Lucile; Foteinaki, Kyriaki; Gianniou, Panagiota; Rode, Carsten

    2017-01-01

    This work focuses on demand-side management potential for the heating grid in residential buildings. The possibility to increase the flexibility provided to the heat network through specific building design is investigated. The role of different parts of the building structure on thermal flexibility is assessed through a parameter variation on a building model. Different building designs are subjected to heat cut-offs, and flexibility is evaluated with respect to comfort preservation and heat...

  12. Thermal Comfort and Ventilation Criteria for low Energy Residential Buildings in Building Codes

    DEFF Research Database (Denmark)

    Cao, Guangyu; Kurnitski, Jarek; Awbi, Hazim

    2012-01-01

    of the indoor air quality in such buildings. Currently, there are no global guidelines for specifying the indoor thermal environment in such low-energy buildings. The objective of this paper is to analyse the classification of indoor thermal comfort levels and recommended ventilation rates for different low...

  13. Analysis of Thermal Comfort in an Intelligent Building

    Science.gov (United States)

    Majewski, Grzegorz; Telejko, Marek; Orman, Łukasz J.

    2017-06-01

    Analysis of thermal comfort in the ENERGIS Building, an intelligent building in the campus of the Kielce University of Technology, Poland is the focus of this paper. For this purpose, air temperature, air relative humidity, air flow rate and carbon dioxide concentration were measured and the mean radiant temperature was determined. Thermal sensations of the students occupying the rooms of the building were evaluated with the use of a questionnaire. The students used a seven-point scale of thermal comfort. The microclimate measurement results were used to determine the Predicted Mean Vote and the Predicted Percentage Dissatisfied indices.

  14. Thermally driven magnon transport in the magnetic insulator Yttrium Iron Garnet

    International Nuclear Information System (INIS)

    Agrawal, Milan

    2014-01-01

    The research work presented in this thesis covers the investigation of spin-caloric phenomena in ferromagnetic-normal metal heterostructures. These phenomena explore the interaction of heat with spin systems and mainly deal with the generation and the manipulation of spin currents by means of heat currents (phonons). The significance of spin currents is widely seen in developing new fundamental concepts of physics as well as in the industry of magnetic memories. Analogous to the classical Seebeck effect, the generation of a spin current in a spin system by the application of heat currents is known as the spin Seebeck effect (SSE). This mode of spin current generation has recently attracted much scientific attention due to the existence of the spin Seebeck effect in a wide variety of magnetic materials (spin systems), considering from insulators to metals. The potential applications of this effect, in particular to generate electricity out of waste heat, make the effect even more attractive. Generally, spin systems can be classified into either a system constituting the traveling spins carried by free electrons or into a system of spin waves, collective excitations of magnetic moments in the wavevector space. Having the advantage of being free from free-electronic charges, an electrical-insulating-ferromagnetic system of spin waves overcomes the limitation of short propagation lengths of pure spin currents in metals. The long propagation length of spin currents carried by propagating spin waves is crucial for building-up spin-electronic (spintronic) circuits and spin logics for fast computation. For such purposes, the ferrimagnetic insulator Yttrium Iron Garnet (YIG) is a promising material candidate due to its lowest known magnetic damping which offers macroscopic propagation lengths of spin currents. In the framework of this thesis, a detailed investigation of the interaction of phonons with magnons, the quanta of spin waves, in single crystalline YIG films are

  15. Numerical Calculation of Transient Thermal Characteristics in Gas-Insulated Transmission Lines

    Directory of Open Access Journals (Sweden)

    Hongtao Li

    2013-11-01

    Full Text Available For further knowledge of the thermal characteristics in gas-insulated transmission lines (GILs installed above ground, a finite-element model coupling fluid field and thermal field is established, in which the corresponding assumptions and boundary conditions are given.  Transient temperature rise processes of the GIL under the conditions of variable ambient temperature, wind velocity and solar radiation are respectively investigated. Equivalent surface convective heat transfer coefficient and heat flux boundary conditions are updated in the analysis process. Unlike the traditional finite element methods (FEM, the variability of the thermal properties with temperature is considered. The calculation results are validated by the tests results reported in the literature. The conclusion provides method and theory basis for the knowledge of transient temperature rise characteristics of GILs in open environment.

  16. Feasibility study of thermal insulation materials for core support of experimental VHTR

    International Nuclear Information System (INIS)

    Kawakami, H.; Nakanishi, T.

    1982-01-01

    Thermal insulation materials for core support of the experimental VHTR, planned by JAERI, should maintain moderate compressive strength and dimensional stability as well as low thermal conductivity at the maximum service temperature of 1100 0 C for 20 years. For selecting materials, we investigate properties of some candidates, and evaluate their feasibility. Preliminary tests, heat treatment test and compressive creep tests for 1000 hours at 900 0 C and 1000 0 C were conducted. In the preliminary tests, EG-38B (carbon baked at 1350 0 C) and Fine Finnex 600 (silicon nitride) showed acceptable physical stability. In the heat treatment tests, silicon nitride showed weight loss probably caused by thermal decomposition. Compressive creep deformation of Fine Finnex 600 was negligible under stress of 100 kg/cm 2 for 1000 hours. Heat treatment at 1200 to 1300 0 C for 50 hours improved dimensional stability of carbon at 1000 0 C

  17. Accelerated thermal and radiation-oxidation combined degradation of electric cable insulation materials

    International Nuclear Information System (INIS)

    Yagi, Toshiaki; Seguchi, Tadao; Yoshida, Kenzo

    1986-03-01

    For the development of accelerated testing methodology to estimate the life time of electric cable, which is installed in radiation field such as a nuclear reactor containment vessel, radiation and thermal combined degradation of cable insulation and jacketing materials was studied. The materials were two types of formulated polyethylene, ethylene-propylene rubber, Hypalon, and Neoprene. With Co-60 γ-rays the materials were irradiated up to 0.5 MGy under vacuum and in oxygen under pressure, then exposed to thermal aging at elevated temperature in oxygen. The degradation was investigated by the tensile test, gelfraction, and swelling measurements. The thermal degradation rate for each sample increases with increase of oxygen concentration, i.e. oxygen pressure, during the aging, and tends to saturate above 0.2 MPa of oxygen pressure. Then, the effects of irradiation and the temperature on the thermal degradation rate were investigated at the oxygen pressure of 0.2 MPa in the temperature range from 110 deg C to 150 deg C. For all of samples irradiated in oxygen, the following thermal degradation rate was accelerated by several times comparing with unirradiated samples, while the rate of thermal degradation for the sample except Neoprene irradiated under vacuum was nearly equal to that of unirradiated one. By the analysis of thermal degradation rate against temperature using Arrhenius equation, it was found that the activation energy tends to decrease for the samples irradiated in oxidation condition. (author)

  18. Recovery Act. Advanced Building Insulation by the CO2 Foaming Process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Arthur [Industrial Science and Technology Network, Inc., Lancaster, PA (United States)

    2013-12-30

    In this project, ISTN proposed to develop a new "3rd" generation of insulation technology. The focus was a cost-effective foaming process that could be used to manufacture XPS and other extruded polymer foams using environmentally clean blowing agents, and ultimately achieve higher R-values than existing products while maintaining the same level of cost-efficiency. In the U.S., state-of-the-art products are primarily manufactured by two companies: Dow and Owens Corning. These products (i.e., STYROFOAM and FOAMULAR) have a starting thermal resistance of R-5.0/inch, which declines over the life of the product as the HFC blowing agents essential to high R-value exchange with air in the environment. In the existing technologies, the substitution of CO2 for HFCs as the primary foaming agent results in a much lower starting R-value, as evidenced in CO2-foamed varieties of XPS in Europe with R-4.2/inch insulation value. The major overarching achievement from this project was ISTN's development of a new process that uses CO2 as a clean blowing agent to achieve up to R-5.2/inch at the manufacturing scale, with a production cost on a per unit basis that is less than the cost of Dow and Owens Corning XPS products.

  19. Research and Development Data to Define the Thermal Performance of Reflective Materials Used to Conserve Energy in Building Applications

    Energy Technology Data Exchange (ETDEWEB)

    Eisenberg, J

    2001-04-09

    A comprehensive experimental laboratory study has been conducted on the thermal performance of reflective insulation systems. The goal of this study was to develop test and evaluation protocols and to obtain thermal performance data on a selected number of idealized and commercial systems containing reflective airspaces for use in analytical models. Steady-state thermal resistance has been measured on 17 different test panels using two guarded hot boxes. Additional instrumentation was installed to measure the temperature of critical locations inside the test panels. The test parameters which have been studied are heat flow direction (horizontal, up, and down), number of airspaces comprising the cavity, airspace effective emittance, airspace aspect ratio, airspace mean temperature and temperature difference, and the thermal resistance of the stud material. Tests have also been performed on similar constructions with mass insulation. Two one-dimensional calculation techniques (ASHRAE and proposed ASTM) have been employed to determine the cavity thermal resistance from the measured test panel results. The measured cavity thermal resistance is compared with literature data which is commonly employed to calculate the thermal resistance of reflective airspace assemblies. A consumer-oriented handbook pertaining to reflective insulation for building and commercial applications has also been prepared as part of this study.

  20. Measurement of the thermal conductivity of thin insulating anisotropic material with a stationary hot strip method

    International Nuclear Information System (INIS)

    Jannot, Yves; Degiovanni, Alain; Félix, Vincent; Bal, Harouna

    2011-01-01

    This paper presents a method dedicated to the thermal conductivity measurement of thin insulating anisotropic materials. The method is based on three hot-strip-type experiments in which the stationary temperature is measured at the center of the hot strip. A 3D model of the heat transfer in the system is established and simulated to determine the validity of a 2D transfer hypothesis at the center of the hot strip. A simplified 2D model is then developed leading to the definition of a geometrical factor calculable from a polynomial expression. A very simple calculation method enabling the estimation of the directional thermal conductivities from the three stationary temperature measurements and from the geometrical factor is presented. The uncertainties on each conductivity are estimated. The method is then validated by measurements on polyethylene foam and Ayous (anistropic low-density tropical wood); the estimated values of the thermal conductivities are in good agreement with the values estimated using the hot plate and the flash method. The method is finally applied on a thin super-insulating fibrous material for which no other method is able to measure the in-plane conductivity

  1. DETERMINATION OF THERMAL RESPONSE OF CARRARA AND SNEZNIKOVSKY MARBLE USED AS A BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Veronika Petráňová

    2016-02-01

    Full Text Available Physical weathering of marble, widely used as a cladding material on buildings, is one of the most common damaging mechanism caused by anisotropic thermal expansion of calcite grains. The extent of marble deterioration depends mainly on stone fabric and texture. Dry cuboids of Carrara marble and marble from Dolni Morava quarry were subjected to microscopic analysis and thermal cycling, to determine the thermal expansion related to stone fabric and predominant lattice orientation of grains (i.e. texture.

  2. DETERMINATION OF THERMAL RESPONSE OF CARRARA AND SNEZNIKOVSKY MARBLE USED AS A BUILDING MATERIALS

    OpenAIRE

    Veronika Petráňová; Jaroslav Valach; Alberto Viani; Marta Peréz Estébanez

    2016-01-01

    Physical weathering of marble, widely used as a cladding material on buildings, is one of the most common damaging mechanism caused by anisotropic thermal expansion of calcite grains. The extent of marble deterioration depends mainly on stone fabric and texture. Dry cuboids of Carrara marble and marble from Dolni Morava quarry were subjected to microscopic analysis and thermal cycling, to determine the thermal expansion related to stone fabric and predominant lattice orientation of grains (i....

  3. Impact of Building Design Parameters on Thermal Energy Flexibility in a Low-Energy Building

    DEFF Research Database (Denmark)

    Sarran, Lucile; Foteinaki, Kyriaki; Gianniou, Panagiota

    This work focuses on demand-side management potential for the heating grid in residential buildings. The possibility to increase the flexibility provided to the heat network through specific building design is investigated. The role of different parts of the building structure on thermal flexibil...

  4. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation

    NARCIS (Netherlands)

    Peeters, L.F.R.; Dear, de R.; Hensen, J.L.M.; D'Haeseleer, W.

    2009-01-01

    Building Energy Simulation (BES) programmes often use conventional thermal comfort theories to make decisions, whilst recent research in the field of thermal comfort clearly shows that important effects are not incorporated. The conventional theories of thermal comfort were set up based on steady

  5. THE INFLUENCE OF ECOLOGICAL MATERIALS EMBEDDED INTO COMPOSITES UPON THE THERMAL INSULATING CAPACITY

    Directory of Open Access Journals (Sweden)

    Luminiţa-Maria BRENCI

    2014-12-01

    Full Text Available The paper presents the results of a research performed in order to design and manufacture composites that embed in their structure ecological raw materials, such as wood chips and hemp hurds. The thermal conductivity was determined for a temperature difference (ΔT of 200 C between the cold plate and warm plate and the measurements were done in eight points. The results showed that the best insulating composite material was obtained for the structure containing equal shares of wood chips and chopped hemp

  6. Thermally Activated Motion of Sodium Cations in Insulating Parent Low-Silica X Zeolite

    Science.gov (United States)

    Igarashi, Mutsuo; Jeglič, Peter; Mežnaršič, Tadej; Nakano, Takehito; Nozue, Yasuo; Watanabe, Naohiro; Arčon, Denis

    2017-07-01

    We report a 23Na spin-lattice relaxation rate, T1 - 1, in low-silica X zeolite. T1 - 1 follows multiple BPP-type behavior as a result of thermal motion of sodium cations in insulating material. The estimated lowest activation energy of 15 meV is much lower than 100 meV observed previously for sodium motion in heavily Na-loaded samples and is most likely attributed to short-distance jumps of sodium cations between sites within the same supercage.

  7. Application of the thermal step method to space charge measurements in inhomogeneous solid insulating structures: A theoretical approach

    International Nuclear Information System (INIS)

    Cernomorcenco, Andrei; Notingher, Petru Jr.

    2008-01-01

    The thermal step method is a nondestructive technique for determining electric charge distribution across solid insulating structures. It consists in measuring and analyzing a transient capacitive current due to the redistribution of influence charges when the sample is crossed by a thermal wave. This work concerns the application of the technique to inhomogeneous insulating structures. A general equation of the thermal step current appearing in such a sample is established. It is shown that this expression is close to the one corresponding to a homogeneous sample and allows using similar techniques for calculating electric field and charge distribution

  8. Thermal Comfort in a Naturally-Ventilated Educational Building

    OpenAIRE

    David Mwale Ogoli

    2012-01-01

    A comprehensive study of thermal comfort in a naturally ventilated education building (88,000 ft2) in a Chicago suburb will be conducted with 120 student subjects in 2007. This paper discusses some recent trends in worldwide thermal comfort studies and presents a proposal of research for this building through a series of questionnaire tables. Two research methods used inthermal comfort studies are field studies and laboratory experiments in climate-chambers. The various elements that constitu...

  9. Effect of spacers on the thermal performance of an annular multi-layer insulation

    International Nuclear Information System (INIS)

    Haim, Y.; Weiss, Y.; Letan, R.

    2014-01-01

    The current study presents a model and is experimentally conducted in a system of 40 stainless steel coaxial foils, of nitrogen gas, entrapped between the foils, and of spacers, which are zirconia, spherical, 50 μm in size particles, widely dispersed in the gaps between the foils. The model, experimentally verified, relates to radiation between the foils, unobstructed by particles, to conduction in the nitrogen gas, and to conduction across the particles. The study was, in particular, aimed to measure the effective thermal conductivity of the particles and to assess its effect upon the array. At vacuum of 0.092 Pa, the effective thermal conductivity of the particles was 2.13 × 10 −4  W/m K, while the effective thermal conductivity of the array was 4.74 × 10 −4  W/m K. Thus, the low contribution of the particles conduction at vacuum conditions improves the insulation. It reaches 45% of the heat transfer rate. At atmospheric pressure, the effective thermal conductivity of the array reaches 4.5 × 10 −2  W/m K. There, the spacers contribution is negligible. - Highlights: •The multi-layer insulation of cylinder consists of foils separated by particles. •The particles are widely spaced in gaps. •Particles heat transfer rate is almost half of the total in vacuum. •At higher pressures the particles contribution is negligible. •The predicted thermal performance agrees with experimental results

  10. 24 CFR 200.946 - Building product standards and certification program for exterior finish and insulation systems...

    Science.gov (United States)

    2010-04-01

    ... product standards and certification program for exterior finish and insulation systems, use of Materials... product, the administrator's validation mark and the manufacturer's certification of compliance with the... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Building product standards and...

  11. PCM/wood composite to store thermal energy in passive building envelopes

    Science.gov (United States)

    Barreneche, C.; Vecstaudza, J.; Bajare, D.; Fernandez, A. I.

    2017-10-01

    The development of new materials to store thermal energy in a passive building system is a must to improve the thermal efficiency by thermal-regulating the indoor temperatures. This fact will deal with the reduction of the gap between energy supply and energy demand to achieve thermal comfort in building indoors. The aim of this work was to test properties of novel PCM/wood composite materials developed at Riga Technical University. Impregnation of PCM (phase change material) in wood increases its thermal mass and regulates temperature fluctuations during day and night. The PCM used are paraffin waxes (RT-21 and RT-27 from Rubitherm) and the wood used was black alder, the most common wood in Latvia. The PCM distribution inside wood sample has been studied as well as its thermophysical, mechanical and fire reaction properties. Developed composite materials are promising in the field of energy saving in buildings.

  12. Soft Thermal Sensor with Mechanical Adaptability.

    Science.gov (United States)

    Yang, Hui; Qi, Dianpeng; Liu, Zhiyuan; Chandran, Bevita K; Wang, Ting; Yu, Jiancan; Chen, Xiaodong

    2016-11-01

    A soft thermal sensor with mechanical adaptability is fabricated by the combination of single-wall carbon nanotubes with carboxyl groups and self-healing polymers. This study demonstrates that this soft sensor has excellent thermal response and mechanical adaptability. It shows tremendous promise for improving the service life of soft artificial-intelligence robots and protecting thermally sensitive electronics from the risk of damage by high temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Building unique surface structure on aramid fibers through a green layer-by-layer self-assembly technique to develop new high performance fibers with greatly improved surface activity, thermal resistance, mechanical properties and UV resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lifang; Yuan, Li; Guan, Qingbao; Gu, Aijuan, E-mail: ajgu@suda.edu.cn; Liang, Guozheng, E-mail: lgzheng@suda.edu.cn

    2017-07-31

    Highlights: • A green technology is setup to build unique surface structure on aramid fiber (AF). • The method is layer-by-layer self-assembling SiO{sub 2} and layered double hydroxide. • The surface of AF is adjustable by controlling the self-assembly cycle number. • New AF has excellent surface activity, anti-UV, thermal and mechanical properties. • The origin behind attractive performances of new AFs was intensively studied. - Abstract: Combining green preparation and high performance is becoming the direction of sustainable development of materials. How to simultaneously overcome the two bottlenecks (poor surface activity and UV resistance) of aramid fibers (AFs) while improving thermal and mechanical properties through a green process is still an interesting issue with big challenge. Herein, new AFs (BL-AFs) were prepared by alternately self-assembling SiO{sub 2} and MgAlFe layered double hydroxide (LDH) on surfaces of AFs, successively, through a green layer-by-layer (LBL) self-assembly technique without using high temperature and organic solvent. The structures and properties of BL-AFs were systematically studied, which are controllable by adjusting the number of self-assembly cycle. The new fibers with three or more self-assembly cycles have remarkably improved surface activity, thermal resistance, mechanical properties and UV resistance compared with AFs. Typically, with three self-assembly cycles, the initial degradation temperature and char yield of the new fiber (3BL-AF) are as high as 552.9 °C and 81.2%, about 92 °C and 25.2% higher than those of AF, respectively; after 168 h-UV irradiation, the retention of tensile performances of 3BL-AF fiber is as high as 91–95%, about 29–14% higher than that of AF, showing the best overall performances among all modified AFs prepared using a green technique reported so far. The origin behind the attractive performances of BL-AFs is revealed through correlating with structures of original and

  14. Exterior Insulation Implications for Heating and Cooling Systems in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anastasia [IBACOS Inc., Pittsburgh, PA (United States); Poerschke, Andrew [IBACOS Inc., Pittsburgh, PA (United States)

    2015-04-09

    The New York State Energy Research and Development Authority (NYSERDA) is interested in finding cost-effective solutions for deep energy retrofits (DERs) related to exterior wall insulation in a cold climate, with targets of 50% peak load reduction and 50% space conditioning energy savings. The U.S. Department of Energy Building America team, IBACOS, in collaboration with GreenHomes America, Inc. (GHA), was contracted by NYSERDA to research exterior wall insulation solutions. In addition to exterior wall insulation, the strategies included energy upgrades where needed in the attic, mechanical and ventilation systems, basement, band joist, walls, and floors. Under Building America, IBACOS is studying the impact of a “thermal enclosure” DER on the sizing of the space conditioning system and the occupant comfort if the thermal capacity of the heating and cooling system is dramatically downsized without any change in the existing heating and cooling distribution system (e.g., size, tightness and supply outlet configurations).

  15. Exterior Insulation Implications for Heating and Cooling Systems in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anastasia; Poerschke, Andrew

    2015-04-01

    The New York State Energy Research and Development Authority (NYSERDA) is interested in finding cost-effective solutions for deep energy retrofits (DERs) related to exterior wall insulation in a cold climate, with targets of 50% peak load reduction and 50% space conditioning energy savings. The U.S. Department of Energy Building America team, IBACOS, in collaboration with GreenHomes America, Inc. (GHA), was contracted by NYSERDA to research exterior wall insulation solutions. In addition to exterior wall insulation, the strategies included energy upgrades where needed in the attic, mechanical and ventilation systems, basement, band joist, walls, and floors. Under Building America, IBACOS is studying the impact of a “thermal enclosure” DER on the sizing of the space conditioning system and the occupant comfort if the thermal capacity of the heating and cooling system is dramatically downsized without any change in the existing heating and cooling distribution system (e.g., size, tightness and supply outlet configurations).

  16. StoThermSolar - possible applications and practical experience with transparent thermal insulation compound systems; StoThermSolar - Anwendungsmoeglichkeiten und praktische Erfahrungen mit transparenten Waermedaemmverbundsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Zwerger, M. [Sto AG, Stuehlingen (Germany)

    1996-11-01

    Sto AG has the motto `building conscientiously`. Consciousness of the environment acts as ethic for the firm. About 2000 employees develop, produce and market environmentally suitable product systems for facades, internal walls, ceilings and floors. They extend from paint and plaster, thermal insulation compound systems, concrete repair and acoustic systems to decorative profiles of old glass. (orig./HW) [Deutsch] `Bewusst Bauen` heisst das Leitwort der Sto AG. Umweltbewusstsein als Unternehmensethik. Rund 2000 Mitarbeiter entwickeln, produzieren und vermarkten umweltgerechte Produktsysteme fuer Fassade, Innenwand, Decke und Boden. Von Farben und Putzen, Waermedaemm-Verbundsystemen, Betoninstandsetzungs- oder Akustiksystemen bis zu Deco-Profilen aus Altglas. (orig./HW)

  17. An effect of heat insulation parameters on thermal losses of water-cooled roofs for secondary steelmaking electric arc furnaces

    Directory of Open Access Journals (Sweden)

    E. Mihailov

    2016-07-01

    Full Text Available The aim of this work is research in the insulation parameters effect on the thermal losses of watercooled roofs for secondary steelmaking electric arc furnaces. An analytical method has been used for the investigation in heat transfer conditions in the working area. The results of the research can be used to choose optimal cooling parameters and select a suitable kind of insulation for water-cooled surfaces.

  18. Power Admission Control with Predictive Thermal Management in Smart Buildings

    DEFF Research Database (Denmark)

    Yao, Jianguo; Costanzo, Giuseppe Tommaso; Zhu, Guchuan

    2015-01-01

    This paper presents a control scheme for thermal management in smart buildings based on predictive power admission control. This approach combines model predictive control with budget-schedulability analysis in order to reduce peak power consumption as well as ensure thermal comfort. First...

  19. Fire-induced collapse mechanisms of steel buildings

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Aiuti, Riccardo; Bontempi, Franco

    2013-01-01

    This paper presents a study on the failure modes of steel building in fire, with the aim of identify basic collapse mechanisms and design characteristics that play a role in the development and propagation of failures through the structural system. In particular, the effect of deformations...... and eigen-stresses induced by a restrained thermal expansion are not considered by current design methods and regulations, but are known to have driven the collapse of several steel and composite structures. In this study, the effect of restrained thermal expansions of steel beams exposed to fire...... is investigated with respect to two different structural typologies, i.e. single- and multi-story frames. In single-story buildings, such as car parks or industrial halls, the presence of stiff beams, typically required by large spans and higher service loads due to the different occupancy of the premises, may...

  20. Post-Insulation of Existing Buildings Constructed Between 1850 and 1920

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2010-01-01

    as a result of post-insulation measures. Besides lower heating costs and reduced CO2 emissions, improvement of the insulation standard could contribute to the elimination of other aspects of discomfort, such as draught originating from cold surfaces inside. This paper considers post-insulation of a simulated...

  1. Effects of thermal ageing and gamma radiations on ethylene-propylene based insulator of electric cables

    International Nuclear Information System (INIS)

    Baccaro, S.; D'Atanasio, P.

    1986-01-01

    This paper describes the effects of gamma radiation and thermal aging on cable insulator. The elastic properties degrade rapidly as the absorbed dose increases: the percent elongation at break attains nearly 100% value at 0.5 MGy absorbed dose. The gases evolved during the irradiation are mainly H 2 and CO 2 ; CO, CH 4 and C 2 H 6 are present in much lower concentrations. The damage undergone depends strongly on sequential radiation and thermal aging; the analysis of accelerated life test data by means of the Arrhenius model gave (1.23+-0.25) eV for the activation energy, about 1 eV higher than the values reported in the literature

  2. A method for the dynamic and thermal stress analysis of space shuttle surface insulation

    Science.gov (United States)

    Ojalvo, I. U.; Levy, A.; Austin, F.

    1975-01-01

    The thermal protection system of the space shuttle consists of thousands of separate insulation tiles bonded to the orbiter's surface through a soft strain-isolation layer. The individual tiles are relatively thick and possess nonuniform properties. Therefore, each is idealized by finite-element assemblages containing up to 2500 degrees of freedom. Since the tiles affixed to a given structural panel will, in general, interact with one another, application of the standard direct-stiffness method would require equation systems involving excessive numbers of unknowns. This paper presents a method which overcomes this problem through an efficient iterative procedure which requires treatment of only a single tile at any given time. Results of associated static, dynamic, and thermal stress analyses and sufficient conditions for convergence of the iterative solution method are given.

  3. Thermal insulation system design and fabrication specification (nuclear) for the Clinch River Breeder Reactor plant

    International Nuclear Information System (INIS)

    1978-01-01

    This specification defines the design, analysis, fabrication, testing, shipping, and quality requirements of the Insulation System for the Clinch River Breeder Reactor Plant (CRBRP), near Oak Ridge, Tennessee. The Insulation System includes all supports, convection barriers, jacketing, insulation, penetrations, fasteners, or other insulation support material or devices required to insulate the piping and equipment cryogenic and other special applications excluded. Site storage, handling and installation of the Insulation System are under the cognizance of the Purchaser

  4. APPLICATION OF POLYURETHANE FOAM FOR IMPACT ABSORPTION AND THERMAL INSULATION FOR RADIOACTIVE MATERIALS PACKAGINGS

    International Nuclear Information System (INIS)

    Smith, A; Glenn Abramczyk, G; Paul Blanton, P; Steve Bellamy, S; William Daugherty, W; Sharon Williamson, S

    2007-01-01

    Polyurethane foam has been widely used as an impact absorbing and thermal insulating material for large radioactive materials packages, since the 1980's. With the adoption of the regulatory crush test requirement, for smaller packages, polyurethane foam has been adopted as a replacement for cane fiberboard, because of its ability to withstand the crush test. Polyurethane foam is an engineered material whose composition is much more closely controlled than that of cane fiberboard. In addition, the properties of the foam can be controlled by controlling the density of the foam. The conditions under which the foam is formed, whether confined or unconfined have an affect on foam properties. The study reported here reviewed the application of polyurethane foam in RAM packagings and compared property values reported in the literature with published property values and test results for foam specimens taken from a prototype 9977 packaging. The study confirmed that, polyurethane foam behaves in a predictable and consistent manner and fully satisfies the functional requirements for impact absorption and thermal insulation

  5. Measuring the thermal insulation and evaporative resistance of sleeping bags using a supine sweating fabric manikin

    International Nuclear Information System (INIS)

    Wu, Y S; Fan, Jintu

    2009-01-01

    For testing the thermal insulation of sleeping bags, standard test methods and procedures using heated manikins are provided in ASTM F1720-06 and EN 13537:2002. However, with regard to the evaporative resistance of sleeping bags, no instrument or test method has so far been established to give a direct measurement. In this paper, we report on a novel supine sweating fabric manikin system for directly measuring the evaporative resistance of sleeping bags. Eleven sleeping bags were tested using the manikin under the isothermal condition, namely, both the mean skin temperature of the manikin and that of the environment were controlled to be the same at 35 °C, with the wind speed and ambient relative humidity at 0.3 m s −1 and 50%, respectively. The results showed that the novel supine sweating fabric manikin is reproducible and accurate in directly measuring the evaporative resistance of sleeping bags, and the measured evaporative resistance can be combined with thermal insulation to calculate the moisture permeability index of sleeping bags

  6. Improving thermal insulation of TC4 using YSZ-based coating and SiO2 aerogel

    Directory of Open Access Journals (Sweden)

    Lei Jin

    2015-04-01

    Full Text Available In this paper, air plasmas spray (APS was used to prepare YSZ and Sc2O3–YSZ (ScYSZ coating in order to improve the thermal insulation ability of TC4 alloy. SiO2 aerogel was also synthesized and affixed on TC4 titanium alloy to inhabit thermal flow. The microstructures, phase compositions and thermal insulation performance of three coatings were analyzed in detail. The results of thermal diffusivity test by a laser flash method showed that the thermal diffusivities of YSZ, Sc2O3–YSZ and SiO2 aerogel are 0.553, 0.539 and 0.2097×10−6 m2/s, respectively. Then, the thermal insulation performances of three kinds of coating were investigated from 20 °C to 400 °C using high infrared radiation heat flux technology. The experimental results indicated that the corresponding temperature difference between the top TC4 alloy (400 °C and the bottom surface of YSZ is 41.5 °C for 0.6 mm thickness coating. For 1 mm thickness coating, the corresponding temperature difference between the top TC4 alloys (400 °C and the bottom surface of YSZ, ScYSZ, SiO2 aerogel three specimens is 54, 54.6 and 208 °C, respectively. The coating thickness and species were found to influence the heat insulation ability. In these materials, YSZ and ScYSZ exhibited a little difference for heat insulation behavior. However, SiO2 aerogel was the best one among them and it can be taken as protection material on TC4 alloys. In outer space, SiO2 aerogel can meet the need of thermal insulation of TC4 of high-speed aircraft.

  7. Cladding Attachment Over Thick Exterior Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States); Eng, P. [Building Science Corporation, Somerville, MA (United States); Lepage, R. [Building Science Corporation, Somerville, MA (United States)

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  8. Nuclear reactor pressure vessel with an inner metal coating covered with a high temperature resistant thermal insulator

    International Nuclear Information System (INIS)

    1974-01-01

    The thermal insulator covering the metal coating of a reactor vessel is designed for resisting high temperatures. It comprises one or several porous layers of ceramic fibers or of stacked metal foils, covered with a layer of bricks or ceramic tiles. The latter are fixed in position by fasteners comprising pins fixed to the coating and passing through said porous layers and fasteners (nut or bolts) for individually fixing the bricks to said pins, whereas ceramic plugs mounted on said bricks or tiles provide for the thermal insulation of the pins and of the nuts or bolts; such a thermal insulation can be applied to high-temperature reactors or to fast reactors [fr

  9. Mechanical properties considerations for use of epoxy insulators and bonded joints in neutral beam ion sources

    International Nuclear Information System (INIS)

    Doll, D.W.; Trester, P.W.; Staley, H.G.

    1981-10-01

    In the Doublet III (D-III) neutral beam injectors, cast, rigid-epoxy insulators are joined to the AISI 304 stainless steel corona rings with semi-rigid epoxy adhesive. Selected mechanical properties of these materials were measured between 11 0 C and 65 0 C, well below the material temperature limits, to identify the trends and to confirm adequate mechanical strength for the insulators. Significant creep deformation was measured at 22 0 C. Empirical relationships were developed to predict long term strain over a range of stress and temperature of design interest. Delayed failure was observed in bonded specimens at stress levels well below the ultimate strength. In order to protect the D-III neutral beam ion source epoxy from elevated temperature effects, a chill was installed in the cooling water circuit. Outgassing measurements of the insulator epoxy were made and found to be low and primarily H 2 O

  10. Possibilities and Limitations of Thermally Activated Building Systems

    DEFF Research Database (Denmark)

    Behrendt, Benjamin

    The strong political market drive towards energy savings in the building sector calls for efficient solutions. Using so called low temperature heating and high temperature cooling systems such as for instance thermally activated building systems (TABS) has a significant impact on the required...... will be mostly needed to operate the building within acceptable boundaries. It will also allow the user to see if dehumidification will be needed for undisturbed operation of TABS. With the combination of both tools it is possible to provide a holistic evaluation of a building proposal at a very early design...

  11. Polyurethane Foams for Thermal Insulation Uses Produced from Castor Oil and Crude Glycerol Biopolyols.

    Science.gov (United States)

    Carriço, Camila S; Fraga, Thaís; Carvalho, Vagner E; Pasa, Vânya M D

    2017-07-02

    Rigid polyurethane foams were synthesized using a renewable polyol from the simple physical mixture of castor oil and crude glycerol. The effect of the catalyst (DBTDL) content and blowing agents in the foams' properties were evaluated. The use of physical blowing agents (cyclopentane and n-pentane) allowed foams with smaller cells to be obtained in comparison with the foams produced with a chemical blowing agent (water). The increase of the water content caused a decrease in density, thermal conductivity, compressive strength, and Young's modulus, which indicates that the increment of CO₂ production contributes to the formation of larger cells. Higher amounts of catalyst in the foam formulations caused a slight density decrease and a small increase of thermal conductivity, compressive strength, and Young's modulus values. These green foams presented properties that indicate a great potential to be used as thermal insulation: density (23-41 kg·m -3 ), thermal conductivity (0.0128-0.0207 W·m -1 ·K -1 ), compressive strength (45-188 kPa), and Young's modulus (3-28 kPa). These biofoams are also environmentally friendly polymers and can aggregate revenue to the biodiesel industry, contributing to a reduction in fuel prices.

  12. Thermal assault and polyurethane foam-evaluating protective mechanisms

    International Nuclear Information System (INIS)

    Williamson, C.L.; Iams, Z.L.

    2004-01-01

    Rigid polyurethane foam utilizes a variety of mechanisms to mitigate the thermal assault of a ''regulatory burn''. Polymer specific heat and foam k-factor are of limited usefulness in predicting payload protection. Properly formulated rigid polyurethane foam provides additional safeguards by employing ablative mechanisms which are effective even when the foam has been crushed or fractured as a result of trauma. The dissociative transitions from polymer to gas and char, and the gas transport of heat from inside the package out into the environment are also thermal mitigators. Additionally, the in-situ production of an intumescent, insulative, carbonaceous char, confers thermal protection even when a package's outer steel skin has been breached. In this test program, 19 liter, ''Five gallon'' steel pails are exposed on one end to the flame of an ''Oil Burner'' as described in the US Federal Aviation Administration (FAA) ''Aircraft Materials Fire Test Handbook''. When burning 2 diesel at a nominal rate of 8.39 kg (18.5 pounds)/hr, the burner generates a high emissivity flame that impinges on the pail face with the thermal intensity of a full scale pool-fire environment. Results of these tests, TGA and MDSC analysis on the subject foams are reported, and their relevance to full size packages and pool fires are discussed

  13. On results of tests of thermal insulation structural fragments for in-vessel equipment and pipelines of the VG-400 plant on vibrational and acoustic loads

    International Nuclear Information System (INIS)

    Ledenko, S.A.; Andreev, V.A.; Mirenkov, A.F.; Zakharov, V.A.; Suvorov, V.E.; Prokimnov, V.V.

    1990-01-01

    Results of vibrostrength and acoustic fatigue tests of the fragments of thermal insulation for in-vessel equipment and pipelines of the VG-400 reactor are presented. The insulation structure is based on the insulation layer made of steel foil and carbon materials. Weak points in the insulation structure, namely - the welded joints of stiffening ribs - are detected in the course of testing. A conclusion is made on the possibility of vibrational test substitution for the acoustic ones

  14. Defect Detection of Adhesive Layer of Thermal Insulation Materials Based on Improved Particle Swarm Optimization of ECT.

    Science.gov (United States)

    Wen, Yintang; Jia, Yao; Zhang, Yuyan; Luo, Xiaoyuan; Wang, Hongrui

    2017-10-25

    This paper studies the defect detection problem of adhesive layer of thermal insulation materials. A novel detection method based on an improved particle swarm optimization (PSO) algorithm of Electrical Capacitance Tomography (ECT) is presented. Firstly, a least squares support vector machine is applied for data processing of measured capacitance values. Then, the improved PSO algorithm is proposed and applied for image reconstruction. Finally, some experiments are provided to verify the effectiveness of the proposed method in defect detection for adhesive layer of thermal insulation materials. The performance comparisons demonstrate that the proposed method has higher precision by comparing with traditional ECT algorithms.

  15. Thermal Models for Intelligent Heating of Buildings

    DEFF Research Database (Denmark)

    Thavlov, Anders; Bindner, Henrik W.

    2012-01-01

    the comfort of residents, proper prediction models for indoor temperature have to be developed. This paper presents a model for prediction of indoor temperature and power consumption from electrical space heating in an office building, using stochastic differential equations. The heat dynamic model is build......The Danish government has set the ambitious goal that the share of the total Danish electricity consumption, covered by wind energy, should be increased to 50% by year 2020. This asks for radical changes in how we utilize and transmit electricity in the future power grid. To fully utilize the high...... share of renewable power generation, which is in general intermittent and non-controllable, the consumption side has to be much more flexible than today. To achieve such flexibility, methods for moving power consumption in time, within the hourly timescale, have to be developed. One approach currently...

  16. Investigation of the thermal resistance of timber attic spaces with reflective foil and bulk insulation, heat flow up

    Energy Technology Data Exchange (ETDEWEB)

    Belusko, M.; Bruno, F.; Saman, W. [Institute for Sustainable Systems and Technologies, University of South Australia, Mawson Lakes Boulevard, SA 5095 (Australia)

    2011-01-15

    An experimental investigation was undertaken in which the thermal resistance for the heat flow through a typical timber framed pitched roofing system was measured under outdoor conditions for heat flow up. The measured thermal resistance of low resistance systems such as an uninsulated attic space and a reflective attic space compared well with published data. However, with higher thermal resistance systems containing bulk insulation within the timber frame, the measured result for a typical installation was as low as 50% of the thermal resistance determined considering two dimensional thermal bridging using the parallel path method. This result was attributed to three dimensional heat flow and insulation installation defects, resulting from the design and construction method used. Translating these results to a typical house with a 200 m{sup 2} floor area, the overall thermal resistance of the roof was at least 23% lower than the overall calculated thermal resistance including two dimensional thermal bridging. When a continuous layer of bulk insulation was applied to the roofing system, the measured values were in agreement with calculated resistances representing a more reliable solution. (author)

  17. Building America Case Study: Retrofit Measure for Embedded Wood Members in Insulated Mass Masonry Walls, Lawrence, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2015-10-01

    ?There are many existing buildings with load-bearing mass masonry walls, whose energy performance could be improved with the retrofit of insulation. However, adding insulation to the interior side of walls of such masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw have known solutions. But wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content and relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100 percent RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated vs. non-insulated joist pockets do not show large differences. South facing joists have safe (10-15 percent) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  18. Efficient storage mechanisms for building better supercapacitors

    Science.gov (United States)

    Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P.-L.; Grey, C. P.; Dunn, B.; Simon, P.

    2016-06-01

    Supercapacitors are electrochemical energy storage devices that operate on the simple mechanism of adsorption of ions from an electrolyte on a high-surface-area electrode. Over the past decade, the performance of supercapacitors has greatly improved, as electrode materials have been tuned at the nanoscale and electrolytes have gained an active role, enabling more efficient storage mechanisms. In porous carbon materials with subnanometre pores, the desolvation of the ions leads to surprisingly high capacitances. Oxide materials store charge by surface redox reactions, leading to the pseudocapacitive effect. Understanding the physical mechanisms underlying charge storage in these materials is important for further development of supercapacitors. Here we review recent progress, from both in situ experiments and advanced simulation techniques, in understanding the charge storage mechanism in carbon- and oxide-based supercapacitors. We also discuss the challenges that still need to be addressed for building better supercapacitors.

  19. Indoor Air Quality and Thermal Comfort in School Buildings

    Science.gov (United States)

    Juhásová Šenitková, Ingrid

    2017-12-01

    This paper presents results to thermal comfort and environment quality questions in 21 school building rooms. Results show that about 80% of the occupants expressed satisfaction with their thermal comfort in only 11% of the buildings surveyed. Air quality scores were somewhat higher, with 26% of buildings having 80% or occupant satisfaction. With respect to thermal comfort and air quality performance goals set out by standards, most buildings appear to be falling far short. Occupant surveys offer a means to systematically measure this performance, and also to provide diagnostic information for building designers and operators. The odours from building materials as well as human odours were studied by field measurement. The odour intensity and indoor air acceptability were assessed by a sensory panel. The concentrations of total volatile organic compounds and carbon dioxide were measured. The odours from occupancy and building materials were studied under different air change rate. The case study of indoor air acceptability concerning to indoor odours and its effect on perceived air quality are also presented in this paper.

  20. Thermal insulation with glazings and windows. Implementation of requirements and outlook on future development; Waermeschutz mit Verglasungen und Fenstern. Umsetzung der Anforderungen und Ausblick auf Weiterentwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Froelich, H. [Institut fuer Fenstertechnik e.V., Rosenheim (Germany)

    1997-06-01

    In the past, windows and glazings were often considered as being a weak point as regards thermal insulation in the external envelope of a building. Increasing demands on thermal insulation in construction have been seen as a challenge by all those involved. The development of new glazings and of improved frames made it possible to use large sized windows and glazed facade elements even after the new Heat Loss Regulation (Waermeschutzverordnung) dated 1st January 1995 came into effect. In this connection, the possible consideration of energy gain from the outside via transparent building elements is very important. The individual components of windows, window elements and light facades such as frames, glazings, panels and additional components e.g. roller shutters have to be designed very precisely now. Apart from thermal properties the other criteria such as fire resistance, sound insulation, solar protection and safety have to be taken into account. The new Building Regulations of the Laender (Landesbauordnung) and the Building Products Regulation (Bauregelliste) of the Deutsches Institut fuer Bautechnik regulate which evidence of usability and conformity are necessary for the various building products such as frame, glass, window, roller shutter, radiator guards, etc. For the time being, it is still mainly referred to national regulations. In future, an increasing number of European standards will be completed and also implemented. There will also be some decisive changes as regards windows and glazings. To a larger extent the effects of thermal bridges will be taken into account. For determining thermal properties there increasingly exists the possibility of carrying out calculations. As regards thermal insulation today, windows and glazings are highly developed building products when correctly designed and manufactured. These building products enable energy saving construction also of large sized dimensions. (orig.) [Deutsch] Fenster und Verglasungen wurden in

  1. Statistical mechanics of microscopically thin thermalized shells

    Science.gov (United States)

    Kosmrlj, Andrej

    Recent explosion in fabrication of microscopically thin free standing structures made from graphene and other two-dimensional materials has led to a renewed interest in the mechanics of such structures in presence of thermal fluctuations. Since late 1980s it has been known that for flat solid sheets thermal fluctuations effectively increase the bending rigidity and reduce the bulk and shear moduli in a scale-dependent fashion. However, much is still unknown about the mechanics of thermalized flat sheets of complex geometries and about the mechanics of thermalized shells with non-zero background curvature. In this talk I will present recent development in the mechanics of thermalized ribbons, spherical shells and cylindrical tubes. Long ribbons are found to behave like hybrids between flat sheets with renormalized elastic constants and semi-flexible polymers, and these results can be used to predict the mechanics of graphene kirigami structures. Contrary to the anticipated behavior for ribbons, the non-zero background curvature of shells leads to remarkable novel phenomena. In shells, thermal fluctuations effectively generate negative surface tension, which can significantly reduce the critical buckling pressure for spherical shells and the critical axial load for cylindrical tubes. For large shells this thermally generated load becomes big enough to spontaneously crush spherical shells and cylindrical tubes even in the absence of external loads. I will comment on the relevance for crushing of microscopic shells (viral capsids, bacteria, microcapsules) due to osmotic shocks and for crushing of nanotubes.

  2. Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments

    NARCIS (Netherlands)

    Muthusubramanian, N.; Galan, E.; Maity, C.; Eelkema, R.; Grozema, F.C.; van der Zant, H.S.J.

    2016-01-01

    We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al2O3 thickness deposited on the MCBJ devices was varied from 2 to 15 nm

  3. Novel Application of Glass Fibers Recovered From Waste Printed Circuit Boards as Sound and Thermal Insulation Material

    Science.gov (United States)

    Sun, Zhixing; Shen, Zhigang; Ma, Shulin; Zhang, Xiaojing

    2013-10-01

    The aim of this study is to investigate the feasibility of using glass fibers, a recycled material from waste printed circuit boards (WPCB), as sound absorption and thermal insulation material. Glass fibers were obtained through a fluidized-bed recycling process. Acoustic properties of the recovered glass fibers (RGF) were measured and compared with some commercial sound absorbing materials, such as expanded perlite (EP), expanded vermiculite (EV), and commercial glass fiber. Results show that RGF have good sound absorption ability over the whole tested frequency range (100-6400 Hz). The average sound absorption coefficient of RGF is 0.86, which is prior to those of EP (0.81) and EV (0.73). Noise reduction coefficient analysis indicates that the absorption ability of RGF can meet the requirement of II rating for sound absorbing material according to national standard. The thermal insulation results show that RGF has a fair low thermal conductivity (0.046 W/m K), which is comparable to those of some insulation materials (i.e., EV, EP, and rock wool). Besides, an empirical dependence of thermal conductivity on material temperature was determined for RGF. All the results showed that the reuse of RGF for sound and thermal insulation material provided a promising way for recycling WPCB and obtaining high beneficial products.

  4. Protection against cold in prehospital care-thermal insulation properties of blankets and rescue bags in different wind conditions.

    Science.gov (United States)

    Henriksson, Otto; Lundgren, J Peter; Kuklane, Kalev; Holmér, Ingvar; Bjornstig, Ulf

    2009-01-01

    In a cold, wet, or windy environment, cold exposure can be considerable for an injured or ill person. The subsequent autonomous stress response initially will increase circulatory and respiratory demands, and as body core temperature declines, the patient's condition might deteriorate. Therefore, the application of adequate insulation to reduce cold exposure and prevent body core cooling is an important part of prehospital primary care, but recommendations for what should be used in the field mostly depend on tradition and experience, not on scientific evidence. The objective of this study was to evaluate the thermal insulation properties in different wind conditions of 12 different blankets and rescue bags commonly used by prehospital rescue and ambulance services. The thermal manikin and the selected insulation ensembles were setup inside a climatic chamber in accordance to the modified European Standard for assessing requirements of sleeping bags. Fans were adjusted to provide low (value, Itr (m2 C/Wclo; where C = degrees Celcius, and W = watts), was calculated from ambient air temperature (C), manikin surface temperature (C), and heat flux (W/m2). In the low wind condition, thermal insulation of the evaluated ensembles correlated to thickness of the ensembles, ranging from 2.0 to 6.0 clo (1 clo = 0.155 m2 C/W), except for the reflective metallic foil blankets that had higher values than expected. In moderate and high wind conditions, thermal insulation was best preserved for ensembles that were windproof and resistant to the compressive effect of the wind, with insulation reductions down to about 60-80% of the original insulation capacity, whereas wind permeable and/or lighter materials were reduced down to about 30-50% of original insulation capacity. The evaluated insulation ensembles might all be used for prehospital protection against cold, either as single blankets or in multiple layer combinations, depending on ambient temperatures. However, with extended

  5. Waste energy harvesting mechanical and thermal energies

    CERN Document Server

    Ling Bing, Kong; Hng, Huey Hoon; Boey, Freddy; Zhang, Tianshu

    2014-01-01

    Waste Energy Harvesting overviews the latest progress in waste energy harvesting technologies, with specific focusing on waste thermal mechanical energies. Thermal energy harvesting technologies include thermoelectric effect, storage through phase change materials and pyroelectric effect. Waste mechanical energy harvesting technologies include piezoelectric (ferroelectric) effect with ferroelectric materials and nanogenerators. The book aims to strengthen the syllabus in energy, materials and physics and is well suitable for students and professionals in the fields.

  6. RELEVANT OBJECTIVES OF ASSURANCE OF RELIABILITY OF FACADE SYSTEMS SERVING THERMAL INSULATION AND FINISHING PURPOSES

    Directory of Open Access Journals (Sweden)

    Yavorskiy Andrey Andreevich

    2012-12-01

    Full Text Available The authors consider up-to-date methods of implementation of requirements stipulated by Federal Law no. 261-FZ that encompasses reduction of heat losses through installation of progressive heat-insulation systems, cement plaster system (CPS, and ventilated facades (VF. Unresolved problems of their efficient application caused by the absence of the all-Russian regulatory documents capable of controlling the processes of their installation and maintenance, as well as the projection of their behaviour, are also considered in the article. The authors argue that professional skills of designers and construction workers responsible for the design and installation of façade systems influence the quality and reliability of design and construction works. Unavailability of unified solutions or regulations serves as the objective reason for the unavailability of the respective database; therefore, there is an urgent need to perform a set of researches to have the unified database compiled. The authors use the example of thermal insulation cement plaster systems designated for facades as results of researches into the quantitative analysis of safety systems. Collected and systematized data that cover defects that have proven to be reasons for failures, as well as potential methods of their prevention are also studied. Data on pilot studies of major factors of influence onto reliability of glutinous adhesion of CPS to the base of a wall are provided.

  7. A Novel Environmental Route to Ambient Pressure Dried Thermal Insulating Silica Aerogel via Recycled Coal Gangue

    Directory of Open Access Journals (Sweden)

    Pinghua Zhu

    2016-01-01

    Full Text Available Coal gangue, one of the main hazardous emissions of purifying coal from coalmine industry, is rich in silica and alumina. However, the recycling of the waste is normally restricted by less efficient techniques and low attractive output; the utilization of such waste is still staying lower than 15%. In this work, the silica aerogel materials were synthesized by using a precursor extracted from recycled silicon-rich coal gangue, followed by a single-step surface silylation and ambient pressure drying. A low density (~0.19 g/cm3 nanostructured aerogel with a 3D open porous microstructure and high surface area (~690 m2/g was synthesized, which presents a superior thermal insulation performance (~26.5 mW·m−1·K−1 of a plane packed of 4-5 mm granules which was confirmed by transient hot-wire method. This study offers a new facile route to the synthesis of insulating aerogel material by recycling solid waste coal gangue and presents a potential cost reduction of industrial production of silica aerogels.

  8. Failure mechanism for thermal fatigue of thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Giolli, C.; Scrivani, A.; Rizzi, G. [Turbocoating S.p.A., Rubbiano di Solignano (Italy); Borgioli, F. [Firenze Univ., Sesto Fiorentino (Italy); Bolelli, G.; Lusvarghi, L. [Univ. di Modena e Reggio Emilia, Modena (Italy)

    2008-07-01

    High temperature thermal fatigue causes the failure of Thermal Barrier Coating (TBC) systems. Due to the difference in thickness and microstructure between thick TBCs and traditional thin TBCs, they cannot be assumed a-priori to possess the same failure mechanisms. Thick TBCs, consisting of a CoNiCrAlY bond coat and Yttria Partially Stabilised Zirconia top coat with different values of porosity, were produced by Air Plasma Spray. Thermal fatigue resistance limit of TBCs was tested by Furnace Cycling Tests (FCT) according to the specifications of an Original Equipment Manufacturer (OEM). TBC systems were analyzed before and after FCT. The morphological and chemical evolution of CoNiCrAlY/TGO microstructure was studied. Sintering effect, residual stress, phase transformation and fracture toughness were evaluated in the ceramic Top Coat. All the tested samples passed FCT according to the specification of an important OEM. Thermal fatigue resistance increases with the amount of porosity in the top coat. The compressive in-plane stresses increase in the TBC systems after thermal cycling, nevertheless the increasing rate has a trend contrary to the porosity level of top coat. The data suggest that the spallation happens at the TGO/Top Coat interface. The failure mechanism of thick TBCs subjected to thermal fatigue was eventually found to be similar to the failure mechanism of thin TBC systems made by APS. (orig.)

  9. The mechanical development and construction of the insulating legs for the NSF tandem

    International Nuclear Information System (INIS)

    Leese, J.M.

    1978-06-01

    The Science Research Council is constructing at its Daresbury Laboratory a 30 MV tandem Van de Graaff accelerator which will be used as a research tool to accelerate ions of a wide range of elements. Ions are accelerated through an evacuated beam tube by maintaining a high electric field along it. The ion beam is steered and focussed by magnets situated at various positions along the tube, which, together with the beam handling elements, is supported by a vertical insulating stack. The stack consists of eight vertical columns tied together at regular intervals by stiff rings to obtain the necessary mechanical stability. Each column is made up of 'insulating legs' with tubular steel legs at the terminal and dead section positions. This report describes the manufacturing processes and their development for the insulating legs. (author)

  10. Human Thermal Comfort In Residential House Buildings Of Jimma Town Southwest Ethiopia.

    Directory of Open Access Journals (Sweden)

    Chali Yadeta

    2015-08-01

    Full Text Available Indoor human thermal comfort is an important factor in indoor air quality assessment. Thermal comfort affects human health work efficiency and overall wellbeing. Thermal discomfort in indoors lowers the emotional and physical health of the occupants. This paper targets to explore human thermal comfort in residential house buildings of Jimma town and state some possible mechanisms to improve the existing thermal discomfort in large number the houses. For the study 303 structured questionnaires were distributed to the residential houses in thirteen places of the town based on predetermined criteria. The study reveals that human thermal discomfort in residential houses Jimma town are mainly from poor architectural design and improper use of heat generating appliances in indoors. The uses architectural design that suites the present climatic conditions and use of materials that facilitates ventilations will enhance the realization of the required human thermal comfort in residential houses of the study area.

  11. Response Surface Methodology for Design of Porous Hollow Sphere Thermal Insulator

    Science.gov (United States)

    Shohani, Nazanin; Pourmahdian, Saeed; Shirkavand Hadavand, Behzad

    2017-11-01

    In this study, response surface method is used for synthesizing polystyrene (PS) as sacrificial templates and optimizing the particle size. Three factors of initiator, stabilizer concentration and also stirring rate were selected as variable factors. Then, three different concentration of tetraethyl orthosilicate (TEOS) added to reaction media and core-shell structure with PS core and silica shell was developed. Finally, core-shell structure was changed to hollow silica sphere for using as thermal insulator. We observed that increased initiator concentration caused to larger PS particles, increase the stirring rate caused the smaller PS and also with increased the stabilizer concentration obtained that particle size decrease then after 2.5% began to increase. Also the optimum amount of TEOS was found.

  12. A vacuum system for the thermal insulation of the SciFi distribution lines and manifolds

    CERN Document Server

    Joram, Christian

    2017-01-01

    This note describes some calculations and estimates for the layout, technology choice and performance of a vacuum system which shall ensure thermal insulation of the distribution lines and manifolds of the SiPM cooling system of the LHCb SciFi detector. We estimate the heat losses in concentric corrugated stainless steel pipes which leads to the conclusion that the pipes need to be evacuated to a pressure of about 1·10$^{-4}$ mbar. We then estimate the pumping conductance of the pipes and find that it will dominate over the effective pumping speed of any pump. We therefore conclude that a turbo molecular pump of small nominal pumping speed, which can easily achieve end pressures below 10$^{-5}$ mbar is adequate for this purpose. A preliminary layout of the vacuum system is being discussed at the end of the document.

  13. Thermal Insulation System Analysis Tool (TISTool) User's Manual. Version 1.0.0

    Science.gov (United States)

    Johnson, Wesley; Fesmire, James; Leucht, Kurt; Demko, Jonathan

    2010-01-01

    The Thermal Insulation System Analysis Tool (TISTool) was developed starting in 2004 by Jonathan Demko and James Fesmire. The first edition was written in Excel and Visual BasIc as macros. It included the basic shapes such as a flat plate, cylinder, dished head, and sphere. The data was from several KSC tests that were already in the public literature realm as well as data from NIST and other highly respectable sources. More recently, the tool has been updated with more test data from the Cryogenics Test Laboratory and the tank shape was added. Additionally, the tool was converted to FORTRAN 95 to allow for easier distribution of the material and tool. This document reviews the user instructions for the operation of this system.

  14. External Thermal Insulation Composite Systems: Critical Parameters for Surface Hygrothermal Behaviour

    Directory of Open Access Journals (Sweden)

    Eva Barreira

    2014-01-01

    Full Text Available External Thermal Insulation Composite Systems (ETICS are often used in Europe. Despite its thermal advantages, low cost, and ease of application, this system has serious problems of biological growth causing the cladding defacement. Recent studies pointed that biological growth is due to high values of surface moisture content, which mostly results from the combined effect of exterior surface condensation, wind-driven rain, and drying process. Based on numerical simulation, this paper points the most critical parameters involved in hygrothermal behaviour of ETICS, considering the influence of thermal and hygric properties of the external rendering, the effect of the characteristics of the façade, and the consequences of the exterior and interior climate on exterior surface condensation, wind-driven rain, and drying process. The model used was previously validated by comparison with the results of an “in situ” campaign. The results of the sensitivity analyses show that relative humidity and temperature of the exterior air, atmospheric radiation, and emissivity of the exterior rendering are the parameters that most influence exterior surface condensation. Wind-driven rain depends mostly on horizontal rain, building’s height, wind velocity, and orientation. The drying capacity is influenced by short-wave absorbance, incident solar radiation, and orientation.

  15. Gadolinium oxide coated fully depleted silicon-on-insulator transistors for thermal neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, Steven A., E-mail: steven.vitale@ll.mit.edu; Gouker, Pascale M.

    2013-09-01

    Fully depleted silicon-on-insulator transistors coated with gadolinium oxide are shown to be effective thermal neutron dosimeters. The theoretical neutron detection efficiency is calculated to be higher for Gd{sub 2}O{sub 3} than for other practical converter materials. Proof-of-concept dosimeter devices were fabricated and tested during thermal neutron irradiation. The transistor current changes linearly with neutron dose, consistent with increasing positive charge in the SOI buried oxide layer generated by ionization from high energy {sup 157}Gd(n,γ){sup 158}Gd conversion electrons. The measured neutron sensitivity is approximately 1/6 the maximum theoretical value, possibly due to electron–hole recombination or conversion electron loss in interconnect wiring above the transistors. -- Highlights: • A novel Gd{sub 2}O{sub 3} coated FDSOI MOSFET thermal neutron dosimeter is presented. • Dosimeter can detect charges generated from {sup 157}Gd(n,γ){sup 158}Gd conversion electrons. • Measured neutron sensitivity is comparable to that calculated theoretically. • Dosimeter requires zero power during operation, enabling new application areas.

  16. Indoor Thermal Environment in Tropical Climate Residential Building

    Directory of Open Access Journals (Sweden)

    Jamaludin Nazhatulzalkis

    2014-01-01

    Full Text Available Indoor thermal environment is one of the criteria in sustainable building. This criterion is important in ensuring a healthy indoor environment for the occupants. The consideration of environmental concerns at the early design stage would effectively integrate the sustainability of the building environment. Global climate changes such as global warming do affect human comfort since people spend most of their time and activities in the building. The increasing of urban population required additional housing for households, as well as places to shop, office and other facilities. Occupants are now more conscious the importance of sustainability for a better quality of life. Good thermal environment is essential for human wellness and comfort. A residential environment will influence residents’ health and safety. The global warming increase the earth’s temperature and greenhouse emission to the atmosphere cause adverse effects to the outdoor environment. Residential developments modify the materials, structure and energy balance in urban climate effects of human economic activities. As an indoor environment is influenced by the outdoor condition, the factors affecting indoor thermal environment are crucial in improving a comfortable and healthy environment in residential building. The microclimatic of a site such as temperature and relative humidity, and wind movement led to the variation of indoor thermal environment in the building.

  17. The Building Fabric Thermal Performance of Passivhaus Dwellings—Does It Do What It Says on the Tin?

    Directory of Open Access Journals (Sweden)

    David Johnston

    2016-01-01

    Full Text Available The Passivhaus (or Passive House Standard is one of the world’s most widely known voluntary energy performance standards. For a dwelling to achieve the Standard and be granted Certification, the building fabric requires careful design and detailing, high levels of thermal insulation, building airtightness, close site supervision and careful workmanship. However, achieving Passivhaus Certification is not a guarantee that the thermal performance of the building fabric as designed will actually be achieved in situ. This paper presents the results obtained from measuring the in situ whole building heat loss coefficient (HLC of a small number of Certified Passivhaus case study dwellings. They are located on different sites and constructed using different technologies in the UK. Despite the small and non-random nature of the dwelling sample, the results obtained from the in situ measurements revealed that the thermal performance of the building fabric, for all of the dwellings, performed very close to the design predictions. This suggests that in terms of the thermal performance of the building fabric, Passivhaus does exactly what it says on the tin.

  18. Using thermal power plants waste for building materials

    Science.gov (United States)

    Feduik, R. S.; Smoliakov, A. K.; Timokhin, R. A.; Batarshin, V. O.; Yevdokimova, Yu G.

    2017-10-01

    The recycled use of thermal power plants (TPPs) wastes in the building materials production is formulated. The possibility of using of TPPs fly ash as part of the cement composite binder for concrete is assessed. The results of X-ray diffraction and differential thermal analysis as well as and materials photomicrographs are presented. It was revealed that the fly ash of TPPs of Russian Primorsky Krai is suitable for use as a filler in cement binding based on its chemical composition.

  19. Transparent thermal insulation for a fabrication hall of LHB, Salzgitter; Transparent gedaemmte Fertigungshalle bei LHB in Salzgitter

    Energy Technology Data Exchange (ETDEWEB)

    Galetzky, A. [Linke-Hofmann-Busch Waggon - Fahrzeug - Maschinen GmbH, Salzgitter (Germany); Goller, M. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany)

    1997-12-31

    Many industrial workshops in Germany were erected during the 40s and 50s, especially at the beginning of the economic boom. After more than 40 years, these facilities are in need of structural and production-technical modernization. A case in point is the carriage fabrication workshop of the Salzgitter-based company Linke-Hoffmann-Busch. The characteristic features of this type of building are large glazed areas, free uncontrolled ventilation and substantial height. Opportunities for energy-oriented and light-technical modernization are demonstrated at this Salzgitter workshop in exemplary form, the emphasis being on the use of solar energy components and, particularly, transparent thermal insulation. (orig.) [Deutsch] In der Bundesrepublik Deutschland gibt es viele Produktionshallen, die in den vierziger und fuenfziger Jahren, insbesondere zu Beginn des wirtschaftlichen Aufschwungs, errichtet wurden. Diese Hallen sind nach ueber vierzig Jahren sowohl aus baulichen als auch produktionstechnischen Gruenden sanierungsbeduerftig. Die Halle 1, Waggonneubau, der Linke-Hofmann-Busch GmbH in Salzgitter ist ein typischer Vertreter dieser Art von Hallen. Sie zeichnen sich durch grosse Verglasungsflaechen, freie unkontrollierte Lueftung und relativ grosse Bauhoehe aus. Exemplarisch werden an dieser Halle Moeglichkeiten einer energetischen und lichttechnischen Sanierung aufgezeigt, wobei der Einsatz von Solarenergiekomponenten und insbesondere der Transparenten Waermedaemmung besondere Beruecksichtigung erfaehrt. (orig.)

  20. Numerical investigation on thermal and fluid dynamic behaviors of solar chimney building systems

    International Nuclear Information System (INIS)

    Manca, O.; Nardini, S.; Romano, P.; Mihailov, E.

    2013-01-01

    Full text: Buildings as big energy-consuming systems require large amount of energy to operate. Globally, buildings are responsible for approximately 40% of total world annual energy consumption. Sustainable buildings with renewable energy systems are trying to operate independently without consumption of conventional resources. Renewable energy is a significant approach to reduce resource consumption in sustainable building. A solar chimney is essentially divided into two parts, one - the solar air heater (collector) and second - the chimney. Two configurations of solar chimney are usually used: vertical solar chimney with vertical absorber geometry, and roof solar chimney. For vertical solar chimney, vertical glass is used to gain solar heat. Designing a solar chimney includes height, width and depth of cavity, type of glazing, type of absorber, and inclusion of insulation or thermal mass. Besides these system parameters, other factors such as the location, climate, and orientation can also affect its performance. In this paper a numerical investigation on a prototypal solar chimney system integrated in a south facade of a building is presented. The analysis is carried out on a three-dimensional model in air flow and the governing equations are given in terms of k-s turbulence model. Two geometrical configurations are investigated: 1) a channel with vertical parallel walls and 2) a channel with principal walls one vertical and the other inclined. The problem is solved by means of the commercial code Ansys-Fluent and the results are performed for a uniform wall heat flux on the vertical wall is equal to 300 and 600 W/m2. Results are given in terms of wall temperature distributions, air velocity and temperature fields and transversal profiles in order to evaluate the differences between the two base configurations and thermal and fluid dynamic behaviors. Further, the ground effect on thermal performances is examined. key words: mathematical modeling, solar chimney

  1. Smart Building: Decision Making Architecture for Thermal Energy Management.

    Science.gov (United States)

    Uribe, Oscar Hernández; Martin, Juan Pablo San; Garcia-Alegre, María C; Santos, Matilde; Guinea, Domingo

    2015-10-30

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.

  2. Smart Building: Decision Making Architecture for Thermal Energy Management

    Directory of Open Access Journals (Sweden)

    Oscar Hernández Uribe

    2015-10-01

    Full Text Available Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.

  3. Light and Strong Hierarchical Porous SiC Foam for Efficient Electromagnetic Interference Shielding and Thermal Insulation at Elevated Temperatures.

    Science.gov (United States)

    Liang, Caiyun; Wang, Zhenfeng; Wu, Lina; Zhang, Xiaochen; Wang, Huan; Wang, Zhijiang

    2017-09-06

    A novel light but strong SiC foam with hierarchical porous architecture was fabricated by using dough as raw material via carbonization followed by carbothermal reduction with silicon source. A significant synergistic effect is achieved by embedding meso- and nanopores in a microsized porous skeleton, which endows the SiC foam with high-performance electromagnetic interference (EMI) shielding, thermal insulation, and mechanical properties. The microsized skeleton withstands high stress. The meso- and nanosized pores enhance multiple reflection of the incident electromagnetic waves and elongate the path of heat transfer. For the hierarchical porous SiC foam with 72.8% porosity, EMI shielding can be higher than 20 dB, and specific EMI effectiveness exceeds 24.8 dB·cm 3 ·g -1 at a frequency of 11 GHz at 25-600 °C, which is 3 times higher than that of dense SiC ceramic. The thermal conductivity reaches as low as 0.02 W·m -1 ·K -1 , which is comparable to that of aerogel. The compressive strength is as high as 9.8 MPa. Given the chemical and high-temperature stability of SiC, the fabricated SiC foam is a promising candidate for modern aircraft and automobile applications.

  4. Natural convection of high-temperature, high-pressure gas in a horizontal annular layer of thermal insulator, (1)

    International Nuclear Information System (INIS)

    Ogawa, Masuro; Takizuka, Takakazu; Sanokawa, Konomo

    1979-02-01

    Numerical calculations are described of the natural convection in a horizontal annular layer of thermal insulator. The purpose is to compare the numerical results for variable physical properties with those for constant properties. The numerical procedure and typical results are presented. (author)

  5. Combined heat and power and thermally insulating measures in residential housing stock; Kraft-Waerme-Kopplung und Daemmmassnahmen im Wohngebaeudebestand

    Energy Technology Data Exchange (ETDEWEB)

    Buller, Michael [Gas- und Waerme-Institut Essen e.V., Essen (Germany)

    2013-02-15

    The author of the contribution under consideration reports on the economic, ecologic and primary energetic potential of micro-combined heat and power (micro-CHP) in the residential housing stock under consideration of possible correlations between CHP and thermally insulating measures.

  6. Thermal comfort and building energy consumption implications – A review

    International Nuclear Information System (INIS)

    Yang, Liu; Yan, Haiyan; Lam, Joseph C.

    2014-01-01

    Highlights: • We review studies of thermal comfort and discuss building energy use implications. • Adaptive comfort models tend to have a wider comfort temperature range. • Higher indoor temperatures would lead to fewer cooling systems and less energy use. • Socio-economic study and post-occupancy evaluation of built environment is desirable. • Important to consider future climate scenarios in heating, cooling and power schemes. - Abstract: Buildings account for about 40% of the global energy consumption and contribute over 30% of the CO 2 emissions. A large proportion of this energy is used for thermal comfort in buildings. This paper reviews thermal comfort research work and discusses the implications for building energy efficiency. Predicted mean vote works well in air-conditioned spaces but not naturally ventilated buildings, whereas adaptive models tend to have a broader comfort temperature ranges. Higher indoor temperatures in summertime conditions would lead to less prevalence of cooling systems as well as less cooling requirements. Raising summer set point temperature has good energy saving potential, in that it can be applied to both new and existing buildings. Further research and development work conducive to a better understanding of thermal comfort and energy conservation in buildings have been identified and discussed. These include (i) social-economic and cultural studies in general and post-occupancy evaluation of the built environment and the corresponding energy use in particular, and (ii) consideration of future climate scenarios in the analysis of co- and tri-generation schemes for HVAC applications, fuel mix and the associated energy planning/distribution systems in response to the expected changes in heating and cooling requirements due to climate change

  7. High Performance Slab-on-Grade Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Mosiman, Garrett E. [NorthernSTAR, St. Paul, MN (United States)

    2015-09-01

    ?A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 % for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.

  8. Preparation, mechanical strengths, and thermal

    Science.gov (United States)

    Inoue, A.; Furukawa, S.; Hagiwara, M.; Masumoto, T.

    1987-05-01

    Ni-based amorphous wires with good bending ductility have been prepared for Ni75Si8B17 and Ni78P12B10 alloys containing 1 to 2 at. pct Al or Zr by melt spinning in rotating water. The enhancement of the wire-formation tendency by the addition of Al has been clarified to be due to the increase in the stability of the melt jet through the formation of a thin A12O3 film on the outer surface. The maximum wire diameter is about 190 to 200 μm for the Ni-Si (or P)-B-Al alloys and increases to about 250 μm for the Ni-Si-B-Al-Cr alloys containing 4 to 6 at. pct Cr. The tensile fracture strength and fracture elongation are 2730 MPa and 2.9 pct for (Ni0.75Si0.08B0.17 99Al1) wire and 2170 MPa and 2.4 pct for (Ni0.78P0.12B0.1)99Al1 wire. These wires exhibit a fatigue limit under dynamic bending strain in air with a relative humidity of 65 pct; this limit is 0.50 pct for a Ni-Si-B-Al wire, which is higher by 0.15 pct than that of a Fe75Si10B15 amorphous wire. Furthermore, the Ni-base wires do not fracture during a 180-deg bending even for a sample annealed at temperatures just below the crystallization temperature, in sharp contrast to high embrittlement tendency for Fe-base amorphous alloys. Thus, the Ni-based amorphous wires have been shown to be an attractive material similar to Fe- and Co-based amorphous wires because of its high static and dynamic strength, high ductility, high stability to thermal embrittlement, and good corrosion resistance.

  9. Enhancement in insulation and mechanical properties of PMMA nanocomposite foams infused with multi-walled carbon nanotubes.

    Science.gov (United States)

    Yeh, Jui-Ming; Chang, Kung-Chin; Peng, Chih-Wei; Lai, Mei-Chun; Hwang, Shyh-Shin; Lin, Hong-Ru; Liou, Shir-Joe

    2011-08-01

    In this study, PMMA/CNTs composite materials with carboxyl-multi walled carbon nanotubes (c-MWNTs) or untreated MWNTs were prepared via in-situ bulk polymerization. The as-prepared PMMA/CNTs composite materials were then characterized by Fourier-Transformation infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The molecular weights of PMMA extracted from PMMA/CNTs composite materials and bulk PMMA were determined by gel permeation chromatography (GPC) with THF used as the eluant. The PMMA/CNTs composite materials were used to produce foams by a batch process in an autoclave using nitrogen as foaming agent. The cellular microstructure, insulation and compressive mechanical properties of PMMA/CNTs composite foams were also investigated in detail. Compared to neat PMMA foam, the presence of CNTs increases in cell density and reduces cell size. The insulation and compressive mechanical properties of PMMA/CNTs composite foams were found to improve substantially those of neat PMMA foam. In particular, 22.6% decrease in thermal conductivity, 19.7% decrease in dielectric constant and 160% increase in compressive modulus were observed with the addition of 0.3 wt% carboxyl-multi walled carbon nanotubes (c-MWNTs).

  10. A simple method for estimating thermal response of building ...

    African Journals Online (AJOL)

    This paper develops a simple method for estimating the thermal response of building materials in the tropical climatic zone using the basic heat equation. The efficacy of the developed model has been tested with data from three West African cities, namely Kano (lat. 12.1 ºN) Nigeria, Ibadan (lat. 7.4 ºN) Nigeria and Cotonou ...

  11. Thermodynamic analyses and assessments of various thermal energy storage systems for buildings

    International Nuclear Information System (INIS)

    Caliskan, Hakan; Dincer, Ibrahim; Hepbasli, Arif

    2012-01-01

    Highlights: ► Proposing a novel latent (PCM), thermochemical and sensible (aquifer) TES combination for building heating. ► Performing comprehensive environmental, energy, exergy and sustainability analyses. ► Investigating the effect of varying dead state temperatures on the TESs. - Abstract: In this study, energetic, exergetic, environmental and sustainability analyses and their assessments are carried out for latent, thermochemical and sensible thermal energy storage (TES) systems for phase change material (PCM) supported building applications under varying environment (surrounding) temperatures. The present system consists of a floor heating system, System-I, System-II and System-III. The floor heating system stays at the building floor supported with a floor heating unit and pump. The System-I includes a latent TES system and a fan. The latent TES system is comprised of a PCM supported building envelope, in which from outside to inside; glass, transparent insulation material, PCM, air channel and insulation material are placed, respectively. Furthermore, System-II mainly has a solar-thermochemical TES while there are an aquifer TES and a heat pump in System-III. Among the TESs, the hot and cold wells of the aquifer TES have maximum exergetic efficiency values of 88.782% and 69.607% at 8 °C dead state temperature, respectively. According to the energy efficiency aspects of TESs, the discharging processes of the latent TES and the hot well of the aquifer TES possess the minimum and maximum values of 5.782% and 94.118% at 8 °C dead state temperature, respectively. Also, the fan used with the latent TES is the most environmentally-benign system component among the devices. Furthermore, the most sustainable TES is found for the aquifer TES while the worst sustainable system is the latent TES.

  12. The thermal environment and occupant perceptions in European office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Stoops, J L [Chalmers Univ. of Tech., Goeteborg (Sweden). Dept. of Building Services Engineering

    2002-02-01

    The results from a large field study of thermal comfort in European office buildings are reported. Environmental conditions and occupant perceptions were collected over fourteen months from twenty-six different office buildings located in France, Greece, Portugal, Sweden and the UK. This thesis focuses on the thermal measurements and occupant perceptions; however, some of the additional variables with strong connections to thermal sensation are also examined. A summary of human comfort is presented to help place this thesis in appropriate context. The summary presents thermal comfort issues within a broad framework of environmental comfort including physical, physiological, behavioural, psychological and other variables. A more narrowly focused overview of current thermal comfort research is also included. The work attempts to show relationships and produce useful information from the data set by using rather simple statistics and graphical methods. The objective is to quite literally use the data set to illustrate the actual thermal conditions in European office buildings and the occupant perceptions of those conditions. The data are examined in some detail with key relationships identified and explored. Significant differences between countries, both for the physical conditions and the perceptions of those conditions are identified. In addition, the variation over the course of the year for each country is explored. The variations occur in complex ways, which make simple, all encompassing explanations impossible. The nature and size of the variations make the application of simple Europe wide models of thermal comfort questionable. It appears that individuals in different European countries have different expectations for their indoor office thermal environment. This data set will be further explored in a more complete study, which will examine the other measured variables.

  13. Irradiation effects on the mechanical properties of composite organic insulators

    International Nuclear Information System (INIS)

    Egusa, S.; Kirk, M.A.; Birtcher, R.C.; Hagiwara, M.; Kawanishi, S.

    1983-01-01

    Four kinds of cloth-filled organic composites (filler: glass or carbon fiber; matrix: epoxy or polymide resin) were irradiated with 2-MeV electrons at room temperature, and were examined with regard to the mechanical properties. Following irradiation, the Young's (tensile) modulus of these composites remains practically unchanged even after irradiation up to 15,000 Mrad. The shear modulus and the ultimate strength, on the other hand, begin to decrease after the absorbed dose reaches about 2000 Mrad for the glass/epoxy composite and about 5000 approx. 10,000 Mrad for the other composites. This result is ascribed to the decrease in the capacity of load transfer from the matrix to the fiber due to the radiation-induced debonding at the interface. As to the fracture behavior, the propagation energy increases from the beginning of irradiation. This result is attributed to the radiation-induced decrease in the bonding energy at the interface. The same study was made also for these composites and an alumina fiber-epoxy composite irradiated with fast neutrons at room temperature and 5 0 K. 7 figures, 1 table

  14. Modeling energy flexibility of low energy buildings utilizing thermal mass

    DEFF Research Database (Denmark)

    Foteinaki, Kyriaki; Heller, Alfred; Rode, Carsten

    2016-01-01

    In the future energy system a considerable increase in the penetration of renewable energy is expected, challenging the stability of the system, as both production and consumption will have fluctuating patterns. Hence, the concept of energy flexibility will be necessary in order for the consumption...... to match the production patterns, shifting demand from on-peak hours to off-peak hours. Buildings could act as flexibility suppliers to the energy system, through load shifting potential, provided that the large thermal mass of the building stock could be utilized for energy storage. In the present study...... the load shifting potential of an apartment of a low energy building in Copenhagen is assessed, utilizing the heat storage capacity of the thermal mass when the heating system is switched off for relieving the energy system. It is shown that when using a 4-hour preheating period before switching off...

  15. Thermal Comfort in a Naturally-Ventilated Educational Building

    Directory of Open Access Journals (Sweden)

    David Mwale Ogoli

    2012-11-01

    Full Text Available A comprehensive study of thermal comfort in a naturally ventilated education building (88,000 ft2 in a Chicago suburb will be conducted with 120 student subjects in 2007. This paper discusses some recent trends in worldwide thermal comfort studies and presents a proposal of research for this building through a series of questionnaire tables. Two research methods used inthermal comfort studies are field studies and laboratory experiments in climate-chambers. The various elements that constitute a “comfortable” thermal environment include physical factors (ambient air temperature, mean radiant temperature, air movement and humidity, personal factors(activity and clothing, classifications (gender, age, education, etc. and psychological expectations (knowledge, experience, psychological effect of visual warmth by, say, a fireplace. Comparisons are made using data gathered from Nairobi, Kenya.Keywords: Comfort, temperature, humidity and ventilation

  16. Thermal damping effect due to a green barrier which includes Arundo donax as bioclimatic element in buildings

    Directory of Open Access Journals (Sweden)

    P. Rodríguez-Salinas

    2017-09-01

    Full Text Available Among the main environmental impacts of the operation of residential buildings are those due to greenhouse gases generation as a result of electric consumption of air conditioning systems. The use of vegetation systems in residential buildings represents an alternative to reduce this energy consumption. Green vegetation systems barriers are often used as protection against winds, but recently they are also being used as acoustic dampers. This work explores their use as thermal insulation systems for buildings. Specifically, we report the behavior of an Arundo donax green barrier as a bioclimatic element. The results are analyzed based on indoor and outdoor temperature measurement in prototype buildings, in function of the green barrier presence. Additionally Arundo donax transpiration under extreme environmental conditions was determined.

  17. Fungal colonization of fiberglass insulation in the air distribution system of a multi-story office building: VOC production and possible relationship to a sick building syndrome

    Science.gov (United States)

    Ahearn, D. G.; Crow, S. A.; Simmons, R. B.; Price, D. L.; Noble, J. A.; Mishra, S. K.; Pierson, D. L.

    1996-01-01

    Complaints characteristic of those for sick building syndrome prompted mycological investigations of a modern multi-story office building on the Gulf coast in the Southeastern United States (Houston-Galveston area). The air handling units and fiberglass duct liner of the heating, ventilating and air conditioning system of the building, without a history of catastrophic or chronic water damage, demonstrated extensive colonization with Penicillium spp and Cladosporium herbarum. Although dense fungal growth was observed on surfaces within the heating-cooling system, most air samples yielded fewer than 200 CFU m-3. Several volatile compounds found in the building air were released also from colonized fiberglass. Removal of colonized insulation from the floor receiving the majority of complaints of mouldy air and continuous operation of the units supplying this floor resulted in a reduction in the number of complaints.

  18. The Seismic Analysis of 800kV Gas Insulated Switchgear (GIS) for the Dangjin Thermal Plant

    Energy Technology Data Exchange (ETDEWEB)

    Shin, I.H.; Song, W.P.; Kweon, K.Y. [Hyosung Corporation (Korea)

    1999-05-01

    800kV GIS (Gas Insulated Switchgear) which was first developed in korea at Dec. 1998 and is going to be installed in the dangjin thermal plant. We checked the stability of 800kV GIS under seismic load. pro-ENGINEER and PATRAN were used for modeling exactly 800kV GIS geometry. The 800kV GIS was modeled as shell elements for the enclosures and beam elements for the conductors and the support insulators. (author). 2 refs., 9 figs., 2 tabs.

  19. External insulation with cellular plastic materials

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Nielsen, Anker

    2014-01-01

    External thermal insulation composite systems (ETICS) can be used as extra insulation of existing buildings. The system can be made of cellular plastic materials or mineral wool. There is a European Technical guideline, ETAG 004, that describe the tests that shall be conducted on such systems....... This paper gives a comparison of systems with mineral wool and cellular plastic, based on experience from practice and literature. It is important to look at the details in the system and at long time stability of the properties such as thermal insulation, moisture and fire. Investigation of fire properties...

  20. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, Leen; D' haeseleer, William [Division of Applied Mechanics and Energy Conversion, University of Leuven (K.U.Leuven), Celestijnenlaan 300 A, B-3001 Leuven (Belgium); Dear, Richard de [Division of Environmental and Life Sciences, Macquarie University, Sydney (Australia); Hensen, Jan [Faculty of Architecture, Building and Planning, Technische Universiteit Eindhoven, Vertigo 6.18, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2009-05-15

    Building Energy Simulation (BES) programmes often use conventional thermal comfort theories to make decisions, whilst recent research in the field of thermal comfort clearly shows that important effects are not incorporated. The conventional theories of thermal comfort were set up based on steady state laboratory experiments. This, however, is not representing the real situation in buildings, especially not when focusing on residential buildings. Therefore, in present analysis, recent reviews and adaptations are considered to extract acceptable temperature ranges and comfort scales. They will be defined in an algorithm, easily implementable in any BES code. The focus is on comfortable temperature levels in the room, more than on the detailed temperature distribution within that room. (author)

  1. Comparison of electricity and heat production in combined and single-purpose systems against the background of energy saving by means of thermal insulation. Pt. 1. System comparison and general results; Vergleich der Strom- und Heizenergieerzeugung in gekoppelten und ungekoppelten Anlagen vor dem Hintergrund der Einsparmoeglichkeiten durch Waermedaemmung. T. 1. Systemvergleich und allgemeine Ergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Damberger, S.; Guenther, M.; Kluender, M.; Moeller, K.P.; Wenk, N.

    1994-06-01

    The study comprises investigations for the purpose of increasing the generation of electricity and heat in dual-purpose power plants and for promoting thermal insulation of buildings: Methods for comparatiave calculations; economic aspects; separate generation of electric power and heat; cogeneration of electric power and heat; economic efficiency of thermal insulation measures in domestic buildings; comparison of results. (HW) [Deutsch] Die Studie umfasst Untersuchungen zur Erhoehung des Anteils der gekoppelten Erzeugung von Strom und Waerme und zur vermehrten Waermedaemmung von Gebaeuden: - Methoden fuer Vergleichsrechnungen - Ekonomie - getrennte Erzeugung von Strom und Waerme - gekoppelte Erzeugung von Strom und Waerme - Wirtschaftlichkeit von Massnahmen einer Waermedaemmung von Wohngebaeuden - Vergleich der Ergebnisse. (HW)

  2. Using passive cooling strategies to improve thermal performance and reduce energy consumption of residential buildings in U.A.E. buildings

    Directory of Open Access Journals (Sweden)

    Hanan M. Taleb

    2014-06-01

    Full Text Available Passive design responds to local climate and site conditions in order to maximise the comfort and health of building users while minimising energy use. The key to designing a passive building is to take best advantage of the local climate. Passive cooling refers to any technologies or design features adopted to reduce the temperature of buildings without the need for power consumption. Consequently, the aim of this study is to test the usefulness of applying selected passive cooling strategies to improve thermal performance and to reduce energy consumption of residential buildings in hot arid climate settings, namely Dubai, United Arab Emirates. One case building was selected and eight passive cooling strategies were applied. Energy simulation software – namely IES – was used to assess the performance of the building. Solar shading performance was also assessed using Sun Cast Analysis, as a part of the IES software. Energy reduction was achieved due to both the harnessing of natural ventilation and the minimising of heat gain in line with applying good shading devices alongside the use of double glazing. Additionally, green roofing proved its potential by acting as an effective roof insulation. The study revealed several significant findings including that the total annual energy consumption of a residential building in Dubai may be reduced by up to 23.6% when a building uses passive cooling strategies.

  3. Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

  4. Numerical study of the thermal and aerodynamic insulation of a cavity with a vertical downstream air jet

    Energy Technology Data Exchange (ETDEWEB)

    Mhiri, H.; El Golli, S. [Ecole Nationale d`Ingenieurs, Monastir (Tunisia). Lab. d`Energetique; Berthon, A.; Le Palec, G.; Bournot, P. [Technopole de Chateau-Gombert, Marseille (France)

    1998-10-01

    Because of its numerous industrial applications (air conditioning, thermal insulation, behavior of fires), heat transfer in rectangular cavities has made the subject of many works which concern both theoretical numerical studies and experimental investigations. This work is devoted to a numerical approach of the laminar mixed convection in a cavity which one of the boundaries is materialized by a laminar vertical downstream air jet. The purpose is to analyze the interaction of this flow with the natural movement that grows in the cavity under the combined action of boundary thermal gradients and external medium of the cavity in order to examine thermal insulation qualities of the jet. Calculations have been made with the help of the finite volume method.

  5. Thermal performance measurements of a 100 percent polyester MLI [multilayer insulation] system for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.

    1989-09-01

    The plastic materials used in the multilayer insulation (MLI) blankets of the superconducting magnets of the Superconducting Super Collider (SSC) are comprised entirely of polyesters. This paper reports on tests conducted in three separate experimental blanket arrangements. The tests explore the thermal performance of two candidate blanket joint configurations each employing a variation of a stepped-butted joint nested between sewn blanket seams. The results from the joint configurations are compared to measurements made describing the thermal performance of the basic blanket materials as tested in an ideal joint configuration. Twenty foil sensors were incorporated within each test blanket to measure interstitial layer and joint layer temperatures. Heat flux and thermal gradients are reported for high and degraded insulating vacuums, and during transient and steady state conditions. In complement with this paper is an associate paper bearing the same title head but with the title extension 'Part 1: Instrumentation and experimental preparation (300K-80K)'. 5 refs., 8 figs., 2 tabs

  6. Response to fire, thermal insulation and acoustic performance of rigid polyurethane agglomerates with addition of natural fiber

    Directory of Open Access Journals (Sweden)

    Marcos Vinicius Rizzo

    2015-03-01

    Full Text Available This paper aims to reuse rigid polyurethane waste in the preparation of composites with the addition of banana fibers and cellulose in order to qualify the acoustic performance, thermal insulation and reaction to fire the material with the addition of 7% of polysulfone. Agglomerated with 100% of polyurethane and either with 20% of banana fiber or 20% of cellulose were characterized in the sound transmission loss, thermal conductivity and reaction to fire, take into account variations in the granulometry of the solid polyurethane and type of pressing. Natural fiber composites had lower thermal conductivity, higher acoustic insulation in medium frequencies and the addition of polysulfone delayed the total time of firing the material.

  7. Assessment of thermal load reduction due to the application of simple passive techniques in a house office building at the south of Libya

    International Nuclear Information System (INIS)

    Domanski, Roman; Azzain, Gassem

    2006-01-01

    The assessment of possible reduction of heating and cooling requirements of 300 m 2 house-office building has been presented in this paper, when simple Thermal Passive Techniques (TPT) have been applied to building's construction in Sebha city at the Libyan south. The known software for dynamic simulation (TRNSYS) has been used as an environment of digital experimentation for this study. A prototype represents the building has been constructed with the help of the available model of single thermal zone of TRNSYS (Type 19). The built-in ASHREA Transfer Function Method within this model has been used to calculate the heat flux through building's materials. Primarily, the thermal load on building's construction without TPTs has been evaluated under weather conditions of a Typical Meteorological Year (TMY) of Sebha city. Then, the building has been equipped with simple TPTs (such as the control of building materials, insulation, shading, infiltration and ventilation with windows resizing). This building was subjected to the same weather conditions and again the thermal load has been evaluated in order to report the percentage of reduction of thermal load. The simulation has been conducted successfully, where good assessment of reduction of annual heating and cooling demands in the building has been obtained. It is proved that, about (46%) of annual heating load and (48%) of annual cooling load can be reduced if suitable simple TPTs were incorporated in buildings.(Author)

  8. Energy efficiency and comfort conditions in passive solar buildings: Effect of thermal mass at equatorial high altitudes

    Science.gov (United States)

    Ogoli, David Mwale

    This dissertation is based on the philosophy that architectural design should not just be a function of aesthetics, but also of energy-efficiency, advanced technologies and passive solar strategies. A lot of published literature is silent regarding buildings in equatorial highland regions. This dissertation is part of the body of knowledge that attempts to provide a study of energy in buildings using thermal mass. The objectives were to establish (1) effect of equatorial high-altitude climate on thermal mass, (2) effect of thermal mass on moderating indoor temperatures, (3) effect of thermal mass in reducing heating and cooling energy, and (4) the amount of time lag and decrement factor of thermal mass. Evidence to analyze the effect of thermal mass issues came from three sources. First, experimental physical models involving four houses were parametrically conducted in Nairobi, Kenya. Second, energy computations were made using variations in thermal mass for determining annual energy usage and costs. Third, the data gathered were observed, evaluated, and compared with currently published research. The findings showed that: (1) Equatorial high-altitude climates that have diurnal temperature ranging about 10--15°C allow thermal mass to moderate indoor temperatures; (2) Several equations were established that indicate that indoor mean radiant temperatures can be predicted from outdoor temperatures; (3) Thermal mass can reduce annual energy for heating and cooling by about 71%; (4) Time lag and decrement of 200mm thick stone and concrete thermal mass can be predicted by a new formula; (5) All windows on a building should be shaded. East and west windows when shaded save 51% of the cooling energy. North and south windows when fully shaded account for a further 26% of the cooling energy; (6) Insulation on the outside of a wall reduces energy use by about 19.6% below the levels with insulation on the inside. The basic premise of this dissertation is that decisions that

  9. Effect of resin composition to the electrical and mechanical properties of high voltage insulator material

    International Nuclear Information System (INIS)

    Totok Dermawan; Elin Nuraini; Suyamto

    2012-01-01

    A solid insulator manufacture of resins for high voltage with a variation of resin and hardener composition has been made. The purpose of research to know electrical and mechanical properties of high voltage insulator material of resin. To determine its electric properties, the material is tested its breakdown voltage and the flashover voltage that occurred on the surface. While to determine the mechanical properties were tested by measuring its strength with a tensile test. From testing with variety of mixed composition it is known that for composition between hardener and resin of 1 : 800 has most advantageous properties because it has good strength with a tensile strength of 19.86 MPa and enough high dielectric strength of 43.2 kV / mm). (author)

  10. Mechanical strength of an ITER coil insulation system under static and dynamic load after reactor irradiation

    International Nuclear Information System (INIS)

    Bittner-Rohrhofer, K.; Humer, K.; Weber, H.W.; Hamada, K.; Sugimoto, M.; Okuno, K.

    2002-01-01

    The insulation system proposed by the Japanese Home Team for the ITER Toroidal Field coil (TF coil) is a T-glass-fiber/Kapton reinforced epoxy prepreg system. In order to assess the material performance under the actual operating conditions of the coils, the insulation system was irradiated in the TRIGA reactor (Vienna) to a fast neutron fluence of 2x10 22 m -2 (E>0.1 MeV). After measurements of swelling, all mechanical tests were carried out at 77 K. Tensile and short-beam-shear (SBS) tests were performed under static loading conditions. In addition, tension-tension fatigue experiments up to about 10 6 cycles were made. The laminate swells in the through-thickness direction by 0.86% at the highest dose level. The fatigue tests as well as the static tests do not show significant influences of the irradiation on the mechanical behavior of this composite

  11. Mechanical strength of an ITER coil insulation system under static and dynamic load after reactor irradiation

    Science.gov (United States)

    Bittner-Rohrhofer, K.; Humer, K.; Weber, H. W.; Hamada, K.; Sugimoto, M.; Okuno, K.

    2002-12-01

    The insulation system proposed by the Japanese Home Team for the ITER Toroidal Field coil (TF coil) is a T-glass-fiber/Kapton reinforced epoxy prepreg system. In order to assess the material performance under the actual operating conditions of the coils, the insulation system was irradiated in the TRIGA reactor (Vienna) to a fast neutron fluence of 2×10 22 m -2 ( E>0.1 MeV). After measurements of swelling, all mechanical tests were carried out at 77 K. Tensile and short-beam-shear (SBS) tests were performed under static loading conditions. In addition, tension-tension fatigue experiments up to about 10 6 cycles were made. The laminate swells in the through-thickness direction by 0.86% at the highest dose level. The fatigue tests as well as the static tests do not show significant influences of the irradiation on the mechanical behavior of this composite.

  12. Electromagnetic and thermal analysis of electromagnet for SMART control element drive mechanism

    International Nuclear Information System (INIS)

    Huh, H.; Kim, J. H.; Park, J. S.; Kim, Y. W.; Kim, J. I.

    1999-01-01

    A numerical electromagnetic and thermal analysis was performed for the electromagnet which is installed in the control element drive mechanism(CEDM) of the integral reactor SMART. A model for the electromagnetic analysis of the electromagnet was developed and theoretical bases for the model were established. Design parameters related to thrust force were identified, and the optimum design point was determined by analyzing the trend of the magnetic saturation with finite element method. Also It is important that the temperature of the electomagnet windings be maintained within the allowable limit of the insulation, since the electromagnet of CEDM is always supplied with current during the reactor operation. So the thermal analysis of the winding insulation which is composed of polyimide and air were performed by finite element method. The electromagnetic and thermal properties obtained here will be used as input for the optimization analysis of the electromagnet

  13. Thermal Texture Selection and Correction for Building Facade Inspection Based on Thermal Radiant Characteristics

    Science.gov (United States)

    Lin, D.; Jarzabek-Rychard, M.; Schneider, D.; Maas, H.-G.

    2018-05-01

    An automatic building façade thermal texture mapping approach, using uncooled thermal camera data, is proposed in this paper. First, a shutter-less radiometric thermal camera calibration method is implemented to remove the large offset deviations caused by changing ambient environment. Then, a 3D façade model is generated from a RGB image sequence using structure-from-motion (SfM) techniques. Subsequently, for each triangle in the 3D model, the optimal texture is selected by taking into consideration local image scale, object incident angle, image viewing angle as well as occlusions. Afterwards, the selected textures can be further corrected using thermal radiant characteristics. Finally, the Gauss filter outperforms the voted texture strategy at the seams smoothing and thus for instance helping to reduce the false alarm rate in façade thermal leakages detection. Our approach is evaluated on a building row façade located at Dresden, Germany.

  14. Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments

    OpenAIRE

    Muthusubramanian, N.; Galan, E.; Maity, C.; Eelkema, R.; Grozema, F.C.; van der Zant, H.S.J.

    2016-01-01

    We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al2O3 thickness deposited on the MCBJ devices was varied from 2 to 15 nm to test the suppression of leakage currents in deionized water and phosphate buffered saline. Junctions coated with a 15 nm thick oxide layer yielded atomically sharp electrodes and negligible conductance counts in the ra...

  15. Evaluation of the cryogenic mechanical properties of the insulation material for ITER Feeder superconducting joint

    Science.gov (United States)

    Wu, Zhixiong; Huang, Rongjin; Huang, ChuanJun; Yang, Yanfang; Huang, Xiongyi; Li, Laifeng

    2017-12-01

    The Glass-fiber reinforced plastic (GFRP) fabricated by the vacuum bag process was selected as the high voltage electrical insulation and mechanical support for the superconducting joints and the current leads for the ITER Feeder system. To evaluate the cryogenic mechanical properties of the GFRP, the mechanical properties such as the short beam strength (SBS), the tensile strength and the fatigue fracture strength after 30,000 cycles, were measured at 77K in this study. The results demonstrated that the GFRP met the design requirements of ITER.

  16. Optimum interior area thermal resistance model to analyze the heat transfer characteristics of an insulated pipe with arbitrary shape

    International Nuclear Information System (INIS)

    Chou, H.-M.

    2003-01-01

    The heat transfer characteristics for an insulated regular polygonal (or circular) pipe are investigated by using a wedge thermal resistance model as well as the interior area thermal resistance model R th =t/K s /[(1-α)A 2 +αA 3 ] with a surface area weighting factor α. The errors of the results generated by an interior area model can be obtained by comparing with the exact results generated by a wedge model. Accurate heat transfer rates can be obtained without error at the optimum α opt with the related t/R 2 . The relation between α opt and t/R 2 is α opt =1/ln(1+t/R 2 )-1/(t/R 2 ). The value of α opt is greater than zero and less than 0.5 and is independent of pipe size R 2 /R cr but strongly dependent on the insulation thickness t/R 2 . The interior area model using the optimum value α opt with the related t/R 2 should also be applied to an insulated pipe with arbitrary shape within a very small amount of error for the results of heat transfer rates. The parameter R 2 conservatively corresponds to the outside radius of the maximum inside tangent circular pipe within the arbitrary shaped pipes. The approximate dimensionless critical thickness t cr /R 2 and neutral thickness t e /R 2 of an insulated pipe with arbitrary shape are also obtained. The accuracies of the value of t cr /R 2 as well as t e /R 2 are strongly dependent on the shape of the insulated small pipe. The closer the shape of an insulated pipe is to a regular polygonal or circular pipe, the more reliable will the values of t cr /R 2 as well as t e /R 2 be

  17. Thermal integrity in mechanics and engineering

    CERN Document Server

    Shorr, Boris F

    2015-01-01

    The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author’s contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspec...

  18. Thermal hydraulics and mechanics core design programs

    International Nuclear Information System (INIS)

    Heinecke, J.

    1992-10-01

    The report documents the work performed within the Research and Development Task T hermal hydraulics and mechanics core design programs , funded by the German government. It contains the development of new codes, the extension of existing codes, the qualification and verification of codes and the development of a code library. The overall goal of this work was to adapt the system of thermal hydraulics and mechanics codes to the permanently growing requirements of the status of science and technology

  19. Features of Functioning the Integrated Building Thermal Model

    Directory of Open Access Journals (Sweden)

    Morozov Maxim N.

    2017-01-01

    Full Text Available A model of the building heating system, consisting of energy source, a distributed automatic control system, elements of individual heating unit and heating system is designed. Application Simulink of mathematical package Matlab is selected as a platform for the model. There are the specialized application Simscape libraries in aggregate with a wide range of Matlab mathematical tools allow to apply the “acausal” modeling concept. Implementation the “physical” representation of the object model gave improving the accuracy of the models. Principle of operation and features of the functioning of the thermal model is described. The investigations of building cooling dynamics were carried out.

  20. Thermal responses and its relation with the building outdoor conditions; Respuestas termicas y su relacion con la envolvente del edificio

    Energy Technology Data Exchange (ETDEWEB)

    Marincic, Irene [Universidad de Sonora, Hermosillo, Sonora (Mexico); Isalgue, Antoni [Universidad Politecnica de Cataluna, Barcelona (Spain)

    2000-07-01

    In order to understand and to control the indoor thermal behavior in buildings, it is necessary to know the origin of the energies coming into and outside the building, identifying the geometric factors and physical properties, that can modify the thermal balance of the system. In this work, we analyze the thermal behavior of a building experimentally, related with its exterior conditions. Specifically, we analyze the thermal response indoors at different distances from the building envelope, which implies different thermal insulation situations. Supported on temperature measurements in a residential building, which is representative of local construction styles (adjacent other buildings), we analyze the thermal response effects depending on the distances between the considered points and the envelope and on the insulation between both. Applying a methodology based on experimental transfer functions of buildings, the thermal behavior in the temporary and frequency domains is evaluated. With this methodology, it is possible to visualize certain phenomena and to obtain thermal parameters that characterize the dynamic aspects of the thermal response. The main scope is to extract information from the building analysis, in order to extrapolate the behavior conclusions to a proper thermal design of similar constructions. From the thermal responses analysis at different spatial localization, we conclude that the distance from the building envelope (and also its properties) has a great influence on thermal inertia effects, which can modify importantly the thermal response. This phenomena has a parallelism with the skin effect of the magnetic fields penetration in conductors. The spatial localization implies a certain thermal mass involved in each case, which controls the penetration of exterior thermal oscillation. [Spanish] Para poder entender y controlar los comportamientos termicos en el interior de los edificios, es necesario conocer el origen de las energias que

  1. Thermal behavior studies in building using artificial neural network for non air conditioned terrace house in Malaysia

    International Nuclear Information System (INIS)

    Zainazlan Md Zain; Mohd Nasir Taib; Shahrizam Mohd Shah Baki

    2006-01-01

    Strategies to improve energy efficiency in buildings have continuously being improved and becoming more effective as new knowledge on the building behavior and technology continue to develop. Nevertheless, effort to explore for further improvement must continuously undertake to seek more energy efficient and cost effective systems. Artificial Neural Network (ANN) is currently one of the most popular mechanisms to forecast any form of behavior and phenomena. Building thermal behavior can be studied and potential for energy utilization improvement without compromising thermal comfort can be explored using ANN. This paper explores the possibility of monitoring, predicting and forecasting the thermal behavior inside a building space and the optimization of building design. Typical result of experimental data and simulated data is presented. The sample house used adopted various thermal comfort strategies like cross ventilation and space air flow consideration

  2. Materials colloquium `96: Thermal insulation coatings. Thermally insulating coating systems for heavy-duty structural components in aerospace engineering and energy engineering; Werkstoff-Kolloquium `96: Waermedaemmschichten. Waermeisolierende Schichtsysteme fuer hoechstbelastete Strukturbauteile in der Luft- und Raumfahrt sowie der Energietechnik

    Energy Technology Data Exchange (ETDEWEB)

    Peters, M.; Schulz, U.; Leushake, U.; Kaysser, W.A. [eds.

    1996-12-31

    The 15 contributions in this colloquium report document the current state of research and development in Germany in the field of thermally insulating layer structures for heavy-duty components like gas turbines. Five papers have been recorded separately in the ENERGY database. [Deutsch] Die 15 Beitraege in diesem Kolloquiumband dokumentieren den aktuellen Stand der Forschungs- und Entwicklungsarbeiten in Deutschland auf dem Gebiet der waermeisolierenden Schichtsysteme fuer hoechstbelastete Bauteile wie z.B. Gasturbinen. Fuer die Datenbank ENERGY wurden fuenf Artikel separat aufgenommen.

  3. Preparation of Activated Carbons from Waste External Thermal-Insulating Phenolic Foam Boards

    Directory of Open Access Journals (Sweden)

    Gao Lijuan

    2018-01-01

    Full Text Available Activated carbons (ACs were prepared by steam physical activation or KOH chemical activation with the waste external thermal-insulating phenolic foam board as the raw material. The Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, Brunauer-Emmett-Teller (BET specific area, pore-size distribution and iodine value were used to characterize the properties of ACs. AC-1(with the method of KOH chemical activation has the iodine value of 2300mg/g, BET specific area of 1293 m2g-1, average pore-size of 2.4 nm, and mainly composed of micropore and relatively small mesopore. AC-2(with the method of steam physical activation has the iodine value of 1665mg/g. Compared with AC-2, AC-1 had a pore-size distribution with more evenly and relative concentrated, it’s belonging to the high microporosity materials. Actually, chemical activation had more significant influence on destruction of the pore wall than physical activation.

  4. Three types of planar structure microspring electro-thermal actuators with insulating beam constraints

    Science.gov (United States)

    Luo, J. K.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.

    2005-08-01

    A new concept of using an electrically insulating beam as a constraint is proposed to construct planar spring-like electro-thermal actuators with large displacements. On the basis of this concept, three types of microspring actuators with multi-chevron structures and constraint beams are introduced. The constraint beams in one type (the spring) of these devices are horizontally positioned to restrict the expansion of the active arms in the x-direction, and to produce a displacement in the y-direction only. In the other two types of actuators (the deflector and the contractor), the constraint beams are positioned parallel to the active arms. When the constraint beams are on the inner side of the active arms, the actuator produces an outward deflection in the y-direction. When they are on the outside of the active arms, the actuator produces an inward contraction. Finite-element analysis was used to model the performances. The simulation shows that the displacements of these microspring actuators are all proportional to the number of the chevron sections in series, thus achieving superior displacements to alternative actuators. The displacement of a spring actuator strongly depends on the beam angle, and decreases with increasing the beam angle, the deflector is insensitive to the beam angle, while the displacement of a contractor actuator increases with the beam angle.

  5. Standard Test Method for Oxyacetylene Ablation Testing of Thermal Insulation Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the screening of ablative materials to determine the relative thermal insulation effectiveness when tested as a flat panel in an environment of a steady flow of hot gas provided by an oxyacetylene burner. 1.2 This test method should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard of materials, products, or assemblies under actual fire conditions. However, results of this test method may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limi...

  6. Influence of iron on crystallization behavior and thermal stability of the insulating materials - porous calcium silicates

    DEFF Research Database (Denmark)

    Haastrup, Sonja; Yu, Donghong; Yue, Yuanzheng

    2017-01-01

    The properties of porous calcium silicate for high temperature insulation are strongly influenced by impurities. In this work we determine the influence of Fe3+ on the crystallization behavior and thermal stability of hydrothermally derived calcium silicate. We synthesize porous calcium silicate...... with Ca/Si molar ratio of 1, to which Fe2O3 is added with Fe/Si molar ratios of 0.1, 0.5, 0.7, 1.0, and 1.3%. Structure and morphology of the porous calcium silicate, with different iron concentrations, are investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). FTIR...... measurements reveal a pronounced decrease in the number of Q3 sites in the calcium silicate with an increase of Fe3+, and thereby lower the crystal fraction of xonotlite (Ca6Si6O17(OH)2) phase, and increase the crystal fractions of tobermorite(Ca5Si6O16(OH)2·4H2O) and calcite (CaCO3) phases, as confirmed...

  7. Degradation of electrical insulation of polyethylene under thermal and radiation environment, (4). [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Shuhei; Murabayashi, Fumio; Sawa, Goro [Mie Univ., Tsu (Japan); Yamaguchi, Shinji; Ieda, Masayuki

    1982-12-01

    Although the quality assurance guideline for the cables used for the safety and protection systems of nuclear power plants is given by IEEE Standards 323 and 383-1974, in addition, it is important to clarify the aging process under the complex environment of heat and radiation and the equivalence of the accelerated aging test of insulating materials. The authors performed the sequential (H.T-..gamma.. or ..gamma..-HT) and simultaneous (..gamma.., HT) application of respective aging factors of heat and radiation to non-additive low density polyethylene films by changing dose rate as the first stage, to clarify the dose rate dependence of the aging. They mainly investigated the dielectric properties, and forwarded investigation based on the change of carbonyl group by infrared spectrometry and residual free radicals by ESR analysis. In the samples irradiated with ..gamma..-ray only and those irradiated with ..gamma..-ray after thermal treatment for 7 hours at 90 deg C, the absorption coefficient ..cap alpha.. of carbonyl group increased with dose in the range from 3 Mrad to 60 Mrad, and both samples showed approximately the same ..cap alpha.. value. The ..cap alpha.. value of the samples thermally treated after irradiation was larger than that of the samples treated in the reverse order, and the difference between them increased with the increase of dose. The values of dielectric tangent delta at room temperature and 1 kHz for the samples (..gamma..) and (HT-..gamma..) increased with dose, and were almost the same, but those for the samples (..gamma..-HT) and (..gamma.., HT) were larger than the former two.

  8. The acoustically induced response of reactor thermal insulation at low frequencies

    International Nuclear Information System (INIS)

    Whitton, P.N.

    1979-01-01

    The response of insulation assemblies to sound is considered, and in particular the behaviour in the lower modes. Experimental confirmation of the theoretical results are reported using simulated insulation assemblies excited in a reverberant sound field. It is shown that response increases with the irregularity of cover plate shape and attachment arrangements, and that large variations in response with spatial position in a cavity are possible. Consideration is also given to the sound radiation from the back face of the coverplate in contact with the insulant. The results are important when extrapolating measurements made on insulation specimens in air to reactor conditions. (author)

  9. Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Muthusubramanian, N.; Zant, H. S. J. van der [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Galan, E.; Maity, C.; Eelkema, R.; Grozema, F. C. [Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft (Netherlands)

    2016-07-04

    We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al{sub 2}O{sub 3} thickness deposited on the MCBJ devices was varied from 2 to 15 nm to test the suppression of leakage currents in deionized water and phosphate buffered saline. Junctions coated with a 15 nm thick oxide layer yielded atomically sharp electrodes and negligible conductance counts in the range of 1 to 10{sup −4} G{sub 0} (1 G{sub 0} = 77 μS), where single-molecule conductances are commonly observed. The insulated devices were used to measure the conductance of an amphiphilic oligophenylene ethynylene derivative in deionized water.

  10. Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments

    Science.gov (United States)

    Muthusubramanian, N.; Galan, E.; Maity, C.; Eelkema, R.; Grozema, F. C.; van der Zant, H. S. J.

    2016-07-01

    We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al2O3 thickness deposited on the MCBJ devices was varied from 2 to 15 nm to test the suppression of leakage currents in deionized water and phosphate buffered saline. Junctions coated with a 15 nm thick oxide layer yielded atomically sharp electrodes and negligible conductance counts in the range of 1 to 10-4 G0 (1 G0 = 77 μS), where single-molecule conductances are commonly observed. The insulated devices were used to measure the conductance of an amphiphilic oligophenylene ethynylene derivative in deionized water.

  11. The electro-mechanical effect from charge dynamics on polymeric insulation lifetime

    Science.gov (United States)

    Alghamdi, H.; Chen, G.; Vaughan, A. S.

    2015-12-01

    For polymeric material used as electrical insulation, the presence of space charges could be the consequence of material degradations that are thermally activated but increased by the application of an electric field. The dynamics of space charge, therefore, can be potentially used to characterize the material. In this direction, a new aging model in which parameters have clear physical meanings has been developed and applied to the material to extrapolate the lifetime. The kinetic equation has been established based on charge trapping and detrapping of the injected charge from the electrodes. The local electromechanical energy stored in the region surrounding the trap is able to reduce the trap-depth with a value related to the electric field. At a level where the internal electric field exceeds the detrapping field in the material, an electron can be efficiently detrapped and the released energy from detrapping process can cause a weak bond or chain scission i.e. material degradation. The model has been applied to the electro-thermally aged low density polyethylene film samples, showing well fitted result, as well as interesting relationships between parameter estimates and insulation morphology.

  12. High-rise Buildings versus Outdoor Thermal Environment in Chongqing

    Directory of Open Access Journals (Sweden)

    Jin-sha Wang

    2007-10-01

    Full Text Available This paper gives a brief description of the over quick urbanization sinceChongqing, one of the biggest cities in China, has been a municipality directly under theCentral Government in 1997, excessive development and exceeding increase of high-risebuildings because of its special geographical position which finally leads to the worseningof the urban outdoor thermal environment. Then, this paper makes a bright balance to thefield measurement and simulated results of the wind speed field, temperature field of onemultifunctional high-rise building in Chongqing university located in the city center, andthe contrasted results validate the correctness of CFD in the outdoor thermal environmentalsimulation, expose the disadvantages of high-rise buildings on the aspects of blocking thewind field, decreasing wind speed which results in accumulation of the air-conditioningheat revolving around and periscian region where sunshine can not rip into. Finally, inorder to improve the urban outdoor thermal environment near the high-rise buildingsespecially for the angle of natural ventilation, this paper simulates the wind environment indifferent architectural compositions and architectural layouts by CFD, and the simulatedresults show that freestyle and tower buildings which can guarantee the wind speed andtake the air-conditioning heat away are much suitable and reasonable for the specialChongqing geography. These conclusions can also be used as a reference in othermountain cities, especially for the one with a great number of populations.

  13. DC Model Cable under Polarity Inversion and Thermal Gradient: Build-Up of Design-Related Space Charge

    Directory of Open Access Journals (Sweden)

    Nugroho Adi

    2017-07-01

    Full Text Available In the field of energy transport, High-Voltage DC (HVDC technologies are booming at present due to the more flexible power converter solutions along with needs to bring electrical energy from distributed production areas to consumption sites and to strengthen large-scale energy networks. These developments go with challenges in qualifying insulating materials embedded in those systems and in the design of insulations relying on stress distribution. Our purpose in this communication is to illustrate how far the field distribution in DC insulation systems can be anticipated based on conductivity data gathered as a function of temperature and electric field. Transient currents and conductivity estimates as a function of temperature and field were recorded on miniaturized HVDC power cables with construction of 1.5 mm thick crosslinked polyethylene (XLPE insulation. Outputs of the conductivity model are compared to measured field distributions using space charge measurements techniques. It is shown that some features of the field distribution on model cables put under thermal gradient can be anticipated based on conductivity data. However, space charge build-up can induce substantial electric field strengthening when materials are not well controlled.

  14. Design of foam-buffered high gain target with Fokker-Planck implosion simulation for thermal insulation and imprint mitigation

    International Nuclear Information System (INIS)

    Takeda, T.; Mima, K.; Norimatsu, T.; Nagatomo, H.; Nishiguchi, A.

    2003-01-01

    It is proposed that a thick foam layer on a plastic capsule of fusion pellet is effective not only for reducing the initial imprint, but also for solving the melting problem of cryogenic deuterium-tritium layer, in a reactor chamber. Investigated are the dependences of gain, thermal insulation for preventing the melting, and imprint mitigation of a foam-buffered target on the foam layer thickness. The imprint mitigation, the Rayleigh-Taylor growth factor and the fusion gain of a foam-buffered target are evaluated by the hydrodynamic implosion code HIMICO [A. Nishiguchi et al., Phys. Fluids B 4, 417 (1992)], which includes a Fokker-Planck transport code. As the result, it is found that high gain can be achieved by the foam-buffered target together with thermal insulation and imprint mitigation

  15. Analysis of aluminum base-reaction effect in density, porosity, and thermal insulation of porous fire bricks

    Science.gov (United States)

    Wismogroho, Agus Sukarto; Firmansyah, Trisna Bagus; Meidianto, Alwi; Widayatno, Wahyu Bambang; Amal, Muhamad Ikhlasul

    2018-05-01

    This paper reports the effect of aluminium corrosion reaction on the density, porosity, and thermal insulation capability of porous fire bricks. The reaction between aluminium and alkaline solution produces hydrogen and other sediment products. The test specimens of fire bricks were made from the mixture of castable cement, aluminium powder of 325 mesh in size (0, 0.1, 1, and 2 wt% with respect to castable cement), and 0.185 M KOH solution. The structural examination of the specimens shows the increase of porosity to 22.7 - 30.6% and the decrease of density in the range of 1.135-1.503 g/mL. In addition, the samples possess average pore size of 0.001-0.003 cm3 with the thermal insulation in the range of 47-78%.

  16. Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in Changsha, China

    Directory of Open Access Journals (Sweden)

    Zhibin Wu

    2017-09-01

    Full Text Available Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments’ conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC located in the hot summer and cold winter (HSCW climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET* was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.

  17. Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in Changsha, China.

    Science.gov (United States)

    Wu, Zhibin; Li, Nianping; Cui, Haijiao; Peng, Jinqing; Chen, Haowen; Liu, Penglong

    2017-09-21

    Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments' conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm) and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC) located in the hot summer and cold winter (HSCW) climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET*) was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.

  18. Sizing of the thermal and electrical systems for an FED bundle divertor design with MgO insulation

    International Nuclear Information System (INIS)

    Schultz, J.H.

    1981-01-01

    The high-order dependence of toroidal ripple from a bundle divertor on the magnet shield thickness increases the desirability of a magnet technology with minimal shielding requirements. A jacketed conductor with MgO powder insulation has been used successfully in highly irradiated environments. Its properties and limitations are described. A thermal and electrical sizing code has been developed for magnet design with this technology. Two design examples for ETF and FED missions show reduced recirculating power from previously reported designs

  19. Evaluation of the application of a thermal insulation system: in-situ comparison of seasonal and daily climatic fluctuations

    Czech Academy of Sciences Publication Activity Database

    Fořt, J.; Beran, Pavel; Konvalinka, P.; Pavlík, Z.; Černý, R.

    2017-01-01

    Roč. 57, č. 3 (2017), s. 159-166 ISSN 1210-2709 R&D Projects: GA ČR(CZ) GBP105/12/G059 Institutional support: RVO:68378297 Keywords : in-situ monitoring * temperature * relative humidity * thermal insulation * energy sustainability * seasonal fluctuations Subject RIV: JN - Civil Engineering OBOR OECD: Construction engineering, Municipal and structural engineering https://ojs.cvut.cz/ojs/index.php/ap/article/view/4087/4171

  20. Assessment Framework of Building Facade in Optimizing Indoor Thermal Comfort of Green Building Index (GBI Certified Office Building

    Directory of Open Access Journals (Sweden)

    Abdul Tharim Asniza Hamimi

    2016-01-01

    Full Text Available During the past decade, the construction industry has seen a new trend in the development of “green” or “sustainable” construction concept around the world with vast support from prominent organization, together with the introduction of sustainable building codes. The establishment of green building certification systems worldwide is seen as one of the most efforts in the emerging green building movement. In order to support the development of the “green” and “sustainable” concept in Malaysia, Green Building Index (GBI was launched by the government on 21 May 2009 that created to promote sustainability in the built environment and raise awareness of environmental issues. However, the construction industry seems to have focused only on findings the “right mechanism” for an environmentally sustainable “final result” in order for the building to be certified as green with the lacking of continuous assessment on the building performance after the certifications. This study is purposely conducted to investigate the performance of various rated Green Building Index (GBI Non-Residential New Construction office buildings and the influence on Indoor Thermal Comfort (ITC of the selected buildings. The aim is to develop an assessment framework for optimum green building architectural façade to be used for office buildings in Malaysia as well as to analyse the occupants’ perception, satisfaction and performance in the selected Green Building Index (GBI rated office indoor environment. This research is still in its infancy; therefore the paper is focused on research aims, research scope and methodology, and expected deliverables for the proposed research.

  1. Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower

    International Nuclear Information System (INIS)

    Ma, Peizheng; Wang, Lin-Shu; Guo, Nianhua

    2014-01-01

    Highlights: • Investigated cooling of thermally homeostatic buildings in 7 U.S. cities by modeling. • Natural energy is harnessed by cooling tower to extract heat for building cooling. • Systematically studied possibility and conditions of using cooling tower in buildings. • Diurnal ambient temperature amplitude is taken into account in cooling tower cooling. • Homeostatic building cooling is possible in locations with large ambient T amplitude. - Abstract: A case is made that while it is important to mitigate dissipative losses associated with heat dissipation and mechanical/electrical resistance for engineering efficiency gain, the “architect” of energy efficiency is the conception of best heat extraction frameworks—which determine the realm of possible efficiency. This precept is applied to building energy efficiency here. Following a proposed process assumption-based design method, which was used for determining the required thermal qualities of building thermal autonomy, this paper continues this line of investigation and applies heat extraction approach investigating the extent of building partial homeostasis and the possibility of full homeostasis by using cooling tower in one summer in seven selected U.S. cities. Cooling tower heat extraction is applied parametrically to hydronically activated radiant-surfaces model-buildings. Instead of sizing equipment as a function of design peak hourly temperature as it is done in heat balance design-approach of selecting HVAC equipment, it is shown that the conditions of using cooling tower depend on both “design-peak” daily-mean temperature and the distribution of diurnal range in hourly temperature (i.e., diurnal temperature amplitude). Our study indicates that homeostatic building with natural cooling (by cooling tower alone) is possible only in locations of special meso-scale climatic condition such as Sacramento, CA. In other locations the use of cooling tower alone can only achieve homeostasis

  2. Computationally efficient thermal-mechanical modelling of selective laser melting

    Science.gov (United States)

    Yang, Yabin; Ayas, Can

    2017-10-01

    The Selective laser melting (SLM) is a powder based additive manufacturing (AM) method to produce high density metal parts with complex topology. However, part distortions and accompanying residual stresses deteriorates the mechanical reliability of SLM products. Modelling of the SLM process is anticipated to be instrumental for understanding and predicting the development of residual stress field during the build process. However, SLM process modelling requires determination of the heat transients within the part being built which is coupled to a mechanical boundary value problem to calculate displacement and residual stress fields. Thermal models associated with SLM are typically complex and computationally demanding. In this paper, we present a simple semi-analytical thermal-mechanical model, developed for SLM that represents the effect of laser scanning vectors with line heat sources. The temperature field within the part being build is attained by superposition of temperature field associated with line heat sources in a semi-infinite medium and a complimentary temperature field which accounts for the actual boundary conditions. An analytical solution of a line heat source in a semi-infinite medium is first described followed by the numerical procedure used for finding the complimentary temperature field. This analytical description of the line heat sources is able to capture the steep temperature gradients in the vicinity of the laser spot which is typically tens of micrometers. In turn, semi-analytical thermal model allows for having a relatively coarse discretisation of the complimentary temperature field. The temperature history determined is used to calculate the thermal strain induced on the SLM part. Finally, a mechanical model governed by elastic-plastic constitutive rule having isotropic hardening is used to predict the residual stresses.

  3. Retrospective Analysis of NIST Standard Reference Material 1450, Fibrous Glass Board, for Thermal Insulation Measurements

    Science.gov (United States)

    Zarr, Robert R; Heckert, N Alan; Leigh, Stefan D

    2014-01-01

    Thermal conductivity data acquired previously for the establishment of Standard Reference Material (SRM) 1450, Fibrous Glass Board, as well as subsequent renewals 1450a, 1450b, 1450c, and 1450d, are re-analyzed collectively and as individual data sets. Additional data sets for proto-1450 material lots are also included in the analysis. The data cover 36 years of activity by the National Institute of Standards and Technology (NIST) in developing and providing thermal insulation SRMs, specifically high-density molded fibrous-glass board, to the public. Collectively, the data sets cover two nominal thicknesses of 13 mm and 25 mm, bulk densities from 60 kg·m−3 to 180 kg·m−3, and mean temperatures from 100 K to 340 K. The analysis repetitively fits six models to the individual data sets. The most general form of the nested set of multilinear models used is given in the following equation: λ(ρ,T)=a0+a1ρ+a2T+a3T3+a4e−(T−a5a6)2where λ(ρ,T) is the predicted thermal conductivity (W·m−1·K−1), ρ is the bulk density (kg·m−3), T is the mean temperature (K) and ai (for i = 1, 2, … 6) are the regression coefficients. The least squares fit results for each model across all data sets are analyzed using both graphical and analytic techniques. The prevailing generic model for the majority of data sets is the bilinear model in ρ and T. λ(ρ,T)=a0+a1ρ+a2T One data set supports the inclusion of a cubic temperature term and two data sets with low-temperature data support the inclusion of an exponential term in T to improve the model predictions. Physical interpretations of the model function terms are described. Recommendations for future renewals of SRM 1450 are provided. An Addendum provides historical background on the origin of this SRM and the influence of the SRM on external measurement programs. PMID:26601034

  4. A thermal spike model of the amorphization of insulators by high-energy heavy-ion irradiation

    International Nuclear Information System (INIS)

    Szenes, G.

    1995-01-01

    Recently, experimental data on magnetic insulators irradiated with swift heavy ions were analyzed by a new thermal spike model and good quantitative agreement was achieved. Analytical expressions were given for the evolution of latent tracks with the electronic stopping power S e of bombarding ions and a relation between the thermal properties of the target and the threshold value of S e was proposed and proved experimentally. In the present paper, after a brief review of the model, the temperature dependence of latent track formation is discussed and the predictions of the model are compared with the available experimental results

  5. Thermal integrity in mechanics and engineering

    International Nuclear Information System (INIS)

    Shorr, Boris F.

    2015-01-01

    The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author's contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspects of thermal integrity. The author endeavors to provide a thorough yet sufficiently simple presentation of the underlying concepts, making the book compelling to a wide audience.

  6. Thermal integrity in mechanics and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shorr, Boris F. [Central Institute of Aviation Motors (CIAM), Moscow (Russian Federation)

    2015-07-01

    The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author's contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspects of thermal integrity. The author endeavors to provide a thorough yet sufficiently simple presentation of the underlying concepts, making the book compelling to a wide audience.

  7. Multifunctional Thermal Structures Using Cellular Contact-Aided Complaint Mechanisms

    Science.gov (United States)

    2016-10-31

    that it transfers heat away from (or insulates) the electronics modules in order to ensure that the electronics do not overheat (or become too cold...conventional active thermal control systems whenever possible. The basic aim of a passive thermal control system is to control heat transfer from...electronic devices to a radiating exterior surface. Heat may need to be retained when the devices generate little heat , and high heat transfer

  8. Multifunctional Thermal Structures Using Cellular Contract-Aided Complaint Mechanisms

    Science.gov (United States)

    2017-01-26

    that it transfers heat away from (or insulates) the electronics modules in order to ensure that the electronics do not overheat (or become too cold...conventional active thermal control systems whenever possible. The basic aim of a passive thermal control system is to control heat transfer from...electronic devices to a radiating exterior surface. Heat may need to be retained when the devices generate little heat , and high heat transfer

  9. Electrical and mechanical properties of highly elongated high density polyethylene as cryogenic insulation materials

    International Nuclear Information System (INIS)

    Yoshino, Katsumi; Park, Dae-Hee; Miyata, Kiyomi; Yamaoka, Hitoshi; Itoh, Minoru; Ichihara, Syouji.

    1989-01-01

    Electrical and mechanical properties of highly elongated high density polyethylene were investigated in the temperature range between 4.2 K and 400 K from a viewpoint of electrical insulation at low temperature and the following properties have been clarified. (1) The electrical conductivity of samples decreases with increasing draw ratio, and also decreases at cryogenic temperature. (2) Breakdown strength of highly elongated sample is similar to that of non-elongated sample. It is nearby temperature independent below 300 K but at higher temperature it falls steeply. (3) Mechanical breakdown stress and elastic modulus of high density polyethylene increase with increasing draw ratio. Their values at liquid nitrogen temperature are much higher than that at room temperature. On the other hand, strains decreases at liquid nitrogen temperature. (4) Break of the sample develops in the direction of 45deg from the direction of stress both at room temperature and at cryogenic temperature. (5) The characteristic of mechanical breakdown at liquid nitrogen temperature can be explained by a brittleness fracture process. (6) Toughness of high density polyethylene increases with increasing draw ratio until draw ratio of 5, and it decreased, and increase at higher draw ratio. However at extremely high draw ratio of 10 it again increases. These findings clearly indicate that highly elongated high density polyethylene has good electrical and mechanical properties at cryogenic temperature and can be used as the insulating materials at cryogenic temperature. (author)

  10. Measurements of the apparent thermal conductivity of multi-layer insulation between 20 K and 90 K

    International Nuclear Information System (INIS)

    Hurd, Joseph A.; Van Sciver, Steven W.

    2014-01-01

    NASA has the need to efficiently store cryogenic propellants in space for long periods of time. One method to improve storage efficiency is to use multi-layer insulation (MLI), a technique that minimizes the boiling rate due to radiation heat transfer. Typically, the thermal performance of MLI is determined by measuring the rate of evaporation of liquid nitrogen from a calibrated cryostat. The main limitation with this method is that testing conditions are restricted by the boiling temperature of the LN 2 , which may not match the requirements of the application. The Multi-Layer Insulation Thermal Conductivity Experiment (MIKE) at the National High Magnetic Field Laboratory is capable of measuring the effective thermal conductivity of MLI at variable boundary temperatures. MIKE uses cryo-refrigerators to control boundary temperatures in the calorimeter and a calibrated thermal link to measure the heat load. To make the measurements requested by NASA, MIKE needed to be recalibrated for the 20 K to 90 K range. Also, due to the expectation of a lower heat transfer rate, the heat load support rod material was changed to one with a lower thermal conductivity to ensure the temperature difference seen on the cold rod could be measurable at the estimated heat load. Presented are the alterations to MIKE including calibration data and heat load measurements on new load-bearing MLI supplied by NASA

  11. Performance Characterisation of a Hybrid Flat-Plate Vacuum Insulated Photovoltaic/Thermal Solar Power Module in Subtropical Climate

    Directory of Open Access Journals (Sweden)

    Andrew Y. A. Oyieke

    2016-01-01

    Full Text Available A flat-plate Vacuum Insulated Photovoltaic and Thermal (VIPV/T system has been thermodynamically simulated and experimentally evaluated to assess the thermal and electrical performance as well as energy conversion efficiencies under a subtropical climate. A simulation model made of specified components is developed in Transient Systems (TRNSYS environment into which numerical energy balance equations are implemented. The influence of vacuum insulation on the system’s electrical and thermal yields has been evaluated using temperatures, current, voltage, and power flows over daily and annual cycles under local meteorological conditions. The results from an experiment conducted under steady-state conditions in Durban, South Africa, are compared with the simulation based on the actual daily weather data. The VIPV/T has shown improved overall and thermal efficiencies of 9.5% and 16.8%, respectively, while electrical efficiency marginally reduced by 0.02% compared to the conventional PV/T. The simulated annual overall efficiency of 29% (i.e., 18% thermal and 11% electrical has been realised, in addition to the solar fraction, overall exergy, and primary energy saving efficiencies of 39%, 29%, and 27%, respectively.

  12. Enhancement of natural ventilation in buildings using a thermal chimney

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Ho [University of California at Berkeley, Berkeley, CA (United States); Strand, Richard K. [University of Illinois at Urbana-Champaign, Champaign, IL (United States)

    2009-06-15

    A new module was developed for and implemented in the EnergyPlus program for the simulation and determination of the energy impact of thermal chimneys. This paper describes the basic concepts, assumptions, and algorithms implemented into the EnergyPlus program to predict the performance of a thermal chimney. Using the new module, the effects of the chimney height, solar absorptance of the absorber wall, solar transmittance of the glass cover and the air gap width are investigated under various conditions. Chimney height, solar absorptance and solar transmittance turned out to have more influence on the ventilation enhancement than the air gap width. The potential energy impacts of a thermal chimney under three different climate conditions are also investigated. It turned out that significant building cooling energy saving can be achieved by properly employing thermal chimneys and that they have more potential for cooling than for heating. In addition, the performance of a thermal chimney was heavily dependent on the climate of the location. (author)

  13. Mechanical and Thermal Characterization of Silica Nanocomposites

    Science.gov (United States)

    Cunningham, Anthony Lamar

    Polymer nanocomposites are a class of materials containing nanoparticles with a large interfacial surface area. Only a small quantity of nanoparticles are needed to provide superior multifunctional properties; such as mechanical, thermal, electrical, and moisture absorption properties in polymers. Nanoparticles tend to agglomerate, so special techniques are required for homogeneous distribution. Nanosilica is now readily available as colloidal sols, for example; Nanopox RTM F400 (supplied by Evonik Nanoresins AG, Germany). The nanoparticles are first synthesized from aqueous sodium silicate solution, and then undergo a surface modification process with organosilane and matrix exchange. F400 contains 40%wt silica nanoparticles colloidally dispersed in a DGEBA epoxy resin. The mean particle diameter is about 20 nm with a narrow distribution range of about 5 to 35 nm. The objectives of this study are to develop a reproducible processing method for nanosilica enhanced resin systems used in the manufacturing of fiber reinforced composites that will be characterized for mechanical and thermal properties. Research has concluded that shows improvements in the properties of the matrix material when processed in loading variations of 0 to 25%wt silica nanoparticles. The loadings were also used to manufacture fiberglass reinforced nanocomposite laminates and also tested for mechanical and thermal properties.

  14. Building America Case Study: Construction Guidelines for High R-Value Walls without Exterior Rigid Insulation, Cold Climate Region

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    High-R wall assemblies (R-40 and above) are gaining popularity in the market due to programs like the DOE's Zero Energy Ready Home program, Passive House (PH), Net Zero Energy Home (NZEH) challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used 'double wall' systems to more practically achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double wall systems is that there are very few new exterior details. Exterior sheathing, structural bracing, house wrap or building paper, window and door flashing, and siding attachment are usually identical to good details in conventional framed wall systems. The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and result in a reduction of material brought to landfills due to failures and resulting decay. While this document focuses on double wall framing techniques, the majority of the information on how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture related damage and are intended for builders, framing contractors, architects, and consultants involved in designing and building super insulated homes.

  15. Building renovation with interior insulation on solid masonry walls in Denmark - A study of the building segment and possible solutions

    DEFF Research Database (Denmark)

    Odgaard, Tommy; Bjarløv, Søren Peter; Rode, Carsten

    2015-01-01

    The segment size of the Danish multi-story building stock from the period 1851-1930 is established through a unique major database managed by the Danish authorities. The outcome illustrates a large segment with 219,202 apartment units distributed over 14,832 unique buildings, all sharing characte...

  16. Occupant performance and building energy consumption with different philosophies of determining acceptable thermal conditions

    DEFF Research Database (Denmark)

    Toftum, Jørn; Andersen, Rune Vinther; Jensen, Kasper Lynge

    2009-01-01

    Based on building energy and indoor environment simulations, this study uses a recently developed method relying on Bayesian Network theory to estimate and compare the consequences for occupant performance and energy consumption of applying temperature criteria set according to the adaptive model...... configurations, especially in the tropical climate, the estimated performance differed only modestly between configurations. However, energy consumption was always lower in buildings without mechanical cooling, particularly so in the tropical climate. The findings indicate that determining acceptable indoor...... thermal environments with the adaptive comfort model may result in significant energy savings and at the same time will not have large consequences for the mental performance of occupants....

  17. SUPER-CAPACITOR APPLICATION IN ELECTRICAL POWER CABLE TESTING FACILITIES IN THERMAL ENDURANCE AND MECHANICAL BRACING TESTS

    Directory of Open Access Journals (Sweden)

    I. V. Oleksyuk

    2015-01-01

    Full Text Available The current-carrying cores of the electrical power cables should be resistant to effects of short-circuit currents whose values depend on the material of the core, its cross-sectional area, cable insulation properties, environment temperature, and the duration of the short-circuit current flow (1 and 3–4 sec. when tested for thermal endurance and mechanical bracing. The facilities for testing the 10 kV aluminum core cables with short-circuit current shall provide mechanical-bracing current 56,82 kA and thermal endurance current 11,16 kA. Although capacitors provide such values of the testing currents to the best advantage, utilizing conventional capacitor-units will involve large expenditures for erecting and  running a separate building. It is expedient to apply super-capacitors qua the electric power supply for testing facilities, as they are capacitors with double-electrical layer and involve the current values of tens of kilo-amperes.The insulation voltage during short-circuit current testing being not-standardized, it is not banned to apply voltages less than 10 kV when performing short-circuit thermal endurance and mechanical bracing tests for electrical power cables of 10 kV. The super-capacitor voltage variation-in-time graph consists of two regions: capacitive and resistive. The capacitive part corresponds to the voltage change consequent on the energy change in the super-capacitors. The resistive part shows the voltage variation due to the active resistance presence in the super-capacitor.The author offers the algorithm determining the number of super capacitors requisite for testing 10 kV-electrical power cables with short-circuit currents for thermal endurance and mechanical bracing. The paper shows that installation of super-capacitors in the facilities testing the cables with short-circuit currents reduces the area needed for the super-capacitors in comparison with conventional capacitors more than by one order of magnitude.

  18. Band inversion mechanism in topological insulators: A guideline for materials design

    KAUST Repository

    Zhu, Zhiyong

    2012-06-01

    Alteration of the topological order by band inversion is a key ingredient of a topologically nontrivial material. Using first-principles calculations for HgTe, PtScBi, and Bi2Se3, we argue that it is not accurate to ascribe the band inversion to the spin-orbit coupling. Instead, scalar relativistic effects and/or lattice distortions are found to be essential. Therefore, the search for topologically nontrivial materials should focus on band shifts due to these mechanisms rather than spin-orbit coupling. We propose an effective scheme to search for new topological insulators.

  19. Band inversion mechanism in topological insulators: A guideline for materials design

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2012-01-01

    Alteration of the topological order by band inversion is a key ingredient of a topologically nontrivial material. Using first-principles calculations for HgTe, PtScBi, and Bi2Se3, we argue that it is not accurate to ascribe the band inversion to the spin-orbit coupling. Instead, scalar relativistic effects and/or lattice distortions are found to be essential. Therefore, the search for topologically nontrivial materials should focus on band shifts due to these mechanisms rather than spin-orbit coupling. We propose an effective scheme to search for new topological insulators.

  20. Colloquium 3: Thermal insulation materials in construction and in high-temperature plants. Lectures; Kolloquium 3: Waermedaemmstoffe im Bauwesen und in Hochtemperaturanlagen. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, E.; Gross, U.; Walter, G. [comps.

    1999-07-01

    Colloquium 3, ''Thermal insulation materials in construction and in high-temperature plants'' focused, for one thing, on the inter-relationships between the development of thermal insulation materials for construction and high-temperature applications and the development of processes and plants and, for another, on the standards of and amendments to the thermal protection ordinance. Calcium silicate and Silcapor as a thermal protection material and a high-temperature thermal insulant, respectively, are dealt with inter alia. The use of thermal insulants in industrial furnaces and different methods for measuring thermal conductivity are described. Further topics are the elements of the energy conservation ordinance being drafted, and thermal-insulation construction materials such as bricks and foam mortar. Ten papers are individually listed in the Energy database. (orig.) [German] Im Mittelpunkt des Kolloquium 3 ''Waermedaemmstoffe im Bauwesen und in Hochtemperaturanlagen'' stehen die wechselseitigen Zusammenhaenge zwischen der Entwicklung von Waermedaemmstoffen fuer das Bauwesen und die Hochtemperaturanwendung einerseits und der Prozess-und Anlagenentwicklung anderseits sowie die Normung und die Novellierung der Waermeschutzverordnung. Es wird u.a. auf den Waermedaemmstoff Calciumsilicat eingegangen ebensowie auf Silcapor als Hochtemperaturd ammstoff. Der Einsatz von Waermedaemmstoffen in Industrieoefen sowie die unterschiedlichen Messmethoden der Waermeleitfaehigkeit werden beschrieben. Weitere Themen sind die Grundlagen der kuenftigen Energiesparverordnung sowie waermedaemmende Baustoffe wie Ziegel und Porenbeton. Fuer die Datenbank Energy wurden zehn Arbeiten separat aufgenommen.