WorldWideScience

Sample records for building scalable models

  1. Building scalable apps with Redis and Node.js

    CERN Document Server

    Johanan, Joshua

    2014-01-01

    If the phrase scalability sounds alien to you, then this is an ideal book for you. You will not need much Node.js experience as each framework is demonstrated in a way that requires no previous knowledge of the framework. You will be building scalable Node.js applications in no time! Knowledge of JavaScript is required.

  2. Scalability of Sustainable Business Models in Hybrid Organizations

    Directory of Open Access Journals (Sweden)

    Adam Jabłoński

    2016-02-01

    Full Text Available The dynamics of change in modern business create new mechanisms for company management to determine their pursuit and the achievement of their high performance. This performance maintained over a long period of time becomes a source of ensuring business continuity by companies. An ontological being enabling the adoption of such assumptions is such a business model that has the ability to generate results in every possible market situation and, moreover, it has the features of permanent adaptability. A feature that describes the adaptability of the business model is its scalability. Being a factor ensuring more work and more efficient work with an increasing number of components, scalability can be applied to the concept of business models as the company’s ability to maintain similar or higher performance through it. Ensuring the company’s performance in the long term helps to build the so-called sustainable business model that often balances the objectives of stakeholders and shareholders, and that is created by the implemented principles of value-based management and corporate social responsibility. This perception of business paves the way for building hybrid organizations that integrate business activities with pro-social ones. The combination of an approach typical of hybrid organizations in designing and implementing sustainable business models pursuant to the scalability criterion seems interesting from the cognitive point of view. Today, hybrid organizations are great spaces for building effective and efficient mechanisms for dialogue between business and society. This requires the appropriate business model. The purpose of the paper is to present the conceptualization and operationalization of scalability of sustainable business models that determine the performance of a hybrid organization in the network environment. The paper presents the original concept of applying scalability in sustainable business models with detailed

  3. The Concept of Business Model Scalability

    DEFF Research Database (Denmark)

    Nielsen, Christian; Lund, Morten

    2015-01-01

    for a long-term profitable business. However, the message conveyed in this article is that while providing a good value proposition may help the firm ‘get by’, the really successful businesses of today are those able to reach the sweet-spot of business model scalability. This article introduces and discusses......The power of business models lies in their ability to visualize and clarify how firms’ may configure their value creation processes. Among the key aspects of business model thinking are a focus on what the customer values, how this value is best delivered to the customer and how strategic partners...... are leveraged in this value creation, delivery and realization exercise. Central to the mainstream understanding of business models is the value proposition towards the customer and the hypothesis generated is that if the firm delivers to the customer what he/she requires, then there is a good foundation...

  4. Model Building

    OpenAIRE

    Frampton, Paul H.

    1997-01-01

    In this talk I begin with some general discussion of model building in particle theory, emphasizing the need for motivation and testability. Three illustrative examples are then described. The first is the Left-Right model which provides an explanation for the chirality of quarks and leptons. The second is the 331-model which offers a first step to understanding the three generations of quarks and leptons. Third and last is the SU(15) model which can accommodate the light leptoquarks possibly...

  5. Scalable Text Mining with Sparse Generative Models

    OpenAIRE

    Puurula, Antti

    2016-01-01

    The information age has brought a deluge of data. Much of this is in text form, insurmountable in scope for humans and incomprehensible in structure for computers. Text mining is an expanding field of research that seeks to utilize the information contained in vast document collections. General data mining methods based on machine learning face challenges with the scale of text data, posing a need for scalable text mining methods. This thesis proposes a solution to scalable text mining: gener...

  6. Building a Distributed Infrastructure for Scalable Triple Stores

    Institute of Scientific and Technical Information of China (English)

    Jing Zhou; Wendy Hall; David De Roure

    2009-01-01

    Built specifically for the Semantic Web, triple stores are required to accommodate a large number of RDF triples and remain primarily centralized. As triple stores grow and evolve with time, there is a demanding need for scalable techniques to remove resource and performance bottlenecks in such systems. To this end, we propose a fully decentralized peer-to-peer architecture for large scale triple stores in which triples are maintained by individual stakeholders, and a semantics-directed search protocol, mediated by topology reorganization, for locating triples of interest. We test our design through simulations and the results show anticipated improvements over existing techniques for distributed triple stores. In addition to engineering future large scale triple stores, our work will in particular benefit the federation of stand-alone triple stores of today to achieve desired scalability.

  7. Building a scalable event-level metadata service for ATLAS

    International Nuclear Information System (INIS)

    The ATLAS TAG Database is a multi-terabyte event-level metadata selection system, intended to allow discovery, selection of and navigation to events of interest to an analysis. The TAG Database encompasses file- and relational-database-resident event-level metadata, distributed across all ATLAS Tiers. An oracle hosted global TAG relational database, containing all ATLAS events, implemented in Oracle, will exist at Tier O. Implementing a system that is both performant and manageable at this scale is a challenge. A 1 TB relational TAG Database has been deployed at Tier 0 using simulated tag data. The database contains one billion events, each described by two hundred event metadata attributes, and is currently undergoing extensive testing in terms of queries, population and manageability. These 1 TB tests aim to demonstrate and optimise the performance and scalability of an Oracle TAG Database on a global scale. Partitioning and indexing strategies are crucial to well-performing queries and manageability of the database and have implications for database population and distribution, so these are investigated. Physics query patterns are anticipated, but a crucial feature of the system must be to support a broad range of queries across all attributes. Concurrently, event tags from ATLAS Computing System Commissioning distributed simulations are accumulated in an Oracle-hosted database at CERN, providing an event-level selection service valuable for user experience and gathering information about physics query patterns. In this paper we describe the status of the Global TAG relational database scalability work and highlight areas of future direction

  8. A Scalable Prescriptive Parallel Debugging Model

    DEFF Research Database (Denmark)

    Jensen, Nicklas Bo; Quarfot Nielsen, Niklas; Lee, Gregory L.;

    2015-01-01

    Debugging is a critical step in the development of any parallel program. However, the traditional interactive debugging model, where users manually step through code and inspect their application, does not scale well even for current supercomputers due its centralized nature. While lightweight...... and test their debugging intuition in a way that helps to reduce the error space. Based on this debugging model we introduce a prototype implementation embodying this model, the DySectAPI, allowing programmers to construct probe trees for automatic, event-driven debugging at scale. In this paper we...... introduce the concepts behind DySectAPI and, using both experimental results and analytical modelling, we show that the DySectAPI implementation can run with a low overhead on current systems. We achieve a logarithmic scaling of the prototype and show predictions that even for a large system the overhead...

  9. Semantic Models for Scalable Search in the Internet of Things

    Directory of Open Access Journals (Sweden)

    Dennis Pfisterer

    2013-03-01

    Full Text Available The Internet of Things is anticipated to connect billions of embedded devices equipped with sensors to perceive their surroundings. Thereby, the state of the real world will be available online and in real-time and can be combined with other data and services in the Internet to realize novel applications such as Smart Cities, Smart Grids, or Smart Healthcare. This requires an open representation of sensor data and scalable search over data from diverse sources including sensors. In this paper we show how the Semantic Web technologies RDF (an open semantic data format and SPARQL (a query language for RDF-encoded data can be used to address those challenges. In particular, we describe how prediction models can be employed for scalable sensor search, how these prediction models can be encoded as RDF, and how the models can be queried by means of SPARQL.

  10. Building Models and Building Modelling

    DEFF Research Database (Denmark)

    Jørgensen, Kaj Asbjørn; Skauge, Jørn

    I rapportens indledende kapitel beskrives de primære begreber vedrørende bygningsmodeller og nogle fundamentale forhold vedrørende computerbaseret modulering bliver opstillet. Desuden bliver forskellen mellem tegneprogrammer og bygnings­model­lerings­programmer beskrevet. Vigtige aspekter om......­lering og bygningsmodeller. Det bliver understreget at modellering bør udføres på flere abstraktions­niveauer og i to dimensioner i den såkaldte modelleringsmatrix. Ud fra dette identificeres de primære faser af bygningsmodel­lering. Dernæst beskrives de basale karakteristika for bygningsmodeller. Heri...... inkluderes en præcisering af begreberne objektorienteret software og objektorienteret modeller. Det bliver fremhævet at begrebet objektbaseret modellering giver en tilstrækkelig og bedre forståelse. Endelig beskrives forestillingen om den ideale bygningsmodel som værende én samlet model, der anvendes gennem...

  11. Scalable learning of probabilistic latent models for collaborative filtering

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre

    2015-01-01

    Collaborative filtering has emerged as a popular way of making user recommendations, but with the increasing sizes of the underlying databases scalability is becoming a crucial issue. In this paper we focus on a recently proposed probabilistic collaborative filtering model that explicitly...... variational Bayes learning and inference algorithm for these types of models. Empirical results show that the proposed algorithm achieves significantly better accuracy results than other straw-men models evaluated on a collection of well-known data sets. We also demonstrate that the algorithm has a highly...

  12. Building a Community Infrastructure for Scalable On-Line Performance Analysis Tools around Open|Speedshop

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Barton

    2014-06-30

    Peta-scale computing environments pose significant challenges for both system and application developers and addressing them required more than simply scaling up existing tera-scale solutions. Performance analysis tools play an important role in gaining this understanding, but previous monolithic tools with fixed feature sets have not sufficed. Instead, this project worked on the design, implementation, and evaluation of a general, flexible tool infrastructure supporting the construction of performance tools as “pipelines” of high-quality tool building blocks. These tool building blocks provide common performance tool functionality, and are designed for scalability, lightweight data acquisition and analysis, and interoperability. For this project, we built on Open|SpeedShop, a modular and extensible open source performance analysis tool set. The design and implementation of such a general and reusable infrastructure targeted for petascale systems required us to address several challenging research issues. All components needed to be designed for scale, a task made more difficult by the need to provide general modules. The infrastructure needed to support online data aggregation to cope with the large amounts of performance and debugging data. We needed to be able to map any combination of tool components to each target architecture. And we needed to design interoperable tool APIs and workflows that were concrete enough to support the required functionality, yet provide the necessary flexibility to address a wide range of tools. A major result of this project is the ability to use this scalable infrastructure to quickly create tools that match with a machine architecture and a performance problem that needs to be understood. Another benefit is the ability for application engineers to use the highly scalable, interoperable version of Open|SpeedShop, which are reassembled from the tool building blocks into a flexible, multi-user interface set of tools. This set of

  13. MR-Tree - A Scalable MapReduce Algorithm for Building Decision Trees

    Directory of Open Access Journals (Sweden)

    Vasile PURDILĂ

    2014-03-01

    Full Text Available Learning decision trees against very large amounts of data is not practical on single node computers due to the huge amount of calculations required by this process. Apache Hadoop is a large scale distributed computing platform that runs on commodity hardware clusters and can be used successfully for data mining task against very large datasets. This work presents a parallel decision tree learning algorithm expressed in MapReduce programming model that runs on Apache Hadoop platform and has a very good scalability with dataset size.

  14. ANALYZING AVIATION SAFETY REPORTS: FROM TOPIC MODELING TO SCALABLE MULTI-LABEL CLASSIFICATION

    Data.gov (United States)

    National Aeronautics and Space Administration — ANALYZING AVIATION SAFETY REPORTS: FROM TOPIC MODELING TO SCALABLE MULTI-LABEL CLASSIFICATION AMRUDIN AGOVIC*, HANHUAI SHAN, AND ARINDAM BANERJEE Abstract. The...

  15. Center for Programming Models for Scalable Parallel Computing

    Energy Technology Data Exchange (ETDEWEB)

    John Mellor-Crummey

    2008-02-29

    Rice University's achievements as part of the Center for Programming Models for Scalable Parallel Computing include: (1) design and implemention of cafc, the first multi-platform CAF compiler for distributed and shared-memory machines, (2) performance studies of the efficiency of programs written using the CAF and UPC programming models, (3) a novel technique to analyze explicitly-parallel SPMD programs that facilitates optimization, (4) design, implementation, and evaluation of new language features for CAF, including communication topologies, multi-version variables, and distributed multithreading to simplify development of high-performance codes in CAF, and (5) a synchronization strength reduction transformation for automatically replacing barrier-based synchronization with more efficient point-to-point synchronization. The prototype Co-array Fortran compiler cafc developed in this project is available as open source software from http://www.hipersoft.rice.edu/caf.

  16. Final Report: Center for Programming Models for Scalable Parallel Computing

    Energy Technology Data Exchange (ETDEWEB)

    Mellor-Crummey, John [William Marsh Rice University

    2011-09-13

    As part of the Center for Programming Models for Scalable Parallel Computing, Rice University collaborated with project partners in the design, development and deployment of language, compiler, and runtime support for parallel programming models to support application development for the “leadership-class” computer systems at DOE national laboratories. Work over the course of this project has focused on the design, implementation, and evaluation of a second-generation version of Coarray Fortran. Research and development efforts of the project have focused on the CAF 2.0 language, compiler, runtime system, and supporting infrastructure. This has involved working with the teams that provide infrastructure for CAF that we rely on, implementing new language and runtime features, producing an open source compiler that enabled us to evaluate our ideas, and evaluating our design and implementation through the use of benchmarks. The report details the research, development, findings, and conclusions from this work.

  17. Optimal, scalable forward models for computing gravity anomalies

    CERN Document Server

    May, Dave A

    2011-01-01

    We describe three approaches for computing a gravity signal from a density anomaly. The first approach consists of the classical "summation" technique, whilst the remaining two methods solve the Poisson problem for the gravitational potential using either a Finite Element (FE) discretization employing a multilevel preconditioner, or a Green's function evaluated with the Fast Multipole Method (FMM). The methods utilizing the PDE formulation described here differ from previously published approaches used in gravity modeling in that they are optimal, implying that both the memory and computational time required scale linearly with respect to the number of unknowns in the potential field. Additionally, all of the implementations presented here are developed such that the computations can be performed in a massively parallel, distributed memory computing environment. Through numerical experiments, we compare the methods on the basis of their discretization error, CPU time and parallel scalability. We demonstrate t...

  18. Developing a scalable modeling architecture for studying survivability technologies

    Science.gov (United States)

    Mohammad, Syed; Bounker, Paul; Mason, James; Brister, Jason; Shady, Dan; Tucker, David

    2006-05-01

    To facilitate interoperability of models in a scalable environment, and provide a relevant virtual environment in which Survivability technologies can be evaluated, the US Army Research Development and Engineering Command (RDECOM) Modeling Architecture for Technology Research and Experimentation (MATREX) Science and Technology Objective (STO) program has initiated the Survivability Thread which will seek to address some of the many technical and programmatic challenges associated with the effort. In coordination with different Thread customers, such as the Survivability branches of various Army labs, a collaborative group has been formed to define the requirements for the simulation environment that would in turn provide them a value-added tool for assessing models and gauge system-level performance relevant to Future Combat Systems (FCS) and the Survivability requirements of other burgeoning programs. An initial set of customer requirements has been generated in coordination with the RDECOM Survivability IPT lead, through the Survivability Technology Area at RDECOM Tank-automotive Research Development and Engineering Center (TARDEC, Warren, MI). The results of this project are aimed at a culminating experiment and demonstration scheduled for September, 2006, which will include a multitude of components from within RDECOM and provide the framework for future experiments to support Survivability research. This paper details the components with which the MATREX Survivability Thread was created and executed, and provides insight into the capabilities currently demanded by the Survivability faculty within RDECOM.

  19. Scalable Components Modeling and Parallel Computing in Reentry Vehicle Electronic System

    Institute of Scientific and Technical Information of China (English)

    马卫东; 魏克辉

    2002-01-01

    In this paper, we discuss a kind of scalable modeling and simulation methods for Reentry Vehicle Electronic System (RVES) applied in our project and verification. We introduce the hierarchy for modeling and simulation of RVES firstly. The working scheme of R VES simulation system is based on the DEDS processed according to Finite Automation and the Continuous System Model adapted some electronic parts. Then we describe a kind of Component Modeling designed for Scalable capability and Plug and Play Software Bus. The design and implementation of Parallel Computing and Processing are discussed in the fourth part, which is very important for the software development in the scalable modeling and simulation system.

  20. geoKepler Workflow Module for Computationally Scalable and Reproducible Geoprocessing and Modeling

    Science.gov (United States)

    Cowart, C.; Block, J.; Crawl, D.; Graham, J.; Gupta, A.; Nguyen, M.; de Callafon, R.; Smarr, L.; Altintas, I.

    2015-12-01

    The NSF-funded WIFIRE project has developed an open-source, online geospatial workflow platform for unifying geoprocessing tools and models for for fire and other geospatially dependent modeling applications. It is a product of WIFIRE's objective to build an end-to-end cyberinfrastructure for real-time and data-driven simulation, prediction and visualization of wildfire behavior. geoKepler includes a set of reusable GIS components, or actors, for the Kepler Scientific Workflow System (https://kepler-project.org). Actors exist for reading and writing GIS data in formats such as Shapefile, GeoJSON, KML, and using OGC web services such as WFS. The actors also allow for calling geoprocessing tools in other packages such as GDAL and GRASS. Kepler integrates functions from multiple platforms and file formats into one framework, thus enabling optimal GIS interoperability, model coupling, and scalability. Products of the GIS actors can be fed directly to models such as FARSITE and WRF. Kepler's ability to schedule and scale processes using Hadoop and Spark also makes geoprocessing ultimately extensible and computationally scalable. The reusable workflows in geoKepler can be made to run automatically when alerted by real-time environmental conditions. Here, we show breakthroughs in the speed of creating complex data for hazard assessments with this platform. We also demonstrate geoKepler workflows that use Data Assimilation to ingest real-time weather data into wildfire simulations, and for data mining techniques to gain insight into environmental conditions affecting fire behavior. Existing machine learning tools and libraries such as R and MLlib are being leveraged for this purpose in Kepler, as well as Kepler's Distributed Data Parallel (DDP) capability to provide a framework for scalable processing. geoKepler workflows can be executed via an iPython notebook as a part of a Jupyter hub at UC San Diego for sharing and reporting of the scientific analysis and results from

  1. Detailed Modeling and Evaluation of a Scalable Multilevel Checkpointing System

    Energy Technology Data Exchange (ETDEWEB)

    Mohror, Kathryn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moody, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bronevetsky, Greg [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); de Supinski, Bronis R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-01

    High-performance computing (HPC) systems are growing more powerful by utilizing more components. As the system mean time before failure correspondingly drops, applications must checkpoint frequently to make progress. But, at scale, the cost of checkpointing becomes prohibitive. A solution to this problem is multilevel checkpointing, which employs multiple types of checkpoints in a single run. Moreover, lightweight checkpoints can handle the most common failure modes, while more expensive checkpoints can handle severe failures. We designed a multilevel checkpointing library, the Scalable Checkpoint/Restart (SCR) library, that writes lightweight checkpoints to node-local storage in addition to the parallel file system. We present probabilistic Markov models of SCR's performance. We show that on future large-scale systems, SCR can lead to a gain in machine efficiency of up to 35 percent, and reduce the load on the parallel file system by a factor of two. In addition, we predict that checkpoint scavenging, or only writing checkpoints to the parallel file system on application termination, can reduce the load on the parallel file system by 20 × on today's systems and still maintain high application efficiency.

  2. A framework for building scalable web applications for high-resolution cluster-based display walls

    OpenAIRE

    Tang, Jason

    2015-01-01

    As technology advances, researchers in the natural sciences collect ever-increasing amounts of data. While computer science research often focuses on effective ways to perform computations on large data sets, the visualization of large data sets can be just as important for achieving new insights. Just as cluster computing enables scalable computation on large data sets, so can cluster-based display walls enable scalable visualization of large data sets. At the same time, visualization ...

  3. Automated model building

    CERN Document Server

    Caferra, Ricardo; Peltier, Nicholas

    2004-01-01

    This is the first book on automated model building, a discipline of automated deduction that is of growing importance Although models and their construction are important per se, automated model building has appeared as a natural enrichment of automated deduction, especially in the attempt to capture the human way of reasoning The book provides an historical overview of the field of automated deduction, and presents the foundations of different existing approaches to model construction, in particular those developed by the authors Finite and infinite model building techniques are presented The main emphasis is on calculi-based methods, and relevant practical results are provided The book is of interest to researchers and graduate students in computer science, computational logic and artificial intelligence It can also be used as a textbook in advanced undergraduate courses

  4. Building a Model Astrolabe

    CERN Document Server

    Ford, Dominic

    2012-01-01

    This paper presents a hands-on introduction to the medieval astrolabe, based around a working model which can be constructed from photocopies of the supplied figures. As well as describing how to assemble the model, I also provide a brief explanation of how each of its various parts might be used. The printed version of this paper includes only the parts needed to build a single model prepared for use at latitudes around 52{\\deg}N, but an accompanying electronic file archive includes equivalent images which can be used to build models prepared for use at any other latitude. The vector graphics scripts used to generate the models are also available for download, allowing customised astrolabes to be made.

  5. RF CMOS modeling: a scalable model of RF-MOSFET with different numbers of fingers

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yuning; Sun Lingling; Liu Jun, E-mail: yuyuning126@126.com [Key Laboratory of RF Circuits and Systems of Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2010-11-15

    A novel scalable model for multi-finger RF MOSFETs modeling is presented. All the parasitic components, including gate resistance, substrate resistance and wiring capacitance, are directly determined from the layout. This model is further verified using a standard 0.13 {mu}m RF CMOS process with nMOSFETs of different numbers of gate fingers, with the per gate width fixed at 2.5 {mu}m and the gate length at 0.13 {mu}m. Excellent agreement between measured and simulated S-parameters from 100 MHz to 20 GHz demonstrate the validity of this model.

  6. A scalable approach to modeling groundwater flow on massively parallel computers

    International Nuclear Information System (INIS)

    We describe a fully scalable approach to the simulation of groundwater flow on a hierarchy of computing platforms, ranging from workstations to massively parallel computers. Specifically, we advocate the use of scalable conceptual models in which the subsurface model is defined independently of the computational grid on which the simulation takes place. We also describe a scalable multigrid algorithm for computing the groundwater flow velocities. We axe thus able to leverage both the engineer's time spent developing the conceptual model and the computing resources used in the numerical simulation. We have successfully employed this approach at the LLNL site, where we have run simulations ranging in size from just a few thousand spatial zones (on workstations) to more than eight million spatial zones (on the CRAY T3D)-all using the same conceptual model

  7. A Semi-Automatic and Low Cost Approach to Build Scalable Lemma-based Lexical Resources for Arabic Verbs

    Directory of Open Access Journals (Sweden)

    Noureddine Doumi

    2016-02-01

    Full Text Available —This work presents a method that enables Arabic NLP community to build scalable lexical resources. The proposed method is low cost and efficient in time in addition to its scalability and extendibility. The latter is reflected in the ability for the method to be incremental in both aspects, processing resources and generating lexicons. Using a corpus; firstly, tokens are drawn from the corpus and lemmatized. Secondly, finite state transducers (FSTs are generated semi-automatically. Finally, FSTs are used to produce all possible inflected verb forms with their full morphological features. Among the algorithm’s strength is its ability to generate transducers having 184 transitions, which is very cumbersome, if manually designed. The second strength is a new inflection scheme of Arabic verbs; this increases the efficiency of FST generation algorithm. The experimentation uses a representative corpus of Modern Standard Arabic. The number of semi-automatically generated transducers is 171. The resulting open lexical resources coverage is high. Our resources cover more than 70% Arabic verbs. The built resources contain 16,855 verb lemmas and 11,080,355 fully, partially and not vocalized verbal inflected forms. All these resources are being made public and currently used as an open package in the Unitex framework available under the LGPL license.

  8. Scalability of the Muscular Action in a Parametric 3D Model of the Index Finger

    OpenAIRE

    Sancho Brú, Joaquín Luís; Vergara Monedero, Margarita; Rodríguez Cervantes, Pablo Jesús; Giurintano, David J.; Pérez González, Antonio

    2008-01-01

    A method for scaling the muscle action is proposed and used to achieve a 3D inverse dynamic model of the human finger with all its components scalable. This method is based on scaling the PCSA (physiological cross-sectional area) in a Hill muscle model. Different anthropometric parameters and maximal grip force data have been measured and their correlations have been analysed and used for scaling the PCSA of each muscle. A linear relationship between the normalised PCSA and the pr...

  9. Scalable models of data sharing in Earth sciences

    Science.gov (United States)

    Helly, John; Staudigel, Hubert; Koppers, Anthony

    2003-01-01

    Many Earth science disciplines are currently experiencing the emergence of new ways of data publication and the establishment of an information technology infrastructure for data archiving and exchange. Building on efforts to standardize data and metadata publication in geochemistry [Staudigel et al., 2002], here we discuss options for data publication, archiving and exchange. All of these options have to be structured to meet some minimum requirements of scholarly publication, in particular reliability of archival, reproducibility and falsifiability. All data publication and archival methods should strive to produce databases that are fully interoperable and this requires an appropriate data and metadata interchange protocol. To accomplish the latter we propose a new Metadata Interchange Format (.mif) that can be used for more effective sharing of data and metadata across digital libraries, data archives, and research projects. This is not a proposal for a particular set of metadata parameters but rather of a methodology that will enable metadata parameter sets to be easily developed and interchanged between research organizations. Examples are provided for geochemical data as well as map images to illustrate the flexibility of the approach.

  10. Scalable Models of Data Sharing in the Earth Sciences

    Science.gov (United States)

    Helly, J. J.; Staudigel, H.; Koppers, A.

    2002-12-01

    Many earth science disciplines are currently experiencing the emergence of new ways of data publication and the establishment of an information technology infrastructure for data archiving and exchange. Building on efforts to standardize data and metadata publication in geochemistry, we discuss options for data publication, archiving and exchange. All of these options have to be structured to meet some minimum requirements of scholarly publication, in particular reliability of archival, reproducibility and falsifiability. All data publication and archival methods should strive to produce data bases that are fully interoperable which requires an appropriate data and metadata interchange protocol. To accomplish the latter we propose a new Metadata Interchange Format (.mif) that can be used for more effective sharing of data and metadata across digital libraries, data archives and research projects. This is not a proposal for a particular set of metadata parameters but rather of a methodology that will enable them to be easily developed and interchanged between research organizations. Examples are provided for geochemical and oceanographic data as well as map images to illustrate the flexibility of the approach.

  11. Advances in Intelligent Modelling and Simulation Artificial Intelligence-Based Models and Techniques in Scalable Computing

    CERN Document Server

    Khan, Samee; Burczy´nski, Tadeusz

    2012-01-01

    One of the most challenging issues in today’s large-scale computational modeling and design is to effectively manage the complex distributed environments, such as computational clouds, grids, ad hoc, and P2P networks operating under  various  types of users with evolving relationships fraught with  uncertainties. In this context, the IT resources and services usually belong to different owners (institutions, enterprises, or individuals) and are managed by different administrators. Moreover, uncertainties are presented to the system at hand in various forms of information that are incomplete, imprecise, fragmentary, or overloading, which hinders in the full and precise resolve of the evaluation criteria, subsequencing and selection, and the assignment scores. Intelligent scalable systems enable the flexible routing and charging, advanced user interactions and the aggregation and sharing of geographically-distributed resources in modern large-scale systems.   This book presents new ideas, theories, models...

  12. Scalability of Sustainable Business Models in Hybrid Organizations

    OpenAIRE

    Adam Jabłoński

    2016-01-01

    The dynamics of change in modern business create new mechanisms for company management to determine their pursuit and the achievement of their high performance. This performance maintained over a long period of time becomes a source of ensuring business continuity by companies. An ontological being enabling the adoption of such assumptions is such a business model that has the ability to generate results in every possible market situation and, moreover, it has the features of permanent adapta...

  13. Model Transport: Towards Scalable Transfer Learning on Manifolds

    OpenAIRE

    Freifeld, Oren; Hauberg, Søren; Black, Michael J.

    2014-01-01

    We consider the intersection of two research fields: transfer learning and statistics on manifolds. In particular, we consider, for manifold-valued data, transfer learning of tangent-space models such as Gaussians distributions, PCA, regression, or classifiers. Though one would hope to simply use ordinary Rn-transfer learning ideas, the manifold structure prevents it. We overcome this by basing our method on inner-product-preserving parallel transport, a well-known tool widely used in other p...

  14. Scalable and Robust BDDC Preconditioners for Reservoir and Electromagnetics Modeling

    KAUST Repository

    Zampini, S.

    2015-09-13

    The purpose of the study is to show the effectiveness of recent algorithmic advances in Balancing Domain Decomposition by Constraints (BDDC) preconditioners for the solution of elliptic PDEs with highly heterogeneous coefficients, and discretized by means of the finite element method. Applications to large linear systems generated by div- and curl- conforming finite elements discretizations commonly arising in the contexts of modelling reservoirs and electromagnetics will be presented.

  15. A Scalable Cloud Library Empowering Big Data Management, Diagnosis, and Visualization of Cloud-Resolving Models

    Science.gov (United States)

    Zhou, S.; Tao, W. K.; Li, X.; Matsui, T.; Sun, X. H.; Yang, X.

    2015-12-01

    A cloud-resolving model (CRM) is an atmospheric numerical model that can numerically resolve clouds and cloud systems at 0.25~5km horizontal grid spacings. The main advantage of the CRM is that it can allow explicit interactive processes between microphysics, radiation, turbulence, surface, and aerosols without subgrid cloud fraction, overlapping and convective parameterization. Because of their fine resolution and complex physical processes, it is challenging for the CRM community to i) visualize/inter-compare CRM simulations, ii) diagnose key processes for cloud-precipitation formation and intensity, and iii) evaluate against NASA's field campaign data and L1/L2 satellite data products due to large data volume (~10TB) and complexity of CRM's physical processes. We have been building the Super Cloud Library (SCL) upon a Hadoop framework, capable of CRM database management, distribution, visualization, subsetting, and evaluation in a scalable way. The current SCL capability includes (1) A SCL data model enables various CRM simulation outputs in NetCDF, including the NASA-Unified Weather Research and Forecasting (NU-WRF) and Goddard Cumulus Ensemble (GCE) model, to be accessed and processed by Hadoop, (2) A parallel NetCDF-to-CSV converter supports NU-WRF and GCE model outputs, (3) A technique visualizes Hadoop-resident data with IDL, (4) A technique subsets Hadoop-resident data, compliant to the SCL data model, with HIVE or Impala via HUE's Web interface, (5) A prototype enables a Hadoop MapReduce application to dynamically access and process data residing in a parallel file system, PVFS2 or CephFS, where high performance computing (HPC) simulation outputs such as NU-WRF's and GCE's are located. We are testing Apache Spark to speed up SCL data processing and analysis.With the SCL capabilities, SCL users can conduct large-domain on-demand tasks without downloading voluminous CRM datasets and various observations from NASA Field Campaigns and Satellite data to a

  16. The Derivation and Use of a Scalable Model for Network Attack Identification and Path Prediction

    Directory of Open Access Journals (Sweden)

    Sanjeeb Nanda

    2008-04-01

    Full Text Available The rapid growth of the Internet has triggered an explosion in the number of applications that leverage its capabilities. Unfortunately, many are designed to burden or destroy the capabilities of their peers and the network's infrastructure. Hence, considerable effort has been focused on detecting and predicting the security breaches they propagate. However, the enormity of the Internet poses a formidable challenge to analyzing such attacks using scalable models. Furthermore, the lack of complete information on network vulnerabilities makes forecasting the systems that may be exploited by such applications in the future very hard. This paper presents a technique for deriving a scalable model for representing network attacks, and its application to identify actual attacks with greater certainty amongst false positives and false negatives. It also presents a method to forecast the propagation of security failures proliferated by an attack over time and its likely targets in the future.

  17. Bayesian forecasting and scalable multivariate volatility analysis using simultaneous graphical dynamic models

    OpenAIRE

    Gruber, Lutz F.; West, Mike

    2016-01-01

    The recently introduced class of simultaneous graphical dynamic linear models (SGDLMs) defines an ability to scale on-line Bayesian analysis and forecasting to higher-dimensional time series. This paper advances the methodology of SGDLMs, developing and embedding a novel, adaptive method of simultaneous predictor selection in forward filtering for on-line learning and forecasting. The advances include developments in Bayesian computation for scalability, and a case study in exploring the resu...

  18. Lightweight and Scalable Intrusion Trace Classification Using Interelement Dependency Models Suitable for Wireless Sensor Network Environment

    OpenAIRE

    Dae-Ki Kang

    2013-01-01

    We present a lightweight and scalable method for classifying network and program traces to detect system intrusion attempts. By employing interelement dependency models to overcome the independence violation problem inherent in the Naive Bayes learners, our method yields intrusion detectors with better accuracy. For efficient and lightweight counting of -gram features without losing accuracy, we use a -truncated generalized suffix tree ( -TGST) for storing -gram features. The -TGST storage me...

  19. How to develop scalable business model?:a study on the scalability of business model in Finnish ICT & software industry

    OpenAIRE

    Nguyen, H.

    2014-01-01

    The revolution of Information Communication Technology (ICT) and globalization leverages the business model concept to become more popular in order to support the firm to achieve competitive advantage in dynamic business environment. The start up is not restrict in their size and their novelty but able to be agile by efficiently and effectively exploiting business opportunity through business model innovation. Given these points, the study want to find an optimal combination and fit between t...

  20. Building Mental Models by Dissecting Physical Models

    Science.gov (United States)

    Srivastava, Anveshna

    2016-01-01

    When students build physical models from prefabricated components to learn about model systems, there is an implicit trade-off between the physical degrees of freedom in building the model and the intensity of instructor supervision needed. Models that are too flexible, permitting multiple possible constructions require greater supervision to…

  1. Center for Programming Models for Scalable Parallel Computing: Future Programming Models

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Guang, R.

    2008-07-24

    The mission of the pmodel center project is to develop software technology to support scalable parallel programming models for terascale systems. The goal of the specific UD subproject is in the context developing an efficient and robust methodology and tools for HPC programming. More specifically, the focus is on developing new programming models which facilitate programmers in porting their application onto parallel high performance computing systems. During the course of the research in the past 5 years, the landscape of microprocessor chip architecture has witnessed a fundamental change – the emergence of multi-core/many-core chip architecture appear to become the mainstream technology and will have a major impact to for future generation parallel machines. The programming model for shared-address space machines is becoming critical to such multi-core architectures. Our research highlight is the in-depth study of proposed fine-grain parallelism/multithreading support on such future generation multi-core architectures. Our research has demonstrated the significant impact such fine-grain multithreading model can have on the productivity of parallel programming models and their efficient implementation.

  2. A Scalable Version of the Navy Operational Global Atmospheric Prediction System Spectral Forecast Model

    Directory of Open Access Journals (Sweden)

    Thomas E. Rosmond

    2000-01-01

    Full Text Available The Navy Operational Global Atmospheric Prediction System (NOGAPS includes a state-of-the-art spectral forecast model similar to models run at several major operational numerical weather prediction (NWP centers around the world. The model, developed by the Naval Research Laboratory (NRL in Monterey, California, has run operational at the Fleet Numerical Meteorological and Oceanographic Center (FNMOC since 1982, and most recently is being run on a Cray C90 in a multi-tasked configuration. Typically the multi-tasked code runs on 10 to 15 processors with overall parallel efficiency of about 90%. resolution is T159L30, but other operational and research applications run at significantly lower resolutions. A scalable NOGAPS forecast model has been developed by NRL in anticipation of a FNMOC C90 replacement in about 2001, as well as for current NOGAPS research requirements to run on DOD High-Performance Computing (HPC scalable systems. The model is designed to run with message passing (MPI. Model design criteria include bit reproducibility for different processor numbers and reasonably efficient performance on fully shared memory, distributed memory, and distributed shared memory systems for a wide range of model resolutions. Results for a wide range of processor numbers, model resolutions, and different vendor architectures are presented. Single node performance has been disappointing on RISC based systems, at least compared to vector processor performance. This is a common complaint, and will require careful re-examination of traditional numerical weather prediction (NWP model software design and data organization to fully exploit future scalable architectures.

  3. SCALABLE PERCEPTUAL AUDIO REPRESENTATION WITH AN ADAPTIVE THREE TIME-SCALE SINUSOIDAL SIGNAL MODEL

    Institute of Scientific and Technical Information of China (English)

    Al-Moussawy Raed; Yin Junxun; Song Shaopeng

    2004-01-01

    This work is concerned with the development and optimization of a signal model for scalable perceptual audio coding at low bit rates. A complementary two-part signal model consisting of Sines plus Noise (SN) is described. The paper presents essentially a fundamental enhancement to the sinusoidal modeling component. The enhancement involves an audio signal scheme based on carrying out overlap-add sinusoidal modeling at three successive time scales,large, medium, and small. The sinusoidal modeling is done in an analysis-by-synthesis overlapadd manner across the three scales by using a psychoacoustically weighted matching pursuits.The sinusoidal modeling residual at the first scale is passed to the smaller scales to allow for the modeling of various signal features at appropriate resolutions. This approach greatly helps to correct the pre-echo inherent in the sinusoidal model. This improves the perceptual audio quality upon our previous work of sinusoidal modeling while using the same number of sinusoids. The most obvious application for the SN model is in scalable, high fidelity audio coding and signal modification.

  4. Monte Carlo tests of the Rasch model based on scalability coefficients

    DEFF Research Database (Denmark)

    Christensen, Karl Bang; Kreiner, Svend

    2010-01-01

    For item responses fitting the Rasch model, the assumptions underlying the Mokken model of double monotonicity are met. This makes non-parametric item response theory a natural starting-point for Rasch item analysis. This paper studies scalability coefficients based on Loevinger's H coefficient...... that summarizes the number of Guttman errors in the data matrix. These coefficients are shown to yield efficient tests of the Rasch model using p-values computed using Markov chain Monte Carlo methods. The power of the tests of unequal item discrimination, and their ability to distinguish between local dependence...

  5. Genetic algorithms and genetic programming for multiscale modeling: Applications in materials science and chemistry and advances in scalability

    Science.gov (United States)

    Sastry, Kumara Narasimha

    2007-03-01

    building blocks in organic chemistry---indicate that MOGAs produce High-quality semiempirical methods that (1) are stable to small perturbations, (2) yield accurate configuration energies on untested and critical excited states, and (3) yield ab initio quality excited-state dynamics. The proposed method enables simulations of more complex systems to realistic, multi-picosecond timescales, well beyond previous attempts or expectation of human experts, and 2--3 orders-of-magnitude reduction in computational cost. While the two applications use simple evolutionary operators, in order to tackle more complex systems, their scalability and limitations have to be investigated. The second part of the thesis addresses some of the challenges involved with a successful design of genetic algorithms and genetic programming for multiscale modeling. The first issue addressed is the scalability of genetic programming, where facetwise models are built to assess the population size required by GP to ensure adequate supply of raw building blocks and also to ensure accurate decision-making between competing building blocks. This study also presents a design of competent genetic programming, where traditional fixed recombination operators are replaced by building and sampling probabilistic models of promising candidate programs. The proposed scalable GP, called extended compact GP (eCGP), combines the ideas from extended compact genetic algorithm (eCGA) and probabilistic incremental program evolution (PIPE) and adaptively identifies, propagates and exchanges important subsolutions of a search problem. Results show that eCGP scales cubically with problem size on both GP-easy and GP-hard problems. Finally, facetwise models are developed to explore limitations of scalability of MOGAs, where the scalability of multiobjective algorithms in reliably maintaining Pareto-optimal solutions is addressed. The results show that even when the building blocks are accurately identified, massive multimodality

  6. Model-Based Evaluation Of System Scalability: Bandwidth Analysis For Smartphone-Based Biosensing Applications

    DEFF Research Database (Denmark)

    Patou, François; Madsen, Jan; Dimaki, Maria;

    2016-01-01

    -engineering efforts for scaling a system specification efficaciously. We demonstrate the value of our methodology by investigating a smartphone-based biosensing instrumentation platform. Specifically, we carry out scalability analysis for the system’s bandwidth specification: the maximum analog voltage waveform...... excitation frequency the system could output while allowing continuous acquisition and wireless streaming of bioimpedance measurements. We rely on several SysML modelling tools, including dependency matrices, as well as a fault-detection Simulink Stateflow executable model to conclude on how the successive...

  7. A framework for scalable parameter estimation of gene circuit models using structural information

    KAUST Repository

    Kuwahara, Hiroyuki

    2013-06-21

    Motivation: Systematic and scalable parameter estimation is a key to construct complex gene regulatory models and to ultimately facilitate an integrative systems biology approach to quantitatively understand the molecular mechanisms underpinning gene regulation. Results: Here, we report a novel framework for efficient and scalable parameter estimation that focuses specifically on modeling of gene circuits. Exploiting the structure commonly found in gene circuit models, this framework decomposes a system of coupled rate equations into individual ones and efficiently integrates them separately to reconstruct the mean time evolution of the gene products. The accuracy of the parameter estimates is refined by iteratively increasing the accuracy of numerical integration using the model structure. As a case study, we applied our framework to four gene circuit models with complex dynamics based on three synthetic datasets and one time series microarray data set. We compared our framework to three state-of-the-art parameter estimation methods and found that our approach consistently generated higher quality parameter solutions efficiently. Although many general-purpose parameter estimation methods have been applied for modeling of gene circuits, our results suggest that the use of more tailored approaches to use domain-specific information may be a key to reverse engineering of complex biological systems. The Author 2013.

  8. NYU3T: teaching, technology, teamwork: a model for interprofessional education scalability and sustainability.

    Science.gov (United States)

    Djukic, Maja; Fulmer, Terry; Adams, Jennifer G; Lee, Sabrina; Triola, Marc M

    2012-09-01

    Interprofessional education is a critical precursor to effective teamwork and the collaboration of health care professionals in clinical settings. Numerous barriers have been identified that preclude scalable and sustainable interprofessional education (IPE) efforts. This article describes NYU3T: Teaching, Technology, Teamwork, a model that uses novel technologies such as Web-based learning, virtual patients, and high-fidelity simulation to overcome some of the common barriers and drive implementation of evidence-based teamwork curricula. It outlines the program's curricular components, implementation strategy, evaluation methods, and lessons learned from the first year of delivery and describes implications for future large-scale IPE initiatives. PMID:22920424

  9. Progress Report 2008: A Scalable and Extensible Earth System Model for Climate Change Science

    Energy Technology Data Exchange (ETDEWEB)

    Drake, John B [ORNL; Worley, Patrick H [ORNL; Hoffman, Forrest M [ORNL; Jones, Phil [Los Alamos National Laboratory (LANL)

    2009-01-01

    This project employs multi-disciplinary teams to accelerate development of the Community Climate System Model (CCSM), based at the National Center for Atmospheric Research (NCAR). A consortium of eight Department of Energy (DOE) National Laboratories collaborate with NCAR and the NASA Global Modeling and Assimilation Office (GMAO). The laboratories are Argonne (ANL), Brookhaven (BNL) Los Alamos (LANL), Lawrence Berkeley (LBNL), Lawrence Livermore (LLNL), Oak Ridge (ORNL), Pacific Northwest (PNNL) and Sandia (SNL). The work plan focuses on scalablity for petascale computation and extensibility to a more comprehensive earth system model. Our stated goal is to support the DOE mission in climate change research by helping ... To determine the range of possible climate changes over the 21st century and beyond through simulations using a more accurate climate system model that includes the full range of human and natural climate feedbacks with increased realism and spatial resolution.

  10. Scalability of the muscular action in a parametric 3D model of the index finger.

    Science.gov (United States)

    Sancho-Bru, Joaquín L; Vergara, Margarita; Rodríguez-Cervantes, Pablo-Jesús; Giurintano, David J; Pérez-González, Antonio

    2008-01-01

    A method for scaling the muscle action is proposed and used to achieve a 3D inverse dynamic model of the human finger with all its components scalable. This method is based on scaling the physiological cross-sectional area (PCSA) in a Hill muscle model. Different anthropometric parameters and maximal grip force data have been measured and their correlations have been analyzed and used for scaling the PCSA of each muscle. A linear relationship between the normalized PCSA and the product of the length and breadth of the hand has been finally used for scaling, with a slope of 0.01315 cm(-2), with the length and breadth of the hand expressed in centimeters. The parametric muscle model has been included in a parametric finger model previously developed by the authors, and it has been validated reproducing the results of an experiment in which subjects from different population groups exerted maximal voluntary forces with their index finger in a controlled posture.

  11. Project Final Report: Building a Community Infrastructure for Scalable On-Line Performance Analysis Tools around Open|SpeedShop

    Energy Technology Data Exchange (ETDEWEB)

    Galarowicz, James

    2014-01-06

    In this project we created a community tool infrastructure for program development tools targeting Petascale class machines and beyond. This includes tools for performance analysis, debugging, and correctness tools, as well as tuning and optimization frameworks. The developed infrastructure provides a comprehensive and extensible set of individual tool building components. We started with the basic elements necessary across all tools in such an infrastructure followed by a set of generic core modules that allow a comprehensive performance analysis at scale. Further, we developed a methodology and workflow that allows others to add or replace modules, to integrate parts into their own tools, or to customize existing solutions. In order to form the core modules, we built on the existing Open|SpeedShop infrastructure and decomposed it into individual modules that match the necessary tool components. At the same time, we addressed the challenges found in performance tools for petascale systems in each module. When assembled, this instantiation of community tool infrastructure provides an enhanced version of Open|SpeedShop, which, while completely different in its architecture, provides scalable performance analysis for petascale applications through a familiar interface. This project also built upon and enhances capabilities and reusability of project partner components as specified in the original project proposal. The overall project team’s work over the project funding cycle was focused on several areas of research, which are described in the following sections. The reminder of this report also highlights related work as well as preliminary work that supported the project. In addition to the project partners funded by the Office of Science under this grant, the project team included several collaborators who contribute to the overall design of the envisioned tool infrastructure. In particular, the project team worked closely with the other two DOE NNSA

  12. Flavored model building

    Energy Technology Data Exchange (ETDEWEB)

    Hagedorn, C.

    2008-01-15

    In this thesis we discuss possibilities to solve the family replication problem and to understand the observed strong hierarchy among the fermion masses and the diverse mixing pattern of quarks and leptons. We show that non-abelian discrete symmetries which act non-trivially in generation space can serve as profound explanation. We present three low energy models with the permutation symmetry S{sub 4}, the dihedral group D{sub 5} and the double-valued group T' as flavor symmetry. The T' model turns out to be very predictive, since it explains tri-bimaximal mixing in the lepton sector and, moreover, leads to two non-trivial relations in the quark sector, {radical}((m{sub d})/(m{sub s}))= vertical stroke V{sub us} vertical stroke and {radical}((m{sub d})/(m{sub s}))= vertical stroke (V{sub td})/(V{sub ts}) vertical stroke. The main message of the T' model is the observation that the diverse pattern in the quark and lepton mixings can be well-understood, if the flavor symmetry is not broken in an arbitrary way, but only to residual (non-trivial) subgroups. Apart from leading to deeper insights into the origin of the fermion mixings this idea enables us to perform systematic studies of large classes of discrete groups. This we show in our study of dihedral symmetries D{sub n} and D'{sub n}. As a result we find only five distinct (Dirac) mass matrix structures arising from a dihedral group, if we additionally require partial unification of either left-handed or left-handed conjugate fermions and the determinant of the mass matrix to be non-vanishing. Furthermore, we reveal the ability of dihedral groups to predict the Cabibbo angle {theta}{sub C}, i.e. vertical stroke V{sub us(cd)} vertical stroke = cos((3{pi})/(7)), as well as maximal atmospheric mixing, {theta}{sub 23}=({pi})/(4), and vanishing {theta}{sub 13} in the lepton sector. (orig.)

  13. Scalable Reduced-order Models for Fine-resolution Hydrologic Simulations

    Science.gov (United States)

    Liu, Y.; Pau, G. S. H.

    2014-12-01

    Fine-resolution descriptions of hydrologic variables are desirable for an improved investigation of regional-scale and watershed-scale phenomena. For example, fine-resolution soil moisture allows biogeochemical processes to be modeled at the desired mechanistic scales. However, direct deterministic simulations of fine-resolution land surface variables present many challenges, a prominent one of which is the high computational cost. To address this challenge, we propose the use of reduced-order modeling techniques, such as Gaussian process regression and polynomial chaos expansion, to directly emulate fine-resolution models. Dimension reduction techniques, such as proper orthogonal decomposition method, are further used to improve the efficiency of the resulting reduced order model (ROM). We also develop procedures to efficiently quantify the uncertainties in the ROM solutions. Although ROM, by definition, is computationally efficient, the construction of ROM can be computationally expensive and memory-intensive since we need to use many high-resolution solutions to train the ROM. In addition, high-dimensional regression models can have non-negligible computational demands. To address these computational challenges, we have developed a new parallel and scalable software framework for developing emulators for fine-resolution models. The framework allows ROM to be efficiently constructed from fine-resolution solutions and deployed on high-performance computing platforms. The framework utilizes some existing high-performance computing libraries such as PETSc (Portable, Extensible Toolkit for Scientific Computation), SLEPc (Scalable Library for Eigenvalue Problem Computation) and Elemental. We will demonstrate the accuracy of the ROMs we developed for two fine-resolution surface-subsurface models and the performance of our software framework.

  14. Toward a scalable flexible-order model for 3D nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Ducrozet, Guillaume; Bingham, Harry B.;

    For marine and coastal applications, current work are directed toward the development of a scalable numerical 3D model for fully nonlinear potential water waves over arbitrary depths. The model is high-order accurate, robust and efficient for large-scale problems, and support will be included...... for flexibility in the description of structures by the use of curvilinear boundary-fitted meshes. The mathematical equations for potential waves in the physical domain is transformed through $\\sigma$-mapping(s) to a time-invariant boundary-fitted domain which then becomes a basis for an efficient solution...... strategy on a time-invariant mesh. The 3D numerical model is based on a finite difference method as in the original works \\cite{LiFleming1997,BinghamZhang2007}. Full details and other aspects of an improved 3D solution can be found in \\cite{EBL08}. The new and improved approach for three...

  15. Multipoint videoconferencing with scalable video coding

    Institute of Scientific and Technical Information of China (English)

    ELEFTHERIADIS Alexandros; CIVANLAR M. Reha; SHAPIRO Ofer

    2006-01-01

    We describe a system for multipoint videoconferencing that offers extremely low end-to-end delay, low cost and complexity, and high scalability, alongside standard features associated with high-end solutions such as rate matching and personal video layout. The system accommodates heterogeneous receivers and networks based on the Internet Protocol and relies on scalable video coding to provide a coded representation of a source video signal at multiple temporal and spatial resolutions as well as quality levels. These are represented by distinct bitstream components which are created at each end-user encoder. Depending on the specific conferencing environment, some or all of these components are transmitted to a Scalable Video Conferencing Server (SVCS). The SVCS redirects these components to one or more recipients depending on, e.g., the available network conditions and user preferences. The scalable aspect of the video coding technique allows the system to adapt to different network conditions, and also accommodates different end-user requirements (e.g., a user may elect to view another user at a high or low spatial resolution). Performance results concerning flexibility, video quality and delay of the system are presented using the Joint Scalable Video Model (JSVM) of the forthcoming SVC (H.264 Annex G) standard, demonstrating that scalable coding outperforms existing state-of-the-art systems and offers the right platform for building next-generation multipoint videoconferencing systems.

  16. Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling

    International Nuclear Information System (INIS)

    We introduce and study numerically a scalable parallel finite element solver for the simulation of blood flow in compliant arteries. The incompressible Navier-Stokes equations are used to model the fluid and coupled to an incompressible linear elastic model for the blood vessel walls. Our method features an unstructured dynamic mesh capable of modeling complicated geometries, an arbitrary Lagrangian-Eulerian framework that allows for large displacements of the moving fluid domain, monolithic coupling between the fluid and structure equations, and fully implicit time discretization. Simulations based on blood vessel geometries derived from patient-specific clinical data are performed on large supercomputers using scalable Newton-Krylov algorithms preconditioned with an overlapping restricted additive Schwarz method that preconditions the entire fluid-structure system together. The algorithm is shown to be robust and scalable for a variety of physical parameters, scaling to hundreds of processors and millions of unknowns.

  17. Prototyping scalable digital signal processing systems for radio astronomy using dataflow models

    CERN Document Server

    Sane, Nimish; Harris, Andrew I; Bhattacharyya, Shuvra S

    2012-01-01

    There is a growing trend toward using high-level tools for design and implementation of radio astronomy digital signal processing (DSP) systems. Such tools, for example, those from the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER), are usually platform-specific, and lack high-level, platform-independent, portable, scalable application specifications. This limits the designer's ability to experiment with designs at a high-level of abstraction and early in the development cycle. We address some of these issues using a model-based design approach employing dataflow models. We demonstrate this approach by applying it to the design of a tunable digital downconverter (TDD) used for narrow-bandwidth spectroscopy. Our design is targeted toward an FPGA platform, called the Interconnect Break-out Board (IBOB), that is available from the CASPER. We use the term TDD to refer to a digital downconverter for which the decmation factor and center frequency can be reconfigured without the nee...

  18. Scalable Entity-Based Modeling of Population-Based Systems, Final LDRD Report

    Energy Technology Data Exchange (ETDEWEB)

    Cleary, A J; Smith, S G; Vassilevska, T K; Jefferson, D R

    2005-01-27

    The goal of this project has been to develop tools, capabilities and expertise in the modeling of complex population-based systems via scalable entity-based modeling (EBM). Our initial focal application domain has been the dynamics of large populations exposed to disease-causing agents, a topic of interest to the Department of Homeland Security in the context of bioterrorism. In the academic community, discrete simulation technology based on individual entities has shown initial success, but the technology has not been scaled to the problem sizes or computational resources of LLNL. Our developmental emphasis has been on the extension of this technology to parallel computers and maturation of the technology from an academic to a lab setting.

  19. A scalable theoretical mean-field model for the electron component of an ultracold neutral plasma

    CERN Document Server

    Guthrie, John

    2015-01-01

    The electron component of an ultracold neutral plasma (UCP) is modeled based on a scalable method using a self-consistently determined mean-field approximation. Representative sampling of discrete electrons within the UCP are used to project the electron spatial distribution onto an expansion of orthogonal basis functions. A collision operator acting on the sample electrons is employed in order to drive the distribution toward thermal equilibrium. These equilibrium distributions can be determined for non-zero electron temperatures even in the presence of spherical symmetry-breaking applied electric fields. This is useful for predicting key macroscopic UCP parameters, such as the depth of the electrons' confining potential. Dynamics such as electron oscillations in UCPs with non-uniform density distributions can also be treated by this model.

  20. Modelling and stability analysis of emergent behavior of scalable swarm system

    Institute of Scientific and Technical Information of China (English)

    CHEN Shi-ming; FANG Hua-jing

    2006-01-01

    In this paper we propose a two-layer emergent model for scalable swarm system. The first layer describes the individual flocking behavior to the local goal position (the center of minimal circumcircle decided by the neighbors in the positive visual set of individuals) resulting from the individual motion to one or two farthest neighbors in its positive visual set; the second layer describes the emergent aggregating swarm behavior resulting from the individual motion to its local goal position. The scale of the swarm will not be limited because only local individual information is used for modelling in the two-layer topology. We study the stability properties of the swarm emergent behavior based on Lyapunov stability theory. Simulations showed that the swarm system can converge to goal regions while maintaining cohesiveness.

  1. Object-Oriented Database for Managing Building Modeling Components and Metadata: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Long, N.; Fleming, K.; Brackney, L.

    2011-12-01

    Building simulation enables users to explore and evaluate multiple building designs. When tools for optimization, parametrics, and uncertainty analysis are combined with analysis engines, the sheer number of discrete simulation datasets makes it difficult to keep track of the inputs. The integrity of the input data is critical to designers, engineers, and researchers for code compliance, validation, and building commissioning long after the simulations are finished. This paper discusses an application that stores inputs needed for building energy modeling in a searchable, indexable, flexible, and scalable database to help address the problem of managing simulation input data.

  2. Performance and scalability of finite-difference and finite-element wave-propagation modeling on Intel's Xeon Phi

    NARCIS (Netherlands)

    Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.

    2013-01-01

    With the rapid developments in parallel compute architectures, algorithms for seismic modeling and imaging need to be reconsidered in terms of parallelization. The aim of this paper is to compare scalability of seismic modeling algorithms: finite differences, continuous mass-lumped finite elements a

  3. Working towards a scalable model of problem-based learning instruction in undergraduate engineering education

    Science.gov (United States)

    Mantri, Archana

    2014-05-01

    The intent of the study presented in this paper is to show that the model of problem-based learning (PBL) can be made scalable by designing curriculum around a set of open-ended problems (OEPs). The detailed statistical analysis of the data collected to measure the effects of traditional and PBL instructions for three courses in Electronics and Communication Engineering, namely Analog Electronics, Digital Electronics and Pulse, Digital & Switching Circuits is presented here. It measures the effects of pedagogy, gender and cognitive styles on the knowledge, skill and attitude of the students. The study was conducted two times with content designed around same set of OEPs but with two different trained facilitators for all the three courses. The repeatability of results for effects of the independent parameters on dependent parameters is studied and inferences are drawn.

  4. File format for storage of scalable video

    Institute of Scientific and Technical Information of China (English)

    BAI Gang; SUN Xiao-yan; WU Feng; YIN Bao-cai; LI Shi-peng

    2006-01-01

    A file format for storage of scalable video is proposed in this paper. A generic model is presented to enable a codec independent description of scalable video stream. The relationships, especially the dependencies, among sub-streams in a scalable video stream are specified sufficiently and effectively in the proposed model. Complying with the presented scalable video stream model, the file format for scalable video is proposed based on ISO Base Media File Format, which is simple and flexible enough to address the demands of scalable video application as well as the non-scalable ones.

  5. Translating Building Information Modeling to Building Energy Modeling Using Model View Definition

    OpenAIRE

    WoonSeong Jeong; Jong Bum Kim; Clayton, Mark J.; Haberl, Jeff S.; Wei Yan

    2014-01-01

    This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The proces...

  6. Irregular Shaped Building Design Optimization with Building Information Modelling

    Directory of Open Access Journals (Sweden)

    Lee Xia Sheng

    2016-01-01

    Full Text Available This research is to recognise the function of Building Information Modelling (BIM in design optimization for irregular shaped buildings. The study focuses on a conceptual irregular shaped “twisted” building design similar to some existing sculpture-like architectures. Form and function are the two most important aspects of new buildings, which are becoming more sophisticated as parts of equally sophisticated “systems” that we are living in. Nowadays, it is common to have irregular shaped or sculpture-like buildings which are very different when compared to regular buildings. Construction industry stakeholders are facing stiff challenges in many aspects such as buildability, cost effectiveness, delivery time and facility management when dealing with irregular shaped building projects. Building Information Modelling (BIM is being utilized to enable architects, engineers and constructors to gain improved visualization for irregular shaped buildings; this has a purpose of identifying critical issues before initiating physical construction work. In this study, three variations of design options differing in rotating angle: 30 degrees, 60 degrees and 90 degrees are created to conduct quantifiable comparisons. Discussions are focused on three major aspects including structural planning, usable building space, and structural constructability. This research concludes that Building Information Modelling is instrumental in facilitating design optimization for irregular shaped building. In the process of comparing different design variations, instead of just giving “yes or no” type of response, stakeholders can now easily visualize, evaluate and decide to achieve the right balance based on their own criteria. Therefore, construction project stakeholders are empowered with superior evaluation and decision making capability.

  7. Approaches for scalable modeling and emulation of cyber systems : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, Jackson R.; Minnich, Ronald G.; Armstrong, Robert C.; Rudish, Don W.

    2009-09-01

    The goal of this research was to combine theoretical and computational approaches to better understand the potential emergent behaviors of large-scale cyber systems, such as networks of {approx} 10{sup 6} computers. The scale and sophistication of modern computer software, hardware, and deployed networked systems have significantly exceeded the computational research community's ability to understand, model, and predict current and future behaviors. This predictive understanding, however, is critical to the development of new approaches for proactively designing new systems or enhancing existing systems with robustness to current and future cyber threats, including distributed malware such as botnets. We have developed preliminary theoretical and modeling capabilities that can ultimately answer questions such as: How would we reboot the Internet if it were taken down? Can we change network protocols to make them more secure without disrupting existing Internet connectivity and traffic flow? We have begun to address these issues by developing new capabilities for understanding and modeling Internet systems at scale. Specifically, we have addressed the need for scalable network simulation by carrying out emulations of a network with {approx} 10{sup 6} virtualized operating system instances on a high-performance computing cluster - a 'virtual Internet'. We have also explored mappings between previously studied emergent behaviors of complex systems and their potential cyber counterparts. Our results provide foundational capabilities for further research toward understanding the effects of complexity in cyber systems, to allow anticipating and thwarting hackers.

  8. Energy modelling and capacity building

    International Nuclear Information System (INIS)

    The Planning and Economic Studies Section of the IAEA's Department of Nuclear Energy is focusing on building analytical capacity in MS for energy-environmental-economic assessments and for the elaboration of sustainable energy strategies. It offers a variety of analytical models specifically designed for use in developing countries for (i) evaluating alternative energy strategies; (ii) assessing environmental, economic and financial impacts of energy options; (iii) assessing infrastructure needs; (iv) evaluating regional development possibilities and energy trade; (v) assessing the role of nuclear power in addressing priority issues (climate change, energy security, etc.). These models can be used for analysing energy or electricity systems, and to assess possible implications of different energy, environmental or financial policies that affect the energy sector and energy systems. The models vary in complexity and data requirements, and so can be adapted to the available data, statistics and analytical needs of different countries. These models are constantly updated to reflect changes in the real world and in the concerns that drive energy system choices. They can provide thoughtfully informed choices for policy makers over a broader range of circumstances and interests. For example, they can readily reflect the workings of competitive energy and electricity markets, and cover such topics as external costs. The IAEA further offers training in the use of these models and -just as important- in the interpretation and critical evaluation of results. Training of national teams to develop national competence over the full spectrum of models, is a high priority. The IAEA maintains a broad spectrum of databanks relevant to energy, economic and environmental analysis in MS, and make these data available to analysts in MS for use in their own analytical work. The Reference Technology Data Base (RTDB) and the Reference Data Series (RDS-1) are the major vehicles by which we

  9. Scalable devices

    KAUST Repository

    Krüger, Jens J.

    2014-01-01

    In computer science in general and in particular the field of high performance computing and supercomputing the term scalable plays an important role. It indicates that a piece of hardware, a concept, an algorithm, or an entire system scales with the size of the problem, i.e., it can not only be used in a very specific setting but it\\'s applicable for a wide range of problems. From small scenarios to possibly very large settings. In this spirit, there exist a number of fixed areas of research on scalability. There are works on scalable algorithms, scalable architectures but what are scalable devices? In the context of this chapter, we are interested in a whole range of display devices, ranging from small scale hardware such as tablet computers, pads, smart-phones etc. up to large tiled display walls. What interests us mostly is not so much the hardware setup but mostly the visualization algorithms behind these display systems that scale from your average smart phone up to the largest gigapixel display walls.

  10. Scalable rule-based modelling of allosteric proteins and biochemical networks.

    Directory of Open Access Journals (Sweden)

    Julien F Ollivier

    Full Text Available Much of the complexity of biochemical networks comes from the information-processing abilities of allosteric proteins, be they receptors, ion-channels, signalling molecules or transcription factors. An allosteric protein can be uniquely regulated by each combination of input molecules that it binds. This "regulatory complexity" causes a combinatorial increase in the number of parameters required to fit experimental data as the number of protein interactions increases. It therefore challenges the creation, updating, and re-use of biochemical models. Here, we propose a rule-based modelling framework that exploits the intrinsic modularity of protein structure to address regulatory complexity. Rather than treating proteins as "black boxes", we model their hierarchical structure and, as conformational changes, internal dynamics. By modelling the regulation of allosteric proteins through these conformational changes, we often decrease the number of parameters required to fit data, and so reduce over-fitting and improve the predictive power of a model. Our method is thermodynamically grounded, imposes detailed balance, and also includes molecular cross-talk and the background activity of enzymes. We use our Allosteric Network Compiler to examine how allostery can facilitate macromolecular assembly and how competitive ligands can change the observed cooperativity of an allosteric protein. We also develop a parsimonious model of G protein-coupled receptors that explains functional selectivity and can predict the rank order of potency of agonists acting through a receptor. Our methodology should provide a basis for scalable, modular and executable modelling of biochemical networks in systems and synthetic biology.

  11. A Scalable Lagrangian Approach to Model Soil Water Dynamics in Structured Soils

    Science.gov (United States)

    Jackisch, Conrad; Zehe, Erwin

    2013-04-01

    Many experiments and studies have shown, that soil water movement follows preferential paths - across scales, across flow domains and across conditions. At the same time different flow domains are widely noticed in several model abstractions (stochastic stream tubes, double domain approaches, explicit structure definitions, and others). Both aspects cumulate in the question of interaction of domains - again across scales and conditions. We propose a Lagrangian approach, treating water directly as particles, in an abstract unified representative macropore-matrix-domain. The model is driven exclusively by observable parameters. The approach is fully scalable from a single soil column to the lower mesoscale. The domain is a 1.5D representation of a macropore and adjoined matrix. Depth is explicitly resolved as first dimension. Relative distance from the macropore-edge forms the lateral dimension based on observations of macropore density and diameter distribution over depth. Soil matrix characteristics (data from standard physical soil analysis) are respected for diffusive water particle movement dissipating pressure gradients. Fluid properties and macropore configuration (data from sprinkler experiments) are treated explicitly as reference of advective transport. Through this we open up a link of porescale physics to preferential macroscale fingerprints without effective parameterisation or mixing assumptions. Moreover, solute transport, energy balance aspects and lateral heterogeneity in soil moisture distribution are intrinsically captured.

  12. Towards a large-scale scalable adaptive heart model using shallow tree meshes

    Science.gov (United States)

    Krause, Dorian; Dickopf, Thomas; Potse, Mark; Krause, Rolf

    2015-10-01

    Electrophysiological heart models are sophisticated computational tools that place high demands on the computing hardware due to the high spatial resolution required to capture the steep depolarization front. To address this challenge, we present a novel adaptive scheme for resolving the deporalization front accurately using adaptivity in space. Our adaptive scheme is based on locally structured meshes. These tensor meshes in space are organized in a parallel forest of trees, which allows us to resolve complicated geometries and to realize high variations in the local mesh sizes with a minimal memory footprint in the adaptive scheme. We discuss both a non-conforming mortar element approximation and a conforming finite element space and present an efficient technique for the assembly of the respective stiffness matrices using matrix representations of the inclusion operators into the product space on the so-called shallow tree meshes. We analyzed the parallel performance and scalability for a two-dimensional ventricle slice as well as for a full large-scale heart model. Our results demonstrate that the method has good performance and high accuracy.

  13. Empirical Model Building Data, Models, and Reality

    CERN Document Server

    Thompson, James R

    2011-01-01

    Praise for the First Edition "This...novel and highly stimulating book, which emphasizes solving real problems...should be widely read. It will have a positive and lasting effect on the teaching of modeling and statistics in general." - Short Book Reviews This new edition features developments and real-world examples that showcase essential empirical modeling techniques Successful empirical model building is founded on the relationship between data and approximate representations of the real systems that generated that data. As a result, it is essential for researchers who construct these m

  14. Scalable Nonlinear Solvers for Fully Implicit Coupled Nuclear Fuel Modeling. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Xiao-Chuan [Univ. of Colorado, Boulder, CO (United States). Dept. of Computer Science; Keyes, David [Columbia Univ., New York, NY (United States); Yang, Chao [Univ. of Colorado, Boulder, CO (United States). Dept. of Computer Science; Zheng, Xiang [Columbia Univ., New York, NY (United States); Pernice, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-29

    The focus of the project is on the development and customization of some highly scalable domain decomposition based preconditioning techniques for the numerical solution of nonlinear, coupled systems of partial differential equations (PDEs) arising from nuclear fuel simulations. These high-order PDEs represent multiple interacting physical fields (for example, heat conduction, oxygen transport, solid deformation), each is modeled by a certain type of Cahn-Hilliard and/or Allen-Cahn equations. Most existing approaches involve a careful splitting of the fields and the use of field-by-field iterations to obtain a solution of the coupled problem. Such approaches have many advantages such as ease of implementation since only single field solvers are needed, but also exhibit disadvantages. For example, certain nonlinear interactions between the fields may not be fully captured, and for unsteady problems, stable time integration schemes are difficult to design. In addition, when implemented on large scale parallel computers, the sequential nature of the field-by-field iterations substantially reduces the parallel efficiency. To overcome the disadvantages, fully coupled approaches have been investigated in order to obtain full physics simulations.

  15. Virtual building environments (VBE) - Applying information modeling to buildings

    Energy Technology Data Exchange (ETDEWEB)

    Bazjanac, Vladimir

    2004-06-21

    A Virtual Building Environment (VBE) is a ''place'' where building industry project staffs can get help in creating Building Information Models (BIM) and in the use of virtual buildings. It consists of a group of industry software that is operated by industry experts who are also experts in the use of that software. The purpose of a VBE is to facilitate expert use of appropriate software applications in conjunction with each other to efficiently support multidisciplinary work. This paper defines BIM and virtual buildings, and describes VBE objectives, set-up and characteristics of operation. It informs about the VBE Initiative and the benefits from a couple of early VBE projects.

  16. Building Information Modeling Comprehensive Overview

    Directory of Open Access Journals (Sweden)

    Sergey Kalinichuk

    2015-07-01

    Full Text Available The article is addressed to provide a comprehensive review on recently accelerated development of the Information Technology within project market such as industrial, engineering, procurement and construction. Author’s aim is to cover the last decades of the growth of the Information and Communication Technology in construction industry in particular Building Information Modeling and testifies that the problem of a choice of the effective project realization method not only has not lost its urgency, but has also transformed into one of the major condition of the intensive technology development. All of it has created a great impulse on shortening the project duration and has led to the development of various schedule compression techniques what becomes a focus of modern construction.

  17. Scalability Test of multiscale fluid-platelet model for three top supercomputers

    Science.gov (United States)

    Zhang, Peng; Zhang, Na; Gao, Chao; Zhang, Li; Gao, Yuxiang; Deng, Yuefan; Bluestein, Danny

    2016-07-01

    We have tested the scalability of three supercomputers: the Tianhe-2, Stampede and CS-Storm with multiscale fluid-platelet simulations, in which a highly-resolved and efficient numerical model for nanoscale biophysics of platelets in microscale viscous biofluids is considered. Three experiments involving varying problem sizes were performed: Exp-S: 680,718-particle single-platelet; Exp-M: 2,722,872-particle 4-platelet; and Exp-L: 10,891,488-particle 16-platelet. Our implementations of multiple time-stepping (MTS) algorithm improved the performance of single time-stepping (STS) in all experiments. Using MTS, our model achieved the following simulation rates: 12.5, 25.0, 35.5 μs/day for Exp-S and 9.09, 6.25, 14.29 μs/day for Exp-M on Tianhe-2, CS-Storm 16-K80 and Stampede K20. The best rate for Exp-L was 6.25 μs/day for Stampede. Utilizing current advanced HPC resources, the simulation rates achieved by our algorithms bring within reach performing complex multiscale simulations for solving vexing problems at the interface of biology and engineering, such as thrombosis in blood flow which combines millisecond-scale hematology with microscale blood flow at resolutions of micro-to-nanoscale cellular components of platelets. This study of testing the performance characteristics of supercomputers with advanced computational algorithms that offer optimal trade-off to achieve enhanced computational performance serves to demonstrate that such simulations are feasible with currently available HPC resources.

  18. SciSpark: Highly Interactive and Scalable Model Evaluation and Climate Metrics

    Science.gov (United States)

    Wilson, B. D.; Palamuttam, R. S.; Mogrovejo, R. M.; Whitehall, K. D.; Mattmann, C. A.; Verma, R.; Waliser, D. E.; Lee, H.

    2015-12-01

    Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We are developing a lightning fast Big Data technology called SciSpark based on ApacheTM Spark under a NASA AIST grant (PI Mattmann). Spark implements the map-reduce paradigm for parallel computing on a cluster, but emphasizes in-memory computation, "spilling" to disk only as needed, and so outperforms the disk-based ApacheTM Hadoop by 100x in memory and by 10x on disk. SciSpark will enable scalable model evaluation by executing large-scale comparisons of A-Train satellite observations to model grids on a cluster of 10 to 1000 compute nodes. This 2nd generation capability for NASA's Regional Climate Model Evaluation System (RCMES) will compute simple climate metrics at interactive speeds, and extend to quite sophisticated iterative algorithms such as machine-learning based clustering of temperature PDFs, and even graph-based algorithms for searching for Mesocale Convective Complexes. We have implemented a parallel data ingest capability in which the user specifies desired variables (arrays) as several time-sorted lists of URL's (i.e. using OPeNDAP model.nc?varname, or local files). The specified variables are partitioned by time/space and then each Spark node pulls its bundle of arrays into memory to begin a computation pipeline. We also investigated the performance of several N-dim. array libraries (scala breeze, java jblas & netlib-java, and ND4J). We are currently developing science codes using ND4J and studying memory behavior on the JVM. On the pyspark side, many of our science codes already use the numpy and SciPy ecosystems. The talk will cover: the architecture of SciSpark, the design of the scientific RDD (sRDD) data structure, our

  19. BIM. Building Information Model. Special issue; BIM. Building Information Model. Themanummer

    Energy Technology Data Exchange (ETDEWEB)

    Van Gelder, A.L.A. [Arta and Consultancy, Lage Zwaluwe (Netherlands); Van den Eijnden, P.A.A. [Stichting Marktwerking Installatietechniek, Zoetermeer (Netherlands); Veerman, J.; Mackaij, J.; Borst, E. [Royal Haskoning DHV, Nijmegen (Netherlands); Kruijsse, P.M.D. [Wolter en Dros, Amersfoort (Netherlands); Buma, W. [Merlijn Media, Waddinxveen (Netherlands); Bomhof, F.; Willems, P.H.; Boehms, M. [TNO, Delft (Netherlands); Hofman, M.; Verkerk, M. [ISSO, Rotterdam (Netherlands); Bodeving, M. [VIAC Installatie Adviseurs, Houten (Netherlands); Van Ravenswaaij, J.; Van Hoven, H. [BAM Techniek, Bunnik (Netherlands); Boeije, I.; Schalk, E. [Stabiplan, Bodegraven (Netherlands)

    2012-11-15

    A series of 14 articles illustrates the various aspects of the Building Information Model (BIM). The essence of BIM is to capture information about the building process and the building product. [Dutch] In 14 artikelen worden diverse aspecten m.b.t. het Building Information Model (BIM) belicht. De essentie van BIM is het vastleggen van informatie over het bouwproces en het bouwproduct.

  20. Automatic Building Information Model Query Generation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yufei; Yu, Nan; Ming, Jiang; Lee, Sanghoon; DeGraw, Jason; Yen, John; Messner, John I.; Wu, Dinghao

    2015-12-01

    Energy efficient building design and construction calls for extensive collaboration between different subfields of the Architecture, Engineering and Construction (AEC) community. Performing building design and construction engineering raises challenges on data integration and software interoperability. Using Building Information Modeling (BIM) data hub to host and integrate building models is a promising solution to address those challenges, which can ease building design information management. However, the partial model query mechanism of current BIM data hub collaboration model has several limitations, which prevents designers and engineers to take advantage of BIM. To address this problem, we propose a general and effective approach to generate query code based on a Model View Definition (MVD). This approach is demonstrated through a software prototype called QueryGenerator. By demonstrating a case study using multi-zone air flow analysis, we show how our approach and tool can help domain experts to use BIM to drive building design with less labour and lower overhead cost.

  1. Building Information Modelling in Denmark and Iceland

    DEFF Research Database (Denmark)

    Jensen, Per Anker; Jóhannesson, Elvar Ingi

    2013-01-01

    Purpose – The purpose of this paper is to explore the implementation of building information modelling (BIM) in the Nordic countries of Europe with particular focus on the Danish building industry with the aim of making use of its experience for the Icelandic building industry. Design....../methodology/aptroach – The research is based on two separate analyses. In the first part, the deployment of information and communication technology (ICT) in the Icelandic building industry is investigated and compared with the other Nordic countries. In the second part the experience in Denmark from implementing and working...... for making standards and guidelines related to BIM. Public building clients are also encouraged to consider initiating projects based on making simple building models of existing buildings in order to introduce the BIM technology to the industry. Icelandic companies are recommended to start implementing BIM...

  2. Common Exercises in Whole Building HAM Modelling

    DEFF Research Database (Denmark)

    Rode, Carsten; Woloszyn, Monika

    2009-01-01

    Subtask 1 of the IEA ECBCS Annex 41 (IEA 2007) project had the purpose to advance development in modelling of integral Heat, Air and Moisture (HAM) transfer processes that take place in “whole buildings”. Such modelling considers all relevant elements of buildings: The indoor air, building envelo...

  3. Common Exercises in Whole Building HAM Modelling

    DEFF Research Database (Denmark)

    Rode, Carsten; Woloszyn, Monika

    2008-01-01

    Subtask 1 of the IEA Annex 41 project had the purpose to advance the development in modelling the integral heat, air and moisture transfer processes that take place in “whole buildings”. Such modelling comprises all relevant elements of buildings: The indoor air, the building envelope, the inside...

  4. DOE Commercial Building Benchmark Models: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Torcelini, P.; Deru, M.; Griffith, B.; Benne, K.; Halverson, M.; Winiarski, D.; Crawley, D. B.

    2008-07-01

    To provide a consistent baseline of comparison and save time conducting such simulations, the U.S. Department of Energy (DOE) has developed a set of standard benchmark building models. This paper will provide an executive summary overview of these benchmark buildings, and how they can save building analysts valuable time. Fully documented and implemented to use with the EnergyPlus energy simulation program, the benchmark models are publicly available and new versions will be created to maintain compatibility with new releases of EnergyPlus. The benchmark buildings will form the basis for research on specific building technologies, energy code development, appliance standards, and measurement of progress toward DOE energy goals. Having a common starting point allows us to better share and compare research results and move forward to make more energy efficient buildings.

  5. Translating Building Information Modeling to Building Energy Modeling Using Model View Definition

    Directory of Open Access Journals (Sweden)

    WoonSeong Jeong

    2014-01-01

    Full Text Available This paper presents a new approach to translate between Building Information Modeling (BIM and Building Energy Modeling (BEM that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1 the BIM-based Modelica models generated from Revit2Modelica and (2 BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1 enables BIM models to be translated into ModelicaBEM models, (2 enables system interface development based on the MVD for thermal simulation, and (3 facilitates the reuse of original BIM data into building energy simulation without an import/export process.

  6. Translating building information modeling to building energy modeling using model view definition.

    Science.gov (United States)

    Jeong, WoonSeong; Kim, Jong Bum; Clayton, Mark J; Haberl, Jeff S; Yan, Wei

    2014-01-01

    This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated from Revit2Modelica and (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process.

  7. Translating building information modeling to building energy modeling using model view definition.

    Science.gov (United States)

    Jeong, WoonSeong; Kim, Jong Bum; Clayton, Mark J; Haberl, Jeff S; Yan, Wei

    2014-01-01

    This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated from Revit2Modelica and (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process. PMID:25309954

  8. A scalable model for network situational awareness based on Endsley's situation model

    Institute of Scientific and Technical Information of China (English)

    Hu Wei; Li Jianhua; Chen Xiuzhen; Jiang Xinghao; Zuo Min

    2007-01-01

    The paper introduces the Endsley's situation model into network security to describe the network security situation,and improves Endsley'S data processing to suit network alerts.The proposet model contains the information of incident frequency.incident time and incident space.The HoneyNet dataset is selected to evaluate the proposed model in the evaluation.The paper pmposes three definitions to depict and predigest the whole situation extraction in detail.and a fusion component to reduce the influence of alert redundancy on the total security situation.The less complex extraction makes the situation analysismore efficient,and the fine-grained model makes the analysis have a better expansibility.Finally,the situational variation curves are simulated,and the evaluation results prove the situation model applicable and efficient.

  9. An Algorithm to Translate Building Topology in Building Information Modeling into Object-Oriented Physical Modeling-Based Building Energy Modeling

    OpenAIRE

    WoonSeong Jeong; JeongWook Son

    2016-01-01

    This paper presents an algorithm to translate building topology in an object-oriented architectural building model (Building Information Modeling, BIM) into an object-oriented physical-based energy performance simulation by using an object-oriented programming approach. Our algorithm demonstrates efficient mapping of building components in a BIM model into space boundary conditions in an object-oriented physical modeling (OOPM)-based building energy model, and the translation of building topo...

  10. Structured building model reduction toward parallel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Justin R. [Cornell University; Hencey, Brondon M. [Cornell University

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  11. Comparison of Building Energy Modeling Programs: Building Loads

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Dandan [Tsinghua Univ., Beijing (China); Hong, Tianzhen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yan, Da [Tsinghua Univ., Beijing (China); Wang, Chuang [Tsinghua Univ., Beijing (China)

    2012-06-01

    This technical report presented the methodologies, processes, and results of comparing three Building Energy Modeling Programs (BEMPs) for load calculations: EnergyPlus, DeST and DOE-2.1E. This joint effort, between Lawrence Berkeley National Laboratory, USA and Tsinghua University, China, was part of research projects under the US-China Clean Energy Research Center on Building Energy Efficiency (CERC-BEE). Energy Foundation, an industrial partner of CERC-BEE, was the co-sponsor of this study work. It is widely known that large discrepancies in simulation results can exist between different BEMPs. The result is a lack of confidence in building simulation amongst many users and stakeholders. In the fields of building energy code development and energy labeling programs where building simulation plays a key role, there are also confusing and misleading claims that some BEMPs are better than others. In order to address these problems, it is essential to identify and understand differences between widely-used BEMPs, and the impact of these differences on load simulation results, by detailed comparisons of these BEMPs from source code to results. The primary goal of this work was to research methods and processes that would allow a thorough scientific comparison of the BEMPs. The secondary goal was to provide a list of strengths and weaknesses for each BEMP, based on in-depth understandings of their modeling capabilities, mathematical algorithms, advantages and limitations. This is to guide the use of BEMPs in the design and retrofit of buildings, especially to support China’s building energy standard development and energy labeling program. The research findings could also serve as a good reference to improve the modeling capabilities and applications of the three BEMPs. The methodologies, processes, and analyses employed in the comparison work could also be used to compare other programs. The load calculation method of each program was analyzed and compared to

  12. Modeling energy efficiency of bioclimatic buildings

    Energy Technology Data Exchange (ETDEWEB)

    Tzikopoulos, A.F.; Karatza, M.C.; Paravantis, J.A. [Piraeus Univ. (Greece). Dept. of Technology Education and Digital Systems

    2005-05-01

    The application of bioclimatic principles is a critical factor in reducing energy consumption and CO{sub 2} emissions of the building sector. This paper develops a regression model of energy efficiency as a function of environmental conditions, building characteristics and passive solar technologies. A sample of 77 bioclimatic buildings (including 45 houses) was collected, covering Greece, other Mediterranean areas and the rest of Europe. Average energy efficiency varied from 19.6 to 100% with an average of about 68%. Environmental conditions included latitude, altitude, ambient temperature, degree days and sun hours; building characteristics consisted in building area and volume. Passive solar technologies included (among others) solar water heaters, shading, natural ventilation, greenhouses and thermal storage walls. Degree days and a dummy variable indicating location in the Mediterranean area were the strongest predictors of energy efficiency while taller and leaner buildings tended to be more energy efficient. Surprisingly, many passive technologies did not appear to make a difference on energy efficiency while thermal storage walls in fact seemed to decrease energy efficiency. The model developed may be of use to architects, engineers and policy makers. Suggestions for further research include obtaining more building information, investigating the effect of passive solar technologies and gathering information on the usage of building. (Author)

  13. Center for Programming Models for Scalable Parallel Computing - Towards Enhancing OpenMP for Manycore and Heterogeneous Nodes

    Energy Technology Data Exchange (ETDEWEB)

    Barbara Chapman

    2012-02-01

    OpenMP was not well recognized at the beginning of the project, around year 2003, because of its limited use in DoE production applications and the inmature hardware support for an efficient implementation. Yet in the recent years, it has been graduately adopted both in HPC applications, mostly in the form of MPI+OpenMP hybrid code, and in mid-scale desktop applications for scientific and experimental studies. We have observed this trend and worked deligiently to improve our OpenMP compiler and runtimes, as well as to work with the OpenMP standard organization to make sure OpenMP are evolved in the direction close to DoE missions. In the Center for Programming Models for Scalable Parallel Computing project, the HPCTools team at the University of Houston (UH), directed by Dr. Barbara Chapman, has been working with project partners, external collaborators and hardware vendors to increase the scalability and applicability of OpenMP for multi-core (and future manycore) platforms and for distributed memory systems by exploring different programming models, language extensions, compiler optimizations, as well as runtime library support.

  14. Integrating Building Information Modeling and Green Building Certification: The BIM-LEED Application Model Development

    Science.gov (United States)

    Wu, Wei

    2010-01-01

    Building information modeling (BIM) and green building are currently two major trends in the architecture, engineering and construction (AEC) industry. This research recognizes the market demand for better solutions to achieve green building certification such as LEED in the United States. It proposes a new strategy based on the integration of BIM…

  15. Building dynamic spatial environmental models

    OpenAIRE

    Karssenberg, D.J.

    2003-01-01

    An environmental model is a representation or imitation of complex natural phenomena that can be discerned by human cognitive processes. This thesis deals with the type of environmental models referred to as dynamic spatial environmental models. The word ‘spatial’ refers to the geographic domain which they represent, which is the two- or three-dimensional space, while ‘dynamic’ refers to models simulating changes through time using rules of cause and effect, represented in mathematical equati...

  16. Building dynamic spatial environmental models

    NARCIS (Netherlands)

    Karssenberg, D.J.

    2003-01-01

    An environmental model is a representation or imitation of complex natural phenomena that can be discerned by human cognitive processes. This thesis deals with the type of environmental models referred to as dynamic spatial environmental models. The word ‘spatial’ refers to the geographic domain whi

  17. Economic aspects and models for building codes

    DEFF Research Database (Denmark)

    Bonke, Jens; Pedersen, Dan Ove; Johnsen, Kjeld

    It is the purpose of this bulletin to present an economic model for estimating the consequence of new or changed building codes. The object is to allow comparative analysis in order to improve the basis for decisions in this field. The model is applied in a case study.......It is the purpose of this bulletin to present an economic model for estimating the consequence of new or changed building codes. The object is to allow comparative analysis in order to improve the basis for decisions in this field. The model is applied in a case study....

  18. Whole-building Hygrothermal Simulation Model

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2003-01-01

    An existing integrated simulation tool for dynamic thermal simulation of building was extended with a transient model for moisture release and uptake in building materials. Validation of the new model was begun with comparison against measurements in an outdoor test cell furnished with single...... materials. Almost quasi-steady, cyclic experiments were used to compare the indoor humidity variation and the numerical results of the integrated simulation tool with the new moisture model. Except for the case with chipboard as furnishing, the predictions of indoor humidity with the detailed model were...

  19. Modelling the probability of building fires

    Directory of Open Access Journals (Sweden)

    Vojtěch Barták

    2014-12-01

    Full Text Available Systematic spatial risk analysis plays a crucial role in preventing emergencies.In the Czech Republic, risk mapping is currently based on the risk accumulationprinciple, area vulnerability, and preparedness levels of Integrated Rescue Systemcomponents. Expert estimates are used to determine risk levels for individualhazard types, while statistical modelling based on data from actual incidents andtheir possible causes is not used. Our model study, conducted in cooperation withthe Fire Rescue Service of the Czech Republic as a model within the Liberec andHradec Králové regions, presents an analytical procedure leading to the creation ofbuilding fire probability maps based on recent incidents in the studied areas andon building parameters. In order to estimate the probability of building fires, aprediction model based on logistic regression was used. Probability of fire calculatedby means of model parameters and attributes of specific buildings can subsequentlybe visualized in probability maps.

  20. Model building techniques for analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Walther, Howard P.; McDaniel, Karen Lynn; Keener, Donald; Cordova, Theresa Elena; Henry, Ronald C.; Brooks, Sean; Martin, Wilbur D.

    2009-09-01

    The practice of mechanical engineering for product development has evolved into a complex activity that requires a team of specialists for success. Sandia National Laboratories (SNL) has product engineers, mechanical designers, design engineers, manufacturing engineers, mechanical analysts and experimentalists, qualification engineers, and others that contribute through product realization teams to develop new mechanical hardware. The goal of SNL's Design Group is to change product development by enabling design teams to collaborate within a virtual model-based environment whereby analysis is used to guide design decisions. Computer-aided design (CAD) models using PTC's Pro/ENGINEER software tools are heavily relied upon in the product definition stage of parts and assemblies at SNL. The three-dimensional CAD solid model acts as the design solid model that is filled with all of the detailed design definition needed to manufacture the parts. Analysis is an important part of the product development process. The CAD design solid model (DSM) is the foundation for the creation of the analysis solid model (ASM). Creating an ASM from the DSM currently is a time-consuming effort; the turnaround time for results of a design needs to be decreased to have an impact on the overall product development. This effort can be decreased immensely through simple Pro/ENGINEER modeling techniques that summarize to the method features are created in a part model. This document contains recommended modeling techniques that increase the efficiency of the creation of the ASM from the DSM.

  1. Building an Institutional Costing Model.

    Science.gov (United States)

    Simpson, William A.

    A procedure for developing a costing model is described. Limitations of a cost analysis are also reviewed, with attention to the problems of handling joint products, obtaining accurate faculty effort data, measuring educational outputs, and calculating marginal costs. A researcher charged with developing a costing model is faced with the task of…

  2. Building models for keratin disorders.

    Science.gov (United States)

    Koster, Maranke I

    2012-05-01

    Palmoplantar keratoderma is a hallmark of pachyonychia congenita (PC) and focal non-epidermolytic palmoplantar keratoderma (FNEPPK). By generating keratin 16 (Krt16)-deficient mice, Lessard and Coulombe, as described in this issue, have generated a mouse model to replicate these palmoplantar lesions. Studies using this model may provide novel insights into the molecular mechanisms responsible for the formation of palmoplantar lesions in PC and FNEPPK patients.

  3. Model for Refurbishment of Heritage Buildings

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2014-01-01

    A model intended for the selection of feasible refurbishment measures for heritage buildings was developed. The model showed how to choose, evaluate and implement measures that create synergy between the interests in preserving heritage values and creating cost efficient refurbishment that complies...... with the requirements for the use of the building. The model focuses on the cooperation and dialogue between authorities and owners, who refurbish heritage buildings. The developed model was used for the refurbishment of the listed complex, Fæstningens Materialgård. Fæstningens Materialgård is a case study where...... the Heritage Agency, the Danish Working Environment Authority and the owner as a team cooperated in identifying feasible refurbishments. In this case, the focus centered on restoring and identifying potential energy savings and deciding on energy upgrading measures for the listed complex. The refurbished...

  4. An Evaluation Framework for Energy Aware Buildings using Statistical Model Checking

    DEFF Research Database (Denmark)

    David, Alexandre; Du, DeHui; Larsen, Kim Guldstrand;

    2012-01-01

    properties of this formalisms. A particular kind of cyber-physical systems are Smart Grids which together with Intelligent, Energy Aware Buildings will play a major role in achieving an energy efficient society of the future. In this paper we present a framework in Uppaal-smc for energy aware buildings......Cyber-physical systems are to be found in numerous applications throughout society. The principal barrier to develop trustworthy cyber-physical systems is the lack of expressive modelling and specification for- malisms supported by efficient tools and methodologies. To overcome this barrier, we...... extend in this paper the modelling formalism of the tool Uppaal-smc to stochastic hybrid automata, thus providing the expressive power required for modeling complex cyber-physical systems. The application of Statistical Model Checking provides a highly scalable technique for analyzing performance...

  5. Scalable Efficient Composite Event Detection

    OpenAIRE

    Jayaram, K. R.; Eugster, Patrick

    2010-01-01

    International audience Composite event detection (CED) is the task of identifying combinations of events which are meaningful with respect to program-defined patterns. Recent research in event-based programming has focused on language design (in different paradigms), leading to a wealth of prototype programming models and languages. However, implementing CED in an efficient and scalable manner remains an under-addressed problem. In fact, the lack of scalable algorithms is the main roadbloc...

  6. The Ptolemy project:a scalable model for delivering health information in Africa

    OpenAIRE

    Beveridge, Massey; Howard, Andrew; Burton, Kirsteen; Holder, Warren

    2003-01-01

    How is Africa to build up the medical research it needs? Doctors in African research communities are starved of access to the journals and texts their colleagues in more developed countries regard as fundamental to good practice and research. Isolation, burden of practice, and resource limitations make education and research difficult, but the rapid spread of access to the internet reduces these obstacles and provides an increasingly attractive means to disseminate information and build partn...

  7. Thermal Models for Intelligent Heating of Buildings

    DEFF Research Database (Denmark)

    Thavlov, Anders; Bindner, Henrik W.

    2012-01-01

    the comfort of residents, proper prediction models for indoor temperature have to be developed. This paper presents a model for prediction of indoor temperature and power consumption from electrical space heating in an office building, using stochastic differential equations. The heat dynamic model is build......The Danish government has set the ambitious goal that the share of the total Danish electricity consumption, covered by wind energy, should be increased to 50% by year 2020. This asks for radical changes in how we utilize and transmit electricity in the future power grid. To fully utilize the high...... being pursued is to use the heat capacity of the thermal mass in buildings to temporarily store excess power production by increasing the electrical heating. Likewise can the electrical heating be postponed in periods with lack of production. To exploit the potential in thermal storage and to ensure...

  8. A procedure for Building Product Models

    DEFF Research Database (Denmark)

    Hvam, Lars

    1999-01-01

    , easily adaptable concepts and methods from data modeling (object oriented analysis) and domain modeling (product modeling). The concepts are general and can be used for modeling all types of specifications in the different phases in the product life cycle. The modeling techniques presented have been...... activities. A basic assumption is that engineers have to take the responsability for building product models to be used in their domain. To do that they must be able to carry out the modeling task on their own without any need for support from computer science experts. This paper presents a set of simple...

  9. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

    2011-02-01

    The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

  10. Model calibration for building energy efficiency simulation

    International Nuclear Information System (INIS)

    Highlights: • Developing a 3D model relating to building architecture, occupancy and HVAC operation. • Two calibration stages developed, final model providing accurate results. • Using an onsite weather station for generating the weather data file in EnergyPlus. • Predicting thermal behaviour of underfloor heating, heat pump and natural ventilation. • Monthly energy saving opportunities related to heat pump of 20–27% was identified. - Abstract: This research work deals with an Environmental Research Institute (ERI) building where an underfloor heating system and natural ventilation are the main systems used to maintain comfort condition throughout 80% of the building areas. Firstly, this work involved developing a 3D model relating to building architecture, occupancy and HVAC operation. Secondly, the calibration methodology, which consists of two levels, was then applied in order to insure accuracy and reduce the likelihood of errors. To further improve the accuracy of calibration a historical weather data file related to year 2011, was created from the on-site local weather station of ERI building. After applying the second level of calibration process, the values of Mean bias Error (MBE) and Cumulative Variation of Root Mean Squared Error (CV(RMSE)) on hourly based analysis for heat pump electricity consumption varied within the following ranges: (MBE)hourly from −5.6% to 7.5% and CV(RMSE)hourly from 7.3% to 25.1%. Finally, the building was simulated with EnergyPlus to identify further possibilities of energy savings supplied by a water to water heat pump to underfloor heating system. It found that electricity consumption savings from the heat pump can vary between 20% and 27% on monthly bases

  11. Energy based prediction models for building acoustics

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...... on underlying basic assumptions, such as diffuse fields, high modal overlap, resonant field being dominant, etc., and the consequences of these in terms of limitations in the theory and in the practical use of the models....

  12. Reconstructing building mass models from UAV images

    KAUST Repository

    Li, Minglei

    2015-07-26

    We present an automatic reconstruction pipeline for large scale urban scenes from aerial images captured by a camera mounted on an unmanned aerial vehicle. Using state-of-the-art Structure from Motion and Multi-View Stereo algorithms, we first generate a dense point cloud from the aerial images. Based on the statistical analysis of the footprint grid of the buildings, the point cloud is classified into different categories (i.e., buildings, ground, trees, and others). Roof structures are extracted for each individual building using Markov random field optimization. Then, a contour refinement algorithm based on pivot point detection is utilized to refine the contour of patches. Finally, polygonal mesh models are extracted from the refined contours. Experiments on various scenes as well as comparisons with state-of-the-art reconstruction methods demonstrate the effectiveness and robustness of the proposed method.

  13. A Scalable Software Architecture Booting and Configuring Nodes in the Whitney Commodity Computing Testbed

    Science.gov (United States)

    Fineberg, Samuel A.; Kutler, Paul (Technical Monitor)

    1997-01-01

    The Whitney project is integrating commodity off-the-shelf PC hardware and software technology to build a parallel supercomputer with hundreds to thousands of nodes. To build such a system, one must have a scalable software model, and the installation and maintenance of the system software must be completely automated. We describe the design of an architecture for booting, installing, and configuring nodes in such a system with particular consideration given to scalability and ease of maintenance. This system has been implemented on a 40-node prototype of Whitney and is to be used on the 500 processor Whitney system to be built in 1998.

  14. Modelling of risk in the building projects

    OpenAIRE

    Dariusz Skorupka

    2006-01-01

    The paper is concerned with the process of risk modelling in the building projects. Using a model of real object is one of the features of the present research works. In some cases, that method is necessary to carry out some forms of experiments. A model is a copy of reality. Modelling enables automation of the various processes and research of unlimited set of objects. Moreover, formal depiction of reality creates conditions for carrying out broad studies of a given problem and reduces the c...

  15. Building Simulation Modelers are we big-data ready?

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL

    2014-01-01

    Recent advances in computing and sensor technologies have pushed the amount of data we collect or generate to limits previously unheard of. Sub-minute resolution data from dozens of channels is becoming increasingly common and is expected to increase with the prevalence of non-intrusive load monitoring. Experts are running larger building simulation experiments and are faced with an increasingly complex data set to analyze and derive meaningful insight. This paper focuses on the data management challenges that building modeling experts may face in data collected from a large array of sensors, or generated from running a large number of building energy/performance simulations. The paper highlights the technical difficulties that were encountered and overcome in order to run 3.5 million EnergyPlus simulations on supercomputers and generating over 200 TBs of simulation output. This extreme case involved development of technologies and insights that will be beneficial to modelers in the immediate future. The paper discusses different database technologies (including relational databases, columnar storage, and schema-less Hadoop) in order to contrast the advantages and disadvantages of employing each for storage of EnergyPlus output. Scalability, analysis requirements, and the adaptability of these database technologies are discussed. Additionally, unique attributes of EnergyPlus output are highlighted which make data-entry non-trivial for multiple simulations. Practical experience regarding cost-effective strategies for big-data storage is provided. The paper also discusses network performance issues when transferring large amounts of data across a network to different computing devices. Practical issues involving lag, bandwidth, and methods for synchronizing or transferring logical portions of the data are presented. A cornerstone of big-data is its use for analytics; data is useless unless information can be meaningfully derived from it. In addition to technical

  16. Scripted Building Energy Modeling and Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hale, E.; Macumber, D.; Benne, K.; Goldwasser, D.

    2012-08-01

    Building energy modeling and analysis is currently a time-intensive, error-prone, and nonreproducible process. This paper describes the scripting platform of the OpenStudio tool suite (http://openstudio.nrel.gov) and demonstrates its use in several contexts. Two classes of scripts are described and demonstrated: measures and free-form scripts. Measures are small, single-purpose scripts that conform to a predefined interface. Because measures are fairly simple, they can be written or modified by inexperienced programmers.

  17. Computer modelling of tornado effects on buildings

    International Nuclear Information System (INIS)

    An attempt is made to model the tornado-structure interaction. The tornado is represented as a Rankine-Combined vortex. The computations are done on a rectangular grid system. The governing equations are approximated using control volume procedure. The pressure equations are solved by an efficient preconditioned conjugate gradient procedure. The computed tornado forces are compared with straight boundary layer (SBL) wind. The tornado forces on the roof of the building is more than five times the SBL flow

  18. Building Information Modeling in engineering teaching

    DEFF Research Database (Denmark)

    Andersson, Niclas; Andersson, Pernille Hammar

    2010-01-01

    in this case is represented by adopting Building Information Modelling, BIM, for construction management purposes. Course evaluations, a questionnaire and discussions with students confirm a genuinely positive attitude towards the role-play simulation and interaction with industry professionals. The students......The application of Information and Communication Technology (ICT) in construction supports business as well as project processes by providing integrated systems for communication, administration, quantity takeoff, time scheduling, cost estimating, progress control among other things. The rapid...

  19. An Algorithm to Translate Building Topology in Building Information Modeling into Object-Oriented Physical Modeling-Based Building Energy Modeling

    Directory of Open Access Journals (Sweden)

    WoonSeong Jeong

    2016-01-01

    Full Text Available This paper presents an algorithm to translate building topology in an object-oriented architectural building model (Building Information Modeling, BIM into an object-oriented physical-based energy performance simulation by using an object-oriented programming approach. Our algorithm demonstrates efficient mapping of building components in a BIM model into space boundary conditions in an object-oriented physical modeling (OOPM-based building energy model, and the translation of building topology into space boundary conditions to create an OOPM model. The implemented command, TranslatingBuildingTopology, using an object-oriented programming approach, enables graphical representation of the building topology of BIM models and the automatic generation of space boundaries information for OOPM models. The algorithm and its implementation allow coherent object-mapping from BIM to OOPM and facilitate the definition of space boundaries information during model translation for building thermal simulation. In order to demonstrate our algorithm and its implementation, we conducted experiments with three test cases using the BESTEST 600 model. Our experiments show that our algorithm and its implementation enable building topology information to be automatically translated into space boundary information, and facilitates the reuse of BIM data into building thermal simulations without additional export or import processes.

  20. Precast RC Industrial Building design supported by Building Information Model (BIM)

    OpenAIRE

    Mirkac, Tadej

    2010-01-01

    A Precast RC industrial building with typical skeletal structure is modelled, analyzed and documented. The focus of diploma was preparation of building information model which serves as a support in design. We paid special attention to structural analysis, earthquake design, detailing and project documentation. The industrial building is planned as an extension of a bigger facility, so we decided to use building information model for 3D visualization simulation of phases in construction detai...

  1. Scalability of surrogate-assisted multi-objective optimization of antenna structures exploiting variable-fidelity electromagnetic simulation models

    Science.gov (United States)

    Koziel, Slawomir; Bekasiewicz, Adrian

    2016-10-01

    Multi-objective optimization of antenna structures is a challenging task owing to the high computational cost of evaluating the design objectives as well as the large number of adjustable parameters. Design speed-up can be achieved by means of surrogate-based optimization techniques. In particular, a combination of variable-fidelity electromagnetic (EM) simulations, design space reduction techniques, response surface approximation models and design refinement methods permits identification of the Pareto-optimal set of designs within a reasonable timeframe. Here, a study concerning the scalability of surrogate-assisted multi-objective antenna design is carried out based on a set of benchmark problems, with the dimensionality of the design space ranging from six to 24 and a CPU cost of the EM antenna model from 10 to 20 min per simulation. Numerical results indicate that the computational overhead of the design process increases more or less quadratically with the number of adjustable geometric parameters of the antenna structure at hand, which is a promising result from the point of view of handling even more complex problems.

  2. 3D modeling of buildings outstanding sites

    CERN Document Server

    Héno, Rapha?le

    2014-01-01

    Conventional topographic databases, obtained by capture on aerial or spatial images provide a simplified 3D modeling of our urban environment, answering the needs of numerous applications (development, risk prevention, mobility management, etc.). However, when we have to represent and analyze more complex sites (monuments, civil engineering works, archeological sites, etc.), these models no longer suffice and other acquisition and processing means have to be implemented. This book focuses on the study of adapted lifting means for "notable buildings". The methods tackled in this book cover las

  3. HYDROSCAPE: A SCAlable and ParallelizablE Rainfall Runoff Model for Hydrological Applications

    Science.gov (United States)

    Piccolroaz, S.; Di Lazzaro, M.; Zarlenga, A.; Majone, B.; Bellin, A.; Fiori, A.

    2015-12-01

    In this work we present HYDROSCAPE, an innovative streamflow routing method based on the travel time approach, and modeled through a fine-scale geomorphological description of hydrological flow paths. The model is designed aimed at being easily coupled with weather forecast or climate models providing the hydrological forcing, and at the same time preserving the geomorphological dispersion of the river network, which is kept unchanged independently on the grid size of rainfall input. This makes HYDROSCAPE particularly suitable for multi-scale applications, ranging from medium size catchments up to the continental scale, and to investigate the effects of extreme rainfall events that require an accurate description of basin response timing. Key feature of the model is its computational efficiency, which allows performing a large number of simulations for sensitivity/uncertainty analyses in a Monte Carlo framework. Further, the model is highly parsimonious, involving the calibration of only three parameters: one defining the residence time of hillslope response, one for channel velocity, and a multiplicative factor accounting for uncertainties in the identification of the potential maximum soil moisture retention in the SCS-CN method. HYDROSCAPE is designed with a simple and flexible modular structure, which makes it particularly prone to massive parallelization, customization according to the specific user needs and preferences (e.g., rainfall-runoff model), and continuous development and improvement. Finally, the possibility to specify the desired computational time step and evaluate streamflow at any location in the domain, makes HYDROSCAPE an attractive tool for many hydrological applications, and a valuable alternative to more complex and highly parametrized large scale hydrological models. Together with model development and features, we present an application to the Upper Tiber River basin (Italy), providing a practical example of model performance and

  4. A Scalable Model for the Performance Evaluation of ROADMs with Generic Switching Capabilities

    Directory of Open Access Journals (Sweden)

    Athanasios S Tsokanos

    2010-10-01

    Full Text Available In order to evaluate the performance of Reconfigurable Optical Add/Drop Multiplexers (ROADMs consisting of a single large switch, in circuit switched Wavelength-Division Multiplexing (WDM networks, a theoretical Queuing Network Model (QNM is developed, which consists of two M/M/c/c loss systems each of which is analyzed in isolation. An overall analytical blocking probability of a ROADM is obtained. This model can also be used for the performance optimization of ROADMs with a single switch capable of switching all or a partial number of the wavelengths being used. It is demonstrated how the proposed model can be used for the performance evaluation of a ROADM for different number of wavelengths inside the switch, in various traffic intensity conditions producing an exact blocking probability solution. The accuracy of the analytical results is validated by simulation.

  5. Methodology for Modeling Building Energy Performance across the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  6. Chiefly Symmetric: Results on the Scalability of Probabilistic Model Checking for Operating-System Code

    Directory of Open Access Journals (Sweden)

    Marcus Völp

    2012-11-01

    Full Text Available Reliability in terms of functional properties from the safety-liveness spectrum is an indispensable requirement of low-level operating-system (OS code. However, with evermore complex and thus less predictable hardware, quantitative and probabilistic guarantees become more and more important. Probabilistic model checking is one technique to automatically obtain these guarantees. First experiences with the automated quantitative analysis of low-level operating-system code confirm the expectation that the naive probabilistic model checking approach rapidly reaches its limits when increasing the numbers of processes. This paper reports on our work-in-progress to tackle the state explosion problem for low-level OS-code caused by the exponential blow-up of the model size when the number of processes grows. We studied the symmetry reduction approach and carried out our experiments with a simple test-and-test-and-set lock case study as a representative example for a wide range of protocols with natural inter-process dependencies and long-run properties. We quickly see a state-space explosion for scenarios where inter-process dependencies are insignificant. However, once inter-process dependencies dominate the picture models with hundred and more processes can be constructed and analysed.

  7. Non parametric, self organizing, scalable modeling of spatiotemporal inputs: the sign language paradigm.

    Science.gov (United States)

    Caridakis, G; Karpouzis, K; Drosopoulos, A; Kollias, S

    2012-12-01

    Modeling and recognizing spatiotemporal, as opposed to static input, is a challenging task since it incorporates input dynamics as part of the problem. The vast majority of existing methods tackle the problem as an extension of the static counterpart, using dynamics, such as input derivatives, at feature level and adopting artificial intelligence and machine learning techniques originally designed for solving problems that do not specifically address the temporal aspect. The proposed approach deals with temporal and spatial aspects of the spatiotemporal domain in a discriminative as well as coupling manner. Self Organizing Maps (SOM) model the spatial aspect of the problem and Markov models its temporal counterpart. Incorporation of adjacency, both in training and classification, enhances the overall architecture with robustness and adaptability. The proposed scheme is validated both theoretically, through an error propagation study, and experimentally, on the recognition of individual signs, performed by different, native Greek Sign Language users. Results illustrate the architecture's superiority when compared to Hidden Markov Model techniques and variations both in terms of classification performance and computational cost. PMID:23137923

  8. Developmental Impact Analysis of an ICT-Enabled Scalable Healthcare Model in BRICS Economies

    Directory of Open Access Journals (Sweden)

    Dhrubes Biswas

    2012-06-01

    Full Text Available This article highlights the need for initiating a healthcare business model in a grassroots, emerging-nation context. This article’s backdrop is a history of chronic anomalies afflicting the healthcare sector in India and similarly placed BRICS nations. In these countries, a significant percentage of populations remain deprived of basic healthcare facilities and emergency services. Community (primary care services are being offered by public and private stakeholders as a panacea to the problem. Yet, there is an urgent need for specialized (tertiary care services at all levels. As a response to this challenge, an all-inclusive health-exchange system (HES model, which utilizes information communication technology (ICT to provide solutions in rural India, has been developed. The uniqueness of the model lies in its innovative hub-and-spoke architecture and its emphasis on affordability, accessibility, and availability to the masses. This article describes a developmental impact analysis (DIA that was used to assess the impact of this model. The article contributes to the knowledge base of readers by making them aware of the healthcare challenges emerging nations are facing and ways to mitigate those challenges using entrepreneurial solutions.

  9. Automatic Generation of 3D Building Models with Multiple Roofs

    Institute of Scientific and Technical Information of China (English)

    Kenichi Sugihara; Yoshitugu Hayashi

    2008-01-01

    Based on building footprints (building polygons) on digital maps, we are proposing the GIS and CG integrated system that automatically generates 3D building models with multiple roofs. Most building polygons' edges meet at right angles (orthogonal polygon). The integrated system partitions orthogonal building polygons into a set of rectangles and places rectangular roofs and box-shaped building bodies on these rectangles. In order to partition an orthogonal polygon, we proposed a useful polygon expression in deciding from which vertex a dividing line is drawn. In this paper, we propose a new scheme for partitioning building polygons and show the process of creating 3D roof models.

  10. Iterative build OMIT maps: Map improvement by iterative model-building and refinement without model bias

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, England; Terwilliger, Thomas; Terwilliger, T.C.; Grosse-Kunstleve, Ralf Wilhelm; Afonine, P.V.; Moriarty, N.W.; Zwart, P.H.; Hung, L.-W.; Read, R.J.; Adams, P.D.

    2008-02-12

    A procedure for carrying out iterative model-building, density modification and refinement is presented in which the density in an OMIT region is essentially unbiased by an atomic model. Density from a set of overlapping OMIT regions can be combined to create a composite 'Iterative-Build' OMIT map that is everywhere unbiased by an atomic model but also everywhere benefiting from the model-based information present elsewhere in the unit cell. The procedure may have applications in the validation of specific features in atomic models as well as in overall model validation. The procedure is demonstrated with a molecular replacement structure and with an experimentally-phased structure, and a variation on the method is demonstrated by removing model bias from a structure from the Protein Data Bank.

  11. Helicopter model rotor-blade vortex interaction impulsive noise: Scalability and parametric variations

    Science.gov (United States)

    Splettstoesser, W. R.; Schultz, K. J.; Boxwell, D. A.; Schmitz, F. H.

    1984-01-01

    Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scaling deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation.

  12. Procedural modeling historical buildings for serious games

    Directory of Open Access Journals (Sweden)

    Gonzalo Besuievsky

    2013-11-01

    Full Text Available In this paper we target the goal of obtaining detailed historical virtual buildings, like a castle or a city old town, through a methodology that facilitates their reconstruction. We allow having in a short time an approximation model that is flexible for being explored, analyzed and eventually modified. This is crucial for serious game development pipelines, whose objective is focused not only on accuracy and realism, but also on transmitting a sense of immersion to the player.

  13. Development of Residential Prototype Building Models and Analysis System for Large-Scale Energy Efficiency Studies Using EnergyPlus

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V.; Taylor, Zachary T.

    2014-09-10

    ABSTRACT: Recent advances in residential building energy efficiency and codes have resulted in increased interest in detailed residential building energy models using the latest energy simulation software. One of the challenges of developing residential building models to characterize new residential building stock is to allow for flexibility to address variability in house features like geometry, configuration, HVAC systems etc. Researchers solved this problem in a novel way by creating a simulation structure capable of creating fully-functional EnergyPlus batch runs using a completely scalable residential EnergyPlus template system. This system was used to create a set of thirty-two residential prototype building models covering single- and multifamily buildings, four common foundation types and four common heating system types found in the United States (US). A weighting scheme with detailed state-wise and national weighting factors was designed to supplement the residential prototype models. The complete set is designed to represent a majority of new residential construction stock. The entire structure consists of a system of utility programs developed around the core EnergyPlus simulation engine to automate the creation and management of large-scale simulation studies with minimal human effort. The simulation structure and the residential prototype building models have been used for numerous large-scale studies, one of which is briefly discussed in this paper.

  14. Building phenomenological models of complex biological processes

    Science.gov (United States)

    Daniels, Bryan; Nemenman, Ilya

    2009-11-01

    A central goal of any modeling effort is to make predictions regarding experimental conditions that have not yet been observed. Overly simple models will not be able to fit the original data well, but overly complex models are likely to overfit the data and thus produce bad predictions. Modern quantitative biology modeling efforts often err on the complexity side of this balance, using myriads of microscopic biochemical reaction processes with a priori unknown kinetic parameters to model relatively simple biological phenomena. In this work, we show how Bayesian model selection (which is mathematically similar to low temperature expansion in statistical physics) can be used to build coarse-grained, phenomenological models of complex dynamical biological processes, which have better predictive powers than microscopically correct, but poorely constrained mechanistic molecular models. We illustrate this on the example of a multiply-modifiable protein molecule, which is a simplified description of multiple biological systems, such as an immune receptors and an RNA polymerase complex. Our approach is similar in spirit to the phenomenological Landau expansion for the free energy in the theory of critical phenomena.

  15. Motion-adaptive model-assisted compatible coding with spatiotemporal scalability

    Science.gov (United States)

    Lee, JaeBeom; Eleftheriadis, Alexandros

    1997-01-01

    We introduce the concept of motion adaptive spatio-temporal model-assisted compatible (MA-STMAC) coding, a technique to selectively encode areas of different importance to the human eye in terms of space and time in moving images with the consideration of object motion. PRevious STMAC was proposed base don the fact that human 'eye contact' and 'lip synchronization' are very important in person-to-person communication. Several areas including the eyes and lips need different types of quality, since different areas have different perceptual significance to human observers. The approach provides a better rate-distortion tradeoff than conventional image coding techniques base don MPEG-1, MPEG- 2, H.261, as well as H.263. STMAC coding is applied on top of an encoder, taking full advantage of its core design. Model motion tracking in our previous STMAC approach was not automatic. The proposed MA-STMAC coding considers the motion of the human face within the STMAC concept using automatic area detection. Experimental results are given using ITU-T H.263, addressing very low bit-rate compression.

  16. Service Virtualization Using a Non-von Neumann Parallel, Distributed, and Scalable Computing Model

    Directory of Open Access Journals (Sweden)

    Rao Mikkilineni

    2012-01-01

    Full Text Available This paper describes a prototype implementing a high degree of transaction resilience in distributed software systems using a non-von Neumann computing model exploiting parallelism in computing nodes. The prototype incorporates fault, configuration, accounting, performance, and security (FCAPS management using a signaling network overlay and allows the dynamic control of a set of distributed computing elements in a network. Each node is a computing entity endowed with self-management and signaling capabilities to collaborate with similar nodes in a network. The separation of parallel computing and management channels allows the end-to-end transaction management of computing tasks (provided by the autonomous distributed computing elements to be implemented as network-level FCAPS management. While the new computing model is operating system agnostic, a Linux, Apache, MySQL, PHP/Perl/Python (LAMP based services architecture is implemented in a prototype to demonstrate end-to-end transaction management with auto-scaling, self-repair, dynamic performance management and distributed transaction security assurance. The implementation is made possible by a non-von Neumann middleware library providing Linux process management through multi-threaded parallel execution of self-management and signaling abstractions. We did not use Hypervisors, Virtual machines, or layers of complex virtualization management systems in implementing this prototype.

  17. Modelling seasonality in Australian building approvals

    Directory of Open Access Journals (Sweden)

    Harry M Karamujic

    2012-02-01

    Full Text Available The paper examines the impact of seasonal influences on Australian housing approvals, represented by the State of Victoria[1] building approvals for new houses (BANHs. The prime objective of BANHs is to provide timely estimates of future residential building work. Due to the relevance of the residential property sector to the property sector as whole, BANHs are viewed by economic analysts and commentators as a leading indicator of property sector investment and as such the general level of economic activity and employment. The generic objective of the study is to enhance the practice of modelling housing variables. In particular, the study seeks to cast some additional light on modelling the seasonal behaviour of BANHs by: (i establishing the presence, or otherwise, of seasonality in Victorian BANHs; (ii if present, ascertaining is it deterministic or stochastic; (iii determining out of sample forecasting capabilities of the considered modelling specifications; and (iv speculating on possible interpretation of the results. To do so the study utilises a structural time series model of Harwey (1989. The modelling results confirm that the modelling specification allowing for stochastic trend and deterministic seasonality performs best in terms of diagnostic tests and goodness of fit measures. This is corroborated with the analysis of out of sample forecasting capabilities of the considered modelling specifications, which showed that the models with deterministic seasonal specification exhibit superior forecasting capabilities. The paper also demonstrates that if time series are characterized by either stochastic trend or seasonality, the conventional modelling approach[2] is bound to be mis-specified i.e. would not be able to identify statistically significant seasonality in time series.According to the selected modeling specification, factors corresponding to June, April, December and November are found to be significant at five per cent level

  18. Building a Democratic Model of Science Teaching

    Directory of Open Access Journals (Sweden)

    Suhadi Ibnu

    2016-02-01

    Full Text Available Earlier in the last century, learning in science, as was learning in other disciplines, was developed according to the philosophy of behaviorism. This did not serve the purposes of learning in science properly, as the students were forced to absorb information transferred from the main and the only source of learning, the teacher. Towards the end of the century a significant shift from behaviorism to constructivism philosophy took place. The shift promoted the development of more democratic models of learning in science which provided greater opportunities to the students to act as real scientist, chattering for the building of knowledge and scientific skills. Considering the characteristics of science and the characteristics of the students as active learners, the shift towards democratic models of learning is unavoidable and is merely a matter of time

  19. Building information modelling (BIM: now and beyond

    Directory of Open Access Journals (Sweden)

    Salman Azhar

    2012-12-01

    Full Text Available Building Information Modeling (BIM, also called n-D Modeling or Virtual Prototyping Technology, is a revolutionary development that is quickly reshaping the Architecture-Engineering-Construction (AEC industry. BIM is both a technology and a process. The technology component of BIM helps project stakeholders to visualize what is to be built in a simulated environment to identify any potential design, construction or operational issues. The process component enables close collaboration and encourages integration of the roles of all stakeholders on a project. The paper presents an overview of BIM with focus on its core concepts, applications in the project life cycle and benefits for project stakeholders with the help of case studies. The paper also elaborates risks and barriers to BIM implementation and future trends.

  20. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation

    Science.gov (United States)

    Augustin, Christoph M.; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J.; Niederer, Steven A.; Haase, Gundolf; Plank, Gernot

    2016-01-01

    Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which is not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate

  1. A Team Building Model for Software Engineering Courses Term Projects

    Science.gov (United States)

    Sahin, Yasar Guneri

    2011-01-01

    This paper proposes a new model for team building, which enables teachers to build coherent teams rapidly and fairly for the term projects of software engineering courses. Moreover, the model can also be used to build teams for any type of project, if the team member candidates are students, or if they are inexperienced on a certain subject. The…

  2. Building information modeling based on intelligent parametric technology

    Institute of Scientific and Technical Information of China (English)

    ZENG Xudong; TAN Jie

    2007-01-01

    In order to push the information organization process of the building industry,promote sustainable architectural design and enhance the competitiveness of China's building industry,the author studies building information modeling (BIM) based on intelligent parametric modeling technology.Building information modeling is a new technology in the field of computer aided architectural design,which contains not only geometric data,but also the great amount of engineering data throughout the lifecycle of a building.The author also compares BIM technology with two-dimensional CAD technology,and demonstrates the advantages and characteristics of intelligent parametric modeling technology.Building information modeling,which is based on intelligent parametric modeling technology,will certainly replace traditional computer aided architectural design and become the new driving force to push forward China's building industry in this information age.

  3. Modeling and Simulation of Multi-Room Buildings

    Directory of Open Access Journals (Sweden)

    D.W.U. Perera

    2016-04-01

    Full Text Available Buildings are one of the largest energy consumers in the world which accounts for nearly 40% of the total global energy consumption. In the countries where cold climate conditions predominate, space heating is the key contributor to the increased energy consumption. Today there is a growing trend to use Building Energy Management Systems (BEMS to control the energy consumption of buildings in an efficient manner. BEMS require a good heating model of the building to be integrated for better control purposes. This article refers to the development of different types of physics based buillding heating models, regarding single-zone, multi-floor and multi-room buildings. They address the propriety of each model in building heating control concerning the prediction accuracy and the prediction time. These models are verified for a residential building having three floors. According to the results, the multi-floor model is recognized to have the best qualifications obliged as a model for control.

  4. Systematic model building with flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Plentinger, Florian

    2009-12-19

    The observation of neutrino masses and lepton mixing has highlighted the incompleteness of the Standard Model of particle physics. In conjunction with this discovery, new questions arise: why are the neutrino masses so small, which form has their mass hierarchy, why is the mixing in the quark and lepton sectors so different or what is the structure of the Higgs sector. In order to address these issues and to predict future experimental results, different approaches are considered. One particularly interesting possibility, are Grand Unified Theories such as SU(5) or SO(10). GUTs are vertical symmetries since they unify the SM particles into multiplets and usually predict new particles which can naturally explain the smallness of the neutrino masses via the seesaw mechanism. On the other hand, also horizontal symmetries, i.e., flavor symmetries, acting on the generation space of the SM particles, are promising. They can serve as an explanation for the quark and lepton mass hierarchies as well as for the different mixings in the quark and lepton sectors. In addition, flavor symmetries are significantly involved in the Higgs sector and predict certain forms of mass matrices. This high predictivity makes GUTs and flavor symmetries interesting for both, theorists and experimentalists. These extensions of the SM can be also combined with theories such as supersymmetry or extra dimensions. In addition, they usually have implications on the observed matter-antimatter asymmetry of the universe or can provide a dark matter candidate. In general, they also predict the lepton flavor violating rare decays {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma}, and {tau} {yields} e{gamma} which are strongly bounded by experiments but might be observed in the future. In this thesis, we combine all of these approaches, i.e., GUTs, the seesaw mechanism and flavor symmetries. Moreover, our request is to develop and perform a systematic model building approach with flavor symmetries and

  5. A multi-layered software architecture model for building software solutions in an urbanized information system

    Directory of Open Access Journals (Sweden)

    Sana Guetat

    2013-01-01

    Full Text Available The concept of Information Systems urbanization has been proposed since the late 1990’s in order to help organizations building agile information systems. Nevertheless, despite the advantages of this concept, it remains too descriptive and presents many weaknesses. In particular, there is a lack of useful architecture models dedicated to defining software solutions compliant with information systems urbanization principles and rules. Moreover, well-known software architecture models do not provide sufficient resources to address the requirements and constraints of urbanized information systems. In this paper, we draw on the “information city” framework to propose a model of software architecture - called the 5+1 Software Architecture Model - which is compliant with information systems urbanization principles and helps organizations building urbanized software solutions. This framework improves the well-established software architecture models and allows the integration of new architectural paradigms. Furthermore, the proposed model contributes to the implementation of information systems urbanization in several ways. On the one hand, this model devotes a specific layer to applications integration and software reuse. On the other hand, it contributes to the information system agility and scalability due to its conformity to the separation of concerns principle.

  6. Scalable Resource Discovery Architecture for Large Scale MANETs

    Directory of Open Access Journals (Sweden)

    Saad Al-Ahmadi

    2014-02-01

    Full Text Available The study conducted a primary investigation into using the Gray cube structure, clustering and Distributed Hash Tables (DHTs to build an efficient virtual network backbone for Resource Discovery (RD tasks in large scale Mobile Ad hoc NET works (MANETs. MANET is an autonomous system of mobile nodes characterized by wireless links. One of the major challenges in MANET is RD protocols responsible for advertising and searching network services. We propose an efficient and scalable RD architecture to meet the challenging requirements of reliable, scalable and power-efficient RD protocol suitable for MANETs with potentially thousands of wireless mobile devices. Our RD is based on virtual network backbone created by dividing the network into several non overlapping localities using multi-hop clustering. In every locality we build a Gray cube with locally adapted dimension. All the Gray cubes are connected through gateways and access points to form virtual backbone used as substrate for DHT operations to distribute, register and locate network resources efficiently. The Gray cube is characterized by low network diameter, low average distance and strong connectivity. We evaluated the proposed RD performance and compared it to some of the well known RD schemes in the literature based on modeling and simulation. The results show the superiority of the proposed RD in terms of delay, load balancing, overloading avoidance, scalability and fault-tolerance.

  7. Whole-Building Hygrothermal Modeling in IEA Annex 41

    DEFF Research Database (Denmark)

    Rode, Carsten; Woloszyn, Monika

    2007-01-01

    Annex 41 of the International Energy Agency’s (IEA) Energy Conservation in Buildings and Community Systems program (ECBCS) is a cooperative project on “Whole-Building Heat, Air, and Moisture Response” (MOIST-ENG). Subtask 1 of that project set out to advance development in modeling the ntegral heat......, air, and moisture transfer processes that take place in whole-buildings. Such modeling comprises all relevant elements of buildings: indoor air, the building envelope, inside constructions, furnishing, systems, and users. The building elements interact with each other and with the outside climate....... The IEA Annex 41 project runs from 2004–2007, coming to conclusion just before the Thermal Performance of the Exterior Envelopes of Whole Buildings X conference. The Annex 41 project and its Subtask 1 do not aim to produce one state-of-the-art hygrothermal simulation model for whole buildings, but rather...

  8. Geometry model construction in infrared image theory simulation of buildings

    Institute of Scientific and Technical Information of China (English)

    谢鸣; 李玉秀; 徐辉; 谈和平

    2004-01-01

    Geometric model construction is the basis of infrared image theory simulation. Taking the construction of the geometric model of one building in Harbin as an example, this paper analyzes the theoretical groundings of simplification and principles of geometric model construction of buildings. It then discusses some particular treatment methods in calculating the radiation transfer coefficient in geometric model construction using the Monte Carlo Method.

  9. Building groundwater modeling capacity in Mongolia

    Science.gov (United States)

    Valder, Joshua F.; Carter, Janet M.; Anderson, Mark T.; Davis, Kyle W.; Haynes, Michelle A.; Dorjsuren Dechinlhundev,

    2016-06-16

    Ulaanbaatar, the capital city of Mongolia (fig. 1), is dependent on groundwater for its municipal and industrial water supply. The population of Mongolia is about 3 million people, with about one-half the population residing in or near Ulaanbaatar (World Population Review, 2016). Groundwater is drawn from a network of shallow wells in an alluvial aquifer along the Tuul River. Evidence indicates that current water use may not be sustainable from existing water sources, especially when factoring the projected water demand from a rapidly growing urban population (Ministry of Environment and Green Development, 2013). In response, the Government of Mongolia Ministry of Environment, Green Development, and Tourism (MEGDT) and the Freshwater Institute, Mongolia, requested technical assistance on groundwater modeling through the U.S. Army Corps of Engineers (USACE) to the U.S. Geological Survey (USGS). Scientists from the USGS and USACE provided two workshops in 2015 to Mongolian hydrology experts on basic principles of groundwater modeling using the USGS groundwater modeling program MODFLOW-2005 (Harbaugh, 2005). The purpose of the workshops was to bring together representatives from the Government of Mongolia, local universities, technical experts, and other key stakeholders to build in-country capacity in hydrogeology and groundwater modeling.A preliminary steady-state groundwater-flow model was developed as part of the workshops to demonstrate groundwater modeling techniques to simulate groundwater conditions in alluvial deposits along the Tuul River in the vicinity of Ulaanbaatar. ModelMuse (Winston, 2009) was used as the graphical user interface for MODFLOW for training purposes during the workshops. Basic and advanced groundwater modeling concepts included in the workshops were groundwater principles; estimating hydraulic properties; developing model grids, data sets, and MODFLOW input files; and viewing and evaluating MODFLOW output files. A key to success was

  10. Implementation of Models for Building Envelope Air Flow Fields in a Whole Building Hygrothermal Simulation Tool

    DEFF Research Database (Denmark)

    Sørensen, Karl Grau; Rode, Carsten

    2009-01-01

    phenomena that occur. However, there is still room for further development of such tools. This paper will present an attempt to integrate modelling of air flows in building envelopes into a whole building hygrothermal simulation tool. Two kinds of air flows have been considered: (1) Air flow in a ventilated...... cavity such as behind the exterior cladding of a building envelope, i.e. a flow which is parallel to the construction plane. (2) Infiltration/exfiltration of air through the building envelope, i.e. a flow which is perpendicular to the constructionplane. The paper presents the models and how they have...

  11. Model Predictive Control for the Operation of Building Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yudong; Borrelli, Francesco; Hencey, Brandon; Coffey, Brian; Bengea, Sorin; Haves, Philip

    2010-06-29

    A model-based predictive control (MPC) is designed for optimal thermal energy storage in building cooling systems. We focus on buildings equipped with a water tank used for actively storing cold water produced by a series of chillers. Typically the chillers are operated at night to recharge the storage tank in order to meet the building demands on the following day. In this paper, we build on our previous work, improve the building load model, and present experimental results. The experiments show that MPC can achieve reduction in the central plant electricity cost and improvement of its efficiency.

  12. Optimizing Energy Consumption in Building Designs Using Building Information Model (BIM

    Directory of Open Access Journals (Sweden)

    Egwunatum Samuel

    2016-09-01

    Full Text Available Given the ability of a Building Information Model (BIM to serve as a multi-disciplinary data repository, this paper seeks to explore and exploit the sustainability value of Building Information Modelling/models in delivering buildings that require less energy for their operation, emit less CO2 and at the same time provide a comfortable living environment for their occupants. This objective was achieved by a critical and extensive review of the literature covering: (1 building energy consumption, (2 building energy performance and analysis, and (3 building information modeling and energy assessment. The literature cited in this paper showed that linking an energy analysis tool with a BIM model helped project design teams to predict and create optimized energy consumption. To validate this finding, an in-depth analysis was carried out on a completed BIM integrated construction project using the Arboleda Project in the Dominican Republic. The findings showed that the BIM-based energy analysis helped the design team achieve the world’s first 103% positive energy building. From the research findings, the paper concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results as well as deliver energy-efficient buildings. The study further recommends that the adoption of a level 2 BIM and the integration of BIM in energy optimization analyse should be made compulsory for all projects irrespective of the method of procurement (government-funded or otherwise or its size.

  13. Implementation of Models for Building Envelope Air Flow Fields in a Whole Building Hygrothermal Simulation Tool

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2009-01-01

    Simulation tools are becoming available which predict the heat and moisture conditions in the indoor environment as well as in the envelope of buildings, and thus it has become possible to consider the important interaction between the different components of buildings and the different physical...... phenomena which occur. However, there is still room for further development of such tools. This paper will present an attempt to integrate modelling of air flows in building envelopes into a whole building hygrothermal simulation tool. Two kinds of air flows have been considered: 1. Air flow in ventilated...... cavity such as in the exterior cladding of building envelopes, i.e. a flow which is parallel to the construction plane. 2. Infiltration/exfiltration of air through the building envelope, i.e. a flow which is perpendicular to the construction plane. The new models make it possible to predict the thermal...

  14. Scalable Content Management System

    Directory of Open Access Journals (Sweden)

    Sandeep Krishna S, Jayant Dani

    2013-10-01

    Full Text Available Immense growth in the volume of contents every day demands more scalable system to handle and overcome difficulties in capture, storage, transform, search, sharing and visualization of data, where the data can be a structured or unstructured data of any type. A system to manage the growing contents and overcome the issues and complexity faced using appropriate technologies would advantage over measurable qualities like flexibility, interoperability, customizability, security, auditability, quality, community support, options and cost of licensing. So architecting aContent Management System in terms of enterprise needs and a scalable solution to manage the huge data growth necessitates a Scalable Content Management System.

  15. A View on Future Building System Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  16. Integrating Building Information Modeling and Augmented Reality to Improve Investigation of Historical Buildings

    OpenAIRE

    Francesco Chionna; Francesco Argese; Vito Palmieri; Italo Spada; Lucio Colizzi

    2015-01-01

    This paper describes an experimental system to support investigation of historical buildings using Building Information Modeling (BIM) and Augmented Reality (AR). The system requires the use of an off-line software to build the BIM representation and defines a method to integrate diagnostic data into BIM. The system offers access to such information during site investigation using AR glasses supported by marker and marker-less technologies. The main innovation is the possibility to contextual...

  17. Understanding obsolescence: a conceptual model for buildings

    NARCIS (Netherlands)

    Thomsen, A.; Van der Flier, K.

    2011-01-01

    What is obsolescence? Numerous older buildings have been demolished due to being labelled as obsolete. There is a general understanding that buildings, similar to machinery and durable consumer goods, should be demolished and replaced when they become obsolete. The truth of this assertion is examine

  18. Building Energy Modeling: A Data-Driven Approach

    Science.gov (United States)

    Cui, Can

    Buildings consume nearly 50% of the total energy in the United States, which drives the need to develop high-fidelity models for building energy systems. Extensive methods and techniques have been developed, studied, and applied to building energy simulation and forecasting, while most of work have focused on developing dedicated modeling approach for generic buildings. In this study, an integrated computationally efficient and high-fidelity building energy modeling framework is proposed, with the concentration on developing a generalized modeling approach for various types of buildings. First, a number of data-driven simulation models are reviewed and assessed on various types of computationally expensive simulation problems. Motivated by the conclusion that no model outperforms others if amortized over diverse problems, a meta-learning based recommendation system for data-driven simulation modeling is proposed. To test the feasibility of the proposed framework on the building energy system, an extended application of the recommendation system for short-term building energy forecasting is deployed on various buildings. Finally, Kalman filter-based data fusion technique is incorporated into the building recommendation system for on-line energy forecasting. Data fusion enables model calibration to update the state estimation in real-time, which filters out the noise and renders more accurate energy forecast. The framework is composed of two modules: off-line model recommendation module and on-line model calibration module. Specifically, the off-line model recommendation module includes 6 widely used data-driven simulation models, which are ranked by meta-learning recommendation system for off-line energy modeling on a given building scenario. Only a selective set of building physical and operational characteristic features is needed to complete the recommendation task. The on-line calibration module effectively addresses system uncertainties, where data fusion on

  19. Iterative model-building, structure refinement, and density modification with the PHENIX AutoBuild Wizard

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, England; Terwilliger, Thomas; Terwilliger, T.C.; Grosse-Kunstleve, Ralf Wilhelm; Afonine, P.V.; Moriarty, N.W.; Zwart, P.H.; Hung, L.-W.; Read, R.J.; Adams, P.D.

    2007-04-29

    The PHENIX AutoBuild Wizard is a highly automated tool for iterative model-building, structure refinement and density modification using RESOLVE or TEXTAL model-building, RESOLVE statistical density modification, and phenix.refine structure refinement. Recent advances in the AutoBuild Wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model completion algorithms, and automated solvent molecule picking. Model completion algorithms in the AutoBuild Wizard include loop-building, crossovers between chains in different models of a structure, and side-chain optimization. The AutoBuild Wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 {angstrom} to 3.2 {angstrom}, resulting in a mean R-factor of 0.24 and a mean free R factor of 0.29. The R-factor of the final model is dependent on the quality of the starting electron density, and relatively independent of resolution.

  20. Complementarity of Historic Building Information Modelling and Geographic Information Systems

    Science.gov (United States)

    Yang, X.; Koehl, M.; Grussenmeyer, P.; Macher, H.

    2016-06-01

    In this paper, we discuss the potential of integrating both semantically rich models from Building Information Modelling (BIM) and Geographical Information Systems (GIS) to build the detailed 3D historic model. BIM contributes to the creation of a digital representation having all physical and functional building characteristics in several dimensions, as e.g. XYZ (3D), time and non-architectural information that are necessary for construction and management of buildings. GIS has potential in handling and managing spatial data especially exploring spatial relationships and is widely used in urban modelling. However, when considering heritage modelling, the specificity of irregular historical components makes it problematic to create the enriched model according to its complex architectural elements obtained from point clouds. Therefore, some open issues limiting the historic building 3D modelling will be discussed in this paper: how to deal with the complex elements composing historic buildings in BIM and GIS environment, how to build the enriched historic model, and why to construct different levels of details? By solving these problems, conceptualization, documentation and analysis of enriched Historic Building Information Modelling are developed and compared to traditional 3D models aimed primarily for visualization.

  1. Vibration Response of Multi Storey Building Using Finite Element Modelling

    Science.gov (United States)

    Chik, T. N. T.; Zakaria, M. F.; Remali, M. A.; Yusoff, N. A.

    2016-07-01

    Interaction between building, type of foundation and the geotechnical parameter of ground may trigger a significant effect on the building. In general, stiffer foundations resulted in higher natural frequencies of the building-soil system and higher input frequencies are often associated with other ground. Usually, vibrations transmitted to the buildings by ground borne are often noticeable and can be felt. It might affect the building and become worse if the vibration level is not controlled. UTHM building is prone to the ground borne vibration due to closed distance from the main road, and the construction activities adjacent to the buildings. This paper investigates the natural frequency and vibration mode of multi storey office building with the presence of foundation system and comparison between both systems. Finite element modelling (FEM) package software of LUSAS is used to perform the vibration analysis of the building. The building is modelled based on the original plan with the foundation system on the structure model. The FEM results indicated that the structure which modelled with rigid base have high natural frequency compare to the structure with foundation system. These maybe due to soil structure interaction and also the damping of the system which related to the amount of energy dissipated through the foundation soil. Thus, this paper suggested that modelling with soil is necessary to demonstrate the soil influence towards vibration response to the structure.

  2. Statistical models describing the energy signature of buildings

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Thavlov, Anders

    2010-01-01

    Approximately one third of the primary energy production in Denmark is used for heating in buildings. Therefore efforts to accurately describe and improve energy performance of the building mass are very important. For this purpose statistical models describing the energy signature of a building, i.......e. the heat dynamics of the building, have been developed. The models can be used to obtain rather detailed knowledge of the energy performance of the building and to optimize the control of the energy consumption for heating, which will be vital in conditions with increasing fluctuation of the energy supply...... or varying energy prices. The paper will give an overview of statistical methods and applied models based on experiments carried out in FlexHouse, which is an experimental building in SYSLAB, Risø DTU. The models are of different complexity and can provide estimates of physical quantities such as UA...

  3. Environmental sustainability modeling with exergy methodology for building life cycle

    Institute of Scientific and Technical Information of China (English)

    刘猛; 姚润明

    2009-01-01

    As an important human activity,the building industry has created comfortable space for living and work,and at the same time brought considerable pollution and huge consumption of energy and recourses. From 1990s after the first building environmental assessment model-BREEAM was released in the UK,a number of assessment models were formulated as analytical and practical in methodology respectively. This paper aims to introduce a generic model of exergy assessment on environmental impact of building life cycle,taking into consideration of previous models and focusing on natural environment as well as building life cycle,and three environmental impacts will be analyzed,namely energy embodied exergy,resource chemical exergy and abatement exergy on energy consumption,resource consumption and pollutant discharge respectively. The model of exergy assessment on environmental impact of building life cycle thus formulated contains two sub-models,one from the aspect of building energy utilization,and the other from building materials use. Combining theories by ecologists such as Odum,building environmental sustainability modeling with exergy methodology is put forward with the index of exergy footprint of building environmental impacts.

  4. Scalable computations in penetration mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kimsey, K.D.; Schraml, S.J. [Army Research Lab., Aberdeen Proving Ground, MD (United States). Weapons and Materials Research Directorate; Hertel, E.S. [Sandia National Labs., Albuquerque, NM (United States)

    1998-01-01

    This paper presents an overview of an explicit message passing paradigm for an Eulerian finite volume method for modeling solid dynamics problems involving shock wave propagation, multiple materials, and large deformations. Three-dimensional simulations of high-velocity impact were conducted on the IBM SP2, the SGI Power challenge Array, and the SGI Origin 2000. The scalability of the message-passing code on distributed-memory and symmetric multiprocessor architectures is presented and compared to the ideal linear performance.

  5. Moisture buffering and its consequence in whole building hygrothermal modeling

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2008-01-01

    air of the indoor climate and materials in the building envelope is taken into account in a model for whole building heat and moisture simulation. By means of an example, it will be investigated if: 1. it is possible to use the benefits of moisture buffering to save energy by reducing the requirement...... of building products to improve indoor air quality and to save energy. Of interest therefore is to establish a unit to appraise this quality of building products and to investigate the importance of moisture buffering when it is considered in whole building hygrothermal simulation. This paper will illustrate...... hygrothermal simulations show that it is possible to rather significantly reduce the amplitudes of indoor relative variation when the moisture buffering effect of building materials is taken into account, compared to a situation with moisture tight interior building surfaces. The modeling also shows some...

  6. On the area and energy scalability of wireless network-on-chip: a model-based benchmarked design space exploration

    OpenAIRE

    Abadal Cavallé, Sergi; Iannazzo Soteras, Mario Enrique; Nemirovsky, Mario; Cabellos Aparicio, Alberto; Lee, Heekwan; Alarcón Cot, Eduardo José

    2014-01-01

    Networks-on-Chip (NoCs) are emerging as the way to interconnect the processing cores and the memory within a chip multiprocessor. As recent years have seen a significant increase in the number of cores per chip, it is crucial to guarantee the scalability of NoCs in order to avoid communication to become the next performance bottleneck in multicore processors. Among other alternatives, the concept of Wireless Network-on- Chip (WNoC) has been proposed, wherein on-chip anten...

  7. DEVELOPING PARAMETRIC BUILDING MODELS – THE GANDIS USE CASE

    Directory of Open Access Journals (Sweden)

    W. Thaller

    2012-09-01

    Full Text Available In the course of a project related to green building design, we have created a group of eight parametric building models that can be manipulated interactively with respect to dimensions, number of floors, and a few other parameters. We report on the commonalities and differences between the models and the abstractions that we were able to identify.

  8. Working group report: Flavor physics and model building

    Indian Academy of Sciences (India)

    M K Parida; Nita Sinha; B Adhikary; B Allanach; A Alok; K S Babu; B Brahmachari; D Choudhury; E J Chun; P K Das; A Ghosal; D Hitlin; W S Hou; S Kumar; H N Li; E Ma; S K Majee; G Majumdar; B Mishra; G Mohanty; S Nandi; H Pas; M K Parida; S D Rindani; J P Saha; N Sahu; Y Sakai; S Sen; C Sharma; C D Sharma; S Shalgar; N N Singh; S Uma Sankar; N Sinha; R Sinha; F Simonetto; R Srikanth; R Vaidya

    2006-11-01

    This is the report of flavor physics and model building working group at WHEPP-9. While activities in flavor physics have been mainly focused on -physics, those in model building have been primarily devoted to neutrino physics. We present summary of working group discussions carried out during the workshop in the above fields, and also briefly review the progress made in some projects subsequently

  9. Grassmann Averages for Scalable Robust PCA

    DEFF Research Database (Denmark)

    Hauberg, Søren; Feragen, Aasa; Black, Michael J.

    2014-01-01

    As the collection of large datasets becomes increasingly automated, the occurrence of outliers will increase—“big data” implies “big outliers”. While principal component analysis (PCA) is often used to reduce the size of data, and scalable solutions exist, it is well-known that outliers can...... can be efficiently computed, we immediately gain scalability. GA is inherently more robust than PCA, but we show that they coincide for Gaussian data. We exploit that averages can be made robust to formulate the Robust Grassmann Average (RGA) as a form of robust PCA. Robustness can be with respect......, making it scalable to “big noisy data.” We demonstrate TGA for background modeling, video restoration, and shadow removal. We show scalability by performing robust PCA on the entire Star Wars IV movie....

  10. A Heat Dynamic Model for Intelligent Heating of Buildings

    DEFF Research Database (Denmark)

    Thavlov, Anders; Bindner, Henrik W.

    2015-01-01

    of the building in time. This way the thermal mass of the building can be used to absorb energy from renewable energy source when available and postpone heating in periods with lack of renewable energy generation. The model is used in a model predictive controller to ensure the residential comfort over a given......This article presents a heat dynamic model for prediction of the indoor temperature in an office building. The model has been used in several flexible load applications, where the indoor temperature is allowed to vary around a given reference to provide power system services by shifting the heating...

  11. Methods for implementing Building Information Modeling and Building Performance Simulation approaches

    DEFF Research Database (Denmark)

    Mondrup, Thomas Fænø

    In the present thesis, a number of studies into the adoption of Building Information Modeling (BIM) and Building Performance Simulation (BPS) are presented. The thesis has two main goals. The first is to explore the benefits and challenges of adopting (a) BIM as a platform for Architecture......, Engineering, Construction, and Facility Management (AEC/ FM) communication, and (b) BPS as a platform for early-stage building performance prediction. The second is to develop (a) relevant AEC/FM communication support instruments, and (b) standardized BIM and BPS execution guidelines and information exchange...... to improve early-stage building performance prediction. However, because of complex BPS information exchange structures, the BPS process is not always practical, highlighting the need for these structures to be simplified and more, clearly articulated. In this thesis, buildingSMART standard approaches...

  12. Energy Savings Modeling of Standard Commercial Building Re-tuning Measures: Large Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2012-06-01

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS's capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This report investigates the energy savings potential of several common HVAC system retuning measures on a typical large office building prototype model, using the Department of Energy's building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated - each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All of these measures and combinations were simulated in 16 cities representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy

  13. Making Connections to the "Real World": A Model Building Lesson

    Science.gov (United States)

    Horibe, Shusaku; Underwood, Bret

    2009-01-01

    Classroom activities that include the process of model building, in which students build simplified physical representations of a system, have the potential to help students make meaningful connections between physics and the real world. We describe a lesson designed with this intent for an introductory college classroom that engages students in…

  14. Numeric Analysis for Relationship-Aware Scalable Streaming Scheme

    Directory of Open Access Journals (Sweden)

    Heung Ki Lee

    2014-01-01

    Full Text Available Frequent packet loss of media data is a critical problem that degrades the quality of streaming services over mobile networks. Packet loss invalidates frames containing lost packets and other related frames at the same time. Indirect loss caused by losing packets decreases the quality of streaming. A scalable streaming service can decrease the amount of dropped multimedia resulting from a single packet loss. Content providers typically divide one large media stream into several layers through a scalable streaming service and then provide each scalable layer to the user depending on the mobile network. Also, a scalable streaming service makes it possible to decode partial multimedia data depending on the relationship between frames and layers. Therefore, a scalable streaming service provides a way to decrease the wasted multimedia data when one packet is lost. However, the hierarchical structure between frames and layers of scalable streams determines the service quality of the scalable streaming service. Even if whole packets of layers are transmitted successfully, they cannot be decoded as a result of the absence of reference frames and layers. Therefore, the complicated relationship between frames and layers in a scalable stream increases the volume of abandoned layers. For providing a high-quality scalable streaming service, we choose a proper relationship between scalable layers as well as the amount of transmitted multimedia data depending on the network situation. We prove that a simple scalable scheme outperforms a complicated scheme in an error-prone network. We suggest an adaptive set-top box (AdaptiveSTB to lower the dependency between scalable layers in a scalable stream. Also, we provide a numerical model to obtain the indirect loss of multimedia data and apply it to various multimedia streams. Our AdaptiveSTB enhances the quality of a scalable streaming service by removing indirect loss.

  15. Structural Simulations and Conservation Analysis -Historic Building Information Model (HBIM

    Directory of Open Access Journals (Sweden)

    C. Dore

    2015-02-01

    Full Text Available In this paper the current findings to date of the Historic Building Information Model (HBIM of the Four Courts in Dublin are presented. The Historic Building Information Model (HBIM forms the basis for both structural and conservation analysis to measure the impact of war damage which still impacts on the building. The laser scan survey was carried out in the summer of 2014 of the internal and external structure. After registration and processing of the laser scan survey, the HBIM was created of the damaged section of the building and is presented as two separate workflows in this paper. The first is the model created from historic data, the second a procedural and segmented model developed from laser scan survey of the war damaged drum and dome. From both models structural damage and decay simulations will be developed for documentation and conservation analysis.

  16. Integrating Building Information Modeling and Augmented Reality to Improve Investigation of Historical Buildings

    Directory of Open Access Journals (Sweden)

    Francesco Chionna

    2015-12-01

    Full Text Available This paper describes an experimental system to support investigation of historical buildings using Building Information Modeling (BIM and Augmented Reality (AR. The system requires the use of an off-line software to build the BIM representation and defines a method to integrate diagnostic data into BIM. The system offers access to such information during site investigation using AR glasses supported by marker and marker-less technologies. The main innovation is the possibility to contextualize through AR not only existing BIM properties but also results from non-invasive tools. User evaluations show how the use of the system may enhance the perception of engineers during the investigation process.

  17. The Dutch sustainable building policy: A model for developing countries?

    Energy Technology Data Exchange (ETDEWEB)

    Melchert, Luciana [Faculty of Architecture and Urbanism, University of Sao Paulo, Rua do Lago, 876, CEP 05508.900, Sao Paulo SP (Brazil)

    2007-02-15

    This article explores the institutionalization of environmental policies in the Dutch building sector and the applicability of the current model to developing countries. First, it analyzes the transition of sustainable building practices in the Netherlands from the 1970s until today, exploring how these were originally embedded in a discourse on 'de-modernization', which attempted to improve the environmental performance of building stocks by means of self-sufficient technologies, whereas nowadays they adopt a framework of 'ecological modernization', with integrative approaches seeking to improve the environmental performance of building stocks through more efficient-rather than self-sufficient-technologies. The study subsequently shows how the current Dutch sustainable building framework has thereby managed to achieve a pragmatic and widely accepted rationale, which can serve to orient the ecological restructuring of building stocks in developing countries. (author)

  18. D Topological Indoor Building Modeling Integrated with Open Street Map

    Science.gov (United States)

    Jamali, A.; Rahman, A. Abdul; Boguslawski, P.

    2016-09-01

    Considering various fields of applications for building surveying and various demands, geometry representation of a building is the most crucial aspect of a building survey. The interiors of the buildings need to be described along with the relative locations of the rooms, corridors, doors and exits in many kinds of emergency response, such as fire, bombs, smoke, and pollution. Topological representation is a challenging task within the Geography Information Science (GIS) environment, as the data structures required to express these relationships are particularly difficult to develop. Even within the Computer Aided Design (CAD) community, the structures for expressing the relationships between adjacent building parts are complex and often incomplete. In this paper, an integration of 3D topological indoor building modeling in Dual Half Edge (DHE) data structure and outdoor navigation network from Open Street Map (OSM) is presented.

  19. Modelling the heat dynamics of a residential building unit: Application to Norwegian buildings

    Directory of Open Access Journals (Sweden)

    D.W.U. Perera

    2014-01-01

    Full Text Available The paper refers to the development of a continuous time mathematical heating model for a building unit based on the first principles. The model is described in terms of the state space variables, and a lumped parameter approach is used to represent the room air temperature and air density using mass and energy balances. The one-dimensional heat equation in cartesian coordinates and spherical coordinates is discretized in order to describe the thermic characteristics of the layers of the building framework and furniture respectively. The developed model is implemented in a MATLAB environment, and mainly a theoretical approach is used to validate it for a residential building unit. Model is also validated using experimental data for a limited period. Short term simulations are used to test the energy efficiency of the building unit with regard to factors such as the operation of heat sources, ventilation, occupancy patterns of people, weather conditions, features of the building structure and heat recovery. The results are consistent and are obtained considerably fast, implying that the model can be used further in modelling the heating dynamics of complex architectural designs and in control applications.

  20. Building Component Library: An Online Repository to Facilitate Building Energy Model Creation; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, K.; Long, N.; Swindler, A.

    2012-05-01

    This paper describes the Building Component Library (BCL), the U.S. Department of Energy's (DOE) online repository of building components that can be directly used to create energy models. This comprehensive, searchable library consists of components and measures as well as the metadata which describes them. The library is also designed to allow contributors to easily add new components, providing a continuously growing, standardized list of components for users to draw upon.

  1. Building energy modeling for green architecture and intelligent dashboard applications

    Science.gov (United States)

    DeBlois, Justin

    Buildings are responsible for 40% of the carbon emissions in the United States. Energy efficiency in this sector is key to reducing overall greenhouse gas emissions. This work studied the passive technique called the roof solar chimney for reducing the cooling load in homes architecturally. Three models of the chimney were created: a zonal building energy model, computational fluid dynamics model, and numerical analytic model. The study estimated the error introduced to the building energy model (BEM) through key assumptions, and then used a sensitivity analysis to examine the impact on the model outputs. The conclusion was that the error in the building energy model is small enough to use it for building simulation reliably. Further studies simulated the roof solar chimney in a whole building, integrated into one side of the roof. Comparisons were made between high and low efficiency constructions, and three ventilation strategies. The results showed that in four US climates, the roof solar chimney results in significant cooling load energy savings of up to 90%. After developing this new method for the small scale representation of a passive architecture technique in BEM, the study expanded the scope to address a fundamental issue in modeling - the implementation of the uncertainty from and improvement of occupant behavior. This is believed to be one of the weakest links in both accurate modeling and proper, energy efficient building operation. A calibrated model of the Mascaro Center for Sustainable Innovation's LEED Gold, 3,400 m2 building was created. Then algorithms were developed for integration to the building's dashboard application that show the occupant the energy savings for a variety of behaviors in real time. An approach using neural networks to act on real-time building automation system data was found to be the most accurate and efficient way to predict the current energy savings for each scenario. A stochastic study examined the impact of the

  2. Jeddah Historical Building Information Modelling "JHBIM" - Object Library

    Science.gov (United States)

    Baik, A.; Alitany, A.; Boehm, J.; Robson, S.

    2014-05-01

    The theory of using Building Information Modelling "BIM" has been used in several Heritage places in the worldwide, in the case of conserving, documenting, managing, and creating full engineering drawings and information. However, one of the most serious issues that facing many experts in order to use the Historical Building Information Modelling "HBIM", is creating the complicated architectural elements of these Historical buildings. In fact, many of these outstanding architectural elements have been designed and created in the site to fit the exact location. Similarly, this issue has been faced the experts in Old Jeddah in order to use the BIM method for Old Jeddah historical Building. Moreover, The Saudi Arabian City has a long history as it contains large number of historic houses and buildings that were built since the 16th century. Furthermore, the BIM model of the historical building in Old Jeddah always take a lot of time, due to the unique of Hijazi architectural elements and no such elements library, which have been took a lot of time to be modelled. This paper will focus on building the Hijazi architectural elements library based on laser scanner and image survey data. This solution will reduce the time to complete the HBIM model and offering in depth and rich digital architectural elements library to be used in any heritage projects in Al-Balad district, Jeddah City.

  3. Artificial intelligence support for scientific model-building

    Science.gov (United States)

    Keller, Richard M.

    1992-01-01

    Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.

  4. Modelling the heat dynamics of buildings using stochastic

    DEFF Research Database (Denmark)

    Andersen, Klaus Kaae; Madsen, Henrik

    2000-01-01

    This paper describes the continuous time modelling of the heat dynamics of a building. The considered building is a residential like test house divided into two test rooms with a water based central heating. Each test room is divided into thermal zones in order to describe both short and long term...... variations. Besides modelling the heat transfer between thermal zones, attention is put on modelling the heat input from radiators and solar radiation. The applied modelling procedure is based on collected building performance data and statistical methods. The statistical methods are used in parameter...... estimation and model validation, while physical knowledge is used in forming the model structure. The suggested lumped parameter model is thus based on thermodynamics and formulated as a system of stochastic differential equations. Due to the continuous time formulation the parameters of the model...

  5. Guidelines for Using Building Information Modeling for Energy Analysis of Buildings

    Directory of Open Access Journals (Sweden)

    Thomas Reeves

    2015-12-01

    Full Text Available Building energy modeling (BEM, a subset of building information modeling (BIM, integrates energy analysis into the design, construction, and operation and maintenance of buildings. As there are various existing BEM tools available, there is a need to evaluate the utility of these tools in various phases of the building lifecycle. The goal of this research was to develop guidelines for evaluation and selection of BEM tools to be used in particular building lifecycle phases. The objectives of this research were to: (1 Evaluate existing BEM tools; (2 Illustrate the application of the three BEM tools; (3 Re-evaluate the three BEM tools; and (4 Develop guidelines for evaluation, selection and application of BEM tools in the design, construction and operation/maintenance phases of buildings. Twelve BEM tools were initially evaluated using four criteria: interoperability, usability, available inputs, and available outputs. Each of the top three BEM tools selected based on this initial evaluation was used in a case study to simulate and evaluate energy usage, daylighting performance, and natural ventilation for two academic buildings (LEED-certified and non-LEED-certified. The results of the case study were used to re-evaluate the three BEM tools using the initial criteria with addition of the two new criteria (speed and accuracy, and to develop guidelines for evaluating and selecting BEM tools to analyze building energy performance. The major contribution of this research is the development of these guidelines that can help potential BEM users to identify the most appropriate BEM tool for application in particular building lifecycle phases.

  6. Jeddah Historical Building Information Modeling "JHBIM" Old Jeddah - Saudi Arabia

    Science.gov (United States)

    Baik, A.; Boehm, J.; Robson, S.

    2013-07-01

    The historic city of Jeddah faces serious issues in the conservation, documentation and recording of its valuable building stock. Terrestrial Laser Scanning and Architectural Photogrammetry have already been used in many Heritage sites in the world. The integration of heritage recording and Building Information Modelling (BIM) has been introduced as HBIM and is now a method to document and manage these buildings. In the last decade many traditional surveying methods were used to record the buildings in Old Jeddah. However, these methods take a long time, can sometimes provide unreliable information and often lack completeness. This paper will look at another approach for heritage recording by using the Jeddah Historical Building Information Modelling (JHBIM).

  7. Communicate and collaborate by using building information modeling

    DEFF Research Database (Denmark)

    Mondrup, Thomas Fænø; Karlshøj, Jan; Vestergaard, Flemming

    Building Information Modeling (BIM) represents a new approach within the Architecture, Engineering, and Construction (AEC) industry, one that encourages collaboration and engagement of all stakeholders on a project. This study discusses the potential of adopting BIM as a communication...

  8. Models for describing the thermal characteristics of building components

    DEFF Research Database (Denmark)

    Jimenez, M.J.; Madsen, Henrik

    2008-01-01

    Outdoor testing of buildings and building components under real weather conditions provides useful information about their dynamic performance. Such knowledge is needed to properly characterize the heat transfer dynamics and provides useful information for implementing energy saving strategies...... of these approaches may therefore be very useful for selecting a suitable approach for each particular case. This paper presents an overview of models that can be applied for modelling the thermal characteristics of buildings and building components using data from outdoor testing. The choice of approach depends......, for example. For the analysis of these tests, dynamic analysis models and methods are required. However, a wide variety of models and methods exists, and the problem of choosing the most appropriate approach for each particular case is a non-trivial and interdisciplinary task. Knowledge of a large family...

  9. Semantically rich 3D building and cadastral models for valuation

    NARCIS (Netherlands)

    Isikdag, U.; Horhammer, M.; Zlatanova, S.; Kathmann, R.; Van Oosterom, P.J.M.

    2014-01-01

    The current valuation practices in various countries are analyzed: Turkey, United Kingdom, USA, Germany, and the Netherlands. The (possible) role of semantically rich 3D building models and 3D cadastres in relation to valuation and taxation is explored.

  10. Research on the simulation framework in Building Information Modeling

    OpenAIRE

    Liang, Nan; Xu, Hongqing; Yu, Qiong

    2012-01-01

    In recent ten years, Building Information Modeling (BIM) has been proposed and applied in the industry of architecture. For the high efficiency and visualization, BIM and correlative technologies are welcomed by architects, engineers, builders and owners, thus the technologies on modeling for design has been widely researched. However, little attention is given to simulation while simulation is an important part of design for building, maybe because it is seen as somewhat less related to the ...

  11. Building predictive models of soil particle-size distribution

    OpenAIRE

    Alessandro Samuel-Rosa; Ricardo Simão Diniz Dalmolin; Pablo Miguel

    2013-01-01

    Is it possible to build predictive models (PMs) of soil particle-size distribution (psd) in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographi...

  12. Rapid Texture Mapping from Image Sequences for Building Geometry Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zuxun; WU Jun; ZHANG Jianqing

    2003-01-01

    An effective approach,mapping the texture for building model based on the digital photogrammetric theory, is proposed. The easily-acquired image sequences from digital video camera on helicopter are used astexture resource, and the correspon-dence between the space edge in building geometry model and its line feature in image sequences is determined semiautomatically. The experimental results in production of three-dimensional data for car navigation show us an attractive future both in efficiency and effect.

  13. Development and validation of a building design waste reduction model.

    Science.gov (United States)

    Llatas, C; Osmani, M

    2016-10-01

    Reduction in construction waste is a pressing need in many countries. The design of building elements is considered a pivotal process to achieve waste reduction at source, which enables an informed prediction of their wastage reduction levels. However the lack of quantitative methods linking design strategies to waste reduction hinders designing out waste practice in building projects. Therefore, this paper addresses this knowledge gap through the design and validation of a Building Design Waste Reduction Strategies (Waste ReSt) model that aims to investigate the relationships between design variables and their impact on onsite waste reduction. The Waste ReSt model was validated in a real-world case study involving 20 residential buildings in Spain. The validation process comprises three stages. Firstly, design waste causes were analyzed. Secondly, design strategies were applied leading to several alternative low waste building elements. Finally, their potential source reduction levels were quantified and discussed within the context of the literature. The Waste ReSt model could serve as an instrumental tool to simulate designing out strategies in building projects. The knowledge provided by the model could help project stakeholders to better understand the correlation between the design process and waste sources and subsequently implement design practices for low-waste buildings. PMID:27292581

  14. BIM-enabled Conceptual Modelling and Representation of Building Circulation

    Directory of Open Access Journals (Sweden)

    Jin Kook Lee

    2014-08-01

    Full Text Available This paper describes how a building information modelling (BIM-based approach for building circulation enables us to change the process of building design in terms of its computational representation and processes, focusing on the conceptual modelling and representation of circulation within buildings. BIM has been designed for use by several BIM authoring tools, in particular with the widely known interoperable industry foundation classes (IFCs, which follow an object-oriented data modelling methodology. Advances in BIM authoring tools, using space objects and their relations defined in an IFC’s schema, have made it possible to model, visualize and analyse circulation within buildings prior to their construction. Agent-based circulation has long been an interdisciplinary topic of research across several areas, including design computing, computer science, architectural morphology, human behaviour and environmental psychology. Such conventional approaches to building circulation are centred on navigational knowledge about built environments, and represent specific circulation paths and regulations. This paper, however, places emphasis on the use of ‘space objects’ in BIM-enabled design processes rather than on circulation agents, the latter of which are not defined in the IFCs’ schemas. By introducing and reviewing some associated research and projects, this paper also surveys how such a circulation representation is applicable to the analysis of building circulation-related rules.

  15. Building 3D models with modo 701

    CERN Document Server

    García, Juan Jiménez

    2013-01-01

    The book will focus on creating a sample application throughout the book, building gradually from chapter to chapter.If you are new to the 3D world, this is the key to getting started with a modern software in the modern visualization industry. Only minimal previous knowledge is needed.If you have some previous knowledge about 3D content creation, you will find useful tricks that will differentiate the learning experience from a typical user manual from this, a practical guide concerning the most common problems and situations and how to solve them.

  16. A procedure for building product models

    DEFF Research Database (Denmark)

    Hvam, Lars; Riis, Jesper; Malis, Martin;

    2001-01-01

    with product models. The next phase includes an analysis of the product assortment, and the set up of a so-called product master. Finally the product model is designed and implemented using object oriented modelling. The procedure is developed in order to ensure that the product models constructed are fit...

  17. Development of hazard-compatible building fragility and vulnerability models

    Science.gov (United States)

    Karaca, E.; Luco, N.

    2008-01-01

    We present a methodology for transforming the structural and non-structural fragility functions in HAZUS into a format that is compatible with conventional seismic hazard analysis information. The methodology makes use of the building capacity (or pushover) curves and related building parameters provided in HAZUS. Instead of the capacity spectrum method applied in HAZUS, building response is estimated by inelastic response history analysis of corresponding single-degree-of-freedom systems under a large number of earthquake records. Statistics of the building response are used with the damage state definitions from HAZUS to derive fragility models conditioned on spectral acceleration values. Using the developed fragility models for structural and nonstructural building components, with corresponding damage state loss ratios from HAZUS, we also derive building vulnerability models relating spectral acceleration to repair costs. Whereas in HAZUS the structural and nonstructural damage states are treated as if they are independent, our vulnerability models are derived assuming "complete" nonstructural damage whenever the structural damage state is complete. We show the effects of considering this dependence on the final vulnerability models. The use of spectral acceleration (at selected vibration periods) as the ground motion intensity parameter, coupled with the careful treatment of uncertainty, makes the new fragility and vulnerability models compatible with conventional seismic hazard curves and hence useful for extensions to probabilistic damage and loss assessment.

  18. Modeling of electromigration salt removal methods in building materials

    DEFF Research Database (Denmark)

    Johannesson, Björn; Ottosen, Lisbeth M.

    2008-01-01

    can be obtained. One important issue is to be able to optimizing the salt removing electromagration method in the field by first studying it theoretically. Another benefit is that models can give some answers concerning the effect of the inner surfaces of the material on the diffusion mechanisms......A model is established for the prediction of the effect of salt removal of building materials using electromigration. Salt-induced decay of building materials, such as masonry and sandstone, is a serious threat to our cultural heritage. Electromigration of salts from building materials, sensitive...... for salt attack of various kinds, is one potential method to preserve old building envelopes. By establishing a model for ionic multi-species diffusion, which also accounts for external applied electrical fields, it is proposed that an important complement to the experimental tests and that verification...

  19. Building Test Cases through Model Driven Engineering

    Science.gov (United States)

    Sousa, Helaine; Lopes, Denivaldo; Abdelouahab, Zair; Hammoudi, Slimane; Claro, Daniela Barreiro

    Recently, Model Driven Engineering (MDE) has been proposed to face the complexity in the development, maintenance and evolution of large and distributed software systems. Model Driven Architecture (MDA) is an example of MDE. In this context, model transformations enable a large reuse of software systems through the transformation of a Platform Independent Model into a Platform Specific Model. Although source code can be generated from models, defects can be injected during the modeling or transformation process. In order to delivery software systems without defects that cause errors and fails, the source code must be submitted to test. In this paper, we present an approach that takes care of test in the whole software life cycle, i.e. it starts in the modeling level and finishes in the test of source code of software systems. We provide an example to illustrate our approach.

  20. An Occupant Behavior Model for Building Energy Efficiency and Safety

    Science.gov (United States)

    Pan, L. L.; Chen, T.; Jia, Q. S.; Yuan, R. X.; Wang, H. T.; Ding, R.

    2010-05-01

    An occupant behavior model is suggested to improve building energy efficiency and safety. This paper provides a generic outline of the model, which includes occupancy behavior abstraction, model framework and primary structure, input and output, computer simulation results as well as summary and outlook. Using information technology, now it's possible to collect large amount of information of occupancy. Yet this can only provide partial and historical information, so it's important to develop a model to have full view of the researched building as well as prediction. We used the infrared monitoring system which is set at the front door of the Low Energy Demo Building (LEDB) at Tsinghua University in China, to provide the time variation of the total number of occupants in the LEDB building. This information is used as input data for the model. While the RFID system is set on the 1st floor, which provides the time variation of the occupants' localization in each region. The collected data are used to validate the model. The simulation results show that this presented model provides a feasible framework to simulate occupants' behavior and predict the time variation of the number of occupants in the building. Further development and application of the model is also discussed.

  1. Building models for marketing decisions : Past, present and future

    NARCIS (Netherlands)

    Leeflang, PSH; Wittink, DR

    2000-01-01

    We review five eras of model building in marketing, with special emphasis on the fourth and the fifth eras, the present and the future. At many firms managers now routinely use model-based results for marketing decisions. Given an increasing number of successful applications, the demand for models t

  2. Building models for marketing decisions : past, present and future

    NARCIS (Netherlands)

    Leeflang, P.S.H.; Wittink, Dick R.

    2000-01-01

    We review five eras of model building in marketing, with special emphasis on the fourth and the fifth eras, the present and the future. At many firms managers now routinely use model-based results for marketing decisions. Given an increasing number of successful applications, the demand for models t

  3. Building Simple Hidden Markov Models. Classroom Notes

    Science.gov (United States)

    Ching, Wai-Ki; Ng, Michael K.

    2004-01-01

    Hidden Markov models (HMMs) are widely used in bioinformatics, speech recognition and many other areas. This note presents HMMs via the framework of classical Markov chain models. A simple example is given to illustrate the model. An estimation method for the transition probabilities of the hidden states is also discussed.

  4. Danish and Brazilian Modeling of Whole-Building Hygrothermal Performance

    DEFF Research Database (Denmark)

    Rode, Carsten; Mendes, Nathan; Grau, Karl

    2006-01-01

    the humidity low and thus reduce the risk of moisture damage in the building enclosure. In either case the indoor humidity has a direct or indirect impact on the energy performance of the HVAC system of a building. To analyze this situation, one could benefit from some recent developments in integrated...... computational analysis of the hygrothermal performance of whole buildings. Such developments have led to new hygrothermal models for whole buildings. The paper gives examples of two such recent developments and will illustrate some calculation results that can be obtained. Finally the paper will mention some......The humidity of rooms and moisture conditions of materials in the enclosure of buildings depend much on each other because of the moisture exchange that takes place over the interior surfaces. These moisture influences also depend strongly on the thermal conditions of indoor spaces and enclosure...

  5. Building a Structural Model: Parameterization and Structurality

    Directory of Open Access Journals (Sweden)

    Michel Mouchart

    2016-04-01

    Full Text Available A specific concept of structural model is used as a background for discussing the structurality of its parameterization. Conditions for a structural model to be also causal are examined. Difficulties and pitfalls arising from the parameterization are analyzed. In particular, pitfalls when considering alternative parameterizations of a same model are shown to have lead to ungrounded conclusions in the literature. Discussions of observationally equivalent models related to different economic mechanisms are used to make clear the connection between an economically meaningful parameterization and an economically meaningful decomposition of a complex model. The design of economic policy is used for drawing some practical implications of the proposed analysis.

  6. Building fire zone model with symbolic mathematics

    Institute of Scientific and Technical Information of China (English)

    武红梅; 郜冶; 周允基

    2009-01-01

    To apply the fire modelling for the fire engineer with symbolic mathematics,the key equations of a zone model were demonstrated. There were thirteen variables with nine constraints,so only four ordinary differential equations (ODEs) were required to solve. A typical fire modelling with two-room structure was studied. Accordingly,the source terms included in the ODEs were simplified and modelled,and the fourth Runge-Kutta method was used to solve the ordinary differential equations (ODEs) with symbolic mathematics. Then a zone model could be used with symbolic mathematics. It is proposed that symbolic mathematics is possible for use by fire engineer.

  7. Research on Dynamic Model's Building of Active Magnetic Suspension Systems

    Institute of Scientific and Technical Information of China (English)

    SHI Jian; YAN Guo-zheng; LI Li-chuan; WANG Kun-dong

    2006-01-01

    An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn't depend on system's physical parameters. The rotor can be reliably suspended under the unit feedback control system designed with the primary dynamic model obtained. Online identification in frequency domain is processed to give the precise model. Comparisons show that the experimental method is much closer to the precise model than the theoretic method based on magnetic circuit law. So this experimental method is a good choice to build the primary dynamic model of AMSS.

  8. Risk Classification Model for Design and Build Projects

    Directory of Open Access Journals (Sweden)

    O. E. Ogunsanmi

    2011-07-01

    Full Text Available The purpose of this paper is to investigate if the various risk sources in Design and Build projects can be classified into three risk groups of cost, time and quality using the discriminant analysis technique. Literature search was undertaken to review issues of risk sources, classification of the identified risks into a risk structure, management of risks and effects of risks all on Design and Build projects as well as concepts of discriminant analysis as a statistical technique. This literature review was undertaken through the use of internet, published papers, journal articles and other published reports on risks in Design and Build projects. A research questionnaire was further designed to collect research information. This research study is a survey research that utilized cross-sectional design to capture the primary data. The data for the survey was collected in Nigeria. In all 40 questionnaires were sent to various respondents that included Architects, Engineers, Quantity Surveyors and Builders who had used Design and Build procurement method for their recently completed projects. Responses from these retrieved questionnaires that measured the impact of risks on Design and Build were analyzed using the discriminant analysis technique through the use of SPSS software package to build two discriminant models for classifying risks into cost, time and quality risk groups. Results of the study indicate that time overrun and poor quality are the two factors that discriminate between cost, time and quality related risk groups. These two discriminant functions explain the variation between the risk groups. All the discriminating variables of cost overrun, time overrun and poor quality demonstrate some relationships with the two discriminant functions. The two discriminant models built can classify risks in Design and Build projects into risk groups of cost, time and quality. These classifications models have 72% success rate of classification

  9. Fitting of Parametric Building Models to Oblique Aerial Images

    Science.gov (United States)

    Panday, U. S.; Gerke, M.

    2011-09-01

    In literature and in photogrammetric workstations many approaches and systems to automatically reconstruct buildings from remote sensing data are described and available. Those building models are being used for instance in city modeling or in cadastre context. If a roof overhang is present, the building walls cannot be estimated correctly from nadir-view aerial images or airborne laser scanning (ALS) data. This leads to inconsistent building outlines, which has a negative influence on visual impression, but more seriously also represents a wrong legal boundary in the cadaster. Oblique aerial images as opposed to nadir-view images reveal greater detail, enabling to see different views of an object taken from different directions. Building walls are visible from oblique images directly and those images are used for automated roof overhang estimation in this research. A fitting algorithm is employed to find roof parameters of simple buildings. It uses a least squares algorithm to fit projected wire frames to their corresponding edge lines extracted from the images. Self-occlusion is detected based on intersection result of viewing ray and the planes formed by the building whereas occlusion from other objects is detected using an ALS point cloud. Overhang and ground height are obtained by sweeping vertical and horizontal planes respectively. Experimental results are verified with high resolution ortho-images, field survey, and ALS data. Planimetric accuracy of 1cm mean and 5cm standard deviation was obtained, while buildings' orientation were accurate to mean of 0.23° and standard deviation of 0.96° with ortho-image. Overhang parameters were aligned to approximately 10cm with field survey. The ground and roof heights were accurate to mean of - 9cm and 8cm with standard deviations of 16cm and 8cm with ALS respectively. The developed approach reconstructs 3D building models well in cases of sufficient texture. More images should be acquired for completeness of

  10. Duct thermal performance models for large commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wray, Craig P.

    2003-10-01

    Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach

  11. QOS OF WEB SERVICE: SURVEY ON PERFORMANCE AND SCALABILITY

    OpenAIRE

    Ch Ram Mohan Reddy; R. V Raghavendra Rao; D Evangelin Geetha; T. V. Suresh Kumar; K Rajani Kanth

    2013-01-01

    In today’s scenario, most of the organizations provide the services through the web. This makes the web service an important research area. In addition, early design and building web services, it is necessary to concentrate on the quality of web services. Performance is an important quality attributes that to be considered during the designing of web services. The expected performance can be achieved by proper scheduling of resources and scalability of the system. Scalability i...

  12. Team learning: building shared mental models

    NARCIS (Netherlands)

    Bossche, van den P.; Gijselaers, W.; Segers, M.; Woltjer, G.B.; Kirschner, P.

    2011-01-01

    To gain insight in the social processes that underlie knowledge sharing in teams, this article questions which team learning behaviors lead to the construction of a shared mental model. Additionally, it explores how the development of shared mental models mediates the relation between team learning

  13. RF building block modelling : optimization and synthesis

    NARCIS (Netherlands)

    Cheng, Wei

    2012-01-01

    For circuit designers it is desirable to have relatively simple RF circuit models that do give decent estimation accuracy and provide sufficient understanding of circuits. Chapter 2 in this thesis shows a general weak nonlinearity model that meets these demands. Using a method that is related to har

  14. Modelling, design, and optimization of net-zero energy buildings

    CERN Document Server

    Athienitis, Andreas

    2015-01-01

    Building energy design is currently going through a period of major changes. One key factor of this is the adoption of net-zero energy as a long term goal for new buildings in most developed countries. To achieve this goal a lot of research is needed to accumulate knowledge and to utilize it in practical applications. In this book, accomplished international experts present advanced modeling techniques as well as in-depth case studies in order to aid designers in optimally using simulation tools for net-zero energy building design. The strategies and technologies discussed in this book are, ho

  15. Building Water Models, A Different Approach

    CERN Document Server

    Izadi, Saeed; Onufriev, Alexey V

    2014-01-01

    Simplified, classical models of water are an integral part of atomistic molecular simulations, especially in biology and chemistry where hydration effects are critical. Yet, despite several decades of effort, these models are still far from perfect. Presented here is an alternative approach to constructing point charge water models - currently, the most commonly used type. In contrast to the conventional approach, we do not impose any geometry constraints on the model other than symmetry. Instead, we optimize the distribution of point charges to best describe the "electrostatics" of the water molecule, which is key to many unusual properties of liquid water. The search for the optimal charge distribution is performed in 2D parameter space of key lowest multipole moments of the model, to find best fit to a small set of bulk water properties at room temperature. A virtually exhaustive search is enabled via analytical equations that relate the charge distribution to the multipole moments. The resulting "optimal"...

  16. Scalable filter banks

    Science.gov (United States)

    Hur, Youngmi; Okoudjou, Kasso A.

    2015-08-01

    A finite frame is said to be scalable if its vectors can be rescaled so that the resulting set of vectors is a tight frame. The theory of scalable frame has been extended to the setting of Laplacian pyramids which are based on (rectangular) paraunitary matrices whose column vectors are Laurent polynomial vectors. This is equivalent to scaling the polyphase matrices of the associated filter banks. Consequently, tight wavelet frames can be constructed by appropriately scaling the columns of these paraunitary matrices by diagonal matrices whose diagonal entries are square magnitude of Laurent polynomials. In this paper we present examples of tight wavelet frames constructed in this manner and discuss some of their properties in comparison to the (non tight) wavelet frames they arise from.

  17. Scalable Content Management System

    OpenAIRE

    Sandeep Krishna S, Jayant Dani

    2013-01-01

    Immense growth in the volume of contents every day demands more scalable system to handle and overcome difficulties in capture, storage, transform, search, sharing and visualization of data, where the data can be a structured or unstructured data of any type. A system to manage the growing contents and overcome the issues and complexity faced using appropriate technologies would advantage over measurable qualities like flexibility, interoperability, customizabi...

  18. Scalable Resolution Display Walls

    KAUST Repository

    Leigh, Jason

    2013-01-01

    This article will describe the progress since 2000 on research and development in 2-D and 3-D scalable resolution display walls that are built from tiling individual lower resolution flat panel displays. The article will describe approaches and trends in display hardware construction, middleware architecture, and user-interaction design. The article will also highlight examples of use cases and the benefits the technology has brought to their respective disciplines. © 1963-2012 IEEE.

  19. Integration of inaccurate data into model building and uncertainty assessment

    Energy Technology Data Exchange (ETDEWEB)

    Coleou, Thierry

    1998-12-31

    Model building can be seen as integrating numerous measurements and mapping through data points considered as exact. As the exact data set is usually sparse, using additional non-exact data improves the modelling and reduces the uncertainties. Several examples of non-exact data are discussed and a methodology to honor them in a single pass, along with the exact data is presented. This automatic procedure is valid for both ``base case`` model building and stochastic simulations for uncertainty analysis. 5 refs., 3 figs.

  20. Nonlinear Economic Model Predictive Control Strategy for Active Smart Buildings

    DEFF Research Database (Denmark)

    Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.;

    2016-01-01

    Nowadays, the development of advanced and innovative intelligent control techniques for energy management in buildings is a key issue within the smart grid topic. A nonlinear economic model predictive control (EMPC) scheme, based on the branch-and-bound tree search used as optimization algorithm...... for solving the nonconvex optimization problem is proposed in this paper. A simulation using the nonlinear model-based controller to control the temperature levels of an intelligent office building (PowerFlexHouse) is addressed. Its performance is compared with a linear model-based controller. The nonlinear...

  1. Modelling energy demand in the Norwegian building stock

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Igor

    2008-07-15

    Energy demand in the building stock in Norway represents about 40% of the final energy consumption, of which 22% goes to the residential sector and 18% to the service sector. In Norway there is a strong dependency on electricity for heating purposes, with electricity covering about 80% of the energy demand in buildings. The building sector can play an important role in the achievement of a more sustainable energy system. The work performed in the articles presented in this thesis investigates various aspects related to the energy demand in the building sector, both in singular cases and in the stock as a whole. The work performed in the first part of this thesis on development and survey of case studies provided background knowledge that was then used in the second part, on modelling the entire stock. In the first part, a literature survey of case studies showed that, in a life cycle perspective, the energy used in the operating phase of buildings is the single most important factor. Design of low-energy buildings is then beneficial and should be pursued, even though it implies a somewhat higher embodied energy. A case study was performed on a school building. First, a methodology using a Monte Carlo method in the calibration process was explored. Then, the calibrated model of the school was used to investigate measures for the achievement of high energy efficiency standard through renovation work. In the second part, a model was developed to study the energy demand in a scenario analysis. The results showed the robustness of policies that included conservation measures against the conflicting effects of the other policies. Adopting conservation measures on a large scale showed the potential to reduce both electricity and total energy demand from present day levels while the building stock keeps growing. The results also highlighted the inertia to change of the building stock, due to low activity levels compared to the stock size. It also became clear that a deeper

  2. Active Shapes for Automatic 3D Modeling of Buildings

    NARCIS (Netherlands)

    Sirmacek, B.; Lindenbergh, R.C.

    2015-01-01

    Recent technological developments help us to acquire high quality 3D measurements of our urban environment. However, these measurements, which come as point clouds or Digital Surface Models (DSM), do not directly give 3D geometrical models of buildings. In addition to that, they are not suitable for

  3. Proposed Methodology for Generation of Building Information Model with Laserscanning

    Institute of Scientific and Technical Information of China (English)

    Shutao Li; J(o)rg lsele; Georg Bretthauer

    2008-01-01

    For refurbishment and state review of an existing old building,a new model reflecting the current state is often required especially when the original plans are no longer accessible.Laser scanners are used more and more as surveying instruments for various applications because of their high-precision scanning abilities.For buildings,the most notable and widely accepted product data model is the IFC product data model.It is designed to cover the whole lifecycle and supported by various software vendors and enables applications to efficiently share and exchange project information.The models obtained with the laser scan-ner,normally sets of points ("point cloud"),have to be transferred to an IFC compatible building information model to serve the needs of different planning states.This paper presents an approach designed by the German Research Center in Karlsmhe (Forschungszentrum Kadsmhe) to create an IFC compatible building information model from laser range images.The methodology through the entire process from data acquisi tion to the IFC compatible product model was proposed in this paper.In addition,IFC-Models with different level of detail (LoDs) were introduced and discussed within the work.

  4. A Pathway Idea in Model Building

    Science.gov (United States)

    Mathai, A. M.; Haubold, H. J.

    2014-01-01

    The pathway idea is a way of going from one family of functions to another family of functions and yet another family of functions through a parameter in the mode l so that a switching mechanism is introduced into the model through a parameter. The advantage of the idea is that the model can cover the ideal or stable situation in a physical situation as well as cover the unstable neighborhoods or move from unstable neighborhoods to the stable situation. The basic idea is illustrated for the real scalar case here and its connections to topics in astrophysics and non-extens ive statistical mechanics, namely superstatistics and Tsallis statistics, Mittag-Leffler models, hypergeometric functions and generalized special functions such as the H-function etc are pointed out. The pathway idea is available for the real and complex rectangular matrix variate cases but only the real scalar case is illustrated here.

  5. Building probabilistic graphical models with Python

    CERN Document Server

    Karkera, Kiran R

    2014-01-01

    This is a short, practical guide that allows data scientists to understand the concepts of Graphical models and enables them to try them out using small Python code snippets, without being too mathematically complicated. If you are a data scientist who knows about machine learning and want to enhance your knowledge of graphical models, such as Bayes network, in order to use them to solve real-world problems using Python libraries, this book is for you. This book is intended for those who have some Python and machine learning experience, or are exploring the machine learning field.

  6. BUILDING A SUSTAINABLE REGION ECONOMIC DEVELOPMENT MODEL

    Directory of Open Access Journals (Sweden)

    Pshunetlev A. A.

    2014-09-01

    Full Text Available The article contains basic assumptions of the region sustainable economic development model, which can be used to gain new knowledge about economic processes, contribute to the stability of the regional development, as well as serve as an educational tool in the study of relevant disciplines

  7. Identifying unproven cancer treatments on the health web: addressing accuracy, generalizability and scalability.

    Science.gov (United States)

    Aphinyanaphongs, Yin; Fu, Lawrence D; Aliferis, Constantin F

    2013-01-01

    Building machine learning models that identify unproven cancer treatments on the Health Web is a promising approach for dealing with the dissemination of false and dangerous information to vulnerable health consumers. Aside from the obvious requirement of accuracy, two issues are of practical importance in deploying these models in real world applications. (a) Generalizability: The models must generalize to all treatments (not just the ones used in the training of the models). (b) Scalability: The models can be applied efficiently to billions of documents on the Health Web. First, we provide methods and related empirical data demonstrating strong accuracy and generalizability. Second, by combining the MapReduce distributed architecture and high dimensionality compression via Markov Boundary feature selection, we show how to scale the application of the models to WWW-scale corpora. The present work provides evidence that (a) a very small subset of unproven cancer treatments is sufficient to build a model to identify unproven treatments on the web; (b) unproven treatments use distinct language to market their claims and this language is learnable; (c) through distributed parallelization and state of the art feature selection, it is possible to prepare the corpora and build and apply models with large scalability. PMID:23920640

  8. Non-supersymmetric heterotic model building

    CERN Document Server

    Blaszczyk, Michael; Loukas, Orestis; Ramos-Sanchez, Saul

    2014-01-01

    We investigate orbifold and smooth Calabi-Yau compactifications of the non-supersymmetric heterotic SO(16)xSO(16) string. We focus on such Calabi-Yau backgrounds in order to recycle commonly employed techniques, like index theorems and cohomology theory, to determine both the fermionic and bosonic 4D spectra. We argue that the N=0 theory never leads to tachyons on smooth Calabi-Yaus in the large volume approximation. As twisted tachyons may arise on certain singular orbifolds, we conjecture that such tachyonic states are lifted in the full blow-up. We perform model searches on selected orbifold geometries. In particular, we construct an explicit example of a Standard Model-like theory with three generations and a single Higgs field.

  9. Model building for flavor changing Higgs couplings

    CERN Document Server

    Dery, Avital; Nir, Yosef; Soreq, Yotam; Susič, Vasja

    2014-01-01

    If $t\\rightarrow hq$ ($q=c,u$) or $h\\rightarrow\\tau\\ell$ ($\\ell=\\mu,e$) decays are observed, it will be a clear signal of new physics. We investigate whether natural and viable flavor models can saturate the present direct upper bounds without violating the indirect constraints from low energy loop processes. We carry out our analysis in two theoretical frameworks: minimal flavor violation (MFV) and Froggatt-Nielsen symmetry (FN). The simplest models in either framework predict flavor changing couplings that are too small to be directly observed. Yet, in the MFV framework, it is possible to have lepton flavor changing Higgs couplings close to the bound if spurions related to heavy singlet neutrinos play a role. In the FN framework, it is possible to have large flavor changing couplings in both the up and the charged lepton sectors if supersymmetry plays a role.

  10. On the geometry of cosmological model building

    OpenAIRE

    Scholz, Erhard

    2005-01-01

    This article analyzes the present anomalies of cosmology from the point of view of integrable Weyl geometry. It uses P.A.M. Dirac's proposal for a weak extension of general relativity, with some small adaptations. Simple models with interesting geometrical and physical properties, not belonging to the Friedmann-Lema\\^{\\i}tre class, are studied in this frame. Those with positive spatial curvature (Einstein-Weyl universes) go well together with observed mass density $\\Omega_m$, CMB, supernovae ...

  11. Validation of a Scalable Solar Sailcraft

    Science.gov (United States)

    Murphy, D. M.

    2006-01-01

    The NASA In-Space Propulsion (ISP) program sponsored intensive solar sail technology and systems design, development, and hardware demonstration activities over the past 3 years. Efforts to validate a scalable solar sail system by functional demonstration in relevant environments, together with test-analysis correlation activities on a scalable solar sail system have recently been successfully completed. A review of the program, with descriptions of the design, results of testing, and analytical model validations of component and assembly functional, strength, stiffness, shape, and dynamic behavior are discussed. The scaled performance of the validated system is projected to demonstrate the applicability to flight demonstration and important NASA road-map missions.

  12. Impact of the U.S. National Building Information Model Standard (NBIMS) on Building Energy Performance Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bazjanac, Vladimir

    2007-08-01

    The U.S. National Institute for Building Sciences (NIBS) started the development of the National Building Information Model Standard (NBIMS). Its goal is to define standard sets of data required to describe any given building in necessary detail so that any given AECO industry discipline application can find needed data at any point in the building lifecycle. This will include all data that are used in or are pertinent to building energy performance simulation and analysis. This paper describes the background that lead to the development of NBIMS, its goals and development methodology, its Part 1 (Version 1.0), and its probable impact on building energy performance simulation and analysis.

  13. Building entity models through observation and learning

    Science.gov (United States)

    Garcia, Richard; Kania, Robert; Fields, MaryAnne; Barnes, Laura

    2011-05-01

    To support the missions and tasks of mixed robotic/human teams, future robotic systems will need to adapt to the dynamic behavior of both teammates and opponents. One of the basic elements of this adaptation is the ability to exploit both long and short-term temporal data. This adaptation allows robotic systems to predict/anticipate, as well as influence, future behavior for both opponents and teammates and will afford the system the ability to adjust its own behavior in order to optimize its ability to achieve the mission goals. This work is a preliminary step in the effort to develop online entity behavior models through a combination of learning techniques and observations. As knowledge is extracted from the system through sensor and temporal feedback, agents within the multi-agent system attempt to develop and exploit a basic movement model of an opponent. For the purpose of this work, extraction and exploitation is performed through the use of a discretized two-dimensional game. The game consists of a predetermined number of sentries attempting to keep an unknown intruder agent from penetrating their territory. The sentries utilize temporal data coupled with past opponent observations to hypothesize the probable locations of the opponent and thus optimize their guarding locations.

  14. Building a 3-D Appearance Model of the Human Face

    OpenAIRE

    Sjöstrand, Karl; Larsen, Rasmus; Lading, Brian

    2003-01-01

    This paper describes a method for building an appearance model from three-dimensional data of human faces. The data consists of 3-D vertices, polygons and a texture map. The method uses a set of nine manually placed landmarks to automatically form a dense correspondence of thousands of points. This makes sure the model is able to capture the subtle details of a face. The model can be used for face segmentation and fully automated face registration.

  15. Model-building codes for membrane proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Shirley, David Noyes; Hunt, Thomas W.; Brown, W. Michael; Schoeniger, Joseph S. (Sandia National Laboratories, Livermore, CA); Slepoy, Alexander; Sale, Kenneth L. (Sandia National Laboratories, Livermore, CA); Young, Malin M. (Sandia National Laboratories, Livermore, CA); Faulon, Jean-Loup Michel; Gray, Genetha Anne (Sandia National Laboratories, Livermore, CA)

    2005-01-01

    We have developed a novel approach to modeling the transmembrane spanning helical bundles of integral membrane proteins using only a sparse set of distance constraints, such as those derived from MS3-D, dipolar-EPR and FRET experiments. Algorithms have been written for searching the conformational space of membrane protein folds matching the set of distance constraints, which provides initial structures for local conformational searches. Local conformation search is achieved by optimizing these candidates against a custom penalty function that incorporates both measures derived from statistical analysis of solved membrane protein structures and distance constraints obtained from experiments. This results in refined helical bundles to which the interhelical loops and amino acid side-chains are added. Using a set of only 27 distance constraints extracted from the literature, our methods successfully recover the structure of dark-adapted rhodopsin to within 3.2 {angstrom} of the crystal structure.

  16. Status and Perceptions of the Application of Building Information Modeling for Improved Building Projects Delivery in Nigeria

    OpenAIRE

    S.C Ugochukwu; S.C Akabogu; K.C Okolie

    2015-01-01

    Building Information Modeling (BIM) is a new and innovative approach to building design, construction, and management. It is a cutting-edge, state of the art technology that is not only transforming, but improving the building delivery/production process in developed countries of the world. Sadly, Nigeria is yet to adopt this revolutionary technology in her construction industry. This study thus, sought to evaluate the present status of application of BIM in building projects in Nigeria, wit...

  17. Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact

    OpenAIRE

    Sungwoo Lee; Sungho Tae; Seungjun Roh; Taehyung Kim

    2015-01-01

    The increased popularity of building information modeling (BIM) for application in the construction of eco-friendly green buildings has given rise to techniques for evaluating green buildings constructed using BIM features. Existing BIM-based green building evaluation techniques mostly rely on externally provided evaluation tools, which pose problems associated with interoperability, including a lack of data compatibility and the amount of time required for format conversion. To overcome thes...

  18. SIMPLIFIED BUILDING MODELS EXTRACTION FROM ULTRA-LIGHT UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    O. Küng

    2012-09-01

    Full Text Available Generating detailed simplified building models such as the ones present on Google Earth is often a difficult and lengthy manual task, requiring advanced CAD software and a combination of ground imagery, LIDAR data and blueprints. Nowadays, UAVs such as the AscTec Falcon 8 have reached the maturity to offer an affordable, fast and easy way to capture large amounts of oblique images covering all parts of a building. In this paper we present a state-of-the-art photogrammetry and visual reconstruction pipeline provided by Pix4D applied to medium resolution imagery acquired by such UAVs. The key element of simplified building models extraction is the seamless integration of the outputs of such a pipeline for a final manual refinement step in order to minimize the amount of manual work.

  19. Integrated Urban System and Energy Consumption Model: Residential Buildings

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available This paper describes a segment of research conducted within the project PON 04a2_E Smart Energy Master for the energetic government of the territory conducted by the Department of Civil, Architectural and Environment Engineering, University of Naples "Federico II".  In particular, this article is part of the study carried out for the definition of the comprehension/interpretation model that correlates buildings, city’s activities and users’ behaviour in order to promote energy savings. In detail, this segment of the research wants to define the residential variables to be used in the model. For this purpose a knowledge framework at international level has been defined, to estimate the energy requirements of residential buildings and the identification of a set of parameters, whose variation has a significant influence on the energy consumption of residential buildings.

  20. Building Information Modeling for Managing Design and Construction

    DEFF Research Database (Denmark)

    Berard, Ole Bengt

    outcome of construction work. Even though contractors regularly encounter design information problems, these issues are accepted as a condition of doing business and better design information has yet to be defined. Building information modeling has the inherent promise of improving the quality of design...... information by suggesting technologies and methods that are supposed to improve design information. However, building information modeling provides no means to assess these improvements of design information. This research introduces design information quality as an equivalent to information quality...... outcomes, such as building defects, schedule delays, and budget overruns are related. Research in other fields indicates a relationship between information management and the performance and efficiency of organizations. This has led to the assumption that better information will eventually lead to a better...

  1. Overcoming Microsoft Excel's Weaknesses for Crop Model Building and Simulations

    Science.gov (United States)

    Sung, Christopher Teh Boon

    2011-01-01

    Using spreadsheets such as Microsoft Excel for building crop models and running simulations can be beneficial. Excel is easy to use, powerful, and versatile, and it requires the least proficiency in computer programming compared to other programming platforms. Excel, however, has several weaknesses: it does not directly support loops for iterative…

  2. Aligning building information model tools and construction management methods

    NARCIS (Netherlands)

    Hartmann, T.; Meerveld, van H.J.; Vossebeld, N.; Adriaanse, A.M.

    2012-01-01

    Few empirical studies exist that can explain how different Building Information Model (BIM) based tool implementation strategies work in practical contexts. To help overcoming this gap, this paper describes the implementation of two BIM based tools, the first, to support the activities at an estimat

  3. Building a 3-D Appearance Model of the Human Face

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Larsen, Rasmus; Lading, Brian

    2003-01-01

    This paper describes a method for building an appearance model from three-dimensional data of human faces. The data consists of 3-D vertices, polygons and a texture map. The method uses a set of nine manually placed landmarks to automatically form a dense correspondence of thousands of points...

  4. Functional Model of Higher Educational Institution Library Building up

    OpenAIRE

    Murat K. Baimul'din; Asemgul' S. Smagulova; Gulnur B. Abildaeva; Zagira B. Saimanova

    2013-01-01

    The article presents the technology of integrated data processing, related to academic and library-bibliographic activities for specialties work programs development and book sufficiency estimation in integrated research and information system of higher educational institution. The model of higher educational institution library building up, based on monitoring of educational process book sufficiency and literature demand is introduced

  5. Building information modeling (BIM) approach to the GMT Project

    Science.gov (United States)

    Teran, Jose; Sheehan, Michael; Neff, Daniel H.; Adriaanse, David; Grigel, Eric; Farahani, Arash

    2014-07-01

    The Giant Magellan Telescope (GMT), one of several next generation Extremely Large Telescopes (ELTs), is a 25.4 meter diameter altitude over azimuth design set to be built at the summit of Cerro Campánas at the Las Campánas Observatory in Chile. The paper describes the use of Building Information Modeling (BIM) for the GMT project.

  6. Getting Started and Working with Building Information Modeling

    Science.gov (United States)

    Smith, Dana K.

    2009-01-01

    This article will assume that one has heard of Building Information Modeling or BIM but has not developed a strategy as to how to get the most out of it. The National BIM Standard (NBIMS) has defined BIM as a digital representation of physical and functional characteristics of a facility. As such, it serves as a shared knowledge resource for…

  7. Lipid Processing Technology: Building a Multilevel Modeling Network

    DEFF Research Database (Denmark)

    Díaz Tovar, Carlos Axel; Mustaffa, Azizul Azri; Mukkerikar, Amol;

    2011-01-01

    in design and analysis of unit operations; iv) the information and models developed are used as building blocks in the development of methods and tools for computer-aided synthesis and design of process flowsheets (CAFD). The applicability of this methodology is highlighted in each level of modeling through......The aim of this work is to present the development of a computer aided multilevel modeling network for the systematic design and analysis of processes employing lipid technologies. This is achieved by decomposing the problem into four levels of modeling: i) pure component property modeling...... and a lipid-database of collected experimental data from industry and generated data from validated predictive property models, as well as modeling tools for fast adoption-analysis of property prediction models; ii) modeling of phase behavior of relevant lipid mixtures using the UNIFACCI model, development...

  8. Building a multilevel modeling network for lipid processing systems

    DEFF Research Database (Denmark)

    Mustaffa, Azizul Azri; Díaz Tovar, Carlos Axel; Hukkerikar, Amol;

    2011-01-01

    data collected from existing process plants, and application of validated models in design and analysis of unit operations; iv) the information and models developed are used as building blocks in the development of methods and tools for computer-aided synthesis and design of process flowsheets (CAFD......The aim of this work is to present the development of a computer aided multilevel modeling network for the systematic design and analysis of processes employing lipid technologies. This is achieved by decomposing the problem into four levels of modeling: i) pure component property modeling...... and a lipid-database of collected experimental data from industry and generated data from validated predictive property models, as well as modeling tools for fast adoption-analysis of property prediction models; ii) modeling of phase behavior of relevant lipid mixtures using the UNIFAC-CI model, development...

  9. Memory-Scalable GPU Spatial Hierarchy Construction.

    Science.gov (United States)

    Qiming Hou; Xin Sun; Kun Zhou; Lauterbach, C; Manocha, D

    2011-04-01

    Recent GPU algorithms for constructing spatial hierarchies have achieved promising performance for moderately complex models by using the breadth-first search (BFS) construction order. While being able to exploit the massive parallelism on the GPU, the BFS order also consumes excessive GPU memory, which becomes a serious issue for interactive applications involving very complex models with more than a few million triangles. In this paper, we propose to use the partial breadth-first search (PBFS) construction order to control memory consumption while maximizing performance. We apply the PBFS order to two hierarchy construction algorithms. The first algorithm is for kd-trees that automatically balances between the level of parallelism and intermediate memory usage. With PBFS, peak memory consumption during construction can be efficiently controlled without costly CPU-GPU data transfer. We also develop memory allocation strategies to effectively limit memory fragmentation. The resulting algorithm scales well with GPU memory and constructs kd-trees of models with millions of triangles at interactive rates on GPUs with 1 GB memory. Compared with existing algorithms, our algorithm is an order of magnitude more scalable for a given GPU memory bound. The second algorithm is for out-of-core bounding volume hierarchy (BVH) construction for very large scenes based on the PBFS construction order. At each iteration, all constructed nodes are dumped to the CPU memory, and the GPU memory is freed for the next iteration's use. In this way, the algorithm is able to build trees that are too large to be stored in the GPU memory. Experiments show that our algorithm can construct BVHs for scenes with up to 20 M triangles, several times larger than previous GPU algorithms.

  10. Enhancements to ASHRAE Standard 90.1 Prototype Building Models

    Energy Technology Data Exchange (ETDEWEB)

    Goel, Supriya; Athalye, Rahul A.; Wang, Weimin; Zhang, Jian; Rosenberg, Michael I.; Xie, YuLong; Hart, Philip R.; Mendon, Vrushali V.

    2014-04-16

    This report focuses on enhancements to prototype building models used to determine the energy impact of various versions of ANSI/ASHRAE/IES Standard 90.1. Since the last publication of the prototype building models, PNNL has made numerous enhancements to the original prototype models compliant with the 2004, 2007, and 2010 editions of Standard 90.1. Those enhancements are described here and were made for several reasons: (1) to change or improve prototype design assumptions; (2) to improve the simulation accuracy; (3) to improve the simulation infrastructure; and (4) to add additional detail to the models needed to capture certain energy impacts from Standard 90.1 improvements. These enhancements impact simulated prototype energy use, and consequently impact the savings estimated from edition to edition of Standard 90.1.

  11. Analogue Behavioral Modeling of Switched-Current Building Block Circuits

    Institute of Scientific and Technical Information of China (English)

    ZENG Xuan; WANG Wei; SHI Jianlei; TANG Pushan; D.ZHOU

    2001-01-01

    This paper proposes a behavioral modeling technique for the second-generation switched-current building block circuits. The proposed models are capable of capturing the non-ideal behavior of switched-current circuits, which includes the charge injection effects and device mismatch effects. As a result, system performance degradations due to the building block imperfections can be detected at the early design stage by fast behavioral simulations. To evaluate the accuracy of the proposed models, we developed a time-domain behavioral simulator. Experimental results have shown that compared with SPICE, the behavioral modeling error is less than 2.15%, while behavioral simulation speed up is 4 orders in time-domain.

  12. Modeling the Temperature Effect of Orientations in Residential Buildings

    Directory of Open Access Journals (Sweden)

    Sabahat Arif

    2012-07-01

    Full Text Available Indoor thermal comfort in a building has been an important issue for the environmental sustainability. It is an accepted fact that their designs and planning consume a lot of energy in the modern architecture of 20th and 21st centuries. An appropriate orientation of a building can provide thermally comfortable indoor temperatures which otherwise can consume extra energy to condition these spaces through all the seasons. This experimental study investigates the potential effect of this solar passive design strategy on indoor temperatures and a simple model is presented for predicting indoor temperatures based upon the ambient temperatures.

  13. Decision model for facade contractor selection – EDA center building

    OpenAIRE

    Marinič, Jani

    2010-01-01

    In my thesis I presented a decision model for facade contractor selection for the business part of EDA center in Nova Gorica. EDA center is a commercial and residential building, that will be constructed in the city center. The garage, commercial, business and residential part of the building will bring to the city new conceptual quality areas that will provide additional comfort for residents and visitors. It´s easy to come to the right decision in a simple and fast way to solve a problem wi...

  14. On a computational model of building thermal dynamic response

    Science.gov (United States)

    Jarošová, Petra; Vala, Jiří

    2016-07-01

    Development and exploitation of advanced materials, structures and technologies in civil engineering, both for buildings with carefully controlled interior temperature and for common residential houses, together with new European and national directives and technical standards, stimulate the development of rather complex and robust, but sufficiently simple and inexpensive computational tools, supporting their design and optimization of energy consumption. This paper demonstrates the possibility of consideration of such seemingly contradictory requirements, using the simplified non-stationary thermal model of a building, motivated by the analogy with the analysis of electric circuits; certain semi-analytical forms of solutions come from the method of lines.

  15. Regulatory odour model development: Survey of modelling tools and datasets with focus on building effects

    DEFF Research Database (Denmark)

    Olesen, H. R.; Løfstrøm, P.; Berkowicz, R.;

    dispersion models for estimating local concentration levels in general. However, the report focuses on some particular issues, which are relevant for subsequent work on odour due to animal production. An issue of primary concern is the effect that buildings (stables) have on flow and dispersion. The handling...... of building effects is a complicated problem, and a major part of the report is devoted to the treatment of building effects in dispersion models...

  16. Querying a regulatory model for compliant building design audit

    OpenAIRE

    Dimyadi, Johannes; Pauwels, Pieter; Spearpoint, Michael; Clifton, Charles; Amor, Robert

    2015-01-01

    The ingredients for an effective automated audit of a building design include a BIM model containing the design information, an electronic regulatory knowledge model, and a practical method of processing these computerised representations. There have been numerous approaches to computer-aided compliance audit in the AEC/FM domain over the last four decades, but none has yet evolved into a practical solution. One reason is that they have all been isolated attempts that lack any form of standar...

  17. Building social business models: lessons from the Grameen experience

    OpenAIRE

    Moingeon, Bertrand; Yunus, Muhammad; Lehmann-Ortega, Laurence

    2009-01-01

    The social business idea borrows some concepts from the capitalist economy, and therefore the implementation of social businesses can likewise borrow some concepts from conventional business literature. As an illustration, the notion of business model, which is currently attracting much attention from researchers, can be revisited so as to enable the building of social businesses. Social business models are needed alongside conventional ones. After defining what a social business is, the auth...

  18. Product Modelling for Building Design: Annotated Bibliography (2nd Edition)

    DEFF Research Database (Denmark)

    Galle, Per

    1999-01-01

    This bibliography concerns research publications from 1976 to 1994-5, on product modelling in computer aided architectural design and computer aided engineering design of buildings and their surroundings. For each item of literature, full bibliographic information is given whenever available...... of literature is offered on machine interpretation of drawings, which may be relevant in the context of information exchange among different product models. Although the bibliography is fairly comprehensive as far as it goes, no completeness of coverage is claimed....

  19. Theoretical Model of Building Ethnopedagogical Competence for Future Teachers

    Directory of Open Access Journals (Sweden)

    Kymbat F. Aubakirova

    2014-03-01

    Full Text Available The article deals with the model of building Ethnopedagogical competence for future teachers. The key components included into the article: motivational – personal, cognitive – operationalized. Components of ethnopedagogical competence outlined in a range of criteria, have been integrated into the structure of theoretical model of ethnopedagogical competence for future teachers. In accordance with the theory of pedagogical process, includes objectives, targets, content, principles, methods, forms, means and result.

  20. First Prismatic Building Model Reconstruction from Tomosar Point Clouds

    Science.gov (United States)

    Sun, Y.; Shahzad, M.; Zhu, X.

    2016-06-01

    This paper demonstrates for the first time the potential of explicitly modelling the individual roof surfaces to reconstruct 3-D prismatic building models using spaceborne tomographic synthetic aperture radar (TomoSAR) point clouds. The proposed approach is modular and works as follows: it first extracts the buildings via DSM generation and cutting-off the ground terrain. The DSM is smoothed using BM3D denoising method proposed in (Dabov et al., 2007) and a gradient map of the smoothed DSM is generated based on height jumps. Watershed segmentation is then adopted to oversegment the DSM into different regions. Subsequently, height and polygon complexity constrained merging is employed to refine (i.e., to reduce) the retrieved number of roof segments. Coarse outline of each roof segment is then reconstructed and later refined using quadtree based regularization plus zig-zag line simplification scheme. Finally, height is associated to each refined roof segment to obtain the 3-D prismatic model of the building. The proposed approach is illustrated and validated over a large building (convention center) in the city of Las Vegas using TomoSAR point clouds generated from a stack of 25 images using Tomo-GENESIS software developed at DLR.

  1. Modeling and Simulation of Scalable Cloud Computing Environments and the CloudSim Toolkit: Challenges and Opportunities

    CERN Document Server

    Buyya, Rajkumar; Calheiros, Rodrigo N

    2009-01-01

    Cloud computing aims to power the next generation data centers and enables application service providers to lease data center capabilities for deploying applications depending on user QoS (Quality of Service) requirements. Cloud applications have different composition, configuration, and deployment requirements. Quantifying the performance of resource allocation policies and application scheduling algorithms at finer details in Cloud computing environments for different application and service models under varying load, energy performance (power consumption, heat dissipation), and system size is a challenging problem to tackle. To simplify this process, in this paper we propose CloudSim: an extensible simulation toolkit that enables modelling and simulation of Cloud computing environments. The CloudSim toolkit supports modelling and creation of one or more virtual machines (VMs) on a simulated node of a Data Center, jobs, and their mapping to suitable VMs. It also allows simulation of multiple Data Centers to...

  2. Model-based and model-free “plug-and-play” building energy efficient control

    International Nuclear Information System (INIS)

    Highlights: • “Plug-and-play” Building Optimization and Control (BOC) driven by building data. • Ability to handle the large-scale and complex nature of the BOC problem. • Adaptation to learn the optimal BOC policy when no building model is available. • Comparisons with rule-based and advanced BOC strategies. • Simulation and real-life experiments in a ten-office building. - Abstract: Considerable research efforts in Building Optimization and Control (BOC) have been directed toward the development of “plug-and-play” BOC systems that can achieve energy efficiency without compromising thermal comfort and without the need of qualified personnel engaged in a tedious and time-consuming manual fine-tuning phase. In this paper, we report on how a recently introduced Parametrized Cognitive Adaptive Optimization – abbreviated as PCAO – can be used toward the design of both model-based and model-free “plug-and-play” BOC systems, with minimum human effort required to accomplish the design. In the model-based case, PCAO assesses the performance of its control strategy via a simulation model of the building dynamics; in the model-free case, PCAO optimizes its control strategy without relying on any model of the building dynamics. Extensive simulation and real-life experiments performed on a 10-office building demonstrate the effectiveness of the PCAO–BOC system in providing significant energy efficiency and improved thermal comfort. The mechanisms embedded within PCAO render it capable of automatically and quickly learning an efficient BOC strategy either in the presence of complex nonlinear simulation models of the building dynamics (model-based) or when no model for the building dynamics is available (model-free). Comparative studies with alternative state-of-the-art BOC systems show the effectiveness of the PCAO–BOC solution

  3. Probabilistic updating of building models using incomplete modal data

    Science.gov (United States)

    Sun, Hao; Büyüköztürk, Oral

    2016-06-01

    This paper investigates a new probabilistic strategy for Bayesian model updating using incomplete modal data. Direct mode matching between the measured and the predicted modal quantities is not required in the updating process, which is realized through model reduction. A Markov chain Monte Carlo technique with adaptive random-walk steps is proposed to draw the samples for model parameter uncertainty quantification. The iterated improved reduced system technique is employed to update the prediction error as well as to calculate the likelihood function in the sampling process. Since modal quantities are used in the model updating, modal identification is first carried out to extract the natural frequencies and mode shapes through the acceleration measurements of the structural system. The proposed algorithm is finally validated by both numerical and experimental examples: a 10-storey building with synthetic data and a 8-storey building with shaking table test data. Results illustrate that the proposed algorithm is effective and robust for parameter uncertainty quantification in probabilistic model updating of buildings.

  4. CFD Modeling of Airflow in a Livestock Building

    DEFF Research Database (Denmark)

    Rong, Li; Elhadidi, B.; Khalifa, H. E.;

    2010-01-01

    In this paper, a 2D simulation for a typical livestock building is performed to assess the ammonia emission removal rate to the atmosphere. Two geometry models are used and compared in order to represent the slatted floor. In the first model the floor is modeled as a slatted floor and in the second...... model the traditional porous media is used. The results show that the porous floor modeling over predicts the ammonia emission by a factor of 2 compared to the slatted floor modeling. The results also show different velocity distribution under slatted floor. This suggests that modeling the slatted floor...... the accuracy of the porous jump assumption by comparing the velocity, and ammonia concentration in a 2D simulation, heated solid bodies are added to represent the livestock in the following simulations. The results of simulations with heat source also indicate that modeling the slatted floor with slats...

  5. Optimized scalable network switch

    Energy Technology Data Exchange (ETDEWEB)

    Blumrich, Matthias A. (Ridgefield, CT); Chen, Dong (Croton on Hudson, NY); Coteus, Paul W. (Yorktown Heights, NY)

    2010-02-23

    In a massively parallel computing system having a plurality of nodes configured in m multi-dimensions, each node including a computing device, a method for routing packets towards their destination nodes is provided which includes generating at least one of a 2m plurality of compact bit vectors containing information derived from downstream nodes. A multilevel arbitration process in which downstream information stored in the compact vectors, such as link status information and fullness of downstream buffers, is used to determine a preferred direction and virtual channel for packet transmission. Preferred direction ranges are encoded and virtual channels are selected by examining the plurality of compact bit vectors. This dynamic routing method eliminates the necessity of routing tables, thus enhancing scalability of the switch.

  6. Building enterprise reuse program--A model-based approach

    Institute of Scientific and Technical Information of China (English)

    梅宏; 杨芙清

    2002-01-01

    Reuse is viewed as a realistically effective approach to solving software crisis. For an organization that wants to build a reuse program, technical and non-technical issues must be considered in parallel. In this paper, a model-based approach to building systematic reuse program is presented. Component-based reuse is currently a dominant approach to software reuse. In this approach, building the right reusable component model is the first important step. In order to achieve systematic reuse, a set of component models should be built from different perspectives. Each of these models will give a specific view of the components so as to satisfy different needs of different persons involved in the enterprise reuse program. There already exist some component models for reuse from technical perspectives. But less attention is paid to the reusable components from a non-technical view, especially from the view of process and management. In our approach, a reusable component model--FLP model for reusable component--is introduced. This model describes components from three dimensions (Form, Level, and Presentation) and views components and their relationships from the perspective of process and management. It determines the sphere of reusable components, the time points of reusing components in the development process, and the needed means to present components in terms of the abstraction level, logic granularity and presentation media. Being the basis on which the management and technical decisions are made, our model will be used as the kernel model to initialize and normalize a systematic enterprise reuse program.

  7. Designing a Scalable Fault Tolerance Model for High Performance Computational Chemistry: A Case Study with Coupled Cluster Perturbative Triples.

    Science.gov (United States)

    van Dam, Hubertus J J; Vishnu, Abhinav; de Jong, Wibe A

    2011-01-11

    In the past couple of decades, the massive computational power provided by the most modern supercomputers has resulted in simulation of higher-order computational chemistry methods, previously considered intractable. As the system sizes continue to increase, the computational chemistry domain continues to escalate this trend using parallel computing with programming models such as Message Passing Interface (MPI) and Partitioned Global Address Space (PGAS) programming models such as Global Arrays. The ever increasing scale of these supercomputers comes at a cost of reduced Mean Time Between Failures (MTBF), currently on the order of days and projected to be on the order of hours for upcoming extreme scale systems. While traditional disk-based check pointing methods are ubiquitous for storing intermediate solutions, they suffer from high overhead of writing and recovering from checkpoints. In practice, checkpointing itself often brings the system down. Clearly, methods beyond checkpointing are imperative to handling the aggravating issue of reducing MTBF. In this paper, we address this challenge by designing and implementing an efficient fault tolerant version of the Coupled Cluster (CC) method with NWChem, using in-memory data redundancy. We present the challenges associated with our design, including an efficient data storage model, maintenance of at least one consistent data copy, and the recovery process. Our performance evaluation without faults shows that the current design exhibits a small overhead. In the presence of a simulated fault, the proposed design incurs negligible overhead in comparison to the state of the art implementation without faults. PMID:26606219

  8. Designing a Scalable Fault Tolerance Model for High Performance Computational Chemistry: A Case Study with Coupled Cluster Perturbative Triples.

    Science.gov (United States)

    van Dam, Hubertus J J; Vishnu, Abhinav; de Jong, Wibe A

    2011-01-11

    In the past couple of decades, the massive computational power provided by the most modern supercomputers has resulted in simulation of higher-order computational chemistry methods, previously considered intractable. As the system sizes continue to increase, the computational chemistry domain continues to escalate this trend using parallel computing with programming models such as Message Passing Interface (MPI) and Partitioned Global Address Space (PGAS) programming models such as Global Arrays. The ever increasing scale of these supercomputers comes at a cost of reduced Mean Time Between Failures (MTBF), currently on the order of days and projected to be on the order of hours for upcoming extreme scale systems. While traditional disk-based check pointing methods are ubiquitous for storing intermediate solutions, they suffer from high overhead of writing and recovering from checkpoints. In practice, checkpointing itself often brings the system down. Clearly, methods beyond checkpointing are imperative to handling the aggravating issue of reducing MTBF. In this paper, we address this challenge by designing and implementing an efficient fault tolerant version of the Coupled Cluster (CC) method with NWChem, using in-memory data redundancy. We present the challenges associated with our design, including an efficient data storage model, maintenance of at least one consistent data copy, and the recovery process. Our performance evaluation without faults shows that the current design exhibits a small overhead. In the presence of a simulated fault, the proposed design incurs negligible overhead in comparison to the state of the art implementation without faults.

  9. Building 235-F Goldsim Fate And Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G. A.; Phifer, M. A.

    2012-09-14

    Savannah River National Laboratory (SRNL) personnel, at the request of Area Completion Projects (ACP), evaluated In-Situ Disposal (ISD) alternatives that are under consideration for deactivation and decommissioning (D&D) of Building 235-F and the Building 294-2F Sand Filter. SRNL personnel developed and used a GoldSim fate and transport model, which is consistent with Musall 2012, to evaluate relative to groundwater protection, ISD alternatives that involve either source removal and/or the grouting of portions or all of 235-F. This evaluation was conducted through the development and use of a Building 235-F GoldSim fate and transport model. The model simulates contaminant release from four 235-F process areas and the 294-2F Sand Filter. In addition, it simulates the fate and transport through the vadose zone, the Upper Three Runs (UTR) aquifer, and the Upper Three Runs (UTR) creek. The model is designed as a stochastic model, and as such it can provide both deterministic and stochastic (probabilistic) results. The results show that the median radium activity concentrations exceed the 5 ?Ci/L radium MCL at the edge of the building for all ISD alternatives after 10,000 years, except those with a sufficient amount of inventory removed. A very interesting result was that grouting was shown to basically have minimal effect on the radium activity concentration. During the first 1,000 years grouting may have some small positive benefit relative to radium, however after that it may have a slightly deleterious effect. The Pb-210 results, relative to its 0.06 ?Ci/L PRG, are essentially identical to the radium results, but the Pb-210 results exhibit a lesser degree of exceedance. In summary, some level of inventory removal will be required to ensure that groundwater standards are met.

  10. Scalable and Practical Nonblocking Switching Networks

    Institute of Scientific and Technical Information of China (English)

    Si-Qing Zheng; Ashwin Gumaste

    2006-01-01

    Large-scale strictly nonblocking (SNB) and wide-sense nonblocking (WSNB) networks may be infeasible due to their high cost. In contrast, rearrangeable nonblocking (RNB) networks are more scalable because of their much lower cost. However, RNB networks are not suitable for circuit switching. In this paper, the concept of virtual nonblockingness is introduced. It is shown that a virtual nonblocking (VNB) network functions like an SNB or WSNB network, but it is constructed with the cost of an RNB network. The results indicate that for large-scale circuit switching applications, it is only needed to build VNB networks.

  11. Air Dispersion Modeling for Building 3026C/D Demolition

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Richard C [ORNL; Sjoreen, Andrea L [ORNL; Eckerman, Keith F [ORNL

    2010-06-01

    This report presents estimates of dispersion coefficients and effective dose for potential air dispersion scenarios of uncontrolled releases from Oak Ridge National Laboratory (ORNL) buildings 3026C, 3026D, and 3140 prior to or during the demolition of the 3026 Complex. The Environmental Protection Agency (EPA) AERMOD system1-6 was used to compute these estimates. AERMOD stands for AERMIC Model, where AERMIC is the American Meteorological Society-EPA Regulatory Model Improvement Committee. Five source locations (three in building 3026D and one each in building 3026C and the filter house 3140) and associated source characteristics were determined with the customer. In addition, the area of study was determined and building footprints and intake locations of air-handling systems were obtained. In addition to the air intakes, receptor sites consisting of ground level locations on four polar grids (50 m, 100 m, 200 m, and 500 m) and two intersecting lines of points (50 m separation), corresponding to sidewalks along Central Avenue and Fifth Street. Three years of meteorological data (2006 2008) were used each consisting of three datasets: 1) National Weather Service data; 2) upper air data for the Knoxville-Oak Ridge area; and 3) local weather data from Tower C (10 m, 30 m and 100 m) on the ORNL reservation. Annual average air concentration, highest 1 h average and highest 3 h average air concentrations were computed using AERMOD for the five source locations for the three years of meteorological data. The highest 1 h average air concentrations were converted to dispersion coefficients to characterize the atmospheric dispersion as the customer was interested in the most significant response and the highest 1 h average data reflects the best time-averaged values available from the AERMOD code. Results are presented in tabular and graphical form. The results for dose were obtained using radionuclide activities for each of the buildings provided by the customer.7

  12. Combining a Detailed Building Energy Model with a Physically-Based Urban Canopy Model

    Science.gov (United States)

    Bueno, Bruno; Norford, Leslie; Pigeon, Grégoire; Britter, Rex

    2011-09-01

    A scheme that couples a detailed building energy model, EnergyPlus, and an urban canopy model, the Town Energy Balance (TEB), is presented. Both models are well accepted and evaluated within their individual scientific communities. The coupled scheme proposes a more realistic representation of buildings and heating, ventilation and air-conditioning (HVAC) systems, which allows a broader analysis of the two-way interactions between the energy performance of buildings and the urban climate around the buildings. The scheme can be used to evaluate the building energy models that are being developed within the urban climate community. In this study, the coupled scheme is evaluated using measurements conducted over the dense urban centre of Toulouse, France. The comparison includes electricity and natural gas energy consumption of buildings, building façade temperatures, and urban canyon air temperatures. The coupled scheme is then used to analyze the effect of different building and HVAC system configurations on building energy consumption, waste heat released from HVAC systems, and outdoor air temperatures for the case study of Toulouse. Three different energy efficiency strategies are analyzed: shading devices, economizers, and heat recovery.

  13. Modeling, Estimation and Control of Indoor Climate in Livestock Buildings

    DEFF Research Database (Denmark)

    Wu, Zhuang

    The main objective of this research is to design an efficient control system for the indoor climate of a large-scale partition-less livestock building, in order to maintain a healthy, comfortable and economically energy consuming indoor environment for the agricultural animals and farmers....... In this thesis, a conceptual multi-zone climate model is proposed according to the knowledge about the hybrid ventilation theory. The method is to compartmentalize the building into some well-mixed macroscopic homogeneous zones, with the major emphasizes on the occupied spaces where the animals confined in...... the resilience of the control system to disturbances beyond its bandwidth, increases the manipulators utilization efficiency, and reduces energy consumption by solving a constrained convex optimization. Through comparative simulation results analysis, the proposed modeling and control technique is proved...

  14. Variable cluster analysis method for building neural network model

    Institute of Scientific and Technical Information of China (English)

    王海东; 刘元东

    2004-01-01

    To address the problems that input variables should be reduced as much as possible and explain output variables fully in building neural network model of complicated system, a variable selection method based on cluster analysis was investigated. Similarity coefficient which describes the mutual relation of variables was defined. The methods of the highest contribution rate, part replacing whole and variable replacement are put forwarded and deduced by information theory. The software of the neural network based on cluster analysis, which can provide many kinds of methods for defining variable similarity coefficient, clustering system variable and evaluating variable cluster, was developed and applied to build neural network forecast model of cement clinker quality. The results show that all the network scale, training time and prediction accuracy are perfect. The practical application demonstrates that the method of selecting variables for neural network is feasible and effective.

  15. Towards The Long-Term Preservation of Building Information Models

    DEFF Research Database (Denmark)

    Beetz, Jacob; Dietze, Stefan; Berndt, René;

    2013-01-01

    primarily been on textual and audio-visual media types. With the recent paradigm shift in architecture and construction from analog 2D plans and scale models to digital 3D information models of buildings, long-term preservation efforts must turn their attention to this new type of data. Currently......Long-term preservation of information about artifacts of the built environment is crucial to provide the ability to retrofit legacy buildings, to preserve cultural heritage, to ensure security precautions, to enable knowledge-reuse of design and engineering solutions and to guarantee the legal...... liabilities of all stakeholders (e.g. designer, engineers). Efforts for the digital preservation of information have come a long way and a number of mature methods, frameworks, guidelines and software systems are at the disposal of librarians and archivists. However, the focus of these developments has...

  16. Toward a General Research Process for Using Dubin's Theory Building Model

    Science.gov (United States)

    Holton, Elwood F.; Lowe, Janis S.

    2007-01-01

    Dubin developed a widely used methodology for theory building, which describes the components of the theory building process. Unfortunately, he does not define a research process for implementing his theory building model. This article proposes a seven-step general research process for implementing Dubin's theory building model. An example of a…

  17. Flood vulnerability assessment of residential buildings by explicit damage process modelling

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    2015-01-01

    The present paper introduces a vulnerability modelling approach for residential buildings in flood. The modelling approach explicitly considers relevant damage processes, i.e. water infiltration into the building, mechanical failure of components in the building envelope and damage from water...... for engineering decision-making for flood risk management for residential buildings....

  18. A model of backdraft phenomenon in building fires

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to further investigate the physical mechanism of the backdraft phenomenon in building fires, a simplified math ematical model is established based on energy balance equation, and its catastrophe mechanism is analyzed based on catastrophe theory, and the relationship between system control variables and fire conditions is studied. It is indicated that the backdraft phenomenon is a kind of typical catastrophe behavior, and of the common characteristics of catastrophe.

  19. Semantic Building Information Model and Multimedia for Facility Management

    OpenAIRE

    Nicolle, Christophe; Cruz, Christophe

    2011-01-01

    International audience In the field of civil engineering, the proliferation of stakeholders and the heterogeneity of modeling tools detract from the quality of the design process, construction and building maintenance. In this paper, we present a Web-based platform lets geographically dispersed project participants--from facility managers and architects to electricians to plumbers--directly use and exchange project documents in a centralized virtual environment using a simple Web browser. ...

  20. CAPACITY FACTOR BASED COST MODELS FOR BUILDINGS OF VARIOUS FUNCTIONS

    OpenAIRE

    Andreas Wibowo; Wahyu Wuryanti

    2007-01-01

    The desired accuracy level of an estimate heavily relies on the availability of data and information at the time of preparing the estimate. However, an estimate often must be made when data and information are not complete. At earlier stages of project implementation at which data and information are minimal, a client is often required to prepare a cost estimate. This paper discusses the capacity factor-based cost models for buildings with total areas serving as the proxy of capacity. A total...

  1. Validation of daylighting model in CODYRUN building simulation code

    OpenAIRE

    Boyer, Harry; Boyer, H.; Guichard, Stéphane; Guichard, S; Jean, Aurélien; Jean, A.; Libelle, Teddy; Libelle, T; Bigot, Dimitri; Miranville, F; Miranville, Frédéric; Bojić, M.

    2015-01-01

    International audience CODYRUN is a multi-zone software integrating thermal building simulation, airflow, and pollutant transfer. A first question thus arose as to the integration of indoor lighting conditions into the simulation, leading to a new model calculating natural and artificial lighting. The results of this new daylighting module were then compared with results of other simulation codes and experimental cases both in artificial and natural environments. Excellent agreements were ...

  2. A scalable satellite-based crop yield mapper: Integrating satellites and crop models for field-scale estimation in India

    Science.gov (United States)

    Jain, M.; Singh, B.; Srivastava, A.; Lobell, D. B.

    2015-12-01

    Food security will be challenged over the upcoming decades due to increased food demand, natural resource degradation, and climate change. In order to identify potential solutions to increase food security in the face of these changes, tools that can rapidly and accurately assess farm productivity are needed. With this aim, we have developed generalizable methods to map crop yields at the field scale using a combination of satellite imagery and crop models, and implement this approach within Google Earth Engine. We use these methods to examine wheat yield trends in Northern India, which provides over 15% of the global wheat supply and where over 80% of farmers rely on wheat as a staple food source. In addition, we identify the extent to which farmers are shifting sow date in response to heat stress, and how well shifting sow date reduces the negative impacts of heat stress on yield. To identify local-level decision-making, we map wheat sow date and yield at a high spatial resolution (30 m) using Landsat satellite imagery from 1980 to the present. This unique dataset allows us to examine sow date decisions at the field scale over 30 years, and by relating these decisions to weather experienced over the same time period, we can identify how farmers learn and adapt cropping decisions based on weather through time.

  3. Progressive evaluation of incorporating information into a model building process

    Science.gov (United States)

    Gharari, Shervan; Hrachowitz, Markus; Fenicia, Fabrizio; Gao, Hongkai; Gupta, Hoshin; Savenije, Huub

    2014-05-01

    Catchments are open systems meaning that it is impossible to find out the exact boundary conditions of the real system spatially and temporarily. Therefore models are essential tools in capturing system behaviour spatially and extrapolating it temporarily for prediction. In recent years conceptual models have been in the center of attention rather than so called physically based models which are often over-parameterized and encounter difficulties for up-scaling of small scale processes. Conceptual models however are heavily dependent on calibration as one or more of their parameter values can typically not be physically measured at the catchment scale. The general understanding is based on the fact that increasing the complexity of conceptual model for better representation of hydrological process heterogeneity typically makes parameter identification more difficult however the evaluation of the amount of information given by each of the model elements, control volumes (so called buckets), interconnecting fluxes, parameterization (constitutive functions) and finally parameter values are rather unknown. Each of the mentioned components of a model contains information on the transformation of forcing (precipitation) into runoff, however the effect of each of them solely and together is not well understood. In this study we follow hierarchal steps for model building, firstly the model structure is built by its building blocks (control volumes) as well as interconnecting fluxes. The effect of adding every control volumes and the architecture of the model (formation of control volumes and fluxes) can be evaluated in this level. In the second layer the parameterization of model is evaluated. As an example the effect of a specific type of stage-discharge relation for a control volume can be explored. Finally in the last step of the model building the information gained by parameter values are quantified. In each development level the value of information which are added

  4. A stochastic model for scheduling energy flexibility in buildings

    International Nuclear Information System (INIS)

    Due to technological developments and political goals, the electricity system is undergoing significant changes, and a more active demand side is needed. In this paper, we propose a new model to support the scheduling process for energy flexibility in buildings. We have selected an integrated energy carrier approach based on the energy hub concept, which captures multiple energy carriers, converters and storages to increase the flexibility potential. Furthermore, we propose a general classification of load units according to their flexibility properties. Finally, we define price structures that include both time-varying prices and peak power fees. We demonstrate the properties of the model in a case study based on a Norwegian university college building. The study shows that the model is able to reduce costs by reducing peak loads and utilizing price differences between periods and energy carriers. We illustrate and discuss the properties of two different approaches to deal with uncertain parameters: Rolling horizon deterministic planning and rolling horizon stochastic planning, the latter includes explicit modeling of the uncertain parameters. Although in our limited case, the stochastic model does not outperform the deterministic model, our findings indicate that several factors influence this conclusion. We recommend an in-depth analysis in each specific case. - Highlights: • We propose a new model for the scheduling of energy flexibility in buildings. • We cover multiple energy carriers and include converter, storage and load units. • We classify load units according to their flexibility properties. • Our price structure covers different price regimes including peak fees. • We perform a case study and discuss two approaches to handle uncertain parameters

  5. Simulation and Big Data Challenges in Tuning Building Energy Models

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL

    2013-01-01

    EnergyPlus is the flagship building energy simulation software used to model whole building energy consumption for residential and commercial establishments. A typical input to the program often has hundreds, sometimes thousands of parameters which are typically tweaked by a buildings expert to get it right . This process can sometimes take months. Autotune is an ongoing research effort employing machine learning techniques to automate the tuning of the input parameters for an EnergyPlus input description of a building. Even with automation, the computational challenge faced to run the tuning simulation ensemble is daunting and requires the use of supercomputers to make it tractable in time. In this proposal, we describe the scope of the problem, the technical challenges faced and overcome, the machine learning techniques developed and employed, and the software infrastructure developed/in development when taking the EnergyPlus engine, which was primarily designed to run on desktops, and scaling it to run on shared memory supercomputers (Nautilus) and distributed memory supercomputers (Frost and Titan). The parametric simulations produce data in the order of tens to a couple of hundred terabytes.We describe the approaches employed to streamline and reduce bottlenecks in the workflow for this data, which is subsequently being made available for the tuning effort as well as made available publicly for open-science.

  6. Model code for energy conservation in new building construction

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    In response to the recognized lack of existing consensus standards directed to the conservation of energy in building design and operation, the preparation and publication of such a standard was accomplished with the issuance of ASHRAE Standard 90-75 ''Energy Conservation in New Building Design,'' by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., in 1975. This standard addressed itself to recommended practices for energy conservation, using both depletable and non-depletable sources. A model code for energy conservation in building construction has been developed, setting forth the minimum regulations found necessary to mandate such conservation. The code addresses itself to the administration, design criteria, systems elements, controls, service water heating and electrical distribution and use, both for depletable and non-depletable energy sources. The technical provisions of the document are based on ASHRAE 90-75 and it is intended for use by state and local building officials in the implementation of a statewide energy conservation program.

  7. Myria: Scalable Analytics as a Service

    Science.gov (United States)

    Howe, B.; Halperin, D.; Whitaker, A.

    2014-12-01

    At the UW eScience Institute, we're working to empower non-experts, especially in the sciences, to write and use data-parallel algorithms. To this end, we are building Myria, a web-based platform for scalable analytics and data-parallel programming. Myria's internal model of computation is the relational algebra extended with iteration, such that every program is inherently data-parallel, just as every query in a database is inherently data-parallel. But unlike databases, iteration is a first class concept, allowing us to express machine learning tasks, graph traversal tasks, and more. Programs can be expressed in a number of languages and can be executed on a number of execution environments, but we emphasize a particular language called MyriaL that supports both imperative and declarative styles and a particular execution engine called MyriaX that uses an in-memory column-oriented representation and asynchronous iteration. We deliver Myria over the web as a service, providing an editor, performance analysis tools, and catalog browsing features in a single environment. We find that this web-based "delivery vector" is critical in reaching non-experts: they are insulated from irrelevant effort technical work associated with installation, configuration, and resource management. The MyriaX backend, one of several execution runtimes we support, is a main-memory, column-oriented, RDBMS-on-the-worker system that supports cyclic data flows as a first-class citizen and has been shown to outperform competitive systems on 100-machine cluster sizes. I will describe the Myria system, give a demo, and present some new results in large-scale oceanographic microbiology.

  8. Map algebra and model algebra for integrated model building

    NARCIS (Netherlands)

    Schmitz, O.; Karssenberg, D.J.; Jong, K. de; Kok, J.-L. de; Jong, S.M. de

    2013-01-01

    Computer models are important tools for the assessment of environmental systems. A seamless workflow of construction and coupling of model components is essential for environmental scientists. However, currently available software packages are often tailored either to the construction of model compo

  9. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.

    Science.gov (United States)

    Walczak, Karl; Chen, Yikai; Karp, Christoph; Beeman, Jeffrey W; Shaner, Matthew; Spurgeon, Joshua; Sharp, Ian D; Amashukeli, Xenia; West, William; Jin, Jian; Lewis, Nathan S; Xiang, Chengxiang

    2015-02-01

    A fully integrated solar-driven water-splitting system comprised of WO3 /FTO/p(+) n Si as the photoanode, Pt/TiO2 /Ti/n(+) p Si as the photocathode, and Nafion as the membrane separator, was simulated, assembled, operated in 1.0 M HClO4 , and evaluated for performance and safety characteristics under dual side illumination. A multi-physics model that accounted for the performance of the photoabsorbers and electrocatalysts, ion transport in the solution electrolyte, and gaseous product crossover was first used to define the optimal geometric design space for the system. The photoelectrodes and the membrane separators were then interconnected in a louvered design system configuration, for which the light-absorbing area and the solution-transport pathways were simultaneously optimized. The performance of the photocathode and the photoanode were separately evaluated in a traditional three-electrode photoelectrochemical cell configuration. The photocathode and photoanode were then assembled back-to-back in a tandem configuration to provide sufficient photovoltage to sustain solar-driven unassisted water-splitting. The current-voltage characteristics of the photoelectrodes showed that the low photocurrent density of the photoanode limited the overall solar-to-hydrogen (STH) conversion efficiency due to the large band gap of WO3 . A hydrogen-production rate of 0.17 mL hr(-1) and a STH conversion efficiency of 0.24 % was observed in a full cell configuration for >20 h with minimal product crossover in the fully operational, intrinsically safe, solar-driven water-splitting system. The solar-to-hydrogen conversion efficiency, ηSTH , calculated using the multiphysics numerical simulation was in excellent agreement with the experimental behavior of the system. The value of ηSTH was entirely limited by the performance of the photoelectrochemical assemblies employed in this study. The louvered design provides a robust platform for implementation of various types of

  10. GENERIC BUILDING BLOCKS FOR SIMULATION MODELLING OF STOCHASTIC CONTINUOUS SYSTEMS♣

    Directory of Open Access Journals (Sweden)

    M. Albertyn

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The key objective is to present the generic building blocks of a methodology that can be used to model stochastic continuous systems efficiently. The original simulation model of a real-world system is used as the basis for the development of a generic modelling methodology. The generic building blocks of the methodology are used to construct two new simulation models using two different simulation software packages (Arena and Simul8. The evaluation method, the determination of adequate sample sizes and the verification and validation of the models are discussed. The models and software packages are compared and conclusions are presented.

    AFRIKAANSE OPSOMMING: Die hoofdoelwit is om die generiese boublokke van ‘n metodiek voor te hou wat gebruik kan word om stogastiese kontinue stelsels doeltreffend te modelleer. Die oorspronklike simulasiemodel van ‘n werklike-wêreld-stelsel word gebruik as die basis vir die ontwikkeling van ‘n generiese modelleringsmetodiek. Die generiese boublokke van die metodiek word gebruik om twee nuwe simulasiemodelle te konstrueer met twee verskillende simulasiesagtewarepakkette (Arena en Simul8. Die evaluasiemetode, die vasstelling van voldoende monstergroottes en die verifikasie en validering van die modelle word bespreek. Die modelle en sagtewarepakkette word vergelyk en gevolgtrekkings word voorgehou.

  11. Customer oriented SNR scalability scheme for scalable video coding

    Science.gov (United States)

    Li, Z. G.; Rahardja, S.

    2005-07-01

    Let the whole region be the whole bit rate range that customers are interested in, and a sub-region be a specific bit rate range. The weighting factor of each sub-region is determined according to customers' interest. A new type of region of interest (ROI) is defined for the SNR scalability as the gap between the coding efficiency of SNR scalability scheme and that of the state-of-the-art single layer coding for a sub-region is a monotonically non-increasing function of its weighting factor. This type of ROI is used as a performance index to design a customer oriented SNR scalability scheme. Our scheme can be used to achieve an optimal customer oriented scalable tradeoff (COST). The profit can thus be maximized.

  12. An Evolving Model for Capacity Building with Earth Observation Imagery

    Science.gov (United States)

    Sylak-Glassman, E. J.

    2015-12-01

    For the first forty years of Earth observation satellite imagery, all imagery was collected by civilian or military governmental satellites. Over this timeframe, countries without observation satellite capabilities had very limited access to Earth observation data or imagery. In response to the limited access to Earth observation systems, capacity building efforts were focused on satellite manufacturing. Wood and Weigel (2012) describe the evolution of satellite programs in developing countries with a technology ladder. A country moves up the ladder as they move from producing satellites with training services to building satellites locally. While the ladder model may be appropriate if the goal is to develop autonomous satellite manufacturing capability, in the realm of Earth observation, the goal is generally to derive societal benefit from the use of Earth observation-derived information. In this case, the model for developing Earth observation capacity is more appropriately described by a hub-and-spoke model in which the use of Earth observation imagery is the "hub," and the "spokes" describe the various paths to achieving that imagery: the building of a satellite (either independently or with assistance), the purchase of a satellite, participation in a constellation of satellites, and the use of freely available or purchased satellite imagery. We discuss the different capacity-building activities that are conducted in each of these pathways, such as the "Know-How Transfer and Training" program developed by Surrey Satellite Technology Ltd. , Earth observation imagery training courses run by SERVIR in developing countries, and the use of national or regional remote sensing centers (such as those in Morocco, Malaysia, and Kenya) to disseminate imagery and training. In addition, we explore the factors that determine through which "spoke" a country arrives at the ability to use Earth observation imagery, and discuss best practices for achieving the capability to use

  13. User-friendly graph editing for procedural modeling of buildings.

    Science.gov (United States)

    Patow, Gustavo

    2012-01-01

    A proposed rule-based editing metaphor intuitively lets artists create buildings without changing their workflow. It's based on the realization that the rule base represents a directed acyclic graph and on a shift in the development paradigm from product-based to rule-based representations. Users can visually add or edit rules, connect them to control the workflow, and easily create commands that expand the artist's toolbox (for example, Boolean operations or local controlling operators). This approach opens new possibilities, from model verification to model editing through graph rewriting. PMID:24804948

  14. Building information modeling in the architectural design phases

    DEFF Research Database (Denmark)

    Hermund, Anders

    2009-01-01

    The overall economical benefits of Building Information Modeling are generally comprehensible, but are there other problems with the implementation of BIM as a formulized system in a field that ultimately is dependant on a creative input? Is optimization and economic benefit really contributing...... with an architectural quality? In Denmark the implementation of the digital working methods related to BIM has been introduced by government law in 2007. Will the important role of the architect as designer change in accordance with these new methods, and does the idea of one big integrated model represent a paradox...

  15. The Proposal of Model for Building Cooperation Management in Company

    Directory of Open Access Journals (Sweden)

    Josef Vodák

    2015-12-01

    Full Text Available The goal of the article is to use detailed literature analysis and findings of an empirical research, and to propose model for building cooperation management in a company. The article brings a valuable tool to company managers in a form of a complex and detailed model to achieve successful implementation of cooperation management in a company. The article thus provides a tool for company managers for managing their cooperation projects and activities. Use of this tool is meant to help minimize occurrence of conflict situations and to support smooth progress of cooperation activities.

  16. A Building Model Framework for a Genetic Algorithm Multi-objective Model Predictive Control

    DEFF Research Database (Denmark)

    Arendt, Krzysztof; Ionesi, Ana; Jradi, Muhyiddine;

    Model Predictive Control (MPC) of building systems is a promising approach to optimize building energy performance. In contrast to traditional control strategies which are reactive in nature, MPC optimizes the utilization of resources based on the predicted effects. It has been shown that energy...... savings potential of this technique can reach up to 40% compared to conventional control strategies depending on the particular building type. However, the effort needed to implement MPC in buildings is significant and often considered prohibitive. That is why until now fully-functional MPC has been...

  17. An Iterative Algorithm to Build Chinese Language Models

    CERN Document Server

    Luo, X; Luo, Xiaoqiang; Roukos, Salim

    1996-01-01

    We present an iterative procedure to build a Chinese language model (LM). We segment Chinese text into words based on a word-based Chinese language model. However, the construction of a Chinese LM itself requires word boundaries. To get out of the chicken-and-egg problem, we propose an iterative procedure that alternates two operations: segmenting text into words and building an LM. Starting with an initial segmented corpus and an LM based upon it, we use a Viterbi-liek algorithm to segment another set of data. Then, we build an LM based on the second set and use the resulting LM to segment again the first corpus. The alternating procedure provides a self-organized way for the segmenter to detect automatically unseen words and correct segmentation errors. Our preliminary experiment shows that the alternating procedure not only improves the accuracy of our segmentation, but discovers unseen words surprisingly well. The resulting word-based LM has a perplexity of 188 for a general Chinese corpus.

  18. Vision-based building energy diagnostics and retrofit analysis using 3D thermography and building information modeling

    Science.gov (United States)

    Ham, Youngjib

    The emerging energy crisis in the building sector and the legislative measures on improving energy efficiency are steering the construction industry towards adopting new energy efficient design concepts and construction methods that decrease the overall energy loads. However, the problems of energy efficiency are not only limited to the design and construction of new buildings. Today, a significant amount of input energy in existing buildings is still being wasted during the operational phase. One primary source of the energy waste is attributed to unnecessary heat flows through building envelopes during hot and cold seasons. This inefficiency increases the operational frequency of heating and cooling systems to keep the desired thermal comfort of building occupants, and ultimately results in excessive energy use. Improving thermal performance of building envelopes can reduce the energy consumption required for space conditioning and in turn provide building occupants with an optimal thermal comfort at a lower energy cost. In this sense, energy diagnostics and retrofit analysis for existing building envelopes are key enablers for improving energy efficiency. Since proper retrofit decisions of existing buildings directly translate into energy cost saving in the future, building practitioners are increasingly interested in methods for reliable identification of potential performance problems so that they can take timely corrective actions. However, sensing what and where energy problems are emerging or are likely to emerge and then analyzing how the problems influence the energy consumption are not trivial tasks. The overarching goal of this dissertation focuses on understanding the gaps in knowledge in methods for building energy diagnostics and retrofit analysis, and filling these gaps by devising a new method for multi-modal visual sensing and analytics using thermography and Building Information Modeling (BIM). First, to address the challenges in scaling and

  19. Metadata and their impact on processes in Building Information Modeling

    Directory of Open Access Journals (Sweden)

    Vladimir Nyvlt

    2014-04-01

    Full Text Available Building Information Modeling (BIM itself contains huge potential, how to increase effectiveness of every project in its all life cycle. It means from initial investment plan through project and building-up activities to long-term usage and property maintenance and finally demolition. Knowledge Management or better say Knowledge Sharing covers two sets of tools, managerial and technological. Manager`s needs are real expectations and desires of final users in terms of how could they benefit from managing long-term projects, covering whole life cycle in terms of sparing investment money and other resources. Technology employed can help BIM processes to support and deliver these benefits to users. How to use this technology for data and metadata collection, storage and sharing, which processes may these new technologies deploy. We will touch how to cover optimized processes proposal for better and smooth support of knowledge sharing within project time-scale, and covering all its life cycle.

  20. Big data integration: scalability and sustainability

    KAUST Repository

    Zhang, Zhang

    2016-01-26

    Integration of various types of omics data is critically indispensable for addressing most important and complex biological questions. In the era of big data, however, data integration becomes increasingly tedious, time-consuming and expensive, posing a significant obstacle to fully exploit the wealth of big biological data. Here we propose a scalable and sustainable architecture that integrates big omics data through community-contributed modules. Community modules are contributed and maintained by different committed groups and each module corresponds to a specific data type, deals with data collection, processing and visualization, and delivers data on-demand via web services. Based on this community-based architecture, we build Information Commons for Rice (IC4R; http://ic4r.org), a rice knowledgebase that integrates a variety of rice omics data from multiple community modules, including genome-wide expression profiles derived entirely from RNA-Seq data, resequencing-based genomic variations obtained from re-sequencing data of thousands of rice varieties, plant homologous genes covering multiple diverse plant species, post-translational modifications, rice-related literatures, and community annotations. Taken together, such architecture achieves integration of different types of data from multiple community-contributed modules and accordingly features scalable, sustainable and collaborative integration of big data as well as low costs for database update and maintenance, thus helpful for building IC4R into a comprehensive knowledgebase covering all aspects of rice data and beneficial for both basic and translational researches.

  1. Scalable Gravity Offload System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a scalable gravity off-load system that enables controlled integrated testing of Surface System elements such as rovers, habitats, and...

  2. Scalable Gravity Offload System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A scalable gravity offload device simulates reduced gravity for the testing of various surface system elements such as mobile robots, excavators, habitats, and...

  3. Functional Testing Protocols for Commercial Building Efficiency Baseline Modeling Software

    Energy Technology Data Exchange (ETDEWEB)

    Jump, David; Price, Phillip N.; Granderson, Jessica; Sohn, Michael

    2013-09-06

    This document describes procedures for testing and validating proprietary baseline energy modeling software accuracy in predicting energy use over the period of interest, such as a month or a year. The procedures are designed according to the methodology used for public domain baselining software in another LBNL report that was (like the present report) prepared for Pacific Gas and Electric Company: ?Commercial Building Energy Baseline Modeling Software: Performance Metrics and Method Testing with Open Source Models and Implications for Proprietary Software Testing Protocols? (referred to here as the ?Model Analysis Report?). The test procedure focuses on the quality of the software?s predictions rather than on the specific algorithms used to predict energy use. In this way the software vendor is not required to divulge or share proprietary information about how their software works, while enabling stakeholders to assess its performance.

  4. Implications of imaginary chemical potential for model building of QCD

    CERN Document Server

    Kashiwa, Kouji

    2016-01-01

    Properties of QCD at finite imaginary chemical potential are revisited to utilize for the model building of QCD in low energy regimes. For example, the electric holonomy which is closely related to the Polyakov-loop drastically affects thermodynamic quantities beside the Roberge-Weiss transition line. To incorporate several properties at finite imaginary chemical potential, it is important to introduce the holonomy effects to the coupling constant of effective models. This extension is possible by considering the entanglement vertex. We show justifications of the entanglement vertex based on the derivation of the effective four-fermi interaction in the Nambu--Jona-Lasinio model and present its general form with the local approximation. To discuss how to remove model ambiguities in the entanglement vertex, we calculate the chiral condensate with different $\\mathbb{Z}_3$ sectors and the dual quark condensate.

  5. Lipid Processing Technology: Building a Multilevel Modeling Network

    DEFF Research Database (Denmark)

    Diaz Tovar, Carlos Axel; Mustaffa, Azizul Azri; Hukkerikar, Amol;

    of these unit operations with respect to performance parameters such as minimum total cost, product yield improvement, operability etc., and process intensification for the retrofit of existing biofuel plants. In the fourth level the information and models developed are used as building blocks...... in the upcoming years major challenges in terms of design and development of better products and more sustainable processes. Although the oleo chemical industry is mature and based on well established processes, the complex systems that lipid compounds form, the lack of accurate predictive models...... for their physical properties and unit operation models for their processing have limited computeraided methods and tools for process synthesis, modeling and simulation to be widely used for design, analysis, and optimization of these processes. In consequence, the aim of this work is to present the development...

  6. Theory Building- Towards an understanding of business model innovation processes

    DEFF Research Database (Denmark)

    Taran, Yariv; Boer, Harry; Lindgren, Peter

    2009-01-01

    Companies today, in some industries more than others, invest more capital and resources just to stay competitive, develop more diverse solutions, and increasingly start to think more radically, when considering to innovate their business model. However, the development and innovation of business...... models is a complex venture and has not been widely researched yet. The objective of this paper is therefore 1) to build a [descriptive] theoretical understanding, based on Christensen's (2005) three-step procedure, to business models and their innovation and, as a result of that, 2) to strengthen...... researchers' and practitioners' perspectives as to how the process of business model innovation can be realized. By using various researchers' perspectives and assumptions, we identify relevant inconsistencies, which consequently lead us to propose possible supplementary solutions. We conclude our paper...

  7. High performance scalable image coding

    Institute of Scientific and Technical Information of China (English)

    Gan Tao; He Yanmin; Zhu Weile

    2007-01-01

    A high performance scalable image coding algorithm is proposed. The salient features of this algorithm are the ways to form and locate the significant clusters. Thanks to the list structure, the new coding algorithm achieves fine fractional bit-plane coding with negligible additional complexity. Experiments show that it performs comparably or better than the state-of-the-art coders. Furthermore, the flexible codec supports both quality and resolution scalability, which is very attractive in many network applications.

  8. Building America Case Study: Accelerating the Delivery of Home-Performance Upgrades Using a Synergistic Business Model, Minneapolis, Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    Achieving Building America energy savings goals (40 percent by 2030) will require many existing homes to install energy upgrades. Engaging large numbers of homeowners in building science-guided upgrades during a single remodeling event has been difficult for a number of reasons. Performance upgrades in existing homes tend to occur over multiple years and usually result from component failures (furnace failure) and weather damage (ice dams, roofing, siding). This research attempted to: A) Understand the homeowner's motivations regarding investing in building science based performance upgrades. B) Determining a rapidly scalable approach to engage large numbers of homeowners directly through existing customer networks. C) Access a business model that will manage all aspects of the contractor-homeowner-performance professional interface to ensure good upgrade decisions over time. The solution results from a synergistic approach utilizing networks of suppliers merging with networks of homeowner customers. Companies in the $400 to $800 billion home services industry have proven direct marketing and sales proficiencies that have led to the development of vast customer networks. Companies such as pest control, lawn care, and security have nurtured these networks by successfully addressing the ongoing needs of homes. This long-term access to customers and trust established with consistent delivery has also provided opportunities for home service providers to grow by successfully introducing new products and services like attic insulation and air sealing. The most important component for success is a business model that will facilitate and manage the process. The team analyzes a group that developed a working model.

  9. A SWOT analysis on the implementation of Building Information Models within the geospatial environment

    NARCIS (Netherlands)

    Isikdag, U.; Zlatanova, S.

    2009-01-01

    Building Information Models as product models and Building Information Modelling as a process which supports information management throughout the lifecycle of a building are becoming more widely used in the Architecture/Engineering/Construction (AEC) industry. In order to facilitate various urban m

  10. A Fast Scalable Classifier Tightly Integrated with RDBMS

    Institute of Scientific and Technical Information of China (English)

    刘红岩; 陆宏钧; 陈剑

    2002-01-01

    In this paper, we report our success in building efficient scalable classifiers by exploring the capabilities of modern relational database management systems(RDBMS).In addition to high classification accuracy, the unique features of theapproach include its high training speed, linear scalability, and simplicity in implementation. More importantly,the major computation required in the approachcan be implemented using standard functions provided by the modern relational DBMS.Besides, with the effective rule pruning strategy, the algorithm proposed inthis paper can produce a compact set of classification rules. The results of experiments conducted for performance evaluation and analysis are presented.

  11. Modelling piezoelectric energy harvesting potential in an educational building

    International Nuclear Information System (INIS)

    Highlights: • Energy harvesting potential of commercialized piezoelectric tiles is analyzed. • The parameters which will affect the energy harvesting efficiency are determined. • The potential could cover 0.5% of the total energy usage of the library building. • A simplified evaluation indicator is proposed to test the considered paving area. - Abstract: In this paper, potential application of a commercial piezoelectric energy harvester in a central hub building at Macquarie University in Sydney, Australia is examined and discussed. Optimization of the piezoelectric tile deployment is presented according to the frequency of pedestrian mobility and a model is developed where 3.1% of the total floor area with the highest pedestrian mobility is paved with piezoelectric tiles. The modelling results indicate that the total annual energy harvesting potential for the proposed optimized tile pavement model is estimated at 1.1 MW h/year. This potential energy generation may be further increased to 9.9 MW h/year with a possible improvement in piezoelectric energy conversion efficiency integrated into the system. This energy harvesting potential would be sufficient to meet close to 0.5% of the annual energy needs of the building. The study confirms that locating high traffic areas is critical for optimization of the energy harvesting efficiency, as well as the orientation of the tile pavement significantly affects the total amount of the harvested energy. A Density Flow evaluation is recommended in this study to qualitatively evaluate the piezoelectric power harvesting potential of the considered area based on the number of pedestrian crossings per unit time

  12. Modelling consensus building in Delphi practices for participated transport planning

    CERN Document Server

    Pira, Michela Le; Ignaccolo, Matteo; Pluchino, Alessandro

    2015-01-01

    In this study a consensus building process based on a combination of Analytic Hierarchy Process (AHP) and Delphi method is presented and applied to the decision-making process about alternative policy measures to promote cycling mobility. An agent-based model is here used to reproduce the same process of convergence of opinions, with the aim to understand the role of network topology, stakeholder influence and other sensitive variables on the emergence of consensus. It can be a useful tool for decision-makers to guide them in planning effective participation processes.

  13. Building SO$_{10}$- models with $\\mathbb{D}_{4}$ symmetry

    CERN Document Server

    Laamara, R Ahl; Saidi, E H

    2015-01-01

    Using characters of finite group representations and monodromy of matter curves in F-GUT, we complete partial results in literature by building SO$% _{10}$ models with dihedral $\\mathbb{D}_{4}$ discrete symmetry. We first revisit the $\\mathbb{S}_{4}$-and $\\mathbb{S}_{3}$-models from the discrete group character view, then we extend the construction to $\\mathbb{D}_{4}$.\\ We find that there are three types of $SO_{10}\\times \\mathbb{D}_{4}$ models depending on the ways the $\\mathbb{S}_{4}$-triplets break down in terms of irreducible $\\mathbb{D}_{4}$- representations: $\\left({\\alpha} \\right) $ as $\\boldsymbol{1}_{_{+,-}}\\oplus \\boldsymbol{1}_{_{+,-}}\\oplus \\boldsymbol{1}_{_{-,+}};$ or $\\left({\\beta}\\right) \\boldsymbol{\\ 1}_{_{+,+}}\\oplus \\boldsymbol{1}_{_{+,-}}\\oplus \\boldsymbol{1}_{_{-,-}};$ or also $\\left({\\gamma}\\right) $ $\\mathbf{1}_{_{+,-}}\\oplus \\mathbf{2}_{_{0,0}}$. Superpotentials and other features are also given.

  14. Toward Building a New Seismic Hazard Model for Mainland China

    Science.gov (United States)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z.

    2015-12-01

    At present, the only publicly available seismic hazard model for mainland China was generated by Global Seismic Hazard Assessment Program in 1999. We are building a new seismic hazard model by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data using the methodology recommended by Global Earthquake Model (GEM), and derive a strain rate map based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones based on seismotectonics. For each zone, we use the tapered Gutenberg-Richter (TGR) relationship to model the seismicity rates. We estimate the TGR a- and b-values from the historical earthquake data, and constrain corner magnitude using the seismic moment rate derived from the strain rate. From the TGR distributions, 10,000 to 100,000 years of synthetic earthquakes are simulated. Then, we distribute small and medium earthquakes according to locations and magnitudes of historical earthquakes. Some large earthquakes are distributed on active faults based on characteristics of the faults, including slip rate, fault length and width, and paleoseismic data, and the rest to the background based on the distributions of historical earthquakes and strain rate. We evaluate available ground motion prediction equations (GMPE) by comparison to observed ground motions. To apply appropriate GMPEs, we divide the region into active and stable tectonics. The seismic hazard will be calculated using the OpenQuake software developed by GEM. To account for site amplifications, we construct a site condition map based on geology maps. The resulting new seismic hazard map can be used for seismic risk analysis and management, and business and land-use planning.

  15. DIVA: an iterative method for building modular integrated models

    Science.gov (United States)

    Hinkel, J.

    2005-08-01

    Integrated modelling of global environmental change impacts faces the challenge that knowledge from the domains of Natural and Social Science must be integrated. This is complicated by often incompatible terminology and the fact that the interactions between subsystems are usually not fully understood at the start of the project. While a modular modelling approach is necessary to address these challenges, it is not sufficient. The remaining question is how the modelled system shall be cut down into modules. While no generic answer can be given to this question, communication tools can be provided to support the process of modularisation and integration. Along those lines of thought a method for building modular integrated models was developed within the EU project DINAS-COAST and applied to construct a first model, which assesses the vulnerability of the world's coasts to climate change and sea-level-rise. The method focuses on the development of a common language and offers domain experts an intuitive interface to code their knowledge in form of modules. However, instead of rigorously defining interfaces between the subsystems at the project's beginning, an iterative model development process is defined and tools to facilitate communication and collaboration are provided. This flexible approach has the advantage that increased understanding about subsystem interactions, gained during the project's lifetime, can immediately be reflected in the model.

  16. LinuxDirector: A Connection Director for Scalable Internet Services

    Institute of Scientific and Technical Information of China (English)

    章文嵩; 金士尧; 吴泉源

    2000-01-01

    LinuxDirector is a connection director that supports load balancing among multiple Internet servers, which can be used to build scalable Internet services based on clusters of servers. LinuxDirector extends the TCP/IP stack of Linux kernel to support three IP load balancing techniques, VS/NAT, VS/TUN and VS/DR. Four scheduling algorithms have been implemented to assign connections to different servers. Scalability is achieved by transparently adding or removing a node in the cluster. High availability is provided by detecting node or daemon failures and reconfiguring the system appropriately. This paper describes the design and implementation of LinuxDirector and presents several of its features including scalability,high availability and connection affinity.

  17. Vision-based building energy diagnostics and retrofit analysis using 3D thermography and building information modeling

    Science.gov (United States)

    Ham, Youngjib

    The emerging energy crisis in the building sector and the legislative measures on improving energy efficiency are steering the construction industry towards adopting new energy efficient design concepts and construction methods that decrease the overall energy loads. However, the problems of energy efficiency are not only limited to the design and construction of new buildings. Today, a significant amount of input energy in existing buildings is still being wasted during the operational phase. One primary source of the energy waste is attributed to unnecessary heat flows through building envelopes during hot and cold seasons. This inefficiency increases the operational frequency of heating and cooling systems to keep the desired thermal comfort of building occupants, and ultimately results in excessive energy use. Improving thermal performance of building envelopes can reduce the energy consumption required for space conditioning and in turn provide building occupants with an optimal thermal comfort at a lower energy cost. In this sense, energy diagnostics and retrofit analysis for existing building envelopes are key enablers for improving energy efficiency. Since proper retrofit decisions of existing buildings directly translate into energy cost saving in the future, building practitioners are increasingly interested in methods for reliable identification of potential performance problems so that they can take timely corrective actions. However, sensing what and where energy problems are emerging or are likely to emerge and then analyzing how the problems influence the energy consumption are not trivial tasks. The overarching goal of this dissertation focuses on understanding the gaps in knowledge in methods for building energy diagnostics and retrofit analysis, and filling these gaps by devising a new method for multi-modal visual sensing and analytics using thermography and Building Information Modeling (BIM). First, to address the challenges in scaling and

  18. Building predictive models of soil particle-size distribution

    Directory of Open Access Journals (Sweden)

    Alessandro Samuel-Rosa

    2013-04-01

    Full Text Available Is it possible to build predictive models (PMs of soil particle-size distribution (psd in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness index. The PMs explained more than half of the data variance. This performance is similar to (or even better than that of the conventional soil mapping approach. For some size fractions, the PM performance can reach 70 %. Largest uncertainties were observed in geologically more complex areas. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, PMs built on terrain attributes are efficient in predicting the particle-size distribution (psd of soils in regions of complex geology.

  19. INTEGRATING SMARTPHONE IMAGES AND AIRBORNE LIDAR DATA FOR COMPLETE URBAN BUILDING MODELLING

    OpenAIRE

    Zhang, Shenman; Shan, Jie; Zhang, Zhichao; Yan, Jixing; Hou, Yaolin

    2016-01-01

    A complete building model reconstruction needs data collected from both air and ground. The former often has sparse coverage on building façades, while the latter usually is unable to observe the building rooftops. Attempting to solve the missing data issues in building reconstruction from single data source, we describe an approach for complete building reconstruction that integrates airborne LiDAR data and ground smartphone imagery. First, by taking advantages of GPS and digital compass inf...

  20. 5D Building Information Modelling – A Practicability Review

    Directory of Open Access Journals (Sweden)

    Lee Xia Sheng

    2016-01-01

    Full Text Available Quality, time and cost are the three most important elements in any construction project. Building information that comes timely and accurately in multiple dimensions will facilitate a refined decision making process which can improve the construction quality, time and cost. 5 dimensional Building Information Modelling or 5D BIM is an emerging trend in the construction industry that integrates all the major information starting from the initial design to the final construction stage. After that, the integrated information is arranged and communicated through Virtual Design and Construction (VDC. This research is to gauge the practicability of 5D BIM with an action research type pilot study by the means of hands-on modelling of a conceptual bungalow design based on one of the most popular BIM tools. A bungalow is selected as a study subject to simulate the major stages of 5D BIM digital workflow. The whole process starts with developing drawings (2D into digital model (3D, and is followed by the incorporation of time (4D and cost (5D. Observations are focused on the major factors that will affect the practicability of 5D BIM, including the modelling effort, inter-operability, information output and limitations. This research concludes that 5D BIM certainly has high level practicability which further differentiates BIM from Computer Aided Design (CAD. The integration of information not only enhanced the efficiency and accuracy of process in all stages, but also enabled decision makers to have a sophisticated interpretation of information which is almost impossible with the conventional 2D CAD workflow. Although it is possible to incorporate more than 5 dimensions of information, it is foreseeable that excessive information may escalate the complexity unfavourably for BIM implementation. 5D BIM has achieved a significant level of practicability; further research should be conducted to streamline implementation. Once 5D BIM is matured and widely

  1. Models in theory building: the case of early string theory

    International Nuclear Information System (INIS)

    The history of the origins and first steps of string theory, from Veneziano's formulation of his famous scattering amplitude in 1968 to the 'first string revolution' in 1984, provides rich material for discussing traditional issues in the philosophy of science. This paper focusses on the initial phase of this history, that is the making of early string theory out of the 'dual theory of strong interactions' motivated by the aim of finding a viable theory of hadrons in the framework of the so-called S-matrix theory of the Sixties: from the first two models proposed (the Dual Resonance Model and the Shapiro-Virasoro Model) to all the subsequent endeavours to extend and complete the theory, including its string interpretation. As is the aim of this paper to show, by representing an exemplary illustration of the building of a scientific theory out of tentative and partial models this is a particularly fruitful case study for the current philosophical discussion on how to characterize a scientific model, a scientific theory, and the relation between models and theories.

  2. Stereovision vibration measurement test of a masonry building model

    Science.gov (United States)

    Shan, Baohua; Gao, Yunli; Shen, Yu

    2016-04-01

    To monitor 3D deformations of structural vibration response, a stereovision-based 3D deformation measurement method is proposed in paper. The world coordinate system is established on structural surface, and 3D displacement equations of structural vibration response are acquired through coordinate transformation. The algorithms of edge detection, center fitting and matching constraint are developed for circular target. A shaking table test of a masonry building model under Taft and El Centro earthquake at different acceleration peak is performed in lab, 3D displacement time histories of the model are acquired by the integrated stereovision measurement system. In-plane displacement curves obtained by two methods show good agreement, this suggests that the proposed method is reliable for monitoring structural vibration response. Out-of-plane displacement curves indicate that the proposed method is feasible and useful for monitoring 3D deformations of vibration response.

  3. Compressive sensing as a paradigm for building physics models

    Science.gov (United States)

    Nelson, Lance J.; Hart, Gus L. W.; Zhou, Fei; Ozoliņš, Vidvuds

    2013-01-01

    The widely accepted intuition that the important properties of solids are determined by a few key variables underpins many methods in physics. Though this reductionist paradigm is applicable in many physical problems, its utility can be limited because the intuition for identifying the key variables often does not exist or is difficult to develop. Machine learning algorithms (genetic programming, neural networks, Bayesian methods, etc.) attempt to eliminate the a priori need for such intuition but often do so with increased computational burden and human time. A recently developed technique in the field of signal processing, compressive sensing (CS), provides a simple, general, and efficient way of finding the key descriptive variables. CS is a powerful paradigm for model building; we show that its models are more physical and predict more accurately than current state-of-the-art approaches and can be constructed at a fraction of the computational cost and user effort.

  4. Building Models from the Bottom Up: The HOBBES Project

    Science.gov (United States)

    Medellin-Azuara, J.; Sandoval Solis, S.; Lund, J. R.; Chu, W.

    2013-12-01

    Water problems are often bigger than technical and data challenges associated in representing a water system using a model. Controversy and complexity is inherent when water is to be allocated among different uses making difficult to maintain coherent and productive discussions on addressing water problems. Quantification of a water supply system through models has proven to be helpful to improve understanding, explore and develop adaptable solutions to water problems. However, models often become too large and complex and become hostages of endless discussions of the assumptions, their algorithms and their limitations. Data management organization and documentation keep model flexible and useful over time. The UC Davis HOBBES project is a new approach, building models from the bottom up. Reversing the traditional model development, where data are arranged around a model algorithm, in Hobbes the data structure, organization and documentation are established first, followed by application of simulation or optimization modeling algorithms for a particular problem at hand. The HOBBES project establishes standards for storing, documenting and sharing datasets on California water system. This allows models to be developed and modified more easily and transparently, with greater comparability. Elements in the database have a spatial definition and can aggregate several infrastructural elements into detailed to coarse representations of the water system. Elements in the database represent reservoirs, groundwater basins, pumping stations, hydropower and water treatment facilities, demand areas and conveyance infrastructure statewide. These elements also host time series, economic and other information from hydrologic, economic, climate and other models. This presentation provides an overview of the project HOBBES project, its applications and prospects for California and elsewhere. The HOBBES Project

  5. Scalable resource management in high performance computers.

    Energy Technology Data Exchange (ETDEWEB)

    Frachtenberg, E. (Eitan); Petrini, F. (Fabrizio); Fernandez Peinador, J. (Juan); Coll, S. (Salvador)

    2002-01-01

    Clusters of workstations have emerged as an important platform for building cost-effective, scalable and highly-available computers. Although many hardware solutions are available today, the largest challenge in making large-scale clusters usable lies in the system software. In this paper we present STORM, a resource management tool designed to provide scalability, low overhead and the flexibility necessary to efficiently support and analyze a wide range of job scheduling algorithms. STORM achieves these feats by closely integrating the management daemons with the low-level features that are common in state-of-the-art high-performance system area networks. The architecture of STORM is based on three main technical innovations. First, a sizable part of the scheduler runs in the thread processor located on the network interface. Second, we use hardware collectives that are highly scalable both for implementing control heartbeats and to distribute the binary of a parallel job in near-constant time, irrespective of job and machine sizes. Third, we use an I/O bypass protocol that allows fast data movements from the file system to the communication buffers in the network interface and vice versa. The experimental results show that STORM can launch a job with a binary of 12MB on a 64 processor/32 node cluster in less than 0.25 sec on an empty network, in less than 0.45 sec when all the processors are busy computing other jobs, and in less than 0.65 sec when the network is flooded with a background traffic. This paper provides experimental and analytical evidence that these results scale to a much larger number of nodes. To the best of our knowledge, STORM is at least two orders of magnitude faster than existing production schedulers in launching jobs, performing resource management tasks and gang scheduling.

  6. Introducing molecular life science students to model building using computer simulations

    NARCIS (Netherlands)

    Aegerter-Wilmsen, T.; Janssen, F.J.J.M.; Kettenis, D.; Sessink, O.; Hartog, R.; Bisseling, T.

    2006-01-01

    Computer simulations can facilitate the building of models of natural phenomena in research, for example in the molecular life sciences. In order to introduce molecular life science students to using computer simulations for model building, a digital case was developed in which students build a mode

  7. Responsive, Flexible and Scalable Broader Impacts (Invited)

    Science.gov (United States)

    Decharon, A.; Companion, C.; Steinman, M.

    2010-12-01

    In many educator professional development workshops, scientists present content in a slideshow-type format and field questions afterwards. Drawbacks of this approach include: inability to begin the lecture with content that is responsive to audience needs; lack of flexible access to specific material within the linear presentation; and “Q&A” sessions are not easily scalable to broader audiences. Often this type of traditional interaction provides little direct benefit to the scientists. The Centers for Ocean Sciences Education Excellence - Ocean Systems (COSEE-OS) applies the technique of concept mapping with demonstrated effectiveness in helping scientists and educators “get on the same page” (deCharon et al., 2009). A key aspect is scientist professional development geared towards improving face-to-face and online communication with non-scientists. COSEE-OS promotes scientist-educator collaboration, tests the application of scientist-educator maps in new contexts through webinars, and is piloting the expansion of maps as long-lived resources for the broader community. Collaboration - COSEE-OS has developed and tested a workshop model bringing scientists and educators together in a peer-oriented process, often clarifying common misconceptions. Scientist-educator teams develop online concept maps that are hyperlinked to “assets” (i.e., images, videos, news) and are responsive to the needs of non-scientist audiences. In workshop evaluations, 91% of educators said that the process of concept mapping helped them think through science topics and 89% said that concept mapping helped build a bridge of communication with scientists (n=53). Application - After developing a concept map, with COSEE-OS staff assistance, scientists are invited to give webinar presentations that include live “Q&A” sessions. The webinars extend the reach of scientist-created concept maps to new contexts, both geographically and topically (e.g., oil spill), with a relatively small

  8. Dispersion model for airborne particulates inside a building

    International Nuclear Information System (INIS)

    An empirical model has been developed for the spread of airborne radioactive particles after they are released inside a building. The model has been useful in performing safety analyses of actinide materials facilities at the Savannah River Plant (SRP). These facilities employ the multiple-air-zone concept; that is, ventilation air flows from rooms or areas of least radioactive material hazard, through zones of increasing hazard, to a treatment system. A composite of the data for dispersion of airborne activity during 12 actual case incidents at SRP forms the basis for this model. These incidents occurred during approximately 90 plant-years of experience at SRP with the chemical and metallurgical processing of purified neptunium and plutonium after their recovery from irradiated uranium. The model gives ratios of the airborne activity concentrations in rooms and corridors near the site of the release. The multiple-air-zone concept has been applied to many designs of nuclear facilities as a safety feature to limit the spread of airborne activity from a release. The model illustrates the limitations of this concept: it predicts an apparently anomalous behavior of airborne particulates; namely, a small migration against the flow of the ventilation air

  9. BUILDING ROBUST APPEARANCE MODELS USING ON-LINE FEATURE SELECTION

    Energy Technology Data Exchange (ETDEWEB)

    PORTER, REID B. [Los Alamos National Laboratory; LOVELAND, ROHAN [Los Alamos National Laboratory; ROSTEN, ED [Los Alamos National Laboratory

    2007-01-29

    In many tracking applications, adapting the target appearance model over time can improve performance. This approach is most popular in high frame rate video applications where latent variables, related to the objects appearance (e.g., orientation and pose), vary slowly from one frame to the next. In these cases the appearance model and the tracking system are tightly integrated, and latent variables are often included as part of the tracking system's dynamic model. In this paper we describe our efforts to track cars in low frame rate data (1 frame/second) acquired from a highly unstable airborne platform. Due to the low frame rate, and poor image quality, the appearance of a particular vehicle varies greatly from one frame to the next. This leads us to a different problem: how can we build the best appearance model from all instances of a vehicle we have seen so far. The best appearance model should maximize the future performance of the tracking system, and maximize the chances of reacquiring the vehicle once it leaves the field of view. We propose an online feature selection approach to this problem and investigate the performance and computational trade-offs with a real-world dataset.

  10. Evaluation of Model Recognition for Grammar-Based Automatic 3d Building Model Reconstruction

    Science.gov (United States)

    Yu, Qian; Helmholz, Petra; Belton, David

    2016-06-01

    In recent years, 3D city models are in high demand by many public and private organisations, and the steadily growing capacity in both quality and quantity are increasing demand. The quality evaluation of these 3D models is a relevant issue both from the scientific and practical points of view. In this paper, we present a method for the quality evaluation of 3D building models which are reconstructed automatically from terrestrial laser scanning (TLS) data based on an attributed building grammar. The entire evaluation process has been performed in all the three dimensions in terms of completeness and correctness of the reconstruction. Six quality measures are introduced to apply on four datasets of reconstructed building models in order to describe the quality of the automatic reconstruction, and also are assessed on their validity from the evaluation point of view.

  11. Model Building Strategies for Predicting Multiple Landslide Events

    Science.gov (United States)

    Lombardo, L.; Cama, M.; Märker, M.; Parisi, L.; Rotigliano, E.

    2013-12-01

    A model building strategy is tested to assess the susceptibility for extreme climatic events driven landslides. In fact, extreme climatic inputs such as storms typically are very local phenomena in the Mediterranean areas, so that with the exception of recently stricken areas, the landslide inventories which are required to train any stochastic model are actually unavailable. A solution is here proposed, consisting in training a susceptibility model in a source catchment, which was implemented by applying the binary logistic regression technique, and exporting its predicting function (selected predictors regressed coefficients) in a target catchment to predict its landslide distribution. To test the method we exploit the disaster that occurred in the Messina area (southern Italy) on the 1st of October 2009 where, following a 250mm/8hours storm, approximately 2000 debris flow/debris avalanches landslides in an area of 21km2 triggered, killing thirty-seven people, injuring more than one hundred, and causing 0.5M euro worth of structural damage. The debris flows and debris avalanches phenomena involved the thin weathered mantle of the Varisican low to high grade metamorphic rocks that outcrop in the eastern slopes of the Peloritan Belt. Two 10km2 wide stream catchments, which are located inside the storm core area were exploited: susceptibility models trained in the Briga catchment were tested when exported to predict the landslides distribution in the Giampilieri catchment. The prediction performance (based on goodness of fit, prediction skill, accuracy and precision assessment) of the exported model was then compared with that of a model prepared in the Giampilieri catchment exploiting its landslide inventory. The results demonstrate that the landslide scenario observed in the Giampilieri catchment can be predicted with the same high performance without knowing its landslide distribution: we obtained in fact a very poor decrease in predictive performance when

  12. Physical and JIT Model Based Hybrid Modeling Approach for Building Thermal Load Prediction

    Science.gov (United States)

    Iino, Yutaka; Murai, Masahiko; Murayama, Dai; Motoyama, Ichiro

    Energy conservation in building fields is one of the key issues in environmental point of view as well as that of industrial, transportation and residential fields. The half of the total energy consumption in a building is occupied by HVAC (Heating, Ventilating and Air Conditioning) systems. In order to realize energy conservation of HVAC system, a thermal load prediction model for building is required. This paper propose a hybrid modeling approach with physical and Just-in-Time (JIT) model for building thermal load prediction. The proposed method has features and benefits such as, (1) it is applicable to the case in which past operation data for load prediction model learning is poor, (2) it has a self checking function, which always supervises if the data driven load prediction and the physical based one are consistent or not, so it can find if something is wrong in load prediction procedure, (3) it has ability to adjust load prediction in real-time against sudden change of model parameters and environmental conditions. The proposed method is evaluated with real operation data of an existing building, and the improvement of load prediction performance is illustrated.

  13. Highly scalable Ab initio genomic motif identification

    KAUST Repository

    Marchand, Benoît

    2011-01-01

    We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.

  14. Thermal models of buildings. Determination of temperatures, heating and cooling loads. Theories, models and computer programs

    Energy Technology Data Exchange (ETDEWEB)

    Kaellblad, K.

    1998-05-01

    The need to estimate indoor temperatures, heating or cooling load and energy requirements for buildings arises in many stages of a buildings life cycle, e.g. at the early layout stage, during the design of a building and for energy retrofitting planning. Other purposes are to meet the authorities requirements given in building codes. All these situations require good calculation methods. The main purpose of this report is to present the authors work with problems related to thermal models and calculation methods for determination of temperatures and heating or cooling loads in buildings. Thus the major part of the report deals with treatment of solar radiation in glazing systems, shading of solar and sky radiation and the computer program JULOTTA used to simulate the thermal behavior of rooms and buildings. Other parts of thermal models of buildings are more briefly discussed and included in order to give an overview of existing problems and available solutions. A brief presentation of how thermal models can be built up is also given and it is a hope that the report can be useful as an introduction to this part of building physics as well as during development of calculation methods and computer programs. The report may also serve as a help for the users of energy related programs. Independent of which method or program a user choose to work with it is his or her own responsibility to understand the limits of the tool, else wrong conclusions may be drawn from the results 52 refs, 22 figs, 4 tabs

  15. Modelling the affordance in the field of green building

    OpenAIRE

    Bona, Audrey

    2016-01-01

    The energetic performance of sustainable buildings is significantly lower than expected and therefore the impact of user behaviour becomes a crucial element. Different solutions are implemented to achieve predicted performance; these range from information i.e. user guides, to the influence of user behaviour through building automation reducing the users’ control. The possibility of designing more efficient buildings without altering the relationship between the user and the building, and wit...

  16. Application of Mathematical Model of Evacuation for Large Stadium Building

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    2013-02-01

    Full Text Available The statistics of sports arena accidents show that the main reasons which leading to crowd stampede are the exports blockage and the poor surrounding transportations. In the process of evacuation, the most common problem is that there are a large number of people are stranded and also they are the main carrier which leading to crowded stampede. With large amounts of data and reasonable evaluations on staffs and transportation instruments. We propose inflow model in the crowding state, principle of maximum flow on channel design, optimal model of vehicle parking, evacuation model of subways and buses, according to sections of evacuation in stadiums. We analyze their usage area, marginal conditions and real data. Finally, we get some valuable results, which are curves of density and flow, evacuation time, formula for channel design, optimal parking design and formulas for evacuation time of subways and buses. Such data suits the real data from varied references. With the help of models and results, we get the total time of evacuation, simulation of progress and give parts of real situations of evacuation. According to such results, 100000 people’s evacuation can be finished in about 45 min. On such basis, we propose some optimal plans for stadium and its surroundings building.

  17. BIM (Building Information Modeling) and TCO (Total Cost of Ownership)

    Science.gov (United States)

    Christensen, Douglas K.

    2009-01-01

    There are some words in the building industry that seem to be clear and understandable to say, yet they need some help in understanding the depth of the meaning. When the term maintenance is talked about there seems to be some agreement that it does not mean building a new building. Maintenance as a term covers many areas and if not clarified…

  18. Building a sustainable Academic Health Department: the South Carolina model.

    Science.gov (United States)

    Smith, Lillian Upton; Waddell, Lisa; Kyle, Joseph; Hand, Gregory A

    2014-01-01

    Given the limited resources available to public health, it is critical that university programs complement the development needs of agencies. Unfortunately, academic and practice public health entities have long been challenged in building sustainable collaborations that support practice-based research, teaching, and service. The academic health department concept offers a promising solution. In South Carolina, the partners started their academic health department program with a small grant that expanded into a dynamic infrastructure that supports innovative professional exchange and development programs. This article provides a background and describes the key elements of the South Carolina model: joint leadership, a multicomponent memorandum of agreement, and a shared professional development mission. The combination of these elements allows the partners to leverage resources and deftly respond to challenges and opportunities, ultimately fostering the sustainability of the collaboration.

  19. Predicted and actual indoor environmental quality: Verification of occupants' behaviour models in residential buildings

    DEFF Research Database (Denmark)

    Andersen, Rune Korsholm; Fabi, Valentina; Corgnati, Stefano P.

    2016-01-01

    Occupants' interactions with the building envelope and building systems can have a large impact on the indoor environment and energy consumption in a building. As a consequence, any realistic forecast of building performance must include realistic models of the occupants' interactions...... performance using building energy performance simulations (BEPS). However, the validity of these models has only been sparsely tested. In this paper, stochastic models of occupants' behaviour from literature were tested against measurements in five apartments. In a monitoring campaign, measurements of indoor...... with the building controls (windows, thermostats, solar shading etc.). During the last decade, studies about stochastic models of occupants' behaviour in relation to control of the indoor environment have been published. Often the overall aim of these models is to enable more reliable predictions of building...

  20. Optimization of Enzymatic Biochemical Logic for Noise Reduction and Scalability: How Many Biocomputing Gates Can be Interconnected in a Circuit?

    CERN Document Server

    Privman, V; Solenov, D; Pita, M; Katz, E

    2008-01-01

    We report an experimental evaluation of the "input-output surface" for a biochemical AND gate. The obtained data are modeled within the rate-equation approach, with the aim to map out the gate function and cast it in the language of logic variables appropriate for analysis of Boolean logic for scalability. In order to minimize "analog" noise, we consider a theoretical approach for determining an optimal set for the process parameters to minimize "analog" noise amplification for gate concatenation. We establish that under optimized conditions, presently studied biochemical gates can be concatenated for up to order 10 processing steps. Beyond that, new paradigms for avoiding noise build-up will have to be developed. We offer a general discussion of the ideas and possible future challenges for both experimental and theoretical research for advancing scalable biochemical computing.

  1. Multi-criteria decision model for retrofitting existing buildings

    Directory of Open Access Journals (Sweden)

    M. D. Bostenaru Dan

    2004-01-01

    Full Text Available Decision is an element in the risk management process. In this paper the way how science can help in decision making and implementation for retrofitting buildings in earthquake prone urban areas is investigated. In such interventions actors from various spheres are involved. Their interests range among minimising the intervention for maximal preservation or increasing it for seismic safety. Research was conducted to see how to facilitate collaboration between these actors. A particular attention was given to the role of time in actors' preferences. For this reason, on decision level, both the processural and the personal dimension of risk management, the later seen as a task, were considered. A systematic approach was employed to determine the functional structure of a participative decision model. Three layers on which actors implied in this multi-criteria decision problem interact were identified: town, building and element. So-called 'retrofit elements' are characteristic bearers in the architectural survey, engineering simulations, costs estimation and define the realms perceived by the inhabitants. This way they represent an interaction basis for the interest groups considered in a deeper study. Such orientation means for actors' interaction were designed on other levels of intervention as well. Finally, an 'experiment' for the implementation of the decision model is presented: a strategic plan for an urban intervention towards reduction of earthquake hazard impact through retrofitting. A systematic approach proves thus to be a very good communication basis among the participants in the seismic risk management process. Nevertheless, it can only be applied in later phases (decision, implementation, control only, since it serves verifying and improving solution and not developing the concept. The 'retrofit elements' are a typical example of the detailing degree reached in the retrofit design plans in these phases.

  2. Status and Perceptions of the Application of Building Information Modeling for Improved Building Projects Delivery in Nigeria

    Directory of Open Access Journals (Sweden)

    S.C Ugochukwu

    2015-11-01

    Full Text Available Building Information Modeling (BIM is a new and innovative approach to building design, construction, and management. It is a cutting-edge, state of the art technology that is not only transforming, but improving the building delivery/production process in developed countries of the world. Sadly, Nigeria is yet to adopt this revolutionary technology in her construction industry. This study thus, sought to evaluate the present status of application of BIM in building projects in Nigeria, with a view to betoning its importance in improving the present state of building delivery in the country. This was effected by means of a field survey of building professionals in which their perceptions were analyzed, based on a structured questionnaire administration; in order to elicit their level of awareness of BIM application, determine their extent of participation in BIM projects, identify and rank the most suitable procurement method that encourages BIM application, the barriers to the application of BIM and the benefits of BIM application to building delivery in Nigeria. Results/Findings revealed that knowledge of BIM application among professionals is very poor (33%, participation/use of BIM in projects is non-existent, the collaborative method of procurement best supports BIM application, lack of awareness remains the major barrier to BIM application, while simultaneous access to project database by stakeholders is the highest ranked benefit of BIM application. The study concludes that Nigeria still has a long way to go in understanding, embracing and applying BIM to improve the traditional and stagnant state of her building delivery process. Hence, all hands should be on deck; the government, professional bodies, construction organizations and the academia to ensure that BIM becomes a priority with respect to legislations, training, research and use in the Nigerian building industry

  3. Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact

    Directory of Open Access Journals (Sweden)

    Sungwoo Lee

    2015-12-01

    Full Text Available The increased popularity of building information modeling (BIM for application in the construction of eco-friendly green buildings has given rise to techniques for evaluating green buildings constructed using BIM features. Existing BIM-based green building evaluation techniques mostly rely on externally provided evaluation tools, which pose problems associated with interoperability, including a lack of data compatibility and the amount of time required for format conversion. To overcome these problems, this study sets out to develop a template (the “green template” for evaluating the embodied environmental impact of using a BIM design tool as part of BIM-based building life-cycle assessment (LCA technology development. Firstly, the BIM level of detail (LOD was determined to evaluate the embodied environmental impact, and constructed a database of the impact factors of the embodied environmental impact of the major building materials, thereby adopting an LCA-based approach. The libraries of major building elements were developed by using the established databases and compiled evaluation table of the embodied environmental impact of the building materials. Finally, the green template was developed as an embodied environmental impact evaluation tool and a case study was performed to test its applicability. The results of the green template-based embodied environmental impact evaluation of a test building were validated against those of its actual quantity takeoff (2D takeoff, and its reliability was confirmed by an effective error rate of ≤5%. This study aims to develop a system for assessing the impact of the substances discharged from concrete production process on six environmental impact categories, i.e., global warming (GWP, acidification (AP, eutrophication (EP, abiotic depletion (ADP, ozone depletion (ODP, and photochemical oxidant creation (POCP, using the life a cycle assessment (LCA method. To achieve this, we proposed an LCA method

  4. Scalability study of solid xenon

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Cease, H.; Jaskierny, W. F.; Markley, D.; Pahlka, R. B.; Balakishiyeva, D.; Saab, T.; Filipenko, M.

    2015-04-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon.

  5. Scalable shared-memory multiprocessing

    CERN Document Server

    Lenoski, Daniel E

    1995-01-01

    Dr. Lenoski and Dr. Weber have experience with leading-edge research and practical issues involved in implementing large-scale parallel systems. They were key contributors to the architecture and design of the DASH multiprocessor. Currently, they are involved with commercializing scalable shared-memory technology.

  6. Scalability study of solid xenon

    CERN Document Server

    Yoo, J; Jaskierny, W F; Markley, D; Pahlka, R B; Balakishiyeva, D; Saab, T; Filipenko, M

    2015-01-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon.

  7. Intelligent Controls for Net-Zero Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haorong; Cho, Yong; Peng, Dongming

    2011-10-30

    The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision support tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.

  8. Proactive Software Engineering Approach to Ensure Rapid Software Development and Scalable Production with Limited Resources

    Directory of Open Access Journals (Sweden)

    A. B. Farid

    2015-11-01

    Full Text Available Nowadays, the need for building scalable systems in narrow time window is needed. While the efforts and accuracy usually required for building high scale systems is not simple, the agile nature of system requirements spawn a need for enhancing some software engineering practices. These practices should be integrated together in order to help software (SW development teams to build, and test scalable systems rapidly with a high confidence level in their scalability. This research explains the proposed Proactive Approach, which presents a set of software engineering practices that could help in producing scalable system while minimizing the wasted time within the production cycle. This set of practices have been validated, verified and tested through building 46 releases of one of the most important, mission critical and scalable systems. Applying these practices succeeded to enhance average response time of web pages by %1921.5, test code churn by more than % 5000, time to release by % 300, and succeeded to produce a system that could stand against 95375 users with % 99.921 scalability ratio.

  9. A Model for Sustainable Building Energy Efficiency Retrofit (BEER) Using Energy Performance Contracting (EPC) Mechanism for Hotel Buildings in China

    Science.gov (United States)

    Xu, Pengpeng

    Hotel building is one of the high-energy-consuming building types, and retrofitting hotel buildings is an untapped solution to help cut carbon emissions contributing towards sustainable development. Energy Performance Contracting (EPC) has been promulgated as a market mechanism for the delivery of energy efficiency projects. EPC mechanism has been introduced into China relatively recently, and it has not been implemented successfully in building energy efficiency retrofit projects. The aim of this research is to develop a model for achieving the sustainability of Building Energy Efficiency Retrofit (BEER) in hotel buildings under the Energy Performance Contracting (EPC) mechanism. The objectives include: • To identify a set of Key Performance Indicators (KPIs) for measuring the sustainability of BEER in hotel buildings; • To identify Critical Success Factors (CSFs) under EPC mechanism that have a strong correlation with sustainable BEER project; • To develop a model explaining the relationships between the CSFs and the sustainability performance of BEER in hotel building. Literature reviews revealed the essence of sustainable BEER and EPC, which help to develop a conceptual framework for analyzing sustainable BEER under EPC mechanism in hotel buildings. 11 potential KPIs for sustainable BEER and 28 success factors of EPC were selected based on the developed framework. A questionnaire survey was conducted to ascertain the importance of selected performance indicators and success factors. Fuzzy set theory was adopted in identifying the KPIs. Six KPIs were identified from the 11 selected performance indicators. Through a questionnaire survey, out of the 28 success factors, 21 Critical Success Factors (CSFs) were also indentified. Using the factor analysis technique, the 21 identified CSFs in this study were grouped into six clusters to help explain project success of sustainable BEER. Finally, AHP/ANP approach was used in this research to develop a model to

  10. Particle Image Velocimetry Measurement of Unsteady Turbulent Flow around Regularly Arranged High-Rise Building Models

    OpenAIRE

    Sato, Tsuyoshi; Hagishima, Aya; Ikegaya, Naoki; Tanimoto, Jun

    2013-01-01

    Recent studies proved turbulent flow properties in high-rise building models differ from those in low-rise building models by comparing turbulent statistics. Although it is important to understand the flow characteristics within and above high-rise building models in the study of urban environment, it is still unknown and under investigation. For this reason, we performed wind tunnel experiment using Particle Image Velocimetry (PIV) to investigate and identify the turbulent flow properties an...

  11. Subjective comparison of temporal and quality scalability

    DEFF Research Database (Denmark)

    Korhonen, Jari; Reiter, Ulrich; You, Junyong

    2011-01-01

    reduced either by downscaling the frame rate (temporal scalability) or the image quality (quality scalability). However, the user preferences between different scalability types are not well known in different scenarios. In this paper, we present a methodology for subjective comparison between temporal...

  12. Models test on dynamic structure-structure interaction of nuclear power plant buildings

    International Nuclear Information System (INIS)

    A reactor building of an NPP (nuclear power plant) is generally constructed closely adjacent to a turbine building and other buildings such as the auxiliary building, and in increasing numbers of NPPs, multiple plants are being planned and constructed closely on a single site. In these situations, adjacent buildings are considered to influence each other through the soil during earthquakes and to exhibit dynamic behaviour different from that of separate buildings, because those buildings in NPP are generally heavy and massive. The dynamic interaction between buildings during earthquake through the soil is termed here as 'dynamic cross interaction (DCI)'. In order to comprehend DCI appropriately, forced vibration tests and earthquake observation are needed using closely constructed building models. Standing on this background, Nuclear Power Engineering Corporation (NUPEC) had planned the project to investigate the DCI effect in 1993 after the preceding SSI (soil-structure interaction) investigation project, 'model tests on embedment effect of reactor building'. The project consists of field and laboratory tests. The field test is being carried out using three different building construction conditions, e.g. a single reactor building to be used for the comparison purposes as for a reference, two same reactor buildings used to evaluate pure DCI effects, and two different buildings, reactor and turbine building models to evaluate DCI effects under the actual plant conditions. Forced vibration tests and earthquake observations are planned in the field test. The laboratory test is planned to evaluate basic characteristics of the DCI effects using simple soil model made of silicon rubber and structure models made of aluminum. In this test, forced vibration tests and shaking table tests are planned. The project was started in April 1994 and will be completed in March 2002. This paper describes an outline and the summary of the current status of this project. (orig.)

  13. A comprehensive framework of building model reconstruction from airborne LiDAR data

    Science.gov (United States)

    Xiao, Y.; Wang, C.; Xi, X. H.; Zhang, W. M.

    2014-03-01

    This paper presents a comprehensive framework of reconstructing 3D building models from airborne LiDAR data, which involves building extraction, roof segmentation and model generation. Firstly, building points are extracted from LiDAR point clouds by removing walls, trees, ground and noises. Walls and trees are identified by the normal and multi-return features respectively and then ground and noise are detected by the region growing algorithm which aims at extracting smooth surfaces. Then the connected component analysis is performed to extract building points. Secondly, once the building points are acquired, building roofs are separated by the region growing algorithm which employs the normal vector and curvature of points to detect planar clusters. Finally, by combining regular building outlines obtained from building points and roof intersections acquired from the roof segmentation results, 3D building models with high accuracy are derived. Experimental results demonstrate that the proposed method is able to correctly obtain building points and reconstruct 3D building models with high accuracy.

  14. VOC sink behaviour on building materials--model evaluation

    Science.gov (United States)

    The event of 11 September 2001 underscored the need to study the vulnerability of buildings to weapons of mass destruction (WMD), including chemical, biological, physical, and radiological agents. Should these agents be released inside a building, they would interact with interio...

  15. Modelling the life-cycle of sustainable, living buildings

    NARCIS (Netherlands)

    Van Nederveen, S.; Gielingh, W.

    2009-01-01

    Credit-reductions by banks, as a consequence of the global monetary crisis, will hit the construction industry for many years to come. There are however still financing opportunities for building projects that are perceived as less risky. Buildings that are not only sustainable, but also flexible an

  16. Procedure for identifying models for the heat dynamics of buildings

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik

    This report describes a new method for obtaining detailed information about the heat dynamics of a building using frequent reading of the heat consumption. Such a procedure is considered to be of uttermost importance as a key procedure for using readings from smart meters, which is expected...... to be installed in almost all buildings in the coming years....

  17. Final Report, Center for Programming Models for Scalable Parallel Computing: Co-Array Fortran, Grant Number DE-FC02-01ER25505

    Energy Technology Data Exchange (ETDEWEB)

    Robert W. Numrich

    2008-04-22

    extend the co-array model to other languages in a small experimental version of Co-array Python. Another collaborative project defined a Fortran 95 interface to ARMCI to encourage Fortran programmers to use the one-sided communication model in anticipation of their conversion to the co-array model later. A collaborative project with the Earth Sciences community at NASA Goddard and GFDL experimented with the co-array model within computational kernels related to their climate models, first using CafLib and then extending the co-array model to use design patterns. Future work will build on the design-pattern idea with a redesign of CafLib as a true object-oriented library using Fortran 2003 and as a parallel numerical library using Fortran 2008.

  18. Implementation of building information modeling in Malaysian construction industry

    Science.gov (United States)

    Memon, Aftab Hameed; Rahman, Ismail Abdul; Harman, Nur Melly Edora

    2014-10-01

    This study has assessed the implementation level of Building Information Modeling (BIM) in the construction industry of Malaysia. It also investigated several computer software packages facilitating BIM and challenges affecting its implementation. Data collection for this study was carried out using questionnaire survey among the construction practitioners. 95 completed forms of questionnaire received against 150 distributed questionnaire sets from consultant, contractor and client organizations were analyzed statistically. Analysis findings indicated that the level of implementation of BIM in the construction industry of Malaysia is very low. Average index method employed to assess the effectiveness of various software packages of BIM highlighted that Bentley construction, AutoCAD and ArchiCAD are three most popular and effective software packages. Major challenges to BIM implementation are it requires enhanced collaboration, add work to a designer, interoperability and needs enhanced collaboration. For improving the level of implementing BIM in Malaysian industry, it is recommended that a flexible training program of BIM for all practitioners must be created.

  19. Uncertainty modelling of critical column buckling for reinforced concrete buildings

    Indian Academy of Sciences (India)

    Kasim A Korkmaz; Fuat Demir; Hamide Tekeli

    2011-04-01

    Buckling is a critical issue for structural stability in structural design. In most of the buckling analyses, applied loads, structural and material properties are considered certain. However, in reality, these parameters are uncertain. Therefore, a prognostic solution is necessary and uncertainties have to be considered. Fuzzy logic algorithms can be a solution to generate more dependable results. This study investigates the material uncertainties on column design and proposes an uncertainty model for critical column buckling reinforced concrete buildings. Fuzzy logic algorithm was employed in the study. Lower and upper bounds of elastic modulus representing material properties were defined to take uncertainties into account. The results show that uncertainties play an important role in stability analyses and should be considered in the design. The proposed approach is applicable to both future numerical and experimental researches. According to the study results, it is seen that, calculated buckling load values are stayed in lower and upper bounds while the load values are different for same concrete strength values by using different code formula.

  20. TH*: Scalable Distributed Trie Hashing

    Directory of Open Access Journals (Sweden)

    Aridj Mohamed

    2010-11-01

    Full Text Available In today's world of computers, dealing with huge amounts of data is not unusual. The need to distribute this data in order to increase its availability and increase the performance of accessing it is more urgent than ever. For these reasons it is necessary to develop scalable distributed data structures. In this paper we propose a TH* distributed variant of the Trie Hashing data structure. First we propose Thsw new version of TH without node Nil in digital tree (trie, then this version will be adapted to multicomputer environment. The simulation results reveal that TH* is scalable in the sense that it grows gracefully, one bucket at a time, to a large number of servers, also TH* offers a good storage space utilization and high query efficiency special for ordering operations.

  1. Hybrid LCA model for assessing the embodied environmental impacts of buildings in South Korea

    International Nuclear Information System (INIS)

    The assessment of the embodied environmental impacts of buildings can help decision-makers plan environment-friendly buildings and reduce environmental impacts. For a more comprehensive assessment of the embodied environmental impacts of buildings, a hybrid life cycle assessment model was developed in this study. The developed model can assess the embodied environmental impacts (global warming, ozone layer depletion, acidification, eutrophication, photochemical ozone creation, abiotic depletion, and human toxicity) generated directly and indirectly in the material manufacturing, transportation, and construction phases. To demonstrate the application and validity of the developed model, the environmental impacts of an elementary school building were assessed using the developed model and compared with the results of a previous model used in a case study. The embodied environmental impacts from the previous model were lower than those from the developed model by 4.6–25.2%. Particularly, human toxicity potential (13 kg C6H6 eq.) calculated by the previous model was much lower (1965 kg C6H6 eq.) than what was calculated by the developed model. The results indicated that the developed model can quantify the embodied environmental impacts of buildings more comprehensively, and can be used by decision-makers as a tool for selecting environment-friendly buildings. - Highlights: • The model was developed to assess the embodied environmental impacts of buildings. • The model evaluates GWP, ODP, AP, EP, POCP, ADP, and HTP as environmental impacts. • The model presents more comprehensive results than the previous model by 4.6–100%. • The model can present the HTP of buildings, which the previous models cannot do. • Decision-makers can use the model for selecting environment-friendly buildings

  2. Hybrid LCA model for assessing the embodied environmental impacts of buildings in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Minho, E-mail: minmin40@hanmail.net [Asset Management Division, Mate Plus Co., Ltd., 9th Fl., Financial News Bldg. 24-5 Yeouido-dong, Yeongdeungpo-gu, Seoul, 150-877 (Korea, Republic of); Hong, Taehoon, E-mail: hong7@yonsei.ac.kr [Department of Architectural Engineering, Yonsei University, Seoul, 120-749 (Korea, Republic of); Ji, Changyoon, E-mail: chnagyoon@yonsei.ac.kr [Department of Architectural Engineering, Yonsei University, Seoul, 120-749 (Korea, Republic of)

    2015-01-15

    The assessment of the embodied environmental impacts of buildings can help decision-makers plan environment-friendly buildings and reduce environmental impacts. For a more comprehensive assessment of the embodied environmental impacts of buildings, a hybrid life cycle assessment model was developed in this study. The developed model can assess the embodied environmental impacts (global warming, ozone layer depletion, acidification, eutrophication, photochemical ozone creation, abiotic depletion, and human toxicity) generated directly and indirectly in the material manufacturing, transportation, and construction phases. To demonstrate the application and validity of the developed model, the environmental impacts of an elementary school building were assessed using the developed model and compared with the results of a previous model used in a case study. The embodied environmental impacts from the previous model were lower than those from the developed model by 4.6–25.2%. Particularly, human toxicity potential (13 kg C{sub 6}H{sub 6} eq.) calculated by the previous model was much lower (1965 kg C{sub 6}H{sub 6} eq.) than what was calculated by the developed model. The results indicated that the developed model can quantify the embodied environmental impacts of buildings more comprehensively, and can be used by decision-makers as a tool for selecting environment-friendly buildings. - Highlights: • The model was developed to assess the embodied environmental impacts of buildings. • The model evaluates GWP, ODP, AP, EP, POCP, ADP, and HTP as environmental impacts. • The model presents more comprehensive results than the previous model by 4.6–100%. • The model can present the HTP of buildings, which the previous models cannot do. • Decision-makers can use the model for selecting environment-friendly buildings.

  3. The Model Transformation-based Tool Building Techniques and Their Implementation

    OpenAIRE

    Edgars Rencis

    2012-01-01

    Abstract In Doctoral Thesis „The Model Transformation-based Tool Building Techniques and Their Implementation” a model transformation- and metamodel-based domainspecific tool building area is inspected paying the main attention to the problem of making the development and usage of such tools easier. The tool building platform GRAF is examined since it has been partly developed by the author. This platform is supplemented with several services alleviating both the development...

  4. Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions for Buildings in 2016 and Later

    Energy Technology Data Exchange (ETDEWEB)

    Deru, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Field-Macumber, Kristin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code (IRC) enacted in Section 1331 of the 2005 Energy Policy Act (EPAct) of 2005, noted in Internal Revenue Service (IRS) Notices 2006-52 (IRS 2006), 2008-40 (IRS 2008) and 2012-26 (IRS 2012), and updated by the Protecting Americans from Tax Hikes (PATH) Act of 2015. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning (HVAC); and service hot water (SHW) systems. This document applies to buildings placed in service on or after January 1, 2016.

  5. A mass transfer model for predicting emission of the volatile organic compounds in wet building materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tao; JIA Li

    2008-01-01

    A new mass transfer model is developped to predict the volatile organic compounds (VOCs) from fresh wet building materials. The dry section of wet materials during the process of VOC emission from wet building materials is considered in this new model, differing from the mass transfer-based models in other literatures. The mechanism of effect of saturated vapor pressure on the surface of wet building materials in the process of VOC emission is discussed. The concentration of total volatile organic compounds (TVOC) in the building materials gradually decreases as the emission of VOCs begins, and the vapor pressure of VOCs on the surface of wet building materials decreases in the case of newly wet building materials. To ensure the partial pressure of VOCs on the surface of wet building materials to be saturated vapor pressure, the interface of gas-wet layer is lowered, and a dry layer of no-volatile gases in the material is formed. Compared with the results obtained by VB model, CFD model and the ex-periment data, the results obtained by the present model agree well with the results obtained by CFD model and the experiment data. The present model is more accurate in predicting emission of VOC from wet building materials than VB model.

  6. The effect of simplifying the building description on the numerical modeling of its thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Stetiu, C.

    1993-07-01

    A thermal building simulation program is a numerical model that calculates the response of the building envelopes to weather and human activity, simulates dynamic heating and cooling loads, and heating and cooling distribution systems, and models building equipment operation. The scope of the research is to supply the users of such programs with information about the dangers and benefits of simplifying the input to their models. The Introduction describes the advantages of modeling the heat transfer mechanisms in a building. The programs that perform this type of modeling have, however, limitations. The user is therefore often put in the situation of simplifying the floor plans of the building under study, but not being able to check the effects that this approximation introduces in the results of the simulation. Chapter 1 is a description of methods. It also introduces the floor plans for the office building under study and the ``reasonable`` floor plans simplifications. Chapter 2 presents DOE-2, the thermal building simulation program used in the sensitivity study. The evaluation of the accuracy of the DOE-2 program itself is also presented. Chapter 3 contains the sensitivity study. The complicated nature of the process of interpreting the temperature profile inside a space leads to the necessity of defining different building modes. The study compares the results from the model of the detailed building description with the results from the models of the same building having simplified floor plans. The conclusion is reached that a study of the effects of simplifying the floor plans of a building is important mainly for defining the cases in which this approximation is acceptable. Different results are obtained for different air conditioning/load regimes of the building. 9 refs., 24 figs.

  7. Semantic Bim and GIS Modelling for Energy-Efficient Buildings Integrated in a Healthcare District

    Science.gov (United States)

    Sebastian, R.; Böhms, H. M.; Bonsma, P.; van den Helm, P. W.

    2013-09-01

    The subject of energy-efficient buildings (EeB) is among the most urgent research priorities in the European Union (EU). In order to achieve the broadest impact, innovative approaches to EeB need to resolve challenges at the neighbourhood level, instead of only focusing on improvements of individual buildings. For this purpose, the design phase of new building projects as well as building retrofitting projects is the crucial moment for integrating multi-scale EeB solutions. In EeB design process, clients, architects, technical designers, contractors, and end-users altogether need new methods and tools for designing energy-efficiency buildings integrated in their neighbourhoods. Since the scope of designing covers multiple dimensions, the new design methodology relies on the inter-operability between Building Information Modelling (BIM) and Geospatial Information Systems (GIS). Design for EeB optimisation needs to put attention on the inter-connections between the architectural systems and the MEP/HVAC systems, as well as on the relation of Product Lifecycle Modelling (PLM), Building Management Systems (BMS), BIM and GIS. This paper is descriptive and it presents an actual EU FP7 large-scale collaborative research project titled STREAMER. The research on the inter-operability between BIM and GIS for holistic design of energy-efficient buildings in neighbourhood scale is supported by real case studies of mixed-use healthcare districts. The new design methodology encompasses all scales and all lifecycle phases of the built environment, as well as the whole lifecycle of the information models that comprises: Building Information Model (BIM), Building Assembly Model (BAM), Building Energy Model (BEM), and Building Operation Optimisation Model (BOOM).

  8. Reviewing the Role of Stakeholders in Operational Research: Opportunities for Group Model Building

    NARCIS (Netherlands)

    Gooyert, V. de; Rouwette, E.A.J.A.; Kranenburg, H.L. van

    2013-01-01

    Stakeholders have always received much attention in system dynamics, especially in the group model building tradition, which emphasizes the deep involvement of a client group in building a system dynamics model. In organizations, stakeholders are gaining more and more attention by managers who try t

  9. Modeling zero energy building: technical and economical optimization

    OpenAIRE

    Ferrara, Maria; Virgone, Joseph; Fabrizio, Enrico; Kuznik, Frédéric; Filippi, Marco

    2013-01-01

    International audience This study was born in the context of new challenges imposed by the recast of Energy Performance of Buildings. The aim of this work is to provide a useful method to deal with a huge number of simulations corresponding to a large number of single-family house configurations in order to optimize a constructive solution from both technical and economical point of view. The method combines the use of TRNSYS, building energy simulation program, with GenOpt, Generic Optimi...

  10. Modelling Zero Energy Buildings: Parametric study for the technical optimization

    OpenAIRE

    Ferrara, Maria; Fabrizio, Enrico; Filippi, Marco

    2014-01-01

    This study was born in the context of new challenges imposed by the recast of the EU Energy Performance of Buildings Directive. The aim of this work is to develop strategies to identify and investigate the relationship between decisional variables within a nZEB design concept, providing a useful method to deal with a huge number of simulations corresponding to a large number of building configurations in order to find one optimized constructive solution. The method combines the use of the TRN...

  11. Empirical Validation of Building Simulation Software : Modeling of Double Facades

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group.......The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group....

  12. INTEGRATING SMARTPHONE IMAGES AND AIRBORNE LIDAR DATA FOR COMPLETE URBAN BUILDING MODELLING

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2016-06-01

    Full Text Available A complete building model reconstruction needs data collected from both air and ground. The former often has sparse coverage on building façades, while the latter usually is unable to observe the building rooftops. Attempting to solve the missing data issues in building reconstruction from single data source, we describe an approach for complete building reconstruction that integrates airborne LiDAR data and ground smartphone imagery. First, by taking advantages of GPS and digital compass information embedded in the image metadata of smartphones, we are able to find airborne LiDAR point clouds for the corresponding buildings in the images. In the next step, Structure-from-Motion and dense multi-view stereo algorithms are applied to generate building point cloud from multiple ground images. The third step extracts building outlines respectively from the LiDAR point cloud and the ground image point cloud. An automated correspondence between these two sets of building outlines allows us to achieve a precise registration and combination of the two point clouds, which ultimately results in a complete and full resolution building model. The developed approach overcomes the problem of sparse points on building façades in airborne LiDAR and the deficiency of rooftops in ground images such that the merits of both datasets are utilized.

  13. Integrating Smartphone Images and Airborne LIDAR Data for Complete Urban Building Modelling

    Science.gov (United States)

    Zhang, Shenman; Shan, Jie; Zhang, Zhichao; Yan, Jixing; Hou, Yaolin

    2016-06-01

    A complete building model reconstruction needs data collected from both air and ground. The former often has sparse coverage on building façades, while the latter usually is unable to observe the building rooftops. Attempting to solve the missing data issues in building reconstruction from single data source, we describe an approach for complete building reconstruction that integrates airborne LiDAR data and ground smartphone imagery. First, by taking advantages of GPS and digital compass information embedded in the image metadata of smartphones, we are able to find airborne LiDAR point clouds for the corresponding buildings in the images. In the next step, Structure-from-Motion and dense multi-view stereo algorithms are applied to generate building point cloud from multiple ground images. The third step extracts building outlines respectively from the LiDAR point cloud and the ground image point cloud. An automated correspondence between these two sets of building outlines allows us to achieve a precise registration and combination of the two point clouds, which ultimately results in a complete and full resolution building model. The developed approach overcomes the problem of sparse points on building façades in airborne LiDAR and the deficiency of rooftops in ground images such that the merits of both datasets are utilized.

  14. Review of Development Survey of Phase Change Material Models in Building Applications

    Directory of Open Access Journals (Sweden)

    Hussein J. Akeiber

    2014-01-01

    Full Text Available The application of phase change materials (PCMs in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data.

  15. Experimental and Numerical Analysis of Wind Driven Natural Ventilation in a Building Scale Model

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; True, Jan Per Jensen; Sandberg, Mats;

    2004-01-01

    Airflow through openings in a cross ventilated building scale model was investigated in a wind tunnel and by numerical predictions. Predictions for a wind direction perpendicular to the building showed an airflow pattern consisting of streamlines entering the room, that originated from approximat......Airflow through openings in a cross ventilated building scale model was investigated in a wind tunnel and by numerical predictions. Predictions for a wind direction perpendicular to the building showed an airflow pattern consisting of streamlines entering the room, that originated from...

  16. MATCHING LSI FOR SCALABLE INFORMATION RETRIEVAL

    Directory of Open Access Journals (Sweden)

    Rajagopal Palsonkennedy

    2012-01-01

    Full Text Available Latent Semantic Indexing (LSI is one of the well-liked techniques in the information retrieval fields. Different from the traditional information retrieval techniques, LSI is not based on the keyword matching simply. It uses statistics and algebraic computations. Based on Singular Value Decomposition (SVD, the higher dimensional matrix is converted to a lower dimensional approximate matrix, of which the noises could be filtered. And also the issues of synonymy and polysemy in the traditional techniques can be prevail over based on the investigations of the terms related with the documents. However, it is notable that LSI suffers a scalability issue due to the computing complexity of SVD. This study presents a distributed LSI algorithm MR-LSI which can solve the scalability issue using Hadoop framework based on the distributed computing model Map Reduce. It also solves the overhead issue caused by the involved clustering algorithm by k-means algorithm. The evaluations indicate that MR-LSI can gain noteworthy improvement compared to the other scheme on processing large scale of documents. One significant advantage of Hadoop is that it supports various computing environments so that the issue of unbalanced load among nodes is highlighted.Hence, a load balancing algorithm based on genetic algorithm for balancing load in static environment is proposed. The results show that it can advance the performance of a cluster according to different levels.

  17. A New Model for Building Digital Science Education Collections

    Science.gov (United States)

    Niepold, F.; McCaffrey, M.; Morrill, C.; Ganse, J.; Weston, T.

    2005-12-01

    The Polar Regions play an integral role in how our Earth system operates. However, the Polar Regions are marginally studied in the K-12 classroom in the United States. The International Polar Year's (IPY) coordinated campaign of polar observations, research, and analysis that will be multidisciplinary in scope and international in participation offers a powerful opportunity for K-12 classroom. The IPY's scientific objective to better understand the key roles of the Polar Regions in global processes will allow students a window into the poles and this unique regions role in the Earth system. IPY will produce careful, useful scientific information that will advance our understanding of the Polar Regions and their connections to the rest of the globe. The IPY is an opportunity to inspire the next generation of very young Earth system scientists. The IPY's draft education & outreach position paper asks a key question that must guide future educational projects; "Why is the polar regions and polar research important to all people on earth?" In efforts to coordinate educational activities and collaborate with international projects, United States national agencies, and other educational initiatives, it is the purpose of this session to explore potential partnerships, while primarily recommending a model for educational product development and review. During such a large international science endeavor, numerous educational activities and opportunities are developed, but these educational programs can suffer from too many unconnected options being available to teachers and students. Additionally, activities often are incompatible with each other making classroom implementation unnecessarily complex and prohibitively time consuming for teachers. A newly develop educational activity collection technique developed for DLESE offers an effective model for IPY product gap analysis and development. The Climate Change Collection developed as a pilot project for the Digital Library

  18. Consequence Based Design. An approach for integrating computational collaborative models (Integrated Dynamic Models) in the building design phase

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer

    that secures validity and quality assurance with a simulationist while sustaining autonomous control of building design with the building designer. Consequence based design is defined by the specific use of integrated dynamic models. These models include the parametric capabilities of a visual programming tool...

  19. Comparison of sensorless dimming control based on building modeling and solar power generation

    International Nuclear Information System (INIS)

    Artificial lighting in office buildings accounts for about 30% of the total building energy consumption. Lighting energy is important to reduce building energy consumption since artificial lighting typically has a relatively large energy conversion factor. Therefore, previous studies have proposed a dimming control using daylight. When applied dimming control, method based on building modeling does not need illuminance sensors. Thus, it can be applied to existing buildings that do not have illuminance sensors. However, this method does not accurately reflect real-time weather conditions. On the other hand, solar power generation from a PV (photovoltaic) panel reflects real-time weather conditions. The PV panel as the sensor improves the accuracy of dimming control by reflecting disturbance. Therefore, we compared and analyzed two types of sensorless dimming controls: those based on the building modeling and those that based on solar power generation using PV panels. In terms of energy savings, we found that a dimming control based on building modeling is more effective than that based on solar power generation by about 6%. However, dimming control based on solar power generation minimizes the inconvenience to occupants and can also react to changes in solar radiation entering the building caused by dirty window. - Highlights: • We conducted sensorless dimming control based on solar power generation. • Dimming controls using building modeling and solar power generation were compared. • The real time weather conditions can be considered by using solar power generation. • Dimming control using solar power generation minimizes inconvenience to occupants

  20. Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach

    International Nuclear Information System (INIS)

    Highlights: • This paper presents a new modeling method to forecast energy demands. • The model is based on physical–statistical approach to improving forecast accuracy. • A new method is proposed to address the heterogeneity challenge. • Comparison with measurements shows accurate forecasts of the model. • The first physical–statistical/heterogeneous building energy modeling approach is proposed and validated. - Abstract: Energy consumption forecasting is a critical and necessary input to planning and controlling energy usage in the building sector which accounts for 40% of the world’s energy use and the world’s greatest fraction of greenhouse gas emissions. However, due to the diversity and complexity of buildings as well as the random nature of weather conditions, energy consumption and loads are stochastic and difficult to predict. This paper presents a new methodology for energy demand forecasting that addresses the heterogeneity challenges in energy modeling of buildings. The new method is based on a physical–statistical approach designed to account for building heterogeneity to improve forecast accuracy. The physical model provides a theoretical input to characterize the underlying physical mechanism of energy flows. Then stochastic parameters are introduced into the physical model and the statistical time series model is formulated to reflect model uncertainties and individual heterogeneity in buildings. A new method of model generalization based on a convex hull technique is further derived to parameterize the individual-level model parameters for consistent model coefficients while maintaining satisfactory modeling accuracy for heterogeneous buildings. The proposed method and its validation are presented in detail for four different sports buildings with field measurements. The results show that the proposed methodology and model can provide a considerable improvement in forecasting accuracy

  1. Scalable Techniques for Formal Verification

    CERN Document Server

    Ray, Sandip

    2010-01-01

    This book presents state-of-the-art approaches to formal verification techniques to seamlessly integrate different formal verification methods within a single logical foundation. It should benefit researchers and practitioners looking to get a broad overview of the spectrum of formal verification techniques, as well as approaches to combining such techniques within a single framework. Coverage includes a range of case studies showing how such combination is fruitful in developing a scalable verification methodology for industrial designs. This book outlines both theoretical and practical issue

  2. Sizing Thermally Activated Building Systems (TABS): A Brief Literature Review and Model Evaluation

    OpenAIRE

    Basu, Chandrayee; Schiavon, Stefano; Bauman, Fred

    2012-01-01

    While Thermally Activated Building Systems (TABS) is a recognized low-energy HVAC candidate system for net-zero-energy buildings, sizing of these systems is complex due to their slow thermal response. In this paper, seven design and control models have been reviewed and characterized systematically with an aim to investigate their applicability in various design scenarios and at different design stages. The design scenarios include variable space heat gain, different building thermal mass and...

  3. Scalable Energy Efficient Location Aware Multicast Protocol for MANET (SEELAMP)

    CERN Document Server

    Kamboj, Pariza

    2010-01-01

    Multicast plays an important role in implementing the group communications in bandwidth scarce multihop mobile ad hoc networks. However, due to the dynamic topology of MANETs it is very difficult to build optimal multicast trees and maintaining group membership, making even more challenging to implement scalable and robust multicast in Mobile Ad hoc Networks (MANET). A scalable and energy efficient location aware multicast algorithm, called SEELAMP, for mobile ad hoc networks is presented in the paper that is based on creation of shared tree using the physical location of the nodes for the multicast sessions. It constructs a shared bi-directional multicast tree for its routing operations rather than a mesh, which helps in achieving more efficient multicast delivery. The algorithm uses the concept of small overlapped zones around each node for proactive topology maintenance with in the zone. Protocol depends on the location information obtained using a distributed location service, which effectively reduces th...

  4. 3D building modeling,organization and application in digital city system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The real world is a three-dimensional(3D)space requiring that 3D geospatial information applications be developed in alignment with the observer’s visual and perceptive habits.Particularly,3D building model data are required in a wide range of areas such as urban planning,environmental protection,real estate management and emergency response.At the same time,the development of Web service[LU1]technologies allows the possibility of the widely distributed 3D geospatial data on the web.3D city building model with its related information is an important part in the construction of a digital city system,and has become a staple resource on the web nowadays.In view of the hierarchical representation of a 3D building model,an abstract of a 3D building model based on structure details is studied,and a novel representation approach named 3D transparent building hierarchical model is presented in this paper.This approach fully uses both the existing 3D modeling technologies and CAD constructing mapping data.By the spatial relationship description,structural components inside a building can be represented and integrated as hierarchical models in a unified 3D space.In addition,based on the characteristics of the 3D building model data,a service-oriented architecture and Web service technologies for 3D city building models are discussed.The aim of the approach is that 3D city building models can be used as a kind of data resource service on the web,and can also exist independently in various different web applications.

  5. Using Models to Provide Predicted Ranges for Building-Human Interfaces: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Long, N.; Scheib, J.; Pless, S.; Schott, M.

    2013-09-01

    Most building energy consumption dashboards provide only a snapshot of building performance; whereas some provide more detailed historic data with which to compare current usage. This paper will discuss the Building Agent(tm) platform, which has been developed and deployed in a campus setting at the National Renewable Energy Laboratory as part of an effort to maintain the aggressive energyperformance achieved in newly constructed office buildings and laboratories. The Building Agent(tm) provides aggregated and coherent access to building data, including electric energy, thermal energy, temperatures, humidity, and lighting levels, and occupant feedback, which are displayed in various manners for visitors, building occupants, facility managers, and researchers. This paper focuseson the development of visualizations for facility managers, or an energy performance assurance role, where metered data are used to generate models that provide live predicted ranges of building performance by end use. These predicted ranges provide simple, visual context for displayed performance data without requiring users to also assess historical information or trends. Several energymodelling techniques were explored including static lookup-based performance targets, reduced-order models derived from historical data using main effect variables such as solar radiance for lighting performance, and integrated energy models using a whole-building energy simulation program.

  6. Scalable Density-Based Subspace Clustering

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan;

    2011-01-01

    For knowledge discovery in high dimensional databases, subspace clustering detects clusters in arbitrary subspace projections. Scalability is a crucial issue, as the number of possible projections is exponential in the number of dimensions. We propose a scalable density-based subspace clustering...... synthetic databases show that steering is efficient and scalable, with high quality results. For future work, our steering paradigm for density-based subspace clustering opens research potential for speeding up other subspace clustering approaches as well....

  7. Modelling surface pressure fluctuation on medium-rise buildings

    NARCIS (Netherlands)

    Snæbjörnsson, J.T.; Geurts, C.P.W.

    2006-01-01

    This paper describes the results of two experiments into the fluctuating characteristics of windinduced pressures on buildings in a built-up environment. The experiments have been carried out independently in Iceland and The Netherlands and can be considered to represent two separate cases of buildi

  8. Modeling Best Practice through Online Learning: Building Relationships

    Science.gov (United States)

    Cerniglia, Ellen G.

    2011-01-01

    Students may fear that they will feel unsupported and isolated when engaged in online learning. They don't know how they will be able to build relationships with their teacher and classmates solely based on written words, without facial expressions, tone of voice, and other nonverbal communication cues. Traditionally, online learning required…

  9. Semantically rich 3D building and cadastral models for valuation

    NARCIS (Netherlands)

    Isikdag, U.; Horhammer, M.; Zlatanova, S.; Kathmann, R.; Van Oosterom, P.J.M.

    2014-01-01

    Valuation of real estate/ properties is in many countries/ cities the basis for fair taxation. The value depends on many aspects, including the physical real world aspects (geometries, material of object as build) and legal/virtual aspects (rights, restrictions, responsibilities, zoning/development

  10. Alignment of 3D Building Models and TIR Video Sequences with Line Tracking

    Science.gov (United States)

    Iwaszczuk, D.; Stilla, U.

    2014-11-01

    Thermal infrared imagery of urban areas became interesting for urban climate investigations and thermal building inspections. Using a flying platform such as UAV or a helicopter for the acquisition and combining the thermal data with the 3D building models via texturing delivers a valuable groundwork for large-area building inspections. However, such thermal textures are useful for further analysis if they are geometrically correctly extracted. This can be achieved with a good coregistrations between the 3D building models and thermal images, which cannot be achieved by direct georeferencing. Hence, this paper presents methodology for alignment of 3D building models and oblique TIR image sequences taken from a flying platform. In a single image line correspondences between model edges and image line segments are found using accumulator approach and based on these correspondences an optimal camera pose is calculated to ensure the best match between the projected model and the image structures. Among the sequence the linear features are tracked based on visibility prediction. The results of the proposed methodology are presented using a TIR image sequence taken from helicopter in a densely built-up urban area. The novelty of this work is given by employing the uncertainty of the 3D building models and by innovative tracking strategy based on a priori knowledge from the 3D building model and the visibility checking.

  11. Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts

    International Nuclear Information System (INIS)

    Highlights: • A model to describe spatiotemporal building energy demand patterns was developed. • The model integrates existing methods in urban and energy planning domains. • The model is useful to analyze energy efficiency strategies in neighborhoods. • Applicability in educational, urban and energy planning practices was found. - Abstract: We introduce an integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. The model addresses the need for a comprehensive method to identify present and potential states of building energy consumption in the context of urban transformation. The focus lies on determining the spatiotemporal variability of energy services in both standing and future buildings in the residential, commercial and industrial sectors. This detailed characterization facilitates the assessment of potential energy efficiency measures at the neighborhood and city district scales. In a novel approach we integrated existing methods in urban and energy planning domains such as spatial analysis, dynamic building energy modeling and energy mapping to provide a comprehensive, multi-scale and multi-dimensional model of analysis. The model is part of a geographic information system (GIS), which serves as a platform for the allocation and future dissemination of spatiotemporal data. The model is validated against measured data and a peer model for a city district in Switzerland. In this context, we present practical applications in the analysis of energy efficiency measures in buildings and urban zoning. We furthermore discuss potential applications in educational, urban and energy planning practices

  12. Highly Scalable Matching Pursuit Signal Decomposition Algorithm

    Data.gov (United States)

    National Aeronautics and Space Administration — In this research, we propose a variant of the classical Matching Pursuit Decomposition (MPD) algorithm with significantly improved scalability and computational...

  13. Agent-Based Evacuation Model Incorporating Fire Scene and Building Geometry

    Institute of Scientific and Technical Information of China (English)

    TANG Fangqin; REN Aizhu

    2008-01-01

    A comprehensive description of the key factors affecting evacuations at fire scones is necessary for accurate simulations.An agent-based simulation model which incorporates the fire scene and the building geometry is developed using a fire dynamics simulator (FDS) based on the computational fluid dynamics and geographic information system (GIS) data to model the occupant response.The building entities are generated for FDS simulation while the spatial analysis on GIS data represents the occupant's knowledge of the building.The influence of the fire is based on a hazard assessment of the combustion products.The agent behavior and decisions are affected by environmental features and the fire field.A case study demonstrates that the evacuation model effectively simulates the coexistence and interactions of the major factors including occupants,building geometry,and fire disaster during the evacuation.The results can be used for the assessments of building designs regarding fire safety.

  14. On the impact of building attenuation models in urban VANET simulations

    OpenAIRE

    Luis Urquiza-Aguiar; Carolina Tripp-Barba; José Estrada-Jiménez; Mónica Aguilar Igartua

    2015-01-01

    Buildings are important elements of cities for VANETs, since these obstacles may attenuate communications between vehicles. Consequently, the impact of buildings has to be considered as part of the attenuation model in VANET simulations of urban scenarios. However, the more elaborated the model, the more information needs to be processed during the simulation, which implies longer processing times. This complexity in simulations is not always worth it, because simplified channel models occasi...

  15. Modeling and optimization of energy generation and storage systems for thermal conditioning of buildings targeting conceptual building design

    Energy Technology Data Exchange (ETDEWEB)

    Grahovac, Milica

    2012-11-29

    The thermal conditioning systems are responsible for almost half of the energy consump-tion by commercial buildings. In many European countries and in the USA, buildings account for around 40% of primary energy consumption and it is therefore vital to explore further ways to reduce the HVAC (Heating, Ventilation and Air Conditioning) system energy consumption. This thesis investigates the relationship between the energy genera-tion and storage systems for thermal conditioning of buildings (shorter: primary HVAC systems) and the conceptual building design. Certain building design decisions irreversibly influence a building's energy performance and, conversely, many generation and storage components impose restrictions on building design and, by their nature, cannot be introduced at a later design stage. The objective is, firstly, to develop a method to quantify this influence, in terms of primary HVAC system dimensions, its cost, emissions and energy consumption and, secondly, to enable the use of the developed method by architects during the conceptual design. In order to account for the non-stationary effects of the intermittent renewable energy sources (RES), thermal storage and for the component part load efficiencies, a time domain system simulation is required. An abstract system simulation method is proposed based on seven pre-configured primary HVAC system models, including components such as boil-ers, chillers and cooling towers, thermal storage, solar thermal collectors, and photovoltaic modules. A control strategy is developed for each of the models and their annual quasi-stationary simulation is performed. The performance profiles obtained are then used to calculate the energy consumption, carbon emissions and costs. The annuity method has been employed to calculate the cost. Optimization is used to automatically size the HVAC systems, based on their simulation performance. Its purpose is to identify the system component dimensions that provide

  16. Modeling, research and development of the system for optimal heat consumption of a building

    Science.gov (United States)

    Kovalnogov, Vladislav N.; Chamchiyan, Yuri E.; Suranov, Dmitry V.

    2016-06-01

    The work sets out the technical, software and organizational and methodological solutions for automated management and optimization of a building's heat consumption. It shows the results of modeling and research on the effectiveness of the automated system of heat consumption control of the main building of Ulyanovsk State Technical University.

  17. A Financing Model to Solve Financial Barriers for Implementing Green Building Projects

    Directory of Open Access Journals (Sweden)

    Sanghyo Lee

    2013-01-01

    Full Text Available Along with the growing interest in greenhouse gas reduction, the effect of greenhouse gas energy reduction from implementing green buildings is gaining attention. The government of the Republic of Korea has set green growth as its paradigm for national development, and there is a growing interest in energy saving for green buildings. However, green buildings may have financial barriers that have high initial construction costs and uncertainties about future project value. Under the circumstances, governmental support to attract private funding is necessary to implement green building projects. The objective of this study is to suggest a financing model for facilitating green building projects with a governmental guarantee based on Certified Emission Reduction (CER. In this model, the government provides a guarantee for the increased costs of a green building project in return for CER. And this study presents the validation of the model as well as feasibility for implementing green building project. In addition, the suggested model assumed governmental guarantees for the increased cost, but private guarantees seem to be feasible as well because of the promising value of the guarantee from CER. To do this, certification of Clean Development Mechanisms (CDMs for green buildings must be obtained.

  18. Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kaiyu; Yan, Da; Hong, Tianzhen; Guo, Siyue

    2014-02-28

    Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an office building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.

  19. Development and evaluation of a building energy model integrated in the TEB scheme

    Directory of Open Access Journals (Sweden)

    B. Bueno

    2011-11-01

    Full Text Available The use of air-conditioning systems is expected to increase as a consequence of global-scale and urban-scale climate warming. In order to represent future scenarios of urban climate and building energy consumption, the Town Energy Budget (TEB scheme must be improved. This paper presents a new building energy model (BEM that has been integrated in the TEB scheme. BEM-TEB makes it possible to represent the energy effects of buildings and building systems on the urban climate and to estimate the building energy consumption at city scale (~10 km with a resolution of a neighbourhood (~100 m. The physical and geometric definition of buildings in BEM has been intentionally kept as simple as possible, while maintaining the required features of a comprehensive building energy model. The model considers a single thermal zone, where the thermal inertia of building materials associated with multiple levels is represented by a generic thermal mass. The model accounts for heat gains due to transmitted solar radiation, heat conduction through the enclosure, infiltration, ventilation, and internal heat gains. As a difference with respect to other building parameterizations used in urban climate, BEM includes specific models for real air-conditioning systems. It accounts for the dependence of the system capacity and efficiency on indoor and outdoor air temperatures and solves the dehumidification of the air passing through the system. Furthermore, BEM includes specific models for passive systems, such as window shadowing devices and natural ventilation. BEM has satisfactorily passed different evaluation processes, including testing its modelling assumptions, verifying that the chosen equations are solved correctly, and validating the model with field data.

  20. 3D TOPOLOGICAL INDOOR BUILDING MODELING INTEGRATED WITH OPEN STREET MAP

    Directory of Open Access Journals (Sweden)

    A. Jamali

    2016-09-01

    Full Text Available Considering various fields of applications for building surveying and various demands, geometry representation of a building is the most crucial aspect of a building survey. The interiors of the buildings need to be described along with the relative locations of the rooms, corridors, doors and exits in many kinds of emergency response, such as fire, bombs, smoke, and pollution. Topological representation is a challenging task within the Geography Information Science (GIS environment, as the data structures required to express these relationships are particularly difficult to develop. Even within the Computer Aided Design (CAD community, the structures for expressing the relationships between adjacent building parts are complex and often incomplete. In this paper, an integration of 3D topological indoor building modeling in Dual Half Edge (DHE data structure and outdoor navigation network from Open Street Map (OSM is presented.

  1. Creating a Conceptual Model for Building Responsible Brands

    OpenAIRE

    Kujala, Johanna; Penttilä, Katriina; Tuominen, Pekka

    2011-01-01

    Despite the importance of brands in mediating corporate social responsibility, there has been relatively little research on how responsible brands are developed from the internal perspective of the company. Some research has been conducted from the external perspective, such as the link between ethical issues and consumer purchase behaviour, but there has been relatively little focus on brand-building itself. The present study addresses this gap in the ...

  2. Evidence-Based Model Calibration for Efficient Building Energy Services

    OpenAIRE

    Bertagnolio, Stéphane

    2012-01-01

    Energy services play a growing role in the control of energy consumption and the improvement of energy efficiency in non-residential buildings. Most of the energy use analyses involved in the energy efficiency service process require on-field measurements and energy use analysis. Today, while detailed on-field measurements and energy counting stay generally expensive and time-consuming, energy simulations are increasingly cheaper due to the continuous improvement of computer speed. This work ...

  3. Applicability of the building information model for seismic analysis

    OpenAIRE

    Logonder, Tine

    2009-01-01

    Complexity of structural projects increases and consequently more and more experts are involved in the design and construction process. These facts lead to the need to enhance the interoperability between software tools used in the design and construction process of structure. For that reason the standard IFC (IFC - Industry Foundation Classes, a basic industrial classes) has been developed, which aims to standardize the presentation of buildings data. In the thesis the methods...

  4. Stability and scalability of piezoelectric flag

    Science.gov (United States)

    Wang, Xiaolin; Alben, Silas; Li, Chenyang; Young, Yin Lu

    2015-11-01

    Piezoelectric material (PZT) has drawn enormous attention in the past decades due to its ability to convert mechanical deformation energy into electrical potential energy, and vice versa, and has been applied to energy harvesting and vibration control. In this work, we consider the effect of PZT on the stability of a flexible flag using the inviscid vortex-sheet model. We find that the critical flutter speed is increased due to the extra damping effect of the PZT, and can also be altered by tuning the output inductance-resistance circuit. Optimal resistance and inductance are found to either maximize or minimize the flutter speed. The former application is useful for the vibration control while the latter is important for energy harvesting. We also discuss the scalability of above system to the actual application in air and water.

  5. Foveation scalable video coding with automatic fixation selection.

    Science.gov (United States)

    Wang, Zhou; Lu, Ligang; Bovik, Alan Conrad

    2003-01-01

    Image and video coding is an optimization problem. A successful image and video coding algorithm delivers a good tradeoff between visual quality and other coding performance measures, such as compression, complexity, scalability, robustness, and security. In this paper, we follow two recent trends in image and video coding research. One is to incorporate human visual system (HVS) models to improve the current state-of-the-art of image and video coding algorithms by better exploiting the properties of the intended receiver. The other is to design rate scalable image and video codecs, which allow the extraction of coded visual information at continuously varying bit rates from a single compressed bitstream. Specifically, we propose a foveation scalable video coding (FSVC) algorithm which supplies good quality-compression performance as well as effective rate scalability. The key idea is to organize the encoded bitstream to provide the best decoded video at an arbitrary bit rate in terms of foveated visual quality measurement. A foveation-based HVS model plays an important role in the algorithm. The algorithm is adaptable to different applications, such as knowledge-based video coding and video communications over time-varying, multiuser and interactive networks. PMID:18237905

  6. Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Woods, J.; Winkler, J.; Christensen, D.

    2013-01-01

    This study examines the effective moisture penetration depth (EMPD) model, and its suitability for building simulations. The EMPD model is a compromise between the simple, inaccurate effective capacitance approach and the complex, yet accurate, finite-difference approach. Two formulations of the EMPD model were examined, including the model used in the EnergyPlus building simulation software. An error in the EMPD model we uncovered was fixed with the release of EnergyPlus version 7.2, and the EMPD model in earlier versions of EnergyPlus should not be used.

  7. Semi-Automatic Building Models and FAÇADE Texture Mapping from Mobile Phone Images

    Science.gov (United States)

    Jeong, J.; Kim, T.

    2016-06-01

    Research on 3D urban modelling has been actively carried out for a long time. Recently the need of 3D urban modelling research is increased rapidly due to improved geo-web services and popularized smart devices. Nowadays 3D urban models provided by, for example, Google Earth use aerial photos for 3D urban modelling but there are some limitations: immediate update for the change of building models is difficult, many buildings are without 3D model and texture, and large resources for maintaining and updating are inevitable. To resolve the limitations mentioned above, we propose a method for semi-automatic building modelling and façade texture mapping from mobile phone images and analyze the result of modelling with actual measurements. Our method consists of camera geometry estimation step, image matching step, and façade mapping step. Models generated from this method were compared with actual measurement value of real buildings. Ratios of edge length of models and measurements were compared. Result showed 5.8% average error of length ratio. Through this method, we could generate a simple building model with fine façade textures without expensive dedicated tools and dataset.

  8. Scalable Medical Image Understanding by Fusing Cross-Modal Object Recognition with Formal Domain Semantics

    Science.gov (United States)

    Möller, Manuel; Sintek, Michael; Buitelaar, Paul; Mukherjee, Saikat; Zhou, Xiang Sean; Freund, Jörg

    Recent advances in medical imaging technology have dramatically increased the amount of clinical image data. In contrast, techniques for efficiently exploiting the rich semantic information in medical images have evolved much slower. Despite the research outcomes in image understanding, current image databases are still indexed by manually assigned subjective keywords instead of the semantics of the images. Indeed, most current content-based image search applications index image features that do not generalize well and use inflexible queries. This slow progress is due to the lack of scalable and generic information representation systems which can abstract over the high dimensional nature of medical images as well as semantically model the results of object recognition techniques. We propose a system combining medical imaging information with ontological formalized semantic knowledge that provides a basis for building universal knowledge repositories and gives clinicians fully cross-lingual and cross-modal access to biomedical information.

  9. Spectral analysis of pressures measured on two high-rise building models in side-by-side arrangement

    NARCIS (Netherlands)

    Bronkhorst, A.J.; Geurts, C.P.W.; Bentum, C.A. van; Blocken, B.

    2013-01-01

    Pressure measurements on a square plan form high-rise building model and two square high-rise building models in side-by-side arrangement were analysed using the Fast Fourier Transform (FFT) to define peak frequencies resulting from interference. For the isolated building model, a reduced frequency

  10. Automated Translation and Thermal Zoning of Digital Building Models for Energy Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Nathaniel L. [Cornell University; McCrone, Colin J. [Cornell University; Walter, Bruce J. [Cornell University; Pratt, Kevin B. [Cornell University; Greenberg, Donald P. [Cornell University

    2013-08-26

    Building energy simulation is valuable during the early stages of design, when decisions can have the greatest impact on energy performance. However, preparing digital design models for building energy simulation typically requires tedious manual alteration. This paper describes a series of five automated steps to translate geometric data from an unzoned CAD model into a multi-zone building energy model. First, CAD input is interpreted as geometric surfaces with materials. Second, surface pairs defining walls of various thicknesses are identified. Third, normal directions of unpaired surfaces are determined. Fourth, space boundaries are defined. Fifth, optionally, settings from previous simulations are applied, and spaces are aggregated into a smaller number of thermal zones. Building energy models created quickly using this method can offer guidance throughout the design process.

  11. Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation

    DEFF Research Database (Denmark)

    Janssen, Hans; Blocken, Bert; Carmeliet, Jan

    2007-01-01

    While the transfer equations for moisture and heat in building components are currently undergoing standardisation, atmospheric boundary conditions, conservative modelling and numerical efficiency are not addressed. In a first part, this paper adds a comprehensive description of those boundary co...

  12. Model of mechanism of providing of strategic firmness of machine-building enterprise

    Directory of Open Access Journals (Sweden)

    I.V. Movchan

    2011-03-01

    Full Text Available In the article is considered theoretical aspects of strategic firmness and the developed algorithmic model of mechanism providing of strategic firmness of machine-building enterprise.

  13. Building sustainable ecosystem-oriented architectures

    CERN Document Server

    Bassil, Youssef

    2012-01-01

    Currently, organizations are transforming their business processes into e-services and service-oriented architectures to improve coordination across sales, marketing, and partner channels, to build flexible and scalable systems, and to reduce integration-related maintenance and development costs. However, this new paradigm is still fragile and lacks many features crucial for building sustainable and progressive computing infrastructures able to rapidly respond and adapt to the always-changing market and environmental business. This paper proposes a novel framework for building sustainable Ecosystem- Oriented Architectures (EOA) using e-service models. The backbone of this framework is an ecosystem layer comprising several computing units whose aim is to deliver universal interoperability, transparent communication, automated management, self-integration, self-adaptation, and security to all the interconnected services, components, and devices in the ecosystem. Overall, the proposed model seeks to deliver a co...

  14. A ROADMAP FOR GENERATING SEMANTICALLY ENRICHED BUILDING MODELS ACCORDING TO CITYGML MODEL VIA TWO DIFFERENT METHODOLOGIES

    Directory of Open Access Journals (Sweden)

    G. Floros

    2016-10-01

    Full Text Available The methodologies of 3D modeling techniques have increasingly increased due to the rapid advances of new technologies. Nowadays, the focus of 3D modeling software is focused, not only to the finest visualization of the models, but also in their semantic features during the modeling procedure. As a result, the models thus generated are both realistic and semantically enriched. Additionally, various extensions of modeling software allow for the immediate conversion of the model’s format, via semi-automatic procedures with respect to the user’s scope. The aim of this paper is to investigate the generation of a semantically enriched Citygml building model via two different methodologies. The first methodology includes the modeling in Trimble SketchUp and the transformation in FME Desktop Manager, while the second methodology includes the model’s generation in CityEngine and its transformation in the CityGML format via the 3DCitiesProject extension for ArcGIS. Finally, the two aforesaid methodologies are being compared and specific characteristics are evaluated, in order to infer the methodology that is best applied depending on the different projects’ purposes.

  15. Nengo: a Python tool for building large-scale functional brain models

    OpenAIRE

    Bekolay, Trevor; Bergstra, James; Hunsberger, Eric; DeWolf, Travis; Terrence C Stewart; Rasmussen, Daniel; Choo, Xuan; Voelker, Aaron Russell; Eliasmith, Chris

    2014-01-01

    Neuroscience currently lacks a comprehensive theory of how cognitive processes can be implemented in a biological substrate. The Neural Engineering Framework (NEF) proposes one such theory, but has not yet gathered significant empirical support, partly due to the technical challenge of building and simulating large-scale models with the NEF. Nengo is a software tool that can be used to build and simulate large-scale models based on the NEF; currently, it is the primary resource for both teach...

  16. Assessment of Retrofitting Measures for a Large Historic Research Facility Using a Building Energy Simulation Model

    OpenAIRE

    Young Tae Chae; Lee, Young M.; David Longinott

    2016-01-01

    A calibrated building simulation model was developed to assess the energy performance of a large historic research building. The complexity of space functions and operational conditions with limited availability of energy meters makes it hard to understand the end-used energy consumption in detail and to identify appropriate retrofitting options for reducing energy consumption and greenhouse gas (GHG) emissions. An energy simulation model was developed to study the energy usage patterns not o...

  17. Development and evaluation of a building energy model integrated in the TEB scheme

    Science.gov (United States)

    Bueno, B.; Pigeon, G.; Norford, L. K.; Zibouche, K.; Marchadier, C.

    2012-03-01

    The use of air-conditioning systems is expected to increase as a consequence of global-scale and urban-scale climate warming. In order to represent future scenarios of urban climate and building energy consumption, the Town Energy Balance (TEB) scheme must be improved. This paper presents a new building energy model (BEM) that has been integrated in the TEB scheme. BEM-TEB makes it possible to represent the energy effects of buildings and building systems on the urban climate and to estimate the building energy consumption at city scale (~10 km) with a resolution of a neighbourhood (~100 m). The physical and geometric definition of buildings in BEM has been intentionally kept as simple as possible, while maintaining the required features of a comprehensive building energy model. The model considers a single thermal zone, where the thermal inertia of building materials associated with multiple levels is represented by a generic thermal mass. The model accounts for heat gains due to transmitted solar radiation, heat conduction through the enclosure, infiltration, ventilation, and internal heat gains. BEM allows for previously unavailable sophistication in the modelling of air-conditioning systems. It accounts for the dependence of the system capacity and efficiency on indoor and outdoor air temperatures and solves the dehumidification of the air passing through the system. Furthermore, BEM includes specific models for passive systems, such as window shadowing devices and natural ventilation. BEM has satisfactorily passed different evaluation processes, including testing its modelling assumptions, verifying that the chosen equations are solved correctly, and validating the model with field data.

  18. Development and evaluation of a building energy model integrated in the TEB scheme

    Directory of Open Access Journals (Sweden)

    B. Bueno

    2012-03-01

    Full Text Available The use of air-conditioning systems is expected to increase as a consequence of global-scale and urban-scale climate warming. In order to represent future scenarios of urban climate and building energy consumption, the Town Energy Balance (TEB scheme must be improved. This paper presents a new building energy model (BEM that has been integrated in the TEB scheme. BEM-TEB makes it possible to represent the energy effects of buildings and building systems on the urban climate and to estimate the building energy consumption at city scale (~10 km with a resolution of a neighbourhood (~100 m. The physical and geometric definition of buildings in BEM has been intentionally kept as simple as possible, while maintaining the required features of a comprehensive building energy model. The model considers a single thermal zone, where the thermal inertia of building materials associated with multiple levels is represented by a generic thermal mass. The model accounts for heat gains due to transmitted solar radiation, heat conduction through the enclosure, infiltration, ventilation, and internal heat gains. BEM allows for previously unavailable sophistication in the modelling of air-conditioning systems. It accounts for the dependence of the system capacity and efficiency on indoor and outdoor air temperatures and solves the dehumidification of the air passing through the system. Furthermore, BEM includes specific models for passive systems, such as window shadowing devices and natural ventilation. BEM has satisfactorily passed different evaluation processes, including testing its modelling assumptions, verifying that the chosen equations are solved correctly, and validating the model with field data.

  19. AUTOMATIC TOPOLOGY DERIVATION FROM IFC BUILDING MODEL FOR IN-DOOR INTELLIGENT NAVIGATION

    Directory of Open Access Journals (Sweden)

    S. J. Tang

    2015-05-01

    Full Text Available With the goal to achieve an accuracy navigation within the building environment, it is critical to explore a feasible way for building the connectivity relationships among 3D geographical features called in-building topology network. Traditional topology construction approaches for indoor space always based on 2D maps or pure geometry model, which remained information insufficient problem. Especially, an intelligent navigation for different applications depends mainly on the precise geometry and semantics of the navigation network. The trouble caused by existed topology construction approaches can be smoothed by employing IFC building model which contains detailed semantic and geometric information. In this paper, we present a method which combined a straight media axis transformation algorithm (S-MAT with IFC building model to reconstruct indoor geometric topology network. This derived topology aimed at facilitating the decision making for different in-building navigation. In this work, we describe a multi-step deviation process including semantic cleaning, walkable features extraction, Multi-Storey 2D Mapping and S-MAT implementation to automatically generate topography information from existing indoor building model data given in IFC.

  20. Modelling and Analysis of Heat Pumps for Zero Emission Buildings

    OpenAIRE

    Småland, Leif

    2013-01-01

    The work of this Master thesis is a continuation of a project work. This defines qualitative and quantitative parameters needed to make a simulation tool for early-stage decision making with regards to the energy supply strategy for non-residential Zero Emission Building (ZEB). The work is based on the assumption that the heat pump (HP) technology will be one of the core technologies for the energy supply strategy in the ZEB concept. The simulation tool proposed should be able to find the bes...

  1. A Micro-Macro Model for South Africa: Building and Linking a Microsimulation Model to a CGE Model

    OpenAIRE

    Nicolas Hérault

    2005-01-01

    This paper describes a newly-built micro-macro model for South Africa. A computable general equilibrium (CGE) model and a microsimulation (MS) model are combined in a sequential approach in order to build an effective tool to assess the effects of various macroeconomic policies and shocks on South African households. The CGE model is used to simulate the macro-changes in the structure of the economy after the policy change or the macro-shock. In a second step, these changes are passed on to t...

  2. Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jorissen, Filip; Wetter, Michael; Helsen, Lieve

    2015-09-21

    This paper presents an approach for speeding up Modelica models. Insight is provided into how Modelica models are solved and what determines the tool’s computational speed. Aspects such as algebraic loops, code efficiency and integrator choice are discussed. This is illustrated using simple building simulation examples and Dymola. The generality of the work is in some cases verified using OpenModelica. Using this approach, a medium sized office building including building envelope, heating ventilation and air conditioning (HVAC) systems and control strategy can be simulated at a speed five hundred times faster than real time.

  3. Scalable Performance Measurement and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gamblin, T

    2009-10-27

    Concurrency levels in large-scale, distributed-memory supercomputers are rising exponentially. Modern machines may contain 100,000 or more microprocessor cores, and the largest of these, IBM's Blue Gene/L, contains over 200,000 cores. Future systems are expected to support millions of concurrent tasks. In this dissertation, we focus on efficient techniques for measuring and analyzing the performance of applications running on very large parallel machines. Tuning the performance of large-scale applications can be a subtle and time-consuming task because application developers must measure and interpret data from many independent processes. While the volume of the raw data scales linearly with the number of tasks in the running system, the number of tasks is growing exponentially, and data for even small systems quickly becomes unmanageable. Transporting performance data from so many processes over a network can perturb application performance and make measurements inaccurate, and storing such data would require a prohibitive amount of space. Moreover, even if it were stored, analyzing the data would be extremely time-consuming. In this dissertation, we present novel methods for reducing performance data volume. The first draws on multi-scale wavelet techniques from signal processing to compress systemwide, time-varying load-balance data. The second uses statistical sampling to select a small subset of running processes to generate low-volume traces. A third approach combines sampling and wavelet compression to stratify performance data adaptively at run-time and to reduce further the cost of sampled tracing. We have integrated these approaches into Libra, a toolset for scalable load-balance analysis. We present Libra and show how it can be used to analyze data from large scientific applications scalably.

  4. Scalable Performance Measurement and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gamblin, Todd [Univ. of North Carolina, Chapel Hill, NC (United States)

    2009-01-01

    Concurrency levels in large-scale, distributed-memory supercomputers are rising exponentially. Modern machines may contain 100,000 or more microprocessor cores, and the largest of these, IBM's Blue Gene/L, contains over 200,000 cores. Future systems are expected to support millions of concurrent tasks. In this dissertation, we focus on efficient techniques for measuring and analyzing the performance of applications running on very large parallel machines. Tuning the performance of large-scale applications can be a subtle and time-consuming task because application developers must measure and interpret data from many independent processes. While the volume of the raw data scales linearly with the number of tasks in the running system, the number of tasks is growing exponentially, and data for even small systems quickly becomes unmanageable. Transporting performance data from so many processes over a network can perturb application performance and make measurements inaccurate, and storing such data would require a prohibitive amount of space. Moreover, even if it were stored, analyzing the data would be extremely time-consuming. In this dissertation, we present novel methods for reducing performance data volume. The first draws on multi-scale wavelet techniques from signal processing to compress systemwide, time-varying load-balance data. The second uses statistical sampling to select a small subset of running processes to generate low-volume traces. A third approach combines sampling and wavelet compression to stratify performance data adaptively at run-time and to reduce further the cost of sampled tracing. We have integrated these approaches into Libra, a toolset for scalable load-balance analysis. We present Libra and show how it can be used to analyze data from large scientific applications scalably.

  5. Modeling and simulation of the energy use in an occupied residential building in cold climate

    International Nuclear Information System (INIS)

    Highlights: ► An overview of the energy-characteristics based on illustrations in graphical figures. ► Figures to support identification and validation energy refurbishment measures. ► Emphasizing energy efficiency measures in early stage of building design. -- Abstract: In order to reduce the energy use in the building sector there is a demand for tools that can identify significant building energy performance parameters. In the work introduced in this paper presents a methodology, based on a simulation module and graphical figures, for interactive investigations of the building energy performance. The building energy use simulation program is called TEKLA and is using EN832 with an improved procedure in calculating the heat loss through the floor and the solar heat gain. The graphical figures are simple and are illustrating the savings based on retrofit measures and climate conditions. The accuracy of the TEKLA simulation was investigated on a typical single-family building in Sweden for a period of time in a space heating demand of relatively cold and mild climate. The model was found applicable for relative investigations. Further, the methodology was applied on a typical single family reference building. The climate data from three locations in Sweden were collected and a set of relevant measures were studied. The investigated examples illustrate how decisions in the early stages of the building design process can have decisive importance on the final building energy performance.

  6. Modeling of two-storey precast school building using Ruaumoko 2D program

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, N. H.; Tarmizi, L. H.; Ghani, K. D. [Faculty of Civil Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2015-05-15

    The long-distant earthquake loading from Sumatra and Java Island had caused some slight damages to precast and reinforced concrete buildings in West Malaysia such as cracks on wall panels, columns and beams. Subsequently, the safety of existing precast concrete building is needed to be analyzed because these buildings were designed using BS 8110 which did not include the seismic loading in the design. Thus, this paper emphasizes on the seismic performance and dynamic behavior of precast school building constructed in Malaysia under three selected past earthquakes excitations ; El Centro 1940 North-South, El Centro East-West components and San Fernando 1971 using RUAUMOKO 2D program. This program is fully utilized by using prototype precast school model and dynamic non-linear time history analysis. From the results, it can be concluded that two-storey precast school building has experienced severe damage and partial collapse especially at beam-column joint under San Fernando and El Centro North-South Earthquake as its exceeds the allowable inter-storey drift and displacement as specified in Eurocode 8. The San Fernando earthquake has produced a massive destruction to the precast building under viscous damping, ξ = 5% and this building has generated maximum building displacement of 435mm, maximum building drift of 0.68% and maximum bending moment at 8458kNm.

  7. The model of intellectual support of decision-making in building structures condition management

    Directory of Open Access Journals (Sweden)

    Velichkin V.Z.

    2012-05-01

    Full Text Available Popular methods of decision-making in building structures condition management do not fully consider peculiarities of their up-to-date operation. These approaches do not take into account the kinds of uncertainty occurring at a building designing stage and taking place while monitoring. It leads to the decrease in building targeted application efficiency and increase of controlling organization costs. The following approach suggests the improvement in the decision-making support systems by integration of expert knowledge and experience with tool and visual building structure control results.The purpose of the paper is effective decision-making aimed at uncertainty level decrease in the process of detection of operational impacts on building structures for the required durability provision. This purpose is achieved by artificial intelligence element application (fuzzy sets in the joint analysis of retrospective, current and expert information on the building structure state. The authors suggest selecting building structure state controlling actions with the help of fuzzy conclusions obtained by the usage of designed algorithms and calculated procedures. The applicability of the given approach was proved by the calculated example. A grounded variant of decision on the building structure state intellectual control was submitted (a damaged building wall.On the basis of these results the conclusions on the application field and conditions of the designed algorithms and model were made.

  8. Modeling of two-storey precast school building using Ruaumoko 2D program

    International Nuclear Information System (INIS)

    The long-distant earthquake loading from Sumatra and Java Island had caused some slight damages to precast and reinforced concrete buildings in West Malaysia such as cracks on wall panels, columns and beams. Subsequently, the safety of existing precast concrete building is needed to be analyzed because these buildings were designed using BS 8110 which did not include the seismic loading in the design. Thus, this paper emphasizes on the seismic performance and dynamic behavior of precast school building constructed in Malaysia under three selected past earthquakes excitations ; El Centro 1940 North-South, El Centro East-West components and San Fernando 1971 using RUAUMOKO 2D program. This program is fully utilized by using prototype precast school model and dynamic non-linear time history analysis. From the results, it can be concluded that two-storey precast school building has experienced severe damage and partial collapse especially at beam-column joint under San Fernando and El Centro North-South Earthquake as its exceeds the allowable inter-storey drift and displacement as specified in Eurocode 8. The San Fernando earthquake has produced a massive destruction to the precast building under viscous damping, ξ = 5% and this building has generated maximum building displacement of 435mm, maximum building drift of 0.68% and maximum bending moment at 8458kNm

  9. Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Stephen; Heaney, Michael; Jin, Xin; Robertson, Joseph; Cheung, Howard; Elmore, Ryan; Henze, Gregor

    2016-08-26

    Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energy models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.

  10. Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Stephen; Heaney, Michael; Jin, Xin; Robertson, Joseph; Cheung, Howard; Elmore, Ryan; Henze, Gregor

    2016-08-01

    Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energy models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.

  11. Study on Effects of Building Morphology on Urban Boundary Layer Using an Urban Canopy Model

    Institute of Scientific and Technical Information of China (English)

    ZHOU Rongwei; JIANG Weimei; HE Xiaofeng; LIU Gang

    2009-01-01

    An urban canopy model is incorporated into the Nanjing University Regional Boundary Layer Model. Temperature simulated by the urban canopy model is in better agreement with the observation, especially in the night time, than that simulated by the traditional slab model. The coupled model is used to study the effects of building morphology on urban boundary layer and meteorological environment by changing urban area, building height, and building density.It is found that when the urban area is expanded, the urban boundary layer heat flux, thermal turbulence, and the turbulent momentum flux and kinetic energy all increase or enhance, causing the surface air temperature to rise up. The stability of urban atmospheric stratification is affected to different extent at different times of the day.When the building height goes up, the aerodynamic roughness height, zero plane displacement height of urban area, and ratio of building height to street width all increase. Therefore, the increase in building height results in the decrease of the surface heat flux, urban surface temperature, mean wind speed, and turbulent kinetic energy in daytime. While at night, as more heat storage is released by higher buildings, thermal turbulence is more active and surface heat flux increases, leading to a higher urban temperature.As the building density increases, the aerodynamic roughness height of urban area decreases, and the effect of urban canopy on radiation strengthens. The increase of building density results in the decrease in urban surface heat flux, momentum flux, and air temperature, the increase in mean wind speed, and the weakening of turbulence in the daytime. While at night, the urban temperature increases due to the release of more heat storage.

  12. Scalable Video Coding with Interlayer Signal Decorrelation Techniques

    Directory of Open Access Journals (Sweden)

    Yang Wenxian

    2007-01-01

    Full Text Available Scalability is one of the essential requirements in the compression of visual data for present-day multimedia communications and storage. The basic building block for providing the spatial scalability in the scalable video coding (SVC standard is the well-known Laplacian pyramid (LP. An LP achieves the multiscale representation of the video as a base-layer signal at lower resolution together with several enhancement-layer signals at successive higher resolutions. In this paper, we propose to improve the coding performance of the enhancement layers through efficient interlayer decorrelation techniques. We first show that, with nonbiorthogonal upsampling and downsampling filters, the base layer and the enhancement layers are correlated. We investigate two structures to reduce this correlation. The first structure updates the base-layer signal by subtracting from it the low-frequency component of the enhancement layer signal. The second structure modifies the prediction in order that the low-frequency component in the new enhancement layer is diminished. The second structure is integrated in the JSVM 4.0 codec with suitable modifications in the prediction modes. Experimental results with some standard test sequences demonstrate coding gains up to 1 dB for I pictures and up to 0.7 dB for both I and P pictures.

  13. Extension of the PMV model to non-air-conditioned building in warm climates

    DEFF Research Database (Denmark)

    Fanger, Povl Ole; Toftum, Jørn

    2002-01-01

    The PMV model agrees well with high-quality field studies in buildings with HVAC systems, situated in cold, temperate and warm climates, studied during both summer and winter. In non-air-conditioned buildings in warm climates, occupants may sense the warmth as being less severe than the PMV...... predicts. The main reason is low expectations, but a metabolic rate that is estimated too high can also contribute to explaining the difference. An extension of the PMV model that includes an expectancy factor is introduced for use in non-air-conditioned buildings in warm climates. The extended PMV model...... agrees well with quality field studies in non-air-conditioned buildings of three continents....

  14. Mathematical and Statistical Models and Methods for Describing the Thermal Characteristics of Buildings

    DEFF Research Database (Denmark)

    Madsen, Henrik; Bacher, Peder; Andersen, Philip Hvidthøft Delff

    2010-01-01

    the thermal characteristics of buildings. Many of the stochastic models are developed and tested using data from outdoor test- ing during a number of EU projects (PASSYS, PASLINK, DAME-BC, ..). These projects have provided the background for new methods for using frequent readings of the energy consumption...... methods for time series modelling or system identification. Applying these methods the following can be achieved: Characterization of the energy performance of buildings (including energy labelling), identification of how to improve the thermal performance of the building, and improved control of the energy......This paper describes a number of statistical methods and models for describing the thermal characteristics of buildings using frequent readings of heat consumption, ambient air temperature, and other available climate variables. For some of the methods frequent readings of the indoor air...

  15. How to Build a Course in Mathematical–Biological Modeling: Content and Processes for Knowledge and Skill

    OpenAIRE

    Hoskinson, Anne-Marie

    2010-01-01

    Biological problems in the twenty-first century are complex and require mathematical insight, often resulting in mathematical models of biological systems. Building mathematical–biological models requires cooperation among biologists and mathematicians, and mastery of building models. A new course in mathematical modeling presented the opportunity to build both content and process learning of mathematical models, the modeling process, and the cooperative process. There was little guidance fro...

  16. Lost opportunities: Modeling commercial building energy code adoption in the United States

    International Nuclear Information System (INIS)

    This paper models the adoption of commercial building energy codes in the US between 1977 and 2006. Energy code adoption typically results in an increase in aggregate social welfare by cost effectively reducing energy expenditures. Using a Cox proportional hazards model, I test if relative state funding, a new, objective, multivariate regression-derived measure of government capacity, as well as a vector of control variables commonly used in comparative state research, predict commercial building energy code adoption. The research shows little political influence over historical commercial building energy code adoption in the sample. Colder climates and higher electricity prices also do not predict more frequent code adoptions. I do find evidence of high government capacity states being 60 percent more likely than low capacity states to adopt commercial building energy codes in the following year. Wealthier states are also more likely to adopt commercial codes. Policy recommendations to increase building code adoption include increasing access to low cost capital for the private sector and providing noncompetitive block grants to the states from the federal government. - Highlights: ► Model the adoption of commercial building energy codes from 1977–2006 in the US. ► Little political influence over historical building energy code adoption. ► High capacity states are over 60 percent more likely than low capacity states to adopt codes. ► Wealthier states are more likely to adopt commercial codes. ► Access to capital and technical assistance is critical to increase code adoption.

  17. Building Mathematical Models of Simple Harmonic and Damped Motion.

    Science.gov (United States)

    Edwards, Thomas

    1995-01-01

    By developing a sequence of mathematical models of harmonic motion, shows that mathematical models are not right or wrong, but instead are better or poorer representations of the problem situation. (MKR)

  18. Building an Online Wisdom Community: A Transformational Design Model

    Science.gov (United States)

    Gunawardena, Charlotte N.; Jennings, Barbara; Ortegano-Layne, Ludmila C.; Frechette, Casey; Carabajal, Kayleigh; Lindemann, Ken; Mummert, Julia

    2004-01-01

    This paper discusses the development of a new instructional design model based on socioconstructivist learning theories and distance education principles for the design of online wisdom communities and the efficacy of the model drawing on evaluation results from its implementation in Fall 2002. The model, Final Outcome Centered Around Learner…

  19. HYPERSTATIC STRUCTURE MAPPING MODEL BUILDING AND OPTIMIZING DESIGN

    Institute of Scientific and Technical Information of China (English)

    XU Gening; GAO Youshan; ZHANG Xueliang; YANG Ruigang

    2007-01-01

    Hyperstatic structure plane model being built by structural mechanics is studied. Space model precisely reflected in real stress of the structure is built by finite element method (FEM) analysis commerce software. Mapping model of complex structure system is set up, with convenient calculation just as in plane model and comprehensive information as in space model. Plane model and space model are calculated under the same working condition. Plane model modular construction inner force is considered as input data; Space model modular construction inner force is considered as output data. Thus specimen is built on input data and output data. Character and affiliation are extracted through training specimen, with the employment of nonlinear mapping capability of the artificial neural network. Mapping model with interpolation and extrapolation is gained, laying the foundation for optimum design. The steel structure of high-layer parking system (SSHLPS) is calculated as an instance. A three-layer back-propagation (BP) net including one hidden layer is constructed with nine input nodes and eight output nodes for a five-layer SSHLPS. The three-layer structure optimization result through the mapping model interpolation contrasts with integrity re-analysis, and seven layers structure through the mapping model extrapolation contrasts with integrity re-analysis. Any layer SSHLPS among 1~8 can be calculated with much accuracy. Amount of calculation can also be reduced if it is applied into the same topological structure, with reduced distortion and assured precision.

  20. Building Energy Use Modeling at the U.S. State Level Under Climate Change

    Science.gov (United States)

    Zhou, Y.; Eom, J.; Clarke, L.; Kyle, P.

    2012-12-01

    Climate change plays an important role in building energy use for heating and cooling. As global building energy use accounts for as much as about 32% of global final energy consumption in 2005, the impact of climate change on greenhouse gas emissions may also be significant. As long-term socioeconomic transformation and energy service expansion show large spatial heterogeneity, advanced understanding of climate impact on building energy use at the sub-national level will offer useful insights into regional energy system planning. In this study, we have developed a detailed building energy model with U.S. 50-state representation, embedded in an integrated assessment framework (Global Change Assessment Model). The climate change impact on heating and cooling demand is measured through estimating heating and cooling degree days (HDD/CDDs) derived from MIT Integrated Global System Model (IGSM) climate data and linking the estimates to the building energy model. Having the model calibrated against historical data at the U.S. state level, we estimated the building energy use in the 21st century at the U.S. state level and analyzed its spatial pattern. We have found that the total building energy use (heating and cooling) in U.S. states is over- or under-estimated without having climate feedback taken into account, and that the difference with and without climate feedback at the state level varies from -25% to 25% in reference scenario and -15% to 10% in climate mitigation scenario. The result not only confirms earlier finding that global warming leads to increased cooling and decreased heating energy use, it also indicates that climate change has a different impact on total building energy use at national and state level, exhibiting large spatial heterogeneity across states (Figure 1). The scale impact in building energy use modeling emphasizes the importance of developing a building energy model that represents socioeconomic development, energy service expansion, and

  1. Building gas markets. US versus EU, market versus market model

    International Nuclear Information System (INIS)

    The liberalization process of the gas sector has showed that the reasoning to introduce competition in gas industries separates the services in at least two groups: commodities with relatively low transaction costs, and hence suitable to short-term market coordination, and network services which concentrate most of the specificities related to the physical flows. However, the way to coordinate such network services is still under debate. In this view, in USA specific services are coordinated through long-term contracts, whereas the EU regulatory frame socializes the costs of the network services. In this paper, we develop a general analysis of the major consequences of this fundamental regulatory choice. In addition, we build on such analysis to explain the differences among the current proposals to design the coming European Internal Market.

  2. Software Security and the "Building Security in Maturity" Model

    CERN Document Server

    CERN. Geneva

    2011-01-01

    Using the framework described in my book "Software Security: Building Security In" I will discuss and describe the state of the practice in software security. This talk is peppered with real data from the field, based on my work with several large companies as a Cigital consultant. As a discipline, software security has made great progress over the last decade. Of the sixty large-scale software security initiatives we are aware of, thirty-two---all household names---are currently included in the BSIMM study. Those companies among the thirty-two who graciously agreed to be identified include: Adobe, Aon, Bank of America, Capital One, The Depository Trust & Clearing Corporation (DTCC), EMC, Google, Intel, Intuit, McKesson, Microsoft, Nokia, QUALCOMM, Sallie Mae, Standard Life, SWIFT, Symantec, Telecom Italia, Thomson Reuters, VMware, and Wells Fargo. The BSIMM was created by observing and analyzing real-world data from thirty-two leading software security initiatives. The BSIMM can...

  3. A sensitivity model for energy consumption in buildings. Part 1: Effect of exterior environment

    Science.gov (United States)

    Lansing, F. L.

    1981-01-01

    A simple analytical model is developed for the simulation of seasonal heating and cooling loads of any class of buildings to complement available computerized techniques which make hourly, daily, and monthly calculations. An expression for the annual energy utilization index, which is a common measure of rating buildings having the same functional utilization, is derived to include about 30 parameters for both building interior and exterior environments. The sensitivity of a general class building to either controlled or uncontrolled weather parameters is examined. A hypothetical office type building, located at the Goldstone Space Communication Complex, Goldstone, California, is selected as an example for the numerical sensitivity evaluations. Several expressions of variations in local outside air temperature, pressure, solar radiation, and wind velocity are presented.

  4. Modular modeling system for building distributed hydrologic models with a user-friendly software package

    Science.gov (United States)

    Wi, S.; Ray, P. A.; Brown, C.

    2015-12-01

    A software package developed to facilitate building distributed hydrologic models in a modular modeling system is presented. The software package provides a user-friendly graphical user interface that eases its practical use in water resources-related research and practice. The modular modeling system organizes the options available to users when assembling models according to the stages of hydrological cycle, such as potential evapotranspiration, soil moisture accounting, and snow/glacier melting processes. The software is intended to be a comprehensive tool that simplifies the task of developing, calibrating, validating, and using hydrologic models through the inclusion of intelligent automation to minimize user effort, and reduce opportunities for error. Processes so far automated include the definition of system boundaries (i.e., watershed delineation), climate and geographical input generation, and parameter calibration. Built-in post-processing toolkits greatly improve the functionality of the software as a decision support tool for water resources system management and planning. Example post-processing toolkits enable streamflow simulation at ungauged sites with predefined model parameters, and perform climate change risk assessment by means of the decision scaling approach. The software is validated through application to watersheds representing a variety of hydrologic regimes.

  5. Change detection on LOD 2 building models with very high resolution spaceborne stereo imagery

    Science.gov (United States)

    Qin, Rongjun

    2014-10-01

    Due to the fast development of the urban environment, the need for efficient maintenance and updating of 3D building models is ever increasing. Change detection is an essential step to spot the changed area for data (map/3D models) updating and urban monitoring. Traditional methods based on 2D images are no longer suitable for change detection in building scale, owing to the increased spectral variability of the building roofs and larger perspective distortion of the very high resolution (VHR) imagery. Change detection in 3D is increasingly being investigated using airborne laser scanning data or matched Digital Surface Models (DSM), but rare study has been conducted regarding to change detection on 3D city models with VHR images, which is more informative but meanwhile more complicated. This is due to the fact that the 3D models are abstracted geometric representation of the urban reality, while the VHR images record everything. In this paper, a novel method is proposed to detect changes directly on LOD (Level of Detail) 2 building models with VHR spaceborne stereo images from a different date, with particular focus on addressing the special characteristics of the 3D models. In the first step, the 3D building models are projected onto a raster grid, encoded with building object, terrain object, and planar faces. The DSM is extracted from the stereo imagery by hierarchical semi-global matching (SGM). In the second step, a multi-channel change indicator is extracted between the 3D models and stereo images, considering the inherent geometric consistency (IGC), height difference, and texture similarity for each planar face. Each channel of the indicator is then clustered with the Self-organizing Map (SOM), with "change", "non-change" and "uncertain change" status labeled through a voting strategy. The "uncertain changes" are then determined with a Markov Random Field (MRF) analysis considering the geometric relationship between faces. In the third step, buildings are

  6. Modeling carbon dioxide emissions reductions for three commercial reference buildings in Salt Lake City

    Science.gov (United States)

    Lucich, Stephen M.

    In the United States, the buildings sector is responsible for approximately 40% of the national carbon dioxide (CO2) emissions. CO2 is created during the generation of heat and electricity, and has been linked to climate change, acid rain, a variety of health threats, surface water depletion, and the destruction of natural habitats. Building energy modeling is a powerful educational tool that building owners, architects, engineers, city planners, and policy makers can use to make informed decisions. The aim of this thesis is to simulate the reduction in CO2 emissions that may be achieved for three commercial buildings located in Salt Lake City, UT. The following two questions were used to guide this process: 1. How much can a building's annual CO2 emissions be reduced through a specific energy efficiency upgrade or policy? 2. How much can a building's annual CO2 emissions be reduced through the addition of a photovoltaic (PV) array? How large should the array be? Building energy simulations were performed with the Department of Energy's EnergyPlus software, commercial reference building models, and TMY3 weather data. The chosen models were a medium office building, a primary school, and a supermarket. Baseline energy consumption data were simulated for each model in order to identify changes that would have a meaningful impact. Modifications to the buildings construction and operation were considered before a PV array was incorporated. These modifications include (1) an improved building envelope, (2) reduced lighting intensity, and (3) modified HVAC temperature set points. The PV array sizing was optimized using a demand matching approach based on the method of least squares. The arrays tilt angle was optimized using the golden section search algorithm. Combined, energy efficiency upgrades and the PV array reduced building CO2 emissions by 58.6, 54.0, and 52.2% for the medium office, primary school, and supermarket, respectively. However, for these models, it was

  7. Albany/FELIX: a parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis

    Directory of Open Access Journals (Sweden)

    I. Kalashnikova

    2014-11-01

    Full Text Available This paper describes a new parallel, scalable and robust finite-element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and Template-Based Generic Programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, along with their implementation. The results of several verification studies of the model accuracy are presented using: (1 new test cases derived using the method of manufactured solutions, and (2 canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution is then studied on problems involving a realistic Greenland ice sheet geometry discretized using structured and unstructured meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.

  8. Scalable Video Transcaling for the Wireless Internet

    Directory of Open Access Journals (Sweden)

    Hayder Radha

    2004-03-01

    Full Text Available The rapid and unprecedented increase in the heterogeneity of multimedia networks and devices emphasizes the need for scalable and adaptive video solutions both for coding and transmission purposes. However, in general, there is an inherent trade-off between the level of scalability and the quality of scalable video streams. In other words, the higher the bandwidth variation, the lower the overall video quality of the scalable stream that is needed to support the desired bandwidth range. In this paper, we introduce the notion of wireless video transcaling (TS, which is a generalization of (nonscalable transcoding. With TS, a scalable video stream, that covers a given bandwidth range, is mapped into one or more scalable video streams covering different bandwidth ranges. Our proposed TS framework exploits the fact that the level of heterogeneity changes at different points of the video distribution tree over wireless and mobile Internet networks. This provides the opportunity to improve the video quality by performing the appropriate TS process. We argue that an Internet/wireless network gateway represents a good candidate for performing TS. Moreover, we describe hierarchical TS (HTS, which provides a “Transcaler” with the option of choosing among different levels of TS processes with different complexities. We illustrate the benefits of TS by considering the recently developed MPEG-4 fine granularity scalability (FGS video coding. Extensive simulation results of video TS over bit rate ranges supported by emerging wireless LANs are presented.

  9. Study of Surface Displacements on Tunnelling under Buildings Using 3DEC Numerical Modelling

    Science.gov (United States)

    Rebello, Nalini; Sastry, V. R.

    2014-01-01

    Underground structures at shallow depths are often constructed for metro lines, either in loose or dense layered soils. Tunnelling in urban areas is predominantly under surface structures and on tunnelling, innumerable changes in the form of distortion take place in strata surrounding the tunnel. Extent of displacement/damage to buildings or the tunnel-soil structure interaction depends on the type of building and nature of strata. Effect on displacements has been less studied in granular soils compared to other types of soils like clays. In this paper, parametric studies are conducted to find the displacements at surface, in granular soil conditions, due to varying building storeys and building eccentricities from the tunnel centre line. Effect of presence of geosynthetic layer under footings is further studied. Prior to the parametric studies, validity of the model used is checked with field data available for a stretch of tunnel in South India. Results of simulation studies reveal that inclusion of building reduces displacements at the surface in the dense strata. In very dense strata, the displacements increase as compared to the case without a building. As the centre of the building moves away from the tunnel centre line, settlement above the tunnel matches displacements in the case without building. Applicability of 3DEC software is checked with respect to the present study. PMID:27437472

  10. Bootstrap data methodology for sequential hybrid model building

    Science.gov (United States)

    Volponi, Allan J. (Inventor); Brotherton, Thomas (Inventor)

    2007-01-01

    A method for modeling engine operation comprising the steps of: 1. collecting a first plurality of sensory data, 2. partitioning a flight envelope into a plurality of sub-regions, 3. assigning the first plurality of sensory data into the plurality of sub-regions, 4. generating an empirical model of at least one of the plurality of sub-regions, 5. generating a statistical summary model for at least one of the plurality of sub-regions, 6. collecting an additional plurality of sensory data, 7. partitioning the second plurality of sensory data into the plurality of sub-regions, 8. generating a plurality of pseudo-data using the empirical model, and 9. concatenating the plurality of pseudo-data and the additional plurality of sensory data to generate an updated empirical model and an updated statistical summary model for at least one of the plurality of sub-regions.

  11. Mental models of a water management system in a green building.

    Science.gov (United States)

    Kalantzis, Anastasia; Thatcher, Andrew; Sheridan, Craig

    2016-11-01

    This intergroup case study compared users' mental models with an expert design model of a water management system in a green building. The system incorporates a constructed wetland component and a rainwater collection pond that together recycle water for re-use in the building and its surroundings. The sample consisted of five building occupants and the cleaner (6 users) and two experts who were involved with the design of the water management system. Users' mental model descriptions and the experts' design model were derived from in-depth interviews combined with self-constructed (and verified) diagrams. Findings from the study suggest that there is considerable variability in the user mental models that could impact the efficient functioning of the water management system. Recommendations for improvements are discussed.

  12. Mental models of a water management system in a green building.

    Science.gov (United States)

    Kalantzis, Anastasia; Thatcher, Andrew; Sheridan, Craig

    2016-11-01

    This intergroup case study compared users' mental models with an expert design model of a water management system in a green building. The system incorporates a constructed wetland component and a rainwater collection pond that together recycle water for re-use in the building and its surroundings. The sample consisted of five building occupants and the cleaner (6 users) and two experts who were involved with the design of the water management system. Users' mental model descriptions and the experts' design model were derived from in-depth interviews combined with self-constructed (and verified) diagrams. Findings from the study suggest that there is considerable variability in the user mental models that could impact the efficient functioning of the water management system. Recommendations for improvements are discussed. PMID:27126802

  13. Using Data Mining Techniques to Build a Classification Model for Predicting Employees Performance

    Directory of Open Access Journals (Sweden)

    Qasem A. Al-Radaideh

    2012-02-01

    Full Text Available Human capital is of a high concern for companies’ management where their most interest is in hiring the highly qualified personnel which are expected to perform highly as well. Recently, there has been a growing interest in the data mining area, where the objective is the discovery of knowledge that is correct and of high benefit for users. In this paper, data mining techniques were utilized to build a classification model to predict the performance of employees. To build the classification model the CRISP-DM data mining methodology was adopted. Decision tree was the main data mining tool used to build the classification model, where several classification rules were generated. To validate the generated model, several experiments were conducted using real data collected from several companies. The model is intended to be used for predicting new applicants’ performance.

  14. Model of Next Generation Energy-Efficient Design Software for Buildings

    Institute of Scientific and Technical Information of China (English)

    MA Zhiliang; ZHAO Yili

    2008-01-01

    Energy-efficient design for buildings (EEDB) is a vital step towards building energy-saving. In or-der to greatly improve the EEDB, the next generation EEDB software that makes use of latest technologies needs to be developed. This paper mainly focuses on establishing the model of the next generation EEDB software. Based on the investigation of literatures and the interviews to the designers, the requirements on the next generation EEDB software were identified, where the lifecycle assessment on both energy con-sumption and environmental impacts, 3D graphics support, and building information modeling (BIM) support were stressed. Then the workflow for using the next generation EEDB software was established. Finally,based on the workflow, the framework model for the software was proposed, and the partial models and the corresponding functions were systematically analyzed. The model lays a solid foundation for developing the next generation EEDB software.

  15. Automatic Generation of 3D Building Models for Sustainable Development

    OpenAIRE

    Sugihara, Kenichi

    2015-01-01

    3D city models are important in urban planning for sustainable development. Urban planners draw maps for efficient land use and a compact city. 3D city models based on these maps are quite effective in understanding what, if this alternative plan is realized, the image of a sustainable city will be. However, enormous time and labour has to be consumed to create these 3D models, using 3D modelling software such as 3ds Max or SketchUp. In order to automate the laborious steps, a GIS and CG inte...

  16. Using Python to Construct a Scalable Parallel Nonlinear Wave Solver

    KAUST Repository

    Mandli, Kyle

    2011-01-01

    Computational scientists seek to provide efficient, easy-to-use tools and frameworks that enable application scientists within a specific discipline to build and/or apply numerical models with up-to-date computing technologies that can be executed on all available computing systems. Although many tools could be useful for groups beyond a specific application, it is often difficult and time consuming to combine existing software, or to adapt it for a more general purpose. Python enables a high-level approach where a general framework can be supplemented with tools written for different fields and in different languages. This is particularly important when a large number of tools are necessary, as is the case for high performance scientific codes. This motivated our development of PetClaw, a scalable distributed-memory solver for time-dependent nonlinear wave propagation, as a case-study for how Python can be used as a highlevel framework leveraging a multitude of codes, efficient both in the reuse of code and programmer productivity. We present scaling results for computations on up to four racks of Shaheen, an IBM BlueGene/P supercomputer at King Abdullah University of Science and Technology. One particularly important issue that PetClaw has faced is the overhead associated with dynamic loading leading to catastrophic scaling. We use the walla library to solve the issue which does so by supplanting high-cost filesystem calls with MPI operations at a low enough level that developers may avoid any changes to their codes.

  17. Development of a Mobile Application for Building Energy Prediction Using Performance Prediction Model

    Directory of Open Access Journals (Sweden)

    Yu-Ri Kim

    2016-03-01

    Full Text Available Recently, the Korean government has enforced disclosure of building energy performance, so that such information can help owners and prospective buyers to make suitable investment plans. Such a building energy performance policy of the government makes it mandatory for the building owners to obtain engineering audits and thereby evaluate the energy performance levels of their buildings. However, to calculate energy performance levels (i.e., asset rating methodology, a qualified expert needs to have access to at least the full project documentation and/or conduct an on-site inspection of the buildings. Energy performance certification costs a lot of time and money. Moreover, the database of certified buildings is still actually quite small. A need, therefore, is increasing for a simplified and user-friendly energy performance prediction tool for non-specialists. Also, a database which allows building owners and users to compare best practices is required. In this regard, the current study developed a simplified performance prediction model through experimental design, energy simulations and ANOVA (analysis of variance. Furthermore, using the new prediction model, a related mobile application was also developed.

  18. An Automated BIM Model to Conceptually Design, Analyze, Simulate, and Assess Sustainable Building Projects

    Directory of Open Access Journals (Sweden)

    Farzad Jalaei

    2014-01-01

    Full Text Available Quantifying the environmental impacts and simulating the energy consumption of building’s components at the conceptual design stage are very helpful for designers needing to make decisions related to the selection of the best design alternative that would lead to a more energy efficient building. Building Information Modeling (BIM offers designers the ability to assess different design alternatives at the conceptual stage of the project so that energy and life cycle assessment (LCA strategies and systems are attained. This paper proposes an automated model that links BIM, LCA, energy analysis, and lighting simulation tools with green building certification systems. The implementation is within developing plug-ins on BIM tool capable of measuring the environmental impacts (EI and embodied energy of building components. Using this method, designers will be provided with a new way to visualize and to identify the potential gain or loss of energy for the building as a whole and for each of its associated components. Furthermore, designers will be able to detect and evaluate the sustainability of the proposed buildings based on Leadership in Energy and Environmental Design (LEED rating system. An actual building project will be used to illustrate the workability of the proposed methodology.

  19. The ORC method. Effective modelling of thermal performance of multilayer building components

    Energy Technology Data Exchange (ETDEWEB)

    Akander, Jan

    2000-02-01

    The ORC Method (Optimised RC-networks) provides a means of modelling one- or multidimensional heat transfer in building components, in this context within building simulation environments. The methodology is shown, primarily applied to heat transfer in multilayer building components. For multilayer building components, the analytical thermal performance is known, given layer thickness and material properties. The aim of the ORC Method is to optimise the values of the thermal resistances and heat capacities of an RC-model such as to give model performance a good agreement with the analytical performance, for a wide range of frequencies. The optimisation procedure is made in the frequency domain, where the over-all deviation between model and analytical frequency response, in terms of admittance and dynamic transmittance, is minimised. It is shown that ORC's are effective in terms of accuracy and computational time in comparison to finite difference models when used in building simulations, in this case with IDA/ICE. An ORC configuration of five mass nodes has been found to model building components in Nordic countries well, within the application of thermal comfort and energy requirement simulations. Simple RC-networks, such as the surface heat capacity and the simple R-C-configuration are not appropriate for detailed building simulation. However, these can be used as basis for defining the effective heat capacity of a building component. An approximate method is suggested on how to determine the effective heat capacity without the use of complex numbers. This entity can be calculated on basis of layer thickness and material properties with the help of two time constants. The approximate method can give inaccuracies corresponding to 20%. In-situ measurements have been carried out in an experimental building with the purpose of establishing the effective heat capacity of external building components that are subjected to normal thermal conditions. The auxiliary

  20. 一种基于可扩展核心式结构的Internet服务质量模型%A model of QoS of the Internet based on scalable core

    Institute of Scientific and Technical Information of China (English)

    袁晓斌; 杨福猛; 赵兴

    2001-01-01

    With the rapid development of the Internet,a series of architectures, which guarantee QoS, have been conceived. This paper discusses integrated services, differentiated services and other models, which are new architectures for guaranteeing the QoS. The characteristics of each model are compared and analyzed. Considering the influence of per flow state in networks on the quality of service, this paper puts forward a QoS model which provides a service with flexibility, scalability, robustness and better guarantee level. The model combines the virtue of integrated services and differentiated services. The implementing algorithm of the model is also presented.%随着Internet技术的迅速发展,一系列的服务质量(QoS)保证体系逐渐成为人们研究的热点。文章探讨了最新的综合服务、区分服务等一系列QoS的体系模型,对每种模型的特点进行了分析比较,并结合网络数据流的状态对QoS的影响,提出了一种使网络具有灵活性、可扩展性、鲁棒性和较高服务质量保证的QoS模型。该模型综合了集中服务和区分服务2种体系模型的优点,最后给出了该模型实现的算法。

  1. An endpoint damage oriented model for life cycle environmental impact assessment of buildings in China

    Institute of Scientific and Technical Information of China (English)

    GU LiJing; LIN BoRong; GU DaoJin; ZHU YingXin

    2008-01-01

    The midpoint impact assessment methodology and several weighting methods that are currently used by most building Life cycle assessment (LCA) researchers in China, still have some shortcomings. In order to make the evaluation results have better temporal and spatial applicability, the endpoint impact assessment methodology was adopted in this paper. Based on the endpoint damage oriented concept, four endpoints of resource exhaustion, energy exhaustion, human health damage and ecosystem damage were selected according to the situation of China and the specialties of the building industry. Subsequently the formula for calculating each endpoint, the background value for normalization and the weighting factors were defined. Following that, an endpoint damage oriented model to evaluate the life cycle environmental impact of buildings in China was established. This model can produce an integrated indicator for environmental impact, and consequently provides references for directing the sustainable building design.

  2. Model for Determining Geographical Distribution of Heat Saving Potentials in Danish Building Stock

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2014-01-01

    . A highly detailed model for determining heat demand, possible heat savings and associated costs in the Danish building stock is presented. Both scheduled and energy-saving renovations until year 2030 have been analyzed. The highly detailed GIS-based heat atlas for Denmark is used as a container for storing...... data about physical properties for 2.5 million buildings in Denmark. Consequently, the results of the analysis can be represented on a single building level. Under the assumption that buildings with the most profitable heat savings are renovated first, the consequences of heat savings for the economy...... and energy system have been quantified and geographically referenced. The possibilities for further improvements of the model and the application to other geographical regions have been discussed....

  3. Building an Integrative Model for Managing Exploratory Innovation

    DEFF Research Database (Denmark)

    Zarmeen, Parisha; Turri, Vanessa Gina; Sanchez, Ron

    2014-01-01

    Purpose: In this paper we develop an integrated model identifying the key factors involved in managing exploratory innovation processes while also maintaining current business models and processes. Methodology/approach: We first characterize the problem of innovation as consisting of “the four...... central problems” organizations face when trying to manage innovation processes (Van de Ven, 1986). We develop an enhanced version of O’Connor’s (2008) Discovery, Incubation and Acceleration (DIA) model by integrating elements of Sanchez’ (2012) theory of architectural isomorphism as well as Markides......’ (2008) framework for strategically assessing the benefits of segregation versus integration of innovation processes. We develop and apply our model working with managers in two company contexts to assure the ability of our Integrated Model to identify key organizational and strategic variables that need...

  4. Building a Multilevel Modeling Network for Lipid Processing Systems

    DEFF Research Database (Denmark)

    Diaz Tovar, Carlos Axel; Mustaffa, Azizul Azri; Hukkerikar, Amol;

    in the upcoming years major challenges in terms of design and development of better products and more sustainable processes. Although the oleo chemical industry is mature and based on well established processes, the complex systems that lipid compounds form, the lack of accurate predictive models...... for their physical properties and unit operation models for their processing have limited computer-aided methods and tools for process synthesis, modeling and simulation to be widely used for design, analysis, and optimization of these processes. The world’s fats and oils production has been growing rapidly over...... of better products and more sustainable processes. Although the oleo chemical industry is mature and based on well established processes, the complex systems that lipid compounds form, the lack of accurate predictive models for their physical properties and unit operation models for their processing have...

  5. Markovian Building Blocks for Individual-Based Modelling

    DEFF Research Database (Denmark)

    Nilsson, Lars Anders Fredrik

    2007-01-01

    The present thesis consists of a summary report, four research articles, one technical report and one manuscript. The subject of the thesis is individual-based stochastic models. The summary report is composed of three parts and a brief history of some basic models in population biology....... This history is included in order to provide a reader that has no previous exposure to models in population biology with a sufficient background to understand some of the biological models that are mentioned in the thesis. The first part of the rest of the summary is a description of the dramatic changes...... in the degree of aggregation of sprat or herring in the Baltic during the day, with special focus on the dispersion of the fish from schools at dusk. The next part is a brief introduction to Markovian arrival processes, a type of stochastic processes with potential applications as sub-models in population...

  6. Dynamics-based scalability of complex networks.

    Science.gov (United States)

    Huang, Liang; Lai, Ying-Cheng; Gatenby, Robert A

    2008-10-01

    We address the fundamental issue of network scalability in terms of dynamics and topology. In particular, we consider different network topologies and investigate, for every given topology, the dependence of certain dynamical properties on the network size. By focusing on network synchronizability, we find both analytically and numerically that globally coupled networks and random networks are scalable, but locally coupled regular networks are not. Scale-free networks are scalable for certain types of node dynamics. We expect our findings to provide insights into the ubiquity and workings of networks arising in nature and to be potentially useful for designing technological networks as well. PMID:18999478

  7. Image-Based Airborne LiDAR Point Cloud Encoding for 3d Building Model Retrieval

    Science.gov (United States)

    Chen, Yi-Chen; Lin, Chao-Hung

    2016-06-01

    With the development of Web 2.0 and cyber city modeling, an increasing number of 3D models have been available on web-based model-sharing platforms with many applications such as navigation, urban planning, and virtual reality. Based on the concept of data reuse, a 3D model retrieval system is proposed to retrieve building models similar to a user-specified query. The basic idea behind this system is to reuse these existing 3D building models instead of reconstruction from point clouds. To efficiently retrieve models, the models in databases are compactly encoded by using a shape descriptor generally. However, most of the geometric descriptors in related works are applied to polygonal models. In this study, the input query of the model retrieval system is a point cloud acquired by Light Detection and Ranging (LiDAR) systems because of the efficient scene scanning and spatial information collection. Using Point clouds with sparse, noisy, and incomplete sampling as input queries is more difficult than that by using 3D models. Because that the building roof is more informative than other parts in the airborne LiDAR point cloud, an image-based approach is proposed to encode both point clouds from input queries and 3D models in databases. The main goal of data encoding is that the models in the database and input point clouds can be consistently encoded. Firstly, top-view depth images of buildings are generated to represent the geometry surface of a building roof. Secondly, geometric features are extracted from depth images based on height, edge and plane of building. Finally, descriptors can be extracted by spatial histograms and used in 3D model retrieval system. For data retrieval, the models are retrieved by matching the encoding coefficients of point clouds and building models. In experiments, a database including about 900,000 3D models collected from the Internet is used for evaluation of data retrieval. The results of the proposed method show a clear superiority

  8. Using Data Mining Techniques to Build a Classification Model for Predicting Employees Performance

    OpenAIRE

    Qasem A. Al-Radaideh; Eman Al Nagi

    2012-01-01

    Human capital is of a high concern for companies’ management where their most interest is in hiring the highly qualified personnel which are expected to perform highly as well. Recently, there has been a growing interest in the data mining area, where the objective is the discovery of knowledge that is correct and of high benefit for users. In this paper, data mining techniques were utilized to build a classification model to predict the performance of employees. To build the classification m...

  9. An innovative training model for eco-building technologies in retrofitting.

    OpenAIRE

    Scartezzini, Jean-Louis; CECCHERINI Nelli, Lucia; Sala, Marco

    2015-01-01

    The innovative training model for eco-building technologies in retrofitting projects (founded by EU Commission in the IEE programme in the REE_TROFIT project http://www.reetrofit.eu/content.php) aims to contribute to solve the shortage of local qualified and accredited retrofitting experts, as foreseen in the EPBD and its recast - and as indicated by various European countries in an assessment by the EC - for increasing the energy performance of the existing building stock. The...

  10. Rethinking the contractual context for Building Information Modelling (BIM) in the Australian built environment industry

    OpenAIRE

    Ilsa Kuiper; Dominik Holzer

    2013-01-01

    Building Information Modelling (BIM) can be defined as a process of generating and managing information of a building or infrastructure during its life cycle. Whilst the 3D visualisation or dimensional functions of BIM are not necessarily new, it is the usage and integration of this information related to project delivery, management and performance analysis that are challenging current construction industry practices.  Industry has called for the development of more collaborative and integra...

  11. AN IMPROVED SNAKE MODEL FOR REFINEMENT OF LIDAR-DERIVED BUILDING ROOF CONTOURS USING AERIAL IMAGES

    OpenAIRE

    Chen, Qi; Wang, Shugen; Liu, Xiuguo

    2016-01-01

    Building roof contours are considered as very important geometric data, which have been widely applied in many fields, including but not limited to urban planning, land investigation, change detection and military reconnaissance. Currently, the demand on building contours at a finer scale (especially in urban areas) has been raised in a growing number of studies such as urban environment quality assessment, urban sprawl monitoring and urban air pollution modelling. LiDAR is known as an effect...

  12. Benefits of Building Information Modelling in the Project Lifecycle: Construction Projects in Asia

    OpenAIRE

    Jian Li; Ying Wang; Xiangyu Wang; Hanbin Luo; Shih-Chung Kang; Jun Wang; Jun Guo; Yi Jiao

    2014-01-01

    Building Information Modelling (BIM) is a process involving the creation and management of objective data with property, unique identity and relationship. In the Architecture, Engineering and Construction (AEC) industry, BIM is adopted a lot in the lifecycle of buildings because of the high integration of information that it enables. Four-dimensional (4D) computer-aided design (CAD) has been adopted for many years to improve the construction planning process. BIM is adopted throughout buildin...

  13. Modeling Data Center Building Blocks for Energy-efficiency and Thermal Simulations

    OpenAIRE

    Vor Dem Berge, Micha; Da Costa, Georges; Jarus, Mateusz; Oleksiak, Ariel; Piatek, Wojciech; Volk, Eugen

    2013-01-01

    In this paper we present a concept and specification of Data Center Efficiency Building Blocks (DEBBs), which represent hardware components of a data center complemented by descriptions of their energy efficiency. Proposed building blocks contain hardware and thermodynamic models that can be applied to simulate a data center and to evaluate its energy efficiency. DEBBs are available in an open repository being built by the CoolEmAll project. In the paper we illustrate the concept by an exampl...

  14. Identification of Torsionally Coupled Shear Buildings Models Using a Vector Parameterization

    OpenAIRE

    Concha, Antonio (impresor); Alvarez-Icaza, Luis

    2016-01-01

    A methodology to estimate the shear model of seismically excited, torsionally coupled buildings using acceleration measurements of the ground and floors is presented. A vector parameterization that considers Rayleigh damping for the building is introduced that allows identifying the stiffness/mass and damping/mass ratios of the structure, as well as their eccentricities and radii of gyration. This parameterization has the advantage that its number of parameters is smaller than that obtained w...

  15. Order selection of thermal models by frequency analysis of measurements for building energy efficiency estimation

    International Nuclear Information System (INIS)

    Highlights: • The partial differential heat equation is introduced in matrix representation. • The link between different representations of thermal models is presented. • Measurable variation of the output is considered for model order reduction. • Model order reduction can optimize building energy performance characterization. - Abstract: Experimental identification of the dynamic models of heat transfer in walls is needed for optimal control and characterization of building energy performance. These models use the heat equation in time domain which can be put in matrix form and then, through state-space representation, transformed in a transfer function which is of infinite order. However, the model acts as a low-pass filter and needs to respond only to the frequency spectrum present in the measured inputs. Then, the order of the transfer function can be determined by using the frequency spectrum of the measured inputs and the accuracy of the sensors. The main idea is that from two models of different orders, the one with a lower order can be used in building parameter identification, when the difference between the outputs is negligible or lower than the output measurement error. A homogeneous light wall is used as an example for a detailed study and examples of homogeneous building elements with very high and very low time constants are given. The first order model is compared with a very high order model (hundreds of states) which can be considered almost continuous in space

  16. Building new computational models to support health behavior change and maintenance: new opportunities in behavioral research.

    Science.gov (United States)

    Spruijt-Metz, Donna; Hekler, Eric; Saranummi, Niilo; Intille, Stephen; Korhonen, Ilkka; Nilsen, Wendy; Rivera, Daniel E; Spring, Bonnie; Michie, Susan; Asch, David A; Sanna, Alberto; Salcedo, Vicente Traver; Kukakfa, Rita; Pavel, Misha

    2015-09-01

    Adverse and suboptimal health behaviors and habits are responsible for approximately 40 % of preventable deaths, in addition to their unfavorable effects on quality of life and economics. Our current understanding of human behavior is largely based on static "snapshots" of human behavior, rather than ongoing, dynamic feedback loops of behavior in response to ever-changing biological, social, personal, and environmental states. This paper first discusses how new technologies (i.e., mobile sensors, smartphones, ubiquitous computing, and cloud-enabled processing/computing) and emerging systems modeling techniques enable the development of new, dynamic, and empirical models of human behavior that could facilitate just-in-time adaptive, scalable interventions. The paper then describes concrete steps to the creation of robust dynamic mathematical models of behavior including: (1) establishing "gold standard" measures, (2) the creation of a behavioral ontology for shared language and understanding tools that both enable dynamic theorizing across disciplines, (3) the development of data sharing resources, and (4) facilitating improved sharing of mathematical models and tools to support rapid aggregation of the models. We conclude with the discussion of what might be incorporated into a "knowledge commons," which could help to bring together these disparate activities into a unified system and structure for organizing knowledge about behavior. PMID:26327939

  17. Building Complex Models with LEGOs (Listener Event Graph Objects)

    OpenAIRE

    Buss, Arnold H.; Sanchez, Paul

    2002-01-01

    2002 Winter Simulation Conference Event Graphs are a simple and elegant language-independent way of representing a Discrete Event Simulation (DES) model. In this paper we propose an extension to basic Event Graphs that enables small models to be encapsulated in reusable modules called Listener Event Graph Objects (LEGOs). These modules are linked together using a design pattern from Object Oriented Programming called the “listener pattern” to produce new modules of eve...

  18. 3-D hydrodynamic modelling of flood impacts on a building and indoor flooding processes

    Science.gov (United States)

    Gems, Bernhard; Mazzorana, Bruno; Hofer, Thomas; Sturm, Michael; Gabl, Roman; Aufleger, Markus

    2016-06-01

    Given the current challenges in flood risk management and vulnerability assessment of buildings exposed to flood hazards, this study presents three-dimensional numerical modelling of torrential floods and its interaction with buildings. By means of a case study application, the FLOW-3D software is applied to the lower reach of the Rio Vallarsa torrent in the village of Laives (Italy). A single-family house on the flood plain is therefore considered in detail. It is exposed to a 300-year flood hydrograph. Different building representation scenarios, including an entire impervious building envelope and the assumption of fully permeable doors, light shafts and windows, are analysed. The modelling results give insight into the flooding process of the building's interior, the impacting hydrodynamic forces on the exterior and interior walls, and further, they quantify the impact of the flooding of a building on the flow field on the surrounding flood plain. The presented study contributes to the development of a comprehensive physics-based vulnerability assessment framework. For pure water floods, this study presents the possibilities and limits of advanced numerical modelling techniques within flood risk management and, thereby, the planning of local structural protection measures.

  19. Summary of best guidelines and validation of CFD modeling in livestock buildings to ensure prediction quality

    DEFF Research Database (Denmark)

    Rong, Li; Nielsen, Peter Vilhelm; Bjerg, Bjarne Schmidt;

    2016-01-01

    scale pig barns was simulated to show the procedures of validating a CFD simulation in livestock buildings. After summarizing the guideline and/or best practice for CFD modeling, the authors addressed the issues related to numerical methods and the governing equations, which were limited to RANS models....... Although it is not necessary to maintain the same format of reporting the CFD modeling as presented in this paper, the authors would suggest including all the information related to the selection of turbulence models, difference schemes, convergence criteria, boundary conditions, geometry simplification......Computational Fluid Dynamics (CFD) is increasingly used to study airflow around and in livestock buildings, to develop technologies to mitigate emissions and to predict the contaminant dispersion from livestock buildings. In this paper, an example of air flow distribution in a room with two full...

  20. Active Build-Model Random Forest Method for Network Traffic Classification

    Directory of Open Access Journals (Sweden)

    Alhamza Munther

    2014-05-01

    Full Text Available Network traffic classification continues to be an interesting subject among numerous networking communities. This method introduces multi-beneficial solutions in different avenues, such as network security, network management, anomaly detection, and quality-of-service. In this paper, we propose a supervised machine learning method that efficiently classifies different types of applications using the Active Build-Model Random Forest (ABRF method. This method constructs a new build model for the original Random Forest (RF method to decrease processing time. This build model includes only the active trees (i.e., trees with high accuracy, whereas the passive trees are excluded from the forest. The passive trees were excluded without any negative effect on classification accuracy. Results show that the ABRF method decreases the processing time by up to 37.5% compared with the original RF method. Our model has an overall accuracy of 98.66% based on the benchmark dataset considered in this paper.

  1. Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower

    International Nuclear Information System (INIS)

    Highlights: • Investigated cooling of thermally homeostatic buildings in 7 U.S. cities by modeling. • Natural energy is harnessed by cooling tower to extract heat for building cooling. • Systematically studied possibility and conditions of using cooling tower in buildings. • Diurnal ambient temperature amplitude is taken into account in cooling tower cooling. • Homeostatic building cooling is possible in locations with large ambient T amplitude. - Abstract: A case is made that while it is important to mitigate dissipative losses associated with heat dissipation and mechanical/electrical resistance for engineering efficiency gain, the “architect” of energy efficiency is the conception of best heat extraction frameworks—which determine the realm of possible efficiency. This precept is applied to building energy efficiency here. Following a proposed process assumption-based design method, which was used for determining the required thermal qualities of building thermal autonomy, this paper continues this line of investigation and applies heat extraction approach investigating the extent of building partial homeostasis and the possibility of full homeostasis by using cooling tower in one summer in seven selected U.S. cities. Cooling tower heat extraction is applied parametrically to hydronically activated radiant-surfaces model-buildings. Instead of sizing equipment as a function of design peak hourly temperature as it is done in heat balance design-approach of selecting HVAC equipment, it is shown that the conditions of using cooling tower depend on both “design-peak” daily-mean temperature and the distribution of diurnal range in hourly temperature (i.e., diurnal temperature amplitude). Our study indicates that homeostatic building with natural cooling (by cooling tower alone) is possible only in locations of special meso-scale climatic condition such as Sacramento, CA. In other locations the use of cooling tower alone can only achieve homeostasis

  2. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Balyk, Olexandr

    2013-01-01

    be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage...... options: passive heat storage in the building structure via radiator heating, active heat storage in concrete floors via floor heating, and use of thermal storage tanks for space heating and hot water. It is shown that the model is well qualified for analysing possibilities and system benefits...

  3. Building an Open Source Framework for Integrated Catchment Modeling

    Science.gov (United States)

    Jagers, B.; Meijers, E.; Villars, M.

    2015-12-01

    In order to develop effective strategies and associated policies for environmental management, we need to understand the dynamics of the natural system as a whole and the human role therein. This understanding is gained by comparing our mental model of the world with observations from the field. However, to properly understand the system we should look at dynamics of water, sediments, water quality, and ecology throughout the whole system from catchment to coast both at the surface and in the subsurface. Numerical models are indispensable in helping us understand the interactions of the overall system, but we need to be able to update and adjust them to improve our understanding and test our hypotheses. To support researchers around the world with this challenging task we started a few years ago with the development of a new open source modeling environment DeltaShell that integrates distributed hydrological models with 1D, 2D, and 3D hydraulic models including generic components for the tracking of sediment, water quality, and ecological quantities throughout the hydrological cycle composed of the aforementioned components. The open source approach combined with a modular approach based on open standards, which allow for easy adjustment and expansion as demands and knowledge grow, provides an ideal starting point for addressing challenging integrated environmental questions.

  4. Building a Shared Definitional Model of Long Duration Human Spaceflight

    Science.gov (United States)

    Orr, M.; Whitmire, A.; Sandoval, L.; Leveton, L.; Arias, D.

    2011-01-01

    In 1956, on the eve of human space travel Strughold first proposed a simple classification of the present and future stages of manned flight that identified key factors, risks and developmental stages for the evolutionary journey ahead. As we look to optimize the potential of the ISS as a gateway to new destinations, we need a current shared working definitional model of long duration human space flight to help guide our path. Initial search of formal and grey literature augmented by liaison with subject matter experts. Search strategy focused on both the use of term long duration mission and long duration spaceflight, and also broader related current and historical definitions and classification models of spaceflight. The related sea and air travel literature was also subsequently explored with a view to identifying analogous models or classification systems. There are multiple different definitions and classification systems for spaceflight including phase and type of mission, craft and payload and related risk management models. However the frequently used concepts of long duration mission and long duration spaceflight are infrequently operationally defined by authors, and no commonly referenced classical or gold standard definition or model of these terms emerged from the search. The categorization (Cat) system for sailing was found to be of potential analogous utility, with its focus on understanding the need for crew and craft autonomy at various levels of potential adversity and inability to gain outside support or return to a safe location, due to factors of time, distance and location.

  5. Pseudo-Bond Graph model for the analysis of the thermal behavior of buildings

    Directory of Open Access Journals (Sweden)

    Merabtine Abdelatif

    2013-01-01

    Full Text Available In this work, a simplified graphical modeling tool, which in some extent can be considered in halfway between detailed physical and Data driven dynamic models, has been developed. This model is based on Bond Graphs approach. This approach has the potential to display explicitly the nature of power in a building system, such as a phenomenon of storage, processing and dissipating energy such as Heating, Ventilation and Air-Conditioning (HVAC systems. This paper represents the developed models of the two transient heat conduction problems corresponding to the most practical cases in building envelope, such as the heat transfer through vertical walls, roofs and slabs. The validation procedure consists of comparing the results obtained with this model with analytical solution. It has shown very good agreement between measured data and Bond Graphs model simulation. The Bond Graphs technique is then used to model the building dynamic thermal behavior over a single zone building structure and compared with a set of experimental data. An evaluation of indoor temperature was carried out in order to check our Bond Graphs model.

  6. Building a model based on scientific consensus for Life Cycle Impact Assessment of chemicals:

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Huijbregts, Mark; Jolliet, Olivier;

    2008-01-01

    Achieving consensus among scientists is often a challenge - particularly in model development. In this article we describe a recent scientific consensus-building process for Life Cycle Impact Assessment (LCIA) models applied to chemical emissions - including the strategy, execution, and results...

  7. D3-Brane Model Building and the Supertrace Rule.

    Science.gov (United States)

    Bena, Iosif; Graña, Mariana; Kuperstein, Stanislav; Ntokos, Praxitelis; Petrini, Michela

    2016-04-01

    A common way to obtain standard-model-like Lagrangians in string theory is to place D3-branes inside flux compactifications. The bosonic and fermionic masses and couplings of the resulting gauge theory are determined by the ten-dimensional metric and the fluxes, respectively, and the breaking of supersymmetry is soft. However, not any soft-supersymmetry-breaking Lagrangian can be obtained this way since the string theory equations of motion impose certain relations between the soft couplings. We show that for D3-branes in background fluxes, these relations imply that the sums of the squares of the boson and of the fermion masses are equal and that, furthermore, one- and two-loop quantum corrections do not spoil this equality. This makes the use of D3-branes for constructing computationally controllable models for physics beyond the standard model problematic. PMID:27104696

  8. Using data mining techniques for building fusion models

    Science.gov (United States)

    Zhang, Zhongfei; Salerno, John J.; Regan, Maureen A.; Cutler, Debra A.

    2003-03-01

    Over the past decade many techniques have been developed which attempt to predict possible events through the use of given models or patterns of activity. These techniques work quite well given the case that one has a model or a valid representation of activity. However, in reality for the majority of the time this is not the case. Models that do exist, in many cases were hand crafted, required many man-hours to develop and they are very brittle in the dynamic world in which we live. Data mining techniques have shown some promise in providing a set of solutions. In this paper we will provide the details for our motivation, theory and techniques which we have developed, as well as the results of a set of experiments.

  9. D3-Brane Model Building and the Supertrace Rule.

    Science.gov (United States)

    Bena, Iosif; Graña, Mariana; Kuperstein, Stanislav; Ntokos, Praxitelis; Petrini, Michela

    2016-04-01

    A common way to obtain standard-model-like Lagrangians in string theory is to place D3-branes inside flux compactifications. The bosonic and fermionic masses and couplings of the resulting gauge theory are determined by the ten-dimensional metric and the fluxes, respectively, and the breaking of supersymmetry is soft. However, not any soft-supersymmetry-breaking Lagrangian can be obtained this way since the string theory equations of motion impose certain relations between the soft couplings. We show that for D3-branes in background fluxes, these relations imply that the sums of the squares of the boson and of the fermion masses are equal and that, furthermore, one- and two-loop quantum corrections do not spoil this equality. This makes the use of D3-branes for constructing computationally controllable models for physics beyond the standard model problematic.

  10. A Caveat on Building Nonlocal Models of Cosmology

    CERN Document Server

    Tsamis, N C

    2014-01-01

    Nonlocal models of cosmology might derive from graviton loop corrections to the effective field equations from the epoch of primordial inflation. Although the Schwinger-Keldysh formalism would automatically produce causal and conserved effective field equations, the models so far proposed have been purely phenomenological. Two techniques have been employed to generate causal and conserved field equations: either varying an invariant nonlocal effective action and then enforcing causality by the ad hoc replacement of any advanced Green's function with its retarded counterpart, or else introducing causal nonlocality into a general ansatz for the field equations and then enforcing conservation. We point out here that the two techniques access very different classes of models, and that neither one of them may represent what would actually arise from fundamental theory.

  11. Building v/s Exploring Models: Comparing Learning of Evolutionary Processes through Agent-based Modeling

    Science.gov (United States)

    Wagh, Aditi

    Two strands of work motivate the three studies in this dissertation. Evolutionary change can be viewed as a computational complex system in which a small set of rules operating at the individual level result in different population level outcomes under different conditions. Extensive research has documented students' difficulties with learning about evolutionary change (Rosengren et al., 2012), particularly in terms of levels slippage (Wilensky & Resnick, 1999). Second, though building and using computational models is becoming increasingly common in K-12 science education, we know little about how these two modalities compare. This dissertation adopts agent-based modeling as a representational system to compare these modalities in the conceptual context of micro-evolutionary processes. Drawing on interviews, Study 1 examines middle-school students' productive ways of reasoning about micro-evolutionary processes to find that the specific framing of traits plays a key role in whether slippage explanations are cued. Study 2, which was conducted in 2 schools with about 150 students, forms the crux of the dissertation. It compares learning processes and outcomes when students build their own models or explore a pre-built model. Analysis of Camtasia videos of student pairs reveals that builders' and explorers' ways of accessing rules, and sense-making of observed trends are of a different character. Builders notice rules through available blocks-based primitives, often bypassing their enactment while explorers attend to rules primarily through the enactment. Moreover, builders' sense-making of observed trends is more rule-driven while explorers' is more enactment-driven. Pre and posttests reveal that builders manifest a greater facility with accessing rules, providing explanations manifesting targeted assembly. Explorers use rules to construct explanations manifesting non-targeted assembly. Interviews reveal varying degrees of shifts away from slippage in both

  12. Nonlinear dynamic experiments and analysis of embedded building model

    International Nuclear Information System (INIS)

    Shaking table tests on a simplified model were conducted to confirm the dynamic response of an embedded structure resulting from the plasticity of the surrounding soil and the nonlinear dynamic earth pressure acting on the embedded walls of the structure. This paper presents a new analytical method of finding the dynamic nonlinear response of an embedded structure. In this method, the plasticity of the surrounding soil and the geometrical nonlinearity at the interface of the structure and the soil are simultaneously considered. This method can simulate the nonlinear dynamic earth pressure on the underground walls of the structure model observed in the shaking table tests

  13. Building Context with Tumor Growth Modeling Projects in Differential Equations

    Science.gov (United States)

    Beier, Julie C.; Gevertz, Jana L.; Howard, Keith E.

    2015-01-01

    The use of modeling projects serves to integrate, reinforce, and extend student knowledge. Here we present two projects related to tumor growth appropriate for a first course in differential equations. They illustrate the use of problem-based learning to reinforce and extend course content via a writing or research experience. Here we discuss…

  14. Policy Building--An Extension to User Modeling

    Science.gov (United States)

    Yudelson, Michael V.; Brunskill, Emma

    2012-01-01

    In this paper we combine a logistic regression student model with an exercise selection procedure. As opposed to the body of prior work on strategies for selecting practice opportunities, we are working on an assumption of a finite amount of opportunities to teach the student. Our goal is to prescribe activities that would maximize the amount…

  15. Assessing Graduate Attributes: Building a Criteria-Based Competency Model

    Science.gov (United States)

    Ipperciel, Donald; ElAtia, Samira

    2014-01-01

    Graduate attributes (GAs) have become a necessary framework of reference for the 21st century competency-based model of higher education. However, the issue of evaluating and assessing GAs still remains unchartered territory. In this article, we present a criteria-based method of assessment that allows for an institution-wide comparison of the…

  16. Building Mathematics Achievement Models in Four Countries Using TIMSS 2003

    Science.gov (United States)

    Wang, Ze; Osterlind, Steven J.; Bergin, David A.

    2012-01-01

    Using the Trends in International Mathematics and Science Study 2003 data, this study built mathematics achievement models of 8th graders in four countries: the USA, Russia, Singapore and South Africa. These 4 countries represent the full spectrum of mathematics achievement. In addition, they represent 4 continents, and they include 2 countries…

  17. Building Bridges between Neuroscience, Cognition and Education with Predictive Modeling

    Science.gov (United States)

    Stringer, Steve; Tommerdahl, Jodi

    2015-01-01

    As the field of Mind, Brain, and Education seeks new ways to credibly bridge the gap between neuroscience, the cognitive sciences, and education, various connections are being developed and tested. This article presents a framework and offers examples of one approach, predictive modeling within a virtual educational system that can include…

  18. Leveraging Cloud Technology to Provide a Responsive, Reliable and Scalable Backend for the Virtual Ice Sheet Laboratory Using the Ice Sheet System Model and Amazon's Elastic Compute Cloud

    Science.gov (United States)

    Perez, G. L.; Larour, E. Y.; Halkides, D. J.; Cheng, D. L. C.

    2015-12-01

    The Virtual Ice Sheet Laboratory(VISL) is a Cryosphere outreach effort byscientists at the Jet Propulsion Laboratory(JPL) in Pasadena, CA, Earth and SpaceResearch(ESR) in Seattle, WA, and the University of California at Irvine (UCI), with the goal of providing interactive lessons for K-12 and college level students,while conforming to STEM guidelines. At the core of VISL is the Ice Sheet System Model(ISSM), an open-source project developed jointlyat JPL and UCI whose main purpose is to model the evolution of the polar ice caps in Greenland and Antarctica. By using ISSM, VISL students have access tostate-of-the-art modeling software that is being used to conduct scientificresearch by users all over the world. However, providing this functionality isby no means simple. The modeling of ice sheets in response to sea and atmospheric temperatures, among many other possible parameters, requiressignificant computational resources. Furthermore, this service needs to beresponsive and capable of handling burst requests produced by classrooms ofstudents. Cloud computing providers represent a burgeoning industry. With majorinvestments by tech giants like Amazon, Google and Microsoft, it has never beeneasier or more affordable to deploy computational elements on-demand. This isexactly what VISL needs and ISSM is capable of. Moreover, this is a promisingalternative to investing in expensive and rapidly devaluing hardware.

  19. Scalable Predictive Analysis in Critically Ill Patients Using a Visual Open Data Analysis Platform.

    Directory of Open Access Journals (Sweden)

    Sven Van Poucke

    Full Text Available With the accumulation of large amounts of health related data, predictive analytics could stimulate the transformation of reactive medicine towards Predictive, Preventive and Personalized (PPPM Medicine, ultimately affecting both cost and quality of care. However, high-dimensionality and high-complexity of the data involved, prevents data-driven methods from easy translation into clinically relevant models. Additionally, the application of cutting edge predictive methods and data manipulation require substantial programming skills, limiting its direct exploitation by medical domain experts. This leaves a gap between potential and actual data usage. In this study, the authors address this problem by focusing on open, visual environments, suited to be applied by the medical community. Moreover, we review code free applications of big data technologies. As a showcase, a framework was developed for the meaningful use of data from critical care patients by integrating the MIMIC-II database in a data mining environment (RapidMiner supporting scalable predictive analytics using visual tools (RapidMiner's Radoop extension. Guided by the CRoss-Industry Standard Process for Data Mining (CRISP-DM, the ETL process (Extract, Transform, Load was initiated by retrieving data from the MIMIC-II tables of interest. As use case, correlation of platelet count and ICU survival was quantitatively assessed. Using visual tools for ETL on Hadoop and predictive modeling in RapidMiner, we developed robust processes for automatic building, parameter optimization and evaluation of various predictive models, under different feature selection schemes. Because these processes can be easily adopted in other projects, this environment is attractive for scalable predictive analytics in health research.

  20. Scalable Predictive Analysis in Critically Ill Patients Using a Visual Open Data Analysis Platform.

    Science.gov (United States)

    Van Poucke, Sven; Zhang, Zhongheng; Schmitz, Martin; Vukicevic, Milan; Laenen, Margot Vander; Celi, Leo Anthony; De Deyne, Cathy

    2016-01-01

    With the accumulation of large amounts of health related data, predictive analytics could stimulate the transformation of reactive medicine towards Predictive, Preventive and Personalized (PPPM) Medicine, ultimately affecting both cost and quality of care. However, high-dimensionality and high-complexity of the data involved, prevents data-driven methods from easy translation into clinically relevant models. Additionally, the application of cutting edge predictive methods and data manipulation require substantial programming skills, limiting its direct exploitation by medical domain experts. This leaves a gap between potential and actual data usage. In this study, the authors address this problem by focusing on open, visual environments, suited to be applied by the medical community. Moreover, we review code free applications of big data technologies. As a showcase, a framework was developed for the meaningful use of data from critical care patients by integrating the MIMIC-II database in a data mining environment (RapidMiner) supporting scalable predictive analytics using visual tools (RapidMiner's Radoop extension). Guided by the CRoss-Industry Standard Process for Data Mining (CRISP-DM), the ETL process (Extract, Transform, Load) was initiated by retrieving data from the MIMIC-II tables of interest. As use case, correlation of platelet count and ICU survival was quantitatively assessed. Using visual tools for ETL on Hadoop and predictive modeling in RapidMiner, we developed robust processes for automatic building, parameter optimization and evaluation of various predictive models, under different feature selection schemes. Because these processes can be easily adopted in other projects, this environment is attractive for scalable predictive analytics in health research. PMID:26731286