WorldWideScience

Sample records for building materials

  1. Building Materials

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Building Materials Sub-council of CCPIT is the other sub-council in construction field. CCPIT Building Materials Sub-council (CCPITBM), as well as CCOIC Build-ing Materials Chamber of Commerce, is au-thorized by CCPIT and state administration of building materials industry in 1992. CCPITBM is a sub-organization of CCPIT and CCOIC.

  2. Building Materials in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2005-01-01

    Building in the artic requires special attention on the appropriateness of building materials. The harsh climate makes execution difficult and sets unusual requirements for the pure material properties. In addition, there is a lack of choice of good, natural building materials in the arctic....... This results in high transport costs. The building materials situation in Greenland may potentially be improved by intensifying the reuse of building materials or by promoting the local production of building materials....

  3. Mycotoxins in building materials

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Frisvad, Jens Christian

    2011-01-01

    as in future energy efficient buildings. It brings together different disciplinary points of view on indoor mold, ranging from physics and material science to microbiology and health sciences. The contents have been outlined according to three main issues: Fundamentals, particularly addressing the crucial...... for avoiding adverse health effects is the prevention (or minimization) of persistent dampness and microbial growth on interior surfaces and in building structures. This book aims to describe the fundamentals of indoor mold growth as a prerequisite to tackle mold growth in the existing building stock as well...

  4. BUILDING MATERIALS RECLAMATION PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

    2010-08-31

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

  5. Material Efficiency of Building Construction

    Directory of Open Access Journals (Sweden)

    Antti Ruuska

    2014-07-01

    Full Text Available Better construction and use of buildings in the European Union would influence 42% of final energy consumption, about 35% of our greenhouse gas emissions and more than 50% of all extracted materials. It could also help to save up to 30% of water consumption. This paper outlines and draws conclusions about different aspects of the material efficiency of buildings and assesses the significance of different building materials on the material efficiency. The research uses an extensive literature study and a case-study in order to assess: should the depletion of materials be ignored in the environmental or sustainability assessment of buildings, are the related effects on land use, energy use and/or harmful emissions significant, should related indicators (such as GHGs be used to indicate the material efficiency of buildings, and what is the significance of scarce materials, compared to the use of other building materials. This research suggests that the material efficiency should focus on the significant global impacts of material efficiency; not on the individual factors of it. At present global warming and greenhouse gas emissions are among the biggest global problems on which material efficiency has a direct impact on. Therefore, this paper suggests that greenhouse gas emissions could be used as an indicator for material efficiency in building.

  6. Frost resistance of building materials

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    In this thesis it is shown that the critical degree of saturation is suitable as parameter for the frost resistance of porous building materials. A numerical model for prediction of critical degrees of saturation based on fracture mechanics and phase geometry of two-phase materials, e.g. porous...... materials, has been developed.The importance of the pore structure on the development of stresses in the material during freezing is emphasized. To verify the model, experimental investigations are made on various concretes without air-entrainment and brick tiles with different porosities...

  7. Daylight as a building material

    DEFF Research Database (Denmark)

    Thule Kristensen, Peter; Madsen, Merete

    2005-01-01

    The article draws on examples to chronologically trace the use of daylight as building material in architecture of the 20th and early 21st century. The essay covers works of Mies van der Rohe, Le Corbusier, Erik Bryggman, Rudolf Schwarz, Alvar Aalto, Aldo Rossi, Jørn Utzon, Daniel Libeskind, Peter...

  8. Brief Discussion on Green Building Materials

    Science.gov (United States)

    Cai, Jia-wei; Sun, Jian

    2014-08-01

    With more and more emphasizes on the environment and resources, the concept of green buildings has been widely accepted. Building materials are vectors of architectures, only if green building materials and related technical means are used, can we construct green buildings to achieve the purpose of energy conservation and environmental protection. This paper introduces the relationship between green building materials and green buildings, the current situation of green building materials in China, as well as the measures to accelerate the development of green building materials.

  9. Radon Exhalation Considered in Building Material Standard

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>In order to investigate the relationship between radon exhalation and specific activity of natural nuclides in building material, here different kinds of samples of building materials were measured by the

  10. MOISTURE-BUFFERING CHARACTERISTICS OF BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Young Cheol Choi

    2016-05-01

    Full Text Available The humidity level of indoor air is an important factor influencing the air quality and energy consumption of buildings, as well as the durability of building components. Indoor humidity levels depend on several factors, such as moisture sources, air flow, and the adsorption/desorption properties of materials. The moisture-buffering characteristics of building materials that are in contact with indoor air may help moderate the variations of indoor humidity, especially in the summer and winter. In this study, the moisture adsorption/desorption properties of building materials were investigated experimentally and numerically. These properties can be used to characterize the ability of building materials to exchange moisture with the indoor environment. This study indicates that a building material surface resistivity was the main factor creating variations of moisture buffering.

  11. [Technology transfer of building materials by ECOMAT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report discusses the plan for technology transfer of building materials developed by ECOMAT to the commercial private sector. Some of the materials are briefly discussed like foams, fiber reinforcement, fly ash development, and polymer fillers.

  12. Matching designs with building materials (BYGMATCH)

    DEFF Research Database (Denmark)

    Andersen, Tom

    1999-01-01

    The paper presents a knowledge based approach to mathching design descriptions with proper building materials. It is based on a prototype system developed in KAPPA-PC......The paper presents a knowledge based approach to mathching design descriptions with proper building materials. It is based on a prototype system developed in KAPPA-PC...

  13. Moisture Buffer Value of Building Materials

    DEFF Research Database (Denmark)

    Rode, Carsten; Peuhkuri, Ruut; Time, Berit

    2007-01-01

    When building materials are in contact with indoor air they have some effect to moderate the variations of indoor humidity in occupied buildings. But so far there has been a lack of a standardized quantity to characterize the moisture buffering capability of materials. It has been the objective o...... is a test protocol which expresses how materials should be tested for determination of their Moisture Buffer Value. Finally, the paper presents some of the results of a Round Robin Test on various typical building materials that has been carried out in the project....

  14. Sustainable Non-Metallic Building Materials

    Directory of Open Access Journals (Sweden)

    Svetlana Tretsiakova-McNally

    2010-01-01

    Full Text Available Buildings are the largest energy consumers and greenhouse gases emitters, both in the developed and developing countries. In continental Europe, the energy use in buildings alone is responsible for up to 50% of carbon dioxide emission. Urgent changes are, therefore, required relating to energy saving, emissions control, production and application of materials, use of renewable resources, and to recycling and reuse of building materials. In addition, the development of new eco-friendly building materials and practices is of prime importance owing to the growing environmental concerns. This review reflects the key tendencies in the sector of sustainable building materials of a non-metallic nature that have occurred over the past decade or so.

  15. Human exposure to emissions from building materials

    DEFF Research Database (Denmark)

    Kjærgaard, Søren K.; Hauschildt, P.; Pejtersen, J.

    1999-01-01

    Objectives. Reactions to emissions from building matrials were studied in a climate chamber as part of an intervention study in an office building. New and existing flooring materials were compared with regard to comfort and health.Methods. Twenty subjects were exposed four times for six hours...... effects by linoleum and carpet used and that changing to vinyl flooring may reduce these....

  16. Environmental Radiation Hazards of Building Materials

    Directory of Open Access Journals (Sweden)

    Amal A. Nasser

    2012-11-01

    Full Text Available In the last few decades, the importance of studying the environmental impact of building material properties grew. The main focus was to study physical, mechanical and chemical characteristics of building materials. Buildings are the environment that a human spend about 80% of his life. Human exposure to radiation doses emerging from natural and manufactured building materials caused serious diseases. The hazard of radiation doses on human body, especially Radon, was discovered. Radon is produced of the radioactive decay of Uranium and Thorium series. It is a colorless, odorless and tasteless gas. It inters human body by breathing and produces harmful radioactive elements. It has become a goal to know the limits of safety for building materials and to establish green buildings. Health and environmental risks have to take first command in the construction field to take proper precautions to ward off risks. Radon emission was investigated. The radioactive concentration of indoor air may be decreased under the permissible doses by the building geometry variation and other ways as reviewed in this investigation.

  17. Natural Radioactivity of Some Mongolian Building Materials

    CERN Document Server

    Gerbish, S; Ganchimeg, G

    2000-01-01

    The natural radioactivity of some building materials used in cities of Darkhan, Ulaanbaatar and Erdenet in Mongolia was measured by gamma-ray spectrometry with HP-Ge-detector. The radium equivalent concentration and the gamma absorbed dose rate in air, were estimated as the external and internal hazard indices. The results indicate that these materials are not a major source of exposure.

  18. Radioactivity in building materials in Iraq.

    Science.gov (United States)

    Ali, Kamal K

    2012-02-01

    Activity concentrations of (226)Ra, (232)Th and (40)K in 45 samples of different building materials used in Iraq were measured using gamma-spectroscopy system based on high-purity germanium detector with an efficiency of 40 %. Radium equivalent activity, air-absorbed dose rate, annual effective dose, external and internal hazard indices and alpha index due to radon inhalation originating from building materials were measured to assess the potential radiological hazard associated with these building materials. The activity concentrations of the natural radionuclides (226)Ra, (232)Th and 40K were found to range from below detection limit (BDL) to 223.7 ± 9, BDL to 93.0 ± 3 and BDL to 343.1 ± 12, respectively. Values of average radium equivalent activity, air-absorbed dose rate, indoor and outdoor annual effective doses, external and internal hazard indices and alpha index ranged from 6.5 to 124.9, 16.2 to 89.5 (nGy h(-1)), 0.08 to 0.44 mSv, 0.02-0.11 mSv, 0.09 to 0.53, 0.13 to 0.69 and 0.03 to 0.62, respectively. These values indicate a low dose. Therefore, the building materials used in the current study are quite safe to be used as building materials.

  19. Functional materials for energy-efficient buildings

    Directory of Open Access Journals (Sweden)

    Ebert H.-P

    2015-01-01

    Full Text Available The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  20. Functional materials for energy-efficient buildings

    Science.gov (United States)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  1. Durability of building materials and components

    CERN Document Server

    Delgado, JMPQ

    2013-01-01

    Durability of Building Materials and Components provides a collection of recent research works to contribute to the systematization and dissemination of knowledge related to the long-term performance and durability of construction and, simultaneously, to show the most recent advances in this domain. It includes a set of new developments in the field of durability, service life prediction methodologies, the durability approach for historical and old buildings, asset and maintenance management and on the durability of materials, systems and components. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.

  2. A drying coefficient for building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2009-01-01

    The drying experiment is an important element of the hygrothermal characterisation of building materials. Contrary to other moisture transport experiments as the vapour diffusion and the water absorption test, it is until now not possible to derive a simple coefficient for the drying. However...... coefficient is defined which can be determined based on measured drying data. The correlation of this coefficient with the water absorption and the vapour diffusion coefficient is analyzed and its additional information content is critically challenged. As result, a drying coefficient has been derived...... and defined as a new and independent material parameter. It contains information about the moisture transport properties throughout the wide range of moisture contents from hygroscopic up to saturation. With this new and valuable coefficient, it is now possible to distinguish and select building materials...

  3. Drying kinetics of some building materials

    Directory of Open Access Journals (Sweden)

    A. Moropoulou

    2005-06-01

    Full Text Available Moisture is one of the most deteriorating factors of buildings. The deteriorating effect of moisture occurs mainly during the drying phase, and not in the wetting phase. Appropriate parameters of the drying kinetics are required for the building materials. Environmental factors, such as air temperature, air humidity, and air velocity affect drying. An experimental air dryer of controlled drying air conditions was used to investigate the drying performance of 4 stone materials, 2 bricks and 7 plasters. Drying kinetics was examined at 4 air temperatures, 6 air humidities, and 3 air velocities. A first-order kinetics model was obtained, in which the drying time constant was a function of the drying conditions, and the equilibrium material moisture content was described by the Oswin equation. The parameters of the proposed model were found to be affected strongly by the material and the drying air conditions. The results obtained are very useful in selecting the appropriate plaster to protect existing historic buildings.

  4. GEOMAGNETIC PROSPECTING FOR DEPOSITS OF BUILDING MATERIALS

    OpenAIRE

    Željko Zagorac; Franjo Šumanovac

    1990-01-01

    Some characteristic examples are given of the magnetic prospecting for the rocks used as building materials. Conclusions are drawn about the applicability of the magnetic method for this purpose. Method proved to be very speedy and inexpensive, it gives important informations on the extension, position and depth of the magnetic rock. The quality of the rock is better determined by other methods (the paper is published in Croatian).

  5. Preservation of adobe buildings. Study of materials

    Science.gov (United States)

    Velosa, A.; Rocha, F.; Costa, C.; Varum, H.

    2012-04-01

    Adobe buildings are common in the central region of Portugal due to the lack of natural stone in the surrounding area. This type of construction technique lasted until the 20th Century, at which time cementitious materials, with faster hardening and greater structural capacity substituted traditional materials and techniques. Currently, a significant percentage of these buildings is vacant and many are degraded and in need of conservation actions. Adobes from central Portugal are distinctive as they are lightly coloured and made from air lime and quarry sand. Although some adobes were manufactured locally, most were produced almost 'industrially' and sold to nearby regions. In order to preserve this heritage, conservation actions must be undertaken. So as to ensure the adequacy of these actions and compatibility between original materials and new ones, a thorough study of adobe compostion is mandatory. The current study is an initial step in the characterization of earth based construction materials from central Portugal. Adobe samples were collected from residential buildings in two different locations. The determination of the composition of adobe blocks encompassed the determination of the binder fraction and of their chemical composition and also the particle size analysis of the aggregate. For this purpose FRX analysis, acid dissolution and dry sieving were performed. Methylene blue test was also executed in order to determine the clay fraction. Additionally, the mineral composition of powder samples and oriented samples was performed using XRD analysis in order to determine the clay minerals present in the blocks. As adobe blocks are extremely prone to the action of water the Geelong test was undertaken in order to provide information in terms of durability. It was concluded that air lime was generally used in adobe compositions. However, the clay content varies in adobes from different regions, providing distinct durability characteristics to these materials.

  6. Ozone removal by green building materials

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Chi P.; Kinney, Kerry A.; Corsi, Richard L. [Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 1 University Station (C1786), Austin, TX 78712 (United States)

    2009-08-15

    Interest in finding out passive ways to keep the variation in the indoor climate within the comfort zone is gaining in popularity. One possible solution is the use of the moisture-buffering property of materials. In this study, the effects of the ventilation system and moisture-buffering properties of the building fabric on the stability of the indoor temperature and humidity are analysed by means of long-term field measurements. Indoor climate measurements were carried out in 170 detached houses (248 rooms). Temperature and relative humidity were measured continuously in bedrooms and living rooms at one-hour intervals over a one-year period. In general, it may be concluded that in this study, the ventilation had a greater effect on the indoor climate than the properties of the building fabric. The dampening effect of hygroscopic materials was remarkably less in the field measurements than it was in simulations in different studies. This indicates that completely non-hygroscopic and fully hygroscopic houses do not exist in reality. The hygroscopic mass of furniture, textiles, etc. is probably a factor that plays a significant role in indoor humidity, as do real air change rates, including window airing. Simulation tools need to be modified in order to be able also to handle furniture, textiles, and books, etc. (author) There is a rapidly expanding market for green building materials. Such materials are intended to be environmentally friendly, with such characteristics as low toxicity, minimal chemical emissions, ability to be recycled, and durability. In addition, green materials often contain recycled and/or bio-based contents. Consequently, some green materials may undergo significant oxidation with potential for reduction of indoor ozone. In this study, 48-L electro-polished stainless steel chambers were used to study the reactive consumption of ozone by ten common green wall, flooring, ceiling, and cabinetry materials (perlite-based ceiling tile, unglazed

  7. Integrating Sustainable Construction Materials to Achieve Green Building

    Directory of Open Access Journals (Sweden)

    Abdelmajeed H. Kasassbeh

    2015-07-01

    Full Text Available Green buildings integrate building materials and methods that promote environmental quality, economic vitality and social benefits through the design, construction and operation of the built environment. This study demonstrates potential actions including material selection that can be implemented to achieve green building. Also, we discuss the importance and environmental impact of sustainable material, the selection criteria of these materials and the different types of sustainable materials in the buildings construction in Jordan.

  8. ICAN Computer Code Adapted for Building Materials

    Science.gov (United States)

    Murthy, Pappu L. N.

    1997-01-01

    The NASA Lewis Research Center has been involved in developing composite micromechanics and macromechanics theories over the last three decades. These activities have resulted in several composite mechanics theories and structural analysis codes whose applications range from material behavior design and analysis to structural component response. One of these computer codes, the Integrated Composite Analyzer (ICAN), is designed primarily to address issues related to designing polymer matrix composites and predicting their properties - including hygral, thermal, and mechanical load effects. Recently, under a cost-sharing cooperative agreement with a Fortune 500 corporation, Master Builders Inc., ICAN was adapted to analyze building materials. The high costs and technical difficulties involved with the fabrication of continuous-fiber-reinforced composites sometimes limit their use. Particulate-reinforced composites can be thought of as a viable alternative. They are as easily processed to near-net shape as monolithic materials, yet have the improved stiffness, strength, and fracture toughness that is characteristic of continuous-fiber-reinforced composites. For example, particlereinforced metal-matrix composites show great potential for a variety of automotive applications, such as disk brake rotors, connecting rods, cylinder liners, and other hightemperature applications. Building materials, such as concrete, can be thought of as one of the oldest materials in this category of multiphase, particle-reinforced materials. The adaptation of ICAN to analyze particle-reinforced composite materials involved the development of new micromechanics-based theories. A derivative of the ICAN code, ICAN/PART, was developed and delivered to Master Builders Inc. as a part of the cooperative activity.

  9. Green Building Construction Thermal Isolation Materials (Rockwool

    Directory of Open Access Journals (Sweden)

    M. Itewi

    2011-01-01

    Full Text Available Problem statement: Building insulation consisting roughly to anything in a structure that is utilizes as insulation for any reason. Thermal insulation in structures is a significant feature to attaining thermal comfort for its tenants. Approach: Insulation decreases unnecessary warmth loss or gain and can reduce the power burdens of heating and cooling structures. It does not automatically having anything to do with problems of sufficient exposure to air and might or might not influence the amount of sound insulation. Results: In a constricted way insulation can just mean the insulation substance used to reduce heat loss, such as: Glass wool, cellulose, polystyrene, rock wool, urethane foam, vermiculite and the earth, but it can also entail a variety of plans and methods used to deal with the chief forms of heat movement like transmission, emission and convection substances. The efficiency of insulation is normally assessed by its R-value. However, an R-value does not allow for the superiority of assembly or narrow green issues for each structure. Building superiority matters comprise insufficient vapor obstructions and troubles with draft-proofing. Additionally, the property and concentration of the insulation substance itself is vital. Fiberglass insulation materials, for example, made out of short fibers of glass covered on top of each other is not as long-lasting as insulation prepared from extended entwined fibers of glass. Conclusion/Recommendations: Rockwool insulation is a kind of insulation that is constructed out of real rocks and minerals. It furthermore is known by the names of mineral wool insulation, stone wool insulation or slag wool insulation. A broad collection of goods can be constructed from Rockwool, because of its outstanding capability to obstruct sound and heat. Rockwool insulation is normally utilized in building assembly, manufacturing plants and in automotive purposes. In this study i proposed to use

  10. (Durability of building materials and components)

    Energy Technology Data Exchange (ETDEWEB)

    Naus, D.J.

    1990-11-27

    The traveler participated in the fourth meeting of RILEM 100-TSL, Techniques for Service Life Prediction,'' and The Fifth International Conference on Durability of Building Materials and Components.'' In addition, the traveler met with staff members at Taywood Engineering Ltd., Electricite de France, and AEA Technology. The meeting pertained to performance of concrete materials in nuclear power plant structures, time variation of concrete material properties, methods for evaluating concrete structures, and modeling to predict the effects of degradation factors on concrete materials. As many of the concrete structures in general civil engineering applications as well as nuclear power plant applications in Europe are aging, there is increasing emphasis on assessing the durability of these structures. Information was provided of direct application to the Structural Aging Program which would not have been available without these visits. Of equal, or possibly more importance, was the individual contacts established at the organizations visited. Each organization was extremely interested in both the approach and scope of the Structural Aging Program and requested that they be informed of progress. The initial steps were taken to cooperate with several of these researchers and this should help the Structural Aging Program keep abreast of related European activities. In summary, information obtained during this trip will benefit the ongoing Structural Aging Program by informing Oak Ridge National Laboratory (ORNL) of the extensive European research programs addressing the durability of concrete structures, and also by forming and strengthening acquaintances with counterparts in other countries, thus enhancing the basis for possible international cooperation.

  11. Sintered coal ash/flux materials for building materials

    Energy Technology Data Exchange (ETDEWEB)

    Dry, C.; Meier, J.; Bukowski, J. [University of Illinois, Urbana, IL (United States). School of Architecture

    2004-03-01

    An Illinois coal ash, which has metals and a large amount of iron, is considered to be an especially difficult waste for disposal. In the process described in this paper, the high iron and metal content is used to create a building material with special properties. The metals are sequestered. The metals allow a process that creates value-added products, building materials. The products are inexpensively prepared colored, strong, lightweight insulative structural panels. By either sintering in an oven at 725{sup o}C or by adding a flux and sintering at 525{sup o}C, panels are produced which will not leach metals from the ash. The use of an acid with the fly ash as a flux was investigated in comparison with fly ash control samples. The effects of sintering samples at different temperatures and with or without vacuum were also observed. Properties of the samples, including values for strength, water absorption, insulation, and color, are presented from this study.

  12. Straw insulated buildings. Nature building materials; Strohgedaemmte Gebaeude. Naturbaustoffe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Straw is one of the major agricultural by-products and is mainly used as litter in animal husbandry and to compensate the balance of humus. A relatively recent development is the use of straw bales for the construction of buildings. The brochure under consideration documents the technical development of straw construction in Germany. Possibilities of the use of straw in single family homes up to commercial buildings are described.

  13. Gray energy of building materials; Graue Energie von Baustoffen

    Energy Technology Data Exchange (ETDEWEB)

    Kasser, U.; Poell, M.

    1995-12-31

    The tables of this publication present gray energy data for 500 building materials, chemicals, processes and transportation processes stemming from over 50 sources. Explications and recommendations for the building practice are included. 9 figs., tabs., 59 refs.

  14. Project materials [Commercial High Performance Buildings Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  15. Buildings and Health. Educational campaign for healthy buildings. Educational material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    In recent years health and comfort problems associated with the indoor climate have come to constitute a problem in Sweden. To come to grips with this a nationwide educational campaign on Buildings and Health is being run. It is directed to those involved in planning, project design, construction and management of buildings. The objective is to convey a body of knowledge to the many occupational and professional groups in the construction sector on how to avoid indoor climate problems in homes, schools, offices and other workplaces. The campaign is being run by the Swedish National Board of Housing and Planning and the Swedish Council for Building Research, in co-operation with various organizations and companies in the construction industry, and with municipalities and authorities. The knowledge which is being disseminated through the campaign is summarized in this compendium. figs., tabs.

  16. Building materials in a green economy: A book review

    Directory of Open Access Journals (Sweden)

    Kazi Abdur Rouf

    2013-09-01

    Full Text Available This paper reviews the book ’Building Materials in a Green Economy' written by Brian Milani (2005. The book has eight chapters. This paper deals with the importance of building materials in our lives. The book mainly focuses on the centrality of building materials in all forms of society global indicates how materials are produced, used and reused, which will inevitably affect the quality of lives of those who harvest/create them versus those who benefit from the materials. Brian Milani highlights that the current process for managing building materials is not done in an eco-conscious manner that would entail conservation, maintenance and recycled materials. He addresses how regulation and education will be the key in making changes in the proper management of building materials. Also looks to understand how the building industry informs ‘positional economic development’; warns the readers about the destruction of the Mother Earth by corporations; and manufacturing not eco-friendly building materials and their wastage. Hence, it is important that corporations should produce building materials that are eco-friendly and care for environmental sovereignty.

  17. Energy efficiency of buildings with phase-change materials

    Directory of Open Access Journals (Sweden)

    Lukić Predrag

    2012-01-01

    Full Text Available The construction of energy efficient buildings using innovative building materials such as phase change materials, in addition to improving indoor comfort, energy savings and costs, can be achieved by increasing their market value. Because of its ability to absorb and release energy at predictable temperatures, phase change materials are effective in controlling and maintaining the thermal environment in the building. The use of phase changing materials, materials stored latent energy storage is an effective form of heat. [Projekat Ministarstva nauke Republike Srbije, br. TR36016: Experimental and theoretical investigation of frames and plates with semi-rigid connections from the view of the second order theory and stability analysis

  18. Environmental assessment and specification of green building materials

    Energy Technology Data Exchange (ETDEWEB)

    Froeschle, L. M.

    1998-12-01

    The central thesis of this paper is that building with environmentally friendly and `green` materials can lead to significant benefits in terms of improved indoor air quality and a healthy and more productive indoor environment. Recycled content and recyclable products can also help minimize the negative impact on the natural environment by keeping construction materials out of the waste stream, not to mention the cost savings that can be generated when specifying materials with recycled content. Savings in embodied energy is generally less when using recycled content as opposed to raw materials in the manufacture of building materials. The gradual depletion of raw materials will generate increased demand for `greener` products and may, in due course, replace traditional building products. Criteria for the assessment of environmental materials, the `greening` of project specifications, and a process for the environmental specification of building products is also described. 8 refs.

  19. Natural radioactivity measurements of building materials in Baotou, China.

    Science.gov (United States)

    Zhao, Caifeng; Lu, Xinwei; Li, Nan; Yang, Guang

    2012-12-01

    Natural radioactivity due to (226)Ra, (232)Th and (40)K in the common building materials collected from Baotou city of Inner Mongolia, China was measured using gamma-ray spectrometry. The radiation hazard of the studied building materials was estimated by the radium equivalent activity (Ra(eq)), internal hazard index (H(in)) and annual effective dose (AED). The concentrations of the natural radionuclides and Ra(eq) in the studied samples were compared with the corresponding results of other countries. The Ra(eq) values of the building materials are below the internationally accepted values (370 Bq kg(-1)). The values of H(in) in all studied building materials are less than unity. The AEDs of all measured building materials are at an acceptable level.

  20. Tactile Response of Building Materials by Tactile Sensor

    OpenAIRE

    岡島, 達雄; 呉, 健丹; 堀越, 哲美; 武田, 雄二; 水谷, 章夫; 川邊, 伸二; ホリコシ, テツミ; ミズタニ, アキオ; カワベ, シンジ; Horikoshi, Tetsumi; Mizutani, Akio; Kawabe, Shinji

    1991-01-01

    The object of this paper is to clarify the tactile response of building materials by tactile sensor. We developed the compact tactile sensor that can measure the physical values of warmth, hardness and roughness of building materials. At a temperature of 2℃, psychological values of warmth, hardness and roughness were obtaind from the physical values of sixty materials by the tactile sensor. The tactile comfort value can be expressed from physical values of warmth, hardness and roughness by th...

  1. Material Connections: Steuart Building, St. Albans School.

    Science.gov (United States)

    Stephens, Suzanne

    1980-01-01

    The addition to the St. Albans campus in Washington, D.C., relates both to the style and the siting of the older "collegiate gothic" school nearby. The mixed-use building contains five classrooms, art and music spaces, and a student lounge. (Author/MLF)

  2. Building Energy Efficiency and the Use of Raw Materials

    Science.gov (United States)

    Yuan, Luo

    To become a country of energy saving, consumption reduction, low carbon emissions and life has become a national policy background, we need to convert conception of architectural aesthetics and make necessary adjustments and consciousness. Techniques and methods of support, or method of the research are still needed in the construction, building energy conservation, the environmental protection, low carbon and recycling methods are taken measures. Developing, finding and adopingt "native" and "primary" processed materials, or in which inject new technology to form new material is an effective approach to ensure more ways from environmental protection, energy-saving building and building materials in such ideas to implement.

  3. Influence of Insulating Materials on Green Building Rating System Results

    Directory of Open Access Journals (Sweden)

    Fabio Bisegna

    2016-09-01

    Full Text Available This paper analyzes the impact of a change in the thermal insulating material on both the energy and environmental performance of a building, evaluated through two different green building assessment methods: Leadership in Energy and Environmental Design (LEED and Istituto per l’innovazione e Trasparenza degli Appalti e la Compatibilità Ambientale (ITACA. LEED is one of the most qualified rating systems at an international level; it assesses building sustainability thanks to a point-based system where credits are divided into six different categories. One of these is fully related to building materials. The ITACA procedure derives from the international evaluation system Sustainable Building Tool (SBTool, modified according to the Italian context. In the region of Umbria, ITACA certification is composed of 20 technical sheets, which are classified into five macro-areas. The analysis was developed on a residential building located in the central Italy. It was built taking into account the principles of sustainability as far as both structural and technical solutions are concerned. In order to evaluate the influence of thermal insulating material, different configurations of the envelope were considered, replacing the original material (glass wool with a synthetic one (expanded polystyrene, EPS and two natural materials (wood fiber and kenaf. The study aims to highlight how the materials characteristics can affect building energy and environmental performance and to point out the different approaches of the analyzed protocols.

  4. Possibilities of Using Cellulose Fibres in Building Materials

    Science.gov (United States)

    Hospodarova, V.; Stevulova, N.; Sicakova, A.

    2015-11-01

    Nowadays, utilization of wastes from agriculture, paper production and building construction is becoming increasingly important due to environmental concerns. Material recycling is a growing trend in the development of building materials; some waste materials can be used in construction as secondary raw materials. The demand for natural non-renewable raw materials is increasing rapidly, therefore, wastes as resources for secondary raw materials can be a good substitute in the production processes. In this way, the shortage of natural raw materials can be supplemented. Construction industry uses secondary raw materials very effectively thereby substituting virgin materials. One of the interesting secondary raw materials is waste coming from natural plant fibres. In this paper, characterization of cellulose fibres from wood pulp, waste paper and their use in cement composites are considered. Technically important parameters of hardened composites are determined and tested (density, water absorbability and compressive strength).

  5. Production of mycotoxins on artificially and naturally infested building materials

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Gravesen, S.; Nielsen, P.A.

    1999-01-01

    isolated from water-damaged building materials. Spores from the different isolates of the above mentioned species were inoculated on gypsum board with and without wallpaper and on chipboard with and without wallpaper. Fungal material was scraped off the materials, extracted, and analyzed using high...

  6. Sensory ratings of emissions from nontraditional building materials

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Kolarik, Jakub; Peuhkuri, Ruut;

    2016-01-01

    Twenty-five subjects assessed the emissions from building materials: linoleum, cement mortar with and without fly ash, gypsum board and tiles with air cleaning properties and natural organic sheep wool. The ratings were made at different material loadings and in combinations with linoleum....... The results showed that except for natural organic product, increasing loading and combining materials with linoleum increased intensity of odor....

  7. 10 CFR 434.402 - Building envelope assemblies and materials.

    Science.gov (United States)

    2010-01-01

    ... Spaces. The area weighted average thermal transmittance of roofs and also of floors and walls adjacent to... Information. 402.1.1Material Properties. Information on thermal properties, building envelope system.... The overall thermal transmittance of the building envelope shall be calculated in accordance...

  8. Natural radioactivity levels in building materials used in Egypt

    Science.gov (United States)

    Ahmad, Fawzia

    All building materials contain various amounts of radioactive nuclides. The levels of natural radioactivity in 43 selected typical building materials used in the construction of walls, windows and doors were determined. For the first time, the radioactivity of iron was measured, revealing the existence of 60Co. A shielded high-purity germanium detector was used to measure the abundance of 226Ra, 232Th and 40K. The materials examined in this work showed radioactivity levels below the limit estimated from radium equivalent activity for acceptable radiation doses attributable to building materials, except for the fact that one gypsum sample showed higher levels of activity than average world levels. The studied building materials were classified according to the radium equivalent activities, which varied from highest to lowest levels as follows: clay, cement, brick, gypsum except from Abu-Zaabal, sand, wood, iron, glass and hydrated lime The existence of the 137Cs isotope in some building materials was confirmed and its concentration levels were determined (ranging from 0.04 to 21.156 Bq kg-1). The alpha-activity of radon was measured in a number of building materials using CR-39 detectors.

  9. Natural radioactivity in building materials used in Changzhi, China.

    Science.gov (United States)

    Yang, Guang; Lu, Xinwei; Zhao, Caifeng; Li, Nan

    2013-08-01

    The natural radioactivity levels of the commonly used building materials collected from Changzhi, China was analysed using gamma-ray spectroscopy. The activity concentrations of (226)Ra, (232)Th and (40)K in the investigated building materials range from 14.6 to 131.2, from 9.9 to 138.8 and from 96.1 to 819.0 Bq kg(-1), respectively. The results were compared with the reported data of other countries and with the worldwide mean activity of soil. The external and internal hazard indices and gamma index were calculated to assess the radiation hazard to residents. The external hazard index of all building materials are less than unity, while the internal hazard and gamma indexes of hollow brick and gravel aggregate exceed unity. The study shows that the investigated hollow brick and gravel aggregate are not suitable for use as building materials in dwellings.

  10. Surface Treatment of Building Materials with Water Repellent Agents

    OpenAIRE

    Wittman, F.H.; Siemes, T.A.J.M.; Verhoef, L.G.W.

    1995-01-01

    Water repellent agents have been applied to proteet building materials and structural elements for thousands ofyears. Initially, natural products, such as oils and fats were used exclusively. More recently, synthetic organic compounds are being developed for special applications.

  11. Gray energy of building materials; Graue Energie von Baustoffen

    Energy Technology Data Exchange (ETDEWEB)

    Kasser, U.; Poell, M. [Buero fuer Umweltchemie, Zurich (Switzerland)

    1995-05-15

    The report highlights the importance of gray energy and discusses the relationship to environmental balances. Literature values for the most important building materials are collated and commented. 9 figs., tabs., 59 refs.

  12. Modeling of electromigration salt removal methods in building materials

    DEFF Research Database (Denmark)

    Johannesson, Björn; Ottosen, Lisbeth M.

    2008-01-01

    A model is established for the prediction of the effect of salt removal of building materials using electromigration. Salt-induced decay of building materials, such as masonry and sandstone, is a serious threat to our cultural heritage. Electromigration of salts from building materials, sensitive...... for salt attack of various kinds, is one potential method to preserve old building envelopes. By establishing a model for ionic multi-species diffusion, which also accounts for external applied electrical fields, it is proposed that an important complement to the experimental tests and that verification...... can be obtained. One important issue is to be able to optimizing the salt removing electromagration method in the field by first studying it theoretically. Another benefit is that models can give some answers concerning the effect of the inner surfaces of the material on the diffusion mechanisms...

  13. Calorimetric methods for the study of fungi on building materials

    OpenAIRE

    Li, Yujing

    2004-01-01

    The aim of this project is to study the fungal growth habits on building materials as a function of humidity, temperature and other environmental parameters. The method of calorimetry is used as a way to quantify fungal activity on building materials. Calorimetry is a general, but sensitive method that can continuously monitor biological processes as a function of environmental conditions. In this report, three different studies are presented: (1) A calorespirometric device was developed and ...

  14. Radioactivity of natural and artificial building materials - a comparative study.

    Science.gov (United States)

    Szabó, Zs; Völgyesi, P; Nagy, H É; Szabó, Cs; Kis, Z; Csorba, O

    2013-04-01

    Building materials and their additives contain radioactive isotopes, which can increase both external and internal radioactive exposures of humans. In this study Hungarian natural (adobe) and artificial (brick, concrete, coal slag, coal slag concrete and gas silicate) building materials were examined. We qualified 40 samples based on their radium equivalent, activity concentration, external hazard and internal hazard indices and the determined threshold values of these parameters. Absorbed dose rate and annual effective dose for inhabitants living in buildings made of these building materials were also evaluated. The calculations are based on (226)Ra, (232)Th and (40)K activity concentrations determined by gamma-ray spectrometry. Measured radionuclide concentrations and hence, calculated indices and doses of artificial building materials show a rather disparate distribution compared to adobes. The studied coal slag samples among the artificial building materials have elevated (226)Ra content. Natural, i.e. adobe and also brick samples contain higher amount of (40)K compared to other artificial building materials. Correlation coefficients among radionuclide concentrations are consistent with the values in the literature and connected to the natural geochemical behavior of U, Th and K elements. Seven samples (coal slag and coal slag concrete) exceed any of the threshold values of the calculated hazard indices, however only three of them are considered to be risky to use according to the fact that the building material was used in bulk amount or in restricted usage. It is shown, that using different indices can lead to different conclusions; hence we recommend considering more of the indices at the same time when building materials are studied. Additionally, adding two times their statistical uncertainties to their values before comparing to thresholds should be considered for providing a more conservative qualification. We have defined radon hazard portion to point

  15. Shielding effectiveness of original and modified building materials

    Directory of Open Access Journals (Sweden)

    T. Frenzel

    2007-06-01

    Full Text Available This contribution deals with the determination of the shielding effectiveness of building materials used for office, factory and government buildings. Besides the examination of standard materials, measurements were also performed on modified materials, e.g. ferro concrete with enhanced shielding effectiveness due to a changed mixture or structure of the reinforcement. The measurements of original and modified materials were carried out in a fully anechoic room (FAR according to IEEE 299-1997 from 80 MHz up to 10 GHz.

  16. Susceptibility of green and conventional building materials to microbial growth.

    Science.gov (United States)

    Mensah-Attipoe, J; Reponen, T; Salmela, A; Veijalainen, A-M; Pasanen, P

    2015-06-01

    Green building materials are becoming more popular. However, little is known about their ability to support or limit microbial growth. The growth of fungi was evaluated on five building materials. Two green, two conventional building materials and wood as a positive control were selected. The materials were inoculated with Aspergillus versicolor, Cladosporium cladosporioides and Penicillium brevicompactum, in the absence and presence of house dust. Microbial growth was assessed at four different time points by cultivation and determining fungal biomass using the N-acetylhexosaminidase (NAHA) enzyme assay. No clear differences were seen between green and conventional building materials in their susceptibility to support microbial growth. The presence of dust, an external source of nutrients, promoted growth of all the fungal species similarly on green and conventional materials. The results also showed a correlation coefficient ranging from 0.81 to 0.88 between NAHA activity and culturable counts. The results suggest that the growth of microbes on a material surface depends on the availability of organic matter rather than the classification of the material as green or conventional. NAHA activity and culturability correlated well indicating that the two methods used in the experiments gave similar trends for the growth of fungi on material surfaces.

  17. Evaluating dynamic building materials: The potential impact of climatically responsive building enclosures

    Science.gov (United States)

    Kienzl, Nico H.

    Despite the great interest and investment in new material technologies and advanced simulation tools, predictions for the potential impact of dynamic envelope systems so far have been based on simulations of the overall building. However, overall building simulations provide limited insights into the behavior of the building envelope since results of these types of simulations are affected by many factors that are independent of or indirectly influenced by the building envelope. Therefore, it is difficult to isolate the impact of the building envelope on building energy consumption independent of building-specific factors such as building geometry, construction, environmental systems, and building use. In order to understand and quantify the dynamic nature of environmentally responsive envelope systems, designers and engineers necessitate a new method that enables the direct evaluation of only the envelope. This method needs to be able to predict the heat transfer through dynamic building envelopes under variable environmental conditions. Ultimately, this new method should help identify the applicability of new technologies early in the design process when detailed information on a building's design or operation are not yet available. This thesis establishes a new method and a validated reference case for the evaluation of climatically responsive building envelopes with dynamic material properties. The method isolates the performance of the building envelope in a building energy simulation model through transformation of a validated BESTEST model. It allows for parametric evaluation of the thermal performance of dynamic building envelopes under a wide range of environmental boundary conditions in comparison to existing reference technologies. This method can serve as a starting point for the critical evaluation of the impact that dynamic envelope systems have on the heat balance of buildings. The method was applied to the evaluation of electrochromic glazing to

  18. Rehabilitation of adobe buildings. Understanding different materials from Portugal

    Science.gov (United States)

    Costa, Cristiana; Rocha, Fernando; Velosa, Ana

    2016-04-01

    Earth construction is the oldest building material known, with documented cases of the use of earth bricks since Mesopotamia around 10 000 BC (Heathcote, 1995). The earth construction exists throughout the majority of the world in different cultures, and for some countries, nowadays it continues to be the main process of construction (Vega et al, 2011). Around 30% of the world's population lives in buildings made of earth materials. Earthen construction is an environmentally friendly technique with a social and cultural contribution; this advantage is increased when this type of construction is applied in developing countries where the material costs counterbalance with labour costs, and where other materials and techniques cannot be available (Ciancio et al, 2013). Studies of materials characterization are required in order to understand the composition and specific properties of the earth buildings, their heterogeneity and their degradation mechanisms. Some adobes from different buildings, ages and regions of Portugal were collected in order to characterize them (mineralogically, chemically and physically). It was possible to understand the composition of these materials and their differences. Main minerals are quartz, feldspars, calcite and phyllosilicates (mica and kaolinite). The mechanical behaviour of these materials isn't the best, but it is possible to improve it with some simple and cheap natural additives (kaolinitic soils). The characterization of these materials allows us to understand the differences between the materials from the different regions (controlled by locally available raw materials). Understanding these materials, and their properties, it is possible to formulate new ones for repair, conservation and rehabilitation works. The adobe bricks are an alternative of kiln baked bricks which has several advantages and one of the most important is that these materials are recyclable. Adobes are an excellent option for building rehabilitation, if

  19. Associations between Fungal Species and Water-Damaged Building Materials

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Frisvad, Jens Christian; Søndergaard, Ib;

    2011-01-01

    melleus, Aspergillus niger, Aspergillus ochraceus, Chaetomium spp., Mucor racemosus, Mucor spinosus, and concrete and other floor-related materials. These results can be used to develop new and resistant building materials and relevant allergen extracts and to help focus research on relevant mycotoxins...

  20. Glass-ceramics as building materials

    Directory of Open Access Journals (Sweden)

    Rincón, J. María

    1996-06-01

    Full Text Available Glass-ceramics are materials composed as any ceramic material by several crystalline phases embedded in an amorphous or vitreous matrix, but their manufacture process implies the controlled devitrification or nucleation and growth of phases from an original glass. The original shape of the original glass molded by conventional methods is carried out by using pressing and sintering followed by crystallization steps. By both processing routes are obtained transparent and/or opaque materials, with or without colours, which after adequate control and design of composition and microstructure have numerous domestic and architectonic applications. They can be used as pavements or wall coatings and in various decorative elements. In fact, their use is very extensive in east-European, American and Asian (Japan countries in constructions for covering large surfaces. The greater advantage of the glass-ceramic process is that due to the own process of vitrification allows the incorporation in their structure of a wide range of compositions from mining and industrial residues, such as red muds, ashes, fangos, scraps... which they can in this way not only be inertizated, but furthermore it be converted without risk for the environment into products useful in construction applications, offering to the architect and to the decorator a new range of "eco-materials" with multiple complementary possibilities of the already existing architectural materials in the market.

    Los productos o materiales vitrocerámicos se componen, como cualquier material de tipo cerámico, de una o varias fases cristalinas embebidas en una matriz amorfa o vítrea, pero cuyo proceso de fabricación implica la desvitrificación o nucleación y cristalización controlada de un vidrio original o de partida. En el proceso de obtención de estos materiales se puede conservar la forma original conferida al vidrio de partida por los métodos convencionales de moldeado de vidrios

  1. Building biomedical materials layer-by-layer

    Directory of Open Access Journals (Sweden)

    Paula T. Hammond

    2012-05-01

    Full Text Available In this materials perspective, the promise of water based layer-by-layer (LbL assembly as a means of generating drug-releasing surfaces for biomedical applications, from small molecule therapeutics to biologic drugs and nucleic acids, is examined. Specific advantages of the use of LbL assembly versus traditional polymeric blend encapsulation are discussed. Examples are provided to present potential new directions. Translational opportunities are discussed to examine the impact and potential for true biomedical translation using rapid assembly methods, and applications are discussed with high need and medical return.

  2. BUILDING MATERIALS AND PRODUCTS BASED ON SILICON MANGANESE SLAGS

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Raising of problem. Currently of particular relevance was given to the matter of introduction in manufacture of building materials and products, resource-saving techniques and technologies; integrated use of raw materials and materials that prevent or significantly reduce their harmful impact on the environment. This allows you to recycle hundreds of thousands of tons of the fiery liquid slags of silicon manganese and to develop effective structural materials that can replace metals, non-metallic building materials of natural origin, concretes, cast stone, plastics and refractories. Purpose. The study of the structure and properties of building materials and products from electric furnace slag of silicon manganese. Conclusion. Slags from the smelting of silicon manganese are classified as acidic. Their lime factor is in the range of 0.47–0.52. The composition of the slag located in the heterogeneous region SiO2 near the line of separation of cristobalite spread to the crystallization of wollastonite, according to the ternary system MnO-CaO-SiO2, which in consideration of their stability, allows the development of technology of building materials (gravel, sand, granulated slag, etc. and products (foundation blocks, road slabs, containers for transportation and storage of hazardous waste, and others.

  3. Photocatalytic construction and building materials: From fundamentals to applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jun; Poon, Chi-sun [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hum Hom (China)

    2009-09-15

    Heterogeneous photocatalysis has been intensively studied in recent decades because it only requires photonic energy to activate the chemical conversion contrasting with conventional catalysis which needs heat for thermo-activation. Over the years, the theories for photochemical activity of photocatalyst including photo-induced redox reaction and super-hydrophilic conversion of TiO{sub 2} itself have been established. The progress in academic research significantly promotes its practical applications, including the field of photocatalytic construction and building materials. TiO{sub 2} modified building materials are most popular because TiO{sub 2} has been traditionally used as a white pigment. The major applications of TiO{sub 2} based photocatalytic building materials include environmental pollution remediation, self-cleaning and self-disinfecting. The advantage of using solar light and rainwater as driving force has opened a new domain for environmentally friendly building materials. In this paper, the basic reaction mechanisms on photocatalyst surface under the irradiation of ultraviolet and their corresponding applications in building and construction materials are reviewed. The problems faced in practical applications and the trends for future development are also discussed. (author)

  4. Ozone reactions with indoor materials during building disinfection

    DEFF Research Database (Denmark)

    Poppendieck, D.; Hubbard, H.; Ward, M.

    2007-01-01

    , and particularly after several hours of disinfection, surface reaction resistance dominated the overall resistance to ozone deposition for nearly all materials. Total building disinfection by-products (all carbonyls) were quantified per unit area of each material for the experimental period. Paper, office......There is scant information related to heterogeneous indoor chemistry at ozone concentrations necessary for the effective disinfection of buildings, i.e., hundreds to thousands of ppm. In the present study, 24 materials were exposed for 16 h to ozone concentrations of 1000-1200ppm in the inlet...... streams of test chambers. Initial ozone deposition velocities were similar to those reported in the published literature for much lower ozone concentrations, but decayed rapidly as reaction sites on material surfaces were consumed. For every material, deposition velocities converged to a relatively...

  5. The impact of roofing material on building energy performance

    Science.gov (United States)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation

  6. ASSESSMENT OF KINETIC PROCESSES OF HARDENING OF BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    P. V. Voronov

    2010-12-01

    Full Text Available Problem statement. Kinetic processes are of huge importance when producing building units and operating them as well. However, both technological and operation parameters are determined by the structure of a material under study.Results and conclusions. Kinetics with asymptotic approximation at hardening of building materials is analyzed. The validity of use of new kinetic equation is proved, characterizing harden composite systems and taking into consideration structural and topological peculiarities of new solid-like phase formation directly effecting the evolution of the processes. Results of research of change of strength at solidification a cement-sandy solution with various additives are submitted.

  7. Proceedings of the workshop on cool building materials

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H.; Fishman, B. [Lawrence Berkeley Lab., CA (United States); Frohnsdorff, G. [National Inst. of Standards and Technology (NEL), Gaithersburg, MD (United States). Building Materials Div.] [eds.

    1994-04-01

    The Option 9, Cool Communities, of the Clinton-Gore Climate Change Action Plan (CCAP) calls for mobilizing community and corporate resources to strategically plant trees and lighten the surfaces of buildings and roads in order to reduce cooling energy use of the buildings. It is estimated that Cool Communities Project will potentially save over 100 billion kilowatt-hour of energy per year corresponding to 27 million tons of carbon per year by the year 2015. To pursue the CCAP`s objectives, Lawrence Berkeley Laboratory (LBL) on behalf of the Department of Energy and the Environmental Protection Agency, in cooperation with the Building and Fire Research Laboratory of the National Institute of Standards and Technology (NIST), organized a one-day meeting to (1) explore the need for developing a national plan to assess the technical feasibility and commercial potential of high-albedo (``cool``) building materials, and if appropriate, to (2) outline a course of action for developing the plan. The meeting took place on February 28, 1994, in Gaithersburg, Maryland. The proceedings of the conference, Cool Building Materials, includes the minutes of the conference and copies of presentation materials distributed by the conference participants.

  8. Transient thermal NDT and E of defects in building materials

    Science.gov (United States)

    Avdelidis, N. P.; Stavrakas, D.; Moropoulou, A.

    2006-04-01

    In this work, infrared thermography (IRT) was used for the investigation of structural materials using the active approach. Four types of building materials were examined; three types of porous stone (from Rhodes, Cyprus, Rethymno - Crete) and one type of marble (Dionysus). Specimens containing self-induced defects of known dimensions and depths were studied. The samples were heated externally (thermal excitation) and thermograms were recorded continuously at the transient phase. Mathematical - thermal modelling enabling the modelling of the investigated subsurface defects, using the thermocalc 3-D software, was also implemented. Then, quantification analysis (i.e. temperature - time plots, as well as thermal contrast curves) from the experimental tests, as well as from the use of thermal modelling runs took place, indicating the thermal behaviour of building materials containing such defects. The results of this research show that IRT can be used for the detection and quantification of defects in structural materials.

  9. Review on phase change materials for building applications

    Directory of Open Access Journals (Sweden)

    Lavinia SOCACIU

    2014-11-01

    Full Text Available In nowadays, the Phase Change Material (PCM is a viable alternative for reducing the energy consumption and for increase the thermal comfort in buildings. The use of PCM in building applications provides the potential to increase the indoor thermal comfort for occupants due to the reduced indoor temperature fluctuations and lower global energy consumption. The possibility to incorporate the PCM into the material of construction for cooling and heating the buildings gained the interest of researchers from all the world because the PCM have a high heat of fusion, meaning it is capable to storing and release large amounts of energy in the form of heat during its melting and solidifying process at a specific temperature.

  10. Selection of material for building pressure vessels and chemical plants

    Energy Technology Data Exchange (ETDEWEB)

    Huppertz, P.H.; Retter, A.

    1979-06-01

    The authors give on extensive survey on the materials used in building pressure vessels and chemical plants for a temperature region of -200 to +1000/sup 0/C. The effect of various influences on the material behaviour is critically examined on the existing control plant, where the differences to foreign control are indicated. NE metals also come into consideration apart from steels, especially with low-temperature application.

  11. VOCs and odors: key factors in selecting `green` building materials?

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, C. [Steven Winter Associates Inc., Norwalk, CT and Washington DC (United States)

    1998-12-01

    The current state of knowledge available for selecting building materials on the basis of emissions of volatile organic compounds (VOCs) and odors is reviewed. The significance of VOCs and odors in building materials is related to their role in influencing indoor air quality. As far as toxicity is concerned, many of the VOCs detected in indoor air are relatively inert when considered singly. They are not however, unimportant because in actual fact they are invariably found in mixtures some of which can be toxic. Although knowledge of VOCs is incomplete, it is important to specify ozone-resistant polymeric building products, i.e. those that are chemically stable and inert to oxidation. In addition to VOCs, attention should also be focused on semi-volatile organic compounds (SVOCs) since they are even more persistent than VOCs and tend to offgas for prolonged periods of time. Similarly, it is reasonable to specify low-odor materials. Inclusion of issues related to complex indoor chemistry, less volatile emissions, in addition to VOCs and odor, should in time result in expanded choices of building materials that promote indoor air quality. 16 refs.,2 tabs.

  12. Self-Organized Construction with Continuous Building Material

    DEFF Research Database (Denmark)

    Heinrich, Mary Katherine; Wahby, Mostafa; Divband Soorati, Mohammad;

    2016-01-01

    Self-organized construction with continuous, structured building material, as opposed to modular units, offers new challenges to the robot-based construction process and lends the opportunity for increased flexibility in constructed artifact properties, such as shape and deformation. As an exampl...

  13. Spectral Signatures of Surface Materials in Pig Buildings

    DEFF Research Database (Denmark)

    Zhang, GuoQiang; Strøm, Jan; Blanke, Mogens;

    2006-01-01

    . In this study, the optical properties of different types of surfaces to be cleaned and the dirt found in finishing pig units were investigated in the visual and the near infrared (VIS-NIR) optical range. Four types of commonly used materials in pig buildings, i.e. concrete, plastic, wood and steel were applied...

  14. High-albedo materials for reducing building cooling energy use

    Energy Technology Data Exchange (ETDEWEB)

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building`s envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  15. The release of lindane from contaminated building materials.

    Science.gov (United States)

    Volchek, Konstantin; Thouin, Geneviève; Kuang, Wenxing; Li, Ken; Tezel, F Handan; Brown, Carl E

    2014-10-01

    The release of the organochlorine pesticide lindane (γ-hexachlorocyclohexane) from several types of contaminated building materials was studied to assess inhalation hazard and decontamination requirements in response to accidental and/or intentional spills. The materials included glass, polypropylene carpet, latex-painted drywall, ceramic tiles, vinyl floor tiles, and gypsum ceiling tiles. For each surface concentration, an equilibrium concentration was determined in the vapour phase of the surrounding air. Vapor concentrations depended upon initial surface concentration, temperature, and type of building material. A time-weighted average (TWA) concentration in the air was used to quantify the health risk associated with the inhalation of lindane vapors. Transformation products of lindane, namely α-hexachlorocyclohexane and pentachlorocyclohexene, were detected in the vapour phase at both temperatures and for all of the test materials. Their formation was greater on glass and ceramic tiles, compared to other building materials. An empiric Sips isotherm model was employed to approximate experimental results and to estimate the release of lindane and its transformation products. This helped determine the extent of decontamination required to reduce the surface concentrations of lindane to the levels corresponding to vapor concentrations below TWA.

  16. High-albedo materials for reducing building cooling energy use

    Energy Technology Data Exchange (ETDEWEB)

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building's envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  17. Mould growth on building materials under low water activities

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Holm, G.; Uttrup, L.P.;

    2004-01-01

    The influence of relative humidity (RH) and temperature on growth and metabolism of eight microfungi on 21 different types of building material was investigated. The fungi were applied as a dry mixture to the materials, which were incubated at 5degreesC, 10degreesC, 20degreesC and 25degrees......C at three humidity levels in the range 69-95% RH over 4-7 months. The lower limit for fungal growth on wood, wood composites and starch-containing materials was 78% RH at 20-25degreesC and increased to 90% RH at 5degreesC. An RH of 86% was necessary for growth on gypsum board. Ceramic materials supported...... growth at RH > 90%, although 95% RH was needed to yield chemically detectable quantities of biomass. Almost exclusively only Penicillium, Aspergillus and Eurotium (contaminant) species grew on the materials. Production of secondary metabolites and mycotoxins decreased with humidity and the quantities...

  18. The effect of atmospheric pollution on building materials

    Science.gov (United States)

    Grossi, C. M.; Brimblecombe, P.

    2002-11-01

    This chapter surveys main effects of atmospheric pollution on building materials. It summarises these effects on stone, bricks, mortar, concrete, glass, metals (iron, zinc, copper, bronze, aluminium, lead and silver), polymers, paints and timber. Special attention is paid to stone because of its extensive use as building material in the cultural heritage. In general, main damaging agent is sulfur dioxide which leads to sulfation of many materials, particularly carbonate-bearing stones. However, the decline of sulfur dioxide in cities means that the recognition of the prime role of this pollutant presents something of a dilemma. It is increasingly necessary to consider other substances that can contribute to material decay e.g. nitrogen oxides, chlorides and ozone, either acting as synergistic to the sulfation reaction or as main decay agents, such as the case of aluminium and polymers. Particulate matter often from diesel vehicles can also accelerate the oxidation of SO2 on the surface (traditionally sulfur dioxide with Fe-rich particles) and blacken the materials surface in the case of soot. These processes contribute to the formation of black-crusts when embedded in the gypsum layer resulting from the material sulfation, but again the rate in the modem atmosphere is a matter of much research.

  19. Assessment of the material properties of a fire damaged building

    Directory of Open Access Journals (Sweden)

    Oladipupo OLOMO

    2012-12-01

    Full Text Available This study identifies a process for assessing the material properties of a fire damaged building so as to determine whether the remains can be utilized in construction or be demolished. Physical and chemical analysis were carried out on concrete and steel samples taken from various elements of the building after thorough visual inspection of the entire building had been conducted. The physical (non-destructive tests included the Schmidt hammer and ultrasonic pulse velocity tests on the concrete samples, tensile strength test on the steel samples and chemical tests involving the assessment of the quantities of cement, sulphates and chloride concentrations in the samples. A redesign of the building elements was also carried out and the results were compared with the existing design. The non-destructive test results indicated compressive strengths as low as 9.9 N/mm2, the tensile strength test indicated a maximum strength of 397.48 N/mm2 and the chemical test indicated chloride contents as high as 0.534 g per gramme of concrete. These properties deviated significantly from standard requirements. Based on these results, it was concluded that the remains of the building should be demolished.

  20. Moisture measurements in building materials with microwaves; Rakennusmateriaalien kosteusmittauksia mikroaalloilla

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaeriaeinen, H.; Rudolph, M.; Schaurich, D.; Wiggenhauser, H. [VTT Building Technology, Espoo (Finland). Construction and Facility Management

    1998-12-01

    In order to assess the condition and evaluate the reliability of buildings and structures, it is essential to establish the moisture condition of the floor and other structural elements of the building. NDT-methods are increasingly being used for such moisture measurements because they do not cause any damage to the building under investigation. Microwave transmission is one of the NDT-methods and has been in use for several years. In this report, the applicability of the microwave method for measuring moisture in different building materials was investigated. This method has been successfully used at BAM for repeated moisture measurements in brick and sandstone material. This project also included other materials, such as concrete, sand, gravel, insulation and wood. At the same time, information was gathered about in situ moisture determination of building materials with a microwave moisture measuring system. The equipment used in this research has been developed at BAM over the last few years. The method requires two parallel boreholes in the specimen in which two microwave antennae can be moved. The moisture content in the material can be calculated from the microwave intensity transmitted between the two boreholes. Moisture profiles along the boreholes can be obtained by moving the antennae in steps along the length of the boreholes and taking measurements at each step. Special care must be taken while drilling the holes for the antennae, as this process must not affect the moisture condition in the specimen, and the boreholes must be made as parallel to each other as possible. The microwave frequencies used in the laboratory measurements ranged from 8 to 16,5 GHz in steps of 0,5 GHz. The diameters of the antennae were between 7 and 9 mm, and of the boreholes between 8 and 12 mm. Except for the concrete specimen, all the specimens were measured using plastic tubes in the boreholes. The moisture content measured by the microwave technique was verified by the

  1. Drying and wetting of building materials and components

    CERN Document Server

    2014-01-01

    This book, Drying and Wetting of Building Materials and Components, provides a collection of recent contributions in the field of drying and wetting in porous building materials. The main benefit of the book is that it discusses some of the most important topics related to the drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.

  2. Valorisation of phosphogypsum as building material: Radiological aspects

    Directory of Open Access Journals (Sweden)

    Tayibi, H.

    2011-12-01

    Full Text Available Nowadays, alternative uses of phosphogypsum (PG in the building industry are being considered in several countries; however, the natural radioactivity level in the PG could be a restriction for those uses. United States Environmental Protection Agency (US-EPA classified PG as Technologically Enhanced Naturally Occurring Radioactive Material (TENORM. This drawback could be avoided controlling its percentage in the cement preparation and the radionuclides content in the other raw materials used in its production, and calculating the activity concentration index (I in the final by-products. The valorization of PG as a building material has been studied, from a radiological point of view, by developing a new stabilisation/solidification process. PG is incorporated within a polymeric sulphur matrix, obtaining a concrete-like material, which presents lower natural radioactive content than the initial PG. The 226Ra content of this material ranged between 26-27 Bq·kg-1 and it is quite similar to that of common Spanish building materials.

    Actualmente, en muchos países se está contemplando el uso alternativo del fosfoyeso (PG en la industria de la construcción, aunque su contenido en radionucleidos naturales puede presentar ciertas restricciones para dicha aplicación (material clasificado por la US-EPA como TENORM: “Technologically Enhanced Naturally Occurring Materials. No obstante, estos inconvenientes podrían paliarse controlando el porcentaje del PG y los niveles de radioactividad en las materias primas a incorporar al cemento y calculando el índice de concentración de actividad (I en los productos finales. La valorización del PG como material de construcción se ha estudiado en este trabajo desde el punto de vista radiológico, desarrollando un nuevo proceso de estabilización/solidificación, obteniéndose un material de características similares al cemento y que presenta menor contenido de radionucleidos naturales que el

  3. Optimal thermographic procedures for moisture analysis in building materials

    Science.gov (United States)

    Rosina, Elisabetta; Ludwig, Nicola

    1999-09-01

    The presence of moisture in building materials causes damage second only to structural one. NDT are successfully applied to map moisture distribution, to localize the source of water and to determine microclimatic conditions. IR Thermography has the advantage of non-destructive testing while it allows to investigate large surfaces. The measures can be repeated in time to monitor the phenomenon of raising water. Nevertheless the investigation of moisture in walls is one of the less reliable application of Thermography IR applied to cultural heritage preservation. The temperature of the damp areas can be colder than dry ones, because of surface evaporation, or can be warmer, because of the higher thermal inertia of water content versus building materials. The apparent discrepancies between the two results are due to the different microclimatic conditions of the scanning. Aim of the paper is to describe optimal procedures to obtain reliable maps of moisture in building materials, at different environmental and microclimatic conditions. Another goal is the description of the related energetic phenomena, which cause temperature discontinuities, and that are detected by thermography. Active and passive procedures are presented and compared. Case studies show some examples of procedures application.

  4. Dynamic solar radiation control in buildings by applying electrochromic materials

    Energy Technology Data Exchange (ETDEWEB)

    Jelle, B.P.; Gustavsen, A.

    2010-07-01

    Full text: Smart windows like electrochromic windows (ECWs) are windows which are able to regulate the solar radiation throughput by application of an external voltage. The ECWs may decrease heating, cooling and electricity loads in buildings by admitting the optimum level of solar energy and daylight into the buildings at any given time, e.g. cold winter climate versus warm summer climate demands. In order to achieve as dynamic and flexible solar radiation control as possible, the ECWs may be characterized by a number of solar radiation glazing factors, i.e. ultraviolet solar transmittance, visible solar transmittance, solar transmittance, solar material protection factor, solar skin protection factor, external visible solar reflectance, internal visible solar reflectance, solar reflectance, solar absorbance, emissivity, solar factor and colour rendering factor. Comparison of these solar quantities for various electrochromic material and window combinations and configurations enables one to select the most appropriate electrochromic materials and ECWs for specific buildings. Measurements and calculations were carried out on two different electrochromic window devices. (Author)

  5. Radon exhalation rate of some building materials used in Egypt.

    Science.gov (United States)

    Maged, A F; Ashraf, F A

    2005-09-01

    Indoor radon has been recognized as one of the health hazards for mankind. Common building materials used for construction of houses, which are considered as one of the major sources of this gas in indoor environment, have been studied for exhalation rate of radon. Non-nuclear industries, such as coal fired power plants or fertilizer production facilities, generate large amounts of waste gypsum as by-products. Compared to other building materials waste gypsum from fertilizer production facilities (phosphogypsum) shows increased rates of radon exhalation. In the present, investigation solid state alpha track detectors, CR-39 plastic detectors, were used to measure the indoor radon concentration and the radon exhalation rates from some building materials used in Egypt. The indoor radon concentration and the radon exhalation rate ranges were found to be 24-55 Bq m(-3 )and 11-223 mBq m(-2) h(-1), respectively. The effective dose equivalent range for the indoor was found 0.6-1.4 mSv y(-1). The equilibrium factor between radon and its daughters increased with the increase of relative humidity.

  6. Natural radioactivity measurements in building materials used in Samsun, Turkey.

    Science.gov (United States)

    Tufan, M Çagatay; Disci, Tugba

    2013-01-01

    In this study, radioactivity levels of 35 different samples of 11 commonly used building materials in Samsun were measured by using a gamma spectrometry system. The analysis carried out with the high purity Germanium gamma spectrometry system. Radioactivity concentrations of (226)Ra, (232)Th and (40)K range from 6 to 54 Bq kg(-1), 5 to 88 Bq kg(-1) and 6 to 1070 Bq kg(-1), respectively. From these results, radium equivalent activities, gamma indexes, absorbed dose rates and annual effective doses were calculated for all samples. Obtained results were compared with the available data, and it was concluded that all the investigated materials did not have radiological risk.

  7. Bioinspired Design of Building Materials for Blast and Ballistic Protection

    Directory of Open Access Journals (Sweden)

    Yu-Yan Sun

    2016-01-01

    Full Text Available Nacre in abalone shell exhibits high toughness despite the brittle nature of its major constituent (i.e., aragonite. Its specific structure is a major contributor to the energy absorption capacity of nacre. This paper reviews the mechanisms behind the performance of nacre under shear, uniaxial tension, compression, and bending conditions. The remarkable combination of stiffness and toughness on nacre can motivate the development of bioinspired building materials for impact resistance applications, and the possible toughness designs of cement-based and clay-based composite materials with a layered and staggered structure were discussed.

  8. Pathology of Building Materials in Historic Buildings. Relationship Between Laboratory Testing and Infrared Thermography

    OpenAIRE

    Lerma, C.; Mas, Á.; Gil,E.; Vercher, J.; Peñalver, M. J.

    2014-01-01

    Study of historic buildings requires a pathology analysis of the construction materials used in order to define their conservation state. Usually we can find capillary moisture, salt crystalli-zation or density differences by deterioration. Sometimes this issue is carried out by destructive testing which determine materials’ physical and chemical characteristics. However, they are unfavorable regarding the building’s integrity, and they are sometimes difficult to implement. This paper present...

  9. Radon exhalation from building materials for decorative use.

    Science.gov (United States)

    Chen, Jing; Rahman, Naureen M; Abu Atiya, Ibrahim

    2010-04-01

    Long-term exposure to radon increases the risk of developing lung cancer. There is considerable public concern about radon exhalation from building materials and the contribution to indoor radon levels. To address this concern, radon exhalation rates were determined for 53 different samples of drywall, tile and granite available on the Canadian market for interior home decoration. The radon exhalation rates ranged from non-detectable to 312 Bq m(-2) d(-1). Slate tiles and granite slabs had relatively higher radon exhalation rates than other decorative materials, such as ceramic or porcelain tiles. The average radon exhalation rates were 30 Bq m(-2) d(-1) for slate tiles and 42 Bq m(-2) d(-1) for granite slabs of various types and origins. Analysis showed that even if an entire floor was covered with a material having a radon exhalation rate of 300 Bq m(-2) d(-1), it would contribute only 18 Bq m(-3) to a tightly sealed house with an air exchange rate of 0.3 per hour. Generally speaking, building materials used in home decoration make no significant contribution to indoor radon for a house with adequate air exchange.

  10. Luminescence dosimetry using building materials and personal objects.

    Science.gov (United States)

    Göksu, H Y; Bailiff, I K

    2006-01-01

    There is a growing public awareness of the risk of accidental radiation exposure due to ageing nuclear power installations, illegal dumping of nuclear waste and terrorist activities, and of the consequential health risks to populations in addition to social and economic disturbance extending beyond national boundaries. In the event of catastrophic incidents where no direct radiation monitoring data are available, the application of retrospective dosimetry techniques such as luminescence may be employed with materials from the immediate environment to confirm values of cumulative gamma dose to compare with or augment computational modeling calculations. Application of the method to post-Chernobyl studies has resulted in the development of new procedures using fired building materials with the capability to measure cumulative doses owing to artificial sources of gamma radiation as low as 20 mGy. Combined with Monte Carlo simulations of photon transport, values of cumulative dose in brick can be presented in a form suitable for use in dose-reconstruction efforts. Recent investigations have also shown that certain types of cementitious building material, including concrete, mortar and plaster, and personal objects in the form of telephone cards containing microchips and dental ceramics have the potential to be used for retrospective dosimetry. Examples of the most recent research concerning new materials and examples of application to sites in the Former Soviet Union are discussed.

  11. Experimental Study on the Comparison of the Material Properties of Glass Wool Used as Building Materials

    Directory of Open Access Journals (Sweden)

    Kyoung-Woo KIM

    2014-04-01

    Full Text Available Artificial mineral fibers such as glass wool or stone wool are commonly used in building walls, ceilings and floors as a major insulation material for buildings. Among the material properties of building materials, thermal conductivity, the sound absorption coefficient, compressibility, and dynamic stiffness are regarded as important performance requirements since they directly affect the thermal and acoustic properties of the building. This study measured the changes of the thermal and acoustical performances of glass wool that was actually installed for a long time to the outer wall of a building as an insulation material through a comparison with recently produced glass wool. The results showed that the measured thermal conductivities of the old and the new specimens both rise with an increase of temperature, showing quite similar results in both specimens over temperature ranges of (0 – 20 ºC. The noise reduction coefficient decreased by 0.1 in the old specimen and the difference of the compressibilities in both specimens was shown to be 7.32 mm. The dynamic stiffness of the old specimen was found to be 1.28 MN/m3 higher than that of the new specimen.DOI: http://dx.doi.org/10.5755/j01.ms.20.1.3714

  12. Natural Radioactivity in some building materials from Spain

    Energy Technology Data Exchange (ETDEWEB)

    Miro, C. [Universidad de Extremadura (UEX), 10071-Caceres (Spain); Madruga, M.J.; Reis, M. [Instituto Superior Tecnico, Universidade de Lisboa, Campus Tecnologico e Nuclear, 2695-066 Bobadela LRS (Portugal)

    2014-07-01

    Studies of natural radiation are of great importance because it is the main source of exposure of human kind. Building materials is one of the sources which cause direct radiation exposure because of their radium, thorium and potassium content. The aim of this work is to measure gamma activity due to {sup 40}K, {sup 226}Ra and {sup 232}Th in samples of commonly used as a building materials in Spain. Cement, gypsum, plaster, marble, slates, granite and wood had been analysed. These materials are used for private and public building. Radium equivalent activities (Ra{sub eq}) and various hazard indices were also calculated to assess the radiation hazard. Results were also compared with the data available in the literature for other countries of the world. Cement, gypsum and plaster samples were collected from hardware stores. Marble, slates and granite samples were taken from different quarries. And the wood samples were taken from eucalyptus trees from forest. Activity concentrations {sup 40}K-, {sup 226}Ra- and {sup 232}Th-activity was determined by gamma spectrometry using a HPGe coaxial detector. The results show that the range of average values of the activity concentrations due to {sup 40}K, {sup 226}Ra and {sup 232}Th were found between 37 and 1340 Bq/kg, 0.007 and 104 Bq/kg, and <0.005 and 75 Bq/kg, respectively. Maxima values were obtained in granite. Radium equivalent activities range from 3.7 Bq/kg to 283 Bq/kg, calculated in wood and granite, respectively. Therefore all the samples showed Raeq activities within the limit, 370 Bq/kg, set by UNSCEAR. Values of external hazard index for all samples under investigation are below the unity, while the internal hazard index for granite exhibits a value around the unity. Acknowledgements to the financial support of the Junta de Extremadura (project PRI09A092 and FEDER-group GRU09053). (authors)

  13. Radiological risk of building materials using homemade airtight radon chamber

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Norafatin; Majid, Amran Ab.; Yahaya, Redzuwan; Yasir, Muhammad Samudi [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2014-02-12

    Soil based building materials known to contain various amounts of natural radionuclide mainly {sup 238}U and {sup 232}Th series and {sup 40}K. In general most individuals spend 80% of their time indoors and the natural radioactivity in building materials is a main source of indoor radiation exposure. The internal exposure due to building materials in dwellings and workplaces is mainly caused by the activity concentrations of short lived {sup 222}Radon and its progenies which arise from the decay of {sup 226}Ra. In this study, the indoor radon concentration emanating from cement brick, red-clay brick, gravel aggregate and Portland cement samples were measured in a homemade airtight radon chamber using continuous radon monitor 1029 model of Sun Nuclear. Radon monitor were left in the chamber for 96 hours with an hour counting time interval. From the result, the indoor radon concentrations for cement brick, red-clay brick, gravel aggregate and Portland cement samples determined were 396 Bq m{sup −3}, 192 Bq m{sup −3}, 176 Bq m{sup −3} and 28 Bq m{sup −3}, respectively. The result indicates that the radon concentration in the studied building materials have more than 100 Bq m{sup −3} i.e. higher than the WHO action level except for Portland cement sample. The calculated annual effective dose for cement brick, red-clay brick, gravel aggregate and Portland cement samples were determined to be 10 mSv y{sup −1}, 4.85 mSv y{sup −1}, 4.44 mSv y{sup −1} and 0.72 mSv y{sup −1}, respectively. This study showed that all the calculated effective doses generated from indoor radon to dwellers or workers were in the range of limit recommended ICRP action levels i.e. 3 - 10 mSv y{sup −1}. As consequences, the radiological risk for the dwellers in terms of fatal lifetime cancer risk per million for cement brick, red-clay brick, gravel aggregate and Portland cement were calculated to be 550, 267, 244 and 40 persons respectively.

  14. Numerical Investigation of a Moisture Evaporation Model in Building Materials

    CERN Document Server

    Amirkhanov, I V; Pavlish, M; Puzynina, T P; Puzynin, I V; Sarhadov, I

    2005-01-01

    The properties of a model of moisture evaporation in a porous building material of a rectangular form proposed in [1] are investigated. Algorithms of solving a nonlinear diffusion equation with initial and boundary conditions simulating the dynamic distribution of moisture concentration, calculation of coefficients of a polynomial describing transport of moisture with usage of experimental measurement of moisture concentration in a sample are developed and investigated. Research on the properties of the model is carried out depending on the degree of the polynomial, a set of its coefficients, and the quantity of the used experimental data.

  15. Assessment on urban soil pollution by biocides from building materials

    DEFF Research Database (Denmark)

    Bollmann, Ulla E.; Vollertsen, Jes; Bester, Kai

    2015-01-01

    . Based on a monitoring study of stormwater runoff from a residential catchment as well as direct façade runoff analysis, the present study was assessing the pollution of urban soil to biocides from building material. The stormwater runoff of a residential catchment in Silkeborg (Denmark) was monitored...... from a freshly painted or rendered house, it is obvious that a huge part is actually draining directly to the soil and not to the sewer system. Consequently, the soil in urban areas is exposed to stormwater highly polluted by biocides which might affect the microbial community there....

  16. Decreased bio-inhibition of building materials due to transport of biocides

    NARCIS (Netherlands)

    Erich, S.J.F.; Mendoza, S.M.; Floor, W.; Hermanns, S.P.M.; Homan, W.J.; Adan, O.C.G.

    2011-01-01

    Bio-inhibition of buildings and structures is an important issue. In many cases building materials have biocides added to prevent growth of micro-organisms. Growth of microorganisms on building materials has several negative effects; (1) Aesthetic damage, e.g. fungi, algae grow on the material, resu

  17. Microencapsulated Phase Change Composite Materials for Energy Efficient Buildings

    Science.gov (United States)

    Thiele, Alexander

    This study aims to elucidate how phase change material (PCM)-composite materials can be leveraged to reduce the energy consumption of buildings and to provide cost savings to ratepayers. Phase change materials (PCMs) can store thermal energy in the form of latent heat when subjected to temperatures exceeding their melting point by undergoing a phase transition from solid to liquid state. Reversibly, PCMs can release this thermal energy when the system temperature falls below their solidification point. The goal in implementing composite PCM walls is to significantly reduce and time-shift the maximum thermal load on the building in order to reduce and smooth out the electricity demand for heating and cooling. This Ph.D. thesis aims to develop a set of thermal design methods and tools for exploring the use of PCM-composite building envelopes and for providing design rules for their practical implementation. First, detailed numerical simulations were used to show that the effective thermal conductivity of core-shell-matrix composites depended only on the volume fraction and thermal conductivity of the constituent materials. The effective medium approximation reported by Felske (2004) was in very good agreement with numerical predictions of the effective thermal conductivity. Second, a carefully validated transient thermal model was used to simulate microencapsulated PCM-composite walls subjected to diurnal or annual outdoor temperature and solar radiation flux. It was established that adding microencapsulated PCM to concrete walls both substantially reduced and delayed the thermal load on the building. Several design rules were established, most notably, (i) increasing the volume fraction of microencapsulated PCM within the wall increases the energy savings but at the potential expense of mechanical properties [1], (ii) the phase change temperature leading to the maximum energy and cost savings should equal the desired indoor temperature regardless of the climate

  18. Building Blocks Incorporating Waste Materials Bound with Bitumen

    Directory of Open Access Journals (Sweden)

    Thanaya I.N.A.

    2010-01-01

    Full Text Available This paper described an investigation and evaluation which was carried out in the United Kingdom-UK, on the properties of masonry building block materials that incorporate waste materials, namely: steel slag, crushed glass, coal fly ash, rice husk ash (RHA, incinerator sewage sludge ash (ISSA, municipal solid waste incinerator bottom ash (MSWIBA or shortened as IBA, bound with bitumen or asphalt, named as Bitublock. The binder used was 50 pen bitumen. The properties of the blocks evaluated were: compressive strength, density, porosity, initial rate of suction (IRS, creep, and volume stability. It was found that the Bitublock performance can be improved by optimizing porosity and curing regime. Compaction level of 2 MPa and curing regime of 200°C for 24 hours gave satisfactory bitublock performances that at least comparable to concrete block found in the United Kingdom (UK. The Volume stability (expansion of the unit is affected by environment relative humidity.

  19. Radiological restrictions of using red mud as building material additive.

    Science.gov (United States)

    Gu, Hannian; Wang, Ning; Liu, Shirong

    2012-09-01

    Red mud remains as residue from the processing of bauxite using different methods. The chemical composition of red mud varies widely with respect to the types of bauxite ore and processing parameters. Red mud samples from Guizhou, China, were investigated using a X-ray fluorescence spectroscope, a quadrupole inductively coupled plasma mass spectrometer and a electron probe micro-analyzer. The results showed that red mud consisted of eight main chemical components--CaO, Al(2)O(3), SiO(2), Fe(2)O(3), TiO(2), Na(2)O, K(2)O and MgO--and dozens of trace elements, including natural radioactive elements, such as uranium and thorium. Gamma spectrometric analysis showed that the values of internal exposure index I (Ra) and external exposure index I (γ) of Guizhou red mud were 1.1-2.4 and 2.3-3.5 respectively. Thus, it should not be used as a main building material indiscriminately. The amount of red mud from Guizhou when it is used for main building materials in China should be less than 28-44%.

  20. 15 CFR 270.321 - Entry and inspection of property where building components, materials, artifacts, and records...

    Science.gov (United States)

    2010-01-01

    ... building components, materials, artifacts, and records with respect to a building failure are located. 270... of property where building components, materials, artifacts, and records with respect to a building... building components, materials, artifacts and records with respect to a building failure are...

  1. State of the art on historic building insulation materials and retrofit strategies

    DEFF Research Database (Denmark)

    Blumberga, Andra; Kass, Kristaps; Kamendere, Edite

    2016-01-01

    This report provides an analysis and evaluation of a state-of-the-art of internal insulation materials and methods for application in historic buildings, and review on methods, tools and guidelines used as decision making tools for implementation of internal insulation in historic buildings....... Historic buildings in RIBuild represent all types of protected1 and non-protected buildings built before 1945. The survey is limited to buildings with heavy walls (stone, brick, timber framing), thus excluding wooden buildings....

  2. PCM-enhanced building components an application of phase change materials in building envelopes and internal structures

    CERN Document Server

    Kosny, Jan

    2015-01-01

    Presenting an overview of the use of Phase Change Materials (PCMs) within buildings, this book discusses the performance of PCM-enhanced building envelopes. It reviews the most common PCMs suitable for building applications, and discusses PCM encapsulation and packaging methods. In addition to this, it examines a range of PCM-enhanced building products in the process of development as well as examples of whole-building-scale field demonstrations. Further chapters discuss experimental and theoretical analyses (including available software) to determine dynamic thermal and energy performance ch

  3. Pathology of Building Materials in Historic Buildings. Relationship Between Laboratory Testing and Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Lerma, C.

    2014-03-01

    Full Text Available Study of historic buildings requires a pathology analysis of the construction materials used in order to define their conservation state. Usually we can find capillary moisture, salt crystalli-zation or density differences by deterioration. Sometimes this issue is carried out by destructive testing which determine materials’ physical and chemical characteristics. However, they are unfavorable regarding the building’s integrity, and they are sometimes difficult to implement. This paper presents a technique using infrared thermography to analyze the existing pathology and has the advantage of being able to diagnose inaccessible areas in buildings. The results obtained by this technique have been compared with those obtained in the laboratory, in order to validate this study and thus to extrapolate the methodology to other buildings and materials.El estudio de edificios históricos requiere un análisis de la patología de los materiales de construcción empleados para poder definir su estado de conservación. Habitualmente nos encontramos con humedades por capilaridad, cristalización de sales o diferencias de densidad por deterioro. En ocasiones esto se lleva a cabo mediante ensayos destructivos que nos determinan las características físicas y químicas de los materiales, pero que resultan desfavorables respecto a la integridad del edificio, y en ocasiones resulta complejo llevarlos a cabo. Este trabajo presenta una técnica para analizar la patología existente mediante el empleo de termografía infrarroja con la ventaja de poder diagnosticar zonas de difícil acceso en los edificios. Para validar este estudio se han comparado los resultados obtenidos mediante esta técnica con los alcanzados en el laboratorio. De esta forma podemos extrapolar la metodología empleada a otros edificios y materiales.

  4. Towards proteomic analysis of milk proteins in historical building materials

    Science.gov (United States)

    Kuckova, S.; Crhova, M.; Vankova, L.; Hnizda, A.; Hynek, R.; Kodicek, M.

    2009-07-01

    The addition of proteinaceous binders to mortars and plasters has a long tradition. The protein additions were identified in many sacral and secular historical buildings. For this method of peptide mass mapping, three model mortar samples with protein additives were prepared. These samples were analysed fresh (1-2 weeks old) and after 9 months of natural ageing. The optimal duration of tryptic cleavage (2 h) and the lowest amount of material needed for relevant analysis of fresh and weathered samples were found; the sufficient amounts of weathered and fresh mortars were set to 0.05 and 0.005 g. The list of main tryptic peptides coming from milk additives (bovine milk, curd, and whey), their relative intensities and theoretical amino acid sequences assignment is presented. Several sequences have been "de novo" confirmed by mass spectrometry.

  5. Millennium-long damage to building materials in London.

    Science.gov (United States)

    Brimblecombe, Peter; Grossi, Carlota M

    2009-02-01

    Damage functions from a range of sources are used to estimate deterioration of carbonate stone, iron and copper, in addition to the rate of blackening of stone surfaces in London across the period 1100-2100 CE. Meteorological and pollution input is available for only a relatively short part of this span, so non-instrumental weather records and modelled pollution are utilised for historic values, while future climate is adapted from the HadCM3A2 model output and pollution assessed from likely regulatory trends. The results from the different damage functions compare reasonably well showing comparable changes in damage rates with time. A potential square-root dependence of change in deposition velocity of SO2 to limestone suggests a possible overestimate of damage when pollution is high. Deterioration is especially intense from the 1700s. It is difficult to be certain whether the corrosion of copper accelerated as early as this or it developed in the 20th century. Nevertheless all the functions predict a decline in copper corrosion from the end of the 20th century. A blackening function was developed to relate elemental carbon concentration and the colour of deposited particulate matter to blackening rate, which suggests that soiling was particularly rapid in the late 19th century. The increase and subsequent decrease in damage to building materials is interpreted in terms of a Kuznets curve. The centuries where pollution controlled damage to durable building material seems to be over. Weathering, in a changing climate may have the greatest impact in the future.

  6. Rice Husk Ash Sandcrete Block as Low Cost Building Material

    Directory of Open Access Journals (Sweden)

    S.P.Sangeetha,

    2016-06-01

    Full Text Available Concrete is a widely used construction material for various types of structures due to its structural stability and strength. The construction industry is today consuming more than 400 million tonnes of concrete every year .Most of the increase in cement demand will be met by the use of supplementary cementing materials, as each ton of Portland cement clinker production is associated with similar amount of CO2 emission, which is a major source of global warming. Partial replacement of ordinary Portland cement with mineral admixtures like fly ash, ground granulated blast furnace slag, silica fume, metakaolin, Rice husk Ash (RHA,etc with plasticizers eliminates these drawbacks. The use of rice husk modifies the physical qualities of fresh cement paste as well as microstructure of paste after hardening. By burning the rice husk under a uncontrolled temperature in the atmosphere, a highly reactive RHA was obtained and the ash was utilized as a supplementary cementing material. This paper presents the effects of using Rice Husk Ash (RHA as a partial cement replacement material in mortar mixes. This work is based on an experimental study of mortar made with replacement of Ordinary Portland Cement (OPC with 10%, 20% 30% & 40% RHA. The properties investigated were the compressive strength, setting time, consistency, workability and specific gravity. Finally, a cost analysis was also done to compare the efficiency of rice husk ash sandcrete blocks. From the test results it can be concluded that rice husk ash can be utilized in day today life of manufacturing building blocks which are more economical and more eco-friendly than the cement concrete blocks which are produced now-a-days.

  7. Environmentally suitable building materials. Grey energy and sustainability of buildings; Umweltgerechte Baustoffe. Graue Energie und Nachhaltigkeit von Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Pueschel, Danny; Teller, Matthias (eds.)

    2013-02-01

    The editors of the book under consideration present a compilation of contributions on environmentally suitable building materials from different perspectives. It provides an overview of 'Grey Energy' and a total energy balance of buildings. The most contributions are based on lectures of a symposium in April, 2011, in the Knobelsdorff School in Berlin-Spandau (Federal Republic of Germany).

  8. Heating Process of Thermosetting Insulation Materials for Buildings

    Institute of Scientific and Technical Information of China (English)

    SUN Shibing; MA Baoguo; CHEN Meng; WANG Zhaojun

    2012-01-01

    Polyurethane (PU) and phenolic (PF) foams used for building isolation were analyzed by thermal gravity/differential thermal analysis to determine their pyrolysis behavior,including the decomposition point and the maximum reaction rate point.Besides,the shape deformations of PU and PF foams were observed,and their oxygen index and the calorific value in combustion were also studied.The results showed that the pyrolysis of both PU and PF can be divided into three stages from room temperature to 1 000 ℃ in the atmospheric air,with total mass loss of 94.345% for PF and 88.191% for PU,respectively.The oxygen index of PU and PF decreased with increasing the temperature and the duration of the heat treatment.With the temperature increasing,the calorific values of both materials were reduced remarkably.These results of the PU and PF could provide basic data of the thermal stability and fire safety design in the application of thermosetting insulation materials.

  9. Old and Modern Construction Materials In Yemen: The Effect In Building Construction In Sana'a

    Directory of Open Access Journals (Sweden)

    ISSA A.M. Al_Kahtani

    2007-01-01

    Full Text Available Sana’a city in Yemen is one of the oldest cities in the worlds, which has different forms of building built with different types of materials. In the present work, the old and new forms of building construction and the building materials used in Sana’a, the sources available for the new material, the effects of new material usage on building forms are all presented with the advantages and disadvantages of each material. The old shapes of buildings in Yemen and the classical and modern forms of construction using different types of materials are considered in the study. Survey is used to investigate the building forms and material types in Sana’a. Several conclusions are submitted showing that, the new building material, such as concrete block, is preferred in building comparing with old material, such as stone, which makes it the best choice for the low income people but sometimes the limited resources make old material the only available choice. Several steps needed to develop and encourage the use of new building materials are recommended.

  10. Infrared Emissivity Measurements for Mineral Materials and Materials Used for Infrastructure Building

    Science.gov (United States)

    Monchau, Jean-Pierre; Ibos, Laurent; Marchetti, Mario; Dumoulin, Jean; Feuillet, Vincent; Candau, Yves; Ausset, Patrick

    2013-04-01

    The knowledge of the infrared emissivity of materials used in buildings, civil engineering structures and soils studies is useful for two specific approaches. Firstly, quantitative diagnosis of buildings or civil engineering infrastructures using infrared thermography requires the emissivity value of materials in the spectral bandwidth of the camera. For instance emissivity in the band III domain is required when using cameras with uncooled detectors like micro-bolometers arrays. The knowledge of emissivity is in that case needed for computation of surface temperature fields. Secondly, accurate thermal balance requires the emissivity value in a large wavelength domain. This is for instance the case for computing roads surface temperature to predict ice forming. A measurement of emissivity just after construction and a regular survey of its variations due to ageing or soiling of surfaces could be useful in many situations like thermal mapping of roads or building insulation diagnosis. For mineral materials, a lot of studies exist, but often in situ value of emissivity could be different. Mineral materials are not pure, and could be soiled. Real value obtained with a field device is required. The use of portable emissivity measurement devices is required for that purpose. Thus, two devices using the indirect measurement method were developed. The emissivity value is deduced from the measurement of the reflectivity of the material under study after calibration with a highly reflective surface. The first device uses a slow modulation frequency well adapted to laboratory measurements whereas the second one is a portable system using a faster modulation frequency authorizing outdoor measurements. Both devices allow measurements in broad band (1 to 40μm) and band III (8 to 14μm). Experiments were performed on a large number of materials commonly used in buildings and civil engineering structures. For instance at that time 180 samples of different pavement wearing course

  11. TiO2-based building materials: Above and beyond traditional applications

    Institute of Scientific and Technical Information of China (English)

    GUO Sen; WU ZhongBiao; ZHAO WeiRong

    2009-01-01

    In the 1910s, TiO2 began to be used in building materials as pigments and opacifier due to its excellent optical property. Since the photocatalytic property of TiO2 was observed in 1972, its application field was expanded to air cleaning and sterilization. Thereafter, people added TiO2 into building materials to develop novel and facile building materials. These materials were widely used for air cleaning, sterili-zation, self-cleaning, anti-fogging, decoration, and building cooling. The combination of building and other functions can serve simultaneously. Although TiO2-based building materials have bright pros-pects, some aspects such as improving the stability and enhancing photoactive performance of the materials are of importance for future research.

  12. The effect of using low-polluting building materials on ventilation requirements and energy use in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P.; Frontczak, M. (International Centre for Indoor Environment and Energy, Dept. of Mechanical Engineering, DTU, Kgs. Lyngby (DK)); Knudsen, Henrik N. (Danish Building Research Institute, Aalborg Univ., Hoersholm (DK))

    2007-07-01

    The main objective of the ongoing research project described in this paper was to study the potential for reducing energy used for ventilating buildings by using low-polluting building materials, without compromising the indoor air quality. To quantify this potential, the exposure-response relationships, i.e. the relationships between ventilation rate and perceived indoor air quality, were established for rooms furnished with different categories of polluting materials and the simulations of energy used for ventilation were carried out. The exposure-response relationships were based on a summary of data reported in the literature on exposure-response relationships for materials tested in laboratory settings in small-scale glass chambers, and in full-scale in climate chambers, test rooms or normal offices. New experiments were also considered in which the effect of using low-polluting materials on perceived air quality was examined in test rooms ventilated with different outdoor air supply rates, low-polluting materials being selected in small glass chambers. The results suggest that the exposure-response relationships vary between different building materials and that the perceived air quality can be improved considerably when polluting building materials are substituted with materials that pollute less. The preliminary energy simulations indicate that selecting low-polluting materials will result in considerable energy savings as a result of reducing the ventilation rates required to achieve acceptable indoor air quality. (au)

  13. Thermal analysis of a building brick containing phase change material

    Energy Technology Data Exchange (ETDEWEB)

    Alawadhi, E.M. [Kuwait Univ., Safat (Kuwait). Dept. of Mechanical Engineering

    2008-07-01

    This paper presents the thermal analysis of a building brick containing phase change material (PCM) to be used in hot climates. The objective of using the PCM is to utilize its high latent heat of fusion to reduce the heat gain by absorbing the heat in the bricks through the melting process before it reaches the indoor space. The considered model consists of bricks with cylindrical holes filled with PCM. The problem is solved in a two-dimensional space using the finite element method. The thermal effectiveness of the proposed brick-PCM system is evaluated by comparing the heat flux at the indoor surface to a wall without the PCM during typical working hours. A paramedic study is conducted to assess the effect of different design parameters, such as the PCM's quantity, type, and location in the brick. The results indicate that the heat gain is significantly reduced when the PCM is incorporated into the brick, and increasing the quantity of the PCM has a positive effect. PCM cylinders located at the centerline of the bricks shows the best performance. (author)

  14. Fire Safety Aspects of Polymeric Materials. Volume 7. Buildings

    Science.gov (United States)

    1979-01-01

    Custodial Buildings 136 4.5.5 Retail Stores, Malls, etc. 138 l’ 4.5.6 Restaurants and Nightclubs 4.5.7 Public Assembly Occupancies - Auditoria , Theaters... auditoria , theaters, exhibition halls, arenas, transportation terminals; educational buildings and indus- trial buildings. Many of the fire safety...usage are developed. 4.5.7 Public Assembly Occupancies - Auditoria , Theaters, Exhibition Halls, Arenas, Transportation Terminals, Etc. The factors

  15. A mass transfer model for predicting emission of the volatile organic compounds in wet building materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tao; JIA Li

    2008-01-01

    A new mass transfer model is developped to predict the volatile organic compounds (VOCs) from fresh wet building materials. The dry section of wet materials during the process of VOC emission from wet building materials is considered in this new model, differing from the mass transfer-based models in other literatures. The mechanism of effect of saturated vapor pressure on the surface of wet building materials in the process of VOC emission is discussed. The concentration of total volatile organic compounds (TVOC) in the building materials gradually decreases as the emission of VOCs begins, and the vapor pressure of VOCs on the surface of wet building materials decreases in the case of newly wet building materials. To ensure the partial pressure of VOCs on the surface of wet building materials to be saturated vapor pressure, the interface of gas-wet layer is lowered, and a dry layer of no-volatile gases in the material is formed. Compared with the results obtained by VB model, CFD model and the ex-periment data, the results obtained by the present model agree well with the results obtained by CFD model and the experiment data. The present model is more accurate in predicting emission of VOC from wet building materials than VB model.

  16. Radon diffusion studies in some building materials using solid state nuclear track detectors

    CERN Document Server

    Singh, S; Singh, B; Singh, J

    1999-01-01

    LR-115 plastic track detector has been used to study radon diffusion through some building materials, viz. cement, soil, marble chips, sand and lime as well as air. Diffusion constant and diffusion length is calculated for all these materials.

  17. Determination of fungal spore release from wet building materials.

    Science.gov (United States)

    Kildesø, J; Würtz, H; Nielsen, K F; Kruse, P; Wilkins, K; Thrane, U; Gravesen, S; Nielsen, P A; Schneider, T

    2003-06-01

    The release and transport of fungal spores from water-damaged building materials is a key factor for understanding the exposure to particles of fungal origin as a possible cause of adverse health effects associated to growth of fungi indoors. In this study, the release of spores from nine species of typical indoor fungi has been measured under controlled conditions. The fungi were cultivated for a period of 4-6 weeks on sterilized wet wallpapered gypsum boards at a relative humidity (RH) of approximately 97%. A specially designed small chamber (P-FLEC) was placed on the gypsum board. The release of fungal spores was induced by well-defined jets of air impacting from rotating nozzles. The spores and other particles released from the surface were transported by the air flowing from the chamber through a top outlet to a particle counter and sizer. For two of the fungi (Penicillium chrysogenum and Trichoderma harzianum), the number of spores produced on the gypsum board and subsequently released was quantified. Also the relationship between air velocities from 0.3 to 3 m/s over the surface and spore release has been measured. The method was found to give very reproducible results for each fungal isolate, whereas the spore release is very different for different fungi under identical conditions. Also, the relationship between air velocity and spore release depends on the fungus. For some fungi a significant number of particles smaller than the spore size were released. The method applied in the study may also be useful for field studies and for generation of spores for exposure studies.

  18. Natural radioactivity measurements in building materials in Southern Lebanon.

    Science.gov (United States)

    Kobeissi, M A; El Samad, O; Zahraman, K; Milky, S; Bahsoun, F; Abumurad, K M

    2008-08-01

    Using gamma-spectroscopy and CR-39 detector, concentration C of naturally occurring radioactive nuclides (226)Ra, (222)Rn, (214)Bi, (228)Ac, (212)Pb, (212)Bi and (40)K, has been measured in sand, cement, gravel, gypsum, and paint, which are used as building materials in Lebanon. Sand samples were collected from 10 different sandbank locations in the southern part of the country. Gravel samples of different types and forms were collected from several quarries. White and gray cement fabricated by Shaka Co. were obtained. gamma-spectroscopy measurements in sand gave Ra concentration ranging from 4.2+/-0.4 to 60.8+/-2.2 Bq kg(-1) and Ra concentration equivalents from 8.8+/-1.0 to 74.3+/-9.2 Bq kg(-1). The highest Ra concentration was in gray and white cement having the values 73.2+/-3.0 and 76.3+/-3.0 Bq kg(-1), respectively. Gravel results showed Ra concentration between 20.2+/-1.0 and 31.7+/-1.4 Bq kg(-1) with an average of 27.5+/-1.3 Bq kg(-1). Radon concentration in paint was determined by CR-39 detector. In sand, the average (222)Rn concentration ranged between 291+/-69 and 1774+/-339 Bq m(-3) among the sandbanks with a total average value of 704+/-139 Bq m(-3). For gravel, the range was found to be from 52+/-9 to 3077+/-370 Bq m(-3) with an average value of 608+/-85 Bq m(-3). Aerial and mass exhalation rates of (222)Rn were also calculated and found to be between 44+/-7 and 2226+/-267 mBq m(-2)h(-1), and between 0.40+/-0.07 and 20.0+/-0.3 mBq kg(-1)h(-1), respectively.

  19. Study on characteristics of double surface VOC emissions from dry flat-plate building materials

    Institute of Scientific and Technical Information of China (English)

    WANG Xinke; ZHANG Yinping; ZHAO Rongyi

    2006-01-01

    This paper sets up an analytic model of double surface emission of volatile organic compound (VOC) from dry, flat-plate building materials. Based on it, the influence of factors including air change rate, loading factor of materials in the room, mass diffusion coefficient, partition coefficient, convective mass transfer coefficient, thickness of materials, asymmetric convective flow and initial VOC concentration distribution in the building material on emission is discussed. The conditions for simplifying double surface emission into single surface emission are also discussed. The model is helpful to assess the double surface VOC emission from flat-plate building materials used in indoor furniture and space partition.

  20. Alternative materials for desert buildings: a comparative life cycle energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pearlmutter, D.; Freidin, C.; Huberman, N. [Institutes for Desert Research, Ben-Gurion University of the Negev, (Israel)

    2007-03-15

    This study examines the potential life-cycle energy savings that may be achieved by combining an innovative alternative building material and a bioclimatic approach to building design under the distinctive environmental conditions of a desert region. A residential building in the Negev region of Israel is used as a model for the assessment. Designed with a number of climatically-responsive design strategies and conventional concrete-based materials, the building was energy-independent in terms of summer cooling and had only modest requirements for winter heating. As a second step to the assessment, the integration of an alternative building material based on industrial waste and local raw materials in the building's walls was considered through thermal simulation. The alternative materials are produced through a process developed to make productive utilization of fly-ash from oil shale and coal combustion. Material properties were analyzed using laboratory specimens, and it was established that high-quality building components could be produced using the developed technological procedure with standard manufacturing equipment. The consumption of both embodied and operational energy was analyzed over the building's useful life span, and this life-cycle analysis showed the clear advantage of integrating alternative materials in a building under environmental conditions in a desert environment. (Author)

  1. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T. D.; Easterling, S. D.

    2010-10-01

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  2. The contribute of using vernacular materials and techniques for sustainable building

    OpenAIRE

    Fernandes, Jorge Emanuel Pereira; Mateus, Ricardo; Bragança, L.

    2013-01-01

    The use of local materials and techniques is one of the main features from vernacular architecture. When compared with industrially-produced materials, vernacular materials have low environmental impacts, being an alternative for sustainable building. However, industrialization have brought new standardized materials that led to the homogenization of the different building approaches and spawned a universal architecture often with no context concerns and with significant environmental i...

  3. Guidelines for Assessment and Abatement of Asbestos-Containing Materials in Buildings.

    Science.gov (United States)

    Pielert, James H.; Mathey, Robert G.

    This report presents guidelines, based on available information, for the assessment and abatement of asbestos-containing materials in buildings. Section 1 provides background information on the history and use of asbestos-containing products in buildings, the characteristics of asbestos fibers, products and materials containing asbestos, and…

  4. Investigation of thermal effect on exterior wall surface of building material at urban city area

    OpenAIRE

    Mohd Fadhil Md Din, Hazlini Dzinun, M. Ponraj, Shreeshivadasan Chelliapan, Zainura Zainun Noor, Dilshah Remaz, Kenzo Iwao

    2012-01-01

    This paper describes the investigation of heat impact on the vertical surfaces of buildings based on their thermal behavior. The study was performed based on four building materials that is commonly used in Malaysia; brick, concrete, granite and white concrete tiles. The thermal performances on the building materials were investigated using a surface temperature sensor, data logging system and infrared thermography. Results showed that the brick had the capability to absorb and store heat gre...

  5. Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Burn, G. (comp.)

    1990-07-01

    The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Programs is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months..

  6. Simulated Aging and Characterization of Phase Change Materials for Thermal Management of Building Envelopes

    Science.gov (United States)

    2015-09-01

    Method B). West Conshohocken, PA: ASTM International. ———. 2009. Standard Method for Surface Burning Characteristics of Building Materials. ASTM E84-09...storage in buildings : A state of art. Renewable and Sustainable Energy Reviews 11(6):1146-1166 Yu, S., S. Jeong, C. Chyoung, and S. Kim. 2014. Bio-based...Simulated Aging and Characterization of Phase Change Materials for lhermal Management of Building Envelopes Elizabeth J. Gao, Jignesh Patel, Veera M. Boddu

  7. 15 CFR 270.325 - Notice of authority to enter and inspect property where building components, materials, artifacts...

    Science.gov (United States)

    2010-01-01

    ... inspect property where building components, materials, artifacts, and records with respect to a building... Notice of authority to enter and inspect property where building components, materials, artifacts, and... investigated has occurred, or where building components, materials, and artifacts with respect to the...

  8. Natural radioactivity measurements in building materials in Southern Lebanon

    Energy Technology Data Exchange (ETDEWEB)

    Kobeissi, M.A.; El Samad, O.; Zahraman, K. [Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11-8281, Beirut (Lebanon); Milky, S.; Bahsoun, F. [Department of Physics, Lebanese University, Faculty of Sciences (I), Hadeth, Beirut (Lebanon); Abumurad, K.M. [Department of Physics, Yarmouk University, P.O. Box 566, Irbid 21163 (Jordan)], E-mail: abumurad@yu.edu.jo

    2008-08-15

    Using {gamma}-spectroscopy and CR-39 detector, concentration C of naturally occurring radioactive nuclides {sup 226}Ra, {sup 222}Rn, {sup 214}Bi, {sup 228}Ac, {sup 212}Pb, {sup 212}Bi and {sup 40}K, has been measured in sand, cement, gravel, gypsum, and paint, which are used as building materials in Lebanon. Sand samples were collected from 10 different sandbank locations in the southern part of the country. Gravel samples of different types and forms were collected from several quarries. White and gray cement fabricated by Shaka Co. were obtained. {gamma}-Spectroscopy measurements in sand gave Ra concentration ranging from 4.2 {+-} 0.4 to 60.8 {+-} 2.2 Bq kg{sup -1} and Ra concentration equivalents from 8.8 {+-} 1.0 to 74.3 {+-} 9.2 Bq kg{sup -1}. The highest Ra concentration was in gray and white cement having the values 73.2 {+-} 3.0 and 76.3 {+-} 3.0 Bq kg{sup -1}, respectively. Gravel results showed Ra concentration between 20.2 {+-} 1.0 and 31.7 {+-} 1.4 Bq kg{sup -1} with an average of 27.5 {+-} 1.3 Bq kg{sup -1}. Radon concentration in paint was determined by CR-39 detector. In sand, the average {sup 222}Rn concentration ranged between 291 {+-} 69 and 1774 {+-} 339 Bq m{sup -3} among the sandbanks with a total average value of 704 {+-} 139 Bq m{sup -3}. For gravel, the range was found to be from 52 {+-} 9 to 3077 {+-} 370 Bq m{sup -3} with an average value of 608 {+-} 85 Bq m{sup -3}. Aerial and mass exhalation rates of {sup 222}Rn were also calculated and found to be between 44 {+-} 7 and 2226 {+-} 267 mBq m{sup -2} h{sup -1}, and between 0.40 {+-} 0.07 and 20.0 {+-} 0.3 mBq kg{sup -1} h{sup -1}, respectively.

  9. Smart Materials For The Realization Of An Adaptive Building Component

    NARCIS (Netherlands)

    Lelieveld, C.M.J.L.

    2013-01-01

    This research focusses on the realization of adaptive architecture with the use of advanced material technology. Current material research has shown significant advances with the development of “smart” materials. Smart materials are “capable of automatically and inherently sensing or detecting chang

  10. Amoebae and other protozoa in material samples from moisture-damaged buildings.

    Science.gov (United States)

    Yli-Pirilä, Terhi; Kusnetsov, Jaana; Haatainen, Susanna; Hänninen, Marja; Jalava, Pasi; Reiman, Marjut; Seuri, Markku; Hirvonen, Maija-Riitta; Nevalainen, Aino

    2004-11-01

    Mold growth in buildings has been shown to be associated with adverse health effects. The fungal and bacterial growth on moistened building materials has been studied, but little attention has been paid to the other organisms spawning in the damaged materials. We examined moist building materials for protozoa, concentrating on amoebae. Material samples (n = 124) from moisture-damaged buildings were analyzed for amoebae, fungi, and bacteria. Amoebae were detected in 22% of the samples, and they were found to favor cooccurrence with bacteria and the fungi Acremonium spp., Aspergillus versicolor, Chaetomium spp., and Trichoderma spp. In addition, 11 seriously damaged samples were screened for other protozoa. Ciliates and flagellates were found in almost every sample analyzed. Amoebae are known to host pathogenic bacteria, such as chlamydiae, legionellae, and mycobacteria and they may have a role in the complex of exposure that contributes to the health effects associated with moisture damage in buildings.

  11. Measurement of natural radioactivity in building materials used in Urumqi, China.

    Science.gov (United States)

    Ding, Xiang; Lu, Xinwei; Zhao, Caifeng; Yang, Guang; Li, Nan

    2013-07-01

    Building materials contain natural radionuclides (226)Ra, (232)Th and (40)K, which cause direct radiation exposure of the public. The concentrations of (226)Ra, (232)Th and (40)K in commonly used building materials of Urumqi, China have been analysed using gamma-ray spectrometry. The concentrations of (226)Ra, (40)K and (232)Th in the studied building materials range from 19.8 to 87.4, from 273.3 to 981.2 and from 11.6 to 47.7 Bq kg(-1), respectively. The radium equivalent activity (Raeq), gamma index (Iγ) and alpha index (Iα) were calculated to assess the radiation hazards to people living in dwellings made of the materials studied. The calculated Raeq values of all the building materials are lower than the limit of 370 Bq kg(-1) for building materials. The values of Iγ and Iα of all the building materials are less than unity. The study shows that these materials may be safely used as construction materials and do not pose significant radiation hazards.

  12. Recycling and reuse of chosen kinds of waste materials in a building industry

    Science.gov (United States)

    Ferek, B.; Harasymiuk, J.; Tyburski, J.

    2016-08-01

    The article describes the current state of knowledge and practice in Poland concerning recycling as a method of reuse of chosen groups of waste materials in building industry. The recycling of building scraps is imposed by environmental, economic and technological premises. The issue of usage of sewage residues is becoming a problem of ever -growing gravity as the presence of the increasing number of pernicious contaminants makes their utilization for agricultural purposes more and more limited. The strategies of using waste materials on Polish building sites were analyzed. The analysis of predispositions to salvage for a group of traditional materials, such as: timber, steel, building debris, insulation materials, plastics, and on the example of new materials, such as: artificial light aggregates made by appropriate mixing of siliceous aggregates, glass refuses and sewage residues in order to obtain a commodity which is apt for economic usage also was made in the article. The issue of recycling of waste materials originating from building operations will be presented in the context of the binding home and EU legal regulations. It was proved that the level of recycling of building wastes in Poland is considerably different from one which is achieved in the solid market economies, both in quantity and in assortment. The method of neutralization of building refuses in connection with special waste materials, which are sewage sludge that is presented in the article may be one of the alternative solutions to the problem of recycling of these wastes not only on the Polish scale.

  13. Investigation of thermal effect on exterior wall surface of building material at urban city area

    Energy Technology Data Exchange (ETDEWEB)

    Md Din, Mohd Fadhil; Dzinun, Hazlini; Ponraj, M.; Chelliapan, Shreeshivadasan; Noor, Zainura Zainun [Institute of Environmental Water Resources and Management (IPASA), Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Remaz, Dilshah [Faculty of Built Environment, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Iwao, Kenzo [Nagoya Institute of Technology, Nagoya (Japan)

    2012-07-01

    This paper describes the investigation of heat impact on the vertical surfaces of buildings based on their thermal behavior. The study was performed based on four building materials that is commonly used in Malaysia; brick, concrete, granite and white concrete tiles. The thermal performances on the building materials were investigated using a surface temperature sensor, data logging system and infrared thermography. Results showed that the brick had the capability to absorb and store heat greater than other materials during the investigation period. The normalized heat (total heat/solar radiation) of the brick was 0.093 and produces high heat (51% compared to granite), confirming a substantial amount of heat being released into the atmosphere through radiation and convection. The most sensitive material that absorbs and stores heat was in the following order: brick > concrete > granite > white concrete tiles. It was concluded that the type of exterior wall material used in buildings had significant impact to the environment.

  14. Investigation of thermal effect on exterior wall surface of building material at urban city area

    Directory of Open Access Journals (Sweden)

    Mohd Fadhil Md Din, Hazlini Dzinun, M. Ponraj, Shreeshivadasan Chelliapan, Zainura Zainun Noor, Dilshah Remaz, Kenzo Iwao

    2012-01-01

    Full Text Available This paper describes the investigation of heat impact on the vertical surfaces of buildings based on their thermal behavior. The study was performed based on four building materials that is commonly used in Malaysia; brick, concrete, granite and white concrete tiles. The thermal performances on the building materials were investigated using a surface temperature sensor, data logging system and infrared thermography. Results showed that the brick had the capability to absorb and store heat greater than other materials during the investigation period. The normalized heat (total heat/solar radiation of the brick was 0.093 and produces high heat (51% compared to granite, confirming a substantial amount of heat being released into the atmosphere through radiation and convection. The most sensitive material that absorbs and stores heat was in the following order: brick > concrete > granite > white concrete tiles. It was concluded that the type of exterior wall material used in buildings had significant impact to the environment.

  15. Low-Cost Phase Change Material for Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Abhari, Ramin [Renewable Energy Group

    2015-08-06

    A low-cost PCM process consisting of conversion of fats and oils to PCM-range paraffins, and subsequent “encapsulation” of the paraffin using conventional plastic compounding/pelletizing equipment was demonstrated. The PCM pellets produced were field-tested in a building envelope application. This involved combining the PCM pellets with cellulose insulation, whereby 33% reduction in peak heat flux and 12% reduction in heat gain was observed (average summertime performance). The selling price of the PCM pellets produced according to this low-cost process is expected to be in the $1.50-$3.00/lb range, compared to current encapsulated PCM price of about $7.00/lb. Whole-building simulations using corresponding PCM thermal analysis data suggest a payback time of 8 to 16 years (at current energy prices) for an attic insulation retrofit project in the Phoenix climate area.

  16. The potential of vernacular materials to the sustainable building design

    OpenAIRE

    Fernandes, Jorge Emanuel Pereira; Mateus, Ricardo; Bragança, L.

    2014-01-01

    Publicado em "Vernacular heritage and earthen architecture : contributions for sustainable development", ISBN 978-1-138-00083-4 Vernacular architecture embodies a plurality of constraints from places where it belongs, in which the use of local materials and techniques is one of the main features. When compared with industrially-produced materials, vernacular materials have low environmental impacts, being an alternative for sustainable construction. The increasing use of new industrially-p...

  17. Magnetization of Steel Building Materials and Structures in the Natural Geomagnetic Field

    Directory of Open Access Journals (Sweden)

    E. Čermáková

    2005-01-01

    Full Text Available This paper presents the physical basis of the magnetic properties of ferromagnetic materials and shows their relationships with external geomagnetic field. It graphically processes the experimental data detected by an HMR magnetometer. Taking into account the natural geomagnetic field under the effects of steel U profiles, variations of the natural geomagnetic field in a steel structure building are indicated and the potential existence of Sick Building Syndrome (SBS in these types of buildings is pointed out. 

  18. Assessment of thermal insulation materials and systems for building applications

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The primary goal of the study was to provide a proper foundation for decision making by the federal government, industry, and consumer. The report may be used to identify areas where new test methods and standards are needed to establish new programs for improving thermal performance of buildings, and as a basis for setting new or improved standards after the recommended test programs have been completed.

  19. Potentially harmful secondary metabolites produced by indoor Chaetomium species on artificially and naturally contaminated building materials

    DEFF Research Database (Denmark)

    Dosen, Ina; Nielsen, Kristian Fog; Clausen, Geo

    2017-01-01

    , have been screened for, and thus detected in buildings. In this study, we used a liquid chromatography-high resolution mass spectrometry approach to screen both artificially and naturally infected building materials for all the Chaetomium metabolites described in the literature. Pure agar cultures were...

  20. GROWTH RESPONSE OF STACHYBOTRYS CHARTARUM TO MOISTURE VARIATION ON COMMON BUILDING MATERIALS

    Science.gov (United States)

    The mold Stachybotrys chartarum has been found to be associated with idiopathic pulmonary hemorrhage in infants and has been studied for toxin production and its occurrence in water damaged buildings. Growth of S. chartarum on building materials such as drywall has been frequentl...

  1. Further Development of Selective Dyeing Method for Detecting Chrysotile Asbestos in Building Materials

    Science.gov (United States)

    Oke, Y.; Yamasaki, N.; Maeta, N.; Fujimaki, H.; Hashida, T.

    2008-02-01

    Extensive usage of chrysotile asbestos has resulted in the remains of large numbers of chrysotile asbestos-containing buildings to be surveyed. We have recently developed a simple dyeing method for detecting chrysotile asbestos in building materials, which involves pretreatment with calcium-chelating agent and dyeing treatment with magnesium-chelating organic dyes. In this study, we further developed a method which eliminates dyed asbestos substitutes containing magnesium, potentially present in building materials. In the new method, post-treatment with formic acid was conducted to dissolve the non-chrysotile asbestos materials in order to delineate dyed chrysotile asbestos. The calcium-masking process was also shown to be an essential process even when the post-treatment was conducted. It was shown that the new method developed in this study may enable us to dye chrysotile asbestos only without detecting asbestos substitutes in building materials.

  2. Monte Carlo simulation of indoor external exposure due to gamma-emitting radionuclides in building materials

    Science.gov (United States)

    Deng, Jun; Cao, Lei; Su, Xu

    2014-10-01

    The use of building materials containing naturally occurring radionuclides, such as 40K, 238U, 232Th and their progeny, could lead to external exposures to the residents of such buildings. In this paper, a set of models are constructed to calculate the specific effective dose rates (the effective dose rate per Bq/kg of 40K, the 238U series, and the 232Th series) imposed on residents by building materials with the MCNPX code. The effect of chemical composition, position concerned in the room and thickness as well as density of material is analyzed. In order to facilitate more precise assessment of indoor external dose due to gamma-emitting radionuclides in building materials, three regressive expressions are proposed and validated by measured data to calculate specific effective rates for 40K. the 238U series and the 232Th series, respectively.

  3. Monte Carlo Simulation of Indoor External Exposure due to Gamma-emitting Radionuclides in Building Materials

    CERN Document Server

    Deng, Jun; Su, Xu

    2014-01-01

    The use of building materials containing naturally occurring radionuclides,such as K-40, U-238 and Th-232 and their progeny, could lead to external exposures of the residents of such buildings. In this paper, a set of models are set up to calculate the specific effective dose rates(the effective dose rate per Bq/kg of K-40, U-238 series, and Th-232 series) imposed to residents by building materials with MCNPX code. Effect of chemical composition, position concerned in the room and thickness as well as density of material is analyzed. In order to facilitate more precise assessment of indoor external dose due to gamma emitting radionuclides in building materials, three regressive expressions are proposed and validated by measured data to calculate specific effective rate for K-40, U-238 series and Th-232 series, respectively.

  4. 29 CFR 779.355 - Classification of lumber and building materials sales.

    Science.gov (United States)

    2010-07-01

    ... LABOR STANDARDS ACT AS APPLIED TO RETAILERS OF GOODS OR SERVICES Exemptions for Certain Retail or... business rather than a function of a retail merchant; (2) Sales of lumber and building materials in...

  5. Radioactivity of building materials and the gamma radiation in dwellings in Belo Horizonte, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Ludmila Souza [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil)]. E-mail: ludmiga@yahoo.com.br; Rocha, Zildete [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Quimica e Radioquimica]. E-mail: rochaz@cdtn.br

    2007-07-01

    Building materials are known to contain naturally occurring radioactive materials (NORM). The radionuclides which contribute to the external exposure are 40 K and the gamma emitters members of the natural decay series {sup 238}U, {sup 235}U and {sup 232}Th. Samples of the statistically more important buildings materials utilized in the Metropolitan area of Belo Horizonte were collected and their uranium and thorium concentration were determined by INAA. The gamma emitters were spectrometrically determined by solid state detectors HPGe in a very low background laboratory. A model room was used for calculating the indoor mean exposure in dwellings. Due to the lack of regulation for radioactivity in buildings in Brazil, the measured activity concentration was compared with those of other countries. A discussion about the utilization of building material containing TENORM industrial residues is presented. (author)

  6. Optimization of a phase change material wallboard for building use

    Energy Technology Data Exchange (ETDEWEB)

    Kuznik, Frederic; Virgone, Joseph [Thermal Sciences Center of Lyon, CNRS, UMR 5008, INSA de Lyon, Universite Lyon 1, Bat Freyssinet, 40 Rue des Arts, 69621 Villeurbanne Cedex (France); Noel, Jean [Free-lance Scientific Software Developer, 15 Place Carnot, 69002 Lyon (France)

    2008-08-15

    In construction, the use of phase change materials (PCM) allows the storage/release of energy from the solar radiation and/or internal loads. The application of such materials for lightweight construction (e.g., a wood house) makes it possible to improve thermal comfort and reduce energy consumption. A wallboard composed of a new PCM material is investigated in this paper to enhance the thermal behavior of a lightweight internal partition wall. The paper focuses on the optimization of phase change material thickness. The in-house software CODYMUR is used to optimize the PCM wallboard by the means of numerical simulations. The results show that an optimal PCM thickness exists. The optimal PCM thickness value is then calculated for use in construction. (author)

  7. Review of Development Survey of Phase Change Material Models in Building Applications

    Directory of Open Access Journals (Sweden)

    Hussein J. Akeiber

    2014-01-01

    Full Text Available The application of phase change materials (PCMs in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data.

  8. Building construction materials effect in tropical wet and cold climates: A case study of office buildings in Cameroon

    Directory of Open Access Journals (Sweden)

    Modeste Kameni Nematchoua

    2016-03-01

    Full Text Available This paper presents the results of an experimental study that was conducted in 15 office buildings in the humid and cold tropics during the working hours of the dry and rainy seasons in Cameroon. This was with the aim to study the effects that local and imported materials had on indoor air quality. To achieve this objective, the adaptive model approach has been selected. In accordance with the conditions of this model, all workers were kept in natural ventilation and, in accordance with the general procedure, a questionnaire was distributed to them, while variables, like air temperature, wind speed, and relative humidity were sampled. The results showed a clear agreement between expected behaviour, in accordance with the characteristics of building construction, and its real indoor ambience once they were statistically analysed. On the other hand, old buildings showed a higher percentage of relative humidity and a lower degree of indoor air temperature. Despite this, local thermal comfort indices and questionnaires showed adequate indoor ambience in each group of buildings, except when marble was used for external tiling. The effect of marble as an external coating helps to improve indoor ambience during the dry season. This is due to more indoor air and relative humidity being accumulated. At the same time, these ambiences are degraded when relative humidity is higher. Finally, these results should be taken cognisance of by architects and building designers in order to improve indoor environment, and overcome thermal discomfort in the Saharan area.

  9. A Materials Life Cycle Assessment of a Net-Zero Energy Building

    Directory of Open Access Journals (Sweden)

    Laura A. Schaefer

    2013-02-01

    Full Text Available This study analyzed the environmental impacts of the materials phase of a net-zero energy building. The Center for Sustainable Landscapes (CSL is a three-story, 24,350 square foot educational, research, and administrative office in Pittsburgh, PA, USA. This net-zero energy building is designed to meet Living Building Challenge criteria. The largest environmental impacts from the production of building materials is from concrete, structural steel, photovoltaic (PV panels, inverters, and gravel. Comparing the LCA results of the CSL to standard commercial structures reveals a 10% larger global warming potential and a nearly equal embodied energy per square feet, largely due to the CSL’s PV system. As a net-zero energy building, the environmental impacts associated with the use phase are expected to be very low relative to standard structures. Future studies will incorporate the construction and use phases of the CSL for a more comprehensive life cycle perspective.

  10. BUILDING MATERIALS MADE FROM FLUE GAS DESULFURIZATION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Michael W. Grutzeck; Maria DiCola; Paul Brenner

    2006-03-30

    Flue gas desulphurization (FGD) materials are produced in abundant quantities by coal burning utilities. Due to environmental restrains, flue gases must be ''cleaned'' prior to release to the atmosphere. They are two general methods to ''scrub'' flue gas: wet and dry. The choice of scrubbing material is often defined by the type of coal being burned, i.e. its composition. Scrubbing is traditionally carried out using a slurry of calcium containing material (slaked lime or calcium carbonate) that is made to contact exiting flue gas as either a spay injected into the gas or in a bubble tower. The calcium combined with the SO{sub 2} in the gas to form insoluble precipitates. Some plants have been using dry injection of these same materials or their own Class C fly ash to scrub. In either case the end product contains primarily hannebachite (CaSO{sub 3} {center_dot} 1/2H{sub 2}O) with smaller amounts of gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O). These materials have little commercial use. Experiments were carried out that were meant to explore the feasibility of using blends of hannebachite and fly ash mixed with concentrated sodium hydroxide to make masonry products. The results suggest that some of these mixtures could be used in place of conventional Portland cement based products such as retaining wall bricks and pavers.

  11. Suitable Friction Sliding Materials for Base Isolation of Masonry Buildings

    Directory of Open Access Journals (Sweden)

    Radhikesh P. Nanda

    2012-01-01

    Full Text Available A feasibility study of friction base isolation system for seismic protection has been performed. Four different sliding interfaces, namely, green marble/High Density Poly Ethylene (HDPE, green marble/green marble, green marble/geosynthetic, and green marble/ rubber layers have been studied through experimental and analytical investigations. The experimental investigations show that the coefficient of friction values of these interfaces lies in the desirable range for seismic protection, i.e., 0.05 to 0.15. The analytical investigation reveals that most of these sliding interfaces are effective in reducing spectral accelerations up to 50% and the sliding displacement is restricted within plinth projection of 75 mm (3 in. Green marble and geosynthetic are found to be better alternatives for use in friction isolation system with equal effectiveness of energy dissipation and limiting the earthquake energy transmission to super structure during strong earthquake leading to a low cost, durable solution for earthquake protection of masonry buildings.

  12. High Strength Phosphogypsum and Its Use as a Building Material

    Science.gov (United States)

    Kanno, Wellington Massayuki; Rossetto, Hebert Luis; de Souza, Milton Ferreira; Máduar, Marcelo Francis; de Campos, Marcia Pires; Mazzilli, Barbara Paci

    2008-08-01

    A new process (patent applied) that works equally well with both plaster of mineral gypsum and phosphogypsum for the preparation of gypsum components, UCOS, has been developed. The process consists of the following steps: humidification of plaster by fine water droplets, uni-axial compression, hydration reaction and drying. Strong hydrogen bonds develop among the crystals together with adhesion provided by confined water that accounts for nearly 70% of the adhesion forces. By reducing the plaster to water ratio to close the minimum necessary, new features are generated. An experimental house has been constructed, in which walls and ceilings have been built of gypsum and phosphogypsum. Since phosphogypsum potentially contain radioactive elements, the application of an activity concentration index to the phosphogypsum employed in the building was carried out.

  13. Development of phase change materials based microencapsulated technology for buildings: A review

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, V.V.; Kaushik, S.C. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Tyagi, S.K. [School of Infrastructure Technology and Resource Management, Shri Mata Vaishno Devi University, Katra 182320, J and K (India); Akiyama, T. [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-86283 (Japan)

    2011-02-15

    Thermal energy storage (TES) systems using phase change material (PCM) have been recognized as one of the most advanced energy technologies in enhancing the energy efficiency and sustainability of buildings. Now the research is focus on suitable method to incorporate PCMs with building. There are several methods to use phase change materials (PCMs) in thermal energy storage (TES) for different applications. Microencapsulation is one of the well known and advanced technologies for better utilization of PCMs with building parts, such as, wall, roof and floor besides, within the building materials. Phase change materials based microencapsulation for latent heat thermal storage (LHTS) systems for building application offers a challenging option to be employed as effective thermal energy storage and a retrieval device. Since the particular interest in using microencapsulation PCMs for concrete and wall/wallboards, the specific research efforts on both subjects are reviewed separately. This paper presents an overview of the previous research work on microencapsulation technology for thermal energy storage incorporating the phase change materials (PCMs) in the building applications, along with few useful conclusive remarks concluded from the available literature. (author)

  14. EXPERIMENTAL DEVELOPMENT OF BIO-BASED POLYMER MATRIX BUILDING MATERIAL AND FISH BONE DIAGRAM FOR MATERIAL EFFECT ON QUALITY

    Directory of Open Access Journals (Sweden)

    Asmamaw Tegegne

    2014-06-01

    Full Text Available These days cost of building materials are continuously increasing and the conventional construction materials for this particular purpose become low and low. The weight of conventional construction materials particularly building block is heavy and costly due to particularly cement. Thus, the objective of this paper is to develop an alternative light weight, high strength and relatively cost effective building material that satisfy the quality standard used in the country. A bio-based polymer matrix composite material for residential construction was experimentally developed. Sugar cane bagasse, thermoplastics (polyethylene g roup sand and red ash were used as materials alternatively. Mixing of the additives,melting of the hermoplastics, molding and curing (dryingwere the common methods used on the forming process of the samples. Mechanical behavior evaluation (testing of the product was carried out. Totally 45 specimens were produced and three replicate tests were performed per each test type. Quality analysis was carried out for group B material using Ishikawa diagram. The tensile strength of group A specimen was approximately 3 times greater than that of group B specimens. The compression strength of group A specimens were nearly 2 times greater than group B. Comparing to the conventional building materials(concert block and agrostoneproduced in the country, which the compression strength is 7Mpa and 16Mpa respectively, the newly produced materials show much better results in which Group A is 25.66 Mpa and group B is 16.66 Mpa. energy absorption capacity of group A specimens was approximately 3 times better than that of group B. Water absorption test was carried out for both groups and both showed excellent resistivity. Group A composite material specimens, showed better results in all parameters.

  15. Use of Advanced Plastic Materials in Nigeria: Performance Assessment of Expanded Polystyrene Building Technology System

    Directory of Open Access Journals (Sweden)

    Anthony Nkem Ede (PhD

    2016-08-01

    Full Text Available The provision of affordable residential houses for the masses in the developing nations has been a mirage over the years and the future does not portend good as the cost of adopting conventional concrete material technologies is escalating while so many environmental issues like climate change are being raised in the recent times.To circumvent this poor housing provision trend, some innovative construction materials and technologies are being introduced to facilitate unique modular designs, reduction of labour, decline in the depletion of exhaustible materials,savings of time and fund. One of such materials is the expanded polystyrene. The introduction of advanced plastic materials and in particular the expanded polystyrene building technologies in the Nigerian constructionindustry will be a very useful and brilliant initiative that will aid the reduction of cost of construction and facilitate access to affordable houses for the masses.This researchaims at studying the applications of this innovative plastic material in the Nigerian building industry with special regard to the performance perception by the clients and the end users. A building estate where expanded polystyrene building technology has been predominantly used in Abuja is considered as a case study. Questionnaires were distributed among clients and residents of the building estate and statistical tools were used to analyse the data collected. Great satisfaction verified among the clients and residents and the high ranking performance confirmed for recyclability, reliability, versatility and moisture resistance of EPS building products all herald a great future for the applications of this advanced building products in the Nigerian building industry.

  16. A Review of Performance of Insulating Material in Buildings

    Directory of Open Access Journals (Sweden)

    Tazyeen Ahmad

    2014-11-01

    Full Text Available Today India is a fast developing economy; its GDP is increasing so the per capita income is also increasing. To meet the comfort requirements, especially in scorching summer and chilling winter in one form or other, we need modern amenities like air-conditioners and room heaters. Both need energy (electricity as a fuel to perform their function, so at individual level or at national view point, energy saving has to be done. The phrase will not be wrong: “Let the energy be saved, though the heaven falls”. In this paper, a review of insulation materials along with their properties has been presented. The information given is relevant and useful for architects and engineers. This paper also has glimpses of past and future of insulating materials.

  17. Nanocellulose as Material Building Block for Energy and Flexible Electronics

    Science.gov (United States)

    Hu, Liangbing

    2014-03-01

    In this talk, I will discuss the fabrications, properties and device applications of functional nanostructured paper based on nanocellulose. Nanostructures with tunable optical, electrical, ionic and mechanical properties will be discussed. Lab-scale demonstration devices, including low-cost Na-ion batteries, microbial fuel cells, solar cells, transparent transistors, actuators and touch screens will be briefly mentioned. These studies show that nanocellulose is a promising green material for electronics and energy devices.

  18. Evaluation of desiccated and deformed diaspores from natural building materials

    Directory of Open Access Journals (Sweden)

    Tamás Henn

    2015-03-01

    Full Text Available With the increasing sophistication of paleoethnobotanical methods, it is now possible to reconstruct new aspects of the day-to-day life of past peoples, and, ultimately, gain information about their cultivated plants, land-use practices, architecture, diet, and trade. Reliable identification of plant remains, however, remains essential to the study of paleoethnobotany, and there is still much to learn about precise identification. This paper describes and evaluates the most frequent types of deformed desiccated diaspores revealed from adobe bricks used in buildings in Southwestern Hungary that were built primarily between 1850 and 1950. A total of 24,634 diaspores were recovered from 333.05 kg adobe samples. These seeds and fruits belong to 303 taxa, and the majority were arable and ruderal weed species. A total of 98.97% of the diaspores were identified to species. In other cases, identification was possible only to genus or family (0.93% and 0.10% of diaspores, respectively. Difficulties in identification were caused mainly by morphological changes in the size, shape, color, and surface features of diaspores. Most diaspores were darker in color and significantly smaller than fresh or recently desiccated seeds and fruits. Surface features were often absent or fragmented. The most problematic seeds to identify were those of Centaurea cyanus, Consolida regalis, Scleranthus annuus and Daucus carota ssp. carota, which are discussed in detail. Our research aids archaeobotanists in the identification of desiccated and deformed diaspores.

  19. Estimation of building material moisture using non-invasive TDR sensors

    Science.gov (United States)

    Suchorab, Zbigniew; Sobczuk, Henryk; Łagód, Grzegorz

    2016-07-01

    The article presents the noninvasive attempt to measure moisture of building materials with the use of electric methods. Comparing to the other techniques of moisture detection like chemical or physical, the electric methods enable quick moisture estimation and they seem to be a suitable solution to monitor moisture changes. Most of electric moisture meters are the capacitance and resistance sensors. A perspective technique to determine moisture of building materials and barriers is Time Domain Reflectometry (TDR) method. This method has been successfully applied for moisture determination of the soils and since a few years has been used to measure moisture of building materials. The attempts to measure moisture of building materials require modification of traditional TDR sensor construction and extra calibration procedures. Sensors applied for building materials, comparing to the traditional ones are noninvasive. The advantages of surface sensors proposed in this article are the following: no influence on material structure, easier sample preparation for laboratory measurements, good possibility to apply for in-situ measurements. Major disadvantage of the described sensors is the difficulty of outgoing sensor signal interpretation and thus the possibility of the increase of measurement uncertainty. Anyhow it must be underlined that proposed in the article sensor constructions seem to be a balanced alternative for quick moisture detection.

  20. Electrokinetic salt removal from porous building materials using ion exchange membranes

    NARCIS (Netherlands)

    Kamran, K.; Van Soestbergen, M.; Pel, L.

    The removal of salt from porous building materials under the influence of an applied voltage gradient normally results in high pH gradients due to the formation of protons and hydroxyl ions at the electrodes. The formed acidic and alkaline regions not only lead to disintegration of the porous materi

  1. Investigation of the actual conditions of asbestos use in school building materials

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y.C.; Son, B.H.; Hong, W.H. [Kyungpook National Univ., Daegu (Korea, Republic of)

    2008-07-01

    Asbestos has been widely used as a construction material due to its high insulation properties, abrasion resistance, and tensile strength. This paper evaluated materials containing asbestos in school buildings in Korea constructed between the 1970s and the 1990s. Interviews with building manager were used in addition to data obtained from building drawings and building registers. The study showed that asbestos was used to form slates, ceiling materials, interior wall materials, and outer-wall materials. Eighty per cent of the asbestos used in Korea was imported. Asbestos amounts were calculated by multiplying the area of construction materials used by the unit weight per m{sup 2} of the asbestos-containing materials, and again by asbestos content. The document survey was not successful in identifying asbestos in all construction materials. A field survey was then conducted in order to collect samples which were then analyzed at a laboratory. Results of the study will be used to plan asbestos control and removal procedures. 11 refs., 5 tabs., 4 figs.

  2. Emissivity measurements on historic building materials using dual-wavelength infrared thermography

    Science.gov (United States)

    Moropoulou, Antonia; Avdelidis, Nicolas P.

    2001-03-01

    The most reliable method to obtain correct emissivity values for the infrared thermographic systems and applications is to determine the emissivity of the targets to be tested. Although this approach is not possible during in situ applications, samples of the targets can be collected and measured, as in this work, in the laboratory. In the present work, the emissivity values of selected historic building materials were measured at a variety of temperatures, in the 3-5.4 micrometers and 8-12 micrometers regions of the infrared spectrum. Porous stones from the Mediterranean area and marbles, used as historic building materials, were investigated. The examined materials presented different emissivity values, caused by their surface state and microstructure. In addition, the effect of temperature and wavelength on the emissivity values of such historic building materials was also considered.

  3. Exposure to radiation from the natural radioactivity in Tunisian building materials.

    Science.gov (United States)

    Gharbi, F; Oueslati, M; Abdelli, W; Samaali, M; Ben Tekaya, M

    2012-12-01

    Building materials can expose public and workers to radiation because of their content of radium, thorium and potassium isotopes. This is why it is very important from the radiological point of view to survey the natural radioactivity content of commonly used building materials in any country. This work consists of the measurement of (226)Ra, (232)Th and (40)K activity concentrations in a variety of commonly used building materials in Tunisia and on the estimation of their radiological hazard. The maximum value of radium equivalent for the studied materials was equal to 169 Bq kg(-1) and corresponds to the clay brick, which is lower than the recommended value of 370 Bq kg(-1). In this work, several radiological indexes were calculated and were found to be under their highest permitted limit.

  4. Materials for aesthetic, energy-efficient, and self-diagnostic buildings.

    Science.gov (United States)

    Fernández, John E

    2007-03-30

    It has become desirable to reduce the nonrenewable content and energy footprint of the built environment and to develop "smart buildings" that allow for inexpensive monitoring and self-diagnostic capabilities. Latest-generation embedded sensors, self-healing composites, and nanoscale and responsive materials may augur a time when buildings can substantially adjust to changing environmental and functional demands. However, faced with the legal liability resulting from unknown lifetime performance, designers and engineers have had little incentive to incorporate new material technologies into building designs. As efficiency issues become more acute, the potential for improvement in performance from new materials, together with partnerships between the materials science community and those entrusted with the design and engineering of the built environment, may offer real breakthroughs for the future.

  5. Effect of Moisture Content on Thermal Properties of Porous Building Materials

    Science.gov (United States)

    Kočí, Václav; Vejmelková, Eva; Čáchová, Monika; Koňáková, Dana; Keppert, Martin; Maděra, Jiří; Černý, Robert

    2017-02-01

    The thermal conductivity and specific heat capacity of characteristic types of porous building materials are determined in the whole range of moisture content from dry to fully water-saturated state. A transient pulse technique is used in the experiments, in order to avoid the influence of moisture transport on measured data. The investigated specimens include cement composites, ceramics, plasters, and thermal insulation boards. The effect of moisture-induced changes in thermal conductivity and specific heat capacity on the energy performance of selected building envelopes containing the studied materials is then analyzed using computational modeling of coupled heat and moisture transport. The results show an increased moisture content as a substantial negative factor affecting both thermal properties of materials and energy balance of envelopes, which underlines the necessity to use moisture-dependent thermal parameters of building materials in energy-related calculations.

  6. Simple hydrazone building blocks for complicated functional materials.

    Science.gov (United States)

    Tatum, Luke A; Su, Xin; Aprahamian, Ivan

    2014-07-15

    CONSPECTUS: The ability to selectively and effectively control various molecular processes via specific stimuli is a hallmark of the complexity of biological systems. The development of synthetic structures that can mimic such processes, even on the fundamental level, is one of the main goals of supramolecular chemistry. Having this in mind, there has been a foray of research in the past two decades aimed at developing molecular architectures, whose properties can be modulated using external inputs. In most cases, reversible conformational, configurational, or translational motions, as well as bond formation or cleavage reactions have been used in such modulations, which are usually initiated using inputs including, irradiation, metalation, or changes in pH. This research activity has led to the development of a diverse array of impressive adaptive systems that have been used in showcasing the potential of molecular switches and machines. That being said, there are still numerous obstacles to be tackled in the field, ranging from difficulties in getting molecular switches to communicate and work together to complications in integrating and interfacing them with surfaces and bulk materials. Addressing these challenges will necessitate the development of creative new approaches in the field, the improvement of the currently available materials, and the discovery of new molecular switches. This Account will describe how our quest to design new molecular switches has led us to the development of structurally simple systems that can be used for complicated functions. Our focus on the modular and tunable hydrazone functional group was instigated by the desire to simplify the structure and design of molecular switches in order to circumvent multistep synthesis. We hypothesized that by avoiding this synthetic bottleneck, which is one of the factors that hinder fast progress in the field, we can expedite the development and deployment of our adaptive materials. It should be

  7. THE EFFECT OF DEGRADATION PROCESSES ON THE SERVICEABILITY OF BUILDING MATERIALS OF HISTORIC BUILDINGS

    Directory of Open Access Journals (Sweden)

    Jiří Witzany

    2016-10-01

    Full Text Available The article presents an analysis of degradation processes and partial results of an experimental research into materials and structures exposed to the effects of external environments with an emphasis on the effects of moisture and chemical degradation processes on major mechanical properties of sandstone.

  8. Polyhedral Boranes: A Versatile Building Block for Nanoporous Materials

    Science.gov (United States)

    Clingerman, Daniel Jon

    The studies described in this dissertation examine several new concepts related to polyhedral boranes and their applications towards the synthesis of novel nanoporous materials. The unique thermal and chemical robustness, rigidity, quasi-spherical geometry, and high boron content of polyhedral boranes are explored to generate materials not possible with typical organic synthons. Aside from the fundamental synthetic work, this work was also aimed at solving larger global issues such as energy storage and new routes to therapeutics. Chapter 2 highlights the discovery of the first highly porous carborane-based metal-organic framework, where the spherical nature of the carborane increases volumetric surface area without reducing pore volume. Chapter 3 examines the first tritopic carborane-based ligand and the stabilizing effect the rigid, sterically bulky carboranyl groups have on highly porous topologies not stable with typical organic ligands. Chapters 4 and 5 describe the use of polyhedral borane-based ligands as a means to influence and generate unexpected topologies. Lastly, chapter 6 explores using a simple carborane-based ligand that harnesses the power of coordination-driven assembly to rapidly generate a high boron-containing supramolecular cuboctahedron.

  9. The influence of surface treatment on mass transfer between air and building material

    DEFF Research Database (Denmark)

    Kwiatkowski, Jerzy; Rode, Carsten; Hansen, Kurt Kielsgaard

    2008-01-01

    The processes of mass transfer between air and building structure and in the material influence not only the conditions within the material but also inside the connected air spaces. The material which absorbs and desorbs water vapour can be used to moderate the amplitude of indoor relative humidity...... and therefore to participate in the improvement of the indoor air quality and energy saving. Many parameters influence water vapour exchange between indoor air and building material. The aim of this work is to present the change of mass transfer under different climatic and material conditions. The measurements...... for the experiments: gypsum board and calcium silicate. The wallpaper and paint were used as finishing materials. Impact of the following parameters for changes of RH was studied: coating, temperature and air movement. The measurements showed that acryl paint (diffusion open) can significantly decrease mass uptake...

  10. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials.

    Science.gov (United States)

    Dhami, Navdeep Kaur; Reddy, M Sudhakara; Mukherjee, Abhijit

    2013-12-01

    Microbially induced calcium carbonate precipitation is a biomineralization process that has various applications in remediation and restoration of range of building materials. In the present study, calcifying bacteria, Bacillus megaterium SS3 isolated from calcareous soil was applied as biosealant to enhance the durability of low energy, green building materials (soil-cement blocks). This bacterial isolate produced high amounts of urease, carbonic anhydrase, extra polymeric substances and biofilm. The calcium carbonate polymorphs produced by B. megaterium SS3 were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X-ray diffraction and Fourier transmission infra red spectroscopy. These results suggested that calcite is the most predominant carbonate formed by this bacteria followed by vaterite. Application of B. megaterium SS3 as biogenic surface treatment led to 40 % decrease in water absorption, 31 % decrease in porosity and 18 % increase in compressive strength of low energy building materials. From the present investigation, it is clear that surface treatment of building materials by B. megaterium SS3 is very effective and eco friendly way of biodeposition of coherent carbonates that enhances the durability of building materials.

  11. Verification of some building materials as gamma-ray shields.

    Science.gov (United States)

    Mann, Kulwinder Singh; Singla, Jyoti; Kumar, Vipan; Sidhu, G S

    2012-08-01

    The shielding properties for gamma rays of a few low Z materials were investigated. The values of the mass attenuation coefficient, equivalent atomic number, effective atomic number, exposure buildup factor and energy absorption buildup factor were calculated and used to estimate the shielding effectiveness of the samples under investigation. It has been observed that the shielding effectiveness of a sample is directly related to its effective atomic number. The shielding character of any sample is a function of the incident photon energy. Good shielding behaviour has been verified in soil samples in the photon energy region of 0.015-0.30 MeV and of dolomite in 3-15 MeV. The results have been shown graphically with more useful conclusions.

  12. The Effect of Mechanical Load on the Thermal Conductivity of Building Materials

    Directory of Open Access Journals (Sweden)

    J. Toman

    2000-01-01

    Full Text Available The effect of mechanical load on the thermal conductivity of building materials in the design of envelope parts of building structures is studied. A typical building material is chosen in the practical investigation of this effect, namely the cement mortar. It is concluded that in the range of hygroscopic moisture content, lower levels of mechanical load, typically up to 90 % of compressive strength (CS, are not dangerous from the point of view of worsening the designed thermal properties, but in the overhygroscopic region, the load as low as 57 % of CS may be dangerous. The higher levels of loading are found to be always significant because they lead to marked increase of thermal conductivity which is always a negative information for a building designer.

  13. Thermal Performance of Typical Residential Building in Karachi with Different Materials for Construction

    Directory of Open Access Journals (Sweden)

    Nafeesa Shaheen

    2016-04-01

    Full Text Available This research work deals with a study of a residential building located in climatic context of Karachi with the objective of being the study of thermal performance based upon passive design techniques. The study helps in reducing the electricity consumption by improving indoor temperatures. The existing residential buildings in Karachi were studied with reference to their planning and design, analyzed and evaluated. Different construction?s compositions of buildings were identified, surveyed and analyzed in making of the effective building envelops. Autodesk® Ecotect, 2011 was used to determine indoor comfort conditions and HVAC (Heating, Ventilation, Air-Conditioning and Cooling loads. The result of the research depicted significant energy savings of 38.5% in HVAC loads with proposed building envelop of locally available materials and glazing.

  14. Monitoring moisture movements in building materials using x-ray attenuation

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Scheffler, Gregor A.; Janssen, Hans

    2012-01-01

    X-ray attenuation measurements are commonly used as a non-destructive method to monitor internal concentration changes of moisture (i.e., moisture content) and other chemical compounds in porous building materials. The technique provides direct measurements of moisture content changes through ana...... autoclaved concrete, clay brick, cementitious materials, and wood. Results from the parametric investigation indicate the attenuation coefficient of water is dependent on the type and thickness of the porous material....

  15. Research on phase-change material building mass applied in the air-conditioning field

    Institute of Scientific and Technical Information of China (English)

    YANQuanying

    2003-01-01

    Phase-change material building mass contains phase-change matenals. It can decrease air-conditioning load and indoor temperature fluctuations, and improve comfort degree in summer because of thermal storage property of phase-change material. Thereby, the scale, initial investment and operational cost of air-conditioning system decrease effectively. The indoor surroundings improve. In this paper, suitable phase-change material used in architecture and combination mode between phase change material and architectural material were studied. By considering the properties of materials, such as phase-change temperature, phase-change latent heat, thermal conductivity and expansion coefficient, phase-change materials were selected and evaluated. Combination mode between phase-change material and architectural material were provided. The influence of phase-change material structure on thermal performance in room and energy-saving effect were analyzed and compared with traditional structure without phase-change material. It is proved that phase-change material structure is feasible in the practical engineenng. These provide the basis for developing phase-change material building mass.

  16. Relation of historical quarrying, material utilization and performance on buildings in Eastern Finland

    Science.gov (United States)

    Luodes, Nike M.; Pirinen, Heikki

    2016-04-01

    Finland might seem to have lower stone heritage compared to other southern European countries, but it has been the main exporter of dimension stone to the majestic buildings that made St.Petersburg a recognized cultural heritage. In Finland, though, the stone seems undervalued. The only dramatic and predominant stone buildings are those of agencies and administrations located in the towns, where the stone has been used to impress and symbolize value. Romantic style used massive bossy stone in building's full height and created fine traditional carvings. Otherwise the communities have mainly built settlements in contact with the nature, with materials easily available and of low cost, following architectonical trends of the periods and producing interesting stone details. During the past years, research has been conducted on historical buildings interconnecting scientific and artistic approach to evaluate material durability and cultural relevance of the artifacts. Generally until mid 20th century the stone has been traditionally used massive for basements and walls. The materials still present good mechanical characteristics and most often the weathering level after hundreds of years of exposure had reached only the first millimeters from the curst. Instead the old methodology for deposit exploitation has left visible signs on the buildings. Some examples are visible from Kuopio. The exploitation of small, easy-to-reach surface deposits, even if planned by local experts, has affected quality and appearance of historical buildings. As an example the excavation of shallow quarries where also weathered crop was kept as a product has characterized the basement of the Niirala school that presents change in colors due to original material more than to weathering on site. Fissuring is also visible on a couple of blocks while marks on the rocks depict the old excavation method. Most often the deposits had been in the vicinities, frequently hidden by further construction

  17. CONTRIBUTION TO THE POTENTIAL OF USING FRP MATERIALS IN THE REHABILITATION AND STABILIZATION OF TIMBERED BUILDINGS

    Directory of Open Access Journals (Sweden)

    Tomáš Čejka

    2015-12-01

    Full Text Available Wooden log, timbered perimeter and interior walls ranked among the most common building constructions used from the Early Middle Ages. In most cases, the local natural resources, i.e. wood, clay, straw and stone, were used for building houses with wooden framing. This article outlines typical defects and failures of timbered houses, “classic” techniques for the rehabilitation of these defects and failures indicating the potential of using composite materials based on high- strength fibres and epoxy resin in the rehabilitation and strengthening of timbered buildings.

  18. Source strength of fungal spore aerosolization from moldy building material

    Energy Technology Data Exchange (ETDEWEB)

    Gorny, Rafa L.; Reponen, Tiina; Grinshpun, Sergey A.; Willeke, Klaus [Cincinnati Univ., Dept. of Environmental Health, Cincinnati, OH (United States)

    2001-07-01

    The release of Aspergillus versicolor, Cladosporium cladosporioides, and Penicillium melinii spores from agar and ceiling tile surfaces was tested under different controlled environmental conditions using a newly designed and constructed aerosolization chamber. This study revealed that all the investigated parameters, such as fungal species, air velocity above the surface, texture of the surface, and vibration of contaminated material, affected the fungal spore release. It was found that typical indoor air currents can release up to 200 spores cm {sup -2} from surface with fungal spores during 30-min experiments. The release of fungal spores from smooth agar surfaces was found to be inadequate for accurately predicting the emission from rough ceiling tile surfaces because the air turbulence increases the spore release from a rough surface. A vibration of a frequency of 1Hz at a power level of 14W resulted in a significant increase in the spore release rate. The release appears to depend on the morphology of the fungal colonies grown on ceiling tile surfaces including the thickness of conidiophores, the length of spore chains, and the shape of spores. The spores were found to be released continuously during each 30-min experiment. However, the release rate was usually highest during the first few minutes of exposure to air currents and mechanical vibration. About 71-88% of the spores released during a 30-min interval became airborne during the first 10min. (Author)

  19. Free-cooling of buildings with phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Zalba, B.; Marin, J.M. [Universidad de Zaragoza Maria de Luna (Spain). Departamento de Ingenieria Mecanica; Cabeza, L.F. [Universitat de Lleida (Spain). Departamento d' Informatica i Eng. Industrial; Mehling, H. [ZAE Bayern, Abt. 1 Energy Conversion and Storage, Garching (Germany)

    2004-12-01

    In this paper, the application of phase change materials (PCM) in free-cooling systems is studied. Free-cooling is understood as a means to store outdoors coolness during the night, to supply indoors cooling during the day. The use of PCMs is suitable because of the small temperature difference between day indoors and night outdoors. An installation that allows testing the performance of PCMs in such systems was designed and constructed. The main influence parameters like ratio of energy/volume in the encapsulates, load/unload rate of the storage, and cost of the installation were determined, and experiments were performed following the design of experiments strategy. The statistical analysis showed that the effects with significant influence in the solidification process are the thickness of the encapsulation, the inlet temperature of the air, the air flow, and the interaction thickness x temperature. For the melting process the same holds, but the inlet air temperature had a higher influence than the thickness of the encapsulation. With the empirical model developed in this work, a real free-cooling system was designed and economically evaluated. (author)

  20. Low-cost NORM concentrations measuring technique for building materials of Uzbekistan

    Science.gov (United States)

    Safarov, Akmal; Safarov, Askar; Azimov, Askarali; Darby, Iain G.

    2016-04-01

    Concentrations of natural radionuclides of building materials are important in order to estimate exposure of humans to radiation, who can spend up to 80% of their time indoors. One of the indicators of building materials' safety is the radium equivalent activity, which is regulated by national and international normative documents [1,2,3]. Materials with Ra(eq) =ageing. Long measurement times including ageing of samples are major constraints for performing large number of analyses [6]. Typically ageing of samples and analysis is 40 days. Gamma-spectrometric analysis of brick, crushed stone, red sand, granite, white marble and concrete cubes was performed both before and after ageing of samples (10, 20, 30 and 40 days). Measurement times of samples were 1, 3, 6 and 12 hours. Samples were measured in 1 liter Marinelli beaker geometry, using NaI(Tl) spectrometers with crystal sizes 2.5 x 2.5 in and 3.1 x 3.1 in. Efficiency calibration of spectrometers was done using certified volumetric (1 liter Marinelli beaker) Ra-226, Th-232 and K-40 sources filled with silica sand and density 1,7 kg/l. Herein we present results indicating that one hour measuring may be sufficient for samples in 1 liter Marinelli beakers offering prospect of significant time and cost improvements. References: 1. NEA-OECD (1979): Exposure to radiation from natural radioactivity in building materials. Report by Group of Experts of the OECD Nuclear Energy Agency (NEA) Paris 2. STUK (Radiation and Nuclear Safety Authority) (2003): The radioactivity of building materials and ash. Regulatory Guides on Radiation Safety (ST Guides) ST 12.2 (Finland) (8 October 2003) 3. GOST 30108-94 (1995): Building materials and elements. Determination of specific activity of natural radioactive nuclei. Interstate Standard. 4. Krisiuk E.M. et al., (1971). A study on Radioactivity in Building Materials (Leningrad: Research Institute for radiation Hygiene) 5. Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of

  1. Innovative Development of Building Materials Industry of the Region Based on the Cluster Approach

    Directory of Open Access Journals (Sweden)

    Mottaeva Asiiat

    2016-01-01

    Full Text Available The article discusses issues of innovative development of building materials industry of the region based on the cluster approach. Determined the significance of regional cluster development of the industry of construction materials as the effective implementation of the innovative breakthrough of the region as an important part of strategies for strengthening innovation activities may be to support the formation and development of cluster structures. Analyses the current situation with innovation in the building materials industry of the region based on the cluster approach. In the course of the study revealed a direct correlation between involvement in innovative activities on a cluster basis, and the level of development of industry of construction materials. The conducted research allowed identifying the factors that determine the innovation process, systematization and classification which determine the sustainable functioning of the building materials industry in the period of active innovation. The proposed grouping of innovations for the construction industry taking into account industry-specific characteristics that reflect modern trends of scientific and technological progress in construction. Significance of the study lies in the fact that the proposals and practical recommendations can be used in the formation mechanism of innovative development of building materials industry and the overall regional construction complex of Russian regions by creating clusters of construction.

  2. The Effect of Anisotropy of Building Materials on the Moisture Transfer

    Directory of Open Access Journals (Sweden)

    J. Drchalová

    2000-01-01

    Full Text Available The effect of anisotropy of building materials on the moisture transfer in the design of envelope parts of building structures is studied. Two typical fibre containing plate building materials produced in the Czech Republic, Dekalux and Dekalit P, are chosen for the demonstration of this effect. Experimental results show that while for lighter Dekalit P, an order of magnitude difference in the moisture diffusivities k for the two basic orientations, i.e. along and across the plate, is observed, for the heavier Dekalux the differences in k are within the errorbar of the experimental method. As follows from the experimental results, compacting of surface layers of the plates of light fibred materials is very favorable from the point of view of moisture penetration but one should keep in mind that any local damage of the surface layer can result in a considerably faster moisture transfer in the direction along the plate.

  3. Experimental study of passive cooling of building facade using phase change materials to increase thermal comfort in buildings in hot humid areas

    Directory of Open Access Journals (Sweden)

    A. A. Madhumathi, B. M.C. Sundarraja

    2012-01-01

    Full Text Available Storage of cooler night temperatures using Phase Change Material (PCM energy storage technique, for cooling of ambient air during hot day times can be an alternate of current cooling techniques in building sector. This work presents the results of an experimental set-up to test energy saving potential of phase change materials with typical construction materials in building facade in Hot-Humid Climatic Regions in real conditions. The main objective of this research is to demonstrate experimentally that it is possible to improve the thermal comfort and reduce the energy consumption of a building without substantial increase in the weight of the construction materials with the inclusion of PCM. This research was conducted to study and evaluate the performance of the existing materials integrated with Organic PCM Polyethylene glycol (PEG E600. This research suggested that the heat gain is significantly reduced when the PCM is incorporated into the brick (conventional building material.

  4. Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: A review

    Energy Technology Data Exchange (ETDEWEB)

    L. Reijnders [University of Amsterdam, Amsterdam (Netherlands)

    2007-02-15

    Application of phosphogypsum, coal combustion ashes and waste incineration ashes in building materials has been limited by the presence of minor components that are hazardous, such as radioactive substances, chlorinated dioxins and heavy metals, or have a negative impact on product quality or production economics, such as phosphate, fluoride, carbon and chloride. Source reduction, destruction of persistent organics and separation techniques may reduce the concentrations of such components. With a few exceptions, separation techniques currently lead to significantly higher (private) costs. Higher waste disposal costs, tighter regulations and higher prices for competing virgin minerals could make the use of the purified phosphogypsum and ashes in building materials more attractive.

  5. Characterization of Environmental Impact of Building Materials for the Purpose of Ecodesign

    Science.gov (United States)

    Skele, Agnese; Repele, Mara; Bazbauers, Gatis

    2011-01-01

    -The building material manufacturing sector is one of the sectors with the highest consumption of fossil fuel resources. The "cradle-to-gate" study of the ceramic bricks made in the Āne plant of JSC Lode, Latvia, is performed according to ISO standards 14044:2006. Life cycle inventory data have been collected at the factory site. Three different perspectives of the "Eco-Indicator'99" method are used to conduct an environmental characterization of the building materials to obtain the total impact indicator.

  6. Assessment of natural radioactivity and radiological hazards in building materials used in Yan'an, China.

    Science.gov (United States)

    Lu, Xinwei; Li, Nan; Yang, Guang; Zhao, Caifeng

    2013-03-01

    The concentration of natural radionuclides in commonly used building materials collected from Yan'an, China, was determined using gamma ray spectroscopy with a NaI(Tl) detector. The activity concentration of ²²⁶Ra, ²³²Th, and ⁴⁰K in the studied building materials ranges from 9.4-73.1, 11.5-86.9, and 258.9-1,055.1 Bq kg⁻¹, respectively. The concentrations for these natural radionuclides were compared with the reported data of other countries and the world mean values for soil. The radium equivalent activity (Raeq), external hazard index (Hex), internal hazard index (Hin), indoor air absorbed dose rate, and annual effective dose rate due to natural radionuclides in samples were estimated to assess radiological hazards for people living in dwellings made of the studied building materials. The calculated Raeq values of all building materials (75.7-222.1 Bq kg⁻¹) are lower than the limit of 370 Bq kg⁻¹. The values of Hex and Hin are less than unity. The mean values of indoor air absorbed dose rates of all building materials (101.0 ± 14.1-177.0 ± 6.8 nGy h⁻¹) are higher than the world population-weighted average of 84 nGy h⁻¹, while the mean values of annual effective dose range from 0.50 ± 0.07-0.87 ± 0.03 mSv y⁻¹, which are lower than the recommended limit of 1 mSv y⁻¹. It is found that these materials may be used safely as construction materials and do not pose significant radiation hazards to inhabitants.

  7. Screening for perfluoroalkyl acids in consumer products, building materials and wastes.

    Science.gov (United States)

    Bečanová, Jitka; Melymuk, Lisa; Vojta, Šimon; Komprdová, Klára; Klánová, Jana

    2016-12-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a large group of important chemical compounds with unique and useful physico-chemical properties, widely produced and used in many applications. However, due to the toxicity, bioaccumulation and long-range transport potential of certain PFASs, they are of significant concern to scientists and policy makers. To assess human exposure to PFASs, it is necessary to understand the concentrations of these emerging contaminants in our environment, and particularly environments where urban population spend most of their time, i.e. buildings and vehicles. A total of 126 samples of building materials, consumer products, car interior materials and wastes were therefore analyzed for their content of key PFASs - 15 perfluoroalkyl acids (PFAAs). At least one of the target PFAAs was detected in 88% of all samples. The highest concentration of Σ15PFAAs was found in textile materials (77.61 μg kg(-1)), as expected, since specific PFAAs are known to be used for textile treatment during processing. Surprisingly, PFAAs were also detected in all analyzed composite wood building materials, which were dominated by perfluoroalkyl carboxylic acids with 5-8 carbons in the chain (Σ4PFCAs up to 32.9 μg kg(-1)). These materials are currently widely used for building refurbishment, and this is the first study to find evidence of the presence of specific PFASs in composite wood materials. Thus, in addition to consumer products treated with PFASs, materials used in the construction of houses, schools and office buildings may also play an important role in human exposure to PFASs.

  8. Assessment of natural radioactivity in major building materials of Xiangyang, China

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Tingting; Lu, Xinwei [Shaanxi Normal Univ., Xi' an (China). School of Tourism and Environment

    2014-10-01

    The activity concentrations of {sup 40}K, {sup 226}Ra and {sup 232}Th in the commonly used building materials collected from Xiangyang were measured using NaI (Tl) gamma spectrometer. The radioactivity values of {sup 40}K, {sup 226}Ra and {sup 232}Th in the studied samples ranged from 130.5 to 1006.3, 8.4 to 164.0, and 8.7 to 145.6 Bq kg{sup -1}, respectively. The concentrations of these radionuclides have been compared with the typical published world values. Radium equivalent activity, external and internal hazard indexes, external and internal exposure indexes, indoor air absorbed dose rate and annual effective dose rate have been calculated to assess the potential radiological hazard associated with natural radionuclides in the studied materials. The calculated values of all the assessed indices in the analyzed building materials except for fly ash are below the internationally accepted limits indicating that these building materials can be safely used in dwellings construction and do not lead to any significant radiation exposure to occupants. Nevertheless, the annual effective dose rate values of all fly ash samples, external and internal hazard indexes values in most fly ash samples exceed the recommended values. It is, therefore, desirable to regularly monitor the natural radioactivity level of the building materials products made from fly ash.

  9. Selecting Materials for Environmental-Friendly Buildings: The Need for Improved Environmental Impact Data

    Directory of Open Access Journals (Sweden)

    Nachawit T.

    2012-01-01

    Full Text Available Buildings of the future need to be more environmental-friendly. Selecting environmentally-benign materials in design stage would partly help achieving such goal. Examination of existing environmental impact data of building materials reveals that the data differ greatly from one source to another. Comparisons of environmental impact values of selected materials are presented. The sources that give rise to data variation are identified and discussed. The applicability of existing data is assessed from the designers’ perspective. Limitations of current practice in data acquisition and presentation are also discussed. It is concluded that existing environmental impact data of building materials are inconsistent and perplexing to designers. An alternative approach to data acquisition and presentation is to break the life cycle of building materials into several phases and to calculate the total impact value as the sum of the impacts of all phases. This would make the determination of the full life cycle value feasible and increase external validity of research results.

  10. Microfungal contamination of damp buildings--examples of risk constructions and risk materials.

    Science.gov (United States)

    Gravesen, S; Nielsen, P A; Iversen, R; Nielsen, K F

    1999-06-01

    To elucidate problems with microfungal infestation in indoor environments, a multidisciplinary collaborative pilot study, supported by a grant from the Danish Ministry of Housing and Urban Affairs, was performed on 72 mold-infected building materials from 23 buildings. Water leakage through roofs, rising damp, and defective plumbing installations were the main reasons for water damage with subsequent infestation of molds. From a score system assessing the bioavailability of the building materials, products most vulnerable to mold attacks were water damaged, aged organic materials containing cellulose, such as wooden materials, jute, wallpaper, and cardboard. The microfungal genera most frequently encountered were Penicillium (68%), Aspergillus (56%), Chaetomium (22%), Ulocladium, (21%), Stachybotrys (19%) and Cladosporium (15%). Penicillium chrysogenum, Aspergillus versicolor, and Stachybotrys chartarum were the most frequently occurring species. Under field conditions, several trichothecenes were detected in each of three commonly used building materials, heavily contaminated with S. chartarum. Under experimental conditions, four out of five isolates of S. chartarum produced satratoxin H and G when growing on new and old, very humid gypsum boards. A. versicolor produced the carcinogenic mycotoxin sterigmatocystin and 5-methoxysterigmatocystin under the same conditions.

  11. Asbestos-containing materials and airborne asbestos levels in industrial buildings in Korea.

    Science.gov (United States)

    Choi, Sangjun; Suk, Mee-Hee; Paik, Nam Won

    2010-03-01

    Recently in Korea, the treatment of asbestos-containing materials (ACM) in building has emerged as one of the most important environmental health issues. This study was conducted to identify the distribution and characteristics of ACM and airborne asbestos concentrations in industrial buildings in Korea. A total of 1285 presumed asbestos-containing material (PACM) samples were collected from 80 workplaces across the nation, and 40% of the PACMs contained more than 1% of asbestos. Overall, 94% of the surveyed workplaces contained ACM. The distribution of ACM did not show a significant difference by region, employment size, or industry. The total ACM area in the buildings surveyed was 436,710 m2. Ceiling tile ACM accounted for 61% (267,093 m2) of the total ACM area, followed by roof ACM (32%), surfacing ACM (6.1%), and thermal system insulation (TSI). In terms of asbestos type, 98% of total ACM was chrysotile, while crocidolite was not detected. A comparison of building material types showed that the material with the highest priority for regular management is ceiling tile, followed by roof, TSI, and surfacing material. The average airborne concentration of asbestos sampled without disturbing in-place ACM was 0.0028 fibers/cc by PCM, with all measurements below the standard of recommendation for indoor air quality in Korea (0.01 fibers/cc).

  12. Expanded polystyrene as the bearing building material of low energy construction

    Science.gov (United States)

    Mesaros, P.; Spisakova, M.; Kyjakova, L.; Mandicak, T.

    2015-01-01

    Sustainability of buildings is a really important issue for the construction industry. Sustainable buildings are characterized by the lower construction costs for energy consumption and operations, they are environmentally friendly, able to save natural resources and they are comfortable and healthy for their users. The European Union supports this trend through its Strategy 2020, respectively with document Energy Roadmap 2020. The strategy 2020 sets greenhouse gas emissions 20% lower than 1990, 20% of energy from renewable and 20% increase in energy efficiency. It manifests itself in introduction of modern technologies of house building. One potential for the energy saving is construction of low-energy buildings using modern materials. This paper focuses on the analysis of the low-energy buildings made by expanded polystyrene as the bearing building material. The paper analyzes their design and describes the benefits of this modern but unusual type of construction technology for houses. The examples from abroad clearly indicate that this technology has potential in modern architecture. The success and exploration of this technology potential in the conditions of Slovak construction sector is closely related to interest of investors and users of further sustainable houses which are design according the Strategy 2020 conditions.

  13. Characterization of organophosphorus flame retardants' sorption on building materials and consumer products

    Science.gov (United States)

    Liu, Xiaoyu; Allen, Matthew R.; Roache, Nancy F.

    2016-09-01

    Better understanding the transport mechanisms of organophosphorus flame-retardants (OPFRs) in the residential environment is important to more accurately estimate their indoor exposure and develop risk management strategies that protect human health. This study describes an improved dual small chamber testing method to characterize the sorption of OPFRs on indoor building materials and consumer products. The OPFRs studied were tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP). The test materials and products used as sinks include concrete, ceiling tile, vinyl flooring, carpet, latex painted gypsum wallboard, open cell polyurethane foam, mattress pad and liner, polyester clothing, cotton clothing, and uniform shirt. During the tests, the amount of OPFRs absorbed by the materials at different exposure times was determined simultaneously. OPFRs air concentrations at the inlet and inside the test chamber were monitored. The data were used to rank the sorption strength of the OPFRs on different materials. In general, building materials exhibited relatively stronger sorption strength than clothing textiles. The material-air partition and material phase diffusion coefficients were estimated by fitting a sink model to the sorption concentration data for twelve materials with three OPFRs. They are in the range of 2.72 × 105 to 3.99 × 108 (dimensionless) for the material-air partition coefficients and 1.13 × 10-14 to 5.83 × 10-9 (m2/h) for the material phase diffusion coefficients.

  14. Materials and building techniques in Mugello from the Late Middle Ages to the Early Modern Age

    Directory of Open Access Journals (Sweden)

    Andrea Arrighetti

    2017-01-01

    Full Text Available Mugello is a medium-high seismic risk area situated on the Italian Apennine mountain range, between Tuscany and Emilia Romagna. The territory is characterized by a large presence of long duration settlements characterized by well-preserved historic buildings, most of which are religious’ architectonical complexes. An area of Mugello, between 2010 and 2014, was characterized by the project “Archaeology of Buildings and seismic risk in Mugello”, a research focused on testing the potential information of the process of archaeological analysis of buildings as a form of knowledge, prevention and protection of medieval seismic risk settlements. Among the results that have emerged from the archaeoseismological investigation have played a central role the considerations pertaining to the supplying and use of building materials for the construction and modification of architectural structures, in a period between the late Middle Ages and the Modern Age.

  15. Using Selected Transient Methods for Measurements of Thermophysical Parameters of Building Materials

    Directory of Open Access Journals (Sweden)

    Cviklovič Vladimír

    2014-03-01

    Full Text Available This article deals with thermophysical properties of red and white bricks. If we want to protect the high standard of quality building materials, we need to know the physical parameters which can evaluate the quality. The most important for building materials are mainly thermophysical, mechanical parameters and parameters which can determine the structure of materials. The article presents results of thermophysical parameters measurements of red and white bricks during the temperature stabilization for different values of moisture content. For our measurements, we have chosen a hot wire method and a dynamic plane source method. Both methods are classified as transient methods and they are very convenient for measurements of thermophysical parameters of materials with a compact structure. The results of measurements show that temperature and moisture content have a significant effect on thermophysical parameters of bricks.

  16. Multicriteria Decision Analysis of Material Selection of High Energy Performance Residential Building

    Science.gov (United States)

    Čuláková, Monika; Vilčeková, Silvia; Katunská, Jana; Krídlová Burdová, Eva

    2013-11-01

    In world with limited amount of energy sources and with serious environmental pollution, interest in comparing the environmental embodied impacts of buildings using different structure systems and alternative building materials will be increased. This paper shows the significance of life cycle energy and carbon perspective and the material selection in reducing energy consumption and emissions production in the built environment. The study evaluates embodied environmental impacts of nearly zero energy residential structures. The environmental assessment uses framework of LCA within boundary: cradle to gate. Designed alternative scenarios of material compositions are also assessed in terms of energy effectiveness through selected thermal-physical parameters. This study uses multi-criteria decision analysis for making clearer selection between alternative scenarios. The results of MCDA show that alternative E from materials on nature plant base (wood, straw bales, massive wood panel) present possible way to sustainable perspective of nearly zero energy houses in Slovak republic

  17. Instruments to reduce the leaching of heavy metals from building materials in the Netherlands.

    Science.gov (United States)

    van Breemen, A J H; Vermij, P H M

    2007-01-01

    In the Netherlands the leaching of heavy metals from metal building and constructing materials results in serious contamination problems in the water system. The most common sources of these heavy metals in construction materials are copper waterworks and roofs, zinc roofs, gutters and rain pipes, zinced steel, stainless steel, and lead sealing material. In urban waters the surface water and sediment standards are often exceeded. Although building and construction materials are certainly not the only source of heavy metals, they are an important part of the problem. This article focuses on six instruments that are in use in the Netherlands to try to reduce impact on the surface waters. In addition to this, national as well as international, a reconsideration of the risks and surface water standards for several heavy metals is considered. A balanced use of instruments can be considered as the application of a best practice.

  18. Surface dispersive energy determined with IGC-ID in anti-graffiti-coated building materials

    OpenAIRE

    Carmona-Quiroga, Paula María; Rubio, J; Sánchez, M. J.; Martínez-Ramírez, Sagrario.; Blanco-Varela, María Teresa

    2011-01-01

    Coating building materials with anti-graffiti treatments hinders or prevents spray paint adherence by generating low energy surfaces. This paper describes the effect of coating cement paste, lime mortar, granite, limestone and brick with two anti-graffiti agents (a water-base fluoroalkylsiloxane, “Protectosil Antigraffiti®”, and a Zr ormosil) on the dispersive component of the surface energy of these five construction materials. The agents were rediluted in their respective solvents at concen...

  19. Critical Review of the Material Criteria of Building Sustainability Assessment Tools

    Directory of Open Access Journals (Sweden)

    Jiyoung Park

    2017-01-01

    Full Text Available Comparative analysis of the material criteria embedded in building sustainability assessment tools was performed. The material-related issues were identified, classified, and summarized. A framework, the triple bottom line of sustainability (environment, economy, and society, was used to examine the material assessment criteria, evaluation parameters, and descriptions. The material criteria were evaluated to identify the current features and weaknesses as balanced material assessments for sustainable development. The criteria showed significant differences in their scopes in covering the social and economic aspects beyond the environmental aspect. For comprehensive sustainability assessment purposes, it is essential that adequate attention be paid to all three dimensions. Finally, this paper proposes the indicators of the sustainable material assessment from an analysis of all the material-related items.

  20. Bamboo as a Building Material. Peace Corps. Appropriate Technologies for Development. Reprint R-33.

    Science.gov (United States)

    McClure, F. A.

    This manual, developed by the U.S. Department of Agriculture under the Point Four program, presents critical features and principles of using bamboo as a building material. Information provided in the manual includes the following: parts of a house for which bamboos are suitable, bamboo reinforcement of concrete, geographical distribution of…

  1. Quality improvement of granular secondary raw building materials by separation and cleansing techniques

    NARCIS (Netherlands)

    Xing, W.

    2004-01-01

    Contaminated granular wastes are potentially reusable because they have similar physical and chemical properties as primary raw building materials. From environmental aspects, the reuse must not result in polluting the soil, groundwater and surface water. Therefore the leaching values of inorganic c

  2. Environmental and Sustainable Technology Evaluations (ESTE): Verification of Microbial Resistant Building Materials

    Science.gov (United States)

    This is an ESTE project summary brief. Many of the finished interior surfaces of homes and buildings are composed of materials that are prone to mold growth. These surfaces include gypsum board, wood flooring, insulation, and components of the heating and air conditioning system...

  3. Wood would - Mass timber as a sustainable substitute for traditional building materials

    NARCIS (Netherlands)

    Struiksma, A.F.; Smilde, J.A.; Van Houten, R.S.

    2014-01-01

    This "designers' manual" is made during the TIDO-course AR0531 Innovation and Sustainability This manual explains why mass timber is the sustainable substitute for conventional materials and how it can be implemented in the design. It is intended for architects who usually always build in steel and

  4. HYDROPHOBIC PROTECTION OF BUILDING MATERIALS AND PRODUCTS WHILE USING ELECTROCHEMICAL METHODS

    OpenAIRE

    E. N. Kruchkov; N. N. Debelova; N. P. Gorlenko; I. I. Podshivalov; E. N. Zavyalova

    2010-01-01

    The paper proposes a hydrophobic protection technology of capillary-porous building materials and products obtained on their basis while using electrochemical methods. The technology includes stages of preliminary moisture removal and water-repellency treatment of product volume while applying modified solution of potassium methyl-siliconate.

  5. Radon-222 exhalation from Danish building materials: H + H Industri A/S results

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    1999-01-01

    rate measurements for 10 samples of Danish building materials are reported. Samples include ordinary concrete, lightweight aggregate concrete,autoclaved aerated concrete, bricks, and gypsum board. The maximum mass-specific exhalation rate is about 20 m Bq h"-"1 kg "-"1. Under consideration...

  6. Laboratory study of the PCB transport from primary sources to building materials

    Science.gov (United States)

    The sorption of airborne polychlorinated biphenyls (PCBs) by twenty building materials and their subsequent re-emission (desorption) from concrete were investigated using two 53-L environmental chambers connected in series with a field-collected caulk in the source chamber servin...

  7. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Sales of building materials for commercial property... construction, maintenance or repair of commercial property or any other property not excepted in section 3(n... business for the construction, maintenance or repair of commercial property or any other property...

  8. Asbestos-Containing Materials in School Buildings: A Guidance Document. Part 2.

    Science.gov (United States)

    Sawyer, Robert N.; Spooner, Charles M.

    Part 2 of the Environmental Protection Agency (EPA) guidance manuals consists of more detailed information on asbestos identification and control methods. Available information on sprayed asbestos-containing materials in buildings is summarized. Guidelines are presented for the detection and monitoring, removal or encapsulation, and disposal of…

  9. Asbestos-Containing Materials in School Buildings: A Guidance Document. Part 1.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Toxic Substances.

    The Environmental Protection Agency (EPA) has worked with the states to develop a program for accurate information and guidance to deal with the problem of school buildings constructed with asbestos-containing materials. This is the first of two guidance manuals that are a major part of this program and are being mailed to all public school…

  10. Microbes on building materials - Evaluation of DNA extraction protocols as common basis for molecular analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ettenauer, Joerg D., E-mail: joerg.ettenauer@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Pinar, Guadalupe, E-mail: Guadalupe.Pinar@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Lopandic, Ksenija, E-mail: Ksenija.Lopandic@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Spangl, Bernhard, E-mail: Bernhard.Spangl@boku.ac.at [University of Natural Resources and Life Sciences, Department of Landscape, Spatial and Infrastructure Science, Institute of Applied Statistics and Computing (IASC), Gregor Mendel-Str. 33, A-1180 Vienna (Austria); Ellersdorfer, Guenther, E-mail: Guenther.Ellersdorfer@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Voitl, Christian, E-mail: Christian.Voitl@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Sterflinger, Katja, E-mail: Katja.Sterflinger@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria)

    2012-11-15

    The study of microbial life in building materials is an emerging topic concerning biodeterioration of materials as well as health risks in houses and at working places. Biodegradation and potential health implications associated with microbial growth in our residues claim for more precise methods for quantification and identification. To date, cultivation experiments are commonly used to gain insight into the microbial diversity. Nowadays, molecular techniques for the identification of microorganisms provide efficient methods that can be applied in this field. The efficiency of DNA extraction is decisive in order to perform a reliable and reproducible quantification of the microorganisms by qPCR or to characterize the structure of the microbial community. In this study we tested thirteen DNA extraction methods and evaluated their efficiency for identifying (1) the quantity of DNA, (2) the quality and purity of DNA and (3) the ability of the DNA to be amplified in a PCR reaction using three universal primer sets for the ITS region of fungi as well as one primer pair targeting the 16S rRNA of bacteria with three typical building materials - common plaster, red brick and gypsum cardboard. DNA concentration measurements showed strong variations among the tested methods and materials. Measurement of the DNA yield showed up to three orders of magnitude variation from the same samples, whereas A260/A280 ratios often prognosticated biases in the PCR amplifications. Visualization of the crude DNA extracts and the comparison of DGGE fingerprints showed additional drawbacks of some methods. The FastDNA Spin kit for soil showed to be the best DNA extraction method and could provide positive results for all tests with the three building materials. Therefore, we suggest this method as a gold standard for quantification of indoor fungi and bacteria in building materials. -- Highlights: Black-Right-Pointing-Pointer Up to thirteen extraction methods were evaluated with three

  11. Aspects regarding the use of the industrial wastes as raw materials for the manufacture of building materials

    Directory of Open Access Journals (Sweden)

    R. G. Popa

    2015-01-01

    Full Text Available In this article are present the results of physical and chemical characterisation activities, of industrial wastes: ash and slag, drilling sludge, metallurgical slag. Also, were established the conditions in which these industrial waste types could be used as raw materials for manufacture some building materials. The ash can be assimilated with a lightweight aggregate similar to the natural sands, the oil-well drilling sludge presents an advanced similarity with the suspensions of fine particles of sand clays, the steel melting slag in electric furnace has the characteristics of a dense granular aggregate and the secondary treatment steel slag is characterized by the high content of calcium oxide.

  12. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  13. Technological characteristics of compressed earth blocks for its use as a building material

    Science.gov (United States)

    Gomez-Villalba, Luz Stella; Camacho-Perez, Nancy; Alvarez de Buergo, Monica; Becerra-Becerra, Javier; Esmeralda Corredor-Pulido, Dery; Fort, Rafael

    2013-04-01

    We present here an innovative building technique, which uses ecological, inexpensive and environmentally friendly materials. These compressed earth blocks seem to be very good for building purposes and that is why we have characterized three types of compressed earth blocks (CEB, named by their color as yellow, grey and red) mineralogically by means of X ray diffraction XRD and scanning electron microscopy SEM (both blocks and raw materials), petrographically by polarizing optical light microscopy POLM, and SEM, and, mainly, petrophysically: their hydric, physical and physico-mechanical properties by means of determining their capillary water absorption, porosity (open or accessible to water, pore size distribution and micro/macroporosity), and densities, color and ultrasound velocity (together with anisotropy). The particularities of these analyzed materials show that some varieties are more durable than others, and that all of them can be used as building materials with some restrictions related to their appropriate placing in the structures and the exposure to water. Acknowledgements: This work is supported by the GEOMATERIALES (S2009/MAT-1629) and CONSOLIDER-TCP (CSD2007-0058) programmes. Thanks also to the UCM (Complutense University of Madrid) Research Group "Alteración y conservación de los materiales pétreos del patrimonio" / Alteration and conservation of heritage stone materials (ref. 921349).

  14. Comparative Thermal Analysis of Different Cool Roof Materials for Minimizing Building Energy Consumption

    Directory of Open Access Journals (Sweden)

    Y. Anand

    2014-01-01

    Full Text Available The roof and walls in the urban areas contribute to major share in the absorption of solar radiations and also retard the outflow of the absorbed radiation from the building envelope, thereby increasing the global warming by inducing the heat island effect. The impact of using cool roof technologies on the thermal comfort of the office buildings has been estimated. Cool roofs reduce electricity consumption for maintaining the temperature of the air-conditioned buildings in the comfort level and also increase comfort in buildings merely not relying completely on cooling equipment. The cool roofs and cool pavements, however, can mitigate summer urban heat islands by improving indoor air quality and comfort. The thermal analysis of different materials has been carried out to analyze the impact of the rate of heat transfer on the building envelope and the results obtained indicate that different cool roof techniques are beneficial in maintaining the comfort level of the building which purely depends on the ambient temperature conditions.

  15. Using the heat flow plate method for determining thermal conductivity of building materials

    Science.gov (United States)

    Flori, M.; Puţan, V.; Vîlceanu, L.

    2017-01-01

    The heat flow plate method is used to determine thermal conductivity of a building material sample made of Rohacell (insulating foam). Experimental technique consists in placing the sample with a reference material on top (polystyrene sample) in a calorimetric chamber and heating from underside. Considering that the heat flux which passes through the two layers is constant and knowing thermal conductivity of the reference material, the sample thermal conductivity is determined. The temperature difference between the two opposite sample’s sides is recorded only when the steady state is achieved (constant heat flux).

  16. Moisture storage parameters of porous building materials as time-dependent properties

    Science.gov (United States)

    Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek

    2016-06-01

    Three different types of bricks and two different types of sandstones are studied in terms of measurement moisture storage parameters for over-hygroscopic moisture area using pressure plate device. For researched materials, basic physical properties as bulk density, matrix density and total open porosity are determined. From the obtained data of moisture storage measurement, the water retention curves and curves of degree of saturation in dependence on suction pressure are constructed. Water retention curve (also called suction curve, capillary potential curve, capillary-pressure function and capillary-moisture relationship) is the basic material property used in models for simulation of moisture storage in porous building materials.

  17. Re-defining the Architectural Design Process Through Building a Decision Support Framework for Design with Reused Building Materials and Components

    OpenAIRE

    Ali, Ahmed Kamal

    2012-01-01

    Waste from construction and demolition-building activities is increasing every day.Landfills have almost reached their capacity. When thinking about the negative impact ofdemolishing activities on the environment it becomes very necessary to think aboutreusing and recycling building materials in new construction or perhaps better recyclingour thoughts on how to make use of waste materials. In Kevin Lynch\\'s book, WastingAway, he wrote: "Architects must begin to think about holes in the ground...

  18. Times New Materials Company Enhancing the Technical Innovation of Building Shock Absorption and Shock Insulation Products

    Institute of Scientific and Technical Information of China (English)

    Hao Tian

    2012-01-01

    To enhance the technical innovation and market promotion of building shock absorption and shock insulation products, to promote institute-enterprise cooperation and realize complementary advantage, on March 27, Zhuzhou Times New Materials Technology Co., Ltd. concluded Framework Agreement on the Joint R&D Strategic Cooperation of Building Shock Absorption and Shock Insulation Products with Yunnan Earthquake Engineering Institute in Kunming. Both parties will fully exert their technology and resource advantages, and develop and promote shock absorption and shock insulation products jointly in the form of strategic partners.

  19. Impact of temperature and humidity on chemical and sensory emissions from building materials.

    Science.gov (United States)

    Fang, L; Clausen, G; Fanger, P O

    1999-09-01

    The chemical and sensory emissions from five building materials (carpet, polyvinyl chloride (PVC) flooring, sealant, floor varnish and wall paint) were tested under different combinations of temperature and relative humidity in the ranges 18-28 degrees C and 30-70% relative humidity (RH). The experiment was performed in a climate chamber where a specially designed test system was built to study emissions from the five materials. The test system could provide different temperatures and humidities of air around the materials, while the air, after being polluted by the emissions from the materials, could be reconditioned to 23 degrees C and 50% RH for sensory assessments. The experiment was designed to separate the direct impact of temperature and humidity on perception from the impact on sensory emission. The study found little influence of temperature on the emissions from the five materials whether expressed in chemical or sensory terms. The effect of humidity was found to be significant only for the waterborne materials--floor varnish and wall paint. Compared with the direct impact of temperature and humidity on the perception of air quality, the impact of temperature and humidity on sensory emissions from the building materials has a secondary influence on perceived air quality.

  20. Assessment of suitability of some chosen functions for describing of sorption isotherms in building materials

    Science.gov (United States)

    Stolarska, Agata; Garbalińska, Halina

    2016-10-01

    This paper presents results of tests and studies conducted on six common building materials, used for constructing and finishing of external walls. These included: ceramic brick, silicate brick, autoclaved aerated concrete, cement mortar, cement-lime mortar and cement mortar modified with polypropylene fibers. Each of these materials is distinguished by the other structure of porousness, affecting both the course of sorption processes and the isotherms obtained. At first, measurements of moisture sorption kinetics at temperatures of 5, 20 and 35 °C were performed, each time at six levels of relative humidity. Then, when the sorption processes expired, equilibrium moisture sorption values were determined for the materials in 18 individual temperature and humidity conditions. The experimental data were used to determine the sorption isotherm courses for each material at the three temperatures. Then, theoretical analysis was performed in order to determine, which of the models available in the literature described the sorption isotherms of the concerned building materials the best. For each material and each of the three temperature values, twenty-four equations were tested. In each case, those of them were identified which ensured the best matching between the theoretical courses and the experimental data. The obtained results indicate that the Chen's model proved to be the most versatile. It ensured a detailed description of the sorption isotherms for each material and temperature tested.

  1. Solving real decay and conservation problems of building materials by ultrasounds technique

    Science.gov (United States)

    Alvarez de Buergo, Monica; Fort, Rafael; Gomez-Heras, Miguel; Vazquez-Calvo, Carmen

    2010-05-01

    In this study a variety of case studies and different building materials in which ultrasounds velocity played a significant role are shown, either to characterize building materials, to measure deterioration, to assess conservation techniques or for preventive purposes. Regarding to materials properties, ultrasounds velocity provided interesting indices such as the quality index (useful when selecting replacing materials, materials for new constructions or either for sculptures); alteration index (very much related to pores and voids, and fissures); mechanical strength (assessing its reduction when materials are affected by several decay processes, being fire one of them) or anisotropy indices, which highly condition the decay of elements and materials in buildings and sculptures, and which vary themselves with decay progress. The technique is also a tool for detecting and locating elements inside structures, like metallic ones, and also to detect and locate discontinuities inside elements, both for consolidation purposes or even in cases of structures movement, which is quite common nowadays. Using some specific software, ultrasounds results can be plotted as iso-areas, which allows to define areas or zones of structures with the highest risk of detachment in a short-time in order to plan the most adequate interventions. Not new is also the aid of ultrasonics to assess consolidation products and to determine the degree of materials decay when submitted to artificial ageing. Much more innovative is the fact that ultrasonics measurement can be also helpful to determine different building periods in a same building, even the fact of determining an element's lifetime. The results obtained by this non destructive and portable technique that will be presented in this session correspond to both real case studies (results that helped to solve a real problem), some of them corresponding to emblematic monuments de España (Royal Palace of Madrid and some other monuments

  2. ENVIRONMENTAL ETHICS IN GOVERNING RECYCLED MATERIAL STYROFOAM FOR BUILDING HUMAN HABITAT

    Directory of Open Access Journals (Sweden)

    Kartini Aboo Talib Khalid

    2012-01-01

    Full Text Available Styrofoam is extensively used in food packaging businesses throughout the world. Its light weight makes it a favorite food package for entrepreneurs in food businesses. However, unlike its content, the food, which decomposed easily after some time, Styrofoam remains un-decomposed due to its oil-based structure. This study discusses the prospects of re-utilization of Styrofoam as environmentally friendly recycled material. This study uses the data from an exploratory survey on the usage of Styrofoam for food packaging-conducted in the district of Bangi, Malaysia-to highlight the magnitude of Styrofoam-waste generated in these activities. The study shows that Styrofoam can be used in combination of cement and concrete to produce a light weight, energy efficient and strong building can be built. Since there are a lot of supplies of waste Styrofoam, this material can be re-used in as part of construction material. In addition the use of Styrofoam in construction could be an innovative way for constructing termite’s free buildings. This study shows that recycling Styrofoam can assist in building environmentally friendly and cost efficient human habitat. Styrofoam can be channeled for a good cause and ways of governing the recycled materials. As such, the industrial waste generated by Styrofoam can be turned into other uses, thus reducing its environmental problems.

  3. Metabolic activity of moulds as a factor of building materials biodegradation.

    Science.gov (United States)

    Gutarowska, Beata

    2010-01-01

    This paper presents the effect of building materials on the growth and metabolic activity of moulds. In cultures of Aspergillus and Penicillium moulds grown on a model medium with the addition of building materials, the biomass of mycelium, its cellular components--glucan, chitin, ergosterol and the spectrum of enzymes and organic acids produced in the medium were investigated. It was found that on the medium with wallpaper moulds produced more biomass and extracellular enzymes, mainly glycolytic ones. On medium with mortar the growth of mycelium was impeded, production of biomass was 60% smaller, the quantity of chitin, glucan and ergosterol decreased 13-41%, and the activity of most enzymes was reduced; however the moulds intensively produced organic acids: malic, succinic and oxalic acid. The largest acid production activity was found in medium with addition of mortar; moulds produced the greatest variety of acids and in greater quantities than in the control medium. Metabolic activity of the moulds depends on the type of building material, and may lead to biodeterioration of these materials.

  4. Radon-222 exhalation from Danish building materials: H + H Industri A/S results

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.E

    1999-08-01

    This report describes a closed-chamber method for laboratory measurements of the rate at which radon-222 degasses (exhales) from small building material samples. The chamber is 55 L in volume and the main sample geometry is a slab of dimensions 5x30x30 cm{sup 3} . Numerical modelling is used to assess (and partly remove) the bias of the method relative to an ideal measurement of the free exhalation rate. Experimental results obtained with the method are found to be in agreement with the results of an open-chamber method (which is subject to different sources of error). Results of radon-222 exhalation rate measurements for 10 samples of Danish building materials are reported. Samples include ordinary concrete, lightweight aggregate concrete, autoclaved aerated concrete, bricks, and gypsum board. The maximum mass-specific exhalation rate is about 20 mBq h{sup -1} kg{sup -1}. Under consideration of the specific applications of the investigated building materials, the contribution to the indoor radon-222 concentration in a single-family reference house is calculated. Numerical modelling is used to help extrapolate the laboratory measurements on small samples to full scale walls. Application of typical materials will increase the indoor concentration by less than 10 Bq m{sup -3}. (au) 6 tabs., 15 ills., 29 refs.

  5. Ozone deposition velocities, reaction probabilities and product yields for green building materials

    Science.gov (United States)

    Lamble, S. P.; Corsi, R. L.; Morrison, G. C.

    2011-12-01

    Indoor surfaces can passively remove ozone that enters buildings, reducing occupant exposure without an energy penalty. However, reactions between ozone and building surfaces can generate and release aerosols and irritating and carcinogenic gases. To identify desirable indoor surfaces the deposition velocity, reaction probability and carbonyl product yields of building materials considered green (listed, recycled, sustainable, etc.) were quantified. Nineteen separate floor, wall or ceiling materials were tested in a 10 L, flow-through laboratory reaction chamber. Inlet ozone concentrations were maintained between 150 and 200 ppb (generally much lower in chamber air), relative humidity at 50%, temperature at 25 °C and exposure occurred over 24 h. Deposition velocities ranged from 0.25 m h -1 for a linoleum style flooring up to 8.2 m h -1 for a clay based paint; reaction probabilities ranged from 8.8 × 10 -7 to 6.9 × 10 -5 respectively. For all materials, product yields of C 1 thru C 12 saturated n-aldehydes, plus acetone ranged from undetectable to greater than 0.70 The most promising material was a clay wall plaster which exhibited a high deposition velocity (5.0 m h -1) and a low product yield (

  6. Raman scattering or fluorescence emission? Raman spectroscopy study on lime-based building and conservation materials.

    Science.gov (United States)

    Kaszowska, Zofia; Malek, Kamilla; Staniszewska-Slezak, Emilia; Niedzielska, Karina

    2016-12-05

    This work presents an in-depth study on Raman spectra excited with 1064 and 532nm lasers of lime binders employed in the past as building materials and revealed today as valuable conservation materials. We focus our interest on the bands of strong intensity, which are present in the spectra of all binders acquired with laser excitation at 1064nm, but absent in the corresponding spectra acquired with laser excitation at 532nm. We suggest, that the first group of spectra represents fluorescence phenomena of unknown origin and the second true Raman scattering. In our studies, we also include two other phases of lime cycle, i.e. calcium carbonate (a few samples of calcite of various origins) and calcium oxide (quicklime) to assess how structural and chemical transformations of lime phases affect the NIR-Raman spectral profile. Furthermore, we analyse a set of carbonated limewashes and lime binders derived from old plasters to give an insight into their spectral characteristics after excitation with the 1064nm laser line. NIR-Raman micro-mapping results are also presented to reveal the spatial distribution of building materials and fluorescent species in the cross-section of plaster samples taken from a 15th century chapel. Our study shows that the Raman analysis can help identify lime-based building and conservation materials, however, a caution is advised in the interpretation of the spectra acquired using 1064nm excitation.

  7. Building services cabinets as teaching material in a degree in architecture

    Science.gov (United States)

    Martín-Gómez, César; Zapata, Omayra; Zuazua, Amaia; Villanueva, Sonia; Olaizola, Paula

    2014-03-01

    The aim of this innovative educational project is to encourage students' interest in one of the most underrated fields of architecture: building services. With this material students interact with real elements and thereby understand the relationship between facilities and the building. A set of three small technical cabinets is planned. They allow for comfortable use and movement inside the building, need minimum maintenance and are easily stored. The result is an alternative concept of a mobile laboratory called a 'technical cabinet', made up of three mobile units for fire safety, electricity and the heating/cooling system. The design, content and learning systems of the cabinets confirmed the validity of the initial concept during the first year of use. A protocol has also been developed for each of the technical cabinets so that the teaching experience may be of use in other Schools of Architecture.

  8. J.A. van der Kloes (1845-1935): A professional biography of the first Dutch professor in building materials

    NARCIS (Netherlands)

    Quist, W.J.

    2015-01-01

    Prof. Jacobus Alida van der Kloes (1845-1935) was appointed teacher in building materials at the “Polytechnische school” of Delft in 1882. From 1905 until his retirement in 1915 he was promoted to full professor on the subject of knowledge and research of building materials at the “Technische Hooges

  9. Screening for halogenated flame retardants in European consumer products, building materials and wastes.

    Science.gov (United States)

    Vojta, Šimon; Bečanová, Jitka; Melymuk, Lisa; Komprdová, Klára; Kohoutek, Jiří; Kukučka, Petr; Klánová, Jana

    2017-02-01

    To fulfill national and international fire safety standards, flame retardants (FRs) are being added to a wide range of consumer products and building materials consisting of flammable materials like plastic, wood and textiles. While the FR composition of some products and materials has been identified in recent years, the limited global coverage of the data and the large diversity in consumer products necessitates more information for an overall picture of the FR composition in common products/materials. To address this issue, 137 individual samples of various consumer products, building materials and wastes were collected. To identify and characterize potential sources of FRs in indoor environment, all samples were analyzed for content of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDDs) and novel flame retardants (NFRs). The most frequently detected were HBCDDs (85%), with the highest median concentration of Σ4HBCDDs of 300 mg kg(-1) in polystyrenes. The highest median concentration of Σ10PBDEs was found in recycled plastic materials, reaching 4 mg kg(-1). The lowest concentrations were observed for NFRs, where the median of Σ12NFRs reached 0.4 mg kg(-1) in the group of electrical & electronic equipment wastes. This suggests that for consumer products and building materials that are currently in-use, legacy compounds still contribute to the overall burden of FRs. Additionally, contrasting patterns of FR composition in recycled and virgin plastics, revealed using principle component analysis (PCA), suggest that legacy flame retardants are reentering the market through recycled products, perpetuating the potential for emissions to indoor environments and thus for human exposure.

  10. Modeling of heat evolution in silicate building materials with electrically conductive admixtures

    Science.gov (United States)

    Fiala, Lukáš; Maděra, Jiří; Vejmelková, Eva; Černý, Robert

    2016-12-01

    Silicate building materials are electrically non-conductive, in general. However, a sufficient amount of electrically conductive admixtures can significantly increase their electrical conductivity. Consequently, new practical applications of such materials are available. Materials with enhanced electrical properties can be used as self-sensing sensors monitoring evolution of cracks, electromagnetic shields or cores of deicing systems. This paper deals with the modeling of heat evolution in silicate building materials by the action of passing electric current. Due to the conducting paths formed in the material's matrix by adding a sufficient amount of electrically conductive admixture and applying electric voltage on the installed electrodes, electric current is passing through the material. Thanks to the electric current, Joule heat is successively evolved. As it is crucial to evaluate theoretically the amount of evolved heat in order to assess the effectiveness of such a system, a model describing the Joule heat evolution is proposed and a modeling example based on finite-element method is introduced.

  11. Infrared Emissivity Measurements of Building and Civil Engineering Materials: A New Device for Measuring Emissivity

    Science.gov (United States)

    Monchau, Jean-Pierre; Marchetti, Mario; Ibos, Laurent; Dumoulin, Jean; Feuillet, Vincent; Candau, Yves

    2014-10-01

    The knowledge of the infrared emissivity of materials used in buildings and civil engineering structures is useful for two specific approaches. First, quantitative diagnosis of buildings or civil engineering infrastructures by infrared thermography requires emissivity values in the spectral bandwidth of the camera used for measurements, in order to obtain accurate surface temperatures; for instance, emissivity in the band III domain is required when using cameras with uncooled detectors (such as micro-bolometer arrays). Second, setting up accurate thermal balances by numerical modeling requires the total emissivity value for a large wavelength domain; this is, for instance, the case for computing the road surface temperature to predict ice occurrence. Furthermore, periodical surveys of emissivity variations due to aging or soiling of surfaces could be useful in many situations such as thermal mapping of roads or building insulation diagnosis. The use of portable emissivity measurement devices is required for that purpose. A device using an indirect measurement method was previously developed in our lab; the method uses measurement of the reflectivity from a modulated IR source and requires calibration with a highly reflective surface. However, that device uses a low-frequency, thermal modulation well adapted to laboratory measurements but unfit for fast and in situ measurements. Therefore, a new, portable system which retains the principle of an indirect measurement but uses a faster-frequency, mechanical modulation more appropriate to outdoor measurements was developed. Both devices allow measurements in the broad m to m) and narrow m to m) bands. Experiments were performed on a large number of materials commonly used in buildings and civil engineering structures. The final objective of this work is to build a database of emissivity of these materials. A comparison of laboratory and on-site measurements of emissivity values obtained in both spectral bands will be

  12. Life Cycle Assessment of the inclusion of phase change materials (PCM) in experimental buildings

    Energy Technology Data Exchange (ETDEWEB)

    de Gracia, Alvaro; Rincon, Lidia; Castell, Albert; Medrano, Marc; Cabeza, Luisa F. [GREA Innovacio concurrent, Edifici CREA, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida (Spain); Jimenez, Melanie; Boer, Dieter [Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Paisos Catalans, 26, 43007 Tarragona (Spain)

    2010-09-15

    The present work evaluates the environmental impact of including phase change materials (PCM) in a typical Mediterranean building. A Life Cycle Assessment (LCA) is developed for three monitored cubicles built in Puigverd de Lleida (Spain). It is possible to control the inner temperature of the cubicles using a domestic heat pump for cooling and an electrical radiator for heating: The energy consumption is registered to determine the energy savings achieved. The aim is to analyze if these energy savings are large enough to balance the environmental impact originated during the manufacturing of PCM. Some hypothetical scenarios, such as different systems to control the temperature different PCM types or different weather conditions are proposed and studied using LCA process to point out the critical issues. Furthermore, a parametric analysis of the lifetime of buildings is developed. Results show that the addition of PCM in the building envelope, although decreasing the energy consumption during operation, does not reduce significantly the global impact throughout the lifetime of the building. For the hypothetical scenario considering summer conditions all year around and a lifetime of the building of 100 years, the use of PCM reduces the overall impact by more than 10%. (author)

  13. Identification of construction material pathologies in historical buildings using infrared thermography

    OpenAIRE

    Lerma Elvira, Carlos; Mas Tomas, Maria De Los Angeles; Gil Benso, Enrique; VERCHER SANCHIS, JOSÉ MARÍA

    2013-01-01

    [en] Study of historic buildings requires a pathology analysis of the construction materials used in order to define their conservation state. Usually we can find capillary moisture, salt crystallization or density differences by deterioration. Sometimes this issue is carried out by destructive testing which determine materials’ physical and chemical characteristics. However, they are unfavorable regarding the building’s integrity, and they are sometimes difficult to implement. This paper pre...

  14. Building Materials Realized with Ultra-Fine Fly Ash and Silica Fume

    Directory of Open Access Journals (Sweden)

    Cătălin Badea

    2005-01-01

    Full Text Available The author’s experimental researches presented in this paper were focused on the building materials obtained by using ultra-fine fly ash and silica fume (like heavy mortars or compacted lightweight concretes. From experimental determinations there have been studied the following characteristics: the water absorption in function of mass, apparent density, tensile and compression strength (at 7 and 28 days, technical efficiency at 28 days and shrinkage.

  15. The true value of materials:BRIDGE (Building Research and Innovation Deals for the Green Economy)

    OpenAIRE

    Farrer, Joan; Watt, Carolyn A.

    2015-01-01

    Assessing the value of materials, lifecycle and applications was central to the European Union INTERREG IV project BRIDGE (Building Research and Innovation Deals for the Green Economy) 2011–2014. Here, the complex philosophies of sustainability (protection of people, profit and planet) underpinned innovation, knowledge transfer, data visualization and design thinking, to develop green entrepreneurs, and market differentiation in Southern England and Northern France Channel regions. The model ...

  16. Aerophytic Cyanobacteria as a Factor in the Biodegradation of Technical Materials on External Building Walls

    Directory of Open Access Journals (Sweden)

    Piontek Marlena

    2014-12-01

    Full Text Available A study conducted at the Institute of Environmental Engineering, University of Zielona Góra showed the presence of 4 species of aerophytic cyanobacteria in the biological material sampled from the external building wall with visible biocorrosion: Gloeocapsa montana Kützing, Phormidium calcareum Kützing, Aphanothece saxicola Nägeli, Gloeothece caldariorum (P. Richter Hollerbach. High levels of moisture were detected in the places of biofilm occurrence.

  17. Aerophytic Cyanobacteria as a Factor in the Biodegradation of Technical Materials on External Building Walls

    Science.gov (United States)

    Piontek, Marlena; Lechów, Hanna

    2014-12-01

    A study conducted at the Institute of Environmental Engineering, University of Zielona Góra showed the presence of 4 species of aerophytic cyanobacteria in the biological material sampled from the external building wall with visible biocorrosion: Gloeocapsa montana Kützing, Phormidium calcareum Kützing, Aphanothece saxicola Nägeli, Gloeothece caldariorum (P. Richter) Hollerbach. High levels of moisture were detected in the places of biofilm occurrence.

  18. Fundamental mass transfer modeling of emission of volatile organic compounds from building materials

    Science.gov (United States)

    Bodalal, Awad Saad

    In this study, a mass transfer theory based model is presented for characterizing the VOC emissions from building materials. A 3-D diffusion model is developed to describe the emissions of volatile organic compounds (VOCs) from individual sources. Then the formulation is extended to include the emissions from composite sources (system comprising an assemblage of individual sources). The key parameters for the model (The diffusion coefficient of the VOC in the source material D, and the equilibrium partition coefficient k e) were determined independently (model parameters are determined without the use of chamber emission data). This procedure eliminated to a large extent the need for emission testing using environmental chambers, which is costly, time consuming, and may be subject to confounding sink effects. An experimental method is developed and implemented to measure directly the internal diffusion (D) and partition coefficients ( ke). The use of the method is illustrated for three types of VOC's: (i) Aliphatic Hydrocarbons, (ii) Aromatic Hydrocarbons and ( iii) Aldehydes, through typical dry building materials (carpet, plywood, particleboard, vinyl floor tile, gypsum board, sub-floor tile and OSB). Then correlations for predicting D and ke based solely on commonly available properties such as molecular weight and vapour pressure were proposed for each product and type of VOC. These correlations can be used to estimate the D and ke when direct measurement data are not available, and thus facilitate the prediction of VOC emissions from the building materials using mass transfer theory. The VOC emissions from a sub-floor material (made of the recycled automobile tires), and a particleboard are measured and predicted. Finally, a mathematical model to predict the diffusion coefficient through complex sources (floor adhesive) as a function of time was developed. Then this model (for diffusion coefficient in complex sources) was used to predict the emission rate from

  19. CASTOR OIL-BASED BUILDING MATERIALS REINFORCED WITH FLY ASH, CLAY, EXPANDED PERLITE AND PUMICE POWDER

    Directory of Open Access Journals (Sweden)

    Figen Balo

    2011-09-01

    Full Text Available This paper reports the results of a study conducted to evaluate the influence of class C fly ash (FA, clay (C, expanded perlite (EP, pumice powder (PP and epoxidized castor oil (ECO on the density, thermal conductivity, compressive strength, tensile strength, abrasion loss and water absorption of building material. Density, thermal conductivity, compressive strength and tensile strength decreased with the increase of ECO and FA as replacement for building material. These properties also decreased with increasing process temperature. The addition of clay in the building material had an increasing effect on these properties. The addition of clay decreased abrasion loss and water absorption as a function of replacement percent. The minimum thermal conductivity and maximum water absorption observed for the sample made with minimum clay and maximum FA-ECO ratios processed at the highest process temperature. The maximum compression-tensile strengths and minimum abrasion loss observed for the sample with maximum clay and minimum FA-ECO ratios processed at the lowest process temperature.

  20. Measurement of radon exhalation rate in various building materials and soil samples

    Science.gov (United States)

    Bala, Pankaj; Kumar, Vinod; Mehra, Rohit

    2017-03-01

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg-1 h-1 with a mean value 59.7 mBq kg-1 h-1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg-1 with a mean value 41.6 Bq kg-1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg-1 h-1 (granite) with a mean value of 59.94 mBq kg-1 h-1.

  1. Measurement of radon exhalation rate in various building materials and soil samples

    Indian Academy of Sciences (India)

    Pankaj Bala; Vinod Kumar; Rohit Mehra

    2017-03-01

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpurdistricts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg⁻¹ h⁻¹with a mean value 59.7 mBq kg⁻¹ h⁻¹. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg⁻¹ with a mean value 41.6 Bq kg⁻¹ . The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg⁻¹ h⁻¹ (granite) with a mean value of59.94 mBq kg⁻¹ h⁻¹.

  2. Building material characterization by using IR thermography for efficient heating systems

    Science.gov (United States)

    Bison, Paolo; Grinzato, Ermanno

    2008-03-01

    Thermography is excellent for a fast characterisation of building materials, both at laboratory or in situ. A great advantage is the possibility to analyse many samples at the same conditions and time. A technique has been applied for new materials, oriented to radiating floor systems, evaluating different approaches. Samples are submitted to a stepwise, uniform heating. Surface excess temperature is recorded by thermography evaluating thermal inertia. At first, thermal diffusivity has been measured using a modified version of the Flash Method, then applied on a single face, for in situ application. Heat capacity and thermal conductivity have been inferred for each samples by definitions and the independent measure of the volumic mass.

  3. The Future Resources for Eco-building Materials: II.Fly Ash and Coal Waste

    Institute of Scientific and Technical Information of China (English)

    LI Hui; XU Delong

    2009-01-01

    To use fly ash and coal waste effectively,the current technologies for reprocessing and recycling these wastes into eco-building materials were reviewed,such as utilizing fly ash as the component of fly ash cement and low heat cement after the processes of separation,removal of carbon remains and fine comminution,calcining coal waste into kaolin and meta-kaolin with suspension technology,and preparing clinkerless alkali-activated geopolymer materials with fly ash and meta-kaolin.

  4. Design and building of a new experimental setup for testing hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, Anders

    2005-09-01

    For hydrogen to become the future energy carrier a suitable way of storing hydrogen is needed, especially if hydrogen is to be used in mobile applications such as cars. To test potential hydrogen storage materials with respect to capacity, kinetics and thermodynamics the Materials Research Department has a high pressure balance. However, the drawback of this equipment is, that in order to load samples, exposure towards air is inevitable. This has prompted the design and building of a new experimental setup with a detachable reactor allowing samples to be loaded under protective atmosphere. The purpose of this report is to serve as documentation of the new setup. (au)

  5. Preparation and characterization of phase change material for thermal energy storage in buildings

    Science.gov (United States)

    Lo, Tommy Y.

    2016-04-01

    The paper presents the developing of novel form-stable composite phase change material (PCM) by incorporation of paraffin into lightweight aggregate through vacuum impregnation. The macro-encapsulated Paraffin-lightweight aggregate is a chemical compatible, thermal stable and thermal reliable PCM material for thermal energy storage applications in buildings. The 28 days compressive strength of NWAC using PCM-LWA is 33 - 53 MPa, which has an opportunity for structural purpose. Scanning electronic microscopic images indicated the paraffin can be held inside the porous structure of the aggregate. Thermal performance test showed that the cement paste panel with composite PCM can reduce the indoor temperature.

  6. The relationship between measured moisture conditions and fungal concentrations in water-damaged building materials.

    Science.gov (United States)

    Pasanen, A L; Rautiala, S; Kasanen, J P; Raunio, P; Rantamäki, J; Kalliokoski, P

    2000-06-01

    We determined the moisture levels, relative humidity (RH) or moisture content (MC) of materials, and concentrations of culturable fungi, actinomycetes and total spores as well as a composition of fungal flora in 122 building material samples collected from 18 moisture problem buildings. The purpose of this work was to clarify if the is any correlation between the moisture parameters and microbial levels or generic composition depending on the type of materials and the time passed after a water damage. The results showed an agreement between the concentrations of total spores and culturable fungi for the wood, wood-based and gypsum board samples (r > 0.47). The concentrations of total spores and/or culturable fungi correlated with RH of materials particularly among the wood and insulation materials (r > 0.79), but not usually with MC (r 0.51), while such a relationship could not be observed for the samples taken from dry damage. A wide range of fungal species were found in the samples from ongoing damage, whereas Penicillia and in some cases yeasts dominated the fungal flora in the dry samples. This study indicates that fungal contamination can be evaluated on the basis of moisture measurements of constructions in ongoing damage, but the measurements are not solely adequate for estimation of possible microbial growth in dry damage.

  7. Energy Saving Potentials of Phase Change Materials Applied to Lightweight Building Envelopes

    Directory of Open Access Journals (Sweden)

    Yoon-Bok Seong

    2013-10-01

    Full Text Available Phase change materials (PCMs have been considered as an innovative technology that can reduce the peak loads and heating, ventilating and air conditioning (HVAC energy consumption in buildings. Basically they are substances capable of storing or releasing thermal energy as latent heat. Because the amount of latent heat absorbed or released is much larger than the sensible heat, the application of PCMs in buildings has significant potential to reduce energy consumption. However, because each PCM has its own phase change temperature, which is the temperature at which latent heat is absorbed or released, it is important to use an appropriate PCM for the purpose of building envelope design. Therefore, this paper aims to investigate the energy saving potentials in buildings when various PCMs with different phase change temperatures are applied to a lightweight building envelope by analyzing the thermal load characteristics. As results, the annual heating load increased at every phase change temperature, but the peak heating load decreased by 3.19% with heptadecane (phase change temperature 21 °C, and the lowest indoor temperature increased by 0.86 °C with heptadecane (phase change temperature 21 °C. The annual cooling load decreased by 1.05% with dodecanol (phase change temperature 24 °C, the peak cooling load decreased by 1.30% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.50 °C with octadecane (phase change temperature 29 °C. When the night ventilation was applied to the building HVAC system for better passive cooling performance, the annual cooling load decreased by 9.28% with dodecanol (phase change temperature 24 °C, the peak load decreased by 11.33% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.85 °C with octadecane (phase change temperature 29 °C.

  8. Comparative study of mechanical properties of direct core build-up materials

    Directory of Open Access Journals (Sweden)

    Girish Kumar

    2015-01-01

    Full Text Available Background and Objectives: The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. Materials and Methods: All the materials were manipulated according to the manufacturer′s recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Results: Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Conclusions: Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success.

  9. Build-up material requirements in clinical dosimetry during total body irradiation treatments.

    Science.gov (United States)

    Butson, Martin; Pope, Dane; Haque, Mamoon; Chen, Tom; Song, Guangli; Whitaker, May

    2016-01-01

    Total body irradiation (TBI) treatments are mainly used in a preparative regimen for hematopoietic stem cell (or bone marrow) transplantation. Our standard clinical regimen is a 12 Gy/6 fraction bi-daily technique using 6MV X-rays at a large extended source to surface distance (SSD). This work investigates and quantifies the dose build-up characteristics and thus the requirements for bolus used for in vivo dosimetry for TBI applications. Percentage dose build-up characteristics of photon beams have been investigated at large extended SSDs using ionization chambers and Gafchromic film. Open field measurements at different field sizes and with differing scatter conditions such as the introduction of standard Perspex scattering plates at different distances to the measurement point were made in an effort to determine the required bolus/build-up material required for accurate determination of applied dose. Percentage surface dose values measured for open fields at 300 cm SSD were found to range from 20% up to 65.5% for fields 5 cm × 5 cm to 40 cm × 40 cm, respectively. With the introduction of 1 cm Perspex scattering plates used in TBI treatments, the surface dose values increased up to 83-90% (93-97% at 1 mm depth), depending on the position of the Perspex scattering plate compared to the measurement point. Our work showed that at least 5 mm water equivalent bolus/scatter material should be placed over the EBT3 film for accurate dose assessment for TBI treatments. Results also show that a small but measurable decrease in measured dose occurred with 5 mm water equivalent thick bolus material of areas '3 cm(2). As such, we recommend that 3 cm × 3 cm × 5 mm bolus build-up is the smallest size that should be placed over EBT3 Gafchromic film when used for accurate in vivo dosimetry for TBI applications.

  10. Emissions of volatile organic compounds from building materials and consumer products

    Science.gov (United States)

    Wallace, Lance A.; Pellizzari, Edo; Leaderer, Brian; Zelon, Harvey; Sheldon, Linda

    EPA's TEAM Study of personal exposure to volatile organic compounds (VOC) in air and drinking water of 650 residents of seven U.S. cities resulted in the identification of a number of possible sources encountered in peoples' normal daily activities and in their homes. A follow-up EPA study of publicaccess buildings implicated other potential sources of exposure. To learn more about these potential sources, 15 building materials and common consumer products were analyzed using a headspace technique to detect organic emissions and to compare relative amounts. About 10-100 organic compounds were detected offgassing from each material. Four mixtures of materials were then chosen for detailed study: paint on sheetrock; carpet and carpet glue; wallpaper and adhesives; cleansers and a spray pesticide. The materials were applied as normally used, allowed to age 1 week (except for the cleansers and pesticides, which were used normally during the monitoring period), and placed in an environmentally controlled chamber. Organic vapors were collected on Tenax-GC over a 4-h period and analyzed by GC-MS techniques. Emission rates and chamber concentrations were calculated for 17 target chemicals chosen for their toxic, carcinogenic or mutagenic properties. Thirteen of the 17 chemicals were emitted by one or more of the materials. Elevated concentrations of chloroform, carbon tetrachloride, 1,1,1-trichloroethane, n-decane, n-undecane, p-dichlorobenzene, 1,2-dichloroethane and styrene were produced by the four mixtures of materials tested. For some chemicals, these amounts were sufficient to account for a significant fraction of the elevated concentrations observed in previous indoor air studies. We conclude that common materials found in nearly every home and place of business may cause elevated exposures to toxic chemicals.

  11. Green Sharing: The Proposed Criteria in Green Building Standards to Promote the Usage of Natural Handicrafts in Building Materials

    Directory of Open Access Journals (Sweden)

    Krasae-In Aracha

    2016-01-01

    Full Text Available Sustainable development has been a great challenge to the building and construction industry for decades. There have been many initiatives and attempts to create sustainability for the industry through the concept of the Green Building certificate in order to reduce the impact to environment and society while promoting better living conditions of the people involved in the project. This paper aims to examine all three aspects of sustainability; economy, environment and society, in the building and construction industry by proposing new criteria for the green building certificate. This will create opportunities for the community based handicraft building products to be specified and purchased to be used in the modern building and construction industry and share the economic value to the community.

  12. Natural activities of {sup 238}U, {sup 232}Th and {sup 40}K in building materials

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, N. [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    1999-05-01

    Seven kinds of building materials were analysed for {sup 238}U, {sup 232}Th and {sup 40}K using a direct {gamma}-counting method. The activity concentrations measured for {sup 238}U (30-448 Bq kg{sup -1}) and {sup 40}K (328-7541 Bq kg{sup -1}) were greater than the world average activity for soil (25 and 370 Bq kg{sup -1}, respectively) for all building materials analysed, while the activity concentrations of {sup 232}Th were found to exceed the average of 25 Bq kg{sup -1} (soil) for red-clay brick (51 Bq kg{sup -1}) and ceiling asbestos sheet materials (162 Bq kg{sup -1}). The calculated Ra equivalent activities (Ra{sub eq}) for all materials are higher than the world average value for soil (89 Bq kg{sup -1}). For red-clay brick and ceiling asbestos, the Ra{sub eq} values are found to exceed the limit of 370 Bq kg{sup -1}, equivalent to a {gamma}-dose of 1.5 mSv yr{sup -1}. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Review of the use of phase change materials (PCMs in buildings with reinforced concrete structures

    Directory of Open Access Journals (Sweden)

    Pons, O.

    2014-09-01

    Full Text Available Phase change materials are capable of storing and releasing energy in the form of heat in determined temperature ranges, so to increase a building’s thermal inertia, stabilize its indoor temperatures and reduce its energetic demand. Therefore, if we used these materials we could have more energetically efficient buildings. Nevertheless, are these materials most appropriate to be used in buildings? Could the incorporation of phase change materials in buildings with concrete structures be generalized? This article aims to carry out a review of these phase change materials from construction professionals’ points of view, study their applications for buildings with reinforced concrete structures and the key points for these applications, draw conclusions and provide recommendations useful for all professionals within the sector who are considering the application of these materials.Los materiales de cambio de fase son capaces de almacenar y liberar energía en forma de calor en un determinando rango de temperaturas, y así aumentar la inercia térmica de un edificio, estabilizar las temperaturas en el interior y reducir la demanda energética. En consecuencia, si utilizáramos estos materiales podríamos tener un parque de edificios más eficientes energéticamente. No obstante, ¿estos materiales son apropiados para usarse en edificios? ¿Se podría generalizar la incorporación de materiales de cambio de fase en edificios con estructuras de hormigón? Este artículo tiene como objetivos hacer una revisión del estado del arte de estos materiales de cambio de fase desde el punto de vista de los profesionales de la construcción, estudiar las aplicaciones en edificios con estructuras de hormigón armado y los puntos clave para estas aplicaciones, extraer conclusiones y recomendaciones útiles para los profesionales del sector que se planteen la utilización de estos materiales.

  14. Leveraging "raw materials" as building blocks and bioactive signals in regenerative medicine.

    Science.gov (United States)

    Renth, Amanda N; Detamore, Michael S

    2012-10-01

    Components found within the extracellular matrix (ECM) have emerged as an essential subset of biomaterials for tissue engineering scaffolds. Collagen, glycosaminoglycans, bioceramics, and ECM-based matrices are the main categories of "raw materials" used in a wide variety of tissue engineering strategies. The advantages of raw materials include their inherent ability to create a microenvironment that contains physical, chemical, and mechanical cues similar to native tissue, which prove unmatched by synthetic biomaterials alone. Moreover, these raw materials provide a head start in the regeneration of tissues by providing building blocks to be bioresorbed and incorporated into the tissue as opposed to being biodegraded into waste products and removed. This article reviews the strategies and applications of employing raw materials as components of tissue engineering constructs. Utilizing raw materials holds the potential to provide both a scaffold and a signal, perhaps even without the addition of exogenous growth factors or cytokines. Raw materials contain endogenous proteins that may also help to improve the translational success of tissue engineering solutions to progress from laboratory bench to clinical therapies. Traditionally, the tissue engineering triad has included cells, signals, and materials. Whether raw materials represent their own new paradigm or are categorized as a bridge between signals and materials, it is clear that they have emerged as a leading strategy in regenerative medicine. The common use of raw materials in commercial products as well as their growing presence in the research community speak to their potential. However, there has heretofore not been a coordinated or organized effort to classify these approaches, and as such we recommend that the use of raw materials be introduced into the collective consciousness of our field as a recognized classification of regenerative medicine strategies.

  15. Amplitude-sensitive modulation thermography to measure moisture in building materials

    Science.gov (United States)

    Wild, Walter; Buescher, Konstantin A.; Wiggenhauser, Herbert

    1998-03-01

    There have been reports about moisture detection in building walls by reflective IR-thermography. Typically, only limited results could be obtained because of the emission coefficient variations, leaking radiation or inhomogeneous illumination of the object. In addition, the quantitative relation between remission spectra and the moisture has often been unclear. Reflectometry uses constant excitation illumination which is recorded by the IR camera. With the use of the 'lock-in-technology' a low frequency modulated signal of an IR radiation source is coupled with the thermo camera and a frequency and phase sensitive signal from the thermal images can be derived. The advantage is, that emission coefficient dependencies are eliminated and that leaking radiation does not have any influence on the measured signal. The selective water measurement is possible, because there is an interference filter mounted in front of the radiator which has its transmission maximum at the wavelength of an absorption band of water. The area investigated is therefore illuminated under well defined circumstances and quantitative moisture measurement on the surface of building materials becomes a possibility. The illumination modulation is done with a sine wave to facilitate the calculation of the temporal intensity behavior of the amplitude signal. Subsequently, the amplitude image is used to determine the distribution and the level of moisture quantitatively. Point measurements in the laboratory were carried out on several building materials with changing moisture levels. It could be shown that this method successfully eliminates disturbing contributions to the measured signal like surface effects or leaking radiation.

  16. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil and Building Structures

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Charley [Argonne National Lab. (ANL), Argonne, IL (United States); Kamboj, Sunita [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Cheng [Argonne National Lab. (ANL), Argonne, IL (United States); Cheng, Jing-Jy [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    This handbook is an update of the 1993 version of the Data Collection Handbook and the Radionuclide Transfer Factors Report to support modeling the impact of radioactive material in soil. Many new parameters have been added to the RESRAD Family of Codes, and new measurement methodologies are available. A detailed review of available parameter databases was conducted in preparation of this new handbook. This handbook is a companion document to the user manuals when using the RESRAD (onsite) and RESRAD-OFFSITE code. It can also be used for RESRAD-BUILD code because some of the building-related parameters are included in this handbook. The RESRAD (onsite) has been developed for implementing U.S. Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), crops and livestock, human intake, source characteristic, and building characteristic parameters are used in the RESRAD (onsite) code. The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code and can also model the transport of radionuclides to locations outside the footprint of the primary contamination. This handbook discusses parameter definitions, typical ranges, variations, and measurement methodologies. It also provides references for sources of additional information. Although this handbook was developed primarily to support the application of RESRAD Family of Codes, the discussions and values are valid for use of other pathway analysis models and codes.

  17. Development of Composite PCMs by Incorporation of Paraffin into Various Building Materials

    Directory of Open Access Journals (Sweden)

    Shazim Ali Memon

    2015-02-01

    Full Text Available In this research, we focused on the development of composite phase-change materials (CPCMs by incorporation of a paraffin through vacuum impregnation in widely used building materials (Kaolin and ground granulated blast-furnace slag (GGBS. The composite PCMs were characterized using environmental scanning electron microscopy (ESEM, Fourier transform infrared spectroscopy (FT-IR, differential scanning calorimetry (DSC and thermogravimetric analysis (TGA techniques. Moreover, thermal performance of cement paste composite PCM panels was evaluated using a self-designed heating system. Test results showed that the maximum percentage of paraffin retained by Kaolin and GGBS was found to be 18% and 9%, respectively. FT-IR results show that CPCMs are chemically compatible. The phase-change temperatures of CPCMs were in the human comfort zone, and they possessed considerable latent-heat storage capacity. TGA results showed that CPCMs are thermally stable, and they did not show any sign of degradation below 150 °C. From thermal cycling tests, it was revealed that the CPCMs are thermally reliable. Thermal performance tests showed that in comparison to the control room model, the room models prepared with CPCMs reduced both the temperature fluctuations and maximum indoor center temperature. Therefore, the prepared CPCMs have some potential in reducing peak loads in buildings when applied to building facade.

  18. DEVELOPMENT OF RHEOLOGY OF ROAD-BUILDING MATERIALS FOR PERFECTION OF THEIR COMPACTION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Vl. P. Podolskу

    2012-04-01

    Full Text Available Problem statement. The main problems of improving the quality and effectiveness of compaction of soil subgrade and road asphalt mixtures are discussed. Technology of road-building materials compaction can be improved by developing and using the rheological approach in the describing and studying changes in physical and mechanical parameters of materials, when the rheological properties of compacted material is closely connected to the nature of a force action applied to it.Results. The principles of designing rheological models of soil subgrade and road asphalt mixtures are formulated, based on which a model is suggested of the creep process of road construction materials using the theory of hereditary creep of elastic-visco-plastic materials. The choice of exponential and power influence functions is explained, the application of which will improve the accuracy of the physical and mechanical properties of compacted materials. Conclusions. Development of rheology road soils and asphalt mixtures reveals significant new laws in the development of deformation of compacted layers of road construction materials in the way of improving the compaction technology.

  19. Sequestering carbon dioxide in industrial polymers: Building materials for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Molton, P.M.; Nelson, D.A.

    1993-06-01

    This study was undertaken to determine the possibility of developing beneficial uses for carbon dioxide as a key component for a large-volume building product. Such a use may provide an alternative to storing the gas in oceanic sinks or clathrates as a way to slow the rate of global warming. The authors investigated the concept that carbon dioxide might be used with other chemicals to make carbon-dioxide-based polymers which would be lightweight, strong, and economical alternatives to some types of wood and silica-based building materials. As a construction-grade material, carbon dioxide would be fixed in a solid, useful form where it would not contribute to global warming. With the probable imposition of a fuel carbon tax in industrialized countries, this alternative would allow beneficial use of the carbon dioxide and could remove it from the tax basis if legislation were structured appropriately. Hence, there would be an economic driver towards the use of carbon-dioxide-based polymers which would enhance their future applications. Information was obtained through literature searches and personal contacts on carbon dioxide polymers which showed that the concept (1) is technically feasible, (2) is economically defensible, and (3) has an existing industrial infrastructure which could logically develop it. The technology exists for production of building materials which are strong enough for use by industry and which contain up to 90% by weight of carbon dioxide, both chemically and physically bound. A significant side-benefit of using this material would be that it is self-extinguishing in case of fire. This report is the first stage in the investigation. Further work being proposed will provide details on costs, specific applications and volumes, and potential impacts of this technology.

  20. Monitoring of Water Content in Building Materials Using a Wireless Passive Sensor

    Directory of Open Access Journals (Sweden)

    Goran Stojanović

    2010-04-01

    Full Text Available This paper describes an innovative design of a wireless, passive LC sensor and its application for monitoring of water content in building materials. The sensor was embedded in test material samples so that the internal water content of the samples could be measured with an antenna by tracking the changes in the sensor’s resonant frequency. Since the dielectric constant of water was much higher compared with that of the test samples, the presence of water in the samples increased the capacitance of the LC circuit, thus decreasing the sensor’s resonant frequency. The sensor is made up of a printed circuit board in one metal layer and water content has been determined for clay brick and autoclaved aerated concrete block, both widely used construction materials. Measurements were conducted at room temperature using a HP-4194A Impedance/Gain-Phase Analyzer instrument.

  1. Characterization of magnetic material in the mound-building termite Macrotermes gilvus in Southeast Asia

    Energy Technology Data Exchange (ETDEWEB)

    Esa, Mohammad Faris Mohammad; Hassan, Ibrahim Haji [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia); Rahim, Faszly; Hanifah, Sharina Abu [School of Environmental Scieces and Natural Resources Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia)

    2015-09-25

    Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties of specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration.

  2. Evidence on dynamic effects in the water content – water potential relation of building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2008-01-01

    the required material functions, i.e. the moisture storage characteristic and the liquid water conductivity, from measured basic properties. The current state of the art in material modelling as well as the corresponding transport theory implies that the moisture transport function is unique...... and that the moisture storage characteristic is process dependent with varying significance for the numerical simulation. On the basis of different building materials, a comprehensive instantaneous profile measurement study has been accomplished. Profiles of water content and relative humidity were obtained during...... a series of adsorption and desorption processes. The data provides clear evidence that the water content – water potential relationship is not only dependent on the process history, but also on the process dynamics. The higher moisture potential gradients were induced, the larger was the deviation between...

  3. Quality Improvement of Granular Wastes-The Effective Way to Recycle Secondary Raw Building Materials

    Institute of Scientific and Technical Information of China (English)

    XING Wei-hong; Charles Hendriks; Alex Fraaij; Peter Rem

    2004-01-01

    Granular wastes have negative effects on the environment due to contamination. On the other hand, stony components in granular wastes have a potential good perspectives for utilization in civil engineering works as secondary raw building materials. To reuse such materials without environmental risks, all contaminants must be removed or reduced to an acceptable level. Therefore liberation of materials is an important step in waste treatment. For this purpose, separation and cleansing techniques are suitable. Based on the analysis of contaminants in wastes, it is discussed how to select suitable techniques. The rules for technique selection and processes for quality improvement are set up. To evaluate the environmental quality and technical quality of output products, it is necessary to check leaching behaviours and physical properties.

  4. Natural radioactivity in granite stones used as building materials in Iran.

    Science.gov (United States)

    Asgharizadeh, F; Abbasi, A; Hochaghani, O; Gooya, E S

    2012-04-01

    Due to increasing concern about environmental radiological protection, specific radioactivity concentrations of (226)Ra, (232)Th and (40)K in different types of commonly used granite stone samples collected from the Tehran city of Iran have been determined by means of a high-resolution HPGe gamma-spectroscopy system. The activity concentrations of (232)Th, (226)Ra and (40)K in the selected granite samples ranged from 18 to 178, 6 to 160 and 556 to 1539 Bq kg(-1), respectively. The radium equivalent activities (Ra(eq)) are lower than the limit of 370 Bq kg(-1) set by NEA-OECD [Nuclear Energy Agency. Exposure to radiation from natural radioactivity in building materials. Report by NEA Group of Experts. OECD (1979)], except in two samples. The internal hazard indexes have been found well below the acceptable limit in most of the samples. Five samples of investigated commercial granite stones do not satisfy the safety criterion illustrated by UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation. Exposure from natural sources of radiation. Report to the General Assembly (1993). Applying dose criteria recently recommended by the EC [European Commission Report on Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials. Radiation Protection 112 (1999)] for superficial materials, all investigated samples meet the exemption dose limit of 0.3 mSv y(-1).

  5. C-Depth Method to Determine Diffusion Coefficient and Partition Coefficient of PCB in Building Materials.

    Science.gov (United States)

    Liu, Cong; Kolarik, Barbara; Gunnarsen, Lars; Zhang, Yinping

    2015-10-20

    Polychlorinated biphenyls (PCBs) have been found to be persistent in the environment and possibly harmful. Many buildings are characterized with high PCB concentrations. Knowledge about partitioning between primary sources and building materials is critical for exposure assessment and practical remediation of PCB contamination. This study develops a C-depth method to determine diffusion coefficient (D) and partition coefficient (K), two key parameters governing the partitioning process. For concrete, a primary material studied here, relative standard deviations of results among five data sets are 5%-22% for K and 42-66% for D. Compared with existing methods, C-depth method overcomes the inability to obtain unique estimation for nonlinear regression and does not require assumed correlations for D and K among congeners. Comparison with a more sophisticated two-term approach implies significant uncertainty for D, and smaller uncertainty for K. However, considering uncertainties associated with sampling and chemical analysis, and impact of environmental factors, the results are acceptable for engineering applications. This was supported by good agreement between model prediction and measurement. Sensitivity analysis indicated that effective diffusion distance, contacting time of materials with primary sources, and depth of measured concentrations are critical for determining D, and PCB concentration in primary sources is critical for K.

  6. The influence of rainwater composition on the conservation state of cementitious building materials

    Energy Technology Data Exchange (ETDEWEB)

    Morillas, Héctor, E-mail: hector.morillas@ehu.es [Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country (Spain); Marcaida, Iker [Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country (Spain); Maguregui, Maite [Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080 Vitoria-Gasteiz, Basque Country (Spain); Carrero, Jose Antonio; Madariaga, Juan Manuel [Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country (Spain)

    2016-01-15

    Rainwater is one of the main pollution tracers around the world. There are many reasons that can explain the presence of high concentrations of certain hazardous elements (HEs) in the rainwater (traffic, marine port activities, industry, etc.). In this work, rainwater samples were collected at six different locations in the Metropolitan Bilbao (Basque Country, north of Spain) during November 2014. HE concentrations were determined by means of inductively coupled plasma mass spectrometry (ICP-MS) and anions by ion chromatography. The pH and redox potential values on these samples were also assessed. According to the obtained results, different trends along the estuary of Bilbao have been observed. To corroborate some hypothesis, thermodynamic simulations and correlation analyses were also carried out using quantitative data. These trends are closely related to the surrounding pollution and marine influence. Finally, in order to ascertain the influence of the Metropolitan Bilbao rainwater on buildings materials, a recent construction was characterized. Using techniques such as Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy (SEM–EDS) and Raman Spectroscopy, different types of sulfates and nitrates were observed. - Highlights: • Rainwater from six sampling points along Nervion River (Bilbao, Spain) were analyzed. • Ion chromatography, ICP-MS and chemometrics were used for the rainwater analyses. • The interaction between wet depositions and building materials was studied. • Cementitious materials were analyzed using µ-Raman spectroscopy and SEM–EDS.

  7. Human Perception, SBS Sympsoms and Performance of Office Work during Exposure to Air Polluted by Building Materials and Personal Computers

    DEFF Research Database (Denmark)

    Bako-Biro, Zsolt

    The present thesis deals with the impact of polluted air from building materials and personal computers on human perception, Sick Building Syndrome (SBS) symptoms and performance of office work. These effects have been studies in a series of experiments that are described in two different chapters...

  8. Future Resources for Eco-building Materials: I.Metallurgical Slag

    Institute of Scientific and Technical Information of China (English)

    XU Delong; LI Hui

    2009-01-01

    In order to make an effectivily recycle use of iron and steel slags that are main industrial wastes generated in Chinese metallurgical industry,the current technologies for reprocessing and recycling these wastes into eco-building materials were reviewed,such as preparing cement-steel slag blended cement with steel slag after metal recovery,using the fine powder of blast furnace slag (BFS)for manufacturing slag cement and high performance concrete.A further research on using these available resources more efficiently were discussed.

  9. Measurements of radioactivity and dose assessments in some building materials in Bitlis, Turkey.

    Science.gov (United States)

    Kayakökü, Halime; Karatepe, Şule; Doğru, Mahmut

    2016-09-01

    In this study, samples of perlite, pumice and Ahlat stones (Ignimbrite) extracted from mines in Bitlis and samples of other building materials produced in facilities in Bitlis were collected and analyzed. Activity concentrations of (226)Ra, (232)Th and (40)K in samples of building materials were measured using NaI detector (NaI(Tl)) with an efficiency of 24%. The radon measurements of building material samples were determined using CR-39 nuclear track detectors. (226)Ra, (232)Th and (40)K radioactivity concentrations ranged from (29.6±5.9 to 228.2±38.1Bq/kg), (10.8±5.4 to 95.5±26.1Bq/kg) and (249.3±124.7 to 2580.1±266.9Bq/kg), respectively. Radon concentration, radium equivalent activities, absorbed dose rate, excess lifetime cancer risk and the values of hazard indices were calculated for the measured samples to assess the radiation hazards arising from using those materials in the construction of dwellings. Radon concentration ranged between 89.2±12.0Bq/m(3) and 1141.0±225.0Bq/m(3). It was determined that Raeq values of samples conformed to world standards except for perlite and single samples of brick and Ahlat stone. Calculated values of absorbed dose rate ranged from 81.3±20.5 to 420.6±42.8nGy/h. ELCR values ranged from (1.8±0.3)×10(-3) to (9.0±1.0)×10(-3). All samples had ELCR values higher than the world average. The values of Hin and Hex varied from 0.35±0.11 to 1.78±0.18 and from 0.37±0.09 to 1.17±0.13, respectively. The results were compared with standard radioactivity values determined by international organizations and with similar studies. There would be a radiation risk for people living in buildings made of perlite, Ahlat-1 and Brick-3.

  10. Analysis of Phase Change Material in Glazing Systems in Future Zero-Energy-Buildings

    DEFF Research Database (Denmark)

    Winther, Frederik Vildbrad; Heiselberg, Per; Jensen, Rasmus Lund

    2016-01-01

    the thermal storage capacity of the glazed facade by using phase change material (PCM), in the glazing cavity, reduces the cooling demand. When wanting to use this technology under colder weather conditions, the pane can potentially reduce the heat loss of the pane thereby minimizing energy demand for heating.......When designing glazed constructions, this often results in thermally light constructions, with a low time constant. In order for these buildings to improve the redistribution of loads between night and day, solutions such as active slabs and exposed concrete cores are often used. However...

  11. The Feasibility of Wood and its Derivatives as a Bicycle Frame Building Material

    OpenAIRE

    BRENT TAYLOR, NICHOLAS

    2016-01-01

    [EN] ABSTRACT Nicholas Brent Taylor: The Feasibility of Wood and its Derivatives as a Bicycle Frame Building Material The bicycle is often considered as one of the most important inventions of all time. In addition, it is the most efficient form of human transport in the world. It is non pollutant, uses no fuel other than human power and its carbon footprint is neutralised in a short time. Today, faced with the threat of global warming brought about by fossil fuels, countries such as De...

  12. Dataset of Atmospheric Environment Publication in 2016, Characterization of organophosphorus flame retardants’ sorption on building materials and consumer products

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data presented in this data file is a product of a journal publication. The dataset contains OPFR sorption concentrations on building materials and consumer...

  13. Development and application of new building materials%新型建筑材料的发展及应用

    Institute of Scientific and Technical Information of China (English)

    王兰

    2015-01-01

    我国新型建材工业是伴随着改革开放的不断深入而发展起来的.新型建材具有轻质、高强度、保温、节能等特点.本文从新型建筑材料的现状出发,重点探讨了新型建筑材料的发展及应用.%New building materials industry in China is accompanied by the deepening of the reform and opening up and developed. New building materials are lightweight,high strength,insulation,energy-saving features,In this paper,starting from the present situation of new building materials,Focus on the development and application of new building materials are discussed.

  14. Direct-bonded Magnesite-Chrome Bricks for Kilns and Furnaces of Building Materials Industry JC 497-92 ( 96 )

    Institute of Scientific and Technical Information of China (English)

    Yu Lingyan; Chai Junlan

    2008-01-01

    @@ 1 Contents and Applied Scope This standard specifies the classification, shapes and dimensions, technical requirements, test methods, inspection rules, marking, packing, transportation, storage and quality certificate of direct-bonded magne-site -chrome bricks for building materials industry.

  15. Our Buildings, Ourselves.

    Science.gov (United States)

    Roodman, David Malin; Lenssen, Nicholas

    1994-01-01

    Reviews in detail environmental impacts associated with buildings. Discusses building construction, internal environments, building life spans, building materials, protection from climate, and amenities. (LZ)

  16. Criteria for evaluation of building materials hazard based on their natural radioactivity in Russia and in the European Union countries

    Directory of Open Access Journals (Sweden)

    Buzina Darya

    2016-01-01

    Full Text Available We hereby have considered the natural radioactivity of building materials as a source of radiation for the human environment. We have considered the Russian and the European evaluation criteria for ensuring radiation safety of the population. We also present an experimental research of the content of natural radionuclides in building materials. We have calculated the effective specific activity and the activity concentration index based on the results presented. We have identified discrepancies between the Russian and the European standards.

  17. Material and Social Construction: A Framework for the Adaptation of Buildings

    Directory of Open Access Journals (Sweden)

    Jesse M. Keenan

    2014-12-01

    Full Text Available This article is a formulation of a framework for understanding the nature of change, particularly climate change, as it applies to the scale of a building. Through an exploration of various scientific and social scientific literutre, the article positions the concept of adaptation as the appropriate mode for understanding and managing change. Through the classification of a duality of material and social construction in the ontological composition of a building, various lines of thought relating to adaptive capacity and adaptive cycling within systems theory are appropriated within an integrated framework for adaptation. Specifically, it is theorized that as buildings as objects are developing greater capacities for intergrated operations and management through artificial intelligence, they will possess an ex ante capacity to autonomously adapt in dynamic relation to and with the ex post adaptation of owners and operators. It is argued that this top-down and bottom-up confluence of multi-scalar dynamic change is consistent with the prevailing theory of Panarchy applied in social-ecological systems theory. The article concludes with normative perspectives on the limitations of systems theory in architecture, future directions for research and an alternative positioning of professional practices.

  18. Building the Material Flow Networks of Aluminum in the 2007 U.S. Economy.

    Science.gov (United States)

    Chen, Wei-Qiang; Graedel, T E; Nuss, Philip; Ohno, Hajime

    2016-04-05

    Based on the combination of the U.S. economic input-output table and the stocks and flows framework for characterizing anthropogenic metal cycles, this study presents a methodology for building material flow networks of bulk metals in the U.S. economy and applies it to aluminum. The results, which we term the Input-Output Material Flow Networks (IO-MFNs), achieve a complete picture of aluminum flow in the entire U.S. economy and for any chosen industrial sector (illustrated for the Automobile Manufacturing sector). The results are compared with information from our former study on U.S. aluminum stocks and flows to demonstrate the robustness and value of this new methodology. We find that the IO-MFN approach has the following advantages: (1) it helps to uncover the network of material flows in the manufacturing stage in the life cycle of metals; (2) it provides a method that may be less time-consuming but more complete and accurate in estimating new scrap generation, process loss, domestic final demand, and trade of final products of metals, than existing material flow analysis approaches; and, most importantly, (3) it enables the analysis of the material flows of metals in the U.S. economy from a network perspective, rather than merely that of a life cycle chain.

  19. Thermal properties of a new ecological building material / Granular cork embedded in white cement

    Directory of Open Access Journals (Sweden)

    Cherki Abou-bakr

    2014-04-01

    Full Text Available Cork, natural and renewable product, has thermal and acoustic properties very interesting because of its microstructure and porosity representing a significant portion of its apparent volume; it’s coming from Moroccan Maamora’s forest. This work is a contribution to understand the thermal behaviour of the composite material based on granular cork embedded in white cement. An experimental investigation of its thermal properties was mainly performed using the asymmetrical device of transient Hot Plate method. The effect of granular cork size on the thermal properties of the mixture was studied. The experimental study of this sustainable material aims to characterize its thermal properties and then compare them with those of white cement without cork for motivate the proposal that this composite material will be used as walls insulator. A comparison of the energy performances of the composite material and white cement was made; it allows deducing a very interesting energy gain. The findings of the experiments indicate that the composite is better than white cement in term of thermal insulation, energy storage capacity and lightness. So, it can be used to realize the internal walls insulation. Its utilization should contribute to the improvement of the energy efficiency in building especially that this is a mixture based on a sustainable and renewable material.

  20. Nucleic acids and smart materials: advanced building blocks for logic systems.

    Science.gov (United States)

    Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2014-09-03

    Logic gates can convert input signals into a defined output signal, which is the fundamental basis of computing. Inspired by molecular switching from one state to another under an external stimulus, molecular logic gates are explored extensively and recognized as an alternative to traditional silicon-based computing. Among various building blocks of molecular logic gates, nucleic acid attracts special attention owing to its specific recognition abilities and structural features. Functional materials with unique physical and chemical properties offer significant advantages and are used in many fields. The integration of nucleic acids and functional materials is expected to bring about several new phenomena. In this Progress Report, recent progress in the construction of logic gates by combining the properties of a range of smart materials with nucleic acids is introduced. According to the structural characteristics and composition, functional materials are categorized into three classes: polymers, noble-metal nanomaterials, and inorganic nanomaterials. Furthermore, the unsolved problems and future challenges in the construction of logic gates are discussed. It is hoped that broader interests in introducing new smart materials into the field are inspired and tangible applications for these constructs are found.

  1. Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry.

    Science.gov (United States)

    Ravisankar, R; Vanasundari, K; Chandrasekaran, A; Rajalakshmi, A; Suganya, M; Vijayagopal, P; Meenakshisundaram, V

    2012-04-01

    The natural level of radioactivity in building materials is one of the major causes of external exposure to γ-rays. The primordial radionuclides in building materials are one of the sources of radiation hazard in dwellings made of these materials. By the determination of the radioactivity level in building materials, the indoor radiological hazard to human health can be assessed. This is an important precautionary measure whenever the dose rate is found to be above the recommended limits. The aim of this work was to measure the specific activity concentration of (226)Ra, (232)Th and (40)K in commonly used building materials from Namakkal, Tamil Nadu, India, using gamma-ray spectrometer. The radiation hazard due to the total natural radioactivity in the studied building materials was estimated by different approaches. The concentrations of the natural radionuclides and the radium equivalent activity in studied samples were compared with the corresponding results of different countries. From the analysis, it is found that these materials may be safely used as construction materials and do not pose significant radiation hazards.

  2. Study on prevention of spread of vertical fire along finishing materials for external wall of high-rise buildings

    Directory of Open Access Journals (Sweden)

    Yoo Yong Ho

    2013-11-01

    Full Text Available Although there are laws in the Korea Building Act relating to exterior finishing materials, fireproof structures and fire-stop of curtain wall structures, the standards relating to and test methods on securing detailed fire safety functions for exterior materials of all buildings including high-rise buildings have not been prepared. This is due to the fact that test methods and standards to quantitatively evaluate the vertical fire spread of the exterior material of buildings do not exist. In addition, while semi non-combustible materials or non-combustible materials are required to be used to prevent fire spread in buildings which exceed 30-stories, it is necessary to review the standards and regulations in cases where fire blocking systems, capable of preventing the vertical fire spread within the curtain wall, are installed to consider permitting the utilization of fire retardant material following an assessment of the construction characteristics of high-rise buildings. The functional evaluation standards and test methods on the vertical fire spread introduced in this study will be a more effective method for performing evaluations to prevent fire spread compared to the currently utilized method of performing small scale tests.

  3. Integrating Si nanoscale building blocks into micro-sized materials to enable practical applications in lithium-ion batteries.

    Science.gov (United States)

    Yi, Ran; Gordin, Mikhail L; Wang, Donghai

    2016-01-28

    This article highlights recent advances in micro-sized silicon anode materials composed of silicon nanoscale building blocks for lithium-ion batteries. These materials show great potential in practical applications since they combine good cycling stability, high rate performance, and high volumetric capacity. Different preparation methods are introduced and the features and performance of the resulting materials are discussed. Key take-away points are interspersed through the discussion, including comments on the roles of the nanoscale building blocks. Finally, we discuss current challenges and provide an outlook for future development of micro-sized silicon-based anode materials.

  4. Gamma Radiation Measurements and Dose Rates in Commonly Used Building Materials in Cyprus

    CERN Document Server

    Michael, F; Parpottas, Y

    2010-01-01

    A first comprehensive study is presented on radioactivity concentrations and dose rates in 87 commonly used materials, manufactured or imported in Cyprus, for building purposes. The natural radioactivity of K-40, Th-232, U-238 and Ra-226 is determined using high-resolution gamma ray spectroscopy. The respective dose rates and the associated radiological effect indices are also calculated. A comparison of the measured specific activity values with the corresponding world average values shows that most of them are below the world average activity values. The annual indoor effective dose rates received by an individual from three measured imported granites and four measured imported ceramics are found to be higher than the world upper limit value of 1 mSv y-1. Hence, these materials should have a restricted use according to their corresponding calculated activity concentration index values and the related EC 1999 guidelines.

  5. Potential Damage to Modern Building Materials from 21st Century Air Pollution

    Directory of Open Access Journals (Sweden)

    Peter Brimblecombe

    2010-01-01

    Full Text Available The evolution of damage to building materials has been estimated for the 21st century, with a particular focus on aluminum, zinc, copper, plastic, paint, and rubber in urban areas. We set idealized air pollution and climates to represent London and Prague across the period 1950–2100. Environmental parameters were used to estimate future recession, corrosion, and loss of properties through published damage or dose-response functions. The 21st century seems to provide a less aggressive environment for stone and metals than recent times. Improvements in air quality are the most relevant drivers for this amelioration. Changes in climate predicted for the 21st century do not alter this picture. On the other hand, polymeric materials, plastic, paint, and rubber might show slightly increased rates of degradation, to some extent the result of enhanced oxidant concentrations, but also the possibility of contributions from more solar radiation.

  6. Diffuse Reflectance Infrared Fourier Transform Spectroscopy for the Determination of Asbestos Species in Bulk Building Materials

    Directory of Open Access Journals (Sweden)

    Grazia Accardo

    2014-01-01

    Full Text Available Diffuse reflectance infrared Fourier transform (DRIFT spectroscopy is a well-known technique for thin film characterization. Since all asbestos species exhibit intense adsorptions peaks in the 4000–400 cm−1 region of the infrared spectrum, a quantitative analysis of asbestos in bulk samples by DRIFT is possible. In this work, different quantitative analytical procedures have been used to quantify chrysotile content in bulk materials produced by building requalification: partial least squares (PLS chemometrics, the Linear Calibration Curve Method (LCM and the Method of Additions (MoA. Each method has its own pros and cons, but all give affordable results for material characterization: the amount of asbestos (around 10%, weight by weight can be determined with precision and accuracy (errors less than 0.1.

  7. Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks.

    Science.gov (United States)

    Soler-Illia, Galo J A A; Azzaroni, Omar

    2011-02-01

    This critical review presents and discusses the recent advances in complex hybrid materials that result from the combination of polymers and mesoporous matrices. Ordered mesoporous materials derived from supramolecular templating present high surface area and tailored pore sizes; pore surfaces can be further modified by organic, organometallic or even biologically active functional groups. This permits the creation of hybrid systems with distinct physical properties or chemical functions located in the framework walls, the pore surface, and the pore interior. Bringing polymeric building blocks into the game opens a new dimension: the possibility to create phase separated regions (functional domains) within the pores that can behave as "reactive pockets" of nanoscale size, with highly controlled chemistry and interactions within restricted volumes. The possibilities of combining "hard" and "soft" building blocks to yield these novel nanocomposite materials with tuneable functional domains ordered in space are potentially infinite. New properties are bound to arise from the synergy of both kinds of components, and their spatial location. The main object of this review is to report on new approaches towards functional polymer-inorganic mesostructured hybrids, as well as to discuss the present challenges in this flourishing research field. Indeed, the powerful concepts resulting from the synergy of sol-gel processing, supramolecular templating and polymer chemistry open new opportunities in the design of advanced functional materials: the tailored production of complex matter displaying spatially-addressed chemistry based on the control of chemical topology. Breakthrough applications are expected in the fields of sustainable energy, environment sensing and remediation, biomaterials, pharmaceutical industry and catalysis, among others (221 references).

  8. Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction

    Energy Technology Data Exchange (ETDEWEB)

    Ostowari, Ken; Nosson, Ali

    2000-09-30

    The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction.

  9. Characterization of Particle Size Distributions of Powdery Building Material Aerosol Generated by Fluidization and Gravitation

    Directory of Open Access Journals (Sweden)

    Tadas Prasauskas

    2012-10-01

    Full Text Available This study aims to identify particle size distributions (PSD of aerosol of powdery building materials commonly used in construction work (cement, chalk, clay, wood sawdust, wood grinding dust, gypsum, hydrated lime, masonry grout, quartz sand, sand and structural lime by two aerosolization methods: fluidization and gravitation. Fluidization and gravitation methods represent industrial activities such as pneumotransportation and unloading. Both particle resuspension mechanisms have been modelled in laboratory conditions. The particle size distributions of resuspended particulate matter from powdery building materials were rather similar identified by both fluidization and gravitation methods, with an exception of wood sawdust and sand. The PM10 fraction ranged between 30% and 87%, PM2.5 from 7% to 28% and PM1.0 from 3% to 7% of the total mass of particulate matter. The highest PM10/PMtotal ratio was calculated for masonry grout - 0.87, and the lowest ratio for quartz sand - 0.30. The highest ratio of PM2.5/PMtotal was calculated for sand - 0.23, the lowest for quartz sand - 0.07. Substantial quantities of PM2.5 were found to be emitted implying a potential threat to human health.DOI: http://dx.doi.org/10.5755/j01.erem.61.3.1519

  10. Impact of Water Chemistry, Pipe Material and Stagnation on the Building Plumbing Microbiome.

    Directory of Open Access Journals (Sweden)

    Pan Ji

    Full Text Available A unique microbiome establishes in the portion of the potable water distribution system within homes and other buildings (i.e., building plumbing. To examine its composition and the factors that shape it, standardized cold water plumbing rigs were deployed at the treatment plant and in the distribution system of five water utilities across the U.S. Three pipe materials (copper with lead solder, CPVC with brass fittings or copper/lead combined pipe were compared, with 8 hour flush cycles of 10 minutes to simulate typical daily use patterns. High throughput Illumina sequencing of 16S rRNA gene amplicons was employed to profile and compare the resident bulk water bacteria and archaea. The utility, location of the pipe rig, pipe material and stagnation all had a significant influence on the plumbing microbiome composition, but the utility source water and treatment practices were dominant factors. Examination of 21 water chemistry parameters suggested that the total chlorine concentration, pH, P, SO42- and Mg were associated with the most of the variation in bulk water microbiome composition. Disinfectant type exerted a notably low-magnitude impact on microbiome composition. At two utilities using the same source water, slight differences in treatment approaches were associated with differences in rare taxa in samples. For genera containing opportunistic pathogens, Utility C samples (highest pH of 9-10 had the highest frequency of detection for Legionella spp. and lowest relative abundance of Mycobacterium spp. Data were examined across utilities to identify a true universal core, special core, and peripheral organisms to deepen insight into the physical and chemical factors that shape the building plumbing microbiome.

  11. New Porous Material Made from Industrial and Municipal Waste for Building Application

    Directory of Open Access Journals (Sweden)

    Diana BAJARE

    2014-09-01

    Full Text Available The aim of this study was to find a new method for usage of the hazardous waste coming from recycling industry. Two hazardous wastes – aluminium recycling final dross or non-metallic product (NMP and lead – silica glass (LSG were investigated. It is generally considered that NMP is a process waste and subject to disposal after residual metal has been recovered from primary dross. NMP is impurities which are removed from the molten metal in dross recycling process and it could be defined as a hazardous waste product in aluminium recycling industry. LSG comes from fluorescence lamp recycling plant and could be classified as hazardous waste due to high amount of lead in the composition and re-melting problems. The new alkali activated material, which can be defined as porous building material, was created. Composition of this material consisted of aluminium recycling waste, recycled fluorescent lamp LSG, sintered kaolin clay as well as commercially available alkali flakes (NaOH and liquid glass (Na2SiO3 + nH2O. Physical and mechanical properties of the obtained material were tested. Density of the obtained material was from (460 – 550 kg/m3 and the total porosity was from 82 % – 83 %. The compressive strength of the material was in range from 1.1 MPa to 2.3 MPa. The thermal conductivity was determined. The pore microstructure was investigated and the mineralogical composition of porous material was determined. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4330

  12. Nonlinear Effect of Moisture Content on Effective Thermal Conductivity of Building Materials with Different Pore Size Distributions

    Science.gov (United States)

    Liu, Yanfeng; Ma, Chao; Wang, Dengjia; Wang, Yingying; Liu, Jiaping

    2016-06-01

    Understanding the quantitative relationship between the effective thermal conductivity and the moisture content of a material is required to accurately calculate the envelope heat and mass transfer and, subsequently, the building energy consumption. We experimentally analyzed the pore size distributions and porosities of common building materials and the influence of the moisture content on the effective thermal conductivity of building materials. We determined the quantitative relationship between the effective thermal conductivity and moisture content of building materials. The results showed that a larger porosity led to a more significant effect of the moisture content on the effective thermal conductivity. When the volumetric moisture content reached 10 %, the thermal conductivities of foam concrete and aerated concrete increased by approximately 200 % and 100 %, respectively. The effective thermal conductivity increased rapidly in the low moisture content range and increased slowly in the high moisture content range. The effective thermal conductivity is related to the moisture content of the materials through an approximate power function. As the moisture content in the walls of a new building stabilizes, the effective thermal conductivity of normal concrete varies only slightly, whereas that of aerated concrete varies more significantly. The effective thermal conductivity of the material is proportional to the relative humidity of the environment. This trend is most noticeable when the wall material is aerated concrete.

  13. Brief Discussion on China's Green Building Materials%浅谈我国绿色建筑材料

    Institute of Scientific and Technical Information of China (English)

    齐锋

    2014-01-01

    Starting from the deifnition of"green building material"and combining green materials in China, this paper elaborates what materials are "green materials"with whole lifecycle evaluation of building material as entry point, and finally it combines status quo of China's green building materials to proposes suggestion on development of China's green building. It hopes this paper would be beneficial for development of China's green building material market.%文章从“绿色建材”的定义出发,结合国内绿色建筑,以建筑材料的全寿命周期评价为切入点,详细阐述什么样的建筑材料是“绿色建材”,最后结合国内绿色建材的现状,对我国绿色建材的发展提出一点小小的建议,希望能对我国绿色建材市场的发展有所裨益。

  14. The Monastery of Uclés (Cuenca, Spain: characterization and deterioration of building materials

    Directory of Open Access Journals (Sweden)

    Álvarez De Buergo, M.

    2004-09-01

    Full Text Available Building materials from the Monastery of Uclés façades, in Cuenca (16th-18 th centuries, have been characterised, as well as identified their deterioration forms. Characterization consisted of the determination o mineralogical and petrographical properties of building materials; petrophysical and petrochemical characterization of building stones were also carried out. Stony materials are basically of two types, dolostones and limestones. Ashlars joint mortars are of three classes, chronologically from the oldest to the newest: lime mortars with siliceous and dolomitic aggregates, gypsum/lime mortars with dolomitic aggregates, and gypsum/lime mortars with siliceous aggregates. The façades have been protected with artificial patinas of three kinds: lime, lime/gypsum and gypsum patinas, chronologically from the oldest to the newest, with a variable thickness from 500 µm. The dolomitic fades are better conserved than the calcareous ones, and the covering artificial patinas presence have preserved the materials on which they were applied.

    Se han caracterizado ¡os materiales de construcción de las fachadas del Monasterio de Uclés en Cuenca (s. XVI-XVIII así como sus formas de deterioro. La caracterización consistió en la determinación de sus características mineralógicas, petrográficas y petroquímicas, asi como la caracterización petrofisica de los materiales pétreos. Las piedras de construcción son, fundamentalmente, de dos tipos, dolomías y calizas. Los morteros de rejuntado de los sillares son de tres tipos, en orden cronológico, de más antiguos a más modernos: morteros de cal con áridos silíceos y dolomíticos, morteros de cal/yeso con áridos dolomílicos, y morteros de yeso/cal con áridos silíceos. Las fachadas han estado protegidas por pátinas artificiales de tres tipos: de cal, de cal/yeso y de yeso; en orden cronológico, de más antiguas a más modernas, con espesores variables desde < 100µm

  15. Study and inquiry on green building materials%绿色建筑材料的研究与探讨

    Institute of Scientific and Technical Information of China (English)

    吴枫; 邵兵; 周婷婷; 杨杰

    2015-01-01

    The paper introduces the definition of green building materials,illustrates basic standards needing following in estimating green build-ing materials,analyzes green building material application status including green wall materials,green glass,green ecological cement and so on, and finally points out that:the development trend of domestic green building materials has significant meaning for building sustainable and re-sources-saving society.%简要介绍了绿色建筑材料的含义,说明了评估绿色建筑材料应遵循的基本标准,并对绿色墙体材料、绿色玻璃、绿色生态水泥等建筑材料的应用现状进行了分析,指出了我国绿色建筑材料的发展趋势,对构建可持续发展的资源节约型社会有重要意义。

  16. PRESENT-DAY AND FUTURE APPLICATIONS OF NANOTECHNOLOGIES IN THE PRODUCTION OF BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Shuyskiy Anatoliy Ivanovich

    2012-12-01

    Full Text Available The authors have made an overview of the status of production of cement concrete using nanotechnologies. The authors also provide their analysis of domestic and foreign researches into the application of nanotechnologies in the field of building materials. The authors have picked out positive examples of introduction of nano-scale particles into the concrete mix. The process needs continuous monitoring for the composition and the mixing time to be adjustable. The findings have been solely made by local developers of nano-materials and technologies. The authors propose their method of cement consumption reduction through the introduction of nanoparticles and simultaneous grinding of cement. The authors provide a new procedure of treatment of materials that contemplates enhanced mixing processes accompanied by simultaneous grinding of materials and their exposure to the electromagnetic treatment. The experiments completed by the team of authors have proven the efficiency of a combination of two nanotechnologies within one process, including the treatment of wet cement at the final grinding stage of processing to ensure specific cement properties for a specific surface area of 8,000 cm2/g, and the introduction of nano-scale particles into the process of manufacturing of cement compositions. The use of carbon nanotubes in the process of manufacturing of cement concrete can improve its physical and mechanical properties and reduce the cement consumption rate while maintaining the design strength of concrete.

  17. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators

    Science.gov (United States)

    Chen, Xi; Mahadevan, L.; Driks, Adam; Sahin, Ozgur

    2014-02-01

    Materials that respond mechanically to external chemical stimuli have applications in biomedical devices, adaptive architectural systems, robotics and energy harvesting. Inspired by biological systems, stimuli-responsive materials have been created that can oscillate, transport fluid, provide homeostasis and undergo complex changes in shape. However, the effectiveness of synthetic stimuli-responsive materials in generating work is limited when compared with mechanical actuators. Here, we show that the mechanical response of Bacillus spores to water gradients exhibits an energy density of more than 10 MJ m-3, which is two orders of magnitude higher than synthetic water-responsive materials. We also identified mutations that can approximately double the energy density of the spores and found that they can self-assemble into dense, submicrometre-thick monolayers on substrates such as silicon microcantilevers and elastomer sheets, creating bio-hybrid hygromorph actuators. To illustrate the potential applications of the spores, we used them to build an energy-harvesting device that can remotely generate electrical power from an evaporating body of water.

  18. High-power diode laser marking and engraving of building materials

    Science.gov (United States)

    Li, Lin; Lawrence, Jonathan; Spencer, Julian T.

    1997-08-01

    A Diomed 60W-cw high power diode laser (HPDL) has been used for the marking and engraving of various building materials, including; marble, granite, clay tiles, ceramic tiles, roof tiles, ordinary Portland cement (OPC) and clay bricks. Morphological and microstructural characteristics have been investigated. The basic mechanism of marking/engraving and the characteristics of the beam absorption are discussed. The effects of material texture, color and laser processing parameters are reported. The work shows that engraving depths of over 2 mm (0.75 mm for a single pass) can be achieved on marble substrates by thermal disintegration of CaCO3 into loose CaO powder and CO2 gas. Uniform amorphous glazed lines (1 - 3 mm line width) of a color different from the untreated materials can be generated on clay tiles, ceramic tiles, roof tiles, clay bricks and OPC by solidification phase formation after laser melting of these materials. Effects of atmospheric conditions, for instance using O2 and Ar gas shrouds, have been examined, with different colored marks being observed when different shroud gases are used. To demonstrate the practical worth of the process a UMIST crest has been marked on a ceramic tile using the system. Laser beam reflectivity is found to depend not only on material composition but also its color. Reflectivity has been found to range between 12% to 18% for the various construction materials used in the experiment, except for marble (grey) which showed over 27% reflectivity. Since the HPDL is a portable device, on-site application of these processing techniques can be realized, which would be either impossible or difficult when using other types of lasers.

  19. CSCEC and Chinalco Joined Hands to Invest 5 Billion Yuan for Making Deployment in Building New Materials

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    CSCEC-Chinalco New Material Co.,Ltd,a company jointly invested by China State Construction Engineering Corporation(CSCEC)and Chinalco,was inaugurated in Chengdu,Sichuan,on December 15,CSCECChinalco will invest nearly 5 billion yuan capital in the next five years to makedeployment in the building new materials

  20. Assessment of natural radioactivity and associated radiation hazards in some building materials used in Kilpenathur, Tiruvannamalai dist, Tamilnadu, India

    Energy Technology Data Exchange (ETDEWEB)

    Raghu, Y. [Department of Physics, AarupadaiVeedu Institute of Technology, Paiyanoor, Chennai 603 104, Tamilnadu (India); Harikrishnan, N.; Ravisankar, R., E-mail: ravisankarphysics@gmail.com [Department of Physics, Government Arts College, Tiruvannamalai 606603, Tamilnadu (India); Chandrasekaran, A. [Departement of physics, SSN College of Engineering, Chennai- 603110, Tamilnadu India (India)

    2015-08-28

    The present study aimed to measure the radioactivity concentration of naturally occuring radionuclides in the locally used building materials from Kilpenthaur, Tiruvannmalai Dist, Tamilnadu, India. This study will also evaluate the radiation hazard arising due to the use of these materials in the construction of dwellings. The concentrations of natural radionuclides {sup 226}Ra, {sup 232}Th and {sup 40}K in five types of building materials have been measured by gamma spectrometry using NaI (Tl) 3” x 3”detector. The estimated radium equivalent activities (Ra{sub eq}), indoor absorbed gamma dose rate (D{sub R}), annual effective dose rate (H{sub R}) and the external hazard indexes(H{sub ex}) were lower than the recommended safe limit and are comparable with results from similar studies conducted in other countries. Therefore, the use of these building material samples under investigation in the construction of dwellings is considered to be safe for inhabitants.

  1. Measurement of color in different construction materials. The restoration in sandstone buildings

    Directory of Open Access Journals (Sweden)

    García Pascua, N.

    1999-03-01

    Full Text Available The use of construction materials and their subsequent repair purposes include a search of knowledge and preservation of their original appearance. For this reason, the main aim of this study is to determine a color range which does not change with the possible actions on a building, both when restoration works which imply the use and repair of "ancient" materials are carried out, and when construction is carried out with new materials. It is necessary to obtain the quantification of this property in order to check its variation over the passage of time. Each construction material must be taken into account as an isolated problem, since the color is different in each case.

    El empleo de materiales de construcción y la aplicación sobre ellos de productos de reparación requiere un detallado estudio sobre su forma de actuación y la importancia de la conservación del aspecto original de los mismos. Por este motivo, el objetivo principal de este estudio es el determinar un intervalo de color que se conserve a pesar de todas las posibles intervenciones que se acometan en el edificio, tanto cuando se realizan trabajos de restauración, que implican el uso y reparación de materiales "viejos", o bien cuando se llevan a cabo trabajos de construcción con materiales nuevos. Es necesario cuantificar dicha propiedad para poder controlar el paso del tiempo. Cada material de construcción debe ser considerado como un problema aislado, ya que el color es distinto en cada caso.

  2. First characterisation of natural radioactivity in building materials manufactured in Albania.

    Science.gov (United States)

    Xhixha, G; Ahmeti, A; Bezzon, G P; Bitri, M; Broggini, C; Buso, G P; Caciolli, A; Callegari, I; Cfarku, F; Colonna, T; Fiorentini, G; Guastaldi, E; Mantovani, F; Massa, G; Menegazzo, R; Mou, L; Prifti, D; Rossi Alvarez, C; Sadiraj Kuqi, Dh; Shyti, M; Tushe, L; Xhixha Kaçeli, M; Zyfi, A

    2013-07-01

    This study focuses on the radiological characterisation of building materials manufactured in Albania by using a high-resolution gamma-ray spectrometer. The average activity concentrations of (40)K, (226)Ra and (232)Th were, respectively, 644.1±64.2, 33.4 ± 6.4 and 42.2 ± 7.6 Bq kg(-1) in the clay brick samples and 179.7 ± 48.9, 55.0 ± 5.8 and 17.0 ± 3.3 Bq kg(-1) in the cement samples. The calculated activity concentration index (ACI), varied from 0.48±0.02 to 0.63±0.04 in the clay brick samples and from 0.29±0.03 to 0.37±0.02 in the cement samples. Based on the ACI, all of the clay brick and cement samples were categorised as A1 materials. The authors can exclude (at 3σ level) any restriction of their use as bulk materials.

  3. Integration of Agricultural Waste in Local Building Materials for their Exploitation: Application with Rice Straw

    Directory of Open Access Journals (Sweden)

    D. Sow

    2014-04-01

    Full Text Available Through experiments, we have determined the mechanical and thermal properties of samples. This allowed us to determine the most optimal formulations. Therefore, we have prepared samples constituted by two basic materials, clay and laterite, mixed with rice straw. Thus, agriculture is among the economic sectors that produce more waste. The latter are mainly the straw of the three most-produced cereals in the world: wheat, corn and rice. Concerning rice straw, its high content of cellulose makes it difficult to digest. So, few animals are able to use it as food. Most of the straws are lost, buried, burned or used as litter. Moreover, clay and laterite formations represent the most abundant materials resources in Africa. So, this study has allowed us to show that the integration of rice straw in lateritic and clay soils for its use as building materials will allow, in addition to its recycling, to greatly reduce the social habitat cost and to improve the thermal comfort.

  4. Preparation and Characterization of Microencapsulated Phase Change Materials for Use in Building Applications

    Directory of Open Access Journals (Sweden)

    Jessica Giro-Paloma

    2015-12-01

    Full Text Available A method for preparing and characterizing microencapsulated phase change materials (MPCM was developed. A comparison with a commercial MPCM is also presented. Both MPCM contained paraffin wax as PCM with acrylic shell. The melting temperature of the PCM was around 21 °C, suitable for building applications. The M-2 (our laboratory made sample and Micronal® DS 5008 X (BASF samples were characterized using SEM, DSC, nano-indentation technique, and Gas Chromatography/Mass spectrometry (GC-MS. Both samples presented a 6 μm average size and a spherical shape. Thermal energy storage (TES capacities were 111.73 J·g−1 and 99.3 J·g−1 for M-2 and Micronal® DS 5008 X, respectively. Mechanical characterization of the samples was performed by nano-indentation technique in order to determine the elastic modulus (E, load at maximum displacement (Pm, and displacement at maximum load (hm, concluding that M-2 presented slightly better mechanical properties. Finally, an important parameter for considering use in buildings is the release of volatile organic compounds (VOC’s. This characteristic was studied at 65 °C by CG-MS. Both samples showed VOC’s emission after 10 min of heating, however peaks intensity of VOC’s generated from M-2 microcapsules showed a lower concentration than Micronal® DS 5008 X.

  5. Assessment of alpha activity of building materials commonly used in West Bengal, India.

    Science.gov (United States)

    Ghosh, Dipak; Deb, Argha; Bera, Sukumar; Sengupta, Rosalima; Patra, Kanchan Kumar

    2008-02-01

    This paper, reports for the first time, an extensive study of alpha activity of all widely used building materials (plaster of Paris, stone chips, marble, white cement, mosaic stone, limestone, sand, granite, cement brick, asbestos, red brick, cement tile, ceramic tile and ceramics) in West Bengal, India. The alpha activities have been measured using Solid State Nuclear Track Detector (SSNTD), a very sensitive detector for alpha particles. The samples were collected from local markets of Kolkata. The measured average alpha activities ranged from 22.7+/-2.5 to 590.6+/-16.8Bqkg(-1). The alpha activity of ceramic tiles was highest and provides additional data to estimate the effect of environmental radiation exposure on human health.

  6. Dynamic thermal behavior of building using phase change materials for latent heat storage

    Directory of Open Access Journals (Sweden)

    Selka Ghouti

    2015-01-01

    Full Text Available This study presents a two-dimensional model with a real size home composed of two-storey (ground and first floor spaces separated by a slab, enveloped by a wall with rectangular section containing phase change material (PCM in order to minimize energy consumption in the buildings. The main objective of the PCM-wall system is to decrease the temperature change from outdoor space before it reaches the indoor space during the daytime. The numerical approach uses effective heat capacity Ceff model with realistic outdoor climatic conditions of Tlemcen city, Algeria. The numerical results showed that by using PCM in wall as energy storage components may reduce the room temperature by about 6 to 7°C of temperature depending on the floor level (first floor spaces or ground floor spaces.

  7. Simultaneous Heat and Mass Transfer Model for Convective Drying of Building Material

    Science.gov (United States)

    Upadhyay, Ashwani; Chandramohan, V. P.

    2016-06-01

    A mathematical model of simultaneous heat and moisture transfer is developed for convective drying of building material. A rectangular brick is considered for sample object. Finite-difference method with semi-implicit scheme is used for solving the transient governing heat and mass transfer equation. Convective boundary condition is used, as the product is exposed in hot air. The heat and mass transfer equations are coupled through diffusion coefficient which is assumed as the function of temperature of the product. Set of algebraic equations are generated through space and time discretization. The discretized algebraic equations are solved by Gauss-Siedel method via iteration. Grid and time independent studies are performed for finding the optimum number of nodal points and time steps respectively. A MATLAB computer code is developed to solve the heat and mass transfer equations simultaneously. Transient heat and mass transfer simulations are performed to find the temperature and moisture distribution inside the brick.

  8. Experimental and Simulation of Gamma Radiation Dose Rate for High Exposure Building Material

    CERN Document Server

    Abbasi, Akbar

    2015-01-01

    Natural radioactivity concentrations in high exposure building materials are commonly used in Iran, which is measured a direct exposure by using {\\gamma}-ray spectrometry. The values for 226Ra, 232Th and 40K were in the ranges 3.8 - 94.2, 6.5 - 172.2 and 556.9 - 1539.2 Bqkg-1, respectively. The absorbed dose rates in the standard dwelling room due to 238U, 232Th series and 40K were calculated with MCNPX code. The simulation and experimental results were between 7.95 - 41.74 and 8.36 - 39.99 nGy h-1, respectively. These results were compared with experimental outing and there was overlap closely. The simulation results are able to develop for any kind of dwelling places.

  9. Experimental measurements of thermal properties for Mexican building materials to simulate thermal behavior to save energy

    Energy Technology Data Exchange (ETDEWEB)

    Chavez-Galan, Jesus; Almanza, Rafael; Rodriguez, Neftali [Universidad Nacional Autonoma de Mexico (Mexico). Inst. de Ingenieria

    2008-07-01

    One of the main factors that determine the reliability of building's thermal design is the values of thermal and heat transfer properties used during this process. In order to optimizing such thermal design process, there is little information available of the most utilized building materials in Mexico; hence, some measurements were carried out. We present thermal conductivity experimental results for: red brick, tepetate, adobe and concrete. Furthermore, experimental data of convective heat transfer coefficients are reported on: red brick, tepetate, adobe and concrete walls. Kondratyev methodology was used for thermal conductivity estimations. Kondratyev methodology is based on the cooling off of bodies in regular state analysis. Thermal conductivity values were: red brick k{sub L} = 0.906 W/mC, tepetate k{sub T} = 0.648 W/mC, adobe k{sub A} = 0.570 W/mC, and concrete k{sub C} = 1.918 W/mC. Red brick, tepetate, adobe and concrete test walls of 0.46 x 0.56 and 0.06 m thick, were manufactured, as well as a prototype of testing for mounting the walls, in order to evaluate their convective heat transfer coefficients. Measurements were carried out at the Institute of Engineering-UNAM Wind-Tunnel, for an air velocities interval of 2-10 m/s. Reported values for convective coefficients fluctuate on 16-134 W/m{sup 2}2 C, depending on material and position wall, as well as air velocity. (orig.)

  10. Test methods and reduction of organic pollutant compound emissions from wood-based building and furniture materials.

    Science.gov (United States)

    Kim, Sumin; Choi, Yoon-Ki; Park, Kyung-Won; Kim, Jeong Tai

    2010-08-01

    This paper reviews different methods for the analysis of formaldehyde and volatile organic compounds (VOCs) from wood-based panel materials for furniture and building interiors and highlights research on reduction of emission from wood-based panels that can adversely affect indoor air quality. In Korea, standard test methods have been developed to determine formaldehyde and VOC emissions from building products, and the Ministry of Environment regulates the use of building materials with pollutant emissions. Desiccator and perforator methods are being used for formaldehyde and the chamber and field and laboratory emission cell (FLEC) methods for VOC and formaldehyde emissions. The VOC analyzer is a suitable pre-test method for application as a total VOC (TVOC) emission test and bake-out is a useful method to reduce TVOC and formaldehyde emissions from furniture materials in indoor environments.

  11. Recycling waste brick from construction and demolition of buildings as pozzolanic materials.

    Science.gov (United States)

    Lin, Kae-Long; Wu, Hsiu-Hsien; Shie, Je-Lueng; Hwang, Chao-Lung; An Cheng

    2010-07-01

    This investigation elucidates the pozzolic characteristics of pastes that contain waste brick from building construction and demolition wastes. The TCLP leaching concentrations of waste brick for the target cations or heavy metals were all lower than the current regulatory thresholds of the Taiwan EPA. Waste brick had a pozzolanic strength activity index of 107% after 28 days. It can be regarded as a strong pozzolanic material. The compressive strengths of waste brick blended cement (WBBC) that contain 10% waste brick increased from 71.2 MPa at 28 days to 75.1 MPa at 60 days, an increase of approximately 5% over that period. At 28 days, the pozzolanic reaction began, reducing the amount of Ca(OH)(2) and increasing the densification. The intensity of the peak at 3640 cm(- 1) associated with Ca(OH)(2) is approximately the same for ordinary Portland cement (OPC) pastes. The hydration products of all the samples yield characteristics peaks at 978 cm(-1) associated with C-S-H, and at ~3011 cm(-1) and 1640 cm(-1) associated with water. The samples yield peaks at 1112 cm(-1), revealing the formation of ettringite. In WBBC pastes, the ratio Q(2)/Q(1) increases with curing time. These results demonstrate that increasing the curing time increases the number of linear polysilicate anions in C-S-H. Experimental results reveal that waste brick has potential as a pozzolanic material in the partial replacement of cement.

  12. Effect of water-ice phase change on thermal performance of building materials

    Science.gov (United States)

    Kočí, Václav; Černý, Robert

    2016-07-01

    The effect of water ice-phase change on thermal performance of integrated building material is investigated in this paper. As a characteristic construction, simple external wall made of aerated autoclaved concrete was assumed which was exposed to dynamic climatic condition of Šerák, Czech Republic. The computational modelling of hygrothermal performance was carried out using computer codes HEMOT and SIFEL that work on the basis of finite element method. The effect of phase change was taken into account by fixed-domain method, when experimentally determined effective specific heat capacity was used as a material parameter. It comprises also the effect of heat consumption and heat release that accompany the water-ice phase change. Comparing to the results with specific heat capacity, the effect of phase change on thermal performance could be quantified. The results showed that temperature fields can differ more than 6 °C. Additionally, the amount energy transported through the wall may be higher up to 4 %. This confirmed, that the effect water-ice phase change should be included in all the relevant energy calculations.

  13. Absorption cross section of building materials at mm wavelength in a reverberation chamber

    Science.gov (United States)

    Micheli, D.; Delfini, A.; Pastore, R.; Marchetti, M.; Diana, R.; Gradoni, G.

    2017-02-01

    The reverberation chamber (RC) method is used to estimate the average absorption cross section of building materials at mm wave frequencies. Analysed samples include concrete, travertine and bricks of different types. The investigation is carried out in the frequency range between 50 GHz and 68 GHz, which is of interest in the next generation of mobile telecommunication system. A cylindrical cavity is transformed into a RC through the use of a mechanical model stirrer. The chamber field is statistically homogeneous and depolarized; therefore it can be used to probe the average response of the sample under test. In particular, through a differential measure of the average quality factor (average insertion loss) it is possible estimate the fraction of power absorbed by the sample under test. Several cube-shape samples have been characterized and compared. Obtained results show that analysed samples have remarkably different levels of the electromagnetic wave absorption, depending on both material density and chemical composition. The absorption of pure water is used as a baseline to determine the dynamic range of the measurement.

  14. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues.

    Science.gov (United States)

    Liu, Wanchao; Yang, Jiakuan; Xiao, Bo

    2009-01-15

    Red mud is a solid waste produced in the process of alumina extraction from bauxite. In this paper, recovery iron from Bayer red mud was studied with direct reduction roasting process followed by magnetic separation, and then building materials were prepared from alumosilicate residues. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery efficiency of iron were carried out. The optimum reaction parameters were proposed as the following: ratio of carbon powder: red mud at 18:100, ratio of additives: red mud at 6:100, roasting at 1300 degrees C for 110min. With these optimum parameters, total content of iron in concentrated materials was 88.77%, metallization ratio of 97.69% and recovery ratio of 81.40%. Then brick specimens were prepared with alumosilicate residues and hydrated lime. Mean compressive strength of specimens was 24.10MPa. It was indicated that main mineral phase transformed from nepheline (NaAlSiO4) in alumosilicate residues to gehlenite (Ca2Al2SiO7) in brick specimens through X-ray diffraction (XRD) technology. The feasibility of this transformation under the experimental conditions was proved by thermodynamics calculation analysis. Combined the recovery of iron with the reuse of alumosilicate residues, it can realize zero-discharge of red mud from Bayer process.

  15. Plasma technology for creation of protective and decorative coatings for building materials

    Science.gov (United States)

    Volokitin, Oleg; Volokitin, Gennady; Skripnikova, Nelli; Shekhovtsov, Valentin

    2016-01-01

    An experimental setup is developed to create a protective and decorative coating on the surface of building materials. Experimental study is conducted to create a protective coating using low-temperature plasma. The properties of the surface before and after the plasma treatment are investigated. At the increase of the plasma generator power (56-75 kW) the rate of the vitreous coating formation is significantly reduced, and the destruction of hydrous calcium silicates occurs at a lower depth (0.5-2.0 mm). In this case, the adhesive strength increases up to 2.34 MPa. At the increase of the exposure time at 56 kW (0.045 m/s melting rate) plasma generation power, the melt formation is observed not only at the surface but at depth of 0.7 mm and deeper. Also, a deep degradation of the material occurs and the adhesive strength decreases. The optimal heat flux density of plasma generator was established at 1.8-2.6 . 106 W/m2, which allows the achievement of the uniform layer formation on the wood surface that preserves its natural pattern visible.

  16. Use of industrial waste for the manufacturing of sustainable building materials.

    Science.gov (United States)

    Sugrañez, Rafael; Cruz-Yusta, Manuel; Mármol, Isabel; Martín, Francisco; Morales, Julián; Sánchez, Luis

    2012-04-01

    Presently, appropriate waste management is one of the main requisites for sustainable development; this task is tackled by the material construction industry. The work described herein is focused on the valorization of granite waste through incorporation, as a filler-functional admixture, into cement-based mortar formulations. The main components of the waste are SiO(2) (62.1 %), Al(2)O(3) (13.2 %), Fe(2)O(3) (10.1 %), and CaO (4.6 %). The presence of iron oxides is used to develop the photocatalytic properties of the waste. Following heating at 700 °C, α-Fe(2)O(3) forms in the waste. The inclusion of the heated sample as a filler admixture in a cement-based mortar is possible. Moreover, this sample exhibits a moderate ability in the photodegradation of organic dye solutions. Also, the plastering mortars, in which the heated samples have been used, show self-cleaning properties. The preparation of sustainable building materials is demonstrated through the adequate reuse of the granite waste.

  17. Evaluation of three common green building materials for ozone removal, and primary and secondary emissions of aldehydes

    Science.gov (United States)

    Gall, Elliott; Darling, Erin; Siegel, Jeffrey A.; Morrison, Glenn C.; Corsi, Richard L.

    2013-10-01

    Ozone reactions that occur on material surfaces can lead to elevated concentrations of oxidized products in the occupied space of buildings. However, there is little information on the impact of materials at full scale, especially for green building materials. Experiments were completed in a 68 m3 climate-controlled test chamber with three certified green building materials that can cover large areas in buildings: (1) recycled carpet, (2) perlite-based ceiling tile and (3) low-VOC paint and primer on recycled drywall. Ozone deposition velocity and primary and secondary emission rates of C1 to C10 saturated carbonyls were determined for two chamber mixing conditions and three values of relative humidity. A direct comparison was made between ozone deposition velocities and carbonyl yields observed for the same materials analyzed in small (10 L) chambers. Total primary carbonyl emission rates from carpet, ceiling tile and painted drywall ranged from 27 to 120 μg m-2 h-1, 13 to 40 μg m-2 h-1, 3.9 to 42 μg m-2 h-1, respectively. Ozone deposition velocity to these three materials averaged 6.1 m h-1, 2.3 m h-1 and 0.32 m h-1, respectively. Total secondary carbonyl emissions from these materials ranged from 70 to 276 μg m-2 h-1, 0 to 12 μg m-2 h-1, and 0 to 30 μg m-2 h-1, respectively. Carbonyl emissions were determined with a transient approximation, and were found to be in general agreement with those found in the literature. These results suggest that care should be taken when selecting green building materials due to potentially large differences in primary and secondary emissions.

  18. Environmental Impact Assessment of a School Building in Iceland Using LCA-Including the Effect of Long Distance Transport of Materials

    OpenAIRE

    Nargessadat Emami; Björn Marteinsson; Jukka Heinonen

    2016-01-01

    Buildings are the key components of urban areas and society as a complex system. A life cycle assessment was applied to estimate the environmental impacts of the resources applied in the building envelope, floor slabs, and interior walls of the Vættaskóli-Engi building in Reykjavik, Iceland. The scope of this study included four modules of extraction and transportation of raw material to the manufacturing site, production of the construction materials, and transport to the building site, as d...

  19. [Evaluation of the migration of contaminants from building materials produced on the base of blast-furnace slags].

    Science.gov (United States)

    Pugin, K G; Vaysman, Ya I

    2014-01-01

    There is experimentally established the change of the migratory activity of pollutants from building materials produced from blast furnace slag throughout their life cycle in the form of a nonlinear wave-like nature as there are appeared newly opened surfaces of a contact with aggressive waters in the process of gradual crushing of materials as a result of destructive mechanical effects on him and corrosive waters with varying pH values. There are established regularities of the migration activity ofpollutants (on the example of heavy metals) as directly dependent on the newly opening surface of the contact of the material with water having a various pH value. There is shown an expediency of introduction of alterations in the procedure for sanitary hygienic assessment of building materials with the addition of industrial waste (Methodical Instructions 2.1.674-97), allowing to take into account the migration of contaminants from them throughout the life cycle.

  20. Stepwise transformation of the molecular building blocks in a porphyrin-encapsulating metal-organic material

    KAUST Repository

    Zhang, ZhenJie

    2013-04-24

    When immersed in solutions containing Cu(II) cations, the microporous metal-organic material P11 ([Cd4(BPT)4]·[Cd(C 44H36N8)(S)]·[S], BPT = biphenyl-3,4′,5-tricarboxylate) undergoes a transformation of its [Cd 2(COO)6]2- molecular building blocks (MBBs) into novel tetranuclear [Cu4X2(COO)6(S) 2] MBBs to form P11-Cu. The transformation occurs in single-crystal to single-crystal fashion, and its stepwise mechanism was studied by varying the Cd2+/Cu2+ ratio of the solution in which crystals of P11 were immersed. P11-16/1 (Cd in framework retained, Cd in encapsulated porphyrins exchanged) and other intermediate phases were thereby isolated and structurally characterized. P11-16/1 and P11-Cu retain the microporosity of P11, and the relatively larger MBBs in P11-Cu permit a 20% unit cell expansion and afford a higher surface area and a larger pore size. © 2013 American Chemical Society.

  1. Increasing energy efficiency of HVAC systems of buildings using phase change material

    Energy Technology Data Exchange (ETDEWEB)

    Chusak, Lee; Daiber, Jared; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130 (United States)

    2012-07-01

    Using Computational Fluid Dynamics (CFD), four different cooling systems used in contemporary office environments are modeled to compare energy consumption and thermal comfort levels. Incorporating convection and radiation technologies, full-scale models of an office room compare energy efficiency of (a) an all-air overhead system, (b) a combined all-air overhead and hydronic radiant system (chilled ceiling), (c) an all-air raised floor system (displacement ventilation), and (d) a combined displacement ventilation with a chilled ceiling. The computational domain for each model consists of one temperature varying wall (simulating the temperature of the exterior wall of the building during a 24-hour period) and adiabatic conditions for the remaining walls, floor, and ceiling (simulating interior walls of the room). Two sets of computations are conducted. The first set considers a glass window and plastic shade configuration for the exterior wall. The second set of computations includes a phase change material layer between the glass window and the plastic shade. Results show substantial energy savings can be accrued using the displacement ventilation and especially the displacement ventilation with a chilled ceiling over the conventional overhead mixing ventilation system. The results also show that the addition of a PCM layer to the exterior wall can significantly decrease the cooling energy requirements.

  2. Research on the additives to reduce radioactive pollutants in the building materials containing fly ash.

    Science.gov (United States)

    He, Deng-liang; Yin, Guang-fu; Dong, Fa-qin; Liu, Lai-bao; Luo, Ya-jun

    2010-05-15

    Several kinds of functional additives such as barite, zeolite, ferric oxide, gypsum, and high alumina cement were introduced to prepare a low-radiation cement-based composite to reduce radioactive pollutants contained in fly ash. The effect of content and granularity of the functional additives on the release of radioactive pollutants were investigated. Composites were characterized by X-ray diffraction, Scan electron microscopy. The results indicate that the radioactive pollutants contained in the fly ash can be reduced by adding a proper amount of zeolite, ferric oxide, gypsum, and high alumina cement. The release of radon from fly ash decreases with a decrease in the granularity of additives. Compared with traditional cement-based composite containing fly ash, the release of radon can be reduced 64.8% in these composites, and the release of gamma-ray is decreased 45%. Based on the microstructure and phase analysis, we think that by added functional additives, there are favorable to form self-absorption of radioactivity in the interior composites. This cement-based composite will conducive to fly ash are large-scale applied in the field of building materials.

  3. Studies on use of Copper Slag as Replacement Material for River Sand in Building Constructions

    Science.gov (United States)

    Madheswaran, C. K.; Ambily, P. S.; Dattatreya, J. K.; Rajamane, N. P.

    2014-09-01

    This work focuses on the use of copper slag, as a partial replacement of sand for use in cement concrete and building construction. Cement mortar mixtures prepared with fine aggregate made up of different proportions of copper slag and sand were tested for use as masonry mortars and plastering. Three masonry wall panels of dimensions 1 × 1 m were plastered. The studies showed that although copper slag based mortar is suitable for plastering, with the increase in copper slag content, the wastage due to material rebounding from the plastered surfaces increases. It is therefore suggested that the copper slag can be used for plastering of floorings and horizontal up to 50 % by mass of the fine aggregate, and for vertical surfaces, such as, brick/block walls it can be used up to 25 %. In this study on concrete mixtures were prepared with two water cement ratios and different proportions of copper slag ranging from 0 % (for the control mix) to 100 % of fine aggregate. The Concrete mixes were evaluated for workability, density, and compressive strength.

  4. Increasing energy efficiency of HVAC systems of buildings using phase change material

    Directory of Open Access Journals (Sweden)

    Lee Chusak, Jared Daiber, Ramesh Agarwal

    2012-01-01

    Full Text Available Using Computational Fluid Dynamics (CFD, four different cooling systems used in contemporary office environments are modeled to compare energy consumption and thermal comfort levels. Incorporating convection and radiation technologies, full-scale models of an office room compare energy efficiency of (a an all-air overhead system, (b a combined all-air overhead and hydronic radiant system (chilled ceiling, (c an all-air raised floor system (displacement ventilation, and (d a combined displacement ventilation with a chilled ceiling. The computational domain for each model consists of one temperature varying wall (simulating the temperature of the exterior wall of the building during a 24-hour period and adiabatic conditions for the remaining walls, floor, and ceiling (simulating interior walls of the room. Two sets of computations are conducted. The first set considers a glass window and plastic shade configuration for the exterior wall. The second set of computations includes a phase change material layer between the glass window and the plastic shade. Results show substantial energy savings can be accrued using the displacement ventilation and especially the displacement ventilation with a chilled ceiling over the conventional overhead mixing ventilation system. The results also show that the addition of a PCM layer to the exterior wall can significantly decrease the cooling energy requirements.

  5. HYGRO-THERMAL BEHAVIOUR OF POROUS BUILDING MATERIAL SUBJECTED TO DIFFERENT EXTERNAL TEMPERATURE AND HUMIDITY CONDITIONS

    Directory of Open Access Journals (Sweden)

    ALI CHIKHI

    2016-04-01

    Full Text Available This work is focused on the behaviour of a block of cement mortar, subjected to variable external temperature and humidity conditions. The porous building material sample is fitted inside a box, in which a heat exchanger is connected to a thermostatic bath. Three sequences of measurement are considered: (i the response of the sample, when variations of temperature are applied; (ii the air ranging between the exchanger and the non-isolated face of the mortar is continuously humidified, by injecting of sprayed water; (iii the effect of simultaneously variation on temperature and humidity. A mathematical model representative of heat and mass transfer, in multiphasic medium (cement mortar, is developed in order to confront experimental and numerical results. Displacements of moisture and temperature fronts are observed and discussed. This study would enable us to understand the hygro-thermal behaviour of construction walls, to make an adequate design according to the climatic parameters and thus to improve the control of the energy used for heating.

  6. National survey on the natural radioactivity and Rn-222 exhalation rate of building materials in the Netherlands

    NARCIS (Netherlands)

    de Jong, P.; van Dijk, W.; van der Graaf, E.R.; de Groot, A.V.

    2006-01-01

    The present study reports on results of a nationwide survey on the natural radioactivity concentrations and Rn-222 exhalation rates of the prevailing building materials in the Netherlands. In total 100 samples were taken and analyzed for the activity concentrations of Ra-226, Ra-228, Th-228, and K-4

  7. Effect of ventilation on perceived quality of air polluted by building materials. A summary of reported data

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P.; Vondruskova, J. (International Centre for Indoor Environment and Energy, Dept. of Mechanical Engineering, DTU, Kgs. Lyngby (DK)); Knudsen, Henrik N. (Danish Building Research Institute, Aalborg Univ., Hoersholm (DK))

    2007-02-15

    This paper summarizes existing data on how varying ventilation rates affect the perceived quality of air polluted by building materials. This is done by reviewing literature dealing with exposure-response relationships, i.e. the log-linear relationships between the concentration of pollutants (exposure) and the perceived air quality (response). The reviewed data originate from studies with single building materials performed in small-scale ventilated chambers and from studies carried out in a full-scale setting resembling normal offices. Perceived air quality expressed in terms of acceptability as assessed by untrained panels was included. The results show that the exposure-response relationships vary for different building materials as regards the impact of changing ventilation rate on perceived air quality and the level of perceived air quality at a constant ventilation rate. This applies both for the data collected in small-scale and in full-scale experiments. The differences may be caused by the experimental conditions, psychological factors, physiological factors, and chemical/physical factors. A well controlled study taking these factors into account with several different building materials, is thus recommended to further study whether the observed results have practical significance. These experiments should be carried out under realistic fullscale conditions. (au)

  8. A COMPARATIVE STUDY OF THE THERMAL COMFORT OF DIFFERENT BUILDING MATERIALS IN SANA’A

    Directory of Open Access Journals (Sweden)

    Mousa Ahmed Alhaddad

    2013-01-01

    Full Text Available This study describes the impact of alternative building material envelope systems on the overall thermal performance of four selected materials used in Sana’a, Yemen. These systems included adobe, brick, stone and concrete block. After thorough on-site investigation and data collection, the information, along with regional weather data were input into the Ecotect energy simulation software for thermal performance evaluation. The objective was to search for affordable and energy-efficient construction techniques suitable for settlements and incorporating traditional cultural values in a arid upland region characterized by cold winters and warm, dry summers. This was pursued by analyzing temperature and measurements within buildings constructed from a variety of traditional and modern materials. The thermal behavior and comfort, the patterns of energy use and the appropriateness of the different building techniques and materials are analyzed, compared and discussed. We demonstrate how a building envelope reacts to outdoor conditions through graphic illustration and show ways in which the research can be extended by the creation of simulations using Ecotect software. This research contributes to the promotion of passive and low energy architecture towards a sustainable future.

  9. The Building Blocks of Digital Media Literacy: Socio-Material Participation and the Production of Media Knowledge

    Science.gov (United States)

    Dezuanni, Michael

    2015-01-01

    This article outlines the knowledge and skills students develop when they engage in digital media production and analysis in school settings. The metaphor of "digital building blocks" is used to describe the material practices, conceptual understandings and production of knowledge that lead to the development of digital media literacy.…

  10. Nano-coatings Used in Building Materials%建筑纳米涂料崭露头角

    Institute of Scientific and Technical Information of China (English)

    杨忠敏

    2012-01-01

    To introduce the definition,application,status quo,properties,and market prospect of nano-coatings used in building materials.%介绍建筑纳米涂料定义,应用现状,性能优势和市场前景。

  11. The Use of Building Materials in Landscape%建筑材料在园林中的运用

    Institute of Scientific and Technical Information of China (English)

    王天予

    2011-01-01

    Using of materials in modern gardens still has some problems, such as the short life of materials, being difficult in maintenance, unrecyclable, not enough ecological and environmental protection, etc., while using new materials is an important means to solve these problems. Many building materials can be used as new materials of landscape, including native materials, new high-tech materials, recycle and reuse of construction waste, etc. The current use of landscape materials is analyzed in this paper, and how to use a variety of building materials in landscape is discussed and learned through studies of actual cases.%现代园林材料在使用中存在一些问题,如材料寿命短、不易养护、不能回收、不够生态环保等.使用新材料是解决这些问题的重要手段,而很多建筑材料在园林中能作为新材料被利用,包括乡土材料、新型高科技材料、建筑废弃物的回收再利用等.分析当前的园林材料使用情况,通过实际的案例分析,讨论并学习如何在园林中使用各种建筑材料.

  12. Bricolage as Institutional Maintenance Work: integrating new construction materials into heritage buildings

    OpenAIRE

    Colombero, Sylvain

    2014-01-01

    International audience; Listed-buildings refers to buildings that are protected by the state because of their recognized status as national patrimony. Many listed buildings are currently undergoing various construction works, such as renovation or extension, to preserve them while keeping intact the function for which they were originally built. Increased use of construction practices pertaining to Sustainable Development is calling for insight into the process through which these kinds of bu...

  13. An application of luminiscence dating to building archaeology: The study of ceramic building materials in early medieval churches in north-western France and south-eastern England

    Directory of Open Access Journals (Sweden)

    Blain, Sophie

    2010-12-01

    Full Text Available The research reported in this thesis concerns the re-evaluation of an archaeological assumption surrounding the origin of Ceramic Building Materials (CBM used from the 9th to the 11th century in religious buildings of north-western France and south-eastern England. Are the bricks used in the masonry structures Roman spolia or a novo productions? Amongst the dating methods that can contribute to building archaeology, it is the technique of stimulated luminescence applied to CBM that is the focus of this study. Results from thermoluminescence (TL and optically stimulated luminescence (OSL dating performed on 52 CBM samples from 11 churches showed that the practice of reusing Roman brick was commonplace in small parish churches, but also that brick-making was not a totally unknown skill of the early medieval craftsmen as it has long been supposed. Most importantly, by identifying that the building material is contemporary to the church, a defined chronology emerges resulting in a new and extremely useful reference point in the history of early medieval architecture.La investigación presentada en esta tesis se ocupa de la reevaluación de un supuesto arqueológico entorno al origen del material cerámico constructivo (CBM empleado entre los siglos IX y XI en los edificios religiosos del Noroeste de Francia y el Sudeste de Inglaterra. ¿Son los ladrillos empleados en las estructuras de fábrica spolia romana o producciones a novo? Entre los métodos de datación que pueden contribuir a la arqueología del edificio, la técnica de luminiscencia estimulada aplicada al CBM es el centro de este estudio. Los resultados de la termoluminiscencia (TL y de la luminiscencia estimulada ópticamente (OSL, aplicadas en 52 muestras de CBM tomadas en 11 iglesias, evidencian que la práctica de reutilizar ladrillos romanos era común en pequeñas iglesias parroquiales, pero que también la técnica de elaboración de ladrillos no era totalmente desconocida para los

  14. Data on comparison between FLEC and CLIMPAQ methods used for fast sorption measurements of VOCs on building materials

    Directory of Open Access Journals (Sweden)

    Malak Rizk

    2016-06-01

    Full Text Available A test emission chamber called CLIMPAQ has been coupled to a chromatography analyzer GC to measure volatile organic compounds (VOC concentration during a sorption experiments (Fast sorption measurements of VOCs on building materials: Part 2 – Comparison between FLEC and CLIMPAQ methods, (Rizk et al., In press [1]. The equations used to calculate the mass transfer coefficient and the thickness of the boundary layer developed on the surface of a material are presented. In addition, the experimental profiles obtained using the CLIMPAQ chamber is also presented in the presence and the absence of a building material. Finally, the impact of chamber size on the obtained concentration profile using different chambers is shown using 3 types of chambers having different volumes, 1 m3, 30 m3 and a micro chamber of 40 mL.

  15. Application of smart materials in buildings%探析智能材料在建筑中的应用

    Institute of Scientific and Technical Information of China (English)

    张阿玲

    2014-01-01

    This paper first introduces the overview of intelligent material and intelligent material status, and then introduced the analyses the application of smart materials in the building from four aspects.%本文首先介绍了关于智能材料的概述以及智能材料的现状,接下来介绍了从四个方面对智能材料在建筑中的应用进行了探析。

  16. Optimization model for the selection of materials using a LEED-based green building rating system in Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Lacouture, Daniel [Building Construction Program, College of Architecture, Georgia Institute of Technology, 280 Ferst Drive, Atlanta, GA 30332 (United States); Sefair, Jorge A.; Florez, Laura; Medaglia, Andres L. [Centro de Optimizacion y Probabilidad Aplicada (COPA), Departamento de Ingenieria Industrial, Universidad de los Andes, Bogota D.C. (Colombia)

    2009-06-15

    Buildings have a significant and continuously increasing impact on the environment because they are responsible for a large portion of carbon emissions and use a considerable number of resources and energy. The green building movement emerged to mitigate these effects and to improve the building construction process. This paradigm shift should bring significant environmental, economic, financial, and social benefits. However, to realize such benefits, efforts are required not only in the selection of appropriate technologies but also in the choice of proper materials. Selecting inappropriate materials can be expensive, but more importantly, it may preclude the achievement of the desired environmental goals. In order to help decision-makers with the selection of the right materials, this study proposes a mixed integer optimization model that incorporates design and budget constraints while maximizing the number of credits reached under the Leadership in Energy and Environmental Design (LEED) rating system. To illustrate this model, this paper presents a case study of a building in Colombia in which a modified version of LEED is proposed. (author)

  17. Integration of Phase Change Material in Furniture for Improvement of Building Energy Flexibility

    DEFF Research Database (Denmark)

    Johra, Hicham; Heiselberg, Per

    This report aims to review the different scientific publications and technical documentations which investigated the influence of furniture parts on indoor environment and the use of PCM for building energy applications.......This report aims to review the different scientific publications and technical documentations which investigated the influence of furniture parts on indoor environment and the use of PCM for building energy applications....

  18. Assessment of Natural Radioactivity Levels and Potential Radiological Risks of Common Building Materials Used in Bangladeshi Dwellings.

    Directory of Open Access Journals (Sweden)

    Khandoker Asaduzzaman

    Full Text Available The concentrations of primordial radionuclides (226Ra, 232Th and 40K in commonly used building materials (brick, cement and sand, the raw materials of cement and the by-products of coal-fired power plants (fly ash collected from various manufacturers and suppliers in Bangladesh were determined via gamma-ray spectrometry using an HPGe detector. The results showed that the mean concentrations of 226Ra, 232Th and 40K in all studied samples slightly exceeded the typical world average values of 50 Bq kg(-1, 50 Bq kg(-1 and 500 Bq kg(-1, respectively. The activity concentrations (especially 226Ra of fly-ash-containing cement in this study were found to be higher than those of fly-ash-free cement. To evaluate the potential radiological risk to individuals associated with these building materials, various radiological hazard indicators were calculated. The radium equivalent activity values for all samples were found to be lower than the recommended limit for building materials of 370 Bq kg(-1, with the exception of the fly ash. For most samples, the values of the alpha index and the radiological hazard (external and internal indices were found to be within the safe limit of 1. The mean indoor absorbed dose rate was observed to be higher than the population-weighted world average of 84 nGy h(-1, and the corresponding annual effective dose for most samples fell below the recommended upper dose limit of 1 mSv y(-1. For all investigated materials, the values of the gamma index were found to be greater than 0.5 but less than 1, indicating that the gamma dose contribution from the studied building materials exceeds the exemption dose criterion of 0.3 mSv y(-1 but complies with the upper dose principle of 1 mSv y(-1.

  19. Assessment of Natural Radioactivity Levels and Potential Radiological Risks of Common Building Materials Used in Bangladeshi Dwellings.

    Science.gov (United States)

    Asaduzzaman, Khandoker; Mannan, Farhana; Khandaker, Mayeen Uddin; Farook, Mohideen Salihu; Elkezza, Aeman; Amin, Yusoff Bin Mohd; Sharma, Sailesh; Abu Kassim, Hasan Bin

    2015-01-01

    The concentrations of primordial radionuclides (226Ra, 232Th and 40K) in commonly used building materials (brick, cement and sand), the raw materials of cement and the by-products of coal-fired power plants (fly ash) collected from various manufacturers and suppliers in Bangladesh were determined via gamma-ray spectrometry using an HPGe detector. The results showed that the mean concentrations of 226Ra, 232Th and 40K in all studied samples slightly exceeded the typical world average values of 50 Bq kg(-1), 50 Bq kg(-1) and 500 Bq kg(-1), respectively. The activity concentrations (especially 226Ra) of fly-ash-containing cement in this study were found to be higher than those of fly-ash-free cement. To evaluate the potential radiological risk to individuals associated with these building materials, various radiological hazard indicators were calculated. The radium equivalent activity values for all samples were found to be lower than the recommended limit for building materials of 370 Bq kg(-1), with the exception of the fly ash. For most samples, the values of the alpha index and the radiological hazard (external and internal) indices were found to be within the safe limit of 1. The mean indoor absorbed dose rate was observed to be higher than the population-weighted world average of 84 nGy h(-1), and the corresponding annual effective dose for most samples fell below the recommended upper dose limit of 1 mSv y(-1). For all investigated materials, the values of the gamma index were found to be greater than 0.5 but less than 1, indicating that the gamma dose contribution from the studied building materials exceeds the exemption dose criterion of 0.3 mSv y(-1) but complies with the upper dose principle of 1 mSv y(-1).

  20. Nuclear industry practice for clearance of materials, facilities and buildings as well as land. Tutorial; Kaerntekniska industrins praxis foer friklassning av material, lokaler och byggnader samt mark. Handledning

    Energy Technology Data Exchange (ETDEWEB)

    2011-12-15

    This handbook comprises the common practices of the Swedish nuclear industry for the clearance of material, rooms, buildings and soil in order to be exempted from the Swedish Nuclear Activities Act and the Swedish Radiation Protection Act. After clearance the management/usage of material, rooms, buildings and soil is permitted without any control from the radiation protection point of view. Clearance is practiced to reduce the amount radioactive waste. Cleared material can be reused according to its original form, recycled or, if these two possibilities are not available, disposed as conventional waste. The working procedures described in this handbook are mainly based on the regulation SSMFS 2011:2 from the Swedish Radiation Safety Authority: 'Regulations concerning clearance of material, rooms, buildings and soil from activities with ionising radiation'. The purpose of this handbook is to serve as a tool and guidance for generating specific routines and instructions for clearance. It describes the principles, processes and routines that should be followed under a clearance procedure. The intention is to accomplish the current regulation by following the routines and principles described in this manual. This handbook spans over a large number of conditions towards clearance, such as facility specific conditions and different types of objects. Because not all the conceivable conditions and objects can be included here, the purpose has been to cover the most common types of clearance practices. The practices comprise: - Description of regulations and recommendations, Swedish and international, that represent the basis of the requirements in this handbook. - Presentation of the processes for clearance of material, rooms, buildings and soil. Those which cannot be cleared are considered as radioactive waste. A proposal for the decision-making process is presented. - Illustration for radiological surveys to systems and components, buildings and soil in regard

  1. Composite UHPC-AAC/CLC facade elements with modified interior plaster for new buildings and refurbishment. Materials and production technology

    Directory of Open Access Journals (Sweden)

    Lorenzo Miccoli

    2015-06-01

    Full Text Available The awareness of the environmental impact of the building sector is increasing. Steel reinforced concrete is the most commonly used construction material, though with a high-embodied energy and carbon footprint. Large environmental gains may arise if an alternative to steel reinforced concrete is developed. In this context, ultra-high performance concrete (UHPC materials are shown to be promising alternatives with advantages such as lower embodied energy and reduced environmental impact. Predictions suggest that UHPC composite elements for building envelopes could have other benefits such as an increased service life, optimised use of building area due to thinner elements and minimised maintenance due to the absence of reinforcement or use of non-corrosive reinforcing materials such as carbon fibres. In the framework of the H-HOUSE project funded by the European Commission, composite elements are developed. The aim is to create facade panels combining an autoclaved aerated concrete or cellular lightweight concrete insulation layer with an external UHPC supporting layer. To enhance occupant comfort and health, hygroscopic materials that are capable to buffer indoor air humidity shall be applied to the inside of such elements. Indoor air humidity levels are expected to be more stable, which shall subsequently improve the indoor climate and minimise potential decay to the construction.  

  2. Study on γ-ray exposure buildup factors and fast neutron-shielding properties of some building materials

    Science.gov (United States)

    Singh, Vishwanath P.; Badiger, N. M.; El-Khayatt, A. M.

    2014-06-01

    We have computed γ-ray exposure buildup factors (EBF) of some building materials; glass, marble, flyash, cement, limestone, brick, plaster of paris (POP) and gypsum for energy 0.015-15 MeV up to 40 mfp (mfp, mean free path) penetration depth. Also, the macroscopic effective removal cross-sections (ΣR) for fast neutron were calculated. We discussed the dependency of EBF values on photon energy, penetration depth and chemical elements. The half-value layer and kinetic energy per unit mass relative to air of building materials were calculated for assessment of shielding effectiveness. Shielding thicknesses for glass, marble, flyash, cement, limestone and gypsum plaster (or Plaster of Paris, POP) were found comparable with ordinary concrete. Among the studied materials limestone and POP showed superior shielding properties for γ-ray and neutron, respectively. Radiation safety inside houses, schools and primary health centers for sheltering and annual dose can be assessed by the determination of shielding parameters of common building materials.

  3. Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

    2012-08-01

    Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conduction Finite Difference (CondFD) algorithms.

  4. An overview of setting up the assessment system of green building materials%绿色建材评价体系构建概述

    Institute of Scientific and Technical Information of China (English)

    侯文虎; 赵静

    2015-01-01

    绿色建材已成为建材行业发展的主题,当前迫切需要建立起一套内容科学、形式简单的绿色建材评价体系,以推广绿色建材在我国的应用与发展。本文简述了绿色建材概念及其特性,指出了绿色建材评价体系建立的必要性,对绿色建材评价体系涉及的内容、评价方法、评价流程进行了探讨,对绿色建材评价体系的构建提出建议。%Green building materials have became the topic of the development of building materials industry. In order to promoting the application and development of green building materials in our country, it is need to set up an assessment system of green building materials at present scientifically and simply. In this paper the conception and characteristic of green building materials and the importance of setting up an assessment system of green building materials are elaborated.The content、assessment method and procedure of green building materials are discussed.In addition,the paper also gives some suggestions of setting up the assessment system of green building materials.

  5. Job/Task Analysis: Enhancing the Commercial Building Workforce Through the Development of Foundational Materials; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Studer, D.; Kemkar, S.

    2012-09-01

    For many commercial building operation job categories, industry consensus has not been reached on the knowledge, skills, and abilities that practitioners should possess. The goal of this guidance is to help streamline the minimum competencies taught or tested by organizations catering to building operations and maintenance personnel while providing a basis for developing and comparing new and existing training programs in the commercial building sector. The developed JTAs will help individuals identify opportunities to enhance their professional skills, enable industry to identify an appropriately skilled workforce, and allow training providers to ensure that they are providing the highest quality product possible.

  6. Application of infrared thermometry and ultrasonic velocity for the investigation of the building materials of historic monuments of Dion, Greece

    Science.gov (United States)

    Papanikolaou, E.; Spathis, P.; Christaras, B.; Melfos, V.

    2012-04-01

    The sanctuaries of Demeter and Asklepios are part of the Dion archaeological site that sits among the eastern foothills of Mount Olympus and covers roughly 100 hectares. The excavations finds from this area are dated since the Hellenistic, Roman and Early Christian times. The main building materials are limestones and conglomerates. Sandstones, marbles, and ceramic plinths were also used. The materials consist mainly of calcite and/or dolomite, whereas the deteriorated surfaces contain also secondary and recrystallized calcite and dolomite, gypsum, various inorganic compounds, fluoroapatite, microorganisms and other organic compounds. Cracks and holes were observed in various parts of the stones. The most proper approach to select effective methods for the structural and surface consolidation, the cleaning, the protection and the overall conservation of these structures is the knowledge of the processes contributing to their deterioration. The influence of the water presence to the behavior of the materials was examined by in situ IR thermometer measurements. Temperature values increased from the lower to the upper parts of the building stones and they significantly depend on the orientation of the walls. The results indicate the existence of water in the bulk of the materials due to capillary penetration. To confirm these observations measurements of the following physical characteristics of the building materials have been studied: open porosity, pore size distribution, water absorption and desorption, capillary absorption and desorption. The existence of water in the bulk of the materials due to capillary penetration, the cycles of wet-dry conditions, correlated with the intensive surface and underground water presence in the whole surrounding area, lead to partial dissolution-recrystallization of the carbonate material and loss of the structural cohesion and the surface stability.

  7. Embodied Energy Assessment and Comparisons for a Residential Building Using Conventional and Alternative Materials in Indian Context

    Science.gov (United States)

    Naveen Kishore, K.; Chouhan, J. S.

    2014-06-01

    Building sector is responsible for 40 % of the primary energy use and 24 % of carbon dioxide emissions in India. The main source of green house gas emissions from buildings is due to energy consumption. This paper aims to assess the embodied energy index and environmental impact of a two storied residential building. The study proposes various alternative materials which can be used in day to day construction in order to mitigate the environmental impact and climate change due to construction activity in India. Two types of construction techniques have been considered for the study, namely load bearing and reinforced concrete framed construction. Embodied energy and carbon dioxide emissions of walling and roofing components using conventional and alternative materials has also been analyzed and compared. The comparison is done based on two parameters namely, embodied energy/m2 and CO2 emissions per unit of floor area. The study shows that bricks, cement and steel are the three major contributors to the energy cost of constructing a building by conventional methods. A conventional two storied load bearing structure is 22 % more energy efficient when compared to a reinforced concrete structure. It has also been observed from the study that use of alternative material in the building envelope gives embodied energy savings between 50 and 60 % for a two storey load bearing structure and 30-42 % for a two storey reinforced concrete structure. Hence a load bearing construction is certainly a better alternative to RC framed construction for up to two storied structures in terms of embodied energy and environmental impacts.

  8. Estimating the Additional Greenhouse Gas Emissions in Korea: Focused on Demolition of Asbestos Containing Materials in Building.

    Science.gov (United States)

    Kim, Young-Chan; Hong, Won-Hwa; Zhang, Yuan-Long; Son, Byeung-Hun; Seo, Youn-Kyu; Choi, Jun-Ho

    2016-09-12

    When asbestos containing materials (ACM) must be removed from the building before demolition, additional greenhouse gas (GHG) emissions are generated. However, precedent studies have not considered the removal of ACM from the building. The present study aimed to develop a model for estimating GHG emissions created by the ACM removal processes, specifically the removal of asbestos cement slates (ACS). The second objective was to use the new model to predict the total GHG emission produced by ACM removal in the entire country of Korea. First, an input-equipment inventory was established for each step of the ACS removal process. Second, an energy consumption database for each equipment type was established. Third, the total GHG emission contributed by each step of the process was calculated. The GHG emissions generated from the 1,142,688 ACS-containing buildings in Korea was estimated to total 23,778 tonCO₂eq to 132,141 tonCO₂eq. This study was meaningful in that the emissions generated by ACS removal have not been studied before. Furthermore, the study deals with additional problems that can be triggered by the presence of asbestos in building materials. The method provided in this study is expected to contribute greatly to the calculation of GHG emissions caused by ACM worldwide.

  9. Estimating the Additional Greenhouse Gas Emissions in Korea: Focused on Demolition of Asbestos Containing Materials in Building

    Directory of Open Access Journals (Sweden)

    Young-Chan Kim

    2016-09-01

    Full Text Available When asbestos containing materials (ACM must be removed from the building before demolition, additional greenhouse gas (GHG emissions are generated. However, precedent studies have not considered the removal of ACM from the building. The present study aimed to develop a model for estimating GHG emissions created by the ACM removal processes, specifically the removal of asbestos cement slates (ACS. The second objective was to use the new model to predict the total GHG emission produced by ACM removal in the entire country of Korea. First, an input-equipment inventory was established for each step of the ACS removal process. Second, an energy consumption database for each equipment type was established. Third, the total GHG emission contributed by each step of the process was calculated. The GHG emissions generated from the 1,142,688 ACS-containing buildings in Korea was estimated to total 23,778 tonCO2eq to 132,141 tonCO2eq. This study was meaningful in that the emissions generated by ACS removal have not been studied before. Furthermore, the study deals with additional problems that can be triggered by the presence of asbestos in building materials. The method provided in this study is expected to contribute greatly to the calculation of GHG emissions caused by ACM worldwide.

  10. Low-Cost Bio-Based Phase Change Materials as an Energy Storage Medium in Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL; Abhari, Mr. Ramin [Renewable Energy Group, Inc.; Shukla, Dr. Nitin [Fraunhofer USA, Center for Sustainable Energy Systems (CSE), Boston; Kosny, Dr. Jan [Fraunhofer USA, Center for Sustainable Energy Systems (CSE), Boston

    2015-01-01

    A promising approach to increasing the energy efficiency of buildings is the implementation of phase change material (PCM) in building envelope systems. Several studies have reported the energy saving potential of PCM in building envelopes. However, wide application of PCMs in building applications has been inhibited, in part, by their high cost. This article describes a novel paraffin product made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application, with the ultimate goal of commercializing a low-cost PCM platform. The low-cost PCM pellets were mixed with cellulose insulation, installed in external walls and field-tested under natural weatherization conditions for a period of several months. In addition, several PCM samples and PCM-cellulose samples were prepared under controlled conditions for laboratory-scale testing. The laboratory tests were performed to determine the phase change properties of PCM-enhanced cellulose insulation both at microscopic and macroscopic levels. This article presents the data and analysis from the exterior test wall and the laboratory-scale test data. PCM behavior is influenced by the weather and interior conditions, PCM phase change temperature and PCM distribution within the wall cavity, among other factors. Under optimal conditions, the field data showed up to 20% reduction in weekly heat transfer through an external wall due to the PCM compared to cellulose-only insulation.

  11. The Impact of Materials and Maintenance Considerations during the Design Stage of Public Buildings in Oman

    Directory of Open Access Journals (Sweden)

    Al Rubaiey S.

    2014-01-01

    Full Text Available The purpose of this study is to describe the experiences of architects and civil engineers in the Sultanate of Oman regarding building maintenance during the design of public buildings. This exploratory and descriptive study used a qualitative approach, drawing data from focus groups in particular, to develop a rich and in-depth description of the designers’ building maintenance experiences. Structured interviews were conducted with 15 participants from architecture and civil engineering fields, from which, the interviewees shared the viewpoint that maintenance functions entirely separate from the design and construction process itself, but that it is, in fact, an integral part of the design process and post-occupancy stage. The designer should plan for sufficient maintenance for the whole building life cycle. However, some elements are more difficult to maintain in Oman than in other regions such as roofs, facades and the substructure of buildings. The results showed that salt is the most challenging environmental factor that could cause building defects. This was followed by solar heat, moisture from below ground and, lastly, rain. Most of these defects occurred during the buildings’ post-occupancy phase and were related to inappropriate or poor design. The results also suggested that deficiencies caused by thermal expansion came in the form of cracks, followed by paint decay, dampness, and staining.

  12. Geolithology and provenance of materials of some historical buildings and monuments in the centre of Florence (Italy)

    Institute of Scientific and Technical Information of China (English)

    PiergiorgioMalesani; ElenaPecchioni; EmmaCantisani; FabioFratini

    2003-01-01

    Two very important historical areas have been consid-ered in this work. Piazza della Signoria with the Palazzo Vecchio and many other outstanding buildings, is a typi-cal example of the use of sandstone materials character-istic of the Florentine area; Piazza del Duomo with the Cathedral of Santa Maria del Fiore standing in the mid-dle is, on the other hand, an example of other equally typical lithotypes such as the "white" marble and the"red" and "green marbles" that decorate the Cathe-dral. A detailed study as well as the relief and the map-ping of the historical buildings in Piazza della Signoria and of the Cathedral of Santa Maria del Fiore, have ledto the description of the materials that make them up as well as to the establishment of their quarry provenance.

  13. Empirical Validation of Heat Transfer Performance Simulation of Graphite/PCM Concrete Materials for Thermally Activated Building System

    Directory of Open Access Journals (Sweden)

    Jin-Hee Song

    2017-01-01

    Full Text Available To increase the heat capacity in lightweight construction materials, a phase change material (PCM can be introduced to building elements. A thermally activated building system (TABS with graphite/PCM concrete hollow core slab is suggested as an energy-efficient technology to shift and reduce the peak thermal load in buildings. An evaluation of heat storage and dissipation characteristics of TABS in graphite/PCM concrete has been conducted using dynamic simulations, but empirical validation is necessary to acceptably predict the thermal behavior of graphite/PCM concrete. This study aimed to validate the thermal behavior of graphite/PCM concrete through a three-dimensional transient heat transfer simulation. The simulation results were compared to experimental results from previous studies of concrete and graphite/PCM concrete. The overall thermal behavior for both materials was found to be similar to experiment results. Limitations in the simulation modeling, which included determination of the indoor heat transfer coefficient, assumption of constant thermal conductivity with temperature, and assumption of specimen homogeneity, led to slight differences between the measured and simulated results.

  14. The use of the bottom ashes and of the steelmaking slags in the manufacturing technologies of the building materials

    Directory of Open Access Journals (Sweden)

    L. G. Popescu

    2016-07-01

    Full Text Available The energetic and metallurgy industries of Romania represent the main waste sources significant from the point of quantitative view: the bottom ashes and the blast furnace and secondary metallurgical slags. Starting from the knowledge of the main chemical-physical properties of these two types of industrial wastes, there were inquired the exploitation possibilities in the technological practice, by using in the manufacturing of some building materials, for which these wastes represent the exclusive raw material source. The experiments considered the granular aggregate properties of the bottom ash and of the blast furnace slag, completed by the hydraulic binder of the secondary metallurgical slag, after the fine crushing.

  15. Determination of partition and diffusion coefficients of formaldehyde in selected building materials and impact of relative humidity.

    Science.gov (United States)

    Xu, Jing; Zhang, Jianshun S; Liu, Xiaoyu; Gao, Zhi

    2012-06-01

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50%, and 70% RH). The "green" materials contained recycled materials and were friendly to environment. A dynamic dual-chamber test method was used. Results showed that a higher relative humidity led to a larger effective diffusion coefficient for two kinds of wallboards and carpet. The carpet was also found to be very permeable resulting in an effective diffusion coefficient at the same order of magnitude with the formaldehyde diffusion coefficient in air. The partition coefficient (K(ma)) of formaldehyde in conventional wallboard was 1.52 times larger at 50% RH than at 20% RH, whereas it decreased slightly from 50% to 70% RH, presumably due to the combined effects of water solubility of formaldehyde and micro-pore blocking by condensed moisture at the high RH level. The partition coefficient of formaldehyde increased slightly with the increase of relative humidity in "green" wallboard and "green" carpet. At the same relative humidity level, the "green" wallboard had larger partition coefficient and effective diffusion coefficient than the conventional wallboard, presumably due to the micro-pore structure differences between the two materials. The data generated could be used to assess the sorption effects of formaldehyde on building materials and to evaluate its impact on the formaldehyde concentration in buildings.

  16. Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance.

    Science.gov (United States)

    Trevisi, R; Risica, S; D'Alessandro, M; Paradiso, D; Nuccetelli, C

    2012-02-01

    The authors set up a database of activity concentration measurements of natural radionuclides (²²⁶Ra, ²³²Th and ⁴⁰K) in building material. It contains about 10,000 samples of both bulk material (bricks, concrete, cement, natural- and phosphogypsum, sedimentary and igneous bulk stones) and superficial material (igneous and metamorphic stones) used in the construction industry in most European Union Member States. The database allowed the authors to calculate the activity concentration index I--suggested by a European technical guidance document and recently used as a basis for elaborating the draft Euratom Basic Safety Standards Directive--for bricks, concrete and phosphogypsum used in the European Union. Moreover, the percentage could be assessed of materials possibly subject to restrictions, if either of the two dose criteria proposed by the technical guidance were to be adopted.

  17. Thermal comfort characteristics of some selected building materials in the regional setting of Ile-Ife, Nigeria

    Directory of Open Access Journals (Sweden)

    S. K. Fasogbon

    2015-07-01

    Full Text Available In Ile-Ife, it is very common to see quite a lot of local people engaging in mud bricks moulding, concrete block making, mud house construction and the bricklaying profession in general. These have particular bearing on the economy and the political situation of the people involved as in the profession there is set of rules and regulations guiding the rate and procedure for carrying out any such moulding or construction work. Considering the importance of this, the present study investigated the thermal performance of some selected building materials in the ancient city of Ile-Ife in Nigeria. The work demonstrated how a building envelope responds to outdoor conditions through graphic illustrations. This was followed by constructing three physical building models, with model 1 constructed of mud bricks, model 2 constructed of concrete blocks and model 3 constructed of cast concrete. Each of the models was first roofed with galvanised Iron roofing sheets, later with aluminium roofing sheets and finally with asbestos roofing. Readings were taken by inserting TGP-4500 Data loggers into appropriate positions. The results showed that internal temperatures in the mud-brick and cast concrete buildings remained fairly stable despite external diurnal fluctuations. Humidity data collected also showed that fluctuations in external humidity levels do not affect humidity levels within the mud-brick and cast concrete structures significantly. On the other hand, the structure made of concrete blocks responded more to external fluctuations in temperature and humidity. Moreover, humidity levels in the cast concrete building were the least, followed by those in the mud-brick house; while the concrete block structure had the highest level of humidity. It was also discovered that aluminium roofing gave the highest internal temperature, followed by galvanised iron roofing and the least was seen with asbestos roofing. For external diurnal fluctuations, building model

  18. Research on Assessment Label of Green Building Materials in China%我国绿色建材评价标识问题研究

    Institute of Scientific and Technical Information of China (English)

    路晓亮; 王建廷

    2016-01-01

    从绿色建材的定义和性质出发,探讨了绿色建材评价标准的目标和任务,尝试构建了绿色建材评价指标体系和标识方法,以期为国家《绿色建材评价标准》的编制提供思路,促进绿色建材产业快速健康发展。%From the definition and properties of green building materials,this paper discusses the target and task of the assessment standard of green building materials,and tries to construct a green building assessment index system and label method with the intention to provide some suggestions for the compilation of Green Building Material Assessment Standard and to promote the rapid and healthy development of green building material industry.

  19. Use of Secondary Building Materials in EU - Different National Strategies; Anvaendning av restprodukter inom EU - Olika nationella strategier

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Gunilla; Wilhelmsson, Anna (Ramboell Sverige AB, Goeteborg (Sweden))

    2008-06-15

    The aim of this report is to show how use of waste/secondary building materials/aggregates for construction purposes is managed in 8 different countries within the European Union. A short review is done how national legislations and guidelines support, and restrict, reuse in an environmentally responsible way, and experiences from and control of some construction purposes. Different national strategies are used in the studied countries, depending on their previous experiences of reuse of secondary building materials, natural conditions and energy systems, and administrative traditions. In general the actual regulations are built on high demands on protection of water and soil resources and protection of health and environment, with the pronounced aim of supporting waste reuse for construction purposes. In most countries regulations of environmentally controlled use of secondary building materials contains these elements as a basis: - Inert waste are often free for construction use; - Specific waste fractions are allowed; - Specified use is defined; - Different material categories might be used/prescribed for different purposes; - Ashes of different origin is an important source for secondary aggregates; - Quality control of materials and construction is essential; - Specified precaution or remediation are prescribed, according to the purpose; - Reporting or simplified permit processes are prescribed. There is generally a specific regulation concerning use of secondary materials. If used in other circumstances than prescribed/listed, it will normally need a regular environmental permit process. Important experiences are that proper design and control of the construction is essential, based on know-how, research and feed-back from experience. It exists a broad base of knowledge in the studied European countries, including material properties, leaching behaviour and testing methods for a wide range of materials. Many successful ways of promoting cooperation between

  20. Molecular Building Blocks for Nanotechnology From Diamondoids to Nanoscale Materials and Applications

    CERN Document Server

    Mansoori, G. Ali; Assoufid, Lahsen; Zhang, Guoping

    2007-01-01

    This book is a result of the research and educational activities of a group of outstanding scientists worldwide who have authored the chapters of this book dealing with the behavior of nanoscale building blocks. It contains a variety of subjects covering computational, dry and wet nanotechnology. The state-of-the-art subject matters presented here provide the reader with the latest developments on ongoing nanoscience and nanotechnology research from the bottom-up approach, which starts with with atoms and molecules as molecular building blocks.

  1. Design and Analysis of Phase Change Material based thermal energy storage for active building cooling: a Review

    Directory of Open Access Journals (Sweden)

    Nitin .D. Patil

    2012-06-01

    Full Text Available Phase Change Materials (PCMs are "latent" thermal storage materials. They use chemical bonds to store and release heat. The thermal energy transfer occurs when a material changes from a solid to a liquid orfrom a liquid to a solid form. This is called a change in state or "phase." Initially, these solid-liquid PCMs perform like conventional storage materials; their temperature rises as they absorb solar heat. Unlike conventional heat storage materials, when PCMs reach the temperature at which they change phase (their melting point, they absorb large amounts of heat without getting hotter. When the ambient temperature in the space around the PCM material drops, the Phase Change Material solidifies, releasing its stored latent heat. PCMs absorb and emit heat while maintaining a nearly constant temperature. Within the human comfort and electronic-equipment tolerance range of 20°C to 35°C, latent thermal storage materials are very effective.They can be used for equalization of day & night temperature and for transport of refrigerated products. In the proposed project heat of fusion of Cacl2. 6H2o as PCM is used for cooling water during night and this cooled water is used as circulating medium trough fan coil unit, air trough FCU will get cooled by transferring heat to water and fresh & cool air will be thrown in a room. In the proposed project FREE COOLING & ACTIVE BUILDING COOLING concepts of Thermal Energy Storage are used in combine

  2. Standard linear solid model for dynamic and time dependent behaviour of building materials

    NARCIS (Netherlands)

    De Haan, Y.M.; Sluimers, G.M.

    2001-01-01

    Vibrations in building structures are almost always undesirable. Whether in the form of low frequency oscillations, or droning of the structure, or as audible noise, they may effect the comfort of the user. They may even effect the safety and the integrity of (parts of) the structure. Damping of mec

  3. Digital learning material for experimental design and model building in molecular biology

    NARCIS (Netherlands)

    Aegerter-Wilmsen, T.

    2005-01-01

    Designing experimental approaches is a major cognitive skill in molecular biology research, and building models, including quantitative ones, is a cognitive skill which is rapidly gaining importance. Since molecular biology education at university level is aimed at educating future researchers, we c

  4. Measurement of natural radioactivity in Jordanian building materials and their contribution to the public indoor gamma dose rate.

    Science.gov (United States)

    Sharaf, J M; Hamideen, M S

    2013-10-01

    This study is undertaken to determine the activity concentration of (226)Ra, (232)Th and (40)K in samples of commonly used building materials in Jordan. Samples of seven different materials were collected from construction sites and local agencies supplying raw construction materials and analyzed using a HPGe gamma-ray spectrometer, taking into account self-attenuation in bulk samples. The average specific activity concentrations of (226)Ra, (232)Th, and (40)K ranged from 2.84 to 41.52, 0.78 to 58.42. and 3.74 to 897 Bq/kg, respectively. All the samples had radium equivalent activities well below the limit of 370 Bq/kg set by the Organization for Economic Cooperation and Development (OECD, 1979). External and internal hazard indices, absorbed dose and annual effective dose rate associated with the radionuclides of interest were calculated and compared with the international legislation and guidance. In general, most of the activities did not exceed the recommended international limits, except for granite and ceramic samples which are usually used as secondary building materials in Jordan.

  5. Using the Analytic Hierarchy Process to Prioritize and Select Phase Change Materials for Comfort Application in Buildings

    Directory of Open Access Journals (Sweden)

    Socaciu Lavinia Gabriela

    2014-03-01

    Full Text Available Phase change materials (PCMs selection and prioritization for comfort application in buildings have a significant contribution to the improvement of latent heat storage systems. PCMs have a relatively large thermal energy storage capacity in a temperature range close to their switch point. PCMs absorb energy during the heating process as phase change takes place and release energy to the environment in the phase change range during a reverse cooling process. Thermal energy storage systems using PCMs as storage medium offer advantages such as: high heat storage capacity and store/release thermal energy at a nearly constant temperature, relative low weight, small unit size and isothermal behaviour during charging and discharging when compared to the sensible thermal energy storage. PCMs are valuable only in the range of temperature close to their phase change point, since their main thermal energy storage capacity depend on their mass and on their latent heat of fusion. Selection of the proper PCMs is a challenging task because there are lots of different materials with different characteristics. In this research paper the principles and techniques of the Analytic Hierarchy Process (AHP are presented, discussed and applied in order to prioritize and select the proper PCMs for comfort application in buildings. The AHP method is used for solving complex decisional problems and allows the decision maker to take the most suitable decisions for the problem studied. The results obtained reveal that the AHP method can be successfully applied when we want to choose a PCM for comfort application in buildings.

  6. Amyloid Fibrils as Building Blocks for Natural and Artificial Functional Materials.

    Science.gov (United States)

    Knowles, Tuomas P J; Mezzenga, Raffaele

    2016-08-01

    Proteinaceous materials based on the amyloid core structure have recently been discovered at the origin of biological functionality in a remarkably diverse set of roles, and attention is increasingly turning towards such structures as the basis of artificial self-assembling materials. These roles contrast markedly with the original picture of amyloid fibrils as inherently pathological structures. Here we outline the salient features of this class of functional materials, both in the context of the functional roles that have been revealed for amyloid fibrils in nature, as well as in relation to their potential as artificial materials. We discuss how amyloid materials exemplify the emergence of function from protein self-assembly at multiple length scales. We focus on the connections between mesoscale structure and material function, and demonstrate how the natural examples of functional amyloids illuminate the potential applications for future artificial protein based materials.

  7. Internal exposure from building materials exhaling (222)Rn and (220)Rn as compared to external exposure due to their natural radioactivity content.

    Science.gov (United States)

    Ujić, Predrag; Celiković, Igor; Kandić, Aleksandar; Vukanac, Ivana; Durasević, Mirjana; Dragosavac, Dusan; Zunić, Zora S

    2010-01-01

    The main scope of this paper is to point out the importance of introducing radon and thoron exhalation measurements from building materials in the regulating frame. Currently (2009), such a regulation of this kind of exposure is not explicitly included in the Serbian regulating network. To this end, this work reports concentration measurements of (226)Ra, (232)Th and (40)K and radon and thoron exhalation rates from building materials used in Serbia. Following detailed analysis, it was noticed that both internal exposures to radon and/or thoron exhaling from building materials may exceed external exposures to their precursors contained therein.

  8. Internal exposure from building materials exhaling {sup 222}Rn and {sup 220}Rn as compared to external exposure due to their natural radioactivity content

    Energy Technology Data Exchange (ETDEWEB)

    Ujic, Predrag [Institute of Nuclear Sciences ' Vinca' , P.O. Box 522, 11001 Belgrade (Serbia); Celikovic, Igor [Institute of Nuclear Sciences ' Vinca' , P.O. Box 522, 11001 Belgrade (Serbia)], E-mail: icelikovic@vinca.rs; Kandic, Aleksandar; Vukanac, Ivana; Durasevic, Mirjana; Dragosavac, Dusan; Zunic, Zora S. [Institute of Nuclear Sciences ' Vinca' , P.O. Box 522, 11001 Belgrade (Serbia)

    2010-01-15

    The main scope of this paper is to point out the importance of introducing radon and thoron exhalation measurements from building materials in the regulating frame. Currently (2009), such a regulation of this kind of exposure is not explicitly included in the Serbian regulating network. To this end, this work reports concentration measurements of {sup 226}Ra, {sup 232}Th and {sup 40}K and radon and thoron exhalation rates from building materials used in Serbia. Following detailed analysis, it was noticed that both internal exposures to radon and/or thoron exhaling from building materials may exceed external exposures to their precursors contained therein.

  9. Some potential material supply constraints in solar systems for heating and cooling of buildings and process heat. (A preliminary screening to identify critical materials)

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Gurwell, W.E.; Nelson, T.A.; Smith, S.A.

    1979-06-01

    Nine Solar Heating and Cooling of Buildings (SHACOB) designs and three Agricultural and Industrial Process Heat (AIPH) designs have been studied to identify potential future material constraints to their large scale installation and use. The nine SHACOB and three AIPH systems were screened and found to be free of serious future material constraints. The screening was carried out for each individual system design assuming 500 million m/sup 2/ of collector area installed by the year 2000. Also, two mixed design scenarios, containing equal portions of each system design, were screened. To keep these scenarios in perspective, note that a billion m/sup 2/ containing a mixture of the nine SHACOB designs will yield an annual solar contribution of about 1.3 Quads or will displace about 4.2 Quads of fossil fuel used to generate electricity. For AIPH a billion square meters of the mixed designs will yield about 2.8 Quads/year. Three materials were identified that could possibly restrain the deployment of solar systems in the specific scenarios investigated. They are iron and steel, soda lime glass and polyvinyl fluoride. All three of these materials are bulk materials. No raw material supply constraints were found.

  10. Bio-aggregates based building materials state-of-the-art report of the RILEM Technical Committee 236-BBM

    CERN Document Server

    Collet, Florence

    2017-01-01

    The work of the RILEM Technical Committee (TC -236 BBM) was dedicated to the study of construction materials made from plant particles. It considered the question whether building materials containing as main raw material recyclable and easily available plant particles are renewable. This book includes a state-of-the-art report and an appendix. The state-of-the-art report relates to the description of vegetal aggregates. Then, hygrothermal properties, fire resistance, durability and finally the impact of the variability of the method of production of bio-based concrete are assessed. The appendix is a TC report which presents the experience of a working group. The goal was to define testing methods for the measurement of water absorption, bulk density, particle size distribution, and thermal conductivity of bio aggregates. The work is based on a first round robin test of the TC-BBM where the protocols in use by the different laboratories (labs) are compared. .

  11. Simulation and experimental study of thermal performance of a building roof with a phase change material (PCM)

    Indian Academy of Sciences (India)

    A Mannivannan; M T Jaffarsathiq Ali

    2015-12-01

    Latent heat storage in a phase change material (PCM) is very attractive because of its high-energy storage density and its isothermal behaviour during the phase change process. Low thermal conductivity of the walls and roof reduces the heat gain at a steady state condition. Chloride hexahydrate (CaCl26H2O) as a phase change material (PCM) for a room was proposed in this paper to control the indoor air temperature for a better thermal comfort for human beings. Building concrete roof with vertical cylindrical hole of 0.5 $\\times$ 0.5 m and array of 3 $\\times$ 3 filled with phase change material (PCM) was considered for analysis. A detailed thermal analysis was carried by both simulation and experimental study. Results showed that this type of PCM room can decrease the indoor air temperature fluctuation by a maximum of 4°C.

  12. Reduced energy use for ventilation of buildings through selection of low-polluting building materials and furniture. Final Report; Reduceret energiforbrug til ventilation af bygninger hvori der systematisk er valgt lav-forurenende materialer og inventar. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    2007-11-15

    The main objective of the research project was to study the potential of reducing energy used for ventilating buildings by using low-polluting building materials and thereby ensuring that indoor air quality will not be compromised. To quantify this potential, the exposure-response relationships, i.e. the relationships between ventilation rate and the perceived indoor air quality (indoor air quality perceived by humans as opposed to indoor air quality evaluated by chemical measurements), were established for rooms furnished with different more or less polluting materials. Based on these results simulations of energy used for ventilation were carried out for selected building scenarios. The exposure-response relationships were established by summarizing existing data reported in the literature and by a series of new experiments. The data summarized by reviewing the literature included data for building materials and furnishing tested in a laboratory setting in small-scale ventilated glass chambers, and in full-scale in ventilated climate chambers, test rooms or normal offices. Relevant low-polluting building materials were selected based on the literature review and a series of new experiments performed in ventilated small-scale glass chambers. Then the final experiments in which the effects of using low-polluting materials on perceived air quality were carried out in ventilated small-scale glass chambers and in full-scale test rooms ventilated with different outdoor air supply rates. Simulations of energy used for ventilation were carried out using BSim software. During simulations the ventilation rate was varied to obtain different levels of air quality when low-polluting building materials had been used, and it was examined how these changes influence the energy use. The results show that the exposure-response relationships vary between different building materials and thus the ventilation requirement to achieve a certain level of perceived indoor air quality vary

  13. Proposal for the use of new materials in the TOKAMAK building cover; Contrato de ingenieria/arquitectura para el proyecto ITER

    Energy Technology Data Exchange (ETDEWEB)

    Chiva, L.

    2011-07-01

    It was considered relevant and innovative to apply new structural materials to the construction of the roof of the building that lodged the TOKAMAK reactor, with the aim of achieving a severe reduction of the weight of the roof structure that result in greater ease of mounting, minor charges on the walls and foundations of the building and a reduced impact on the distribution of masses of the building scheme.

  14. Thinking About The Problem of Building Insulation Materials%建筑外保温材料有关问题的思考

    Institute of Scientific and Technical Information of China (English)

    颜艳

    2011-01-01

    Insulation materials outside the building through research, analysis of building thermal in- sulation system and cause fire hazards, proposed building thermal insulation system of supervision and management of proposals and measures.%通过对建筑外保温材料的调研,分析建筑外保温系统火灾隐患及成因,提出建筑外保温系统的监督管理建议和措施。

  15. Functional Perfluoroalkyl Polyhedral Oligomeric Silsesquioxane (F-POSS): Building Blocks for Low Surface Energy Materials

    Science.gov (United States)

    2010-10-21

    Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Functional Perfluoroalkyl Polyhedral Oligomeric Silsesquioxane (F...long chain fluorinated alkyl groups ranging from 6-12 carbon atoms in length. Herein, a disilanol perfluoroalkyl polyhedral oligomeric...FUNCTIONAL PERFLUOROALKYL POLYHEDRAL OLIGOMERIC SILSESQUIOXANES (F-POSS): BUILDING BLOCKS FOR LOW SURFACE ENERGY MATERIA LS Sean M Rami,.e:, Yvonne Dia

  16. The importance of building construction materials relative to other factors affecting structure survival during wildfire

    Science.gov (United States)

    Syphard, Alexandra D.; Brennan, Teresa J.; Keeley, Jon E.

    2017-01-01

    Structure loss to wildfire is a serious problem in wildland-urban interface areas across the world. Laboratory experiments suggest that fire-resistant building construction and design could be important for reducing structure destruction, but these need to be evaluated under real wildfire conditions, especially relative to other factors. Using empirical data from destroyed and surviving structures from large wildfires in southern California, we evaluated the relative importance of building construction and structure age compared to other local and landscape-scale variables associated with structure survival. The local-scale analysis showed that window preparation was especially important but, in general, creating defensible space adjacent to the home was as important as building construction. At the landscape scale, structure density and structure age were the two most important factors affecting structure survival, but there was a significant interaction between them. That is, young structure age was most important in higher-density areas where structure survival overall was more likely. On the other hand, newer-construction structures were less likely to survive wildfires at lower density. Here, appropriate defensible space near the structure and accessibility to major roads were important factors. In conclusion, community safety is a multivariate problem that will require a comprehensive solution involving land use planning, fire-safe construction, and property maintenance.

  17. A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO2

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Arthur; Domszy, Roman; Yang, Jeff

    2016-03-30

    Advanced thermal insulation is among the most effective technologies in transforming our nation’s energy system and contributing to DOE’s stated goal of 50% less building energy consumption by 2030. The installation of an advanced thermal insulation would prevent energy waste without the need for any maintenance, and ISTN conservatively estimates that the commercialization of such a new technology would contribute to annual U.S. energy savings of 0.361 Quads and $8 billion in annual economic savings. The key challenge to improving building insulation is to maintain and surpass the industry standard of R-5 per inch insulation value in a cost-competitive manner. Improvements in R-value without cost-efficiency are not likely to impact the market given the cost-sensitive nature of the construction industry (insulation is already the lowest-cost component of the building envelope). However, significantly higher insulating value at competitive costs is extremely appealing to the market given the greater potential to save on energy consumption and costs over the long-term. Thus, our goal is to develop a super-thermal insulation with 50% greater insulation value (R-9 to R-10 per inch) and manufacturing costs that are equal on a per-R-value basis (< $0.70/ft2).

  18. Design and building of a new experimental setup for testing hydrogen storage materials

    DEFF Research Database (Denmark)

    Andreasen, A.

    2005-01-01

    For hydrogen to become the future energy carrier a suitable way of storing hydrogen is needed, especially if hydrogen is to be used in mobile applications such as cars. To test potential hydrogen storage materials with respect to capacity, kinetics andthermodynamics the Materials Research...

  19. Natural radioactivity in some building materials in Cuba and their contribution to the indoor gamma dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Brigido Flores, Osvaldo; Barreras Caballero, Aldo A.; Montalvan Estrada, Alberto; Queipo Garcia, Maite [Ministerio de Ciencia, Tecnologia y Medio Ambiente, Camaguey (Cuba). Centro de Atencion a la Actividad Nuclear. Lab. de Vigilancia Radiologica Ambiental]. E-mail: sean@caonao.cmw.inf.cu; Zerquera, Juan Tomas [Ministerio de Ciencia, Tecnologia y Medio Ambiente, La Habana (Cuba). Agencia de Energia Nuclear. Centro de Proteccion y Higiene de las Radiaciones

    2001-07-01

    The natural radioactivity of some building materials commonly used in Cuba was measured by gamma spectrometry. Typical concentrations, so far encountered, are in the ranges: 47 to 2511 Bq.kg{sup -1} for {sup 40} K; 9 to 71 Bq.kg{sup -1} for {sup 226} Ra; and 2 to 38 Bq.kg{sup -1} for {sup 232} Th. The external gamma ray absorbed doses in indoor air, and the corresponding effective dose equivalents in a typical dwelling are presented in this work. (author)

  20. 废旧建筑材料的再利用--解构主义景观的生成%Discarded building materials recycling-deconstruction landscape generation

    Institute of Scientific and Technical Information of China (English)

    朱健

    2014-01-01

    The paper analyzes discarded building materials treatment methods at home and abroad, predicts discarded building material develop-ment conditions in China, studies feasibility and development conditions of discarded building material landscape, and explores advantages of de-construction landscape, with a view to realize sustainable development of building material.%就国内外对废旧建筑材料的处理方法进行了分析,预测了未来国内废旧建筑材料发展的状况,对废旧建筑材料景观化的可行性及发展状况进行了研究,探究了解构主义景观的优势,以实现建筑材料的可持续发展。

  1. Combination of ionic self-assembly and hydrogen bonding as a tool for the synthesis of liquid-crystalline materials and organogelators from a simple building block.

    Science.gov (United States)

    Camerel, Franck; Faul, Charl F J

    2003-08-07

    In this communication we report on the facile combination of hydrogen bonding and the ionic self-assembly (ISA) process to produce organized materials and fiber-containing organogel superstructures from functionalised oligoelectrolytic building blocks.

  2. Characterization of Emissions from Building Products: Selection Criteria, Storage and Handling of Indoor Materials for Experiments

    DEFF Research Database (Denmark)

    Kjær, Ulla Dorte; Nielsen, Peter A.; Marcussen, Lis

    1996-01-01

    be indoor climate relevant, meaning that they should be in direct contact with indoor air when used in buildings, and their emission should contribute significantly to the indoor air concentrations for instance due to a large surface area. They should be representative in terms of being widely used, now...... that the emission mechanisms do not change as a consequence of physical processes or chemical reactions. The five products selected were PVC flooring, waterborne varnish on beechwood parquet, carpet, sealant, and waterborne paint on gypsum board. The products were brought to the laboratory immediately after...

  3. Influence of precision of emission characteristic parameters on model prediction error of VOCs/formaldehyde from dry building material.

    Directory of Open Access Journals (Sweden)

    Wenjuan Wei

    Full Text Available Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0, the diffusion coefficient (D, and the partition coefficient (K, can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C.

  4. Development of Ultra-Light Composite Material to Build the Platform of a Shaking Table

    Directory of Open Access Journals (Sweden)

    Botero-Jaramillo Eduardo

    2013-10-01

    Full Text Available Based on the developments of the last decades in the area of ultra-light materials, their application in the construction of the platform of the new one direction hydrau- lic shaking table was proposed, with capacity of one ton and frequency range from 0.4 Hz to 4.0 Hz for the Geotechnical Laboratory of the Institute of Engineering, UNAM. The aim was to replace the heavy conventional steel platforms, used in shaking tables, by a composite material based on wood and Kevlar, hence reducing its weight and optimizing the hydraulic equipment capacity available in the labora- tory. Accordingly, an experimental investigation was conducted to characterize the stress-strain behavior of composite materials under monotonically increasing load. This research involved the determination of the adequate proportions of the different constituent materials and manufacturing techniques that best suit the needs and available resources.

  5. Application of Landscape Building Materials on Chinese Landscape Architecture%园林建材在中国园林中的应用

    Institute of Scientific and Technical Information of China (English)

    刘洋; 陈月华

    2012-01-01

    The history of human development civilization includes the history of the development and application of landscape building materials, and paraphrases the all process from liberating the productive forces to developing it. As time goes on,lots of building materials are applied in landscape building materials,with the development of the productive forces and science. By consulting the history of Chinese landscape architecture, analyzing the development and application in landscape building materials, the paper outlined the development process of landscape building materials, and explored the application of the landscape building materials in Chinese landscape architecture.%人类发展的文明史包含了园林建材的发展与应用史,其诠释了从解放生产力到发展生产力的全部过程,并随着时间的推移、生产力的进步、科技的发展,大量的建筑材料在园林中得到应用。文章以中国园林的发展历史为参照,分别从园林建材的发展与应用2个方面进行简析,简述了园林建材的发展过程,并以此为启示,探讨园林建材在中国园林中的应用。

  6. 新型建筑材料在现代高层建筑中的应用研究%Application research of new building materials in modern high-rise building

    Institute of Scientific and Technical Information of China (English)

    周洋

    2015-01-01

    Combining with many years’working experience,the paper studies application conditions of new building materials in modern high-rise building from three aspects of new wall materials,thermal insulation materials and decoration materials,and finally points out that:new ma-terial replacing traditional material will be the development tendency of architectural industry in future.%结合多年的工作经验,从新型墙体材料、保温隔热材料、装饰装修材料三个方面对新型建筑材料在现代高层建筑中的应用情况进行了研究,指出新型材料替代传统材料将成为建筑业今后的发展方向。

  7. Evaluation of the dependence of radiation hazard indices on the physical characteristics of phosphogypsum-based building materials

    Energy Technology Data Exchange (ETDEWEB)

    Maduar, M.F.; Mazzilli, B.P.; Nisti, M.B. [Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP (Brazil)

    2014-07-01

    Phosphogypsum, a waste by-product derived from the production of phosphoric acid, is being worldwide stockpiled, posing concerns about the environmental problems originating from this practice. Considerations about the viability of the safe reuse of this material have been raised, among them its potential use in civil construction. However, as phosphogypsum can contain natural radionuclides in significant concentrations, using it as a building material has radiological implications, which presently prevent such application. In order to evaluate the feasibility of using phosphogypsum in the manufacturing of building elements such as bricks and plates, a comprehensive research is underway at IPEN, Brazil, following a multiple approach. This research includes studies related to: a) phosphogypsum characterization; b) experimental determination of radon exhalation rates; c) application of theoretical models to forecast both radon exhalation and external doses. In this paper, a case study is performed, using the physical parameters of Brazilian phosphogypsum from different origins, already characterized in previous works, including radionuclides concentration, apparent density and radon exhalation rates. The data are applied to well established methodologies for evaluating the radiation hazard indices and the influence of each physical parameter is also studied. This work will contribute to the national regulatory authority in the definition of constraints for using phosphogypsum in civil construction. Document available in abstract form only. (authors)

  8. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators

    Science.gov (United States)

    Sahin, Ozgur; Chen, Xi

    2014-03-01

    Materials that mechanically respond to external chemical stimuli have applications in a wide range of fields. Inspired by biological systems, stimuli-responsive materials that can oscillate, transport fluid, mimic homeostasis, and undergo complex changes in shape have been previously demonstrated. However, the effectiveness of synthetic stimuli-responsive materials in generating work is limited when compared to mechanical actuators. During studies of bacterial sporulation, we have found that the mechanical response of Bacillus spores to water gradients exhibits an energy density of more than 10 MJ/m3, which is two orders of magnitude higher than synthetic water-responsive materials. We also identified mutations that can approximately double the energy density of the spores, and found that spores can self-assemble into dense, submicron-thick monolayers on substrates such as silicon microcantilevers and elastomer sheets, creating self-assembled actuators that can remotely generate electrical power from an evaporating body of water. The energy conversion mechanism of Bacillus spores may facilitate synthetic stimuli-responsive materials with significantly higher energy densities. We acknowledge support from the U.S. Dept. of Energy Early Career Research Program, the Wyss Institute for Biologically Inspired Engineering, and the Rowland Institute at Harvard.

  9. Chemical and mineralogical characterization of archaeologicam building materials from Seyitomer Hoyuk Kutahya, Turkey.

    Science.gov (United States)

    Bilgen, Nejat; Olgun, Asim

    This paper focuses on the spectroscopic and thermal analysis of the archaeological samples of mortar and plaster from middle Bronze Age and Achaemenid period in Seyitömer Höyük. The composition of the samples was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric thermal analysis (TG-DTA). The results showed that human used different types of raw materials in the preperation of the mortar and plaster in the Middle Bronze Age and Achaemenid period. The material used in middle Bronze Age contains muscovite whereas the material in Achaemenid period contains albite. Although, the chemical composition of the mortar and plaster used in the period were similar, the calcium content of the plaster is relatively higher than the one of the mortar indicating people's awareness of the binding properties of calcite.

  10. Testing a model for the critical degree of saturation at freezing of porous building materials

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1996-01-01

    Frost resistance of porous materials can be characterized by the critical degree of saturation, SCR. An experimental determination of SCR is very laborious and therefore only seldom used when testing frost resistance. A theoretical model for prediction of SCR based on fracture mechanics and phase...... geometry of two-phase materials has been developed. The degradation is modelled as being caused by different eigenstrains of the pore phase and the solid phase when freezing, leading to stress concentrations and crack propagation. Calculations are based on porosity, pore size distribution, modulus...... of elasticity, tensile strength, amount of freezable water, thermal expansion coefficients and parameters characterizing the pore structure and its effect on strength, modulus of elasticity and volumetric expansion. For the present, the model assumes non air-entrained homogeneous materials subjected to freeze...

  11. Integration of terrestrial laser scanner, ultrasonic and petrographical data in the diagnostic process on stone building materials

    Science.gov (United States)

    Casula, Giuseppe; Fais, Silvana; Giovanna Bianchi, Maria; Cuccuru, Francesco; Ligas, Paola

    2015-04-01

    The Terrestrial Laser Scanner (TLS) is a modern contactless non-destructive technique (NDT) useful to 3D-model complex-shaped objects with a few hours' field survey. A TLS survey produces very dense point clouds made up of coordinates of point and radiometric information given by the reflectivity parameter i.e. the ratio between the amount of energy emitted by the sensor and the energy reflected by the target object. Modern TLSs used in architecture are phase instruments where the phase difference obtained by comparing the emitted laser pulse with the reflected one is proportional to the sensor-target distance expressed as an integer multiple of the half laser wavelength. TLS data are processed by registering point clouds i.e. by referring them to the same reference frame and by aggregation after a fine registration procedure. The resulting aggregate point cloud can be compared with graphic primitives as single or multiple planes, cylinders or spheres, and the resulting residuals give a morphological map that affords information about the state of conservation of the building materials used in historical or modern buildings, in particular when compared with other NDT techniques. In spite of its great productivity, the TLS technique is limited in that it is unable to penetrate the investigated materials. For this reason both the 3D residuals map and the reflectivity map need to be correlated with the results of other NDT techniques such as the ultrasonic method, and a complex study of the composition of building materials is also necessary. The application of a methodology useful to evaluate the quality of stone building materials and locate altered or damaged zones is presented in this study based on the integrated application of three independent techniques, two non destructive such as the TLS and the ultrasonic techniques in the 24-54 kHz range, and a third to analyze the petrographical characteristics of the stone materials, mainly the texture, with optical and

  12. Proportion and Building Material, or Theory versus Practice in the Determination of the Module

    Directory of Open Access Journals (Sweden)

    Lex Bosman

    2015-05-01

    Full Text Available Architectural theorists have advocated the use of a module in the design process since the time of Vitruvius, but the responsibility for the creation of the module has remained largely unclear. The module has always been described as related or equal to the column shaft diameter. Since antiquity columns, for example, were mostly delivered in standard measures; the architect in charge was very limited in his selection of a module. In the 15th and 16th centuries, only gradually did theoreticians understand that here theory and practice were not in line. Things began to change with Vignola, who described a method for how to calculate the proper module for each individual design and building project.

  13. The role of absorbent building materials in moderating changes of relative humidity

    DEFF Research Database (Denmark)

    Padfield, Tim

    The problem studied in this work is, how porous, absorbent materials surroundning or placed in a room influence the relative humidity of the room. This is of interest in designing precautions and machinery to monitor the indoor climate in museums and dwelling rooms. - A novel technique for the in......The problem studied in this work is, how porous, absorbent materials surroundning or placed in a room influence the relative humidity of the room. This is of interest in designing precautions and machinery to monitor the indoor climate in museums and dwelling rooms. - A novel technique...

  14. A multi-analytical approach for the characterization of wall painting materials on contemporary buildings

    Science.gov (United States)

    Magrini, Donata; Bracci, Susanna; Cantisani, Emma; Conti, Claudia; Rava, Antonio; Sansonetti, Antonio; Shank, Will; Colombini, MariaPerla

    2017-02-01

    Samples from Keith Haring's wall painting of the Necker Children Hospital in Paris were studied by a multi-analytical protocol. X-ray fluorescence (XRF), powder X-ray diffraction (XRDP), Electron microscope (SEM-EDS), Infrared and Raman spectroscopy (μ-FT-IR and μ-Raman) measurements were performed in order to characterize the materials and to identify the art technique used to produce this contemporary work. Materials from the mural suffered from severe detachments of materials and several fragments were found on the ground beneath. Some of these fragments, which were representative of the whole palette and stratigraphic sequence, were collected and studied. The fragments were sufficiently large to enable non-invasive measurements to be performed in order to characterize the materials. A comparison of the data of the techniques applied revealed that Haring's palette was composed of organic pigments such as Naphtol red, phthalocyanine blue and green and Hansa yellow, in accordance with those used previously by the artist in other painted murals.

  15. Effect of airflow velocity on moisture exchange at surfaces of building materials

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Rode, Carsten; Peuhkuri, Ruut Hannele

    2006-01-01

    The moisture transfer between air and construction are affected of the boundary layer conditions close to the surface, which is influenced by the airflow patterns in the room. Therefore an investigation of the relation be-tween the surface resistance and the airflow velocity above a material samp...

  16. A Place for Materials Science: Laboratory Buildings and Interdisciplinary Research at the University of Pennsylvania

    Science.gov (United States)

    Choi, Hyungsub; Shields, Brit

    2015-01-01

    The Laboratory for Research on the Structure of Matter (LRSM), University of Pennsylvania, was built in 1965 as part of the Advanced Research Projects Agency's (ARPA) Interdisciplinary Laboratories (IDL) program intended to foster interdisciplinary research and training in materials science. The process that led to the construction of the…

  17. The Development of Certified Substantial Reference Material for Radioactivity of Building Materials%放射性建材实物标准样品的研制

    Institute of Scientific and Technical Information of China (English)

    韩颖

    2012-01-01

    Certified Substantial RMs "Reference Material for Radioactivity of Stone", "Reference Material for Radioactivity of the Ceramic Products" and "Reference Material for Radioactivity of the Powder Ash Air- entrained Concrete" are used to calibrate γ spectrometers and examine the veracity of the measurement for the content of radionuclides 256Ra, 232Th and 40K in approximate host-material samples.They covers all the radionuclides needed to be tested in building materials. All the radionuclides have been in secular radioactive equilibrium.The fixed value of these three RMs were measured by 8 authoritative radioactivity testing institution. Their homogeneity and stability is good so as to provide to protection for people's safety and health.%有证实物标准样品“石材放射性标准样品”、“陶瓷产品的放射性标准样品”及“粉煤灰砌块的放射性标准样品”适用于γ谱仪校准和考核相近基质样品中所含放射性核素36Ra、232h和40K含量测定的准确性,覆盖了建材产品需要检验的所有核素,达到放射平衡。样品由8家权威放射性检测机构采用低本底多道γ能谱仪测量方法进行定值测量,均匀性和稳定性良好,以对人们的安全与健康提供保护。

  18. Modelling critical degrees of saturation of porous building materials subjected to freezing

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1996-01-01

    the pore structure and its effect on strength, modulus of elasticity and volumetric expansion. Also the amount of freezable water and thermal expansion coefficients are involved. For the present, the model assumes non air-entrained homogeneous materials subjected to freeze-thaw without de-icing salts...... to describe the development of stresses and the pore structure, because a mathematical description of the physical theories explaining the process of freezing of water in porous materials is lacking.Calculations are based on porosity, modulus of elasticity and tensile strength, and parameters characterizing...... involved will be unnecessary, making the model more useful in practice.Keywords: Brick tile, concrete, critical degree of saturation, eigenstrain, fracture mechanics, frost resistance, pore size distribution, pore structure, stress development, theoretical model....

  19. Hidrofobna zaščita poroznih gradbenih materilov: Hydrophobic protection of porous building materials:

    OpenAIRE

    Apih, Vera; Nemec, Tomaž; Polšak, Gorazd

    2000-01-01

    A hydrofobic treatment with silane agents is used for the surface protection of concrete in road construction. The hydrofobic (water repellent) protective coating prevents the penetration of water into the material while allowing the penetration of vapour. Two standard methods are employed for determining the hydrofobic efficiency of various silane agents: measurement of capillary water adsorption in impregnated concrete samples and the OSMO test (measurement of frost resistance of impregnate...

  20. Mold Susceptibility of Rapidly Renewable Building Materials Used in Wall Construction

    Science.gov (United States)

    2007-12-01

    from outside the home can be introduced through moisture absorption from the exterior, facility cracks and penetrations, and leaky windows or roofs...from clay, cement, steel , fiberglass and gypsum. If so, rapidly renewable materials may not be desirable as long- term sustainable construction...through the court adding additional 23 23 costs to the claims, which only exacerbates the media craze and lawsuit frenzy that is taking place

  1. Maximizing the Sustainability of Cement Utilization in Building Projects through the Use of Greener Materials

    Directory of Open Access Journals (Sweden)

    Mark Bediako

    2016-01-01

    Full Text Available Greener technologies and sustainable developments are currently among the main tools used by many industries in shaping the world for a better future. The construction industry that is known to have numerous negative impact on sustainability is now wide awake on sustainable measures which can aid in reducing its negative impact. In this work, green cement was produced from pyroprocessed clay (PC at 800°C and mixed together with Portland cement. This paper presents both laboratory tests and some field applications of green cement application. Laboratory tests performed included setting times, compressive strength, and shrinkage. Field applications of the green cement are shown. Results from the work showed that well-proportioned greener cement gained strengths between 11% and 30% more than Portland cement at standard curing period of 3, 7, 14, and 28 days. However, in real statistical terms, there was no difference between Portland cement and green cement strength performance. Shrinkage from both total and autogenous tests also showed insignificant differences between the two cements. The study recommends the use of green cements with pozzolanic origin than only Portland cement as a way to maximize sustainability in building projects.

  2. Innovative Building Material - Reduction of Air Pollution through TioCem®

    Science.gov (United States)

    Bolte, G.

    In many European cities air quality is a massive problem. Besides the particulate matter, nitrogen oxides (NOX) and volatile organic compounds (VOC) are mainly responsible for the heavy pollution. Motivation to “do something” to protect the environment and climate is increasing constantly. Pollutants such as nitrogen oxides can be oxidized by means of photolysis. With the help of photocatalytic active particles this effect can be accelerated extensively. Photocatalytic active particles dispersed in the concrete turn it into an air pollutant reducing surface. Pollutants getting in contact with the concrete surface are decomposed or oxidized and therewith rendered harmless. This brand new technique is introduced into building industry with a new label “TX Active®“. A premium brand cement for the production of photo catalytically active concrete products - TX Active® products - is now available in the form of TioCem®. This cement can effectively contribute to air purification by using in numerous concrete components such as pavement, roof tiles, facade plates, concrete road surfaces, mortars etc.

  3. Clearance of materials, buildings and land with low content of radioactive materials. Methodology and documentation; Frigivelse af materialer og omraeder med lavt aktivitetsindhold. Metodebeskrivelse og dokumentation

    Energy Technology Data Exchange (ETDEWEB)

    Hedemann Jensen, P.; Lauridsen, B.; Soegaard-Hansen, J.; Warming, L

    2003-06-01

    The concepts and methods of clearance of materials originating from the decommissioning af the nuclear facilities at Risoe National Laboratory are described as well as procedures for clearance of buildings and land. The recommendations from international organisations as well as national regulation on clearance are presented. Methods for characterisation and separation of waste being candidate for clearance are presented.Di .erent methodologies for determining the content of radionuclides in candidate waste for clearance are discussed,and the need for and construction of a low-level laboratory for activity analyses in both bulky and less bulky subjects is described. Laboratory analyses, documentation of results and education of health physics personnel is presented. (au)

  4. The effect of nesting material on the nest-building and maternal behavior of domestic sows and piglet production.

    Science.gov (United States)

    Chaloupková, H; Illmann, G; Neuhauserová, K; Simecková, M; Kratinová, P

    2011-02-01

    Nest building is an important part of maternal behavior in domestic pigs. The aim of the study was to assess the effect of nesting material sawdust vs. straw on sow behavior 24 h before and after birth of the first piglet (BFP) and piglet production. Sows, housed in farrowing crates, were randomly divided into 2 treatments: sawdust (n = 12) and straw (n = 13). Sawdust and straw were provided during the pre- and parturient period; after parturition, straw was given to both experimental groups. The prepartum nesting period (the time interval between the first and last nest-building records, including all other activity and resting before BFP), the nesting records (number of nesting records), nesting duration (duration of all nesting records), the start and termination of nesting, and the frequency of prepartum postural changes were collected 24 h before BFP. After BFP, number of nesting records and time to first sucking of the litter were collected. Frequency of postural changes and duration of udder access were collected 24 h after BFP during 3 time periods (during parturition, from the end of parturition to 12 h after BFP, and 12 to 24 h after BFP) and the frequency of nursing during 2 time periods (from the end of parturition to 12 h after BFP, and 12 to 24 h after BFP). Piglet BW gain and mortality were estimated 24 h after BFP. Data were analyzed using PROC MIXED and the probability of the piglet mortality using PROC GENMOD in SAS. Nesting material did not affect (P > 0.10) most of sow prepartum nesting behavior and had no effect (P > 0.10) on the prepartum frequency of postural changes. Sows from the sawdust treatment had a longer nesting period (P 0.10) of the nesting material on piglet BW gain and mortality was found. The results suggest that sawdust compared with straw as nesting material provided to sows before and through parturition does not negatively affect maternal behavior during the 24 h before and after parturition or piglet production. Therefore

  5. Natural Radioactivity in Building Materials and Its Harm%建筑材料的天然放射性及其危害

    Institute of Scientific and Technical Information of China (English)

    赵琼慧

    2015-01-01

    建筑材料分为无机非金属建筑主体材料和无机非金属装修材料,通过检测结果,证明建筑材料中所含的长寿命天然放射性核素会放射α、γ射线,直接对室内构成内、外照射危害,从而对人体造成健康危害,因此不容忽视。%Building materials are divided into inorganic non-metallic building main body materials and inorganic non-metallic decoration materials,building materials in the long life of radioactive nuclide radiation alpha and gamma rays,directly to indoor constitute the internal and external exposure hazards,to cause a health hazard to human body,therefore,it should not be ignored.

  6. Building a Unified Computational Model for the Resonant X-Ray Scattering of Strongly Correlated Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bansil, Arun [Northeastern Univ., Boston, MA (United States)

    2016-12-01

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source, literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering—density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization—to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.

  7. New Materials for the Undergraduate Classroom to Build Pre-Service Teachers' NGSS Skills and Knowledge

    Science.gov (United States)

    Egger, A. E.; Awad, A. A.; Baldwin, K. A.; Birnbaum, S. J.; Bruckner, M. Z.; DeBari, S. M.; Dechaine, J.; Ebert, J. R.; Gray, K. R.; Hauge, R.; Linneman, S. R.; Monet, J.; Thomas, J.; Varrella, G.

    2014-12-01

    As part of InTeGrate, teams of 3 instructors at 3 different institutions developed modules that help prepare pre-service teachers to teach Earth science aligned with the NGSS. Modules were evaluated against a rubric, which addresses InTeGrate's five guiding principles, learning objectives and outcomes, assessment and measurement, resources and materials, instructional strategies and alignment. As all modules must address one or more Earth-related grand challenge facing society, develop student ability to address interdisciplinary problems, improve student understanding of the methods of geoscience, use authentic geoscience data, and incorporate systems thinking, they align well with the NGSS. Once modules passed the rubric, they were tested by the authors in their classrooms. Testing included pre- and post-assessment of geoscience literacy and assessment of student learning towards the module goal; materials were revised based on the results of testing. In "Exploring Geoscience Methods with Secondary Education Students," pre-service science teachers compare geoscientific thinking with the classic (experimental) scientific method, investigate global climate change and its impacts on human systems, and prepare an interdisciplinary lesson plan that addresses geoscience methods in context of a socioscientific issue. In "Soils and Society," pre-service elementary teachers explore societal issues where soil is important, develop skills to describe and test soil properties, and create a standards-based Soils and Society Kit that consists of lessons and supporting materials to teach K-8 students about a soil-and-society issue. In "Interactions between Water, Earth's Surface, and Human Activity," students explore the effects of running water on shaping Earth's surface both over geologic time and through short-term flooding events, and produce a brochure to inform citizens of the impact of living near a river. The modules are freely available at http://serc.carleton.edu/integrate/teaching_materials

  8. Physical chemical studies of dispersed aluminosilicate wastes for obtaining the burned building materials

    Science.gov (United States)

    Iuriev, I. Y.; Skripnikova, N. K.; Volokitin, G. G.; Volokitin, O. G.; Lutsenko, A. V.; Kosmachev, P. V.

    2015-01-01

    This paper presents results of the studies that determined that grinding can be one of the ways to modify aluminosilicate wastes. The optimal grinding modes were defined in laboratory conditions. Physical and chemical studies of modified ashes were carried out by means of X-ray phase analysis, differential thermal analysis and microscopy. The results have shown that modified ashes of thermal power stations when being applied in production of ceramic brick influence positively the processing properties of raw materials and the ready products.

  9. Preliminary Research Concerning Optimal Percentage of Hemp Hurds for Lining Panels and Filler Materials in Buildings

    Directory of Open Access Journals (Sweden)

    Maria - Adriana GHERGHISAN

    2013-03-01

    Full Text Available Composite materials for liningst and wall fillermade of hemp hurds and mineral binders represent again in recovery of mineral binders and use ofrepresent lignocellulosic fiber resulted afterprocessing.This paper aims to establish the optimumpercentual range of hemp hurds that can beembedded in ceramic mass, which is able to supportin various stages, the physical and dimensionalintegrity, manipulation, transport and during sandingresistance, the remaining viable recipes being theones that successfully pass this preliminary test. It isexpected for these samples to have comparablethermal and acoustic properties with similar industrialproducts, currently manufactured, which givesthepractical applicability of these composites.

  10. Analysis of degradation phenomena in ancient, traditional and improved building materials of historical monuments

    Science.gov (United States)

    Figueiredo, M. O.; Silva, T. P.; Veiga, J. P.

    2008-07-01

    A review is presented on constructive techniques plus materials and the processes involved in degradation phenomena observed in two historical monuments: the Zambujeiro dolmen (Portugal) and the Roman Aqueduct of Carthage (Tunisia). Dolmens are particularly impressive megalithic constructions for the dimensions of granite blocks. At Zambujeiro, the upright stones have undergone a catastrophic evolution after the archaeological exploitation due to accelerated weathering through a process apparently distinct from natural granite decay in nearby outcrops. The biological attack of granite minerals by lichen exudates has emphasized the hazardous character of bromine and more has been learnt about construction techniques, namely, the insertion in the mound of an impermeable clay stratum that hinders water penetration into the dolmen chamber. The characterization of original Roman ashlar blocks, including masonry and the diagnosis of Byzantine and medieval reconstruction testimonies in the Aqueduct of Carthage were the object of a detailed study by X-ray diffraction and synchrotron radiation X-ray fluorescence. Traditional constructive techniques and local construction materials were studied and successive historical, modern and recent rehabilitations were reappraised.

  11. Bifunctional pincer-type organometallics as substrates for organic transformations and as novel building blocks for polymetallic materials.

    Science.gov (United States)

    Rodríguez, Gema; Albrecht, Martin; Schoenmaker, Jeroen; Ford, Alan; Lutz, Martin; Spek, Anthony L; van Koten, Gerard

    2002-05-08

    The reactivity of the bifunctionalized ligand NC(Br)N-I 1 [IC(6)H(2)(CH(2)NMe(2))(2)-3,5-Br-4] has been studied as a versatile synthon for organic and/or organometallic synthesis. Chemoselective metalation (M = Pd, Pt, Li) at the C(aryl)-I or C(aryl)-Br bonds was achieved by choosing the appropriate metal precursors. In this way a series of Pt(II) and Pd(II) complexes were prepared that have a second functional group available for further reactions. These Pt(II) and Pd(II) complexes were subjected to a wide range of organic and organometallic reactions, revealing the remarkable stability of their M-C sigma-bond and opening an easy route for the synthesis of mono- and (hetero)bimetallic building blocks. The scope of the chemistry of such building blocks shows that they are good candidates for use in the synthesis of dendrimers, bioorganometallic systems, or polymetallic materials. The X-ray crystal structures of the most representative complexes (2, 3a, 19, 20, and 24) are also reported.

  12. Elaboration of building materials from industrial waste from solid granular diatomaceous earth; Elaboracion de material de construccion a partir de residuos industriales solidos granulares procedentes de tierras diatomaceas

    Energy Technology Data Exchange (ETDEWEB)

    Del Angel S, A.

    2015-07-01

    In this work the initial characterization of granular solid industrial waste from diatomaceous earth was carried out using techniques of Scanning Electron Microscopy and X-ray Diffraction. In a second stage leaching of the material was undertaken to the US Patent Number 5, 376,000 and 5, 356,601 obtaining the samples M1-S ph 2, M1-L ph, M1-S ph 10 and M1-L ph 10. In the third stage a new characterization of the samples obtained with the techniques of Scanning Electron Microscopy, X-ray Diffraction and Atomic Absorption Spectrometry was performed, the latter in order to determine the efficiency percentage of the leaching process. In the fourth stage the specimens for performing mechanical, physical and chemical tests were manufactured, using molds as PVC pipes of 1 inch in diameter and 2 inches in length, with a composition of 50% of diatomaceous earth and 50% of cement produced in each. Finally, in the fifth stage mechanical testing (compression resistance), physical (moisture absorption rate) and chemical (composition and structure of the material) are performed. In the last stage, when conducting mechanical testing with the test specimens, the presence of bubbles enclosed in each obtaining erroneous results noted, so it was necessary to develop the specimens again, obtaining in this occasion concentrations of 20:80, 40:60, 60:40 and 80:20 of diatomaceous earth with the cement. These results were analyzed to determine if the used material is suitable for the production of building materials such as bricks or partitions, being demonstrated by the tests carried out if they are eligible. (Author)

  13. Calculation of indoor effective dose factors in ORNL phantoms series due to natural radioactivity in building materials.

    Science.gov (United States)

    Krstic, D; Nikezic, D

    2009-10-01

    In this paper the effective dose in the age-dependent ORNL phantoms series, due to naturally occurring radionuclides in building materials, was calculated. The absorbed doses for various organs or human tissues have been calculated. The MCNP-4B computer code was used for this purpose. The effective dose was calculated according to ICRP Publication 74. The obtained values of dose conversion factors for a standard room are: 1.033, 0.752 and 0.0538 nSv h-1 per Bq kg-1 for elements of the U and Th decay series and for the K isotope, respectively. The values of effective dose agreed generally with those found in the literature, although the values estimated here for elements of the U series were higher in some cases.

  14. IR thermography applied to the assessment of thermal conductivity of building materials

    Science.gov (United States)

    Bison, P.; Grinzato, E.

    2010-05-01

    A device to measure thermal conductivity of small specimens is presented. The specimen is sandwiched between two thermoelectric cells, one sources heat the other sink it. An infrared camera looks at the device and specimen on its side, determining both the heat flux flowing through it and the temperature gradient due to the unknown thermal resistance. The thermal conductivity is quickly recovered, as soon as the steady thermal regime is reached. The heat flux toward the environment is evaluated and minimized working at zero mean temperature difference. A couple of specimens made of materials used to prepare radiant heating floor screeds are measured. The Maxwell model to determine the thermal conductivity of mixture, based on the knowledge of the conductivity of the different phases and their volume fraction, is used to interpret the results.

  15. Characterization of environmentally-friendly alkali activated slag cements and ancient building materials

    Science.gov (United States)

    Sakulich, Aaron Richard

    Alternative cement technologies are an area of increasing interest due to growing environmental concerns and the relatively large carbon footprint of the cement industry. Many new cements have been developed, but one of the most promising is that made from granulated, ground blast furnace slag activated by a high-pH solution. Another is related to the discovery that some of the pyramid limestone blocks may have been cast using a combination of diatomaceous earth activated by lime which provides the high pH needed to dissolve the diatomaceous earth and bind the limestone aggregate together. The emphasis of this thesis is not on the latter---which was explored elsewhere---but on the results supplying further evidence that some of the pyramid blocks were indeed reconstituted limestone. The goal of this work is to chemically and mechanically characterize both alkali-activated slag cements as well as a number of historic materials, which may be ancient analogues to cement. Alkali activated slag cements were produced with a number of additives; concretes were made with the addition of a fine limestone aggregate. These materials were characterized mechanically and by XRD, FTIR, SEM, and TGA. Samples from several Egyptian pyramids, an 'ancient floor' in Colorado, and the 'Bosnian Pyramids' were investigated. In the cements, it has been unequivocally shown that C-S-H, the same binding phase that is produced in ordinary portland cement, has been produced, as well as a variety of mineral side products. Significant recarbonation occurs during the first 20 months, but only for the Na2CO3-activated formulae. Radiocarbon dating proves that the 'Bosnian Pyramids' and 'ancient floors' are not made from any type of recarbonated lime; however, Egyptian pyramid limestones were finite, thus suggesting that they are of a synthetic nature. XRD and FTIR results were inconclusive, while TGA results indicate the limestones are identical to naturally occurring limestones, and SEM

  16. A Phase-Conjugate-Mirror Inspired Approach for Building Cloaking Structures with Left-handed Materials.

    Science.gov (United States)

    Zheng, Guoan; Heng, Xin; Yang, Changhuei

    2009-01-01

    A phase conjugate mirror (PCM) has a remarkable property of cancellation the back-scattering wave of the lossless scatterers. The similarity of a phase conjugate mirror to the interface of a matched RHM (right-handed material) and a LHM (left-handed material) prompts us to explore the potentials of using the RHM-LHM structure to achieve the anti-scattering property of the PCM. In this paper, we present two such structures. The first one is a RHM-LHM cloaking structure with a lossless arbitrary-shape scatterer imbedded in the RHM and its left-handed duplicate imbedded in the matched LHM. It is shown that such a structure is transparent to the incident electromagnetic (EM) field. As a special case of this structure, we proposed an EM tunnel that allows EM waves to spatially transport to another location in space without significant distortion and reflection. The second one is an RHM-PEC (perfect electric conductor)-LHM cloaking structure, which is composed of a symmetric conducting shell embedded in the interface junction of an RHM and the matched LHM layer. Such a structure presents an anomalously small scattering cross-section to an incident propagating EM field, and the interior of the shell can be used to shield small objects (size comparable to the wavelength) from interrogation. We report the results of 2D finite-element-method (FEM) simulations that were performed to verify our idea, and discuss the unique properties of the proposed structures as well as their limitations.

  17. Modelling the effects of phase change materials on the energy use in buildings. Results of Experiments and System Dynamics Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Prins, J.

    2012-02-15

    The current era is in need for more and more sustainable energy solutions. Phase Change Materials (PCM's) are a solution for a more sustainable build environment because they can help to reduce the energy use of buildings during heating and cooling of the indoor air. This paper presents the results of recent experiments that have been executed with test boxes. In addition a System Dynamics model has been developed to find out how PCM's can be used efficiently without testing in reality. The first experiment, in which PCM's were applied in a concrete floor, shows a reduction of peak temperatures with 4C {+-} 0.7C on maximum temperatures and over 1.5C {+-} 0.7C on minimum temperatures during warm periods. The model confirmed these findings, although the predicted reductions were slightly. During the second experiment more PCM's were applied by mounting them into the walls using gypsum plasterboard to increase the latent heat capacity. Remarkably, both the experimental set-up as the model showed that the increase of PCM's (of almost 98%) causes hardly any difference compared to the first situation. Adapting the exterior in a way to absorb more solar energy, increases the average indoor temperature but decreases the reduction of peak temperatures. Again the model confirmed these findings of the experiment. These results show that the effect of PCM's varies on different climatological contexts and with different construction components physics. This means no straight forward advice on the use of PCM's for a building design can be given. The solution for this problem is provided by the model, showing that the effects of PCM's can be modelled in order to use PCM's in an effective way in different climatological contexts and with different characteristics of construction components. The research shows that a simple model is already capable of predicting PCM performance in test boxes with reasonable accuracy. Therefore it can be

  18. Adhesives in Building--Lamination of Structural Timber Beams, Bonding of Cementitious Materials, Bonding of Gypsum Drywall Construction. Proceedings of a Conference of the Building Research Institute, Division of Engineering and Industrial Research (Spring 1960).

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC.

    The role of adhesives in building design is discussed. Three major areas are as follows--(1) lamination of structural timber beams, (2) bonding of cementitious materials, and (3) bonding of gypsum drywall construction. Topical coverage includes--(1) structural lamination today, (2) adhesives in use today, (3) new adhesives needed, (4) production…

  19. Energy reduction of building air-conditioner with phase change material in Thailand

    Directory of Open Access Journals (Sweden)

    Nattaporn Chaiyat

    2014-11-01

    Full Text Available In this study, a concept of using phase change material (PCM for improving cooling efficiency of an air-conditioner had been presented under Thai climate. Paraffin waxes melting point at around 20 °C was selected to evaluate the thermal performance by reducing the air temperature entering the evaporating coil. The model of PCM celluloid balls had been performed with the air-conditioner. Moreover, the mathematical model of the air-conditioner with the PCM storage was developed and verified with the testing results. From the study results, it could be seen that the simulated data agreed quite well with the experimental result at the discrepant around 2–4%. Finally, the model was used to analyze the economic result which was found that the electrical consumption of the modified air-conditioner could be decreased 3.09 kW h/d. The electrical power consumption of the modified unit was 36.27 kW h/d at the operating time 15 h/d compared with 39.36 kW h/d of the normal unit at the operating time 12 h/d. The saving cost of the PCM bed could be 9.10% or 170.03 USD and the payback period was 4.15 y.

  20. Chemical surety material decontamination and decommissioning of Los Alamos National Laboratory Chemical Surety Material Laboratory area TA-3, building SM-29, room 4009

    Energy Technology Data Exchange (ETDEWEB)

    Moore, T.E.; Smith, J.M.

    1994-04-01

    From 1982 through 1987, Los Alamos National Laboratory (LANL) performed surety laboratory operations for the U.S. Army Medical Research and Development Command (MRDC). Room 4009 in building SM-29, TA-3, was used as the laboratory for work with the following chemical surety material (CSM) agents: sarin (GB), soman (GD), lewisite (L), and distilled mustard (HD) radio-labelled with H{sup 3} or C{sup 14}. The work was confined to three CSM-certified fume hoods, located in room 4009 (see diagram in Appendix C). The laboratory ceased all active operations during the late 1986 and early 1987 period. From 1987 until 1993 the laboratory was secured and the ventilation system continued to operate. During late 1992, the decision was made to utilize this laboratory space for other operations, thus a decision was made to dismantle and reconfigure this room. LANL sub-contracted Battelle Memorial Institute (BMI) to draw upon the CSM experience of the technical staff from the Hazardous Materials Research Facility (HMRF) to assist in developing a decontamination and decommissioning plan. BMI was subcontracted to devise a CSM safety training course, and a sampling and air monitoring plan for CSM material to ensure personnel safety during all disassembly operations. LANL subcontracted Johnson Controls personnel to perform all disassembly operations. Beginning in early 1993 BMI personnel from the HMRF visited the laboratory to develop both the safety plan and the sample and air monitoring plan. Execution of that plan began in September 1993 and was completed in January 1994.

  1. Application of phase-changing materials in future buildings. Improvement of energy efficiency and indoor climate; Anvendelse af faseskiftende materialer i fremtidens bygninger. Forbedring af energieffektivitet og indeklima

    Energy Technology Data Exchange (ETDEWEB)

    Rose, J. (Statens Byggeforskningsinstitut, Hoersholm (Denmark)); Lund Jensen, R.; Heiselberg, P. (Aalborg Univ. (Denmark)); Hansen, M.; Kjeldsen, A.M.; Dous, C. le (Teknologisk Institut, Taastrup (Denmark)); Uhre Christensen, N. (Ingenioerhoejskolen i AArhus (Denmark))

    2011-07-01

    The aim of the project was to establish the basis for using phase changing materials (PCM) to improve the temperature conditions during summer in future new buildings. With the implementation of the planned new building codes requiring very low energy consumption (passive houses), it will be necessary for buildings to be comfortable during summer without using extra power for ventilation and mechanical cooling. The project has developed a numerical method to calculate latent heat storage in constructions containing phase changing materials. The calculation method has been implemented in the BSim program. A functionality to include the effect PCMs has also been added to the Be10 calculation program. The project has shown that good energy savings can be achieved for cooling and heating, but the price of the materials means long pay-back periods. (LN)

  2. A Study on Energy Saving Mode of Building Materials for Arcology%生态建筑的建材节能方式研究

    Institute of Scientific and Technical Information of China (English)

    邢红梅

    2015-01-01

    在21世纪的今天,建材的节能也成为可持续发展的研究重点。因此,文章首先对生态建筑和建材节能的概念进行分析,然后对生态建筑的建材节能方式进行分析研究。%In the 21st century today, energy saving of building materials is becoming the research focus of the sustain-able development. Therefore, this paper first analyzed the concept of arcology and energy saving of building materials, and then it analyzed the energy saving mode of the building materials for arcology.

  3. New bio-cleaning strategies on porous building materials affected by biodeterioration event

    Science.gov (United States)

    Valentini, Federica; Diamanti, Alessia; Palleschi, Giuseppe

    2010-09-01

    In this paper, a new bio-cleaning procedure based on the glucose oxidase (GOx) has been applied on the travertine and peperino substrata to remove the biological patina (i.e., biofilm). Glucose oxidase, used as a model enzyme system, is able to produce in situ H 2O 2 (the cleaning agent having oxidizing properties) by the enzymatic reaction at room temperature. The travertine and peperino samples came from the Villa Torlonia in Rome (Italy), and an analytical diagnosis on them was performed applying several analytical techniques, such as the differential interference contrast microscopy (DIC), the optical microscope (OM), the Fourier transform infrared spectroscopy (FT-IR) and the X-ray fluorescence (XRF) that evidence the presence of biofilms on the substrata. Better results were obtained on the travertine samples in terms of the cleaning efficiency and the absence of the etching effect on the surface, eventually induced by the peroxide molecule. These results could be explained in terms of the different porosities of the two kinds of stone materials, according to the BET data. A comparative study was also performed to validate the new bio-cleaning procedure, using both traditional approaches based on saturated (NH 4) 2CO 3 solution and EDTA in buffer solution and the enzyme lipase treatments. Among all, the cleaning procedure via GOx shows the best result, probably because the enzyme controls the concentration of the H 2O 2 in situ and also retains the H 2O 2 preferentially on the surface (where the biological patina is present) depending on the porosity of the substrata. A synergistic effect, with other enzymes such as lipase and protease, combined with the biocompatibility of the enzymatic treatments, could represent a new way for a higher cleaning efficiency to apply on different stone substrata.

  4. A novel method for measuring the diffusion, partition and convective mass transfer coefficients of formaldehyde and VOC in building materials.

    Directory of Open Access Journals (Sweden)

    Jianyin Xiong

    Full Text Available The diffusion coefficient (D(m and material/air partition coefficient (K are two key parameters characterizing the formaldehyde and volatile organic compounds (VOC sorption behavior in building materials. By virtue of the sorption process in airtight chamber, this paper proposes a novel method to measure the two key parameters, as well as the convective mass transfer coefficient (h(m. Compared to traditional methods, it has the following merits: (1 the K, D(m and h(m can be simultaneously obtained, thus is convenient to use; (2 it is time-saving, just one sorption process in airtight chamber is required; (3 the determination of h(m is based on the formaldehyde and VOC concentration data in the test chamber rather than the generally used empirical correlations obtained from the heat and mass transfer analogy, thus is more accurate and can be regarded as a significant improvement. The present method is applied to measure the three parameters by treating the experimental data in the literature, and good results are obtained, which validates the effectiveness of the method. Our new method also provides a potential pathway for measuring h(m of semi-volatile organic compounds (SVOC by using that of VOC.

  5. Building monument materials during the 3rd-4rd millennium (Portugal)

    Science.gov (United States)

    Moita, Patricia; Pedro, Jorge; Boaventura, Rui; Mataloto, Rui; Maximo, Jaime; Almeida, Luís; Nogueira, Pedro

    2014-05-01

    Dolmens are the most conspicuous remains of the populations of the 4th and first half of 3rd millennia BCE. These tombs are impressive not only for their monumentality, but also because of the socioeconomic investment they represent for those Neolithic communities, namely from the Central-South of Portugal, who built them. Although dolmens have been studied for their funerary content and typologies, an interdisciplinary approach toward the geological characterization and sourcing of stones used in these constructions has not received enough attention from researchers. With MEGAGEO project a multidisciplinary group of geologist and archaeologists intends to assess the relationship between the distribution of dolmens in Central-South Portugal, their source materials, and the geological landscape. GIS will map the information gathered and will be used to analyse these relationships. The selection of the areas, with distinctive geologies (limestone vs granite), will allow to verify if human patterns of behaviour regarding the selection of megaliths are similar or different regionally. Geologically the first target area (Freixo, Alentejo) is dominated by a small intrusion of gabbro mingled/mixed within a granodioritic intrusion both related with variscan orogeny. Granodiorite exhibit several enclaves of igneous and metamorphic nature attesting the interaction between both igneous rocks as well with enclosing gneisses. Despite Alentejo region have a reduced number of outcrops the granodiorite provides rounded to tabular metric blocks. The gabbro is very coarse grained, sometimes with a cumulate texture, and their fracturing and weathering provide very fresh tabular blocks. The five studied dolmens (Quinta do Freixo #1 to #5) are implanted in a large granodioritic intrusion, around the gabbroic rocks, within an area of approximately 9km2. The medium grained granodiorite is ubiquity in all the dolmens slabs and occasionally it can be observed features of mixing and

  6. 概述建筑外保温材料技术发展之现状%Overview of Technology Development of Building Insulation Materials

    Institute of Scientific and Technical Information of China (English)

    刘洪山; 朱勇

    2011-01-01

    This paper describes the current domestic and market for building insulation materials, and according to existing in use of building insulation materials it puts corresponding solution. international the problems forward the%本文主要介绍了目前国内外建筑外保温材料的市场现状,并针对国内建筑外保温材料使用过程中存在的一些问题提出了相应的解决办法。

  7. Torroja Institute, the historic building: conservation and characteristics of the materials of its façades

    Directory of Open Access Journals (Sweden)

    Luxán, M. P.

    1999-09-01

    Full Text Available The "Instituto de Ciencias de la Construcción" building is one of the most singular engineering design done by Eduardo Torroja: it was started in 1951. This study focused on the Institute façade-building materials has been carried out in the 100th anniversary of his birth. The analysis has revealed that the design of the original project has been of a great importance for the good conservation of the external walls. The pointing mortar characterization of its brick walls by instrumental techniques (infrared spectroscopy. X-ray diffraction, scanning electron microscopy with EDS reveals that calcite is its main component, with gypsum presence in polluted external zones and silica compounds from the sand. The obtained results indicate a good compatibility between mortars and façade bricks.

    El edificio del "Instituto de Ciencias de la Construcción", construido en 1951, constituye una de las obras singulares del ingeniero Eduardo Torroja. En el centenario de su nacimiento se ha elaborado este estudio, que se centra en los materiales de construcción de las fachadas del Instituto. De su análisis se desprende la importancia del diseño del proyecto original en la buena conservación de los paramentos exteriores. La caracterización de los morteros de junta de las fábricas de ladrillo de los paramentos, mediante técnicas instrumentales (espectroscopia infrarroja, difracción de rayos X, microscopía electrónica de barrido con energías dispersivas de rayos X revela que la calcita es el compuesto principal, con presencia de yeso -especialmente en zonas externas contaminadas- y compuestos silíceos procedentes de la arena. Los resultados sobre las fachadas reflejan una buena compatibilidad entre los morteros de cal y los ladrillos.

  8. The MaSe decision support system: Development of an integrated information system for the selection of environmentally preferable materials and products in the building process

    Energy Technology Data Exchange (ETDEWEB)

    Strand, Sigrid Melby

    2003-07-01

    New building regulations and increased focus on building related environmental burdens have created a need for guidance to design more sustainable buildings. The main objective in this thesis is to develop a decision support system, to guide decision-makers to a better selection of building materials and products, based on environmental prioritisation. The system is focused on building materials and products, but the structure of the system can be adapted to other types of decision problems. No tool is found that satisfy the identified needs for a material selection system. By studying existing methods, however important information and possible solutions are gathered, that partly could be used in a new tool. Key decision makers with respect to material and product selection are the client, the architects, the technical consultants, and the contractors when they decide on specific brands. The user of the MaSe system first identifies the materials acceptable in the specific project, based on the technical requirements. These pre-selected materials are then scored and ranked through the procedures in the MaSe system. The alternative ranking is then the basis for the selection of construction elements, materials or products. Seeing the building and real estate industry as a part of our society, it is clear that the use of material resources and pollution are areas that need improvement. The MaSe system includes environmental aspects under the headlines Resources, Ecology and Human health. When selecting building materials, factors like recycling and reuse needs to be considered. Renewability, energy and waste are other aspects included in the Resource area. Toxic substances are clearly important when it comes to building materials. Factors to be included under the headline Ecology are global warming, acidification, and photochemical oxidant formation. The emissions of toxics to air, water and soil will have effect on human health. Aspects that should be included in

  9. 基于建筑材料着火的工程事故研究%Research of Engineering Accident Based on Fire Building Materials

    Institute of Scientific and Technical Information of China (English)

    高振杰; 张智慧

    2014-01-01

    我国因建筑外保温材料引发的火灾事故频频发生,民用建筑外保温系统在节能增效的同时,是造成火灾事故频发的原因之一,如何从代价惨重的重特大火灾中吸取教训,进一步做好建筑外保温材料的防火工作已迫在眉睫。%China's fire accidents caused by building thermal insulation material frequently appeared. Civil building exterior insulation system is one of the causes of frequent fire accidents in energy efficiency. How to draw a lesson from the costly and great fire and further improve the fire prevention work of building exterior insulation materials are imminent.

  10. On the Detection of Building Exterior Wall Energy-saving Insulation Materials%建筑外墙节能保温材料检测浅析

    Institute of Scientific and Technical Information of China (English)

    吕志宏

    2015-01-01

    Based on the detection technology of building exterior wall energy-saving insulation materials, this article puts forward the method for the improvement of quality detection of energy saving insulation materials.%本文将立足建筑外墙节能保温材料的检测技术,提出完善节能保温材料质量检测的方法。

  11. Thermal behavior of building materials based in woody fibers; Comportamiento termico de materiales constructivos a base de fibras lenosas

    Energy Technology Data Exchange (ETDEWEB)

    Flores Murrieta, Fernando E; Bojorquez Baez, Inocente; Llovera Esteban, Arturo; Hernandez Rodriguez, Jose [Universidad de Quintana Roo, Chetumal, Quintana Roo (Mexico); Perez Sanchez, Maria M [Universidad Autonoma de Yucatan, Merida (Mexico)

    2000-07-01

    A Test development to obtain the thermal conductivity and the study of thermal performance of building materials by a device of the Guarded Hot Plate (25 x 24.8 cm) according to standards ASTM C 518-91 and C 717-97, in a range of low temperatures (23-50 Celsius degrees) are presented in this work. The device consist of a structure whit: heat source system; heat dissipator system; plates and specimens fastener, and assembly of thermocouples and insulated plates. Subsequently in the experiments, will be necessary to reach a steady state to different temperatures for monitoring the thermal gradient. Another side, considering the electric power of the overall system and the modified Fouriers equation for two specimens, we can obtain the thermal conductivity, for instance: Plaster; woods and new materials based on woody fibers. [Spanish] En este trabajo se presenta el estudio del comportamiento termico y desarrollo de prueba de conductividad termica tanto en materiales de construccion como aquellos basado en fibras lenosas en un rango de bajas temperaturas (23-50 grados Celsius). De acuerdo con las normas ASTM C-518-91 y C-177-97, se utiliza un dispositivo de placa caliente guardada de 25 x 24.8 cm. que requiere de dos muestras identicas de especimenes diferentes colocadas entre una fuente de calor y una fuente fria aisladas termicamente. Se presenta el desarrollo experimental para determinar la conductividad termica en estado estacionario a varias temperaturas de operacion en materiales constructivos tales como: yeso, madera de pino y a base de fibra lenosa. Los dos primeros materiales se han utilizado como referencia en la comparacion de las propiedades termofisicas que aparecen en la bibliografia tecnica. Lo cual nos permite tener un buen grado de confiabilidad en el dispositivo utilizado en la determinacion de dichas propiedades.

  12. Natural radioactivity and radon exhalation rates in man-made tiles used as building materials in Japan.

    Science.gov (United States)

    Iwaoka, K; Hosoda, M; Suwankot, N; Omori, Y; Ishikawa, T; Yonehara, H; Tokonami, S

    2015-11-01

    Man-made tiles frequently used in Japan were collected, and activity concentrations and radon ((222)Rn) exhalation rates in these tiles were measured. Dose estimations for inhabitants living in houses built using these tiles were also carried out. The activity concentrations of (226)Ra, (228)Ra and (40)K in the man-made tiles were 31-170, 35-110 and 260-980 Bq kg(-1), respectively. The (222)Rn exhalation rates in the tiles were 8.8-21 μBq m(-2) s(-1). The ranges of experimental activity concentrations and (222)Rn exhalation rates were almost identical to those of natural rocks used as typical building materials in Japan. The maximum value of effective dose to inhabitants living in houses built with the man-made tiles was 0.14 mSv y(-1), which is lower than the reference level range (1-20 mSv y(-1)) for abnormally high levels of natural background radiation published in the ICRP Publication 103.

  13. Research and Development Data to Define the Thermal Performance of Reflective Materials Used to Conserve Energy in Building Applications

    Energy Technology Data Exchange (ETDEWEB)

    Eisenberg, J

    2001-04-09

    A comprehensive experimental laboratory study has been conducted on the thermal performance of reflective insulation systems. The goal of this study was to develop test and evaluation protocols and to obtain thermal performance data on a selected number of idealized and commercial systems containing reflective airspaces for use in analytical models. Steady-state thermal resistance has been measured on 17 different test panels using two guarded hot boxes. Additional instrumentation was installed to measure the temperature of critical locations inside the test panels. The test parameters which have been studied are heat flow direction (horizontal, up, and down), number of airspaces comprising the cavity, airspace effective emittance, airspace aspect ratio, airspace mean temperature and temperature difference, and the thermal resistance of the stud material. Tests have also been performed on similar constructions with mass insulation. Two one-dimensional calculation techniques (ASHRAE and proposed ASTM) have been employed to determine the cavity thermal resistance from the measured test panel results. The measured cavity thermal resistance is compared with literature data which is commonly employed to calculate the thermal resistance of reflective airspace assemblies. A consumer-oriented handbook pertaining to reflective insulation for building and commercial applications has also been prepared as part of this study.

  14. The Baroque monuments of Modica (Eastern Sicily): assessment of causes of chromatic alteration of stone building materials

    Science.gov (United States)

    Belfiore, Cristina M.; La Russa, Mauro F.; Pezzino, Antonino; Campani, Elisa; Casoli, Antonella

    2010-09-01

    The Baroque monuments of several cities in eastern Sicily, built of local calcarenitic stone, are often subjected to conservation treatments, since they undergo many forms of alteration and degradation which can cause significant damage. However, a recent study of these building materials (Barone et al. in Environ. Geol. 54:1501, 2008) has demonstrated that some protective products, once applied, cause irreversible chromatic alterations. The façades of the monuments of the historic city centre of Modica are typically creamy yellow in colour, sometimes varying slightly due to the use of various pigments, such as clayey and gypseous earths (La Russa et al. in Appl. Phys. A 92:185, 2008). However, in some cases, these nuances are lost due to the application of protective products. This work provides a petrographic and colorimetric characterisation of the calcarenitic stone used to create the façades of the churches of S. Pietro, S. Maria del Soccorso and S. Maria dell’Annunziata in Modica, also by comparisons with locally quarried samples. In addition, it aims to identify protective substances which may have been used during previous restoration work. Analytical techniques included polarising optical microscopy, spectrophotometric colorimetric tests, Fourier-transform infrared spectroscopy (FTIR) and gas chromatography coupled with mass spectrometry (GC-MS).

  15. A review of vacuum insulation research and development in the Building Materials Group of the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kollie, T.G.; McElroy, D.L.; Fine, H.A.; Childs, K.W.; Graves, R.S.; Weaver, F.J.

    1991-09-01

    This report is a summary of the development work on flat-vacuum insulation performed by the Building Materials Group (BMG) in the Metals and Ceramics Division of the Oak Ridge National Laboratory (ORNL) during the last two years. A historical review of the technology of vacuum insulation is presented, and the role that ORNL played in this development is documented. The ORNL work in vacuum insulation has been concentrated in Powder-filled Evacuated Panels (PEPs) that have a thermal resistivity over 2.5 times that of insulating foams and seven times that of many batt-type insulations, such as fiberglass. Experimental results of substituting PEPs for chlorofluorocarbon (CFC) foal insulation in Igloo Corporation ice coolers are summarized. This work demonstrated that one-dimensional (1D) heat flow models overestimated the increase in thermal insulation of a foam/PEP-composite insulation, but three-dimensional (3D) models provided by a finite-difference, heat-transfer code (HEATING-7) accurately predicted the resistance of the composites. Edges and corners of the ice coolers were shown to cause the errors in the 1D models as well as shunting of the heat through the foam and around the PEPs. The area of coverage of a PEP in a foam/PEP composite is established as an important parameter in maximizing the resistance of such composites. 50 refs., 27 figs,. 22 tabs.

  16. Salt-enhanced chemical weathering of building materials and bacterial mineralization of calcium carbonate as a treatment

    Science.gov (United States)

    Schiro, M.; Ruiz-Agudo, E.; Jroundi, F.; Gonzalez-Muñoz, M. T.; Rodriguez-Navarro, C.

    2012-04-01

    Salt weathering is an important mechanism contributing to the degradation and loss of stone building materials. In addition to the physical weathering resulting from crystallization pressure, the presence of salts in solution greatly enhances the chemical weathering potential of pore waters. Flow through experiments quantify the dissolution rates of calcite and quartz grains (63-125 micrometer diameter) when subjected to 1.0 ionic strength solutions of MgSO4, MgCl, Na2SO4 or NaCl. Results indicate that the identity of the cation is the primary control over the dissolution rate of both calcite and quartz substrates, with salt-enhanced dissolution occurring most rapidly in Mg2+ bearing solutions. It has been observed that weathering rates of rocks in nature, as well as building stones, are slowed down by naturally occurring or artificially produced patinas. These tend to be bacterially produced, durable mineralized coatings that lend some degree of protection to the underlying stone surface [1]. Our research shows that bacterially produced carbonate coatings can be quite effective at reducing chemical weathering of stone by soluble salts. The calcite-producing-bacteria used in this study were isolated from stone monuments in Granada, Spain [2] and cultivated in an organic-rich culture medium on a variety of artificial and natural substrates (including limestone, marble, sandstone, quartz, calcite single crystals, glass cover-slips, and sintered porous glass). Scanning electron microscopy (FESEM) was used to image bacterial calcite growth and biofilm formation. In-situ atomic force microscopy (AFM) enabled calculation of dissolution rates of untreated and bacterially treated surfaces. 2D-XRD showed the mineralogy and crystallographic orientation of bacterial calcium carbonate. Results indicate that bacterially produced calcite crystals form a coherent, mechanically resistant surface layer in perfect crystallographic continuity with the calcite substrate (self

  17. Comparative evaluation of shear bond strength of three resin based dual-cure core build-up materials: An In-vitro study

    Directory of Open Access Journals (Sweden)

    Gaurav Jain

    2015-01-01

    Full Text Available Aim: The in-vitro study compared the shear bond strength (SBS of three recently introduced dual-cure resin based core build-up materials namely ParaCore, FluoroCore, and MultiCore. Materials and Methods: One hundred twenty extracted permanent human mandibular molar teeth were taken and sectioned horizontally beneath the dentinoenamel junction to expose the coronal dentin. The specimens obtained were divided into three main groups based on the materials used and then further divided into four sub-groups based on time interval with ten samples each. The dentin surface was treated with the respective adhesives of the groups and then bulk filled with core build-up materials. The attained samples were than subjected to shear loading in Instron Universal Testing Machine. The data were tabulated and statistically analyzed using analysis of variance (ANOVA, Tukey′s HSD, and Levene′s test. Results: The mean SBS was highest in MultiCore at all time periods as compared to FluoroCore and ParaCore and was also higher at 48 h thermocycling in all three groups studied. Conclusion: MultiCore dual-cure resin based core build-up material showed the highest mean SBS as compared to FluoroCore and ParaCore. SBS was not negatively affected by thermocycling.

  18. 酚醛建筑保温阻燃材料的研制%The Development of Phenolic Building Insulation Flame Retardant Materials

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    Along with the progress of people’s environmental protection consciousness and awareness of fire, insulation and flame retardant properties of building materials has been paid more and more at ention. But now a lot of building thermal insulation material has many problems in the flame retardant. This paper introduces to everybody a kind of excel ent flame retardant insulation building material——the phenolic building insulation flame retardant materials.%  随着人们环保意识和消防意识的进步,建筑材料的保温和阻燃性能越来越受到重视。但现在很多建筑保温材料在阻燃性上存在不少问题。本文向大家介绍一类具有优秀阻燃性的建筑保温材料——酚醛建筑保温阻燃材料。

  19. Research building demolition and reuse of materials technology%建筑拆解及材料再利用技术的研究

    Institute of Scientific and Technical Information of China (English)

    荆可歆

    2016-01-01

    随着我国城市化进程的加速,建筑不断被拆解和重建,但是旧的建筑材料的利用率比较低下,造成了相关的资源能源的浪费以及环境的污染。本文的研究从建筑拆解和材料再利用的相关概述出发,研究了循环经济以及循环经济思想的实践。并在基础上研究了建筑拆解及材料再利用技术的环境意义和社会意义。并着重研究了国内建筑拆解及材料再利用的现状和技术策略,废旧材料利用的经济效益,建筑材料拆除和再利用的环境影响评价等。%With the acceleration of urbanization process in China,building continue to be disassembled and rebuilt,but the utilization rate of the old building materials is relatively low,resulting in a pollution-related waste of resources and energy and the environment.This study outlines the construction dismantling and related materials recycling paper studies the practice of recycling economy and the cycle of economic thought.And on the basis of study of the building dismantling and material recycling technology,environmental and social significance.And focuses on the domestic construction dismantling and material recycling situation and technology strategy,the economic benefits of the use of waste materials, building materials removal and recycling of environmental impact assessment.

  20. Technology of building exterior wall thermal insulation material%建筑外墙保温材料防火性能技术探析

    Institute of Scientific and Technical Information of China (English)

    邓丽红

    2016-01-01

    近几年,随着我国经济建设的快速发展,各类高层新型建筑也伴随着社会发展和需要大量涌现,建筑的节能要求使得建筑外墙保温材料的使用量巨大。但几场由外墙保温材料引发的重特大火灾,使得政府有关部门认识到提高外墙保温材料防火性能要求的必要性,但如何将外墙保温材料的保温性与防火性有机的结合起来是个新的亟待解决的问题。本文通过分析建筑外墙保温材料的类型及其火灾危险性,结合当前建筑外墙保温材料的防火性能的现状,探析提高建筑外墙保温材料其防火性能的方法。%In recent years,with the rapid development of economic construction in our country,all kinds of tall new building is also accompanied by social development and needs large numbers,building energy-saving requirements makes the building external wall thermal insulation materials of the huge.But a few games by external wall thermal insulation material cause serious fire,the relevant government departments recognize the need to improve the external wall thermal insulation materials fire performance requirements,but how will the exterior wall thermal insulation material of thermal insulation and fireproof combining is a new urgent problems.In this paper,through the analysis of building exterior wall thermal insulation material type and fire hazard,combining with the building exterior wall thermal insulation material fire performance status,of building exterior wall thermal insulation material the fire performance of a method.

  1. 建筑材料在建筑表皮中的生态运用%Building Materials in Ecological Application of the Construction Skin

    Institute of Scientific and Technical Information of China (English)

    邓玮; 徐峰

    2012-01-01

    本文以建筑材料为切人点,着重阐述了建筑材料在建筑表皮中的生态运用策略。建筑材料的使用贯穿了建筑建造、维护以及改造等整个生命周期。材料会对建筑的外观、性能和建造成本造成影响。经过几十年的发展科研人员对材料的特性有了新的了解。材料有了全生命周期评价(LCA),当材料选择时可以考虑在建造过程中的可持续问题。通过材料在建筑表皮中的分层组成方式的分析模拟,设备的控制以及空腔等系统和材料自身物理性能,来完成应对气候和建筑微气候的适应及其变化。%This article to the point of building materials, focused on the ecological strategy of building material in the skin. Construction materials use · d throughout the building of the construction, maintenance and transformation throughout the life cycle. Material impact on the appearance, performance and construction of the building cost, After several decades of development researchers new understanding of the properties of the materials. Materials have a life-cycle assessment (LCA), when the material can be taken into account in the construction of sustainability issues in the process. By material in the skin of a hierarchical composition analysis of simulation, device control, and systems such as cavities and the physical properties of the material itself, to complete the adaptation to climate and building micro-climate and its changes.

  2. Environmental Impact Assessment of a School Building in Iceland Using LCA-Including the Effect of Long Distance Transport of Materials

    Directory of Open Access Journals (Sweden)

    Nargessadat Emami

    2016-11-01

    Full Text Available Buildings are the key components of urban areas and society as a complex system. A life cycle assessment was applied to estimate the environmental impacts of the resources applied in the building envelope, floor slabs, and interior walls of the Vættaskóli-Engi building in Reykjavik, Iceland. The scope of this study included four modules of extraction and transportation of raw material to the manufacturing site, production of the construction materials, and transport to the building site, as described in the standard EN 15804. The total environmental effects of the school building in terms of global warming potential, ozone depletion potential, human toxicity, acidification, and eutrophication were calculated. The total global warming potential impact was equal to 255 kg of CO2 eq/sqm, which was low compared to previous studies and was due to the limited system boundary of the current study. The effect of long-distance overseas transport of materials was noticeable in terms of acidification (25% and eutrophication (31% while it was negligible in other impact groups. The results also concluded that producing the cement in Iceland caused less environmental impact in all five impact categories compared to the case in which the cement was imported from Germany. The major contribution of this work is that the environmental impacts of different plans for domestic production or import of construction materials to Iceland can be precisely assessed in order to identify effective measures to move towards a sustainable built environment in Iceland, and also to provide consistent insights for stakeholders.

  3. Health assessment of natural radioactivity and radon exhalation rate in granites used as building materials in Lebanon.

    Science.gov (United States)

    Kobeissi, M A; El-Samad, O; Rachidi, I

    2013-03-01

    Measurements of specific activities (Bq kg(-1)) of gamma-emissions from radioactive nuclides, (238)U, (226)Ra, (214)Bi, (232)Th, (212)Pb and (40)K, contained in 28 granite types, used as building materials in indoors in Lebanon, were performed on the powdered granites. The concentration of the nuclides, (226)Ra, (232)Th and (40)K, in the granites varied from below detection level (BDL) to 494 Bq kg(-1), BDL to 157.2 Bq kg(-1) and BDL to 1776 Bq kg(-1), respectively. (226)Ra concentration equivalents, C(Raeq), were obtained and ranged between 37 and 591 Bq kg(-1), with certain values above the allowed limit of 370 Bq kg(-1). Calculated annual gamma-absorbed dose in air, D(aR), varied from 17.7 to 274.5 (nGy h(-1)). Annual effective dose, E (mSv y(-1)), of gamma radiations related to the studied granites and absorbed by the inhabitants was evaluated. E (mSv y(-1)) ranged from 0.09 to 1.35 mSv y(-1). Some granite types produced E above the allowed limit of 1 mSv y(-1) set by ICRP. Values of (222)Rn mass exhalation rate, E(M) (mBq kg(-1)h(-1))(,) in granite powder were obtained using the CR-39 detector technique. Diffusion factors, f, in 23 granite types were calculated with f ranging between (0.1 ± 0.02)×10(-2) and (6.6 ± 1.01)×10(-2).

  4. Metabolomic and high-throughput sequencing analysis – modern approach for the assessment of biodeterioration of materials from historic buildings

    Directory of Open Access Journals (Sweden)

    Beata eGutarowska

    2015-09-01

    Full Text Available Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II-Birkenau concentration and extermination camp in Oświęcim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM, metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and 9 fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of

  5. Traditional building materials in the use of landscape architecture%传统建筑材料在园林建筑中的运用

    Institute of Scientific and Technical Information of China (English)

    黄瑞雯

    2015-01-01

    建筑材料是构筑建筑空间、形态的重要物质条件。从最早的石灰、木材发展到如今的钢材、金属、玻璃,在建筑材料的选择上有了大量的发展。我国传统园林艺术历史悠久,其中包涵着丰富的艺术手法,是座艺术宝库。与此同时,随着园林建筑不断开始采用大胆的创新,多元的创造手法形成了一种独有的艺术特点时,如何在建筑材料的使用上兼具时代性与艺术性,成为当代园林建筑上需要思考的问题。本文通过对传统建筑材料在园林建筑中的运用进行研究,对传统建筑材料的内容及特征进行阐述,在此基础上对传统建筑材料在园林建筑中的运用进行分析,从而对未来的园林建筑中对于建筑材料的运用上更好的融合,具有一定的时代特点。%Building materials is to build a building space,an important form of material conditions.From the earliest lime,timber development of today's steel, metal,glass,with a lot of development in the choice of building materials.Chinese traditional garden art has a long history,deep source long,which encompasses a wealth of artistic,is the seat of artistic treasures.While at the same time,with the landscape architecture continues today embarked on a bold and innovative, diverse techniques to create a unique form of artistic characteristics,how to use building materials both in age and artistry,a contemporary landscape architecture We need to think about. Therefore, this article on the traditional building material in landscape architecture in the use of research on the content and features of traditional building materials will be elaborated on the basis of the traditional building materials in landscape architecture in the use of the analysis,and thus the future of landscape architecture building materials for use in the better integration,with some characteristics of the times.

  6. Perception of Educational Materials on Bio climatic Buildings: An Exploratory Study in the School Community; Percepcion de las Unidades Didacticas sobre Edificacion Bioclimatica en el Contexto Educativo

    Energy Technology Data Exchange (ETDEWEB)

    Ferri, S.; Sala, R.; Cornejo, J. M.

    2013-09-01

    In the framework of the ARFRISOL project on bio climatic architecture, a set of educational materials were developed to disseminate the technology in the school community. This report presents the results of an exploratory study on the effects of those educational materials in the classroom, analyzing areas such as satisfaction, level of interest, and knowledge in relation to bio climatic building. The sample consists of two groups: teachers (N = 27) and students (N 313). Two questionnaires were developed ad hoc in order to properly understand the experience with the educational materials by the students and the teachers. The results suggest that the educational materials are a good tool to spread zero emissions buildings advances in educational contexts. Both groups emphasize the need and usefulness of the topic, and the applicability of these innovations to everyday life. However, issues such as the difficulty in understanding some concepts, time dedicated or opportunity to conduct visits to project buildings appears as aspects to be adjusted and/or incorporated into the future versions. This work aims at improving communication strategies and scientific outreach of the project by raising awareness and promoting a better understanding of this topic. (Author)

  7. Cost Analysis of Simple Phase Change Material-Enhanced Building Envelopes in Southern U.S. Climates

    Energy Technology Data Exchange (ETDEWEB)

    Kosny, Jan [Fraunhofer CSE, Cambridge, MA (United States); Shukla, Nitin [Fraunhofer CSE, Cambridge, MA (United States); Fallahi, Ali [Fraunhofer CSE, Cambridge, MA (United States)

    2013-01-01

    Traditional thermal designs of building envelope assemblies are based on static energy flows, yet building envelopes are subject to varying environmental conditions. This mismatch between the steady-state principles and their dynamic operation can decrease thermal efficiency. Design work supporting the development of low-energy houses showed that conventional insulations may not always be the most cost effective solution to improvement envelope thermal performance. PCM-enhanced building envelopes that simultaneously reduce the total cooling loads and shift the peak-hour loads are the focus of this report.

  8. Theoretical and Experimental Thermal Performance Analysis of Building Shell Components Containing Blown Fiber Glass Insulation Enhanced with Phase Change Material (PCM)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William A [ORNL; Kosny, Jan [ORNL; Yarbrough, David W [ORNL; Childs, Phillip W [ORNL; Shrestha, Som S [ORNL; Atchley, Jerald Allen [ORNL; Bianchi, Marcus V [ORNL; Smith, John B [ORNL; Fellinger, Thomas [ORNL; Kossecka, Elizabeth [Institute of Fundamental Technological Research, Polish Academy of Sciences; Lee, Edwin S [ORNL

    2010-01-01

    Different types of Phase Change Materials (PCMs) have been tested as dynamic components in buildings during the last 4 decades. Most historical studies have found that PCMs enhance building energy performance. Some PCM-enhanced building materials, like PCM-gypsum boards or PCM-impregnated concretes have already found their limited applications in different countries. Today, continued improvements in building envelope technologies suggest that throughout Southern and Central US climates, residences may soon be routinely constructed with PCM in order to maximize insulation effectiveness and maintain low heating and cooling loads. The proposed paper presents experimental and numerical results from thermal performance studies. These studies focus on blown fiber glass insulation modified with a novel spray-applied microencapsulated PCM. Experimental results are reported for both laboratory-scale and full-size building elements tested in the field. In order to confirm theoretical predictions, PCM enhanced fiber glass insulation was evaluated in a guarded hot box facility to demonstrate heat flow reductions when one side of a test wall is subjected to a temperature increase. The laboratory work showed reductions in heat flow of 30% due to the presence of approximately 20 wt % PCM in the insulation. Field testing of residential attics insulated with blown fiber glass and PCM was completed in Oak Ridge, Tennessee. Experimental work was followed by detailed whole building EnergyPlus simulations in order to generate energy performance data for different US climates. In addition, a series of numerical simulations and field experiments demonstrated a potential for application of a novel PCM fiber glass insulation as enabling technology to be utilized during the attic thermal renovations.

  9. Environmental Assessment of the Demolition of Building 78 and Construction of New Hazardous Materials and Hazardous Waste Storage Buildings, Los Angeles Air Force Base

    Science.gov (United States)

    2016-06-07

    storage of hazardous wastes and materials? 3. Convenient location and access? 4. Aesthetically pleasing (visually)? 5. Location will not interfere...strip commercial businesses, auto repair, and restaurants . In the vicinity of Fort MacArthur, parallel/metered parking is provided along the curb lanes

  10. MYCELIUM BUILDING

    OpenAIRE

    Jondelius, Olof

    2015-01-01

    This work is looking in to what possibilites and restrictions comes with using mycelium as a building material for a small house. It includes reasoning around solutions for some of the problems and presenting some ideas of how to use some of the materials properties in your favor. A general background of why we need to start look in to alternative materials for all petroleum materials are presented. Det här arbetet har varit inriktat på att se vilka möjligheter samt begränsningar det skul...

  11. Knowledge platform for calculating climate impact from construction and building materials. Literature study; Kunnskapsplattform for beregning av klimabelastning fra bygg og byggematerialer. Litteraturstudie

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Anne; Lyng, Kari-Anne; Vold, Mie

    2011-07-01

    Greenhouse gas emissions from building linked today to a large extent to the energy consumption during the operating period. Through increasingly stringent energy requirements and other changes, the energy consumption for the operation could go down over time. This means in this case that the energy required to produce, transport and set up the building, to a greater extent can be relatively more important in a life-cycle analysis. KRD in that regard ha given Oestfoldforskning the commission to conduct a literature study that will provide an overview and assessment of the literature / research papers describing various building materials climate impact and how this translates into a lifetime (LCA - Life Cycle Assessment), and thus describe the knowledge platform these analyzes are based in. It also means a description of the factors that affect the climate and the environment, including the stages of life that are important. Literature study is conducted by searching scientific databases (Springer Link, Science Direct, Google Scholar, Norwegian EPD database of declarations). The literature search is limited to studies that are based on LCA as a methodology for calculating the climate impacts associated with the construction and building materials. Based on the review of literature is also undertaken an analysis focusing on explaining the methodological platform between the studies are based on, in order to explain why the results differ and / or may not be comparable.(eb)

  12. Discussion on Fire Safety of Energy Conservation Material in Building%建筑节能材料防火安全探讨

    Institute of Scientific and Technical Information of China (English)

    李丽红; 刘晓涛

    2012-01-01

    Analyzes the wide range application of building energy conservation and thermal insulation material about the aspect of building energy conservation and thermal insulation.Through comparing those with foreign current situation indicate that EPS and XPS exit serious problems in fire safety.Puts forward Suggestions to improve the energy conservation system of the building and building energy conservation and thermal insulation material flame retardant property specifications,puts forward the research objective of new PU composite insulation wall.%对国内应用较为广泛的建筑节能保温材料,在节能保温以及防火安全方面进行了分析,与国外建筑保温材料应用现状进行了比较,指出了EPS及XPS在防火安全方面存在的问题,提出了建筑节能体系的建立和建筑节能保温材料阻燃性能规范制定的建议,提出新型PU复合保温墙体的研究目标。

  13. Robotic buildings(s)

    NARCIS (Netherlands)

    Bier, H.H.

    2014-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic building to be in the last decade prototypically implemented. In this context, robotic building implies both physically built robotic environments and robotically supp

  14. 建材物流若干种模式的优缺点%Try to analysis the advantages and disadvantages of several modes of building materials logistics

    Institute of Scientific and Technical Information of China (English)

    汪丽

    2015-01-01

    伴随着中国的国民经济快速发展,物流行业兴起,并成为建筑业发展中的一个重要环节。在建筑业的推动下,建材物流日渐繁荣,并根据建材行业实际使得物流服务方式更为灵活多样,多种物流模式被建立起来。本论文针对建材物流若干种模式进行研究,并着重分析其优点和缺点。%With the rapid development of China’s national economy, logistics industry, and become an important part in the development of construction industry. In the construction industry, building materials logistics increasingly prosperous, and according to the actual building materials industry has made more flexible logistics service mode, various logistics mode was set up. This paper studies the several modes of building materials logistics, and emphatically analyzes the advantages and disadvantages.

  15. Creation of Polyurethane Injection Materials, Their Pilot-industrial Production, Development and Industrial Introduction of the Technology of Strengthening and Restoring the Operability of Damaged Constructions and Buildings

    Directory of Open Access Journals (Sweden)

    Marukha, V.І.

    2015-01-01

    Full Text Available Polyurethane and foam polyurethane fluid injection materials not conceding foreign analogues and technology technology of restoration and strengthening the operability of concrete and reinforced concrete structures and buildings damaged by cracks were developed. Normative and technical documentation on the injection materials and technological processes was created. The diagnosticrestoring complex for implementing the above technologies was designed, installed and utilized at the construction sites. The equipment is designed and manufactured; the technology of the research and industrial production of «A» and «B» components of injecting polyurethane materials is designed and developed. The pilot-scale batch is manufactured. Technological processes of preparation and application of the «A» and «B» componentsof the injecting materials in industrial conditions are worked out and implemented.

  16. Materials

    Science.gov (United States)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  17. Optimizing the position of insulating materials in flat roofs exposed to sunshine to gain minimum heat into buildings under periodic heat transfer conditions.

    Science.gov (United States)

    Shaik, Saboor; Talanki, Ashok Babu Puttranga Setty

    2016-05-01

    Building roofs are responsible for the huge heat gain in buildings. In the present work, an analysis of the influence of insulation location inside a flat roof exposed directly to the sun's radiation was performed to reduce heat gain in buildings. The unsteady thermal response parameters of the building roof such as admittance, transmittance, decrement factor, and time lags have been investigated by solving a one-dimensional diffusion equation under convective periodic boundary conditions. Theoretical results of four types of walls were compared with the experimental results available in literature. The results reveal that the roof with insulation placed at the outer side and at the center plane of the roof is the most energy efficient from the lower decrement factor point of view and the roof with insulation placed at the center plane and the inner side of the roof is the best from the highest time lag point of view among the seven studied configurations. The composite roof with expanded polystyrene insulation located at the outer side and at the center plane of the roof is found to be the best roof from the lowest decrement factor (0.130) point of view, and the composite roof with resin-bonded mineral wool insulation located at the center plane and at the inner side of the roof is found to be energy efficient from the highest time lag point (9.33 h) of view among the seven configurations with five different insulation materials studied. The optimum fabric energy storage thicknesses of reinforced cement concrete, expanded polystyrene, foam glass, rock wool, rice husk, resin-bonded mineral wool, and cement plaster were computed. From the results, it is concluded that rock wool has the least optimum fabric energy storage thickness (0.114 m) among the seven studied building roof materials.

  18. Ancient Cultural Center Building and Materials Research Numismatic Collection Museum--Ancient COINS by Tibetan cultural center

    Institute of Scientific and Technical Information of China (English)

    王冠利

    2014-01-01

    The quality of the Chinese cultural center is located in the ancient COINS hidden city, the city center in Jinan, convenient transportation, beautiful scenery, poured enough, the surrounding environment culture atmosphere, be helpful for cultural centers in the long run. The building area is about 3500 square meters, the whole building is divided into two layer, a layer of main distribution the exhibition hall, second floor mainly by the studio to form. The designer of the coin reference model, through the deepening, evolution techniques such as the characteristics of Chinese coin will, connotation unity emerges into design, show to buildings. Very good carry the historical culture, also captures the pulse of the times lived.

  19. 电磁波吸收建筑材料的应用研究进展%Recent Progress in Electromagnetic Wave Absorbing Building Materials

    Institute of Scientific and Technical Information of China (English)

    解帅; 冀志江; 杨洋; 王静

    2016-01-01

    Application of electromagnetic wave (EMW)absorbing building materials is an effective method to improve the electromagnetic environment of architectural space.And the EMW absorbing material has been a hot area of research in recent years,as the electromagnetic radiation pollution increasing seriously.The recent advances and re-search methods of EMW absorbing building materials are reviewed in this paper.The materials are summarized as two major categories:filling absorbing agent and structure design,and then the shortcoming of current studies and approa-ches for further researchers are suggested after the review.Design of the ideal absorbing building materials with the characteristics of low density,thin matching thickness,broad bandwidth and strong microwave wave absorption,is the main direction,and the mechanism of wave absorption should be researched in depth.%应用电磁波吸收建筑材料是改善建筑空间电磁环境的有效方法。随着电磁辐射污染日益严重,吸波建材已逐渐成为研究热点。综述了近几年吸波建材的研究方法与研究现状,将吸波建材归纳为吸波剂填充型和结构设计型两大类,并分别进行评述,提出了现有研究中存在的一些问题以及进一步的研究方向。“轻、薄、宽、强”仍然是吸波建材的发展方向,同时电磁波损耗机理还有待进一步研究。

  20. The organic materials in the Five Northern Provinces' Assembly Hall: disclosing the painting technique of the Qing dynasty painters in civil buildings

    Science.gov (United States)

    Lluveras-Tenorio, A.; Bonaduce, I.; Sabatini, F.; Degano, I.; Blaensdorf, C.; Pouyet, E.; Cotte, M.; Ma, L.; Colombini, M. P.

    2015-11-01

    The beiwusheng huiguan (`Meeting hall of the Five Northern Dynasties') is a building complex from the Qing dynasty (1636-1912 ad) located in Wafangdian, near Ziyang, in the south of the Chinese Province of Shaanxi. Two of the preserved halls are richly decorated with wall paintings dated probably in 1848 ad and representing scenes of the `Romance of the Three Kingdoms' and Confucian moral tales. They are a rare example of well-preserved mural paintings of high artistic value inside civil buildings. The aims of this paper are the chemical characterization and localization of organic materials used as binders and colorants in the wall paintings. A multi-analytical approach, consisting in the combined use of gas chromatographic-mass spectrometric techniques (GC/MS and Py-GC/MS) and high-pressure liquid chromatography with diode array detector (HPLC-DAD), was chosen for these purposes. Proteinaceous materials (animal glue and egg), saccharide material (fruit tree gum) and a siccative oil were identified in different paint layers supplying invaluable information about the painting technique used. Moreover, the analyses of organic dyes allowed identifying indigo and gallic acid in more than one sample adding fundamental information about Chinese artists' techniques in mural paintings, missing from the previous studies. To shed light on the gilding technique, the distribution of the painting materials was achieved by means of synchrotron radiation Fourier transform infrared spectroscopy (SR micro-FTIR) and X-ray fluorescence (SR micro-XRF). The results obtained from the multi-analytical approach enabled us to determine the organic materials both binders and organic colorants used by Chinese artisans, highlighting the high technical level achieved in nineteenth century. The binding media and the organic colorants identified, as well as their distribution, allowed the discussion on the painting technique used by the artists of the Qing dynasty giving information for the

  1. DEFENSE INFRASTRUCTURE: DOD Needs to Determine and Use the Most Economical Building Materials and Methods When Acquiring New Permanent Facilities

    Science.gov (United States)

    2010-04-01

    Build a Barracks at Fort Bliss, Texas Source: GAO. Note: Photographs beginning with top left: modular-constructed units on transportation trailer ...moving units from trailers , barracks foundation ready for unit placement, assembled units before exterior finishing, exterior of nearly completed...community connectivity 5 Brownfield redevelopment 1 Alternative transportation—public transportation access 6 Alternative transportation— bicycle storage

  2. Managing Asbestos in Place: A Building Owner's Guide to Operations and Maintenance Programs for Asbestos-Containing Materials.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    Instructions for building owners on the selection and application of appropriate asbestos control and abatement actions are presented in this guidebook. Chapter 1 offers background information on the asbestos problem. Chapter 2 describes the purpose and scope of an operations and maintenance (O&M) program. The third chapter discusses planning…

  3. Comparative evaluation of microleakage in Class II restorations using open vs. closed centripetal build-up techniques with different lining materials

    Directory of Open Access Journals (Sweden)

    Shefali Sawani

    2014-01-01

    Full Text Available Background: Evaluation of microleakage is important for assessing the success of new restorative materials and methods. Aim and Objectives: Comparative evaluation of microleakage in Class II restorations using open vs. closed centripetal build-up techniques with different lining materials. Materials and Methods: Standardized mesi-occlusal (MO and distoocclusal (DO Class II tooth preparations were preparedon 53 molars and samples were randomly divided into six experimental groups and one control group for restorations. Group 1: Open-Sandwich technique (OST with flowable composite at the gingival seat. Group 2: OST with resin-modified glass ionomer cement (RMGIC at the gingival seat. Group 3: Closed-Sandwich technique (CST with flowable composite at the pulpal floor and axial wall. Group 4: CST with RMGIC at the pulpal floor and axial wall. Group 5: OST with flowable composite at the pulpal floor, axial wall, and gingival seat. Group 6: OST with RMGIC at the pulpal floor, axial wall, and gingival seat. Group 7: Control - no lining material, centripetal technique only. After restorations and thermocycling, apices were sealed and samples were immersed in 0.5% basic fuchsin dye. Sectioning was followed by stereomicroscopic evaluation. Results: Results were analyzed using Post Hoc Bonferroni test (statistics is not a form of tabulation. Cervical scores of control were more than the exprimental groups (P 0.05. Conclusion: Class II composite restorations with centripetal build-up alone or when placed with CST reduces the cervical microleakage when compared to OST.

  4. 民用建筑外保温材料应用问题探讨%Discussion on application problems of external insulation materials of civil building

    Institute of Scientific and Technical Information of China (English)

    范平安

    2012-01-01

    从建筑外保温材料的开发、安全、效果、造价、应用和国家规范、标准以及管理过程和工作程序等方面入手,阐述民用建筑外保温装饰材料的特点、技术、应用现状及火灾原因,并提出解决问题的方法与对策,为民用建筑外保温装饰材料的应用提供参考.%Based on analysis of development, safety, effective-ness, cost, application, codes and standards and management of external insulation materials of building, features, technology, application situation and fire cause of external insulation materi-als were described, measurement was proposed, giving refer-ence for the application of external insulation materials of civil building.

  5. Discussion on the “Greening” of Building Materials%浅谈建筑材料的“绿化”

    Institute of Scientific and Technical Information of China (English)

    张小玢

    2013-01-01

      建筑产业对环境的破坏是超乎想象的,对建筑的“绿化”,即在建筑的整个建造过程中考虑其可持续性极为必要。本文从建筑材料的角度对建筑的“绿化”策略进行了解读,并列举了建筑“绿化”的具体实践。%The construction industry damage to the environ-ment is beyond imagination, for the “greening” of construction, namely in the whole construction in the construction process to consider its sustainability is very necessary. In this paper, from the angle of building materials this paper interprets for the“greening” strategy of construction, and lists the practices of building “greening”.

  6. A New Type of Paper-frame Cavernous Material and Its Application in Energy Efficiency in Buildings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper introduces a new type of paper-frame cavernous material, which is a made-up hollow material, by using silicate-cinder size to drench and daub.It possesses excellent performances such as light-weight, high-intensity, fire-resistance, sound-insulation, heat-insulation and no-pollution. Composed with concrete materials, a new type of bearing and energy-efficient block can be gained, which is a kind of excellent wall materials and has a wide application prospect.

  7. 导热系数各向异性建筑材料的节能分析%Energy saving analysis of anisotropic building material of thermal conductivity

    Institute of Scientific and Technical Information of China (English)

    苏顺玉; 黄钦; 龚建伍

    2013-01-01

    The steady-state heat conductive mechanism of anisotropic material was analyzed in this paper. It indicated that heat conduction in anisotropic material is quite different from that in isotropic material. And temperature gradient of one direction at one point in the anisotropic material could cause partial heat flux in perpendicular direction. There are advantages and disadvantages while the anisotropic material of thermal conductivity is alone applied to building envelope. And the technique of double skin envelope has been successfully applied in many building designs. Basing on the heat conductive characteristics of anisotropic material, it was applied to double skin envelope in this paper. The combined building envelope of anisotropic material and double skin envelope was constructed. And heat transfer in it was analyzed. The results indicated that it is more economical of energy than traditional double skin envelope.%通过坐标变换法分析了各向异性材料的稳态导热机理,并指出各向异性材料内部的导热不同于各向同性材料,各向异性材料内部一点处某一方向上的温度梯度会在垂直方向上引发热流分量.导热系数各向异性材料单独用于建筑围护结构中有其优势但也存在不足之处,而双层幕墙技术已成功地应用于许多建筑设计中.针对各向异性材料的传热特性,将各向异性材料应用于双层幕墙,构建了各向异性材料和双层幕墙相结合的建筑围护结构,同时对其内部的热量传递进行了分析,结果表明,它比传统的双层幕墙更加节能.

  8. A preliminary study on the preparation of wood-plastic composites from urban wastes generated in Merida, Mexico with potential applications as building materials.

    Science.gov (United States)

    Cruz-Estrada, Ricardo H; Martínez-Tapia, Gustavo E; Canché-Escamilla, Gonzalo; González-Chí, Pedro I; Martín-Barrera, Cesar; Duarte-Aranda, Santiago; Guillén-Mallette, Javier; Cupul-Manzano, Carlos V; Martínez-Domínguez, Osvaldo; García-Gómez, Carmen

    2010-09-01

    A preliminary study on the use of wood and plastic wastes generated in Merida, Mexico to assess their potential for the development of building materials is reported. Composites based on recycled, high-density polyethylene (R-HDPE) loaded with wood particles were prepared. The R-HDPE was collected from Merida's Separation Plant, where it was sorted from other residues, either organic or inorganic. Composites based on virgin, high-density polyethylene (V-HDPE) were also prepared to assess the effect of the R-HDPE on the composite's mechanical properties. The wood came from the trims of different varieties of the city's trees that are periodically pruned as part of the cleaning and urbanising programmes implemented by the City Council. A batch of this material was selected at random to incorporate into both the R-HDPE and V-HDPE. Different wood particle sizes were experimented with to obtain extruded composites with contents of 50% and 60% by weight of wood that were characterized under tension and impact. Flat wood-plastic extrudates with reasonable good appearance were also produced at the laboratory level as a first step to find an adequate route to scale-up the process to a pilot level to evaluate the feasibility of producing alternative building materials.

  9. Building materials as intrinsic sources of sulphate: A hidden face of salt weathering of historical monuments investigated through multi-isotope tracing (B, O, S)

    Energy Technology Data Exchange (ETDEWEB)

    Kloppmann, W., E-mail: w.kloppmann@brgm.fr [BRGM, BP 6009, F-45060 Orleans cedex 2 (France); Bromblet, P.; Vallet, J.M. [CICRP, 21, rue Guibal, F-13003 Marseille (France); Verges-Belmin, V. [LRMH, 29, rue de Paris, F-77420 Champs sur Marne (France); Rolland, O. [Independent restorer, 3, rue du Gue, 37270 Montlouis s/Loire (France); Guerrot, C. [BRGM, BP 6009, F-45060 Orleans cedex 2 (France); Gosselin, C. [BRGM, BP 6009, F-45060 Orleans cedex 2 (France); LRMH, 29, rue de Paris, F-77420 Champs sur Marne (France)

    2011-04-01

    Sulphate neoformation is a major factor of degradation of stone monuments. Boron, sulphur and oxygen isotope signatures were investigated for five French historical monuments (Bourges, Chartres and Marseille cathedrals, Chenonceau castle, and Versailles garden statues) to investigate the role of intrinsic sulphate sources (gypsum plasters and mortars) in stone degradation, compared to the influence of extrinsic sources such as atmospheric pollution. Gypsum plasters and gypsum-containing mortars fall systematically in the {delta}{sup 34}S and {delta}{sup 18}O range of Paris Basin Eocene evaporites indicating the origin of the raw materials (so-called 'Paris plaster'). Black crusts show the typical S and O isotope signatures observed elsewhere in Europe that can be attributed to atmospheric pollution, together with a marine component for Marseille. Boron isotopes for black crusts indicate coal combustion as principal boron source. Mortar isotope compositions discriminate three types, one similar to gypsum plasters, one strongly depleted in {sup 34}S, attributed to pyrite oxidation, and a third one close to atmospheric sulphates. The isotopic composition of sulphates and boron of most degraded building stones of the different monuments is well explained by the identified sulphate sources. In several cases (in particular for Chenonceau and Bourges, to some extent for Chartres), the impact of gypsum plaster as building and restoration material on the degradation of the stones in its vicinity was clearly demonstrated. The study illustrates the usefulness of multi-isotope studies to investigate stone degradation factors, as the combination of several isotope systematics increases the discriminatory power of isotope studies with respect to contaminant sources. - Research Highlights: {yields} Insight in stone weathering mechanisms by multi-isotope fingerprinting (B, S, O). {yields} Intrinsic sulphate sources (gypsum plaster, mortar) contribute to stone degradation

  10. Building with Straw.

    Science.gov (United States)

    Di Santo, Gilbert

    2000-01-01

    Discusses the early use of straw in Africa and Europe as a building material. Provides background information and a basic framework for the straw bale project, and recommends supervision for young students. Lists objectives for building a straw bale bench and provides the building instructions which consist of three sessions. Includes four…

  11. Radiological Assessment Survey of the Vance road Facility Source Vault Building Materials, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    J. R. Morton

    2000-09-01

    From the 1950s, the Vance Road laboratory was the site of extensive nuclear medical research and involved the used of numerous radionuclides. These nuclides were stored in a source vault stored on the first floor of the facility. Nuclear medical research is no longer conducted in this facility, and the source vault was remediated in preparation for converting the area to office space and general use. The Environmental Survey and Site Assessment Program (ESSAP) of ORISE performed a radiological assessment survey of the source vault and its associated miscellaneous building materials and laboratory equipment in preparation for the conversion to general use space.

  12. Comparison of the thermal properties of clay samples as potential walling material for naturally cooled building design

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The thermal properties of different clay samples obtainedfrom locations in Akwa Ibom State, Nigeria were investigated andcomppared, and in order to establish their suitability as buildingmaterial from energy conservation point of view. The results showedthat sstoneware clay has the highest solar radiation absorptivityof 22.32 m-1 while kaolin clay has the lowest radiation absoptivityof 14.46 m-1. A model for the prediction of temperature variationwith thickness of the samples was developed. Results showed thatkaolin would make the best choice for the design of a naturallycooled building.

  13. Evaluation of the Efficacy of Methyl Bromide in the Decontamination of Building and Interior Materials Contaminated with Bacillus anthracis Spores

    Data.gov (United States)

    U.S. Environmental Protection Agency — Spreadsheets containing data for recovery of spores from different materials. Data on the fumigation parameters are also included. This dataset is associated with...

  14. Determination of partition and diffusion coefficient of formaldehyde in selected building materials and impact of relative humidity

    Science.gov (United States)

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...

  15. Determination of partition and diffusion coefficients of formaldehyde in selected building materials and impact of relative humidity (journal)

    Science.gov (United States)

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...

  16. Life cycle assessment of hemp cultivation and use of hemp-based thermal insulator materials in buildings.

    Science.gov (United States)

    Zampori, Luca; Dotelli, Giovanni; Vernelli, Valeria

    2013-07-02

    The aim of this research is to assess the sustainability of a natural fiber, such as hemp (Cannabis sativa), and its use as thermal insulator for building applications. The sustainability of hemp was quantified by life cycle assessment (LCA) and particular attention was given to the amount of CO2eq of the whole process, and the indicator greenhouse gas protocol (GGP) was selected to quantify CO2eq emissions. In this study also CO2 uptake of hemp was considered. Two different allocation procedures (i.e., mass and economic) were adopted. Other indicators, such as Cumulative Energy Demand (CED) and EcoIndicator99 H were calculated. The production of 1 ha yielded 15 ton of hemp, whose global warming potential (GWP100) was equal to about -26.01 ton CO2eq: the amount allocated to the technical fiber (20% of the total amount of hemp biomass) was -5.52 ton CO2eq when mass allocation was used, and -5.54 ton CO2eq when economic allocation was applied. The sustainability for building applications was quantified by considering an insulation panel made by hemp fiber (85%) and polyester fiber (15%) in 1 m(2) of wall having a thermal transmittance (U) equal to 0.2 W/m(2)_K. The environmental performances of the hemp-based panel were compared to those of a rockwool-based one.

  17. Natural radioactivity in building material in the European Union: robustness of the activity concentration index I and comparison with a room model.

    Science.gov (United States)

    Nuccetelli, C; Risica, S; D'Alessandro, M; Trevisi, R

    2012-09-01

    Using a wide database collected in the last 10 years, the authors have calculated the activity concentration index I for many building materials in the European Union. Suggested by a European technical guidance document, the index I has recently been adopted as a screening tool in the proposal for the new Euratom basic safety standards directive. The paper analyses the possible implications of the choice of different parameters for the computation of index I, i.e. background to be subtracted, dose criteria, etc. With the collected data an independent assessment of gamma doses was also made with an ISS room model, choosing reasonable hypotheses on the use of materials. The results of the two approaches, i.e. index I and a room model, were compared.

  18. Impact of reaction products from building materials and furnishings on indoor air quality—A review of recent advances in indoor chemistry

    Science.gov (United States)

    Uhde, E.; Salthammer, T.

    The variety of chemical substances present in modern building products, household products and furnishings provides potential for chemical reactions in the material (case 1), on the material surface (case 2) and in the gas phase (case 3). Such "indoor chemistry" is known as one of the main reasons for primary and secondary emissions. The conditions of production often cause unwanted side reactions and a number of new compounds can be found in finished products. Elevated temperatures are responsible for the degradation of cellulose, decomposition of non-heat-resistant additives and other thermally induced reactions like Diels-Alder synthesis. Heterogeneous chemistry takes place on the surface of materials. Well-known examples are the formation of aliphatic aldehydes from the oxidation of unsaturated fatty acids or the cleavage of photoinitiators under the influence of light. In case of composite flooring structures hydrolysis is one of the major pathways for the appearance of alcohols from esters. If different kinds of material are fixed together, emissions of new VOCs formed by inter-species reactions are possible. Other indoor air pollutants are formed by rearrangement of cleavage products or by metabolism. Compounds with -C dbnd C- bonds like terpenes, styrene, 4-phenylcyclohexene, etc. undergo gas phase reactions with O 3, NO x, OH and other reactive gases. It has been shown that such products derived from indoor-related reactions may have a negative impact on indoor air quality due to their low odor threshold or health-related properties. Therefore, the understanding of primary and secondary emissions and the chemical processes behind is essential for the evaluation of indoor air quality. This publication gives an overview on the current state of research and new findings regarding primary and secondary emissions from building products and furnishings.

  19. Importance of Building Code

    Directory of Open Access Journals (Sweden)

    Reshmi Banerjee

    2015-06-01

    Full Text Available A building code, or building control, is a set of rules that specify the minimum standards for constructed objects such as buildings and non building structures. The main purpose of building codes are to protect public health, safety and general welfare as they relate to the construction and occupancy of buildings and structures. The building code becomes law of a particular jurisdiction when formally enacted by the appropriate governmental or private authority. Building codes are generally intended to be applied by architects, engineers, constructors and regulators but are also used for various purposes by safety inspectors, environmental scientists, real estate developers, subcontractors, manufacturers of building products and materials, insurance companies, facility managers, tenants and others.

  20. Effect of Er:YAG laser pretreatment on bond strength of a composite core build-up material to fiber posts.

    Science.gov (United States)

    Križnar, Igor; Jevnikar, Peter; Fidler, Aleš

    2015-02-01

    The study evaluated the micro push-out bond strength of resin material (Multicore Flow) to two types of fiber posts (FP), namely fiber-reinforced composite (FRC) Postec and Radix Fiber posts using Er:YAG laser pretreatment. FP were divided into four groups, two being control groups. Before the core build-up procedure, representative specimens from each group were chosen to determine the surface roughness (Ra) at three different areas using a contact profilometer, while after the procedure, 1.5-mm-thick discs were sectioned and the micro push-out method was used to assess the bond strength of the core build-up material to the fiber post in each group. Two-way analysis of variance was used for statistical analysis with the level of significance set at p Er:YAG laser pretreatment and to classify the failure mode after loading. The type of pretreatment (p Er:YAG laser pretreatment group was significantly lower compared to the FRC Postec posts control group (p Er:YAG laser pretreatment groups were significantly higher compared to control groups (p Er:YAG laser pretreatment at tested parameters negatively affected the bond strength of Multicore to FP and cannot be recommended as a standard procedure.

  1. 新型建筑墙体材料及墙体保温技术%New Building Materials of Wall and Insulation Technology

    Institute of Scientific and Technical Information of China (English)

    赵磊

    2014-01-01

    随着经济发展,新型建筑企业在国家的建设中不断崛起。在建筑中,墙体的施工是整个建筑的重要环节。因此,对于新型墙体的需求量逐渐增多。施工人员对墙体材料应进行熟悉,熟悉墙体的保温技术,这是现代建筑的重--求。%With the development of economy, new cons- truction enterprises continue to rise in the country's construc- tion. In the building, wall construction is an important part of the whole building. Therefore, the need for the new materials for the wal is gradualy increased. It is required that Const- ruction workers should be familiar with the new wal materials and insulation technology in modern architecture.

  2. Effects of building materials radioactivity of dwellings on gamma exposure levels; Efeitos dos materiais de construcao das residencias nos niveis de exposicao gama

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Rex Nazare; Coelho, Maysa Joppert; Javaroni, Joao Hilario; Maciel, Aluisio Castanho [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear; Sachett, Ivanor; Bianchini, Fernando G. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    1996-07-01

    The gamma radiation exposure due to natural sources occurs both indoor and outdoor dwellings. Direct measurements of absorbed dose rate in air had been obtained in several countries in last decades. Since 1980 the number of those indoor measurements have been considerably increased. The ratio indoor to outdoor of absorbed dose rate in air presented by UNSCEAR in 1993, ranged from 0.8 to 2.0. These values show that an increase of 40 to 50% in the average absorbed dose rate in air, inside dwellings, could be associated to an elevated concentration of natural radionuclides in building materials. In the present work the effects of building materials in the absorbed dose rate in air in two anomalous areas are studied. The ratios between the absorbed dose rates in air indoor and outdoor obtained in wood and masonry dwellings range from 0.5 to 3.0. The new results including anomalous regions, presented in this work, contribute to increase of the application domain considered so far by UNSCEAR. (author)

  3. An Experimental Study on the Thermal Performance of Phase-Change Material and Wood-Plastic Composites for Building Roofs

    Directory of Open Access Journals (Sweden)

    Min Hee Chung

    2017-02-01

    Full Text Available We assessed the usefulness of phase-change material (PCM-based thermal plates fabricated from wood-plastic composites (WPCs in mitigating the urban heat island effect. The thermal performance of plates containing PCMs with two different melting temperatures and with two different albedo levels was evaluated. The results showed that the PCM with a melting temperature of 44 °C maintained lower surface and inner temperatures than the PCM with a melting temperature of 25 °C. Moreover, a higher surface albedo resulted in a lower surface temperature. However, the thermal performance of PCMs with different melting temperatures but the same surface albedo did not differ. Using PCM-based materials in roof finishing materials can reduce surface temperatures and improve thermal comfort.

  4. Using the OSL single-aliquot regenerative-dose protocol with quartz extracted from building materials in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Solongo, S.; Murray, A.S.;

    2000-01-01

    We report on the application of the single-aliquot regenerative-dose (SAR) protocol to the optically stimulated luminescence signal from quartz extracted from fired bricks acid unfired mortar in retrospective dosimetry. The samples came from a radioactive materials storage facility, with ambient...

  5. Big Atoms for Small Children: Building Atomic Models from Common Materials to Better Visualize and Conceptualize Atomic Structure

    Science.gov (United States)

    Cipolla, Laura; Ferrari, Lia A.

    2016-01-01

    A hands-on approach to introduce the chemical elements and the atomic structure to elementary/middle school students is described. The proposed classroom activity presents Bohr models of atoms using common and inexpensive materials, such as nested plastic balls, colored modeling clay, and small-sized pasta (or small plastic beads).

  6. Variable volume loading method: a convenient and rapid method for measuring the initial emittable concentration and partition coefficient of formaldehyde and other aldehydes in building materials.

    Science.gov (United States)

    Xiong, Jianyin; Yan, Wei; Zhang, Yinping

    2011-12-01

    The initial emittable formaldehyde and VOC concentration in building materials (C(0)) is a key parameter for characterizing and classifying these materials. Various methods have been developed to measure this parameter, but these generally require a long test time. In this paper we develop a convenient and rapid method, the variable volume loading (VVL) method, to simultaneously measure C(0) and the material/air partition coefficient (K). This method has the following features: (a) it requires a relatively short experimental time (less than 24 h for the cases studied); and (b) is convenient for routine measurement. Using this method, we determined C(0) and K of formaldehyde, propanal and hexanal in one kind of medium density fiberboard, and repeated experiments were performed to reduce measurement error. In addition, an extended-C-history method is proposed to determine the diffusion coefficient and the convective mass transfer coefficient. The VVL method is validated by comparing model predicted results based on the determined parameters with experimental data. The determined C(0) of formaldehyde obtained via this method is less than 10% of the total concentration using the perforator method recommended by the Chinese National Standard, suggesting that the total concentration may not be appropriate to predict emission characteristics, nor for material classification.

  7. On the Building Exterior Material Problems and Countermeasures%浅述当下建筑外观材料存在问题与对策

    Institute of Scientific and Technical Information of China (English)

    孙凤田

    2014-01-01

    Current common building exterior material are of many varieties,which generally can be divided into four types,including natural materials,sintered materials,concrete and new materials.In order to better realizing sustainable development and constructing a green and environment friendly harmonious society,future architectural appearance materials will develop towards light weight,high strength,green and environment friendly,intelligent,and closely combined with cutting-edge technology.However,currently the de-sign and material selection of architectural appearance are almost the same and lack of cultural background and personality.We can de-sign architectural appearance with perfectly combining function and form by methods of coordination and unification,construction art and color adjustment.%当前常见的建筑外观材料种类繁多,一般分为天然材料、烧结材料、混凝土、新型材料等四类。为更好实现建筑可持续发展、建设绿色环保型和谐社会,未来建筑外观材料会沿着轻质高强、绿色环保、智能化、与前沿科技紧密结合等方向发展。然而,当前建筑外观设计及材料选用却明显雷同,缺乏文化底蕴及个性,我们可以通过采取协调与统一、构成艺术、色彩调节等措施,设计出功能与形式完美结合的建筑外观。

  8. The influence of modified water chemistries on metal oxide films, activity build-up and stress corrosion cracking of structural materials in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Maekelae, K.; Laitinen, T.; Bojinov, M. [VTT Manufacturing Technology, Espoo (Finland)

    1999-03-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of actuated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for {sup 60}Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (orig.) 127 refs.

  9. Build/Couple/Pair and Multifunctional Catalysis Strategies for the Synthesis of Heterocycles from Simple Starting Materials

    DEFF Research Database (Denmark)

    Ascic, Erhad

    to synthesize anti-amino alcohols displaying pairwise reactive combinations of alkene moieties. Upon treatment with a ruthenium alkylidene catalyst, these dienes selectively undergo ring-closing metathesis reactions to form skeletally distinct heterocycles. In addition, a ruthenium-catalyzed tandem RCM....... Multifunctional Catalysis: Synthesis of Heterocycles from Simple Starting Materials A multifunctional catalysis approach, involving a ruthenium-catalyzed tandem ringclosing metathesis/isomerization/N-acyliminium cyclization sequence, is described. Double bonds created during ring-closing metathesis isomerize...

  10. THE ENVIRONMENTAL IMPACT OF THE DELIVERY OF MINERAL RAW MATERIALS USED FOR BUILDING MATERIALS PRODUCTION TO THE CITY OF ZAGREB AND THE ZAGREB COUNTY

    Directory of Open Access Journals (Sweden)

    Karolina Novak

    2011-12-01

    Full Text Available Mineral raw material transport directly affects a product’s unit price and exhaust gases amounts. Transportation length is proportional to raw material price; its low price enables short transportation distances only. Taking into account stone aggregates delivered to Zagreb, the consequence of exploitation fields closure in the Zagreb area, particularly within the Medvednica Nature Park, we tried to answer the question of the impact of transport distances on the greenhouse gas emissions. Certain models will present environmental impact of the stone aggregate transportation and of nearby city quarries. The generally accepted public opinion on the closure of nearby city quarries as the best solution to environmental pollution will have to be reviewed. Mining works are predestined by mineral resources sites and limited by real possibilities and intentions of the community, therefore the experts, i.e. miners, geologists and other geoscientists, should be actively involved in spatial planning. During the years of intensive construction, millions of tons have been delivered from distances up to 100 km. The question arises whether some more rational solutions could be generated by more appropriate spatial planning? (the paper is published in Croatian

  11. Building on knowledge base of sodium cooled fast spectrum reactors to develop materials technology for fusion reactors

    Science.gov (United States)

    Raj, Baldev; Rao, K. Bhanu Sankara

    2009-04-01

    The alloys 316L(N) and Mod. 9Cr-1Mo steel are the major structural materials for fabrication of structural components in sodium cooled fast reactors (SFRs). Various factors influencing the mechanical behaviour of these alloys and different modes of deformation and failure in SFR systems, their analysis and the simulated tests performed on components for assessment of structural integrity and the applicability of RCC-MR code for the design and validation of components are highlighted. The procedures followed for optimal design of die and punch for the near net shape forming of petals of main vessel of 500 MWe prototype fast breeder reactor (PFBR); the safe temperature and strain rate domains established using dynamic materials model for forming of 316L(N) and 9Cr-1Mo steels components by various industrial processes are illustrated. Weldability problems associated with 316L(N) and Mo. 9Cr-1Mo are briefly discussed. The utilization of artificial neural network models for prediction of creep rupture life and delta-ferrite in austenitic stainless steel welds is described. The usage of non-destructive examination techniques in characterization of deformation, fracture and various microstructural features in SFR materials is briefly discussed. Most of the experience gained on SFR systems could be utilized in developing science and technology for fusion reactors. Summary of the current status of knowledge on various aspects of fission and fusion systems with emphasis on cross fertilization of research is presented.

  12. An Alternative to Clay in Building Materials: Red Mud Sintering Using Fly Ash via Taguchi’s Methodology

    Directory of Open Access Journals (Sweden)

    Suchita Rai

    2013-01-01

    Full Text Available “Red mud” or “bauxite residue” is a highly alkaline waste generated from alumina refinery with a pH of 10.5–12.5 which poses serious environmental problems. Neutralization or its treatment by sintering in presence of additives is one of the methods for overcoming the caustic problem as it fixes nearly all the leachable free caustic soda present in red mud. In the present study, feasibility of reducing the alkaline nature of red mud by sintering using fly ash as an additive via Taguchi methodology and its use for brick production, as an alternative to clay, is investigated. The analysis of variance (ANOVA shows that sintering temperature is the most significant parameter in the process. A pH of 8.9 was obtained at 25–50% of red mud and 50–75% fly ash with water and temperature of . Alternatively 50% of red mud can be mixed with 50% of fly ash with water at temperature of to get a pH of about 8.4. The mechanism of this process has been explained with also emphasis on chemical, mineralogical, and morphological analysis of the sintered red mud. The results would be extremely useful in utilization of red mud in building and construction industry.

  13. Hexakis(4-iodophenyl)-peri-hexabenzocoronene- a versatile building block for highly ordered discotic liquid crystalline materials.

    Science.gov (United States)

    Wu, Jishan; Watson, Mark D; Zhang, Li; Wang, Zhaohui; Müllen, Klaus

    2004-01-14

    Hexakis (4-iodophenyl)-peri-hexabenzocoronene (5), a novel functionalizable mesogenic building block, was prepared by rational multistep synthesis. Although sparingly soluble in common solvents, it can be obtained in pure form and then functionalized via Hagihara-Sonogashira coupling to give a series of highly ordered columnar liquid crystalline molecules 14a-c. The total synthesis involves five 6-fold transformations, all in excellent to near quantitative isolated yields. Their thermotropic liquid crystalline behavior was studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM) and wide-angle X-ray diffraction (WAXD). Compared to the normal alkyl-subsituted hexabenzocoronenes (HBCs), 14a-c exhibit more highly ordered columnar mesophases, including three-dimensionally ordered superstructures (helical columnar mesophase). These could arise from additional intracolumnar pi-pi interactions between, and space-filling requirements introduced by, the rigid-rod side groups. Atomic force microscopy (AFM) revealed self-assembled bundles of columnar aggregates in spin-coated films and isolated several-micron-long nanoribbons composed of a defined number of columns in drop cast films.

  14. Studies on the production of building material grade slag from hazardous-waste incineration plants; Untersuchungen zur Herstellung einer Schlacke mit Baustoffqualitaet aus Sondermuellverbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Reich, J.; Herbel, J.D.; Pasel, C. [Duisburg Univ. (Gesamthochschule) (Germany). Fachgebiet Abfalltechnik

    1998-09-01

    In an attempt to restore the competitive power of hazardous-waste incineration within the present legal framework, plant operators have in some cases lowered disposal prices below the break-even point; in this respect there is no further room for improvement. One approach towards a new marketable solution could be to use rotary kilns not only for disposal but also as production plants. This could be achieved by means of input control and loading materials. If, for example, the slag remaining after combustion could be made to meet building material specifications, thus providing a marketable product, then rotary kilns would be able to serve as production plants for a secondary raw material. If it should prove possible in the course of manufacturing campaigns to develop slags from hazardous-waste incineration plants to a marketable product, then operators will thus have complied to the demand of the Law on Recycling and Waste Management for waste avoidance and that of the Emission Control Law for residue recycling. Targeted use of suitable loading materials for quality improvement could enable operators of hazardous-waste incineration plants to secure a new strategic position on the market as building material manufacturers and utilise existing plant capacities. [Deutsch] Um die Sonderabfallverbrennung im Rahmen der rechtlichen Vorgaben wieder konkurrenzfaehig zu machen, haben die Anlagenbetreiber die Entsorgungspreise teilweise unter die Grenze der Kostendeckung zurueckgenommen; hier besteht kein Spielraum mehr. Ein neuer, marktgerechter Ansatz koennte sich dann ergeben, wenn die Drehrohroefen statt als Beseitigungsaggregate durch Inputsteuerung und Zuschlaege eventuell auch als Produktionsanlagen einzusetzen waeren. Wenn z.B. die Schlacke, als Rueckstand aus der Verbrennung, als ein im Baustoffmarkt absetzbares Produkt nach Qualitaetskriterien gezielt hergestellt wuerde, koennte der Drehrohrofen als Produktionsanlage fuer einen Sekundaerrohstoff betrieben werden

  15. A Study on a Novel Phase Change Material Panel Based on Tetradecanol/Lauric Acid/Expanded Perlite/Aluminium Powder for Building Heat Storage

    Directory of Open Access Journals (Sweden)

    Enyu Wang

    2016-11-01

    Full Text Available Phase change material (PCM used in buildings can reduce the building energy consumption and indoor temperature fluctuation. A composite PCM has been fabricated by the binary eutectic mixture of tetradecanol (TD and lauric acid (LA absorbed into the expanded perlite (EP using vacuum impregnation method, and its thermal conductivity was promoted by aluminium powder (AP additive. Besides, the styrene-acrylic emulsion has been mixed with the composite PCM particles to form the protective film, so as to solve the problem of leakage. Thus, a novel PCM panel (PCMP has been prepared using compression moulding forming method. The thermal property, microstructure characteristic, mechanical property, thermal conductivity, thermal reliability and leakage of the composite PCM have been investigated and analysed. Meanwhile, the thermal performance of the prepared PCMP was tested through PCMPs installed on the inside wall of a cell under outdoor climatic conditions. The composite PCM has a melting temperature of 24.9 °C, a freezing temperature of 25.2 °C, a melting latent heat of 78.2 J/g and a freezing latent heat of 81.3 J/g. The thermal conductivity test exposed that the thermal conductivity has been enhanced with the addition of AP and the latent heat has been decreased, but it still remains in a high level. The leakage test result has proven that liquid PCM leaking has been avoided by the surface film method. The thermal performance experiment has shown the significant function of PCMP about adjusting the indoor temperature and reducing the heats transferring between the wall inside and outside. In view of the thermal performance, mechanical property and thermal reliability results, it can be concluded that the prepared PCMP has a promising building application potential.

  16. Basaltic scorias from Romania - complex building material us for concrete, glazing tiles, ceramic glazes, glass ceramics, mineral wool

    Energy Technology Data Exchange (ETDEWEB)

    Marica, S.; Cetean, V. [PROCEMA S.A., Bucharest (Romania)

    2002-07-01

    The most spectacular deposit of basaltic scoria from Romania is the Heghes Hill from Racos, locality situated in the central part of country. This deposit emerged as grains of various dimensions, as volcanic ash with specific porosity up to 30% and vacuolar basaltic rocks. All types of basaltic scorias have specific vacuolar appearance, red- brick or blackish - grey coloured, scoria textures and similar chemical composition with others basalts of the world. The physical and mechanical characteristics determined included the scorias in the Heghes Hill in the following categories : light rocks (2,98 g/ dmc), porous(11,04%), similar to expanded slag, slightly absorbing rocks (3,86%), with low compression strengths (1700 daN/cmp). Basaltic scoria from Heghes is a very good row material for the manufacture of concrete, for obtain decorative cutting tiles glazing with ceramic and basaltic glazes (up to 40%) varied the range of colours and for obtaining glass ceramic, mineral wool, crushing sand for road maintenance, heat -insulating bricks and shid -proof material. (orig.)

  17. Investigation of the contribution possibilities of non-destructive methods of testing for the diagnosis and quality control of building materials with emphasis given on sustainable construction

    Science.gov (United States)

    Katsiotis, Nikolaos S.; Matikas, Theodoros E.; Moropoulou, Antonia

    2012-04-01

    In this work, the contribution potential of non-destructive methods of testing is studied in order to assess, diagnose and assert building materials' diagnosis & quality control, with emphasis given on Sustainable Construction. To this end, the following techniques are implemented: fiber-optics microscopy, digital image processing, scanning electron microscopy, pulse/lock-in thermography, acoustic emission as well as ultrasounds. Furthermore, in addition to the above, the maturity method for measurement of compressive strength is applied and correlated to the array of full field non-destructive methods of testing. The results of the study clearly demonstrate how effective non-destructive methods of testing can be, in revealing and determining highly applicable data in a real-time, in situ and efficient manner.

  18. Use of washery discard in road construction and as a basis for building materials. Report on ECSC contract 7220-EC/101

    Energy Technology Data Exchange (ETDEWEB)

    Schieder, T.; Erdmann, W.; Leininger, D.

    1985-01-01

    Due to a shortage of suitable areas for dumping and for reasons of conservation the German coal-mining industry has been looking for alternative ways of disposing of washery discard. With the use of mechanical and thermal processing it is possible to convert washery discard into useful building materials. Techniques have been developed for the manufacture of light concrete blocks using fired refuse as an additive and also cement bound masonry blocks with refuse in the green state as an additive. In the field of road construction, roads were made using green refuse with hydraulic or bitumen binders as frost blanket and roadbase management. Work has also been carried out using residues from the fluidised bed combustion of flotation tailings.

  19. Analysis of industry development of building materials and ore mining and dressing of non-metallic minerals%2011年建材及非金属矿采选业行业发展分析

    Institute of Scientific and Technical Information of China (English)

    何军生

    2012-01-01

    In 2011, the growth of building materials production remained stable, industrial structure contiuned to optimise, economic porfits improved. In this paper, the author firstly discusses economic operation of building materials and ore mining and dressing of non-metallic minerals in 2011, to adjust the industrial structure of building materials and ore mining and dressing of non-metallic minerals to impove the quality of the economic operation, predicts the development trend of industry of building materials and ore mining and dressing of non-metallic minerals in 2012. At last, the author puts forward to policy suggestions which accelerate industry deleopment of the building materials and ore mining and dressing of non-metallic minerals%2011年建材工业生产增长速度保持平稳,产业结构继续优化,经济效益提高.本文首先讨论了2011年建材工业经济及非金属矿采选行业经济运行情况,做到调整建材及非金属矿选行业产业结构,提高经济运行质量,预测了2012年建材及非金属矿选行业未来发展趋势,最后提出促进建材及非金属矿选行业发展的政策建议.

  20. CFD Simulation of a Concrete Cubicle to Analyze the Thermal Effect of Phase Change Materials in Buildings

    Directory of Open Access Journals (Sweden)

    José L. Míguez

    2012-06-01

    Full Text Available In this work, a CFD-based model is proposed to analyse the effect of phase change materials (PCMs on the thermal behaviour of the walls of a cubicle exposed to the environment and on the resistance of the walls to climate changes. The effect of several days of exposure to the environment was simulated using the proposed method. The results of the simulation are compared with experimental data to contrast the models. The effects of exposure on the same days were simulated for several walls of a cubicle made of a mixture of concrete and PCM. The results show that the PCM stabilizes temperatures within the cubicle and decreases energy consumption of refrigeration systems.