WorldWideScience

Sample records for building materials by properties

  1. Building Materials

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Building Materials Sub-council of CCPIT is the other sub-council in construction field. CCPIT Building Materials Sub-council (CCPITBM), as well as CCOIC Build-ing Materials Chamber of Commerce, is au-thorized by CCPIT and state administration of building materials industry in 1992. CCPITBM is a sub-organization of CCPIT and CCOIC.

  2. [Technology transfer of building materials by ECOMAT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report discusses the plan for technology transfer of building materials developed by ECOMAT to the commercial private sector. Some of the materials are briefly discussed like foams, fiber reinforcement, fly ash development, and polymer fillers.

  3. Ozone removal by green building materials

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Chi P.; Kinney, Kerry A.; Corsi, Richard L. [Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 1 University Station (C1786), Austin, TX 78712 (United States)

    2009-08-15

    Interest in finding out passive ways to keep the variation in the indoor climate within the comfort zone is gaining in popularity. One possible solution is the use of the moisture-buffering property of materials. In this study, the effects of the ventilation system and moisture-buffering properties of the building fabric on the stability of the indoor temperature and humidity are analysed by means of long-term field measurements. Indoor climate measurements were carried out in 170 detached houses (248 rooms). Temperature and relative humidity were measured continuously in bedrooms and living rooms at one-hour intervals over a one-year period. In general, it may be concluded that in this study, the ventilation had a greater effect on the indoor climate than the properties of the building fabric. The dampening effect of hygroscopic materials was remarkably less in the field measurements than it was in simulations in different studies. This indicates that completely non-hygroscopic and fully hygroscopic houses do not exist in reality. The hygroscopic mass of furniture, textiles, etc. is probably a factor that plays a significant role in indoor humidity, as do real air change rates, including window airing. Simulation tools need to be modified in order to be able also to handle furniture, textiles, and books, etc. (author) There is a rapidly expanding market for green building materials. Such materials are intended to be environmentally friendly, with such characteristics as low toxicity, minimal chemical emissions, ability to be recycled, and durability. In addition, green materials often contain recycled and/or bio-based contents. Consequently, some green materials may undergo significant oxidation with potential for reduction of indoor ozone. In this study, 48-L electro-polished stainless steel chambers were used to study the reactive consumption of ozone by ten common green wall, flooring, ceiling, and cabinetry materials (perlite-based ceiling tile, unglazed

  4. Building Materials in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2005-01-01

    Building in the artic requires special attention on the appropriateness of building materials. The harsh climate makes execution difficult and sets unusual requirements for the pure material properties. In addition, there is a lack of choice of good, natural building materials in the arctic....... This results in high transport costs. The building materials situation in Greenland may potentially be improved by intensifying the reuse of building materials or by promoting the local production of building materials....

  5. Experimental Study on the Comparison of the Material Properties of Glass Wool Used as Building Materials

    Directory of Open Access Journals (Sweden)

    Kyoung-Woo KIM

    2014-04-01

    Full Text Available Artificial mineral fibers such as glass wool or stone wool are commonly used in building walls, ceilings and floors as a major insulation material for buildings. Among the material properties of building materials, thermal conductivity, the sound absorption coefficient, compressibility, and dynamic stiffness are regarded as important performance requirements since they directly affect the thermal and acoustic properties of the building. This study measured the changes of the thermal and acoustical performances of glass wool that was actually installed for a long time to the outer wall of a building as an insulation material through a comparison with recently produced glass wool. The results showed that the measured thermal conductivities of the old and the new specimens both rise with an increase of temperature, showing quite similar results in both specimens over temperature ranges of (0 – 20 ºC. The noise reduction coefficient decreased by 0.1 in the old specimen and the difference of the compressibilities in both specimens was shown to be 7.32 mm. The dynamic stiffness of the old specimen was found to be 1.28 MN/m3 higher than that of the new specimen.DOI: http://dx.doi.org/10.5755/j01.ms.20.1.3714

  6. Assessment of the material properties of a fire damaged building

    Directory of Open Access Journals (Sweden)

    Oladipupo OLOMO

    2012-12-01

    Full Text Available This study identifies a process for assessing the material properties of a fire damaged building so as to determine whether the remains can be utilized in construction or be demolished. Physical and chemical analysis were carried out on concrete and steel samples taken from various elements of the building after thorough visual inspection of the entire building had been conducted. The physical (non-destructive tests included the Schmidt hammer and ultrasonic pulse velocity tests on the concrete samples, tensile strength test on the steel samples and chemical tests involving the assessment of the quantities of cement, sulphates and chloride concentrations in the samples. A redesign of the building elements was also carried out and the results were compared with the existing design. The non-destructive test results indicated compressive strengths as low as 9.9 N/mm2, the tensile strength test indicated a maximum strength of 397.48 N/mm2 and the chemical test indicated chloride contents as high as 0.534 g per gramme of concrete. These properties deviated significantly from standard requirements. Based on these results, it was concluded that the remains of the building should be demolished.

  7. Tactile Response of Building Materials by Tactile Sensor

    OpenAIRE

    岡島, 達雄; 呉, 健丹; 堀越, 哲美; 武田, 雄二; 水谷, 章夫; 川邊, 伸二; ホリコシ, テツミ; ミズタニ, アキオ; カワベ, シンジ; Horikoshi, Tetsumi; Mizutani, Akio; Kawabe, Shinji

    1991-01-01

    The object of this paper is to clarify the tactile response of building materials by tactile sensor. We developed the compact tactile sensor that can measure the physical values of warmth, hardness and roughness of building materials. At a temperature of 2℃, psychological values of warmth, hardness and roughness were obtaind from the physical values of sixty materials by the tactile sensor. The tactile comfort value can be expressed from physical values of warmth, hardness and roughness by th...

  8. Building biomedical materials layer-by-layer

    Directory of Open Access Journals (Sweden)

    Paula T. Hammond

    2012-05-01

    Full Text Available In this materials perspective, the promise of water based layer-by-layer (LbL assembly as a means of generating drug-releasing surfaces for biomedical applications, from small molecule therapeutics to biologic drugs and nucleic acids, is examined. Specific advantages of the use of LbL assembly versus traditional polymeric blend encapsulation are discussed. Examples are provided to present potential new directions. Translational opportunities are discussed to examine the impact and potential for true biomedical translation using rapid assembly methods, and applications are discussed with high need and medical return.

  9. 15 CFR 270.321 - Entry and inspection of property where building components, materials, artifacts, and records...

    Science.gov (United States)

    2010-01-01

    ... building components, materials, artifacts, and records with respect to a building failure are located. 270... of property where building components, materials, artifacts, and records with respect to a building... building components, materials, artifacts and records with respect to a building failure are...

  10. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Sales of building materials for commercial property... construction, maintenance or repair of commercial property or any other property not excepted in section 3(n... business for the construction, maintenance or repair of commercial property or any other property...

  11. 15 CFR 270.325 - Notice of authority to enter and inspect property where building components, materials, artifacts...

    Science.gov (United States)

    2010-01-01

    ... inspect property where building components, materials, artifacts, and records with respect to a building... Notice of authority to enter and inspect property where building components, materials, artifacts, and... investigated has occurred, or where building components, materials, and artifacts with respect to the...

  12. Dynamic solar radiation control in buildings by applying electrochromic materials

    Energy Technology Data Exchange (ETDEWEB)

    Jelle, B.P.; Gustavsen, A.

    2010-07-01

    Full text: Smart windows like electrochromic windows (ECWs) are windows which are able to regulate the solar radiation throughput by application of an external voltage. The ECWs may decrease heating, cooling and electricity loads in buildings by admitting the optimum level of solar energy and daylight into the buildings at any given time, e.g. cold winter climate versus warm summer climate demands. In order to achieve as dynamic and flexible solar radiation control as possible, the ECWs may be characterized by a number of solar radiation glazing factors, i.e. ultraviolet solar transmittance, visible solar transmittance, solar transmittance, solar material protection factor, solar skin protection factor, external visible solar reflectance, internal visible solar reflectance, solar reflectance, solar absorbance, emissivity, solar factor and colour rendering factor. Comparison of these solar quantities for various electrochromic material and window combinations and configurations enables one to select the most appropriate electrochromic materials and ECWs for specific buildings. Measurements and calculations were carried out on two different electrochromic window devices. (Author)

  13. Effect of Moisture Content on Thermal Properties of Porous Building Materials

    Science.gov (United States)

    Kočí, Václav; Vejmelková, Eva; Čáchová, Monika; Koňáková, Dana; Keppert, Martin; Maděra, Jiří; Černý, Robert

    2017-02-01

    The thermal conductivity and specific heat capacity of characteristic types of porous building materials are determined in the whole range of moisture content from dry to fully water-saturated state. A transient pulse technique is used in the experiments, in order to avoid the influence of moisture transport on measured data. The investigated specimens include cement composites, ceramics, plasters, and thermal insulation boards. The effect of moisture-induced changes in thermal conductivity and specific heat capacity on the energy performance of selected building envelopes containing the studied materials is then analyzed using computational modeling of coupled heat and moisture transport. The results show an increased moisture content as a substantial negative factor affecting both thermal properties of materials and energy balance of envelopes, which underlines the necessity to use moisture-dependent thermal parameters of building materials in energy-related calculations.

  14. Moisture storage parameters of porous building materials as time-dependent properties

    Science.gov (United States)

    Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek

    2016-06-01

    Three different types of bricks and two different types of sandstones are studied in terms of measurement moisture storage parameters for over-hygroscopic moisture area using pressure plate device. For researched materials, basic physical properties as bulk density, matrix density and total open porosity are determined. From the obtained data of moisture storage measurement, the water retention curves and curves of degree of saturation in dependence on suction pressure are constructed. Water retention curve (also called suction curve, capillary potential curve, capillary-pressure function and capillary-moisture relationship) is the basic material property used in models for simulation of moisture storage in porous building materials.

  15. Assessment on urban soil pollution by biocides from building materials

    DEFF Research Database (Denmark)

    Bollmann, Ulla E.; Vollertsen, Jes; Bester, Kai

    2015-01-01

    . Based on a monitoring study of stormwater runoff from a residential catchment as well as direct façade runoff analysis, the present study was assessing the pollution of urban soil to biocides from building material. The stormwater runoff of a residential catchment in Silkeborg (Denmark) was monitored...... from a freshly painted or rendered house, it is obvious that a huge part is actually draining directly to the soil and not to the sewer system. Consequently, the soil in urban areas is exposed to stormwater highly polluted by biocides which might affect the microbial community there....

  16. Further developments in material properties determined by vibration analysis

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang; Andreasen, Lotte; Seifert, Mette

    1997-01-01

    have been studied by testing a number of building materials. The method has been PC-integrated with the Brüel & Kjær's type 3550 vibration equipment - and special user menus have been developed to facilitate handling of the method in practice. Limits on range of test frequencies applied are discussed...... with respect to configurations of vibration equipment and shapes of test specimens used. Sensitivity studies have been made to identify sources of errors which may disturb the reliability of the method used in practice. Practical aspects with respect to test set-ups are considered in these studies - as well......A method was described in Materialnyt 1 (1995) on "Material properties determined by vibration analysis". This new method of materials testing has been further developed as the result of research at the Building Materials Laboratory, Technical University of Denmark.Practical aspects of the method...

  17. Comparative study of mechanical properties of direct core build-up materials

    Directory of Open Access Journals (Sweden)

    Girish Kumar

    2015-01-01

    Full Text Available Background and Objectives: The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. Materials and Methods: All the materials were manipulated according to the manufacturer′s recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Results: Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Conclusions: Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success.

  18. Thermal properties of a new ecological building material / Granular cork embedded in white cement

    Directory of Open Access Journals (Sweden)

    Cherki Abou-bakr

    2014-04-01

    Full Text Available Cork, natural and renewable product, has thermal and acoustic properties very interesting because of its microstructure and porosity representing a significant portion of its apparent volume; it’s coming from Moroccan Maamora’s forest. This work is a contribution to understand the thermal behaviour of the composite material based on granular cork embedded in white cement. An experimental investigation of its thermal properties was mainly performed using the asymmetrical device of transient Hot Plate method. The effect of granular cork size on the thermal properties of the mixture was studied. The experimental study of this sustainable material aims to characterize its thermal properties and then compare them with those of white cement without cork for motivate the proposal that this composite material will be used as walls insulator. A comparison of the energy performances of the composite material and white cement was made; it allows deducing a very interesting energy gain. The findings of the experiments indicate that the composite is better than white cement in term of thermal insulation, energy storage capacity and lightness. So, it can be used to realize the internal walls insulation. Its utilization should contribute to the improvement of the energy efficiency in building especially that this is a mixture based on a sustainable and renewable material.

  19. Study on γ-ray exposure buildup factors and fast neutron-shielding properties of some building materials

    Science.gov (United States)

    Singh, Vishwanath P.; Badiger, N. M.; El-Khayatt, A. M.

    2014-06-01

    We have computed γ-ray exposure buildup factors (EBF) of some building materials; glass, marble, flyash, cement, limestone, brick, plaster of paris (POP) and gypsum for energy 0.015-15 MeV up to 40 mfp (mfp, mean free path) penetration depth. Also, the macroscopic effective removal cross-sections (ΣR) for fast neutron were calculated. We discussed the dependency of EBF values on photon energy, penetration depth and chemical elements. The half-value layer and kinetic energy per unit mass relative to air of building materials were calculated for assessment of shielding effectiveness. Shielding thicknesses for glass, marble, flyash, cement, limestone and gypsum plaster (or Plaster of Paris, POP) were found comparable with ordinary concrete. Among the studied materials limestone and POP showed superior shielding properties for γ-ray and neutron, respectively. Radiation safety inside houses, schools and primary health centers for sheltering and annual dose can be assessed by the determination of shielding parameters of common building materials.

  20. BUILDING MATERIALS MADE FROM FLUE GAS DESULFURIZATION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Michael W. Grutzeck; Maria DiCola; Paul Brenner

    2006-03-30

    Flue gas desulphurization (FGD) materials are produced in abundant quantities by coal burning utilities. Due to environmental restrains, flue gases must be ''cleaned'' prior to release to the atmosphere. They are two general methods to ''scrub'' flue gas: wet and dry. The choice of scrubbing material is often defined by the type of coal being burned, i.e. its composition. Scrubbing is traditionally carried out using a slurry of calcium containing material (slaked lime or calcium carbonate) that is made to contact exiting flue gas as either a spay injected into the gas or in a bubble tower. The calcium combined with the SO{sub 2} in the gas to form insoluble precipitates. Some plants have been using dry injection of these same materials or their own Class C fly ash to scrub. In either case the end product contains primarily hannebachite (CaSO{sub 3} {center_dot} 1/2H{sub 2}O) with smaller amounts of gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O). These materials have little commercial use. Experiments were carried out that were meant to explore the feasibility of using blends of hannebachite and fly ash mixed with concentrated sodium hydroxide to make masonry products. The results suggest that some of these mixtures could be used in place of conventional Portland cement based products such as retaining wall bricks and pavers.

  1. Solving real decay and conservation problems of building materials by ultrasounds technique

    Science.gov (United States)

    Alvarez de Buergo, Monica; Fort, Rafael; Gomez-Heras, Miguel; Vazquez-Calvo, Carmen

    2010-05-01

    In this study a variety of case studies and different building materials in which ultrasounds velocity played a significant role are shown, either to characterize building materials, to measure deterioration, to assess conservation techniques or for preventive purposes. Regarding to materials properties, ultrasounds velocity provided interesting indices such as the quality index (useful when selecting replacing materials, materials for new constructions or either for sculptures); alteration index (very much related to pores and voids, and fissures); mechanical strength (assessing its reduction when materials are affected by several decay processes, being fire one of them) or anisotropy indices, which highly condition the decay of elements and materials in buildings and sculptures, and which vary themselves with decay progress. The technique is also a tool for detecting and locating elements inside structures, like metallic ones, and also to detect and locate discontinuities inside elements, both for consolidation purposes or even in cases of structures movement, which is quite common nowadays. Using some specific software, ultrasounds results can be plotted as iso-areas, which allows to define areas or zones of structures with the highest risk of detachment in a short-time in order to plan the most adequate interventions. Not new is also the aid of ultrasonics to assess consolidation products and to determine the degree of materials decay when submitted to artificial ageing. Much more innovative is the fact that ultrasonics measurement can be also helpful to determine different building periods in a same building, even the fact of determining an element's lifetime. The results obtained by this non destructive and portable technique that will be presented in this session correspond to both real case studies (results that helped to solve a real problem), some of them corresponding to emblematic monuments de España (Royal Palace of Madrid and some other monuments

  2. Experimental measurements of thermal properties for Mexican building materials to simulate thermal behavior to save energy

    Energy Technology Data Exchange (ETDEWEB)

    Chavez-Galan, Jesus; Almanza, Rafael; Rodriguez, Neftali [Universidad Nacional Autonoma de Mexico (Mexico). Inst. de Ingenieria

    2008-07-01

    One of the main factors that determine the reliability of building's thermal design is the values of thermal and heat transfer properties used during this process. In order to optimizing such thermal design process, there is little information available of the most utilized building materials in Mexico; hence, some measurements were carried out. We present thermal conductivity experimental results for: red brick, tepetate, adobe and concrete. Furthermore, experimental data of convective heat transfer coefficients are reported on: red brick, tepetate, adobe and concrete walls. Kondratyev methodology was used for thermal conductivity estimations. Kondratyev methodology is based on the cooling off of bodies in regular state analysis. Thermal conductivity values were: red brick k{sub L} = 0.906 W/mC, tepetate k{sub T} = 0.648 W/mC, adobe k{sub A} = 0.570 W/mC, and concrete k{sub C} = 1.918 W/mC. Red brick, tepetate, adobe and concrete test walls of 0.46 x 0.56 and 0.06 m thick, were manufactured, as well as a prototype of testing for mounting the walls, in order to evaluate their convective heat transfer coefficients. Measurements were carried out at the Institute of Engineering-UNAM Wind-Tunnel, for an air velocities interval of 2-10 m/s. Reported values for convective coefficients fluctuate on 16-134 W/m{sup 2}2 C, depending on material and position wall, as well as air velocity. (orig.)

  3. Quality improvement of granular secondary raw building materials by separation and cleansing techniques

    NARCIS (Netherlands)

    Xing, W.

    2004-01-01

    Contaminated granular wastes are potentially reusable because they have similar physical and chemical properties as primary raw building materials. From environmental aspects, the reuse must not result in polluting the soil, groundwater and surface water. Therefore the leaching values of inorganic c

  4. Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks.

    Science.gov (United States)

    Soler-Illia, Galo J A A; Azzaroni, Omar

    2011-02-01

    This critical review presents and discusses the recent advances in complex hybrid materials that result from the combination of polymers and mesoporous matrices. Ordered mesoporous materials derived from supramolecular templating present high surface area and tailored pore sizes; pore surfaces can be further modified by organic, organometallic or even biologically active functional groups. This permits the creation of hybrid systems with distinct physical properties or chemical functions located in the framework walls, the pore surface, and the pore interior. Bringing polymeric building blocks into the game opens a new dimension: the possibility to create phase separated regions (functional domains) within the pores that can behave as "reactive pockets" of nanoscale size, with highly controlled chemistry and interactions within restricted volumes. The possibilities of combining "hard" and "soft" building blocks to yield these novel nanocomposite materials with tuneable functional domains ordered in space are potentially infinite. New properties are bound to arise from the synergy of both kinds of components, and their spatial location. The main object of this review is to report on new approaches towards functional polymer-inorganic mesostructured hybrids, as well as to discuss the present challenges in this flourishing research field. Indeed, the powerful concepts resulting from the synergy of sol-gel processing, supramolecular templating and polymer chemistry open new opportunities in the design of advanced functional materials: the tailored production of complex matter displaying spatially-addressed chemistry based on the control of chemical topology. Breakthrough applications are expected in the fields of sustainable energy, environment sensing and remediation, biomaterials, pharmaceutical industry and catalysis, among others (221 references).

  5. Mycotoxins in building materials

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Frisvad, Jens Christian

    2011-01-01

    as in future energy efficient buildings. It brings together different disciplinary points of view on indoor mold, ranging from physics and material science to microbiology and health sciences. The contents have been outlined according to three main issues: Fundamentals, particularly addressing the crucial...... for avoiding adverse health effects is the prevention (or minimization) of persistent dampness and microbial growth on interior surfaces and in building structures. This book aims to describe the fundamentals of indoor mold growth as a prerequisite to tackle mold growth in the existing building stock as well...

  6. Environmental Radiation Hazards of Building Materials

    Directory of Open Access Journals (Sweden)

    Amal A. Nasser

    2012-11-01

    Full Text Available In the last few decades, the importance of studying the environmental impact of building material properties grew. The main focus was to study physical, mechanical and chemical characteristics of building materials. Buildings are the environment that a human spend about 80% of his life. Human exposure to radiation doses emerging from natural and manufactured building materials caused serious diseases. The hazard of radiation doses on human body, especially Radon, was discovered. Radon is produced of the radioactive decay of Uranium and Thorium series. It is a colorless, odorless and tasteless gas. It inters human body by breathing and produces harmful radioactive elements. It has become a goal to know the limits of safety for building materials and to establish green buildings. Health and environmental risks have to take first command in the construction field to take proper precautions to ward off risks. Radon emission was investigated. The radioactive concentration of indoor air may be decreased under the permissible doses by the building geometry variation and other ways as reviewed in this investigation.

  7. MOISTURE-BUFFERING CHARACTERISTICS OF BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Young Cheol Choi

    2016-05-01

    Full Text Available The humidity level of indoor air is an important factor influencing the air quality and energy consumption of buildings, as well as the durability of building components. Indoor humidity levels depend on several factors, such as moisture sources, air flow, and the adsorption/desorption properties of materials. The moisture-buffering characteristics of building materials that are in contact with indoor air may help moderate the variations of indoor humidity, especially in the summer and winter. In this study, the moisture adsorption/desorption properties of building materials were investigated experimentally and numerically. These properties can be used to characterize the ability of building materials to exchange moisture with the indoor environment. This study indicates that a building material surface resistivity was the main factor creating variations of moisture buffering.

  8. Radon Exhalation Considered in Building Material Standard

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>In order to investigate the relationship between radon exhalation and specific activity of natural nuclides in building material, here different kinds of samples of building materials were measured by the

  9. BUILDING MATERIALS RECLAMATION PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

    2010-08-31

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

  10. Building material characterization by using IR thermography for efficient heating systems

    Science.gov (United States)

    Bison, Paolo; Grinzato, Ermanno

    2008-03-01

    Thermography is excellent for a fast characterisation of building materials, both at laboratory or in situ. A great advantage is the possibility to analyse many samples at the same conditions and time. A technique has been applied for new materials, oriented to radiating floor systems, evaluating different approaches. Samples are submitted to a stepwise, uniform heating. Surface excess temperature is recorded by thermography evaluating thermal inertia. At first, thermal diffusivity has been measured using a modified version of the Flash Method, then applied on a single face, for in situ application. Heat capacity and thermal conductivity have been inferred for each samples by definitions and the independent measure of the volumic mass.

  11. Development of Composite PCMs by Incorporation of Paraffin into Various Building Materials

    Directory of Open Access Journals (Sweden)

    Shazim Ali Memon

    2015-02-01

    Full Text Available In this research, we focused on the development of composite phase-change materials (CPCMs by incorporation of a paraffin through vacuum impregnation in widely used building materials (Kaolin and ground granulated blast-furnace slag (GGBS. The composite PCMs were characterized using environmental scanning electron microscopy (ESEM, Fourier transform infrared spectroscopy (FT-IR, differential scanning calorimetry (DSC and thermogravimetric analysis (TGA techniques. Moreover, thermal performance of cement paste composite PCM panels was evaluated using a self-designed heating system. Test results showed that the maximum percentage of paraffin retained by Kaolin and GGBS was found to be 18% and 9%, respectively. FT-IR results show that CPCMs are chemically compatible. The phase-change temperatures of CPCMs were in the human comfort zone, and they possessed considerable latent-heat storage capacity. TGA results showed that CPCMs are thermally stable, and they did not show any sign of degradation below 150 °C. From thermal cycling tests, it was revealed that the CPCMs are thermally reliable. Thermal performance tests showed that in comparison to the control room model, the room models prepared with CPCMs reduced both the temperature fluctuations and maximum indoor center temperature. Therefore, the prepared CPCMs have some potential in reducing peak loads in buildings when applied to building facade.

  12. Material Efficiency of Building Construction

    Directory of Open Access Journals (Sweden)

    Antti Ruuska

    2014-07-01

    Full Text Available Better construction and use of buildings in the European Union would influence 42% of final energy consumption, about 35% of our greenhouse gas emissions and more than 50% of all extracted materials. It could also help to save up to 30% of water consumption. This paper outlines and draws conclusions about different aspects of the material efficiency of buildings and assesses the significance of different building materials on the material efficiency. The research uses an extensive literature study and a case-study in order to assess: should the depletion of materials be ignored in the environmental or sustainability assessment of buildings, are the related effects on land use, energy use and/or harmful emissions significant, should related indicators (such as GHGs be used to indicate the material efficiency of buildings, and what is the significance of scarce materials, compared to the use of other building materials. This research suggests that the material efficiency should focus on the significant global impacts of material efficiency; not on the individual factors of it. At present global warming and greenhouse gas emissions are among the biggest global problems on which material efficiency has a direct impact on. Therefore, this paper suggests that greenhouse gas emissions could be used as an indicator for material efficiency in building.

  13. Tooth and bone deformation: structure and material properties by ESPI

    Science.gov (United States)

    Zaslansky, Paul; Shahar, Ron; Barak, Meir M.; Friesem, Asher A.; Weiner, Steve

    2006-08-01

    In order to understand complex-hierarchical biomaterials such as bones and teeth, it is necessary to relate their structure and mechanical-properties. We have adapted electronic speckle pattern-correlation interferometry (ESPI) to make measurements of deformation of small water-immersed specimens of teeth and bones. By combining full-field ESPI with precision mechanical loading we mapped sub-micron displacements and determined material-properties of the samples. By gradually and elastically compressing the samples, we compensate for poor S/N-ratios and displacement differences of about 100nm were reliably determined along samples just 2~3mm long. We produced stress-strain curves well within the elastic performance range of these materials under biologically relevant conditions. For human tooth-dentin, Young's modulus in inter-dental areas of the root is 40% higher than on the outer sides. For cubic equine bone samples the compression modulus of axial orientations is about double the modulus of radial and tangential orientations (20 GPa versus 10 GPa respectively). Furthermore, we measured and reproduced a surprisingly low Poisson's ratio, which averaged about 0.1. Thus the non-contact and non-destructive measurements by ESPI produce high sensitivity analyses of mechanical properties of mineralized tissues. This paves the way for mapping deformation-differences of various regions of bones, teeth and other biomaterials.

  14. Potentially harmful secondary metabolites produced by indoor Chaetomium species on artificially and naturally contaminated building materials

    DEFF Research Database (Denmark)

    Dosen, Ina; Nielsen, Kristian Fog; Clausen, Geo

    2017-01-01

    , have been screened for, and thus detected in buildings. In this study, we used a liquid chromatography-high resolution mass spectrometry approach to screen both artificially and naturally infected building materials for all the Chaetomium metabolites described in the literature. Pure agar cultures were...

  15. Characterization of Particle Size Distributions of Powdery Building Material Aerosol Generated by Fluidization and Gravitation

    Directory of Open Access Journals (Sweden)

    Tadas Prasauskas

    2012-10-01

    Full Text Available This study aims to identify particle size distributions (PSD of aerosol of powdery building materials commonly used in construction work (cement, chalk, clay, wood sawdust, wood grinding dust, gypsum, hydrated lime, masonry grout, quartz sand, sand and structural lime by two aerosolization methods: fluidization and gravitation. Fluidization and gravitation methods represent industrial activities such as pneumotransportation and unloading. Both particle resuspension mechanisms have been modelled in laboratory conditions. The particle size distributions of resuspended particulate matter from powdery building materials were rather similar identified by both fluidization and gravitation methods, with an exception of wood sawdust and sand. The PM10 fraction ranged between 30% and 87%, PM2.5 from 7% to 28% and PM1.0 from 3% to 7% of the total mass of particulate matter. The highest PM10/PMtotal ratio was calculated for masonry grout - 0.87, and the lowest ratio for quartz sand - 0.30. The highest ratio of PM2.5/PMtotal was calculated for sand - 0.23, the lowest for quartz sand - 0.07. Substantial quantities of PM2.5 were found to be emitted implying a potential threat to human health.DOI: http://dx.doi.org/10.5755/j01.erem.61.3.1519

  16. New way of measurement of thermophysical properties of clay loam materials by transient methods

    Science.gov (United States)

    Boháč, Vlastimil; Dieška, Peter; Vretenár, Viliam; Lukáč, Vladimír

    2016-07-01

    The problem of the measurement of clay loam materials in plastic consistency is more or less difficult as they can change the shape during the long time measurements. The specimen thickness is expected as the constant during all the experiment measured by transient pulse method. In a case of plastic clay loam, it can change the form during the measurement because of the squeeze of the material even under the gravity condition. Thus the specimen surface wall should be reinforced by special dimensionally well-defined thin wall container. In this paper the special container in a form of thin tube rings bounded by central annular ring was constructed and used for the measurements. The heat source was inserted into the tube rings through the nozzle in the middle part and the thermocouple was inserted through the drilled openings at defined distance from the heat source. System clamped the heat source together with the rings at desired distance from the thermocouple. This distance represents the thickness of tested specimen. The soft plastic material fill the inner space of tube rings in such a way to fulfill the geometry conditions for this method. The need of soft clay loam material measurement is to test its thermal properties because of the interest to use it as the heat storage material below the buildings. The measured clay loam containing some moisture has quite high values of specific heat and thus the use of it as the heat storage material is promising.

  17. Frost resistance of building materials

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    In this thesis it is shown that the critical degree of saturation is suitable as parameter for the frost resistance of porous building materials. A numerical model for prediction of critical degrees of saturation based on fracture mechanics and phase geometry of two-phase materials, e.g. porous...... materials, has been developed.The importance of the pore structure on the development of stresses in the material during freezing is emphasized. To verify the model, experimental investigations are made on various concretes without air-entrainment and brick tiles with different porosities...

  18. Functional materials for energy-efficient buildings

    Directory of Open Access Journals (Sweden)

    Ebert H.-P

    2015-01-01

    Full Text Available The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  19. Functional materials for energy-efficient buildings

    Science.gov (United States)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  20. Porous Materials - Structure and Properties

    DEFF Research Database (Denmark)

    Nielsen, Anders

    1997-01-01

    The paper presents some viewpoints on the description of the pore structure and the modelling of the properties of the porous building materials. Two examples are given , where it has been possible to connect the pore structure to the properties: Shrinkage of autoclaved aerated concrete and the p......The paper presents some viewpoints on the description of the pore structure and the modelling of the properties of the porous building materials. Two examples are given , where it has been possible to connect the pore structure to the properties: Shrinkage of autoclaved aerated concrete...

  1. Human exposure to emissions from building materials

    DEFF Research Database (Denmark)

    Kjærgaard, Søren K.; Hauschildt, P.; Pejtersen, J.

    1999-01-01

    Objectives. Reactions to emissions from building matrials were studied in a climate chamber as part of an intervention study in an office building. New and existing flooring materials were compared with regard to comfort and health.Methods. Twenty subjects were exposed four times for six hours...... effects by linoleum and carpet used and that changing to vinyl flooring may reduce these....

  2. Daylight as a building material

    DEFF Research Database (Denmark)

    Thule Kristensen, Peter; Madsen, Merete

    2005-01-01

    The article draws on examples to chronologically trace the use of daylight as building material in architecture of the 20th and early 21st century. The essay covers works of Mies van der Rohe, Le Corbusier, Erik Bryggman, Rudolf Schwarz, Alvar Aalto, Aldo Rossi, Jørn Utzon, Daniel Libeskind, Peter...

  3. Brief Discussion on Green Building Materials

    Science.gov (United States)

    Cai, Jia-wei; Sun, Jian

    2014-08-01

    With more and more emphasizes on the environment and resources, the concept of green buildings has been widely accepted. Building materials are vectors of architectures, only if green building materials and related technical means are used, can we construct green buildings to achieve the purpose of energy conservation and environmental protection. This paper introduces the relationship between green building materials and green buildings, the current situation of green building materials in China, as well as the measures to accelerate the development of green building materials.

  4. Comparison of the thermal properties of clay samples as potential walling material for naturally cooled building design

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The thermal properties of different clay samples obtainedfrom locations in Akwa Ibom State, Nigeria were investigated andcomppared, and in order to establish their suitability as buildingmaterial from energy conservation point of view. The results showedthat sstoneware clay has the highest solar radiation absorptivityof 22.32 m-1 while kaolin clay has the lowest radiation absoptivityof 14.46 m-1. A model for the prediction of temperature variationwith thickness of the samples was developed. Results showed thatkaolin would make the best choice for the design of a naturallycooled building.

  5. Sintered coal ash/flux materials for building materials

    Energy Technology Data Exchange (ETDEWEB)

    Dry, C.; Meier, J.; Bukowski, J. [University of Illinois, Urbana, IL (United States). School of Architecture

    2004-03-01

    An Illinois coal ash, which has metals and a large amount of iron, is considered to be an especially difficult waste for disposal. In the process described in this paper, the high iron and metal content is used to create a building material with special properties. The metals are sequestered. The metals allow a process that creates value-added products, building materials. The products are inexpensively prepared colored, strong, lightweight insulative structural panels. By either sintering in an oven at 725{sup o}C or by adding a flux and sintering at 525{sup o}C, panels are produced which will not leach metals from the ash. The use of an acid with the fly ash as a flux was investigated in comparison with fly ash control samples. The effects of sintering samples at different temperatures and with or without vacuum were also observed. Properties of the samples, including values for strength, water absorption, insulation, and color, are presented from this study.

  6. Effect of ventilation on perceived quality of air polluted by building materials. A summary of reported data

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P.; Vondruskova, J. (International Centre for Indoor Environment and Energy, Dept. of Mechanical Engineering, DTU, Kgs. Lyngby (DK)); Knudsen, Henrik N. (Danish Building Research Institute, Aalborg Univ., Hoersholm (DK))

    2007-02-15

    This paper summarizes existing data on how varying ventilation rates affect the perceived quality of air polluted by building materials. This is done by reviewing literature dealing with exposure-response relationships, i.e. the log-linear relationships between the concentration of pollutants (exposure) and the perceived air quality (response). The reviewed data originate from studies with single building materials performed in small-scale ventilated chambers and from studies carried out in a full-scale setting resembling normal offices. Perceived air quality expressed in terms of acceptability as assessed by untrained panels was included. The results show that the exposure-response relationships vary for different building materials as regards the impact of changing ventilation rate on perceived air quality and the level of perceived air quality at a constant ventilation rate. This applies both for the data collected in small-scale and in full-scale experiments. The differences may be caused by the experimental conditions, psychological factors, physiological factors, and chemical/physical factors. A well controlled study taking these factors into account with several different building materials, is thus recommended to further study whether the observed results have practical significance. These experiments should be carried out under realistic fullscale conditions. (au)

  7. Rehabilitation of adobe buildings. Understanding different materials from Portugal

    Science.gov (United States)

    Costa, Cristiana; Rocha, Fernando; Velosa, Ana

    2016-04-01

    Earth construction is the oldest building material known, with documented cases of the use of earth bricks since Mesopotamia around 10 000 BC (Heathcote, 1995). The earth construction exists throughout the majority of the world in different cultures, and for some countries, nowadays it continues to be the main process of construction (Vega et al, 2011). Around 30% of the world's population lives in buildings made of earth materials. Earthen construction is an environmentally friendly technique with a social and cultural contribution; this advantage is increased when this type of construction is applied in developing countries where the material costs counterbalance with labour costs, and where other materials and techniques cannot be available (Ciancio et al, 2013). Studies of materials characterization are required in order to understand the composition and specific properties of the earth buildings, their heterogeneity and their degradation mechanisms. Some adobes from different buildings, ages and regions of Portugal were collected in order to characterize them (mineralogically, chemically and physically). It was possible to understand the composition of these materials and their differences. Main minerals are quartz, feldspars, calcite and phyllosilicates (mica and kaolinite). The mechanical behaviour of these materials isn't the best, but it is possible to improve it with some simple and cheap natural additives (kaolinitic soils). The characterization of these materials allows us to understand the differences between the materials from the different regions (controlled by locally available raw materials). Understanding these materials, and their properties, it is possible to formulate new ones for repair, conservation and rehabilitation works. The adobe bricks are an alternative of kiln baked bricks which has several advantages and one of the most important is that these materials are recyclable. Adobes are an excellent option for building rehabilitation, if

  8. Natural Radioactivity of Some Mongolian Building Materials

    CERN Document Server

    Gerbish, S; Ganchimeg, G

    2000-01-01

    The natural radioactivity of some building materials used in cities of Darkhan, Ulaanbaatar and Erdenet in Mongolia was measured by gamma-ray spectrometry with HP-Ge-detector. The radium equivalent concentration and the gamma absorbed dose rate in air, were estimated as the external and internal hazard indices. The results indicate that these materials are not a major source of exposure.

  9. A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO2

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Arthur; Domszy, Roman; Yang, Jeff

    2016-03-30

    Advanced thermal insulation is among the most effective technologies in transforming our nation’s energy system and contributing to DOE’s stated goal of 50% less building energy consumption by 2030. The installation of an advanced thermal insulation would prevent energy waste without the need for any maintenance, and ISTN conservatively estimates that the commercialization of such a new technology would contribute to annual U.S. energy savings of 0.361 Quads and $8 billion in annual economic savings. The key challenge to improving building insulation is to maintain and surpass the industry standard of R-5 per inch insulation value in a cost-competitive manner. Improvements in R-value without cost-efficiency are not likely to impact the market given the cost-sensitive nature of the construction industry (insulation is already the lowest-cost component of the building envelope). However, significantly higher insulating value at competitive costs is extremely appealing to the market given the greater potential to save on energy consumption and costs over the long-term. Thus, our goal is to develop a super-thermal insulation with 50% greater insulation value (R-9 to R-10 per inch) and manufacturing costs that are equal on a per-R-value basis (< $0.70/ft2).

  10. A drying coefficient for building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2009-01-01

    The drying experiment is an important element of the hygrothermal characterisation of building materials. Contrary to other moisture transport experiments as the vapour diffusion and the water absorption test, it is until now not possible to derive a simple coefficient for the drying. However...... coefficient is defined which can be determined based on measured drying data. The correlation of this coefficient with the water absorption and the vapour diffusion coefficient is analyzed and its additional information content is critically challenged. As result, a drying coefficient has been derived...... and defined as a new and independent material parameter. It contains information about the moisture transport properties throughout the wide range of moisture contents from hygroscopic up to saturation. With this new and valuable coefficient, it is now possible to distinguish and select building materials...

  11. Evaluating dynamic building materials: The potential impact of climatically responsive building enclosures

    Science.gov (United States)

    Kienzl, Nico H.

    Despite the great interest and investment in new material technologies and advanced simulation tools, predictions for the potential impact of dynamic envelope systems so far have been based on simulations of the overall building. However, overall building simulations provide limited insights into the behavior of the building envelope since results of these types of simulations are affected by many factors that are independent of or indirectly influenced by the building envelope. Therefore, it is difficult to isolate the impact of the building envelope on building energy consumption independent of building-specific factors such as building geometry, construction, environmental systems, and building use. In order to understand and quantify the dynamic nature of environmentally responsive envelope systems, designers and engineers necessitate a new method that enables the direct evaluation of only the envelope. This method needs to be able to predict the heat transfer through dynamic building envelopes under variable environmental conditions. Ultimately, this new method should help identify the applicability of new technologies early in the design process when detailed information on a building's design or operation are not yet available. This thesis establishes a new method and a validated reference case for the evaluation of climatically responsive building envelopes with dynamic material properties. The method isolates the performance of the building envelope in a building energy simulation model through transformation of a validated BESTEST model. It allows for parametric evaluation of the thermal performance of dynamic building envelopes under a wide range of environmental boundary conditions in comparison to existing reference technologies. This method can serve as a starting point for the critical evaluation of the impact that dynamic envelope systems have on the heat balance of buildings. The method was applied to the evaluation of electrochromic glazing to

  12. New bio-cleaning strategies on porous building materials affected by biodeterioration event

    Science.gov (United States)

    Valentini, Federica; Diamanti, Alessia; Palleschi, Giuseppe

    2010-09-01

    In this paper, a new bio-cleaning procedure based on the glucose oxidase (GOx) has been applied on the travertine and peperino substrata to remove the biological patina (i.e., biofilm). Glucose oxidase, used as a model enzyme system, is able to produce in situ H 2O 2 (the cleaning agent having oxidizing properties) by the enzymatic reaction at room temperature. The travertine and peperino samples came from the Villa Torlonia in Rome (Italy), and an analytical diagnosis on them was performed applying several analytical techniques, such as the differential interference contrast microscopy (DIC), the optical microscope (OM), the Fourier transform infrared spectroscopy (FT-IR) and the X-ray fluorescence (XRF) that evidence the presence of biofilms on the substrata. Better results were obtained on the travertine samples in terms of the cleaning efficiency and the absence of the etching effect on the surface, eventually induced by the peroxide molecule. These results could be explained in terms of the different porosities of the two kinds of stone materials, according to the BET data. A comparative study was also performed to validate the new bio-cleaning procedure, using both traditional approaches based on saturated (NH 4) 2CO 3 solution and EDTA in buffer solution and the enzyme lipase treatments. Among all, the cleaning procedure via GOx shows the best result, probably because the enzyme controls the concentration of the H 2O 2 in situ and also retains the H 2O 2 preferentially on the surface (where the biological patina is present) depending on the porosity of the substrata. A synergistic effect, with other enzymes such as lipase and protease, combined with the biocompatibility of the enzymatic treatments, could represent a new way for a higher cleaning efficiency to apply on different stone substrata.

  13. Porous Materials with Tunable Structure and Mechanical Properties via Templated Layer-by-Layer Assembly.

    Science.gov (United States)

    Ziminska, Monika; Dunne, Nicholas; Hamilton, Andrew R

    2016-08-31

    The deposition of stiff and strong coatings onto porous templates offers a novel strategy for fabricating macroscale materials with controlled architectures at the micro- and nanoscale. Here, layer-by-layer assembly is utilized to fabricate nanocomposite-coated foams with highly customizable properties by depositing polymer-nanoclay coatings onto open-cell foam templates. The compressive mechanical behavior of these materials evolves in a predictable manner that is qualitatively captured by scaling laws for the mechanical properties of cellular materials. The observed and predicted properties span a remarkable range of density-stiffness space, extending from regions of very soft elastomer foams to very stiff, lightweight honeycomb and lattice materials.

  14. 10 CFR 434.402 - Building envelope assemblies and materials.

    Science.gov (United States)

    2010-01-01

    ... Spaces. The area weighted average thermal transmittance of roofs and also of floors and walls adjacent to... Information. 402.1.1Material Properties. Information on thermal properties, building envelope system.... The overall thermal transmittance of the building envelope shall be calculated in accordance...

  15. Green Building Construction Thermal Isolation Materials (Rockwool

    Directory of Open Access Journals (Sweden)

    M. Itewi

    2011-01-01

    Full Text Available Problem statement: Building insulation consisting roughly to anything in a structure that is utilizes as insulation for any reason. Thermal insulation in structures is a significant feature to attaining thermal comfort for its tenants. Approach: Insulation decreases unnecessary warmth loss or gain and can reduce the power burdens of heating and cooling structures. It does not automatically having anything to do with problems of sufficient exposure to air and might or might not influence the amount of sound insulation. Results: In a constricted way insulation can just mean the insulation substance used to reduce heat loss, such as: Glass wool, cellulose, polystyrene, rock wool, urethane foam, vermiculite and the earth, but it can also entail a variety of plans and methods used to deal with the chief forms of heat movement like transmission, emission and convection substances. The efficiency of insulation is normally assessed by its R-value. However, an R-value does not allow for the superiority of assembly or narrow green issues for each structure. Building superiority matters comprise insufficient vapor obstructions and troubles with draft-proofing. Additionally, the property and concentration of the insulation substance itself is vital. Fiberglass insulation materials, for example, made out of short fibers of glass covered on top of each other is not as long-lasting as insulation prepared from extended entwined fibers of glass. Conclusion/Recommendations: Rockwool insulation is a kind of insulation that is constructed out of real rocks and minerals. It furthermore is known by the names of mineral wool insulation, stone wool insulation or slag wool insulation. A broad collection of goods can be constructed from Rockwool, because of its outstanding capability to obstruct sound and heat. Rockwool insulation is normally utilized in building assembly, manufacturing plants and in automotive purposes. In this study i proposed to use

  16. Preparation, Mechanical and Thermal Properties of Cement Board with Expanded Perlite Based Composite Phase Change Material for Improving Buildings Thermal Behavior

    Directory of Open Access Journals (Sweden)

    Rongda Ye

    2015-11-01

    Full Text Available Here we demonstrate the mechanical properties, thermal conductivity, and thermal energy storage performance of construction elements made of cement and form-stable PCM-Rubitherm® RT 28 HC (RT28/expanded perlite (EP composite phase change materials (PCMs. The composite PCMs were prepared by adsorbing RT28 into the pores of EP, in which the mass fraction of RT28 should be limited to be no more than 40 wt %. The adsorbed RT28 is observed to be uniformly confined into the pores of EP. The phase change temperatures of the RT28/EP composite PCMs are very close to that of the pure RT28. The apparent density and compression strength of the composite cubes increase linearly with the mass fraction of RT28. Compared with the thermal conductivity of the boards composed of cement and EP, the thermal conductivities of the composite boards containing RT28 increase by 15%–35% with the mass fraction increasing of RT28. The cubic test rooms that consist of six boards were built to evaluate the thermal energy storage performance, it is found that the maximum temperature different between the outside surface of the top board with the indoor temperature using the composite boards is 13.3 °C higher than that of the boards containing no RT28. The thermal mass increase of the built environment due to the application of composite boards can contribute to improving the indoor thermal comfort and reducing the energy consumption in the buildings.

  17. (Durability of building materials and components)

    Energy Technology Data Exchange (ETDEWEB)

    Naus, D.J.

    1990-11-27

    The traveler participated in the fourth meeting of RILEM 100-TSL, Techniques for Service Life Prediction,'' and The Fifth International Conference on Durability of Building Materials and Components.'' In addition, the traveler met with staff members at Taywood Engineering Ltd., Electricite de France, and AEA Technology. The meeting pertained to performance of concrete materials in nuclear power plant structures, time variation of concrete material properties, methods for evaluating concrete structures, and modeling to predict the effects of degradation factors on concrete materials. As many of the concrete structures in general civil engineering applications as well as nuclear power plant applications in Europe are aging, there is increasing emphasis on assessing the durability of these structures. Information was provided of direct application to the Structural Aging Program which would not have been available without these visits. Of equal, or possibly more importance, was the individual contacts established at the organizations visited. Each organization was extremely interested in both the approach and scope of the Structural Aging Program and requested that they be informed of progress. The initial steps were taken to cooperate with several of these researchers and this should help the Structural Aging Program keep abreast of related European activities. In summary, information obtained during this trip will benefit the ongoing Structural Aging Program by informing Oak Ridge National Laboratory (ORNL) of the extensive European research programs addressing the durability of concrete structures, and also by forming and strengthening acquaintances with counterparts in other countries, thus enhancing the basis for possible international cooperation.

  18. Human Perception, SBS Sympsoms and Performance of Office Work during Exposure to Air Polluted by Building Materials and Personal Computers

    DEFF Research Database (Denmark)

    Bako-Biro, Zsolt

    The present thesis deals with the impact of polluted air from building materials and personal computers on human perception, Sick Building Syndrome (SBS) symptoms and performance of office work. These effects have been studies in a series of experiments that are described in two different chapters...

  19. Adhesive and Stress-Strain Properties of the Polymeric Layered Materials Reinforced by the Knitted Net

    Directory of Open Access Journals (Sweden)

    Rakhimov Farhod Hushbakovich

    2012-10-01

    Full Text Available It is known that the textile materials (woven fabric and mesh used for reinforcing of various polymer films and coatings. This paper discusses reinforcement of thermoplastic polymers based on PE (Polyethylene and PVC (Polyvinyl Chloride with a knitted mesh weave loin. According by the research identified adhesion, strength and deformation properties of new polymer laminates. The production of such materials has been discussed in detail and performance of resultant composites material is analyzed and compared with other materials.

  20. Analogue simulation by dem of material structure for property estimation of cementitious materials

    NARCIS (Netherlands)

    Stroeven, P.; He, H.; Le, L.B.N.

    2012-01-01

    Realistic simulation of particulate materials like concrete on meso- as well as micro-level is nowadays possible by fast developments in computer technology. This would be a more economic way than by physical experiinents, which are more time-consuming, laborious and thus expensive. This concern the

  1. ICAN Computer Code Adapted for Building Materials

    Science.gov (United States)

    Murthy, Pappu L. N.

    1997-01-01

    The NASA Lewis Research Center has been involved in developing composite micromechanics and macromechanics theories over the last three decades. These activities have resulted in several composite mechanics theories and structural analysis codes whose applications range from material behavior design and analysis to structural component response. One of these computer codes, the Integrated Composite Analyzer (ICAN), is designed primarily to address issues related to designing polymer matrix composites and predicting their properties - including hygral, thermal, and mechanical load effects. Recently, under a cost-sharing cooperative agreement with a Fortune 500 corporation, Master Builders Inc., ICAN was adapted to analyze building materials. The high costs and technical difficulties involved with the fabrication of continuous-fiber-reinforced composites sometimes limit their use. Particulate-reinforced composites can be thought of as a viable alternative. They are as easily processed to near-net shape as monolithic materials, yet have the improved stiffness, strength, and fracture toughness that is characteristic of continuous-fiber-reinforced composites. For example, particlereinforced metal-matrix composites show great potential for a variety of automotive applications, such as disk brake rotors, connecting rods, cylinder liners, and other hightemperature applications. Building materials, such as concrete, can be thought of as one of the oldest materials in this category of multiphase, particle-reinforced materials. The adaptation of ICAN to analyze particle-reinforced composite materials involved the development of new micromechanics-based theories. A derivative of the ICAN code, ICAN/PART, was developed and delivered to Master Builders Inc. as a part of the cooperative activity.

  2. Sensory ratings of emissions from nontraditional building materials

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Kolarik, Jakub; Peuhkuri, Ruut;

    2016-01-01

    Twenty-five subjects assessed the emissions from building materials: linoleum, cement mortar with and without fly ash, gypsum board and tiles with air cleaning properties and natural organic sheep wool. The ratings were made at different material loadings and in combinations with linoleum....... The results showed that except for natural organic product, increasing loading and combining materials with linoleum increased intensity of odor....

  3. Drying kinetics of some building materials

    Directory of Open Access Journals (Sweden)

    A. Moropoulou

    2005-06-01

    Full Text Available Moisture is one of the most deteriorating factors of buildings. The deteriorating effect of moisture occurs mainly during the drying phase, and not in the wetting phase. Appropriate parameters of the drying kinetics are required for the building materials. Environmental factors, such as air temperature, air humidity, and air velocity affect drying. An experimental air dryer of controlled drying air conditions was used to investigate the drying performance of 4 stone materials, 2 bricks and 7 plasters. Drying kinetics was examined at 4 air temperatures, 6 air humidities, and 3 air velocities. A first-order kinetics model was obtained, in which the drying time constant was a function of the drying conditions, and the equilibrium material moisture content was described by the Oswin equation. The parameters of the proposed model were found to be affected strongly by the material and the drying air conditions. The results obtained are very useful in selecting the appropriate plaster to protect existing historic buildings.

  4. Performance Analysis of Leaf Spring by Contact Mechanics Approach Based on the Nature of Material Properties

    OpenAIRE

    Sathish Gandhi, Veeramalai Chinnasamy; Kumaravelan, Radhakrishnan; Ramesh, Sengottuvelu; Joemax Agu, Maxwell Thompson

    2014-01-01

    In an automotive system, a curved leaf spring is used for the purpose of suspension and for reducing the transient vibration of the system. Composite materials are widely used in automobile industries as a replacement for steel to reduce the weight and to increase the strength of an automotive system. In this study, various materials have been considered for an analysis based on the Young modulus-to-yield strength ratio. The study has been carried out by considering the material properties. T...

  5. GEOMAGNETIC PROSPECTING FOR DEPOSITS OF BUILDING MATERIALS

    OpenAIRE

    Željko Zagorac; Franjo Šumanovac

    1990-01-01

    Some characteristic examples are given of the magnetic prospecting for the rocks used as building materials. Conclusions are drawn about the applicability of the magnetic method for this purpose. Method proved to be very speedy and inexpensive, it gives important informations on the extension, position and depth of the magnetic rock. The quality of the rock is better determined by other methods (the paper is published in Croatian).

  6. Matching designs with building materials (BYGMATCH)

    DEFF Research Database (Denmark)

    Andersen, Tom

    1999-01-01

    The paper presents a knowledge based approach to mathching design descriptions with proper building materials. It is based on a prototype system developed in KAPPA-PC......The paper presents a knowledge based approach to mathching design descriptions with proper building materials. It is based on a prototype system developed in KAPPA-PC...

  7. Moisture Buffer Value of Building Materials

    DEFF Research Database (Denmark)

    Rode, Carsten; Peuhkuri, Ruut; Time, Berit

    2007-01-01

    When building materials are in contact with indoor air they have some effect to moderate the variations of indoor humidity in occupied buildings. But so far there has been a lack of a standardized quantity to characterize the moisture buffering capability of materials. It has been the objective o...... is a test protocol which expresses how materials should be tested for determination of their Moisture Buffer Value. Finally, the paper presents some of the results of a Round Robin Test on various typical building materials that has been carried out in the project....

  8. Magnetization of Steel Building Materials and Structures in the Natural Geomagnetic Field

    Directory of Open Access Journals (Sweden)

    E. Čermáková

    2005-01-01

    Full Text Available This paper presents the physical basis of the magnetic properties of ferromagnetic materials and shows their relationships with external geomagnetic field. It graphically processes the experimental data detected by an HMR magnetometer. Taking into account the natural geomagnetic field under the effects of steel U profiles, variations of the natural geomagnetic field in a steel structure building are indicated and the potential existence of Sick Building Syndrome (SBS in these types of buildings is pointed out. 

  9. Sustainable Non-Metallic Building Materials

    Directory of Open Access Journals (Sweden)

    Svetlana Tretsiakova-McNally

    2010-01-01

    Full Text Available Buildings are the largest energy consumers and greenhouse gases emitters, both in the developed and developing countries. In continental Europe, the energy use in buildings alone is responsible for up to 50% of carbon dioxide emission. Urgent changes are, therefore, required relating to energy saving, emissions control, production and application of materials, use of renewable resources, and to recycling and reuse of building materials. In addition, the development of new eco-friendly building materials and practices is of prime importance owing to the growing environmental concerns. This review reflects the key tendencies in the sector of sustainable building materials of a non-metallic nature that have occurred over the past decade or so.

  10. Metallic layered composite materials produced by explosion welding: Structure, properties, and structure of the transition zone

    Science.gov (United States)

    Mal'tseva, L. A.; Tyushlyaeva, D. S.; Mal'tseva, T. V.; Pastukhov, M. V.; Lozhkin, N. N.; Inyakin, D. V.; Marshuk, L. A.

    2014-10-01

    The structure, morphology, and microhardness of the transition zone in multilayer metallic composite joints are studied, and the cohesion strength of the plates to be joined, the mechanical properties of the formed composite materials, and fracture surfaces are analyzed. The materials to be joined are plates (0.1-1 mm thick) made of D16 aluminum alloy, high-strength maraging ZI90-VI (03Kh12N9K4M2YuT) steel, BrB2 beryllium bronze, and OT4-1 titanium alloy. Composite materials made of different materials are shown to be produced by explosion welding. The dependence of the interface shape (smooth or wavelike) on the physicomechanical properties of the materials to be joined is found. The formation of a wavelike interface is shown to result in the formation of intense-mixing regions in transition zones. Possible mechanisms of layer adhesion are discussed.

  11. Coating multilayer material with improved tribological properties obtained by magnetron sputtering

    Science.gov (United States)

    Mateescu, A. O.; Mateescu, G.; Balasoiu, M.; Pompilian, G. O.; Lungu, M.

    2017-02-01

    This work is based on the Patent no. RO 128094 B1, granted by the Romanian State Office for Inventions and Trademarks. The goal of the work is to obtain for investigations tribological coatings with multilayer structure with improved tribological properties, deposited by magnetron sputtering process from three materials (sputtering targets). Starting from compound chemical materials (TiC, TiB2 and WC), as sputtering targets, by deposition in argon atmosphere on polished stainless steel, we have obtained, based on the claims of the above patent, thin films of multilayer design with promising results regarding their hardness, elastic modulus, adherence, coefficient of friction and wear resistance. The sputtering process took place in a special sequence in order to ensure better tribological properties to the coating, comparing to those of the individual component materials. The tribological properties, such as the coefficient of friction, are evaluated using the tribometer test.

  12. Alternative materials for desert buildings: a comparative life cycle energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pearlmutter, D.; Freidin, C.; Huberman, N. [Institutes for Desert Research, Ben-Gurion University of the Negev, (Israel)

    2007-03-15

    This study examines the potential life-cycle energy savings that may be achieved by combining an innovative alternative building material and a bioclimatic approach to building design under the distinctive environmental conditions of a desert region. A residential building in the Negev region of Israel is used as a model for the assessment. Designed with a number of climatically-responsive design strategies and conventional concrete-based materials, the building was energy-independent in terms of summer cooling and had only modest requirements for winter heating. As a second step to the assessment, the integration of an alternative building material based on industrial waste and local raw materials in the building's walls was considered through thermal simulation. The alternative materials are produced through a process developed to make productive utilization of fly-ash from oil shale and coal combustion. Material properties were analyzed using laboratory specimens, and it was established that high-quality building components could be produced using the developed technological procedure with standard manufacturing equipment. The consumption of both embodied and operational energy was analyzed over the building's useful life span, and this life-cycle analysis showed the clear advantage of integrating alternative materials in a building under environmental conditions in a desert environment. (Author)

  13. Improved properties of magnetic particles by combination of different polymer materials as particle matrix

    Energy Technology Data Exchange (ETDEWEB)

    Gruettner, Cordula E-mail: info@micromod.de; Rudershausen, Sandra; Teller, Joachim

    2001-07-01

    The properties of individual types of magnetic particles were improved by combining different polymer matrix materials. The hybrids of magnetic polysaccharide-polystyrene, silica-polystyrene, silica-polysaccharide, polysaccharide-poly(alkylcyanoacrylate) and polysaccharide-poly(lactic acid) particles are discussed and characterized by electrokinetic measurements and studies of their protein binding capacity. The improved properties of these magnetic particles lead to novel applications in diagnostics, molecular biology and biomedicine.

  14. Electrical properties of materials

    CERN Document Server

    Solymar, L; Syms, R R A

    2014-01-01

    An informal and highly accessible writing style, a simple treatment of mathematics, and clear guide to applications have made this book a classic text in electrical and electronic engineering. Students will find it both readable and comprehensive. The fundamental ideas relevant to the understanding of the electrical properties of materials are emphasized; in addition, topics are selected in order to explain the operation of devices having applications (or possible future applications) in engineering. The mathematics, kept deliberately to a minimum, is well within the grasp of a second-year student. This is achieved by choosing the simplest model that can display the essential properties of a phenomenom, and then examining the difference between the ideal and the actual behaviour. The whole text is designed as an undergraduate course. However most individual sections are self contained and can be used as background reading in graduate courses, and for interested persons who want to explore advances in microele...

  15. Building materials in a green economy: A book review

    Directory of Open Access Journals (Sweden)

    Kazi Abdur Rouf

    2013-09-01

    Full Text Available This paper reviews the book ’Building Materials in a Green Economy' written by Brian Milani (2005. The book has eight chapters. This paper deals with the importance of building materials in our lives. The book mainly focuses on the centrality of building materials in all forms of society global indicates how materials are produced, used and reused, which will inevitably affect the quality of lives of those who harvest/create them versus those who benefit from the materials. Brian Milani highlights that the current process for managing building materials is not done in an eco-conscious manner that would entail conservation, maintenance and recycled materials. He addresses how regulation and education will be the key in making changes in the proper management of building materials. Also looks to understand how the building industry informs ‘positional economic development’; warns the readers about the destruction of the Mother Earth by corporations; and manufacturing not eco-friendly building materials and their wastage. Hence, it is important that corporations should produce building materials that are eco-friendly and care for environmental sovereignty.

  16. Structural properties of the metastable state of phase change materials investigated by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Merkelbach, Philipp; Eijk, Julia van; Wuttig, Matthias [I. Phys. Institut (IA), RWTH Aachen, 52056 Aachen (Germany); Braun, Carolin [Institut fuer Anorg. Chemie, CAU Kiel, 24098 Kiel (Germany)

    2008-07-01

    Phase change alloys are among the most promising materials for novel data storage devices. Since several years Phase Change Materials based on Ge-Sb-Te- alloys have been used in optical data storage solutions like rewriteable CDs and DVDs. Recently these alloys have been explored as potential candidates for fast nonvolatile electrical data storage devices in Phase Change Random Access Memory (PCRAM). Besides attracting considerable interest from the commercial point of view phase change materials are very interesting also due to their remarkable physical properties. They have the ability to be reversibly switched within a few nanoseconds between the amorphous and the crystalline phase, while changing their physical properties such as optical reflectivity and electrical resistivity significantly. Even though the electronic properties show a drastical contrast such fast transitions can only be caused by small atomic rearrangements. This behavior calls for a deeper understanding of the structural properties of the alloys. We have performed powder diffraction measurements of the crystal phase of various GeSbTe alloys, to determine the structural similarities and differences of several alloys. Understanding the crystal structure of phase change materials is a key to a deeper insight into the properties of these promising materials.

  17. Portland clinker from by-products and recycled materials out of the building and construction sector

    OpenAIRE

    Schoon, Joris

    2014-01-01

    Many companies are revising their business operations whilst gearing their pursuit of profitable growth to the assurance of environmental protection and quality of life for present and future generations. Even when this adaption is not desired, they are forced to it by economic necessity, public opinion or by governmental pressure to decrease their ecological impact. Based on this new perspective, some companies are thus beginning to make significant changes in their policies, commitments and...

  18. Building Blocks Incorporating Waste Materials Bound with Bitumen

    Directory of Open Access Journals (Sweden)

    Thanaya I.N.A.

    2010-01-01

    Full Text Available This paper described an investigation and evaluation which was carried out in the United Kingdom-UK, on the properties of masonry building block materials that incorporate waste materials, namely: steel slag, crushed glass, coal fly ash, rice husk ash (RHA, incinerator sewage sludge ash (ISSA, municipal solid waste incinerator bottom ash (MSWIBA or shortened as IBA, bound with bitumen or asphalt, named as Bitublock. The binder used was 50 pen bitumen. The properties of the blocks evaluated were: compressive strength, density, porosity, initial rate of suction (IRS, creep, and volume stability. It was found that the Bitublock performance can be improved by optimizing porosity and curing regime. Compaction level of 2 MPa and curing regime of 200°C for 24 hours gave satisfactory bitublock performances that at least comparable to concrete block found in the United Kingdom (UK. The Volume stability (expansion of the unit is affected by environment relative humidity.

  19. Energy efficiency of buildings with phase-change materials

    Directory of Open Access Journals (Sweden)

    Lukić Predrag

    2012-01-01

    Full Text Available The construction of energy efficient buildings using innovative building materials such as phase change materials, in addition to improving indoor comfort, energy savings and costs, can be achieved by increasing their market value. Because of its ability to absorb and release energy at predictable temperatures, phase change materials are effective in controlling and maintaining the thermal environment in the building. The use of phase changing materials, materials stored latent energy storage is an effective form of heat. [Projekat Ministarstva nauke Republike Srbije, br. TR36016: Experimental and theoretical investigation of frames and plates with semi-rigid connections from the view of the second order theory and stability analysis

  20. Environmental assessment and specification of green building materials

    Energy Technology Data Exchange (ETDEWEB)

    Froeschle, L. M.

    1998-12-01

    The central thesis of this paper is that building with environmentally friendly and `green` materials can lead to significant benefits in terms of improved indoor air quality and a healthy and more productive indoor environment. Recycled content and recyclable products can also help minimize the negative impact on the natural environment by keeping construction materials out of the waste stream, not to mention the cost savings that can be generated when specifying materials with recycled content. Savings in embodied energy is generally less when using recycled content as opposed to raw materials in the manufacture of building materials. The gradual depletion of raw materials will generate increased demand for `greener` products and may, in due course, replace traditional building products. Criteria for the assessment of environmental materials, the `greening` of project specifications, and a process for the environmental specification of building products is also described. 8 refs.

  1. Rheological Properties of Asphalt Modified by Supramolecular UV Resistant Material-LDHs

    Institute of Scientific and Technical Information of China (English)

    WANG Jinshan; WU Shaopeng; HAN Jun; LIU Xing

    2012-01-01

    Dynamic rheological properties of asphalt modified by Supramolecular UV resistant material-layered double hydroxides(LDHs) was studied by means of the dynamic shear rheometer (DSR) test.Two typical base asphalts were chosen and modified by 2 different LDHs contents.DSR tests were performed on the original samples,samples after exposed to outdoor and samples after the artificial accelerated UV aging tests respectively to analyze the rheological properties.It is found that when the LDHs content is between 3wt% and 5wt% of asphalt weight,the high temperature performance and fatigue resistant property of the modified asphalt become better,the UV aging resistance properties are improved.

  2. Natural radioactivity measurements of building materials in Baotou, China.

    Science.gov (United States)

    Zhao, Caifeng; Lu, Xinwei; Li, Nan; Yang, Guang

    2012-12-01

    Natural radioactivity due to (226)Ra, (232)Th and (40)K in the common building materials collected from Baotou city of Inner Mongolia, China was measured using gamma-ray spectrometry. The radiation hazard of the studied building materials was estimated by the radium equivalent activity (Ra(eq)), internal hazard index (H(in)) and annual effective dose (AED). The concentrations of the natural radionuclides and Ra(eq) in the studied samples were compared with the corresponding results of other countries. The Ra(eq) values of the building materials are below the internationally accepted values (370 Bq kg(-1)). The values of H(in) in all studied building materials are less than unity. The AEDs of all measured building materials are at an acceptable level.

  3. Establishment of gel materials with different mechanical properties by 3D gel printer SWIM-ER

    Science.gov (United States)

    Ota, Takafumi; Tase, Taishi; Okada, Koji; Saito, Azusa; Takamatsu, Kyuuichiro; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    A 3D printer is a device which can directly produce objects whose shape is the same as the original 3D digital data. Hydrogels have unique properties such as high water content, low frictional properties, biocompatibility, material permeability and high transparency, which are rare in hard and dry materials. These superior characteristics of gels promise useful medical applications. We have been working on the development of a 3D gel printer, SWIM-ER (Soft and Wet Industrial - Easy Realizer), which can make models of organs and artificial blood vessels with gel material. However, 3D printing has a problem: the mechanical properties of the printed object vary depending on printing conditions, and this matter was investigated with SWIM-ER. In the past, we found that mechanical properties of 3D gel objects depend on the deposition orientation in SWIM-ER. In this study, gels were printed with different laser scanning speeds. The mechanical properties of these gels were investigated by compression tests, water content measurements and SMILS (Scanning Microscopic Light Scattering).

  4. Radioactivity in building materials in Iraq.

    Science.gov (United States)

    Ali, Kamal K

    2012-02-01

    Activity concentrations of (226)Ra, (232)Th and (40)K in 45 samples of different building materials used in Iraq were measured using gamma-spectroscopy system based on high-purity germanium detector with an efficiency of 40 %. Radium equivalent activity, air-absorbed dose rate, annual effective dose, external and internal hazard indices and alpha index due to radon inhalation originating from building materials were measured to assess the potential radiological hazard associated with these building materials. The activity concentrations of the natural radionuclides (226)Ra, (232)Th and 40K were found to range from below detection limit (BDL) to 223.7 ± 9, BDL to 93.0 ± 3 and BDL to 343.1 ± 12, respectively. Values of average radium equivalent activity, air-absorbed dose rate, indoor and outdoor annual effective doses, external and internal hazard indices and alpha index ranged from 6.5 to 124.9, 16.2 to 89.5 (nGy h(-1)), 0.08 to 0.44 mSv, 0.02-0.11 mSv, 0.09 to 0.53, 0.13 to 0.69 and 0.03 to 0.62, respectively. These values indicate a low dose. Therefore, the building materials used in the current study are quite safe to be used as building materials.

  5. Electrostatic Properties and Characterization of Textile Materials Affected by Ion Flux

    Directory of Open Access Journals (Sweden)

    Pranas Juozas ŽILINSKAS

    2013-03-01

    Full Text Available This work analyzes the opportunities of wider characterization of textile materials, fabrics, upholstery fabrics, fibers, yarns or others, which may accumulate electric charge. A non-contact way for electrostatic properties measurement based on affecting those materials by ions with positive or negative charge is described. The method allows to measure simultaneously the time dependences of the surface voltage and the electric charge during the charging process and the time dependences of the surface voltage during the discharging process. From the measured dependencies the following set of parameters was measured or calculated: the surface voltage limiting value, the surface voltage semi-decay time, the maximum deposited charge, the layer capacitance, the energy of the accumulated charge and others. The surface voltage distribution measurement method when the investigated textile material is affected by ion flux was also described. To verify the applicability of the proposed methods for characterization of textile materials in order to determine the above-mentioned parameters of cotton, linen, wool, viscose, acetate, polyester, polyester coated with polytetrafluoroethylene, a series of experiments were performed. The surface voltage distribution measurement method based on affecting textile materials by ions with positive charge was described and a surface voltage distribution of a polyester-cotton upholstery fabric produced by a Jacquard mechanism was presented. The performed experiments demonstrate the possibilities of method application for comparison of the electrostatic properties of different textile materials used for the same tasks or the same materials produced by different technological processes.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3828

  6. Sound Absorbing Property of Porous Material by Using Polyester Fiber Waste

    Science.gov (United States)

    Kurahashi, Naoya; Kimura, Teruo

    Polyester waste generated from a water jet loom in the weaving process is one of the typical industrial fiber wastes. The development of a recycling system for such fiber wastes has been strongly expected so far. In this study, the recyclability of polyester wastes as a sound absorption material was discussed. As a result, it was cleared that the sound absorption material can be obtained by heated compression molding combined with a PLA binder and fiber wastes, and higher sound absorption properties are obtainable if the defiberization of the waste is increased.

  7. Preparation and Properties of Friction Materials by Using Two Kinds of Fibrous Industrial Minerals

    Institute of Scientific and Technical Information of China (English)

    SHEN Shang-yue; HU Shan; LI Zhen; ZHANG De; LIU Xin-hai; SONG Xu-bo

    2003-01-01

    The basic technology and properties of the brake blocks made of modified needle-like wollastonite and fibrous sepiolite were intensively researched.The impact strengthes and fixed velocity friction of the brake blocks prepared by different recipes were tested. The testing results show that it is feasible for needle-like wollastonite and fibrous sepiolite to take the place of asbestos as the reinforced materials of friction materials.The braking effect of the brake blocks is the best when the ratio of the needle-like wollastonite to the fibrous sepiolite was 1∶6.

  8. Self-Organized Construction with Continuous Building Material

    DEFF Research Database (Denmark)

    Heinrich, Mary Katherine; Wahby, Mostafa; Divband Soorati, Mohammad;

    2016-01-01

    Self-organized construction with continuous, structured building material, as opposed to modular units, offers new challenges to the robot-based construction process and lends the opportunity for increased flexibility in constructed artifact properties, such as shape and deformation. As an exampl...

  9. Spectral Signatures of Surface Materials in Pig Buildings

    DEFF Research Database (Denmark)

    Zhang, GuoQiang; Strøm, Jan; Blanke, Mogens;

    2006-01-01

    . In this study, the optical properties of different types of surfaces to be cleaned and the dirt found in finishing pig units were investigated in the visual and the near infrared (VIS-NIR) optical range. Four types of commonly used materials in pig buildings, i.e. concrete, plastic, wood and steel were applied...

  10. Durability of building materials and components

    CERN Document Server

    Delgado, JMPQ

    2013-01-01

    Durability of Building Materials and Components provides a collection of recent research works to contribute to the systematization and dissemination of knowledge related to the long-term performance and durability of construction and, simultaneously, to show the most recent advances in this domain. It includes a set of new developments in the field of durability, service life prediction methodologies, the durability approach for historical and old buildings, asset and maintenance management and on the durability of materials, systems and components. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.

  11. Tribological properties of nonasbestos brake pad material by using coconut fiber

    Science.gov (United States)

    Craciun, A. L.; Pinca-Bretotean, C.; Utu, D.; Josan, A.

    2017-01-01

    In automotive industry, the brake system is influenced by a large number of variables including geometry of components, materials of brakes, components interaction and many operating condition. Organic fiber reinforced metallic friction composites are increasingly being used in automotive brake shoes, disc and pads, linings, blocks, clutch facings, primarily because of awareness of health hazards of asbestos. Current trend in the research field of automotive industry is to utilization of different wastes as a source of raw materials for composite materials. This will provide more economical benefit and also environmental preservation by utilize the waste of natural fibre In this paper it has performed a tribological study to determine the characteristics of the friction product by using coconut natural fibred reinforced in aluminium composite. In this sense, two different laboratory formulation were prepared with 5% and 10% coconut fibre and other constitutes like binder, friction modifiers, abrasive material and solid lubrificant using powder mettallurgy. These dnew materials for brake pads are tested for tribological behaviour in a standard pin on disc tribometer. To know the wear behavior of composite materials will determine the parameters that characterize there tribological properties.

  12. Physicochemical properties of carbon materials obtained by combustion synthesis of perchlorinated hydrocarbons

    Directory of Open Access Journals (Sweden)

    S. Cudziło

    2010-09-01

    Full Text Available We present studies on the combustion synthesis of carbon materials from several perchlorinated organic compounds : tetrachloromethane (CCl4, hexachloroethane (C2Cl6, tetrachloroethylene (C2Cl4, hexachloro-1,3-butadiene (C4Cl6, hexachlorocyclopentadiene (C5Cl6. The porosity (obtained by low-temperature nitrogen adsorption, microstructure (SEM, structural arrangement (XRD and Raman spectroscopy, surface chemistry (FTIR and electrochemical behavior (cyclic voltammetry of the obtained carbons were investigated. The synthesized materials exhibit an ordered structure similar to carbon black. Their physicochemical properties strongly depended on the structure of the perchlorocarbon precursor. It was found that perchlorinated compounds with unsaturated bonds yielded more amorphous products. The electrochemical properties (e.g. edl capacity depend mainly on the mesopore surface area of the carbonaceous products.

  13. Steel slag: a waste industrial by-product as an alternative sustainable green building material in construction applications--an attempt for solid waste management.

    Science.gov (United States)

    Pofale, Arun D; Nadeem, Mohammed

    2012-01-01

    This investigation explores the possibility of utilizing granular slag as an alternative to fine aggregate (natural sand) in construction applications like masonry and plastering. Construction industry utilizes large volume of fine aggregate in all the applications which has resulted into shortage of good quality naturally available fine aggregate. Use of granular slag serves two fold purposes, i.e. waste utilisation as well as alternative eco-friendly green building material for construction. The investigation highlights comparative study of properties with partial and full replacement of fine aggregate (natural sand) by granular slag in cement mortar applications (masonry and plastering). For this purpose, cement mortar mix proportions from 1:3, 1:4, 1:5 & 1:6 by volume were selected for 0, 25, 50, 75 & 100% replacement levels with w/c ratios of 0.60, 0.65, 0.70 & 0.72 respectively. Based on the study results, it could be inferred that replacement of natural sand with granular slag from 25 to 75% increased the packing density of mortar which resulted into reduced w/c ratio, increased strength properties of all mortar mixes. Hence, it could be recommended that the granular slag could be effectively utilized as fine aggregate in masonry and plastering applications in place of conventional cement mortar mixes using natural sand.

  14. Friction Wear Property of Brake Materials by Copper-based Powder Metallurgy With Various Brake Speeds

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-xiu; GAO Hong-xia; WEI Xiu-lan

    2004-01-01

    The experiment is conducted on MM-1000 friction test machine, which tests friction wear property of copper-based brake materials by powder metallurgy at different brake speeds. It shows that the coefficient of friction and wear volume are greatly influenced by brake speed. When the brake speed is 4000 r/min, which is a bit higher, the material still has a higher coefficient of friction with 0.47. When the brake speed is over 4000r/min, the coefficient of friction decreased rapidly. When the brake speed is 3000r/min, the material's wear is in its minimum. That is to say no matter how higher or lower the brake speed is the wear volume is bigger relatively. With the brake speed of the lower one it mainly refers to fatigue wear; while of higher one it mainly refers to abradant and oxidation wear.

  15. Straw insulated buildings. Nature building materials; Strohgedaemmte Gebaeude. Naturbaustoffe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Straw is one of the major agricultural by-products and is mainly used as litter in animal husbandry and to compensate the balance of humus. A relatively recent development is the use of straw bales for the construction of buildings. The brochure under consideration documents the technical development of straw construction in Germany. Possibilities of the use of straw in single family homes up to commercial buildings are described.

  16. Ancient Cultural Center Building and Materials Research Numismatic Collection Museum--Ancient COINS by Tibetan cultural center

    Institute of Scientific and Technical Information of China (English)

    王冠利

    2014-01-01

    The quality of the Chinese cultural center is located in the ancient COINS hidden city, the city center in Jinan, convenient transportation, beautiful scenery, poured enough, the surrounding environment culture atmosphere, be helpful for cultural centers in the long run. The building area is about 3500 square meters, the whole building is divided into two layer, a layer of main distribution the exhibition hall, second floor mainly by the studio to form. The designer of the coin reference model, through the deepening, evolution techniques such as the characteristics of Chinese coin will, connotation unity emerges into design, show to buildings. Very good carry the historical culture, also captures the pulse of the times lived.

  17. Investigation of nonlinear optical properties of various organic materials by the Z-scan method

    Science.gov (United States)

    Ganeev, R. A.; Boltaev, G. S.; Tugushev, R. I.; Usmanov, T.

    2012-06-01

    We have studied the nonlinear optical properties of various organic materials (vegetable oil, juice, wine, cognac, Coca-Cola and Fanta drinks, Nescafé coffee, tea, gasoline, clock oil, glycerol, and polyphenyl ether) that are used in everyday life. Their nonlinearities have been studied by the Z-scan method in the near-IR and visible spectral ranges. We have shown that the majority of samples possess a nonlinear absorption; however, some of the studied materials show a strong saturated absorption and nonlinear refraction. Red wine and glycerol proved to be the most interesting materials. For these samples, we have observed a change in the sign of the nonlinear absorption with increasing laser intensity, which was attributed to the competition between two-photon absorption and saturated absorption.

  18. Physical properties and biocompatibility of UHMWPE-derived materials modified by synchrotron radiation.

    Science.gov (United States)

    Bykova, Iu; Weinhardt, V; Kashkarova, A; Lebedev, S; Baumbach, T; Pichugin, V; Zaitsev, K; Khlusov, I

    2014-08-01

    The applications of synchrotron radiation (SR) in medical imaging have become of great use, particularly in angiography, bronchography, mammography, computed tomography, and X-ray microscopy. Thanks to recently developed phase contrast imaging techniques non-destructive preclinical testing of low absorbing materials such as polymers has become possible. The focus of the present work is characterization and examination of UHMWPE-derived materials widely used in medicine, before and after their exposure to SR during such testing. Physical properties, such as wettability, surface energy, IR-spectroscopy, roughness, optical microscopy, microhardness measurements of UHMWPE samples were studied before and after SR. The relationship between a growth of UHMWPE surface hydrophilicity after SR and surface colonization by stromal cells was studied in vitro. Obtained results demonstrate that SR may be used as prospective direction to examine bulk (porous) structure of polymer materials and/or to modify polymer surface and volume for tissue engineering.

  19. Layer-by-layer assembly of TiO(2) colloids onto diatomite to build hierarchical porous materials.

    Science.gov (United States)

    Jia, Yuxin; Han, Wei; Xiong, Guoxing; Yang, Weishen

    2008-07-15

    TiO(2) colloids with the most probably particle size of 10 nm were deposited on the surface of macroporous diatomite by a layer-by-layer (LBL) assembly method with using phytic acid as molecular binder. For preparation of colloidal TiO(2), titanium(IV) isopropoxide (Ti(C(3)H(7)O)(4)) was used as titanium precursor, nitric acid (HNO(3)) as peptizing agent and deionized water and isopropanol (C(3)H(7)OH) as solvent. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N(2) adsorption-desorption, and UV-vis spectra are used to assess the morphology and physical chemistry properties of the resulting TiO(2) coated diatomite. It was shown that the mesoporosity has been introduced into macroporous diatomite by LBL deposition. The mesoporosity was originated from close-packing of the uniform TiO(2) nanoparticles. More TiO(2) could be coated on the surface of diatomite by increasing the deposition cycles. This hierarchical porous material has potential for applications in catalytic reactions involved diffusion limit, especially in photocatalytic reactions.

  20. Modeling of electromigration salt removal methods in building materials

    DEFF Research Database (Denmark)

    Johannesson, Björn; Ottosen, Lisbeth M.

    2008-01-01

    A model is established for the prediction of the effect of salt removal of building materials using electromigration. Salt-induced decay of building materials, such as masonry and sandstone, is a serious threat to our cultural heritage. Electromigration of salts from building materials, sensitive...... for salt attack of various kinds, is one potential method to preserve old building envelopes. By establishing a model for ionic multi-species diffusion, which also accounts for external applied electrical fields, it is proposed that an important complement to the experimental tests and that verification...... can be obtained. One important issue is to be able to optimizing the salt removing electromagration method in the field by first studying it theoretically. Another benefit is that models can give some answers concerning the effect of the inner surfaces of the material on the diffusion mechanisms...

  1. BUILDING MATERIALS AND PRODUCTS BASED ON SILICON MANGANESE SLAGS

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Raising of problem. Currently of particular relevance was given to the matter of introduction in manufacture of building materials and products, resource-saving techniques and technologies; integrated use of raw materials and materials that prevent or significantly reduce their harmful impact on the environment. This allows you to recycle hundreds of thousands of tons of the fiery liquid slags of silicon manganese and to develop effective structural materials that can replace metals, non-metallic building materials of natural origin, concretes, cast stone, plastics and refractories. Purpose. The study of the structure and properties of building materials and products from electric furnace slag of silicon manganese. Conclusion. Slags from the smelting of silicon manganese are classified as acidic. Their lime factor is in the range of 0.47–0.52. The composition of the slag located in the heterogeneous region SiO2 near the line of separation of cristobalite spread to the crystallization of wollastonite, according to the ternary system MnO-CaO-SiO2, which in consideration of their stability, allows the development of technology of building materials (gravel, sand, granulated slag, etc. and products (foundation blocks, road slabs, containers for transportation and storage of hazardous waste, and others.

  2. Material properties of evolutionary diverse spider silks described by variation in a single structural parameter

    Science.gov (United States)

    Madurga, Rodrigo; Plaza, Gustavo R.; Blackledge, Todd A.; Guinea, Gustavo. V.; Elices, Manuel; Pérez-Rigueiro, José

    2016-01-01

    Spider major ampullate gland silks (MAS) vary greatly in material properties among species but, this variation is shown here to be confined to evolutionary shifts along a single universal performance trajectory. This reveals an underlying design principle that is maintained across large changes in both spider ecology and silk chemistry. Persistence of this design principle becomes apparent after the material properties are defined relative to the true alignment parameter, which describes the orientation and stretching of the protein chains in the silk fiber. Our results show that the mechanical behavior of all Entelegynae major ampullate silk fibers, under any conditions, are described by this single parameter that connects the sequential action of three deformation micromechanisms during stretching: stressing of protein-protein hydrogen bonds, rotation of the β-nanocrystals and growth of the ordered fraction. Conservation of these traits for over 230 million years is an indication of the optimal design of the material and gives valuable clues for the production of biomimetic counterparts based on major ampullate spider silk.

  3. Buildings and Health. Educational campaign for healthy buildings. Educational material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    In recent years health and comfort problems associated with the indoor climate have come to constitute a problem in Sweden. To come to grips with this a nationwide educational campaign on Buildings and Health is being run. It is directed to those involved in planning, project design, construction and management of buildings. The objective is to convey a body of knowledge to the many occupational and professional groups in the construction sector on how to avoid indoor climate problems in homes, schools, offices and other workplaces. The campaign is being run by the Swedish National Board of Housing and Planning and the Swedish Council for Building Research, in co-operation with various organizations and companies in the construction industry, and with municipalities and authorities. The knowledge which is being disseminated through the campaign is summarized in this compendium. figs., tabs.

  4. Realization of prediction of materials properties by ab initio computer simulation

    Indian Academy of Sciences (India)

    Yoshiyuki Kawazoe

    2003-01-01

    Ab initio treatment is becoming realistic to predict physical, chemical, and even mechanical properties of academically and industrially interesting materials. There is, however, some limitation in size and time of the system up to the order of several hundred atoms and ∼ 1 pico second, even if we use the fastest supercomputer efficiently. Therefore, it is very difficult to simulate realistic materials with grain boundaries and important reactions like diffusion in materials. To improve this situation, two ways have been invented. One way is to upgrade approximations to match the necessary levels according to inhomogeneous electron gas theory beyond the present day standard, i.e. local density approximation (LDA). The reason is simply that the system we are interested in is composed of many particles interacting with Coulomb forces governed by quantum mechanics. (Complete knowledge is available, and only what we should do is to make better approximations to explain the phenomena!). Another is to extract the necessary parameters from the ab initio calculations on systems with limited number of atoms, and apply these results into cluster variation, direct, or any other sophisticated methods based on classical concepts such as statistical mechanics. In this paper, several typical examples recently worked out by our research group are introduced to indicate that these methodologies are actually possible to be successfully used to predict materials properties before experiments based on the present day state-of-art supercomputing systems. It includes scientific visualization of the results of ab initio molecular dynamics simulation on atom insertion process to C60 and to carbon nanotube, tight-binding calculation of single electron conductance properties in nanotube to create nano-scale diode virtually by computer, which will be a base of future nanoscale electric device in nanometer size, Li + H reaction without Born–Oppenheimer approximation, structural phase

  5. Assessment of inhalation dose sensitivity by physicochemical properties of airborne particulates containing naturally occurring radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Young; Choi, Cheol Kyu; Kim, Yong Geon; Choi, Won Chul; Kim, Kwang Pyo [Kyung Hee University, Seoul (Korea, Republic of)

    2015-12-15

    Facilities processing raw materials containing naturally occurring radioactive materials (NORM) may give rise to enhanced radiation dose to workers due to chronic inhalation of airborne particulates. Internal radiation dose due to particulate inhalation varies depending on particulate properties, including size, shape, density, and absorption type. The objective of the present study was to assess inhalation dose sensitivity to physicochemical properties of airborne particulates. Committed effective doses to workers resulting from inhalation of airborne particulates were calculated based on International Commission on Radiological Protection 66 human respiratory tract model. Inhalation dose generally increased with decreasing particulate size. Committed effective doses due to inhalation of 0.01μm sized particulates were higher than doses due to 100μm sized particulates by factors of about 100 and 50 for {sup 238}U and {sup 230}Th, respectively. Inhalation dose increased with decreasing shape factor. Shape factors of 1 and 2 resulted in dose difference by about 18 %. Inhalation dose increased with particulate mass density. Particulate mass densities of 11 g·cm{sup -3} and 0.7 g·cm{sup -3} resulted in dose difference by about 60 %. For {sup 238}U, inhalation doses were higher for absorption type of S, M, and F in that sequence. Committed effective dose for absorption type S of {sup 238}U was about 9 times higher than dose for absorption F. For {sup 230}Th, inhalation doses were higher for absorption type of F, M, and S in that sequence. Committed effective dose for absorption type F of {sup 230}Th was about 16 times higher than dose for absorption S. Consequently, use of default values for particulate properties without consideration of site specific physiochemical properties may potentially skew radiation dose estimates to unrealistic values up to 1-2 orders of magnitude. For this reason, it is highly recommended to consider site specific working materials and

  6. UHMW-PE. A shielding material with special properties influenced by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ehe, K. von der; Jaunich, M.; Wolff, D. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2011-07-01

    Ultra high molecular weight polyethylene (UHMW-PE) - due to its high hydrogen content - is used as neutron shielding material in casks for storage and transport of radioactive materials. Besides this, UHMW-PE - as a high-performance polymer - has been used for several years in medical technology due to its excellent slip and wear properties. Due to the special properties of UHMW-PE which result basically from its extreme chain lengths and its high degree of crystallinity, it is predestinated for the aforementioned applications. In both cases, irradiation and its impact on the molecular structure of polyethylene play an important role. In the first case, irradiation exists as a by-product of inserting the radioactive material in the cask. Hence PE has to withstand any type of degradation affecting safety relevant aspects to be applicable for long term radiation shielding purposes for instance over a period of 40 years. In the second case irradiation is applied deliberately for purposes such as sterilization and crosslinking, leading to partial improvement of the mechanical properties (e.g. fracture toughness, crack propagation resistance, wear resistance) and better chemical stability. Specifically concerning their use in the field of medical technology, different types of UHMW-PE have been objects of numerous publications. It is generally accepted that two parallel and competitive processes, based on chain scission and reactions of C-centered radicals and molecular fragments, occur in PE as a consequence of radiation: radical recombination accounts for crosslinking, together with some disproportionation, formation of low molecular weight fragments, and recrystallization. Furthermore, formation of oxygenated structures in the presence of traces of oxygen is an antagonist of the C-centered radicals. Radiation induced scission preferentially takes place in the amorphous phase and noncrystalline surface of the crystals. It is followed by folding of molecular fragments

  7. Synthesis, structure and properties of hierarchical nanostructured porous materials studied by molecular dynamics simulations

    Science.gov (United States)

    Chae, Kisung

    For applications of porous materials in many fields of technological importance, such as catalysis, filtration, separation, energy storage and conversion, the efficiency is often limited by chemical kinetics, and/or diffusion of reactants and products to and from the active sites. Hierarchical nanostructured porous materials (HNPMs) that possess both mesopores (2 nm size size size and the pore wall roughness as well as the microporous structure such as the density and the graphitic pore walls can be independently controlled by synthesis parameters, such as the size of the template, the interaction strength between the template and carbon source, the initial carbon density and the quench rate, respectively. These atomic models allowed us to quantify the structure-mechanical properties relation in aligned carbon nanotubes/amorphous porous carbon nanocomposites. Our study shows that there is an optimum balance between the crystallinity of CNTs and the number bridging bonds between CNTs and the microporous matrix in order for the nanocomposites to have desired mechanical properties such as high stiffness and high buckling resistance under compressive loading. We further used these models to study the effects of the mesopore size and the pore wall roughness on the transport behaviors of methane in HNPCs. Our study shows that some defects in the mesopore walls do not have a significant effect on transport properties, especially in large channels. However, when the walls of small channels become rough, adsorption and transport behaviors change dramatically. Our study shows that the enhanced flow in CNTs observed in experiments is mainly due to the smooth potential energy surface of CNTs with high quality of graphitic walls. In order to carry out a systematic study on pressure-driven gas transport in HNPCs, a computationally efficient reflecting particle method (RPM) together with a perturbation-relaxation loop was developed in this work to make the pressure drop

  8. Radioactivity of natural and artificial building materials - a comparative study.

    Science.gov (United States)

    Szabó, Zs; Völgyesi, P; Nagy, H É; Szabó, Cs; Kis, Z; Csorba, O

    2013-04-01

    Building materials and their additives contain radioactive isotopes, which can increase both external and internal radioactive exposures of humans. In this study Hungarian natural (adobe) and artificial (brick, concrete, coal slag, coal slag concrete and gas silicate) building materials were examined. We qualified 40 samples based on their radium equivalent, activity concentration, external hazard and internal hazard indices and the determined threshold values of these parameters. Absorbed dose rate and annual effective dose for inhabitants living in buildings made of these building materials were also evaluated. The calculations are based on (226)Ra, (232)Th and (40)K activity concentrations determined by gamma-ray spectrometry. Measured radionuclide concentrations and hence, calculated indices and doses of artificial building materials show a rather disparate distribution compared to adobes. The studied coal slag samples among the artificial building materials have elevated (226)Ra content. Natural, i.e. adobe and also brick samples contain higher amount of (40)K compared to other artificial building materials. Correlation coefficients among radionuclide concentrations are consistent with the values in the literature and connected to the natural geochemical behavior of U, Th and K elements. Seven samples (coal slag and coal slag concrete) exceed any of the threshold values of the calculated hazard indices, however only three of them are considered to be risky to use according to the fact that the building material was used in bulk amount or in restricted usage. It is shown, that using different indices can lead to different conclusions; hence we recommend considering more of the indices at the same time when building materials are studied. Additionally, adding two times their statistical uncertainties to their values before comparing to thresholds should be considered for providing a more conservative qualification. We have defined radon hazard portion to point

  9. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas

    Science.gov (United States)

    Dorronsoro, Carlos; de la Hoz, Andrés; Marcos, Susana

    2016-01-01

    Objective To validate a new method for reconstructing corneal biomechanical properties from air puff corneal deformation images using hydrogel polymer model corneas and porcine corneas. Methods Air puff deformation imaging was performed on model eyes with artificial corneas made out of three different hydrogel materials with three different thicknesses and on porcine eyes, at constant intraocular pressure of 15 mmHg. The cornea air puff deformation was modeled using finite elements, and hyperelastic material parameters were determined through inverse modeling, minimizing the difference between the simulated and the measured central deformation amplitude and central-peripheral deformation ratio parameters. Uniaxial tensile tests were performed on the model cornea materials as well as on corneal strips, and the results were compared to stress-strain simulations assuming the reconstructed material parameters. Results The measured and simulated spatial and temporal profiles of the air puff deformation tests were in good agreement (< 7% average discrepancy). The simulated stress-strain curves of the studied hydrogel corneal materials fitted well the experimental stress-strain curves from uniaxial extensiometry, particularly in the 0–0.4 range. Equivalent Young´s moduli of the reconstructed material properties from air-puff were 0.31, 0.58 and 0.48 MPa for the three polymer materials respectively which differed < 1% from those obtained from extensiometry. The simulations of the same material but different thickness resulted in similar reconstructed material properties. The air-puff reconstructed average equivalent Young´s modulus of the porcine corneas was 1.3 MPa, within 18% of that obtained from extensiometry. Conclusions Air puff corneal deformation imaging with inverse finite element modeling can retrieve material properties of model hydrogel polymer corneas and real corneas, which are in good correspondence with those obtained from uniaxial extensiometry

  10. Preservation of adobe buildings. Study of materials

    Science.gov (United States)

    Velosa, A.; Rocha, F.; Costa, C.; Varum, H.

    2012-04-01

    Adobe buildings are common in the central region of Portugal due to the lack of natural stone in the surrounding area. This type of construction technique lasted until the 20th Century, at which time cementitious materials, with faster hardening and greater structural capacity substituted traditional materials and techniques. Currently, a significant percentage of these buildings is vacant and many are degraded and in need of conservation actions. Adobes from central Portugal are distinctive as they are lightly coloured and made from air lime and quarry sand. Although some adobes were manufactured locally, most were produced almost 'industrially' and sold to nearby regions. In order to preserve this heritage, conservation actions must be undertaken. So as to ensure the adequacy of these actions and compatibility between original materials and new ones, a thorough study of adobe compostion is mandatory. The current study is an initial step in the characterization of earth based construction materials from central Portugal. Adobe samples were collected from residential buildings in two different locations. The determination of the composition of adobe blocks encompassed the determination of the binder fraction and of their chemical composition and also the particle size analysis of the aggregate. For this purpose FRX analysis, acid dissolution and dry sieving were performed. Methylene blue test was also executed in order to determine the clay fraction. Additionally, the mineral composition of powder samples and oriented samples was performed using XRD analysis in order to determine the clay minerals present in the blocks. As adobe blocks are extremely prone to the action of water the Geelong test was undertaken in order to provide information in terms of durability. It was concluded that air lime was generally used in adobe compositions. However, the clay content varies in adobes from different regions, providing distinct durability characteristics to these materials.

  11. Simulations of heart valves by thin shells with non-linear material properties

    Science.gov (United States)

    Borazjani, Iman; Asgharzadeh, Hafez; Hedayat, Mohammadali

    2016-11-01

    The primary function of a heart valve is to allow blood to flow in only one direction through the heart. Triangular thin-shell finite element formulation is implemented, which considers only translational degrees of freedom, in three-dimensional domain to simulate heart valves undergoing large deformations. The formulation is based on the nonlinear Kirchhoff thin-shell theory. The developed method is intensively validated against numerical and analytical benchmarks. This method is added to previously developed membrane method to obtain more realistic results since ignoring bending forces can results in unrealistic wrinkling of heart valves. A nonlinear Fung-type constitutive relation, based on experimentally measured biaxial loading tests, is used to model the material properties for response of the in-plane motion in heart valves. Furthermore, the experimentally measured liner constitutive relation is used to model the material properties to capture the flexural motion of heart valves. The Fluid structure interaction solver adopts a strongly coupled partitioned approach that is stabilized with under-relaxation and the Aitken acceleration technique. This work was supported by American Heart Association (AHA) Grant 13SDG17220022 and the Center of Computational Research (CCR) of University at Buffalo.

  12. Characterization of Elastic-plastic Material Properties for IMC Layer of ENEPIG by Using Reverse Algorithm

    Science.gov (United States)

    Kim, Jong-Min; Lee, Hyun-Boo; Chang, Yoon-Suk; Choi, Jae-Boong; Kim, Young-Jin; Ji, Kum-Young

    2010-05-01

    Recently, the reliability assurance of lead-free solder to prevent environmental contamination is quite important issue for chip-scale packaging. Although lots of efforts have been devoted to the solder undergone drop, shear and creep loads, there was a little research on IMC due primarily to its thickness restriction and geometric irregularity. However, the IMC is known as the weakest layer governing failures of the solder joint. The present work is to characterize realistic material properties of the IMC for ENEPIG process. Lee's modified reverse algorithm was adopted to determine elastic-plastic stress-strain curve and so forth, after examining several methods, which requires inherently elastic data. In this context, a series of nano-indentation tests as well as corresponding simulations were carried out by changing indentation depths from 200 to 400 nm and strain rates from 0.05 to 0.10 1/s. It would be conclude that effect of strain rate is relatively small and IMC layer should be more than 5 times of indentation depth when using the recommended method, which are applicable to generate realistic material properties for further diverse structural integrity simulations.

  13. Susceptibility of green and conventional building materials to microbial growth.

    Science.gov (United States)

    Mensah-Attipoe, J; Reponen, T; Salmela, A; Veijalainen, A-M; Pasanen, P

    2015-06-01

    Green building materials are becoming more popular. However, little is known about their ability to support or limit microbial growth. The growth of fungi was evaluated on five building materials. Two green, two conventional building materials and wood as a positive control were selected. The materials were inoculated with Aspergillus versicolor, Cladosporium cladosporioides and Penicillium brevicompactum, in the absence and presence of house dust. Microbial growth was assessed at four different time points by cultivation and determining fungal biomass using the N-acetylhexosaminidase (NAHA) enzyme assay. No clear differences were seen between green and conventional building materials in their susceptibility to support microbial growth. The presence of dust, an external source of nutrients, promoted growth of all the fungal species similarly on green and conventional materials. The results also showed a correlation coefficient ranging from 0.81 to 0.88 between NAHA activity and culturable counts. The results suggest that the growth of microbes on a material surface depends on the availability of organic matter rather than the classification of the material as green or conventional. NAHA activity and culturability correlated well indicating that the two methods used in the experiments gave similar trends for the growth of fungi on material surfaces.

  14. Research on phase-change material building mass applied in the air-conditioning field

    Institute of Scientific and Technical Information of China (English)

    YANQuanying

    2003-01-01

    Phase-change material building mass contains phase-change matenals. It can decrease air-conditioning load and indoor temperature fluctuations, and improve comfort degree in summer because of thermal storage property of phase-change material. Thereby, the scale, initial investment and operational cost of air-conditioning system decrease effectively. The indoor surroundings improve. In this paper, suitable phase-change material used in architecture and combination mode between phase change material and architectural material were studied. By considering the properties of materials, such as phase-change temperature, phase-change latent heat, thermal conductivity and expansion coefficient, phase-change materials were selected and evaluated. Combination mode between phase-change material and architectural material were provided. The influence of phase-change material structure on thermal performance in room and energy-saving effect were analyzed and compared with traditional structure without phase-change material. It is proved that phase-change material structure is feasible in the practical engineenng. These provide the basis for developing phase-change material building mass.

  15. Integrating Sustainable Construction Materials to Achieve Green Building

    Directory of Open Access Journals (Sweden)

    Abdelmajeed H. Kasassbeh

    2015-07-01

    Full Text Available Green buildings integrate building materials and methods that promote environmental quality, economic vitality and social benefits through the design, construction and operation of the built environment. This study demonstrates potential actions including material selection that can be implemented to achieve green building. Also, we discuss the importance and environmental impact of sustainable material, the selection criteria of these materials and the different types of sustainable materials in the buildings construction in Jordan.

  16. Investigation of the actual conditions of asbestos use in school building materials

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y.C.; Son, B.H.; Hong, W.H. [Kyungpook National Univ., Daegu (Korea, Republic of)

    2008-07-01

    Asbestos has been widely used as a construction material due to its high insulation properties, abrasion resistance, and tensile strength. This paper evaluated materials containing asbestos in school buildings in Korea constructed between the 1970s and the 1990s. Interviews with building manager were used in addition to data obtained from building drawings and building registers. The study showed that asbestos was used to form slates, ceiling materials, interior wall materials, and outer-wall materials. Eighty per cent of the asbestos used in Korea was imported. Asbestos amounts were calculated by multiplying the area of construction materials used by the unit weight per m{sup 2} of the asbestos-containing materials, and again by asbestos content. The document survey was not successful in identifying asbestos in all construction materials. A field survey was then conducted in order to collect samples which were then analyzed at a laboratory. Results of the study will be used to plan asbestos control and removal procedures. 11 refs., 5 tabs., 4 figs.

  17. TiO2-based building materials: Above and beyond traditional applications

    Institute of Scientific and Technical Information of China (English)

    GUO Sen; WU ZhongBiao; ZHAO WeiRong

    2009-01-01

    In the 1910s, TiO2 began to be used in building materials as pigments and opacifier due to its excellent optical property. Since the photocatalytic property of TiO2 was observed in 1972, its application field was expanded to air cleaning and sterilization. Thereafter, people added TiO2 into building materials to develop novel and facile building materials. These materials were widely used for air cleaning, sterili-zation, self-cleaning, anti-fogging, decoration, and building cooling. The combination of building and other functions can serve simultaneously. Although TiO2-based building materials have bright pros-pects, some aspects such as improving the stability and enhancing photoactive performance of the materials are of importance for future research.

  18. Ceramic materials for energy and environmental applications: Functionalizing of properties by tailored compositions

    DEFF Research Database (Denmark)

    Ivanova, Mariya; Ricote, Sandrine; Baumann, Stefan

    2013-01-01

    Stable social development requires novel approaches for energy production, distribution and storage combined with reasonable restrictions of the environmental impact. The fuel cell-based technologies, as well as the separation of gases from mixtures, particularly implemented into innovative power....... This chapter is dedicated to the fascinating world of tailoring ceramic materials for energy and environmental applications. Selected approaches to tune ceramics will be discussed to illustrate the versatile effects that compositional variation can have on the macroscopic properties, e.g. the conductivity...... additives and substituents on sinterability, electrical/electrochemical properties and stability of selected ceramic materials for energy and environmental applications. The material variety will cover ceramic materials with different crystal structures like fluorites, perovskites, pyrochlores, fergusonites...

  19. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2014-10-01

    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly decreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  20. Microencapsulated Phase Change Composite Materials for Energy Efficient Buildings

    Science.gov (United States)

    Thiele, Alexander

    This study aims to elucidate how phase change material (PCM)-composite materials can be leveraged to reduce the energy consumption of buildings and to provide cost savings to ratepayers. Phase change materials (PCMs) can store thermal energy in the form of latent heat when subjected to temperatures exceeding their melting point by undergoing a phase transition from solid to liquid state. Reversibly, PCMs can release this thermal energy when the system temperature falls below their solidification point. The goal in implementing composite PCM walls is to significantly reduce and time-shift the maximum thermal load on the building in order to reduce and smooth out the electricity demand for heating and cooling. This Ph.D. thesis aims to develop a set of thermal design methods and tools for exploring the use of PCM-composite building envelopes and for providing design rules for their practical implementation. First, detailed numerical simulations were used to show that the effective thermal conductivity of core-shell-matrix composites depended only on the volume fraction and thermal conductivity of the constituent materials. The effective medium approximation reported by Felske (2004) was in very good agreement with numerical predictions of the effective thermal conductivity. Second, a carefully validated transient thermal model was used to simulate microencapsulated PCM-composite walls subjected to diurnal or annual outdoor temperature and solar radiation flux. It was established that adding microencapsulated PCM to concrete walls both substantially reduced and delayed the thermal load on the building. Several design rules were established, most notably, (i) increasing the volume fraction of microencapsulated PCM within the wall increases the energy savings but at the potential expense of mechanical properties [1], (ii) the phase change temperature leading to the maximum energy and cost savings should equal the desired indoor temperature regardless of the climate

  1. Optimization of Tribological Properties of Nonasbestos Brake Pad Material by Using Steel Wool

    Directory of Open Access Journals (Sweden)

    R. Vijay

    2013-01-01

    Full Text Available The gradual phasing out of typical brake pad material led to the spark of extensive research in development of alternatives. Henceforth we have performed a tribological study to improve the performance characteristics of the friction product (brake pad by using steel wool, a metallic material which has an excellent structural reinforcement property and high thermal stability which are indeed required to improve the performance of the brake pad. Under the study, five frictional composites were developed and optimized using the same ingredients in an appropriate proportion except steel wool (0%, 4%, 8%, 12%, and 16% which is compensated by synthetic barite, and the synthesized compositions are designated as Na01 to Na05. The developed pads are tested for tribological behaviour under conventional environment in a standard pin on disc tribometer. It is observed that increase in steel wool concentration resulted in high coefficient of friction and low wear rate of pad as resulted in Na05 composition. SEM analysis of the wear surface has proved to be useful in understanding the wear behaviour of the composites.

  2. Numerical Investigation of a Moisture Evaporation Model in Building Materials

    CERN Document Server

    Amirkhanov, I V; Pavlish, M; Puzynina, T P; Puzynin, I V; Sarhadov, I

    2005-01-01

    The properties of a model of moisture evaporation in a porous building material of a rectangular form proposed in [1] are investigated. Algorithms of solving a nonlinear diffusion equation with initial and boundary conditions simulating the dynamic distribution of moisture concentration, calculation of coefficients of a polynomial describing transport of moisture with usage of experimental measurement of moisture concentration in a sample are developed and investigated. Research on the properties of the model is carried out depending on the degree of the polynomial, a set of its coefficients, and the quantity of the used experimental data.

  3. Optical properties of photochromic and thermochromic materials

    Science.gov (United States)

    Mo, Yeon-Gon

    The optical properties of some thin film materials can be altered by an external stimulus. Photochromic and thermochromic materials, including inorganic and organic substances, have optical properties that can be changed in a reversible manner by irradiation and temperature respectively. These materials can be used in applications such as radiation or thermal sensors, information storage devices and smart window applications in buildings and cars. In this work, major effort was concentrated on passive thermal control coatings based on photochromic and thermochromic materials. The inorganic photochromic materials were based on tungsten and molybdenum oxide films and the organic photochromic materials included spiropyrans and spirooxazines. In addition, photochromic composite organic-inorganic films and thermochromic vanadium oxide films were prepared. The samples were synthesized using sputtering, sol-gel process, and thermal oxidation. The optical properties were investigated for the first time by ultraviolet/visible/infrared (UV/VIS/IR) spectroscopic ellipsometry, attenuated total reflection (ATR) infrared ellipsometry, spectrophotometry, and X-ray diffraction (XRD). For amorphous oxide films, the oxygen deficiency was important in determining the photochromic properties of the films. In the mid-infrared region, no photochromism was observed for the films. The optical properties of organic-inorganic composite films changed in the VIS/NIR wavelength region markedly in a reversible process, with UV irradiation. The composite films containing tungsten heteropolyoxometalate (HPOM) showed faster coloration and bleaching than pure tungsten oxide films. The composite films with molybdenum HPOM showed faster coloration and much slower bleaching than tungsten HPOM. The spiropyran and spirooxazine doped polymeric films were investigated for the first time using infrared and ATR ellipsometry. The infrared optical functions obtained by ATR measurements were a little smaller

  4. Characterization of magnetic material in the mound-building termite Macrotermes gilvus in Southeast Asia

    Energy Technology Data Exchange (ETDEWEB)

    Esa, Mohammad Faris Mohammad; Hassan, Ibrahim Haji [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia); Rahim, Faszly; Hanifah, Sharina Abu [School of Environmental Scieces and Natural Resources Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia)

    2015-09-25

    Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties of specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration.

  5. Ozone reactions with indoor materials during building disinfection

    DEFF Research Database (Denmark)

    Poppendieck, D.; Hubbard, H.; Ward, M.

    2007-01-01

    , and particularly after several hours of disinfection, surface reaction resistance dominated the overall resistance to ozone deposition for nearly all materials. Total building disinfection by-products (all carbonyls) were quantified per unit area of each material for the experimental period. Paper, office......There is scant information related to heterogeneous indoor chemistry at ozone concentrations necessary for the effective disinfection of buildings, i.e., hundreds to thousands of ppm. In the present study, 24 materials were exposed for 16 h to ozone concentrations of 1000-1200ppm in the inlet...... streams of test chambers. Initial ozone deposition velocities were similar to those reported in the published literature for much lower ozone concentrations, but decayed rapidly as reaction sites on material surfaces were consumed. For every material, deposition velocities converged to a relatively...

  6. ASSESSMENT OF KINETIC PROCESSES OF HARDENING OF BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    P. V. Voronov

    2010-12-01

    Full Text Available Problem statement. Kinetic processes are of huge importance when producing building units and operating them as well. However, both technological and operation parameters are determined by the structure of a material under study.Results and conclusions. Kinetics with asymptotic approximation at hardening of building materials is analyzed. The validity of use of new kinetic equation is proved, characterizing harden composite systems and taking into consideration structural and topological peculiarities of new solid-like phase formation directly effecting the evolution of the processes. Results of research of change of strength at solidification a cement-sandy solution with various additives are submitted.

  7. The impact of roofing material on building energy performance

    Science.gov (United States)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation

  8. Rice Husk Ash Sandcrete Block as Low Cost Building Material

    Directory of Open Access Journals (Sweden)

    S.P.Sangeetha,

    2016-06-01

    Full Text Available Concrete is a widely used construction material for various types of structures due to its structural stability and strength. The construction industry is today consuming more than 400 million tonnes of concrete every year .Most of the increase in cement demand will be met by the use of supplementary cementing materials, as each ton of Portland cement clinker production is associated with similar amount of CO2 emission, which is a major source of global warming. Partial replacement of ordinary Portland cement with mineral admixtures like fly ash, ground granulated blast furnace slag, silica fume, metakaolin, Rice husk Ash (RHA,etc with plasticizers eliminates these drawbacks. The use of rice husk modifies the physical qualities of fresh cement paste as well as microstructure of paste after hardening. By burning the rice husk under a uncontrolled temperature in the atmosphere, a highly reactive RHA was obtained and the ash was utilized as a supplementary cementing material. This paper presents the effects of using Rice Husk Ash (RHA as a partial cement replacement material in mortar mixes. This work is based on an experimental study of mortar made with replacement of Ordinary Portland Cement (OPC with 10%, 20% 30% & 40% RHA. The properties investigated were the compressive strength, setting time, consistency, workability and specific gravity. Finally, a cost analysis was also done to compare the efficiency of rice husk ash sandcrete blocks. From the test results it can be concluded that rice husk ash can be utilized in day today life of manufacturing building blocks which are more economical and more eco-friendly than the cement concrete blocks which are produced now-a-days.

  9. Material property evaluations of bimetallic welds, stainless steel saw fusion lines, and materials affected by dynamic strain aging

    Energy Technology Data Exchange (ETDEWEB)

    Rudland, D.; Scott, P.; Marschall, C.; Wilkowski, G. [Battelle Memorial Institute, Columbus, OH (United States)

    1997-04-01

    Pipe fracture analyses can often reasonably predict the behavior of flawed piping. However, there are material applications with uncertainties in fracture behavior. This paper summarizes work on three such cases. First, the fracture behavior of bimetallic welds are discussed. The purpose of the study was to determine if current fracture analyses can predict the response of pipe with flaws in bimetallic welds. The weld joined sections of A516 Grade 70 carbon steel to F316 stainless steel. The crack was along the carbon steel base metal to Inconel 182 weld metal fusion line. Material properties from tensile and C(T) specimens were used to predict large pipe response. The major conclusion from the work is that fracture behavior of the weld could be evaluated with reasonable accuracy using properties of the carbon steel pipe and conventional J-estimation analyses. However, results may not be generally true for all bimetallic welds. Second, the toughness of austenitic steel submerged-arc weld (SAW) fusion lines is discussed. During large-scale pipe tests with flaws in the center of the SAW, the crack tended to grow into the fusion line. The fracture toughness of the base metal, the SAW, and the fusion line were determined and compared. The major conclusion reached is that although the fusion line had a higher initiation toughness than the weld metal, the fusion-line J-R curve reached a steady-state value while the SAW J-R curve increased. Last, carbon steel fracture experiments containing circumferential flaws with periods of unstable crack jumps during steady ductile tearing are discussed. These instabilities are believed to be due to dynamic strain aging (DSA). The paper discusses DSA, a screening criteria developed to predict DSA, and the ability of the current J-based methodologies to assess the effect of these crack instabilities. The effect of loading rate on the strength and toughness of several different carbon steel pipes at LWR temperatures is also discussed.

  10. Proceedings of the workshop on cool building materials

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H.; Fishman, B. [Lawrence Berkeley Lab., CA (United States); Frohnsdorff, G. [National Inst. of Standards and Technology (NEL), Gaithersburg, MD (United States). Building Materials Div.] [eds.

    1994-04-01

    The Option 9, Cool Communities, of the Clinton-Gore Climate Change Action Plan (CCAP) calls for mobilizing community and corporate resources to strategically plant trees and lighten the surfaces of buildings and roads in order to reduce cooling energy use of the buildings. It is estimated that Cool Communities Project will potentially save over 100 billion kilowatt-hour of energy per year corresponding to 27 million tons of carbon per year by the year 2015. To pursue the CCAP`s objectives, Lawrence Berkeley Laboratory (LBL) on behalf of the Department of Energy and the Environmental Protection Agency, in cooperation with the Building and Fire Research Laboratory of the National Institute of Standards and Technology (NIST), organized a one-day meeting to (1) explore the need for developing a national plan to assess the technical feasibility and commercial potential of high-albedo (``cool``) building materials, and if appropriate, to (2) outline a course of action for developing the plan. The meeting took place on February 28, 1994, in Gaithersburg, Maryland. The proceedings of the conference, Cool Building Materials, includes the minutes of the conference and copies of presentation materials distributed by the conference participants.

  11. Mechanical Properties of Materials

    CERN Document Server

    Pelleg, Joshua

    2013-01-01

    The subject of mechanical behavior has been in the front line of basic studies in engineering curricula for many years.  This textbook was written for engineering students with the aim of presenting, in a relatively simple manner, the basic concepts of mechanical behavior in solid materials. A second aim of the book is to guide students in their laboratory experiments by helping them to understand their observations in parallel with the lectures of their various courses; therefore the first chapter of the book is devoted to mechanical testing. Another aim of the book is to provide practicing engineers with basic help to bridge the gap of time that has passed from their graduation up to their actual involvement in engineering work. The book also serves as the basis for more advanced studies and seminars when pursuing courses on a graduate level. The content of this textbook and the topics discussed correspond to courses that are usually taught in universities and colleges all over the world, but with a differ...

  12. Optical properties of advanced materials

    CERN Document Server

    Kajikawa, Kotaro

    2013-01-01

    In the last decade, optically functionalized materials have developed rapidly, from bulk matters to structured forms. Now we have a rich variety of attractive advanced materials. They are applied to optical and electrical devices that support the information communication technology in the mid 21-th century. Accordingly, it is quite important to have a broad knowledge of the optical properties of advanced materials for students, scientists and engineers working in optics and related fields. This book is designed to teach fundamental optical properties of such advanced materials effectively. These materials have their own peculiarities which are very interesting in modern optical physics and also for applications because the concepts of optical properties are quite different from those in conventional optical materials. Hence each chapter starts to review the basic concepts of the materials briefly and proceeds to the practical use. The important topics covered in this book include:  quantum structures of sem...

  13. Gray energy of building materials; Graue Energie von Baustoffen

    Energy Technology Data Exchange (ETDEWEB)

    Kasser, U.; Poell, M.

    1995-12-31

    The tables of this publication present gray energy data for 500 building materials, chemicals, processes and transportation processes stemming from over 50 sources. Explications and recommendations for the building practice are included. 9 figs., tabs., 59 refs.

  14. Thermal Properties of Materials Characterized by Scanning Electron-Acoustic Microscopy

    Institute of Scientific and Technical Information of China (English)

    GAO Chun-Ming; ZHANG Shu-Yi; ZHANG Zhong-Ning; SHUI Xiu-Ji; JIANG Tao

    2005-01-01

    @@ A modified technique of scanning electron-acoustic microscopy is employed to determine thermal diffusivity of materials. Using the dependence of the electron-acoustic signal on modulation frequency of the electron beam,the thermal diffusivity of materials is characterized based on a simplified thermoelastic theory. The thermal diffusivities of several metals characterized by the modified scanning electron-acoustic microscopy are in good agreement with the referential values of the corresponding materials, which proves that the scanning electronacoustic microscopy can be used to characterize the thermal diffusivity of materials effectively. In addition, for micro-inhomogeneous materials, such as biological tissues, the macro-effective (average) thermal diffusivities are characterized by the technique.

  15. High-albedo materials for reducing building cooling energy use

    Energy Technology Data Exchange (ETDEWEB)

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building`s envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  16. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis

    Directory of Open Access Journals (Sweden)

    Demirci Ali

    2009-07-01

    Full Text Available Abstract Bacterial cellulose has been used in the food industry for applications such as low-calorie desserts, salads, and fabricated foods. It has also been used in the paper manufacturing industry to enhance paper strength, the electronics industry in acoustic diaphragms for audio speakers, the pharmaceutical industry as filtration membranes, and in the medical field as wound dressing and artificial skin material. In this study, different types of plastic composite support (PCS were implemented separately within a fermentation medium in order to enhance bacterial cellulose (BC production by Acetobacter xylinum. The optimal composition of nutritious compounds in PCS was chosen based on the amount of BC produced. The selected PCS was implemented within a bioreactor to examine the effects on BC production in a batch fermentation. The produced BC was analyzed using X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, thermogravimetric analysis (TGA, and dynamic mechanical analysis (DMA. Among thirteen types of PCS, the type SFYR+ was selected as solid support for BC production by A. xylinum in a batch biofilm reactor due to its high nitrogen content, moderate nitrogen leaching rate, and sufficient biomass attached on PCS. The PCS biofilm reactor yielded BC production (7.05 g/L that was 2.5-fold greater than the control (2.82 g/L. The XRD results indicated that the PCS-grown BC exhibited higher crystallinity (93% and similar crystal size (5.2 nm to the control. FESEM results showed the attachment of A. xylinum on PCS, producing an interweaving BC product. TGA results demonstrated that PCS-grown BC had about 95% water retention ability, which was lower than BC produced within suspended-cell reactor. PCS-grown BC also exhibited higher Tmax compared to the control. Finally, DMA results showed that BC from the PCS biofilm reactor increased its mechanical property values, i.e., stress at break and Young's modulus when compared to

  17. Examination of Cast Iron Material Properties by Means of the Nanoindentation Method

    Directory of Open Access Journals (Sweden)

    A. Trytek

    2012-12-01

    Full Text Available The paper presents results of examination of material parameters of cast iron with structure obtained under rapid resolidification conditions carried out by means of the nanoindentation method.

  18. IMPROVEMENTS IN WOOD THERMOPLASTIC MATRIX COMPOSITE MATERIALS PROPERTIES BY PHYSICAL AND CHEMICAL TREATMENTS

    Directory of Open Access Journals (Sweden)

    Irena Zivkovic

    2016-03-01

    Full Text Available This paper presents a short overview of the developments made in the field of wood thermoplastic composites in terms of surface treatment, flammability, matrix/reinforcement model, properties and application of recycled polymer matrices. The usage of lignocellulosic fibers as reinforcement in composite materials demands well formed interface between the fiber and the matrix. Because of the different nature of reinforcement and matrix components some physical and chemical treatment methods which improve the fiber matrix adhesion were introduced, as well as the improvements of lignocellulosic fibers and thermoplastic polymer matrix based composites flammability characteristics. These physical and chemical treatments influence the hydrophilic character of the lignocellulosic fibers, and therefore change their physical and mechanical properties.

  19. Project materials [Commercial High Performance Buildings Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  20. The fungicidal properties of the carbon materials obtained from chitin and chitosan promoted by copper salts

    Energy Technology Data Exchange (ETDEWEB)

    Ilnicka, Anna, E-mail: annakucinska@o2.pl; Walczyk, Mariusz; Lukaszewicz, Jerzy P.

    2015-07-01

    Renewable raw materials chitin and chitosan (N-deacetylated derivative of chitin) were subjected to action of different copper modifiers that were carbonized in the atmosphere of the N{sub 2} inert gas. As a result of the novel manufacturing procedure, a series of carbon materials was obtained with developed surface area and containing copper derivatives of differentiated form, size, and dispersion. The copper modifier and manufacturing procedure (concentration, carbonization temperature) influence the physical–chemical and fungicide properties of the carbons. The received carbons were chemically characterized using several methods like low-temperature adsorption of nitrogen, X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry, elemental analysis, and bioassay. Besides chemical testing, some biological tests were performed and let to select carbons with the highest fungicidal activity. Such carbons were characteristic of the specific form of copper derivatives occurring in them, i.e., nanocrystallites of Cu{sup 0} and/or Cu{sub 2}O of high dispersion on the surface of carbon. The carbons may find an application as effective contact fungistatic agents in cosmetology, medicine, food industry, etc. - Highlights: • The novel manufacturing procedure yields new functional carbon materials. • Two biopolymers chitin and chitosan can undergo copper(II) ion modification. • The Cu-modified carbon materials exhibit high fungicidal activity. • The fungicidal activity results from the presence of Cu{sup 0} and Cu{sub 2}O nano-crystallites.

  1. Research of properties of modern heat-insulation materials

    Directory of Open Access Journals (Sweden)

    A. S. Shcherbak

    2013-04-01

    Full Text Available Purpose. To study the modern heat-insulating materials presented at the market of Ukraine and to estimate the efficiency of their application. Methodology. Research and analysis of heat-insulating materials presented at the market of Ukraine, according to the existing standards. Findings. To ensure the energy efficiency in buildings and constructions it is necessary to apply the domestic heat-insulating material, which possesses the given thermo technical characteristics, reduced indexes of water absorption, flammability and toxicity, as well as durability and relatively low self–cost. Originality. Basic heat-insulating materials, which are most widely used in construction are systematized, the researches of their properties are conducted and the foam glass is chosen as the most effective heat-insulating material. It is characterized by high thermo technical characteristics and possesses the best ecological indexes, as well as the sturdiness for aggressive factors influence. Practical value. Special attention deserves the insulating material foam glass, which is a synthetic silicate material with evenly placed pores (0.1 ... 5.0 mm separated by thin septa with a vitreous substance possesses the necessary properties and by aforesaid may be accepted for studies aimed its improvement (modification. The results of researches can be applied in the foam glass production, which is used for heat-insulation of buildings and constructions, equipment, pipelines etc.

  2. Material properties in complement activation

    DEFF Research Database (Denmark)

    Moghimi, S. Moein; Andersen, Alina Joukainen; Ahmadvand, Davoud;

    2011-01-01

    Uncontrolled complement activation can induce many inflammatory and life threatening conditions. Accordingly, the role of complement in initiation of adverse reactions to polymers and nanoparticulate drug carriers is receiving increasing attention and has prompted extensive ‘structure......-immune performance’ relationship studies in nanomedicine research at many fronts. The interaction between nanomaterials and the complement system is complex and regulated by inter-related factors that include nanoscale size, morphology and surface characteristics. Each of these parameters may affect complement...... activation differently and through different sensing molecules and initiation pathways. The importance of material properties in triggering complement is considered and mechanistic aspects discussed. Mechanistic understanding of complement events could provide rational approaches for improved material design...

  3. Screening for perfluoroalkyl acids in consumer products, building materials and wastes.

    Science.gov (United States)

    Bečanová, Jitka; Melymuk, Lisa; Vojta, Šimon; Komprdová, Klára; Klánová, Jana

    2016-12-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a large group of important chemical compounds with unique and useful physico-chemical properties, widely produced and used in many applications. However, due to the toxicity, bioaccumulation and long-range transport potential of certain PFASs, they are of significant concern to scientists and policy makers. To assess human exposure to PFASs, it is necessary to understand the concentrations of these emerging contaminants in our environment, and particularly environments where urban population spend most of their time, i.e. buildings and vehicles. A total of 126 samples of building materials, consumer products, car interior materials and wastes were therefore analyzed for their content of key PFASs - 15 perfluoroalkyl acids (PFAAs). At least one of the target PFAAs was detected in 88% of all samples. The highest concentration of Σ15PFAAs was found in textile materials (77.61 μg kg(-1)), as expected, since specific PFAAs are known to be used for textile treatment during processing. Surprisingly, PFAAs were also detected in all analyzed composite wood building materials, which were dominated by perfluoroalkyl carboxylic acids with 5-8 carbons in the chain (Σ4PFCAs up to 32.9 μg kg(-1)). These materials are currently widely used for building refurbishment, and this is the first study to find evidence of the presence of specific PFASs in composite wood materials. Thus, in addition to consumer products treated with PFASs, materials used in the construction of houses, schools and office buildings may also play an important role in human exposure to PFASs.

  4. Magnesium sulfate salts and historic building materials: experimental simulation of limestone flaking by relative humidity cycling and crystallization of salts

    Directory of Open Access Journals (Sweden)

    Pinchin, S.

    2008-06-01

    Full Text Available Magnesium sulfate salts often result from the combination of incompatible construction materials, such as stone or mortar with high magnesium content and sulfates from adjacent mortars or polluted air. When combined with a source of moisture, these materials react to form soluble salts, often leading to significant damage by flaking of the stone, as the magnesium sulfate responds to fluctuating environmental conditions. Several laboratory experiments were performed to reproduce surface flaking on different types of limestone from Spain and the UK to evaluate the effects of humidity cycling on the damage of stone by salt crystallization. The two salt solutions used for the experiments were a single salt of magnesium sulfate and a mixture of magnesium sulfate, calcium sulfate and sodium chloride, a typical salt mixture found in damaged stone at the site of Howden Minster (UK. A climate chamber with precise and programmable temperature and humidity control was used to test the hypothesis that salt damage in the stone can be readily caused by humidity fluctuations. Damage was monitored using Linear Variable Differential Transformer (LVDT, which measure transducers displacement by dimensional change on the order of microns. In addition, Ion Chromatography, Environmental Scanning Electron Microscopy with energy dispersive X-ray spectroscopy (ESEM-EDX and X-ray Diffraction analyses (XRD were also carried out to analyze salt behavior. Damage by flaking took place in two types of magnesian limestone cubes impregnated with the salt mixture, from Cadeby quarry and York Minster, apparently by deliquescent salts of low equilibrium relative humidity (RHeq, while the rest of the samples developed a salt crust over the surface, but no damage was observed in the stone. It is important to verify hypotheses developed from field observations with laboratory experiments. By combining both field and laboratory data, a clearer understanding the different mechanisms of

  5. Material Properties at Low Temperature

    CERN Document Server

    Duthil, P

    2014-01-01

    From ambient down to cryogenic temperatures, the behaviour of materials changes greatly. Mechanisms leading to variations in electrical, thermal, mechanical, and magnetic properties in pure metals, alloys, and insulators are briefly introduced from a general engineering standpoint. Data sets are provided for materials commonly used in cryogenic systems for design purposes.

  6. High-albedo materials for reducing building cooling energy use

    Energy Technology Data Exchange (ETDEWEB)

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building's envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  7. Technological characteristics of compressed earth blocks for its use as a building material

    Science.gov (United States)

    Gomez-Villalba, Luz Stella; Camacho-Perez, Nancy; Alvarez de Buergo, Monica; Becerra-Becerra, Javier; Esmeralda Corredor-Pulido, Dery; Fort, Rafael

    2013-04-01

    We present here an innovative building technique, which uses ecological, inexpensive and environmentally friendly materials. These compressed earth blocks seem to be very good for building purposes and that is why we have characterized three types of compressed earth blocks (CEB, named by their color as yellow, grey and red) mineralogically by means of X ray diffraction XRD and scanning electron microscopy SEM (both blocks and raw materials), petrographically by polarizing optical light microscopy POLM, and SEM, and, mainly, petrophysically: their hydric, physical and physico-mechanical properties by means of determining their capillary water absorption, porosity (open or accessible to water, pore size distribution and micro/macroporosity), and densities, color and ultrasound velocity (together with anisotropy). The particularities of these analyzed materials show that some varieties are more durable than others, and that all of them can be used as building materials with some restrictions related to their appropriate placing in the structures and the exposure to water. Acknowledgements: This work is supported by the GEOMATERIALES (S2009/MAT-1629) and CONSOLIDER-TCP (CSD2007-0058) programmes. Thanks also to the UCM (Complutense University of Madrid) Research Group "Alteración y conservación de los materiales pétreos del patrimonio" / Alteration and conservation of heritage stone materials (ref. 921349).

  8. Syntheses, structures and properties of two 2-D layered hybrid organic-inorganic materials based on different V4O12 building units.

    Science.gov (United States)

    Hou, Wentao; Guo, Jiuyu; Xu, Xiao; Wang, Zuoxiang; Zhang, Deng; Wan, Hongxiang; Song, You; Zhu, Dunru; Xu, Yan

    2014-01-14

    Two new layered hybrid organic-inorganic compounds [Zn(pyim)]2V4O12 () (pyim = 2-(2-pyridyl)imidazole) and [Cu(bim)2]2V4O12(H2O)·CH3CH2OH () (bim = bis(1-imidazolyl)methane) based on polyoxovanadates (POVs) and organic ligands decorated transition metal units have been synthesized by hydrothermal and solvothermal methods respectively. Single crystal XRD, fluorescence spectrum, magnetic measurement, IR spectra, powder XRD and thermogravimetric (TG) measurements were performed to analyze the structures and properties of and . The structural analysis reveals that compound features a two-dimensional {[Zn(pyim)]2V4O12}n layered structure, constructed by sine wave-like {V4O12}n(4n-) chains, Zn(2+) ions and pyim ligands. In the layered structure of , {V4O12}(4-) circles are connected by Cu(2+) ions to form {Cu(V4O12)}n(2n-) chains, which are further linked by {Cu(bim)4}(2+) subunits to generate a hybrid layer of . The magnetic susceptibility measurement indicates strong antiferromagnetic interactions between Cu(2+) ions in .

  9. Classification of jet fuel properties by near-infrared spectroscopy using fuzzy rule-building expert systems and support vector machines.

    Science.gov (United States)

    Xu, Zhanfeng; Bunker, Christopher E; Harrington, Peter de B

    2010-11-01

    Monitoring the changes of jet fuel physical properties is important because fuel used in high-performance aircraft must meet rigorous specifications. Near-infrared (NIR) spectroscopy is a fast method to characterize fuels. Because of the complexity of NIR spectral data, chemometric techniques are used to extract relevant information from spectral data to accurately classify physical properties of complex fuel samples. In this work, discrimination of fuel types and classification of flash point, freezing point, boiling point (10%, v/v), boiling point (50%, v/v), and boiling point (90%, v/v) of jet fuels (JP-5, JP-8, Jet A, and Jet A1) were investigated. Each physical property was divided into three classes, low, medium, and high ranges, using two evaluations with different class boundary definitions. The class boundaries function as the threshold to alarm when the fuel properties change. Optimal partial least squares discriminant analysis (oPLS-DA), fuzzy rule-building expert system (FuRES), and support vector machines (SVM) were used to build the calibration models between the NIR spectra and classes of physical property of jet fuels. OPLS-DA, FuRES, and SVM were compared with respect to prediction accuracy. The validation of the calibration model was conducted by applying bootstrap Latin partition (BLP), which gives a measure of precision. Prediction accuracy of 97 ± 2% of the flash point, 94 ± 2% of freezing point, 99 ± 1% of the boiling point (10%, v/v), 98 ± 2% of the boiling point (50%, v/v), and 96 ± 1% of the boiling point (90%, v/v) were obtained by FuRES in one boundaries definition. Both FuRES and SVM obtained statistically better prediction accuracy over those obtained by oPLS-DA. The results indicate that combined with chemometric classifiers NIR spectroscopy could be a fast method to monitor the changes of jet fuel physical properties.

  10. Moisture measurements in building materials with microwaves; Rakennusmateriaalien kosteusmittauksia mikroaalloilla

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaeriaeinen, H.; Rudolph, M.; Schaurich, D.; Wiggenhauser, H. [VTT Building Technology, Espoo (Finland). Construction and Facility Management

    1998-12-01

    In order to assess the condition and evaluate the reliability of buildings and structures, it is essential to establish the moisture condition of the floor and other structural elements of the building. NDT-methods are increasingly being used for such moisture measurements because they do not cause any damage to the building under investigation. Microwave transmission is one of the NDT-methods and has been in use for several years. In this report, the applicability of the microwave method for measuring moisture in different building materials was investigated. This method has been successfully used at BAM for repeated moisture measurements in brick and sandstone material. This project also included other materials, such as concrete, sand, gravel, insulation and wood. At the same time, information was gathered about in situ moisture determination of building materials with a microwave moisture measuring system. The equipment used in this research has been developed at BAM over the last few years. The method requires two parallel boreholes in the specimen in which two microwave antennae can be moved. The moisture content in the material can be calculated from the microwave intensity transmitted between the two boreholes. Moisture profiles along the boreholes can be obtained by moving the antennae in steps along the length of the boreholes and taking measurements at each step. Special care must be taken while drilling the holes for the antennae, as this process must not affect the moisture condition in the specimen, and the boreholes must be made as parallel to each other as possible. The microwave frequencies used in the laboratory measurements ranged from 8 to 16,5 GHz in steps of 0,5 GHz. The diameters of the antennae were between 7 and 9 mm, and of the boreholes between 8 and 12 mm. Except for the concrete specimen, all the specimens were measured using plastic tubes in the boreholes. The moisture content measured by the microwave technique was verified by the

  11. Pathology of Building Materials in Historic Buildings. Relationship Between Laboratory Testing and Infrared Thermography

    OpenAIRE

    Lerma, C.; Mas, Á.; Gil,E.; Vercher, J.; Peñalver, M. J.

    2014-01-01

    Study of historic buildings requires a pathology analysis of the construction materials used in order to define their conservation state. Usually we can find capillary moisture, salt crystalli-zation or density differences by deterioration. Sometimes this issue is carried out by destructive testing which determine materials’ physical and chemical characteristics. However, they are unfavorable regarding the building’s integrity, and they are sometimes difficult to implement. This paper present...

  12. 焦作地区改性生土建筑材料直剪试验研究%EXPERIMENT ON COMPRESSIVE PROPERTIES OF MATERIAL OF ADOBE BUILDING IN HENAN JIAOZUO

    Institute of Scientific and Technical Information of China (English)

    王伟超; 陈兴义

    2013-01-01

    Adobe building still exists in Jiaozuo countryside, but the durability of these buildings is not enough. This paper researchs on the materials which are still used in the architecture in the rural areas of Jiaozuo. Getting soil, slag, lime as raw material, according to the different proportion, we made soil,lime and slag soil test specimens. Through shearing test we got the stress strain curve of those test specimens, and analyzed the influence raw-soil material resistant to shearing performance primary factor. It provides reference for studying on mechanical properties of the raw-soil wall body.%在河南焦作地区农村生土建筑仍然存在,但建筑耐久性不够.文中主要是对焦作地区农村仍在使用的生土建筑的主要墙体材料-生土土料的抗剪进行试验研究.取焦作地区素土、炉渣、石灰等为原材料,按照不同配比,分别制作素土试件、灰土和矿渣土试件.通过直剪试验得到了试件的应力应变关系曲线;分析了影响生土结构建筑原材料抗剪性能的主要原因,为生土建筑的墙体受力性能的研究提供了参考.

  13. Natural radioactivity measurements in building materials used in Samsun, Turkey.

    Science.gov (United States)

    Tufan, M Çagatay; Disci, Tugba

    2013-01-01

    In this study, radioactivity levels of 35 different samples of 11 commonly used building materials in Samsun were measured by using a gamma spectrometry system. The analysis carried out with the high purity Germanium gamma spectrometry system. Radioactivity concentrations of (226)Ra, (232)Th and (40)K range from 6 to 54 Bq kg(-1), 5 to 88 Bq kg(-1) and 6 to 1070 Bq kg(-1), respectively. From these results, radium equivalent activities, gamma indexes, absorbed dose rates and annual effective doses were calculated for all samples. Obtained results were compared with the available data, and it was concluded that all the investigated materials did not have radiological risk.

  14. Sustainability Product Properties in Building Information Models

    Science.gov (United States)

    2012-09-01

    washers, dryers , etc. are indispensable in a passive house. Certification is through a third-party building certifier that has been ac- credited by the...Anchor Trenwyth Model Old World Tumbled - 4X8x16 Standard CMU - 8X8X16 Verastone Plus recycled filled and polished ground face masonry units

  15. Valorisation of phosphogypsum as building material: Radiological aspects

    Directory of Open Access Journals (Sweden)

    Tayibi, H.

    2011-12-01

    Full Text Available Nowadays, alternative uses of phosphogypsum (PG in the building industry are being considered in several countries; however, the natural radioactivity level in the PG could be a restriction for those uses. United States Environmental Protection Agency (US-EPA classified PG as Technologically Enhanced Naturally Occurring Radioactive Material (TENORM. This drawback could be avoided controlling its percentage in the cement preparation and the radionuclides content in the other raw materials used in its production, and calculating the activity concentration index (I in the final by-products. The valorization of PG as a building material has been studied, from a radiological point of view, by developing a new stabilisation/solidification process. PG is incorporated within a polymeric sulphur matrix, obtaining a concrete-like material, which presents lower natural radioactive content than the initial PG. The 226Ra content of this material ranged between 26-27 Bq·kg-1 and it is quite similar to that of common Spanish building materials.

    Actualmente, en muchos países se está contemplando el uso alternativo del fosfoyeso (PG en la industria de la construcción, aunque su contenido en radionucleidos naturales puede presentar ciertas restricciones para dicha aplicación (material clasificado por la US-EPA como TENORM: “Technologically Enhanced Naturally Occurring Materials. No obstante, estos inconvenientes podrían paliarse controlando el porcentaje del PG y los niveles de radioactividad en las materias primas a incorporar al cemento y calculando el índice de concentración de actividad (I en los productos finales. La valorización del PG como material de construcción se ha estudiado en este trabajo desde el punto de vista radiológico, desarrollando un nuevo proceso de estabilización/solidificación, obteniéndose un material de características similares al cemento y que presenta menor contenido de radionucleidos naturales que el

  16. A comparison of composition and emulsifying properties of MFGM materials prepared from different dairy sources by microfiltration.

    Science.gov (United States)

    Miocinovic, Jelena; Le Trung, Thien; Fredrick, Eveline; Van der Meeren, Paul; Pudja, Predrag; Dewettinck, Koen

    2014-09-01

    Milk fat globule membrane (MFGM), due to its specific nature and composition, is known as material possessing advantageous nutritional as well as technological properties. In this study MFGM materials were produced from several dairy sources such as buttermilk (BM), butter serum (BS) and buttermilk whey (BMW) by microfiltration (MF). The obtained materials, depending on the sources, were called BM-MFGM, BS-MFGM and BMW-MFGM, respectively. The compositions of starting materials and the isolated MFGM materials as well as their emulsifying properties were analyzed and compared. As expected, the MF resulted in enrichment of polar lipids (PLs), major components of MFGM. On dry matter basis, BM-MFGM and BS-MFGM were about 2.5 times higher in PLs compared to their beginning materials while BMW-MFGM was about 8.3 times compared to buttermilk powder (BMP). Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the microfiltered products still contained a high amount of non-MFGM proteins such as caseins, β-lactoglobulin, and α-lactalbumin. Emulsions of 35% soya oil in water were prepared with the mentioned materials using a homogenizer at various pressures. Generally, emulsions prepared with BMP and butter serum powder had significantly higher particle sizes than those prepared with the MFGM materials. This result along with microscopy observation and viscosity measurement indicated the presence of aggregated particles in the former emulsions, probably as a result of lack of surface-active components. The differences in composition, especially in content of PLs and proteins of the materials were the main reasons for the differences in their emulsifying behaviors.

  17. Estimation of Crack Growth Properties of High Strength Metallic Materials by a Novel Technique

    Directory of Open Access Journals (Sweden)

    P R Sadananda Rao

    2010-12-01

    Full Text Available This research work proposes a novel technique based on fracture mechanics approach for the quick determination of fatigue crack growth rate and threshold stress intensity factor range (ΔKth of metallic materials using circumferentially cracked round bar (CCRBspecimen geometry. The literature survey indicates that the fatigue crack growth rate data generated using ASTM E-647 standard test specimens were strongly dependent on specimen size and its configuration. Also the standard test procedure is more cumbersome and time consuming requires costly instrumentation. Aluminum 2014T6 alloy is used as the test specimen because of its wide applicationin automobiles and aero plane industry. It is found that the test procedure is simple, reliable, less time consuming and uses simple instrumentation. The obtained fatigue crack growth rate is found to be very close to the values obtained by using standard specimens. This methodology can be widely applied in industries for rapid determination of ΔKth any metallic materials.

  18. Optimal thermographic procedures for moisture analysis in building materials

    Science.gov (United States)

    Rosina, Elisabetta; Ludwig, Nicola

    1999-09-01

    The presence of moisture in building materials causes damage second only to structural one. NDT are successfully applied to map moisture distribution, to localize the source of water and to determine microclimatic conditions. IR Thermography has the advantage of non-destructive testing while it allows to investigate large surfaces. The measures can be repeated in time to monitor the phenomenon of raising water. Nevertheless the investigation of moisture in walls is one of the less reliable application of Thermography IR applied to cultural heritage preservation. The temperature of the damp areas can be colder than dry ones, because of surface evaporation, or can be warmer, because of the higher thermal inertia of water content versus building materials. The apparent discrepancies between the two results are due to the different microclimatic conditions of the scanning. Aim of the paper is to describe optimal procedures to obtain reliable maps of moisture in building materials, at different environmental and microclimatic conditions. Another goal is the description of the related energetic phenomena, which cause temperature discontinuities, and that are detected by thermography. Active and passive procedures are presented and compared. Case studies show some examples of procedures application.

  19. Radon exhalation rate of some building materials used in Egypt.

    Science.gov (United States)

    Maged, A F; Ashraf, F A

    2005-09-01

    Indoor radon has been recognized as one of the health hazards for mankind. Common building materials used for construction of houses, which are considered as one of the major sources of this gas in indoor environment, have been studied for exhalation rate of radon. Non-nuclear industries, such as coal fired power plants or fertilizer production facilities, generate large amounts of waste gypsum as by-products. Compared to other building materials waste gypsum from fertilizer production facilities (phosphogypsum) shows increased rates of radon exhalation. In the present, investigation solid state alpha track detectors, CR-39 plastic detectors, were used to measure the indoor radon concentration and the radon exhalation rates from some building materials used in Egypt. The indoor radon concentration and the radon exhalation rate ranges were found to be 24-55 Bq m(-3 )and 11-223 mBq m(-2) h(-1), respectively. The effective dose equivalent range for the indoor was found 0.6-1.4 mSv y(-1). The equilibrium factor between radon and its daughters increased with the increase of relative humidity.

  20. 蔗渣浆纤维模塑装饰建筑材料的制备与性能%Preparation and Properties of Bagasse Fibre-Molding Decorative Building Material

    Institute of Scientific and Technical Information of China (English)

    韩文佳; 陈克复; 杨仁党; 杨飞; 黄良辉; 高文花

    2011-01-01

    以天然蔗渣浆纤维为原料,利用模塑热压工艺复合成形,得到物理性能优良的纤维模塑装饰建筑材料.借助拉伸性能测试、热重分析、FT-IR等研究了影响该材料力学性能的因素.研究表明:该材料的拉伸性能主要受增强剂和阻燃剂添加量,干燥温度、时间和压力的影响;随着阻燃剂添加量的增加,材料的拉伸性能明显降低;最佳干燥温度为160℃,干燥时间为4min;在一定施压范围内,随着干燥压力的提高,材料拉伸性能提高,合适的干燥压力为30kN.热重分析和FT-IR分析表明,材料制备过程中蔗渣浆纤维未发生明显的热解反应,化学成分也未发生变化,因此材料的微观结构对其拉伸性能具有重要影响.最后利用SEM、AFM等对材料的表面微观结构进行了表征.%Molding decorative building material with excellent physical performances was prepared from natural bagasse fibers via the hot forming process of fiber molding. Then, based on the tensile test, TGA and FT-IR analysis,the factors affecting the mechanical properties of the material were investigated. The results indicate that the tensile performance of the material is mainly affected by the dosages of flame retardant and reinforcing agent, the drying temperature, the drying time and the pressure, that, with the increase of flame retardant dosage, the tensile performance greatly degrades, that the optimal drying temperature and time are respectively determined as 160 ℃ and 4 min, and that, in a certain pressure range, the tensile performance improves with the drying pressure at an optimal value of 30kN. Moreover, it is found from TGA and FT-IR analysis that, as there is no obvious thermal decomposition and chemical structure change of bagasse fibers during the preparation, the microstructure of the prepared material plays an important role in the tensile performance. In addition, the surface microstructure of the material was analyzed by means of SEM

  1. Volatile Retention and Morphological Properties of Microencapsulated Tributyrin Varied by Wall Material and Drying Method.

    Science.gov (United States)

    Donovan, Joseph D; Cadwallader, Keith R; Lee, Youngsoo

    2016-03-01

    Butyric acid is an important short-chain fatty acid for intestinal health and has been shown to improve certain intestinal disease states. A triglyceride containing 3 butyric acid esters, tributyrin (TB) can serve as a source of butyric acid; however, the need to target intestinal delivery and mitigate unpleasant sensory qualities has limited its use in food. Microencapsulation, the entrapment of one or more cores within a matrix, may provide a solution to the aforementioned challenge. This research primarily focused on the influence of (1) wall material: whey and soy protein isolate (WPI and SPI, respectively) and gamma-cyclodextrin (GCD), (2) wall additives: inulin of varying chain length, and (3) processing method: spray or oven drying (SD or OD, respectively) on the morphological properties and volatile retention of TB within microcapsules. SPI-based microcapsules retained significantly less (P spray dried, the GCD-based microcapsules exhibited (P spray drying. These findings demonstrate that microencapsulated TB in GCD can lead to minimal TB losses during processing that could be utilized in functional food applications for intestinal health.

  2. Glass-ceramics as building materials

    Directory of Open Access Journals (Sweden)

    Rincón, J. María

    1996-06-01

    Full Text Available Glass-ceramics are materials composed as any ceramic material by several crystalline phases embedded in an amorphous or vitreous matrix, but their manufacture process implies the controlled devitrification or nucleation and growth of phases from an original glass. The original shape of the original glass molded by conventional methods is carried out by using pressing and sintering followed by crystallization steps. By both processing routes are obtained transparent and/or opaque materials, with or without colours, which after adequate control and design of composition and microstructure have numerous domestic and architectonic applications. They can be used as pavements or wall coatings and in various decorative elements. In fact, their use is very extensive in east-European, American and Asian (Japan countries in constructions for covering large surfaces. The greater advantage of the glass-ceramic process is that due to the own process of vitrification allows the incorporation in their structure of a wide range of compositions from mining and industrial residues, such as red muds, ashes, fangos, scraps... which they can in this way not only be inertizated, but furthermore it be converted without risk for the environment into products useful in construction applications, offering to the architect and to the decorator a new range of "eco-materials" with multiple complementary possibilities of the already existing architectural materials in the market.

    Los productos o materiales vitrocerámicos se componen, como cualquier material de tipo cerámico, de una o varias fases cristalinas embebidas en una matriz amorfa o vítrea, pero cuyo proceso de fabricación implica la desvitrificación o nucleación y cristalización controlada de un vidrio original o de partida. En el proceso de obtención de estos materiales se puede conservar la forma original conferida al vidrio de partida por los métodos convencionales de moldeado de vidrios

  3. Design of materials with prescribed nonlinear properties

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole; Jensen, Jakob Søndergaard

    2014-01-01

    We systematically design materials using topology optimization to achieve prescribed nonlinear properties under finite deformation. Instead of a formal homogenization procedure, a numerical experiment is proposed to evaluate the material performance in longitudinal and transverse tensile tests un....... The numerical examples illustrate optimized materials with rubber-like behavior and also optimized materials with extreme strain-independent Poisson's ratio for axial strain intervals of εi ∈ [0.00,0.30]. © 2014 Elsevier Ltd. All rights reserved....... under finite deformation, i.e. stress-strain relations and Poisson's ratio. By minimizing errors between actual and prescribed properties, materials are tailored to achieve the target. Both two dimensional (2D) truss-based and continuum materials are designed with various prescribed nonlinear properties...

  4. A mass transfer model for predicting emission of the volatile organic compounds in wet building materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tao; JIA Li

    2008-01-01

    A new mass transfer model is developped to predict the volatile organic compounds (VOCs) from fresh wet building materials. The dry section of wet materials during the process of VOC emission from wet building materials is considered in this new model, differing from the mass transfer-based models in other literatures. The mechanism of effect of saturated vapor pressure on the surface of wet building materials in the process of VOC emission is discussed. The concentration of total volatile organic compounds (TVOC) in the building materials gradually decreases as the emission of VOCs begins, and the vapor pressure of VOCs on the surface of wet building materials decreases in the case of newly wet building materials. To ensure the partial pressure of VOCs on the surface of wet building materials to be saturated vapor pressure, the interface of gas-wet layer is lowered, and a dry layer of no-volatile gases in the material is formed. Compared with the results obtained by VB model, CFD model and the ex-periment data, the results obtained by the present model agree well with the results obtained by CFD model and the experiment data. The present model is more accurate in predicting emission of VOC from wet building materials than VB model.

  5. Material Connections: Steuart Building, St. Albans School.

    Science.gov (United States)

    Stephens, Suzanne

    1980-01-01

    The addition to the St. Albans campus in Washington, D.C., relates both to the style and the siting of the older "collegiate gothic" school nearby. The mixed-use building contains five classrooms, art and music spaces, and a student lounge. (Author/MLF)

  6. Building Energy Efficiency and the Use of Raw Materials

    Science.gov (United States)

    Yuan, Luo

    To become a country of energy saving, consumption reduction, low carbon emissions and life has become a national policy background, we need to convert conception of architectural aesthetics and make necessary adjustments and consciousness. Techniques and methods of support, or method of the research are still needed in the construction, building energy conservation, the environmental protection, low carbon and recycling methods are taken measures. Developing, finding and adopingt "native" and "primary" processed materials, or in which inject new technology to form new material is an effective approach to ensure more ways from environmental protection, energy-saving building and building materials in such ideas to implement.

  7. Determination of near-surface material properties by line-focus acoustic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Achenbach, J.D.; Li, W. [Northwestern Univ., Evanston, IL (United States)

    1996-12-31

    A line-focus acoustic microscope is used in conjunction with a multiple wave-mode method to determine elastic constants from a single V(z) measurement. V(z) curves which include contributions from different wave modes, measured using the line-focus acoustic microscope at 225 MHz, have been compared with theoretical results predicted by a V(z) measurement model. The determination of elastic constants has been achieved numerically by seeking a set of elastic constants that leads to the best fit, in the least square sense, of the theoretical results to the experimental ones. The method has been applied to isotropic materials in bulk, and plate and thin-film configurations. Elastic constants for each of these cases have been determined. The consistency, convergence, sensitivity and accuracy of the procedure have been investigated.

  8. Electrochemical properties of Ti-Ni-Sn materials predicted by 119Sn Mössbauer spectroscopy

    Science.gov (United States)

    Ladam, A.; Aldon, L.; Lippens, P.-E.; Olivier-Fourcade, J.; Jumas, J.-C.; Cenac-Morthe, C.

    2016-12-01

    The electrochemical activity of TiNiSn, TiNi 2Sn and Ti 6Sn 5 compounds considered as negative electrode materials for Li-ion batteries has been predicted from the isomer shift- Hume-Rothery electronic density correlation diagram. The ternary compounds were obtained from solid-state reactions and Ti 6Sn 5 by ball milling. The 119Sn Mössbauer parameters were experimentally determined and used to evaluate the Hume-Rothery electronic density [e av]. The values of [e av] are in the region of Li-rich Li-Sn alloys for Ti 6Sn 5 and outside this region for the ternary compounds, suggesting that the former compound is electrochemically active but not the two latter ones. Electrochemical tests were performed for these different materials confirming this prediction. The close values of [e av] for Ti 6Sn 5 and Li-rich Li-Sn alloys indicate that the observed good capacity retention could be related to small changes in the global structures during cycling.

  9. Modeling of heat evolution in silicate building materials with electrically conductive admixtures

    Science.gov (United States)

    Fiala, Lukáš; Maděra, Jiří; Vejmelková, Eva; Černý, Robert

    2016-12-01

    Silicate building materials are electrically non-conductive, in general. However, a sufficient amount of electrically conductive admixtures can significantly increase their electrical conductivity. Consequently, new practical applications of such materials are available. Materials with enhanced electrical properties can be used as self-sensing sensors monitoring evolution of cracks, electromagnetic shields or cores of deicing systems. This paper deals with the modeling of heat evolution in silicate building materials by the action of passing electric current. Due to the conducting paths formed in the material's matrix by adding a sufficient amount of electrically conductive admixture and applying electric voltage on the installed electrodes, electric current is passing through the material. Thanks to the electric current, Joule heat is successively evolved. As it is crucial to evaluate theoretically the amount of evolved heat in order to assess the effectiveness of such a system, a model describing the Joule heat evolution is proposed and a modeling example based on finite-element method is introduced.

  10. Influence of Insulating Materials on Green Building Rating System Results

    Directory of Open Access Journals (Sweden)

    Fabio Bisegna

    2016-09-01

    Full Text Available This paper analyzes the impact of a change in the thermal insulating material on both the energy and environmental performance of a building, evaluated through two different green building assessment methods: Leadership in Energy and Environmental Design (LEED and Istituto per l’innovazione e Trasparenza degli Appalti e la Compatibilità Ambientale (ITACA. LEED is one of the most qualified rating systems at an international level; it assesses building sustainability thanks to a point-based system where credits are divided into six different categories. One of these is fully related to building materials. The ITACA procedure derives from the international evaluation system Sustainable Building Tool (SBTool, modified according to the Italian context. In the region of Umbria, ITACA certification is composed of 20 technical sheets, which are classified into five macro-areas. The analysis was developed on a residential building located in the central Italy. It was built taking into account the principles of sustainability as far as both structural and technical solutions are concerned. In order to evaluate the influence of thermal insulating material, different configurations of the envelope were considered, replacing the original material (glass wool with a synthetic one (expanded polystyrene, EPS and two natural materials (wood fiber and kenaf. The study aims to highlight how the materials characteristics can affect building energy and environmental performance and to point out the different approaches of the analyzed protocols.

  11. Possibilities of Using Cellulose Fibres in Building Materials

    Science.gov (United States)

    Hospodarova, V.; Stevulova, N.; Sicakova, A.

    2015-11-01

    Nowadays, utilization of wastes from agriculture, paper production and building construction is becoming increasingly important due to environmental concerns. Material recycling is a growing trend in the development of building materials; some waste materials can be used in construction as secondary raw materials. The demand for natural non-renewable raw materials is increasing rapidly, therefore, wastes as resources for secondary raw materials can be a good substitute in the production processes. In this way, the shortage of natural raw materials can be supplemented. Construction industry uses secondary raw materials very effectively thereby substituting virgin materials. One of the interesting secondary raw materials is waste coming from natural plant fibres. In this paper, characterization of cellulose fibres from wood pulp, waste paper and their use in cement composites are considered. Technically important parameters of hardened composites are determined and tested (density, water absorbability and compressive strength).

  12. Satellite material contaminant optical properties

    Science.gov (United States)

    Wood, B. E.; Bertrand, W. T.; Seiber, B. L.; Kiech, E. L.; Falco, P. M.; Holt, J. D.

    1990-03-01

    The Air Force Wright Research and Development Center and the Arnold Engineering Development Center are continuing a program for measuring optical effects of satellite material outgassing products on cryo-optic surfaces. Presented here are infrared (4000 to 700 cm(-1)) transmittance data for contaminant films condensed on a 77 K germanium window. From the transmittance data, the contaminant film refractive and absorptive indices (n, k) were derived using an analytical thin-film interference model with a nonlinear least-squares algorithm. To date 19 materials have been studied with the optical contents determined for 13 of those. The materials include adhesives, paints, composites, films, and lubricants. This program is continuing and properties for other materials will be available in the future.

  13. Preparation and property of spinel LiMn2O4 material by co-doping anti-electricity ions

    Institute of Scientific and Technical Information of China (English)

    XIAO Jin; ZHU Hua-li; CHEN Zhao-yong; PENG Zhong-dong; HU Guo-rong

    2006-01-01

    LiMn2-xMxO4-yFy(x=0.05; y=0.05; M=Al, Co, Cr and Mg, separately), as the cathode material, was synthesized by the method of high temperature solid-state reaction in laboratory. The results of charge-discharge test show that the properties of LiMn1.95M0.05O3.95F0.05(M= Al, Mg) are obviously superior to those of LiMn2O4. Through the condition experiments on sintering temperature, it is found that the materials present the integrate crystal structure and favorable cycle performance at 800 ℃. The research on the effects of different Mg2+ sources on the properties of LiMn2-xMgxO4-y Fy shows that, with Mg(OH)2 and LiF as the reagents respectively offering Mg2+ and F-, LiMn1.95Mg0.05O3.95F0.05 synthesized has integrate crystal structure and its capacity hardly fades. The results of cyclic voltammetry indicate that the shape of two couples of redox peaks of the material synthesized by co-doping anti-electricity ions is more integrate and symmetrical than that of pure spinel LiMn2O4, which reveals that the co-doping material possesses preferable electrochemical reversibility.

  14. Preparation and properties of Cobalt-based soft magnetic material prepared by novel powder metallurgy

    Science.gov (United States)

    Srivastava, Yogesh; Srivastava, Sanjay

    2017-02-01

    The present work deals with the development of nanocrystalline 60Co-26Fe-14Al (wt%) soft magnetic materials via mechanical milling of elemental powders. The evolution of solid solution during milling proceeded with continuous decrease in atomic order and the crystallite size, and an introduction of internal strain and dislocations. The milling-induced lattice defects, crystallite size reduction, and atomic disorder exhibited a decrease in saturation magnetization, remanence magnetization, squareness ratio, and blocking temperature with increasing milling time. It has been demonstrated that, at subzero temperatures, the magnetization decreases with increasing temperature due to the development of an effective anisotropy caused by an evolution of canted spin structure owing to the introduction of lattice defects during milling.

  15. Production of mycotoxins on artificially and naturally infested building materials

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Gravesen, S.; Nielsen, P.A.

    1999-01-01

    isolated from water-damaged building materials. Spores from the different isolates of the above mentioned species were inoculated on gypsum board with and without wallpaper and on chipboard with and without wallpaper. Fungal material was scraped off the materials, extracted, and analyzed using high...

  16. Natural radioactivity levels in building materials used in Egypt

    Science.gov (United States)

    Ahmad, Fawzia

    All building materials contain various amounts of radioactive nuclides. The levels of natural radioactivity in 43 selected typical building materials used in the construction of walls, windows and doors were determined. For the first time, the radioactivity of iron was measured, revealing the existence of 60Co. A shielded high-purity germanium detector was used to measure the abundance of 226Ra, 232Th and 40K. The materials examined in this work showed radioactivity levels below the limit estimated from radium equivalent activity for acceptable radiation doses attributable to building materials, except for the fact that one gypsum sample showed higher levels of activity than average world levels. The studied building materials were classified according to the radium equivalent activities, which varied from highest to lowest levels as follows: clay, cement, brick, gypsum except from Abu-Zaabal, sand, wood, iron, glass and hydrated lime The existence of the 137Cs isotope in some building materials was confirmed and its concentration levels were determined (ranging from 0.04 to 21.156 Bq kg-1). The alpha-activity of radon was measured in a number of building materials using CR-39 detectors.

  17. Preparation and properties of luminous materials of CaSiO3:Pb, Mn by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    YANG Liangzhun; FANG Min; Liu Yuejiao; LIU Chao; WANG Xiuying; YU Xibin

    2007-01-01

    The luminous materials of CaSiO3: Pb, Mn were synthesized by sol-gel method and ultrasound technology.The properties of the phosphors were characterized by luminescence spectrum, differential thermal analysis and thermal gravimetry analysis (DTA-TG), X-ray diffraction(XRD), Fourier transform infrared spectrometer (FT-IR)and transmission electron microscopy (TEM). The effects of factors such as the synthetic material compositions,ultrasound time and annealed temperature on phosphorescent brightness of sample were studied and the optimum synthetic conditions were determined. The results show that, compared with the sample made by the high temperature solid-state reaction, the luminescent intensity of the CaSiO3:Pb, Mn sample increased by about 200% and the mean diameter of particles of the sample decreased by about 300 nm.

  18. Natural radioactivity in building materials used in Changzhi, China.

    Science.gov (United States)

    Yang, Guang; Lu, Xinwei; Zhao, Caifeng; Li, Nan

    2013-08-01

    The natural radioactivity levels of the commonly used building materials collected from Changzhi, China was analysed using gamma-ray spectroscopy. The activity concentrations of (226)Ra, (232)Th and (40)K in the investigated building materials range from 14.6 to 131.2, from 9.9 to 138.8 and from 96.1 to 819.0 Bq kg(-1), respectively. The results were compared with the reported data of other countries and with the worldwide mean activity of soil. The external and internal hazard indices and gamma index were calculated to assess the radiation hazard to residents. The external hazard index of all building materials are less than unity, while the internal hazard and gamma indexes of hollow brick and gravel aggregate exceed unity. The study shows that the investigated hollow brick and gravel aggregate are not suitable for use as building materials in dwellings.

  19. Surface Treatment of Building Materials with Water Repellent Agents

    OpenAIRE

    Wittman, F.H.; Siemes, T.A.J.M.; Verhoef, L.G.W.

    1995-01-01

    Water repellent agents have been applied to proteet building materials and structural elements for thousands ofyears. Initially, natural products, such as oils and fats were used exclusively. More recently, synthetic organic compounds are being developed for special applications.

  20. Gray energy of building materials; Graue Energie von Baustoffen

    Energy Technology Data Exchange (ETDEWEB)

    Kasser, U.; Poell, M. [Buero fuer Umweltchemie, Zurich (Switzerland)

    1995-05-15

    The report highlights the importance of gray energy and discusses the relationship to environmental balances. Literature values for the most important building materials are collated and commented. 9 figs., tabs., 59 refs.

  1. Mechanical properties of high dense coal fly-ash bulk materials by plasma spark sintering (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, G.; Hasezaki, K.; Nakashita, A.; Kakuda, H. [Shimane University, Shimane (Japan). Dept. of Material Science

    2008-10-15

    Coal fly-ash bulk materials were prepared by spark plasma sintering (SPS). The as-received coal fly ash produced by Misumi Power Station (The Chugoku Electric Power Co. Inc.), had an average particle size of 19 mm and contained about 2% carbon from unburned coal. The sintering temperature was 1273 K for 10 min. The mass density of the sintered compact was 2.4 x 103 kg/m{sup 3}. After three-point flexural testing of the compact, the average flexural strength and Young's modulus were 25.6 MPa and 23.0 GPa, respectively. From the flexural strength, the Weibull modulus was found to be m = 6.13, indicating that the compact was a typical ceramics. Fractographic examination indicated that in all specimens the fracture origin was located on the bottom surface and was not an intrinsic flaw. Vickers indentation test showed that the fracture toughness was 0.61 MPa.m{sup 0.5} and the calculated critical flaw size c{sub 0}, was 0.18 mm. This c{sub 0} value was larger than that of the voids and the unburned carbon at the fracture surface. It is noteworthy that the mechanical strength of the sintered compact was not affected by the voids and unburned carbon.

  2. Study of normal and shear material properties for viscoelastic model of asphalt mixture by discrete element method

    DEFF Research Database (Denmark)

    Feng, Huan; Pettinari, Matteo; Stang, Henrik

    2015-01-01

    In this paper, the viscoelastic behavior of asphalt mixture was studied by using discrete element method. The dynamic properties of asphalt mixture were captured by implementing Burger’s contact model. Different ways of taking into account of the normal and shear material properties of asphalt...... mixtures have been reviewed. Two models, Model I and Model II, with different design parameters were developed and compared. For Model I, Burger’s model parameters in normal and shear direction were calibrated by using laboratory test results from Frequency Sweep Test performed in both normal and shear...... direction, respectively; while for Model II, the same calibrated parameters in the normal direction were used, but the values for the shear direction were chosen to be equal with the normal direction. The complex modulus of asphalt mixtures were predicted for both optimized models by conducting DE...

  3. Calorimetric methods for the study of fungi on building materials

    OpenAIRE

    Li, Yujing

    2004-01-01

    The aim of this project is to study the fungal growth habits on building materials as a function of humidity, temperature and other environmental parameters. The method of calorimetry is used as a way to quantify fungal activity on building materials. Calorimetry is a general, but sensitive method that can continuously monitor biological processes as a function of environmental conditions. In this report, three different studies are presented: (1) A calorespirometric device was developed and ...

  4. Design and properties of maxillofacial prosthetic materials.

    Science.gov (United States)

    Andreopoulos, A G; Theophanides, T

    1993-11-01

    Maxillofacial reconstruction by prosthetic means is a valuable contribution that medicine offers to the public. Materials design and properties are the main problems faced by scientists in this field. Materials used for intraoral prostheses are not ideal, but they have been perfected to the point of practical use. Denture resins, gold, chromium-cobalt alloys, and porcelain are widely used and produce acceptable results in the oral cavity. In this review, the properties and performance of some polymeric materials used in maxillofacial prosthetics are discussed, and new trends in research and development are also reported.

  5. Optical properties of low-dimensional materials

    CERN Document Server

    Ogawa, T

    1998-01-01

    This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promis

  6. Hydration effects on the electronic properties of eumelanin building blocks

    Science.gov (United States)

    Assis Oliveira, Leonardo Bruno; L. Fonseca, Tertius; Costa Cabral, Benedito J.; Coutinho, Kaline; Canuto, Sylvio

    2016-08-01

    Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54-79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180-220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a "chemical disorder model," where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.

  7. Shielding effectiveness of original and modified building materials

    Directory of Open Access Journals (Sweden)

    T. Frenzel

    2007-06-01

    Full Text Available This contribution deals with the determination of the shielding effectiveness of building materials used for office, factory and government buildings. Besides the examination of standard materials, measurements were also performed on modified materials, e.g. ferro concrete with enhanced shielding effectiveness due to a changed mixture or structure of the reinforcement. The measurements of original and modified materials were carried out in a fully anechoic room (FAR according to IEEE 299-1997 from 80 MHz up to 10 GHz.

  8. DEVELOPMENT OF RHEOLOGY OF ROAD-BUILDING MATERIALS FOR PERFECTION OF THEIR COMPACTION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Vl. P. Podolskу

    2012-04-01

    Full Text Available Problem statement. The main problems of improving the quality and effectiveness of compaction of soil subgrade and road asphalt mixtures are discussed. Technology of road-building materials compaction can be improved by developing and using the rheological approach in the describing and studying changes in physical and mechanical parameters of materials, when the rheological properties of compacted material is closely connected to the nature of a force action applied to it.Results. The principles of designing rheological models of soil subgrade and road asphalt mixtures are formulated, based on which a model is suggested of the creep process of road construction materials using the theory of hereditary creep of elastic-visco-plastic materials. The choice of exponential and power influence functions is explained, the application of which will improve the accuracy of the physical and mechanical properties of compacted materials. Conclusions. Development of rheology road soils and asphalt mixtures reveals significant new laws in the development of deformation of compacted layers of road construction materials in the way of improving the compaction technology.

  9. Natural Radioactivity in some building materials from Spain

    Energy Technology Data Exchange (ETDEWEB)

    Miro, C. [Universidad de Extremadura (UEX), 10071-Caceres (Spain); Madruga, M.J.; Reis, M. [Instituto Superior Tecnico, Universidade de Lisboa, Campus Tecnologico e Nuclear, 2695-066 Bobadela LRS (Portugal)

    2014-07-01

    Studies of natural radiation are of great importance because it is the main source of exposure of human kind. Building materials is one of the sources which cause direct radiation exposure because of their radium, thorium and potassium content. The aim of this work is to measure gamma activity due to {sup 40}K, {sup 226}Ra and {sup 232}Th in samples of commonly used as a building materials in Spain. Cement, gypsum, plaster, marble, slates, granite and wood had been analysed. These materials are used for private and public building. Radium equivalent activities (Ra{sub eq}) and various hazard indices were also calculated to assess the radiation hazard. Results were also compared with the data available in the literature for other countries of the world. Cement, gypsum and plaster samples were collected from hardware stores. Marble, slates and granite samples were taken from different quarries. And the wood samples were taken from eucalyptus trees from forest. Activity concentrations {sup 40}K-, {sup 226}Ra- and {sup 232}Th-activity was determined by gamma spectrometry using a HPGe coaxial detector. The results show that the range of average values of the activity concentrations due to {sup 40}K, {sup 226}Ra and {sup 232}Th were found between 37 and 1340 Bq/kg, 0.007 and 104 Bq/kg, and <0.005 and 75 Bq/kg, respectively. Maxima values were obtained in granite. Radium equivalent activities range from 3.7 Bq/kg to 283 Bq/kg, calculated in wood and granite, respectively. Therefore all the samples showed Raeq activities within the limit, 370 Bq/kg, set by UNSCEAR. Values of external hazard index for all samples under investigation are below the unity, while the internal hazard index for granite exhibits a value around the unity. Acknowledgements to the financial support of the Junta de Extremadura (project PRI09A092 and FEDER-group GRU09053). (authors)

  10. The use of the bottom ashes and of the steelmaking slags in the manufacturing technologies of the building materials

    Directory of Open Access Journals (Sweden)

    L. G. Popescu

    2016-07-01

    Full Text Available The energetic and metallurgy industries of Romania represent the main waste sources significant from the point of quantitative view: the bottom ashes and the blast furnace and secondary metallurgical slags. Starting from the knowledge of the main chemical-physical properties of these two types of industrial wastes, there were inquired the exploitation possibilities in the technological practice, by using in the manufacturing of some building materials, for which these wastes represent the exclusive raw material source. The experiments considered the granular aggregate properties of the bottom ash and of the blast furnace slag, completed by the hydraulic binder of the secondary metallurgical slag, after the fine crushing.

  11. Synthesis of nanostructured materials by using metal-cyanide coordination polymers and their lithium storage properties.

    Science.gov (United States)

    Nie, Ping; Shen, Laifa; Luo, Haifeng; Li, Hongsen; Xu, Guiyin; Zhang, Xiaogang

    2013-11-21

    Herein, we demonstrate a novel and simple two-step process for preparing LiCoO2 nanocrystals by using a Prussian blue analogue Co3[Co(CN)6]2 as a precursor. The resultant LiCoO2 nanoparticles possess single crystalline nature and good uniformity with an average size of ca. 360 nm. The unique nanostructure of LiCoO2 provides relatively shorter Li(+) diffusion pathways, thus facilitating the fast kinetics of electrochemical reactions. As a consequence, high reversible capacity, excellent cycling stability and rate capability are achieved with these nanocrystals as cathodes for lithium storage. The LiCoO2 nanocrystals deliver specific capacities of 154.5, 135.8, 119, and 100.3 mA h g(-1) at 0.2, 0.4, 1, and 2 C rates, respectively. Even at a high current density of 4 C, a reversible capacity of 87 mA h g(-1) could be maintained. Importantly, a capacity retention of 83.4% after 100 cycles is achieved at a constant discharge rate of 1 C. Furthermore, owing to facile control of the morphology and size of Prussian blue analogues by varying process parameters, as well as the tailored design of multi-component metal-cyanide hybrid coordination polymers, with which we have successfully prepared porous Fe2O3@NixCo3-xO4 nanocubes, one of the potential anode materials for lithium-ion batteries, such a simple and scalable approach could also be applied to the synthesis of other nanomaterials for energy storage devices.

  12. Micro-mechanical properties of bio-materials

    Science.gov (United States)

    Zakiev, V.; Markovsky, A.; Aznakayev, E.; Zakiev, I.; Gursky, E.

    2005-09-01

    Investigation of physical-mechanical characteristics of stomatologic materials (ceramics for crowns, silver amalgam, cements and materials on a polymeric basis) properties by the modern methods and correspondence their physical-mechanical properties to the physical-mechanical properties of native teeth is represented. The universal device "Micron-Gamma" is built for this purpose. This device allows investigate the physical-mechanical characteristics of stomatologic materials (an elastic modulus, micro-hardness, destruction energy, resistance to scratching) by the methods of continuous indentation, scanning and pricking. A new effective method as well as its device application for the investigation of surface layers of materials and their physical-mechanical properties by means of the constant indenting of an indenter is realized. This method is based on the automatic registration of loading (P) on the indenter with the simultaneous measurement of its indentation depth (h). The results of investigations are presented on a loading diagram P=f(h) and as a digital imaging on the PC. This diagram allows get not only more diverse characteristics in the real time regime but also gives new information about the stomatologic material properties. Therefore, we can to investigate the wide range of the physical-mechanical properties of stomatologic materials. "Micron-alpha" is digital detection device for light imaging applications. It enables to detect the very low material surface relief heights and restoration of surface micro topography by a sequence data processing of interferential data of partially coherent light also. "Micron-alpha" allows: to build 2D and 3D imaging of a material surface; to estimate the quantitatively characteristics of a material surface; to observe the imaging interferential pictures both in the white and in the monochromatic light; to carry out the investigation of blood cells, microbes and biological macromolecules profiles. The method allows

  13. Cross Laminated Timber – Properties and Use for Building Purposes: A Review From the Experience of Swiss Researchers

    Directory of Open Access Journals (Sweden)

    Peter NIEMZ

    2013-03-01

    Full Text Available An overview on the mechanical and physicalproperties of cross laminated timber (solid woodpanels in the building industry and its use in timberconstruction is presented. Structure-propertyrelations for solid wood based materials arediscussed. Important properties, such as strength,sorption, diffusion, thermal conductivity in relation tothe board structure are presented. By varying thestructure, the properties can be optimized over awide range. The focus of this publication lies onexperimental works performed by Swiss researchersat the ETH Zürich.

  14. Property Estimation of Functionally Graded Materials Between M2 Tool Steel and Cu Fabricated by Powder Metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong-Seol; Shin, Ki-Hoon [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2014-09-15

    The use of functionally graded materials (FGMs) may enhance thermal conductivity without reducing the desired strength in many applications such as injection molds embedding conformal cooling channels and cutting tools with heat sinks (or cooling devices). As a fundamental study for cutting tools having FGM heat sinks between M2 tool steel and Cu, six FGM specimens (M2 and Cu powders were premixed such that the relative compositions of M2 and Cu were 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100 wt%) were fabricated by powder metallurgy in this study. The cross sections of these specimens were observed by optical microscopy, and then the material properties (such as thermal conductivity, specific heat, and coefficient of thermal expansion) related to heat transfer were measured and analyzed.

  15. Modification of the adsorption and catalytic properties of micro-and mesoporous materials by reactions with organometallic complexes

    Institute of Scientific and Technical Information of China (English)

    LEFEBVRE; Frédéric; PUTAJ; Piotr; BASSET; Jean-Marie

    2010-01-01

    This review describes the work of two laboratories in the field of the modification of micro-and mesoporous molecular sieves through reactions with organometallic complexes.The modification of zeolites can occur inside the pore channels or on the external surface,depending on the size of the organometallic complex.When the modification occurs on the external surface,it results in a decrease of the pore entrance,which will lead in turn to a modification of the sorption properties of the zeolite,by decreasing the rate of the adsorption(mainly by a kinetic control).Such a material can be also used in catalysis,because the external acid sites,which are responsible for side-reactions,have been removed upon grafting.When small organometallic complexes are used,they can fill the channels and cages of the zeolite and react with internal hydroxyl groups.Due to the high acidity of zeolites,the reaction occurs very easily(for example at-100℃ on faujasite),in contrast to what is observed on the external surface,therefore leading to high metal loadings.In that case,the modification of the sorption properties will be mainly related to a thermodynamic control.The resulting materials can be useful in catalysis,by combining the activity of the organometallic complex and properties(for example shape-selectivity) of the zeolite.Modification of mesoporous molecular sieves occurs always in the pores and results in altering of the sorption properties of the solid,by changing the interaction type between the sorbent and the sorbate.For example the sorption isotherm of alkanes is changed from type II to type III according to the IUPAC nomenclature.

  16. Radiological risk of building materials using homemade airtight radon chamber

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Norafatin; Majid, Amran Ab.; Yahaya, Redzuwan; Yasir, Muhammad Samudi [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2014-02-12

    Soil based building materials known to contain various amounts of natural radionuclide mainly {sup 238}U and {sup 232}Th series and {sup 40}K. In general most individuals spend 80% of their time indoors and the natural radioactivity in building materials is a main source of indoor radiation exposure. The internal exposure due to building materials in dwellings and workplaces is mainly caused by the activity concentrations of short lived {sup 222}Radon and its progenies which arise from the decay of {sup 226}Ra. In this study, the indoor radon concentration emanating from cement brick, red-clay brick, gravel aggregate and Portland cement samples were measured in a homemade airtight radon chamber using continuous radon monitor 1029 model of Sun Nuclear. Radon monitor were left in the chamber for 96 hours with an hour counting time interval. From the result, the indoor radon concentrations for cement brick, red-clay brick, gravel aggregate and Portland cement samples determined were 396 Bq m{sup −3}, 192 Bq m{sup −3}, 176 Bq m{sup −3} and 28 Bq m{sup −3}, respectively. The result indicates that the radon concentration in the studied building materials have more than 100 Bq m{sup −3} i.e. higher than the WHO action level except for Portland cement sample. The calculated annual effective dose for cement brick, red-clay brick, gravel aggregate and Portland cement samples were determined to be 10 mSv y{sup −1}, 4.85 mSv y{sup −1}, 4.44 mSv y{sup −1} and 0.72 mSv y{sup −1}, respectively. This study showed that all the calculated effective doses generated from indoor radon to dwellers or workers were in the range of limit recommended ICRP action levels i.e. 3 - 10 mSv y{sup −1}. As consequences, the radiological risk for the dwellers in terms of fatal lifetime cancer risk per million for cement brick, red-clay brick, gravel aggregate and Portland cement were calculated to be 550, 267, 244 and 40 persons respectively.

  17. Determination of the viscoelastic properties of elastomeric materials by the dynamic indentation method

    NARCIS (Netherlands)

    Vriend, Nathalie M.; Kren, Alexander P.

    2004-01-01

    In this paper the dynamic indentation test method, which is not often used, is discussed. The goal of the paper is to consider the possibility of applying a dynamic indentation test method to investigate rubber materials. The basic equations for the determination of the viscoelastic characteristics

  18. STUDY OF MAGNETOSTRICTIVE PROPERTIES OF MATERIALS BY MEANS OF METHOD OF ATOMIC FORCE MICROSCOPY

    Directory of Open Access Journals (Sweden)

    D. A. Stepanenko

    2014-01-01

    Full Text Available The article studies and experimentally proves possibility of application of atomic force microscope for measurement of small magnetostrictive deformations of materials. Exemplary results of measurements for the samples made of technically pure nickel exhibiting strong magnetostrictive effect are presented.

  19. Measurement of thermophysical properties coupled with LCA assessment for the optimization of a historical building retrofit

    Science.gov (United States)

    Bortolin, A.; Bison, P.; Cadelano, G.; Ferrarini, G.; Fortuna, S.

    2015-11-01

    Historical buildings are a significant part of the Italian building stock and, in most cases, need deep refurbishment interventions to reach the energy criteria required by the current standards. A workflow that integrates on-site surveys and building modeling is mandatory to obtain effective energy saving measures. This work describes the analysis and modeling of the San Vito alla Rivera church, a XIV century building that was damaged during 2009 L'Aquila earthquake, suffering a partial collapse of the façade and of the roof. The latter was selected for a complete restoration that could improve its thermal performance while maintaining, as much as possible, the original structure. Several elements of the roof were collected in situ in order to measure, in laboratory, its thermophysical properties applying standard techniques and alternative methods based on infrared thermography. The accurate characterization of the materials was the starting point for the estimation of the environmental impact of the retrofit aimed to reach a defined thermal transmittance. A model of the building was created with TRNSYS software to calculate the energy consumption before and after the intervention. A Life Cycle Assessment (LCA) analysis was conducted on different insulation materials to determine the one with the lowest impact.

  20. The effect of using low-polluting building materials on ventilation requirements and energy use in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P.; Frontczak, M. (International Centre for Indoor Environment and Energy, Dept. of Mechanical Engineering, DTU, Kgs. Lyngby (DK)); Knudsen, Henrik N. (Danish Building Research Institute, Aalborg Univ., Hoersholm (DK))

    2007-07-01

    The main objective of the ongoing research project described in this paper was to study the potential for reducing energy used for ventilating buildings by using low-polluting building materials, without compromising the indoor air quality. To quantify this potential, the exposure-response relationships, i.e. the relationships between ventilation rate and perceived indoor air quality, were established for rooms furnished with different categories of polluting materials and the simulations of energy used for ventilation were carried out. The exposure-response relationships were based on a summary of data reported in the literature on exposure-response relationships for materials tested in laboratory settings in small-scale glass chambers, and in full-scale in climate chambers, test rooms or normal offices. New experiments were also considered in which the effect of using low-polluting materials on perceived air quality was examined in test rooms ventilated with different outdoor air supply rates, low-polluting materials being selected in small glass chambers. The results suggest that the exposure-response relationships vary between different building materials and that the perceived air quality can be improved considerably when polluting building materials are substituted with materials that pollute less. The preliminary energy simulations indicate that selecting low-polluting materials will result in considerable energy savings as a result of reducing the ventilation rates required to achieve acceptable indoor air quality. (au)

  1. Multifunctional Polycrystalline Ferroelectric Materials Processing and Properties

    CERN Document Server

    Pardo, Lorena

    2011-01-01

    This book presents selected topics on processing and properties of ferroelectric materials that are currently the focus of attention in scientific and technical research. Ferro-piezoelectric ceramics are key materials in devices for many applications, such as automotive, healthcare and non-destructive testing. As they are polycrystalline, non-centrosymmetric materials, their piezoelectricity is induced by the so-called poling process. This is based on the principle of polarization reversal by the action of an electric field that characterizes the ferroelectric materials. This book was born with the aim of increasing the awareness of the multifunctionality of ferroelectric materials among different communities, such as researchers, electronic engineers, end-users and manufacturers, working on and with ferro-piezoelectric ceramic materials and devices which are based on them. The initiative to write this book comes from a well-established group of researchers at the Laboratories of Ferroelectric Materials, Mate...

  2. Associations between Fungal Species and Water-Damaged Building Materials

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Frisvad, Jens Christian; Søndergaard, Ib;

    2011-01-01

    melleus, Aspergillus niger, Aspergillus ochraceus, Chaetomium spp., Mucor racemosus, Mucor spinosus, and concrete and other floor-related materials. These results can be used to develop new and resistant building materials and relevant allergen extracts and to help focus research on relevant mycotoxins...

  3. Photochromic organic-inorganic composite materials prepared by sol-gel processing: properties and potentials

    Science.gov (United States)

    Hou, Lisong; Mennig, Martin; Schmidt, Helmut K.

    1994-09-01

    The sol-gel method which features a low-temperature wet-chemical process opens vast possibilities to incorporating organic dyes into solid matrices for various optical applications. In this paper we present our experimental results on the sol-gel derived photochromic organic- inorganic composite (Ormocer) materials following an introductory description of the sol-gel process and a brief review on the state of the art of the photochromic solids prepared using this method. Our photochromic spirooxazine-Ormocer gels and coatings possess better photochromic response and color-change speed than the corresponding photochromic polymer coatings and similar photochemical stability to the latter. Further developments are proposed as to tackle the temperature dependence problem and further tap the potentialities of the photochromic dye-Ormocer material for practical applications.

  4. Photochromic organic-inorganic composite materials prepared by sol-gel processing : properties and potentials

    OpenAIRE

    Hou, Lisong; Mennig, Martin; Schmidt, Helmut K.

    1994-01-01

    The sol-gel method which features a low-temperature wet-chemical process opens vast possibilities to incorporating organic dyes into solid matrices for various optical applications. In this paper we present our experimental results on the sol-gel derived photochromic organic-inorganic composite (ORMOCER) materials follwoing an introductory description of the sol-gel process and a brief review on the state of the art of the photochromic solids prepared using this method. Our photochromic spiro...

  5. Investigation of material properties by NMR in low and high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Rata, D.G.

    2006-07-10

    In this work the experiments have been performed at both low and high field. The experiments cover various domains from simple relaxation experiments in low field to diffusion and spin-diffusion in high field. The applications of low-field investigations are: - quality control of chemical products. - water content determination inside of the walls of buildings. - determination of multilayer polymer coatings on a concrete. In high-field NMR several alkane molecules swollen at equilibrium in cross-linked natural rubber samples have been investigated and analyzed based on the assumptions of the Vrentras theory. A small diffusion anisotropy of the order of 10% has been discovered because of a deformation of free volume under compression. The anisotropy increases with the cross-link density and the compression ratio. The results presented in this study show that the solvent size influences the anisotropy of the diffusion process through the size parameter. The spin-diffusion measurements have been performed on Stanyl samples with different aged samples, at controlled temperature conditions. (orig.)

  6. Mechanical Properties of Ti-6Al-4V Octahedral Porous Material Unit Formed by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Jianfeng Sun

    2012-01-01

    Full Text Available The Ti-6Al-4V octahedral porous material unit is designed to calculate its load. In this paper, ANSYS is adopted for the load simulation of the unit. And a simplified model of dimensional theoretical calculation is established, by which the analytical equation of the fracture load is obtained and the calculation of the load of Ti-6Al-4V is completed. Moreover, selective laser melting is adopted in processing the Ti-6Al-4V porous material unit. The experimental value of fracture load of this material is obtained through compression experiment. The results show that the simulation curves approximate the variation tendency of the elastic deformation of the compression curves; the curves of theoretical calculation approximate the general variation tendency; and the experimental value of fracture load is very close to the theoretical value. Therefore, the theoretical prediction accuracy of fracture load is high, which lays the foundation for the mechanical properties of the octahedral porous material.

  7. Photocatalytic construction and building materials: From fundamentals to applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jun; Poon, Chi-sun [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hum Hom (China)

    2009-09-15

    Heterogeneous photocatalysis has been intensively studied in recent decades because it only requires photonic energy to activate the chemical conversion contrasting with conventional catalysis which needs heat for thermo-activation. Over the years, the theories for photochemical activity of photocatalyst including photo-induced redox reaction and super-hydrophilic conversion of TiO{sub 2} itself have been established. The progress in academic research significantly promotes its practical applications, including the field of photocatalytic construction and building materials. TiO{sub 2} modified building materials are most popular because TiO{sub 2} has been traditionally used as a white pigment. The major applications of TiO{sub 2} based photocatalytic building materials include environmental pollution remediation, self-cleaning and self-disinfecting. The advantage of using solar light and rainwater as driving force has opened a new domain for environmentally friendly building materials. In this paper, the basic reaction mechanisms on photocatalyst surface under the irradiation of ultraviolet and their corresponding applications in building and construction materials are reviewed. The problems faced in practical applications and the trends for future development are also discussed. (author)

  8. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Memarzadeh, Kaveh [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Ren, Guogang [University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Allaker, Robert P., E-mail: r.p.allaker@qmul.ac.uk [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-10-01

    Objective: The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Methods: Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. Results: SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. Significance: The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. - Highlights: • Novel CoCrCu alloys were fabricated by using selective laser melting (SLM). • SLM CoCrCu alloys showed satisfied antimicrobial and antibiofilm activities. • SLM CoCrCu alloys have no cytotoxic effect on normal cells. • Other properties of SLM CoCrCu alloys were similar to SLM CoCr alloys. • SLM CoCrCu alloys have the potential to be used as coping metals.

  9. Pathology of Building Materials in Historic Buildings. Relationship Between Laboratory Testing and Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Lerma, C.

    2014-03-01

    Full Text Available Study of historic buildings requires a pathology analysis of the construction materials used in order to define their conservation state. Usually we can find capillary moisture, salt crystalli-zation or density differences by deterioration. Sometimes this issue is carried out by destructive testing which determine materials’ physical and chemical characteristics. However, they are unfavorable regarding the building’s integrity, and they are sometimes difficult to implement. This paper presents a technique using infrared thermography to analyze the existing pathology and has the advantage of being able to diagnose inaccessible areas in buildings. The results obtained by this technique have been compared with those obtained in the laboratory, in order to validate this study and thus to extrapolate the methodology to other buildings and materials.El estudio de edificios históricos requiere un análisis de la patología de los materiales de construcción empleados para poder definir su estado de conservación. Habitualmente nos encontramos con humedades por capilaridad, cristalización de sales o diferencias de densidad por deterioro. En ocasiones esto se lleva a cabo mediante ensayos destructivos que nos determinan las características físicas y químicas de los materiales, pero que resultan desfavorables respecto a la integridad del edificio, y en ocasiones resulta complejo llevarlos a cabo. Este trabajo presenta una técnica para analizar la patología existente mediante el empleo de termografía infrarroja con la ventaja de poder diagnosticar zonas de difícil acceso en los edificios. Para validar este estudio se han comparado los resultados obtenidos mediante esta técnica con los alcanzados en el laboratorio. De esta forma podemos extrapolar la metodología empleada a otros edificios y materiales.

  10. Nucleic acids and smart materials: advanced building blocks for logic systems.

    Science.gov (United States)

    Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2014-09-03

    Logic gates can convert input signals into a defined output signal, which is the fundamental basis of computing. Inspired by molecular switching from one state to another under an external stimulus, molecular logic gates are explored extensively and recognized as an alternative to traditional silicon-based computing. Among various building blocks of molecular logic gates, nucleic acid attracts special attention owing to its specific recognition abilities and structural features. Functional materials with unique physical and chemical properties offer significant advantages and are used in many fields. The integration of nucleic acids and functional materials is expected to bring about several new phenomena. In this Progress Report, recent progress in the construction of logic gates by combining the properties of a range of smart materials with nucleic acids is introduced. According to the structural characteristics and composition, functional materials are categorized into three classes: polymers, noble-metal nanomaterials, and inorganic nanomaterials. Furthermore, the unsolved problems and future challenges in the construction of logic gates are discussed. It is hoped that broader interests in introducing new smart materials into the field are inspired and tangible applications for these constructs are found.

  11. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    Science.gov (United States)

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  12. Emissions of volatile organic compounds from building materials and consumer products

    Science.gov (United States)

    Wallace, Lance A.; Pellizzari, Edo; Leaderer, Brian; Zelon, Harvey; Sheldon, Linda

    EPA's TEAM Study of personal exposure to volatile organic compounds (VOC) in air and drinking water of 650 residents of seven U.S. cities resulted in the identification of a number of possible sources encountered in peoples' normal daily activities and in their homes. A follow-up EPA study of publicaccess buildings implicated other potential sources of exposure. To learn more about these potential sources, 15 building materials and common consumer products were analyzed using a headspace technique to detect organic emissions and to compare relative amounts. About 10-100 organic compounds were detected offgassing from each material. Four mixtures of materials were then chosen for detailed study: paint on sheetrock; carpet and carpet glue; wallpaper and adhesives; cleansers and a spray pesticide. The materials were applied as normally used, allowed to age 1 week (except for the cleansers and pesticides, which were used normally during the monitoring period), and placed in an environmentally controlled chamber. Organic vapors were collected on Tenax-GC over a 4-h period and analyzed by GC-MS techniques. Emission rates and chamber concentrations were calculated for 17 target chemicals chosen for their toxic, carcinogenic or mutagenic properties. Thirteen of the 17 chemicals were emitted by one or more of the materials. Elevated concentrations of chloroform, carbon tetrachloride, 1,1,1-trichloroethane, n-decane, n-undecane, p-dichlorobenzene, 1,2-dichloroethane and styrene were produced by the four mixtures of materials tested. For some chemicals, these amounts were sufficient to account for a significant fraction of the elevated concentrations observed in previous indoor air studies. We conclude that common materials found in nearly every home and place of business may cause elevated exposures to toxic chemicals.

  13. Tailoring surface properties of polymeric blend material by ion beam bombardment

    Science.gov (United States)

    Ali, Z. I.; Abdul-Kader, A. M.; Rizk, R. A. M.; Ali, M.

    2013-10-01

    In this work, LDPE/SBR polymer blend samples were bombarded with 130 keV He and 320 keV Ar ions at different fluencies ranging from 1×1013 to 2×1016 ions cm-2. The changes in surface properties of the ion-bombarded polymers were investigated with ultraviolet-visible (UV-vis) spectroscopy, Photoluminescence (PL) and energy dispersive X-ray (EDX) techniques. The variations in the wettability, surface free energy and spreading coefficient of ion beam bombarded LDPE polymer blend samples have been studied. The UV-vis analysis revealed that the transmission spectra shifted towards lower energy region after bombardment with increasing ion fluence. This shift clearly reflects decrease in optical band gap. A remarkable decrease in the PL intensity with increasing ion beam fluence was observed. The EDX study indicates the oxygen uptake increases with increasing ion fluence. Contact angle measurements showed that wettability, surface free energy and spreading coefficient of LDPE blends samples have increased with increasing ion fluence. This increase in the wettability and surface free energy of the bombarded samples are attributed to formation of oxidized layer on the polymer surface, which apparently occurs after exposure of bombarded samples to the air.

  14. Recycling and reuse of chosen kinds of waste materials in a building industry

    Science.gov (United States)

    Ferek, B.; Harasymiuk, J.; Tyburski, J.

    2016-08-01

    The article describes the current state of knowledge and practice in Poland concerning recycling as a method of reuse of chosen groups of waste materials in building industry. The recycling of building scraps is imposed by environmental, economic and technological premises. The issue of usage of sewage residues is becoming a problem of ever -growing gravity as the presence of the increasing number of pernicious contaminants makes their utilization for agricultural purposes more and more limited. The strategies of using waste materials on Polish building sites were analyzed. The analysis of predispositions to salvage for a group of traditional materials, such as: timber, steel, building debris, insulation materials, plastics, and on the example of new materials, such as: artificial light aggregates made by appropriate mixing of siliceous aggregates, glass refuses and sewage residues in order to obtain a commodity which is apt for economic usage also was made in the article. The issue of recycling of waste materials originating from building operations will be presented in the context of the binding home and EU legal regulations. It was proved that the level of recycling of building wastes in Poland is considerably different from one which is achieved in the solid market economies, both in quantity and in assortment. The method of neutralization of building refuses in connection with special waste materials, which are sewage sludge that is presented in the article may be one of the alternative solutions to the problem of recycling of these wastes not only on the Polish scale.

  15. PRESENT-DAY AND FUTURE APPLICATIONS OF NANOTECHNOLOGIES IN THE PRODUCTION OF BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Shuyskiy Anatoliy Ivanovich

    2012-12-01

    Full Text Available The authors have made an overview of the status of production of cement concrete using nanotechnologies. The authors also provide their analysis of domestic and foreign researches into the application of nanotechnologies in the field of building materials. The authors have picked out positive examples of introduction of nano-scale particles into the concrete mix. The process needs continuous monitoring for the composition and the mixing time to be adjustable. The findings have been solely made by local developers of nano-materials and technologies. The authors propose their method of cement consumption reduction through the introduction of nanoparticles and simultaneous grinding of cement. The authors provide a new procedure of treatment of materials that contemplates enhanced mixing processes accompanied by simultaneous grinding of materials and their exposure to the electromagnetic treatment. The experiments completed by the team of authors have proven the efficiency of a combination of two nanotechnologies within one process, including the treatment of wet cement at the final grinding stage of processing to ensure specific cement properties for a specific surface area of 8,000 cm2/g, and the introduction of nano-scale particles into the process of manufacturing of cement compositions. The use of carbon nanotubes in the process of manufacturing of cement concrete can improve its physical and mechanical properties and reduce the cement consumption rate while maintaining the design strength of concrete.

  16. EFFECT OF POZZOLAN PROPERTIES ON THE PROPERTIES OF BUILDING COMPOSITES

    OpenAIRE

    Pavia, Sara; WALKER, ROSANNE

    2010-01-01

    PUBLISHED University College Cork Pozzolans were used by ancient civilizations to enhance the properties of mortars and concrete and are now regaining popularity as sustainable, environmentally-friendly alternatives to cement. This paper studies the relationships amongst some properties of nine pozzolans and their impact on compressive strength and setting time of the resultant composites. Its objective is to assist in making informed choices in the selection of pozzolans...

  17. Controlling Interface Adhesion and Fracture Properties in Composite Materials by Plasma Polymerisation

    DEFF Research Database (Denmark)

    Goutianos, S.; Drews, J.; Fæster Nielsen, Søren

    2006-01-01

    The effect of plasma polymerization on the interface adhesion between carbon fibres and an epoxy matrix was investigated. This was done by loading with pure bending moments in nominal mode I planar glassy carbon/ epoxy specimens. The glassy carbon was used to simulate the carbon fibres. The exper...

  18. Mechanical properties of wet granular materials

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Z; Geromichalos, D; Herminghaus, S; Kohonen, M M; Mugele, F; Scheel, M; Schulz, M; Schulz, B; Schier, Ch; Seemann, R; Skudelny, A

    2005-03-09

    We elaborate on the impact of liquids upon the mechanical properties of granular materials. We find that most of the experimental and simulation results may be accounted for by a simple model assuming frictionless, spherical grains, with a hysteretic attractive interaction between neighbouring grains due to capillary forces.

  19. The Effect of Mechanical Load on the Thermal Conductivity of Building Materials

    Directory of Open Access Journals (Sweden)

    J. Toman

    2000-01-01

    Full Text Available The effect of mechanical load on the thermal conductivity of building materials in the design of envelope parts of building structures is studied. A typical building material is chosen in the practical investigation of this effect, namely the cement mortar. It is concluded that in the range of hygroscopic moisture content, lower levels of mechanical load, typically up to 90 % of compressive strength (CS, are not dangerous from the point of view of worsening the designed thermal properties, but in the overhygroscopic region, the load as low as 57 % of CS may be dangerous. The higher levels of loading are found to be always significant because they lead to marked increase of thermal conductivity which is always a negative information for a building designer.

  20. Interface Properties in Extruded FRC-Materials

    DEFF Research Database (Denmark)

    Stang, Henrik

    1997-01-01

    In a research and development project recently carried out at Department of Structural Engineering and Materials, Technical University of Denmark a new extrusion process for HPFRCC-materials was demonstrated.It is shown that superior interfacial properties are obtained in a polypropylene fiber...... reinforced cementitious material extruded by the developed process. It is further more shown that the fiber-matrix bond is highly dependent on the relative slip at the interface and a bond-slip relationship is suggested for the extruded material. The observed very high fiber-matrix bond is explained...... by the densification of the interfacial matrix material which has taken place during the consolidation process and which can be observed in the thin-section analysis....

  1. Transient thermal NDT and E of defects in building materials

    Science.gov (United States)

    Avdelidis, N. P.; Stavrakas, D.; Moropoulou, A.

    2006-04-01

    In this work, infrared thermography (IRT) was used for the investigation of structural materials using the active approach. Four types of building materials were examined; three types of porous stone (from Rhodes, Cyprus, Rethymno - Crete) and one type of marble (Dionysus). Specimens containing self-induced defects of known dimensions and depths were studied. The samples were heated externally (thermal excitation) and thermograms were recorded continuously at the transient phase. Mathematical - thermal modelling enabling the modelling of the investigated subsurface defects, using the thermocalc 3-D software, was also implemented. Then, quantification analysis (i.e. temperature - time plots, as well as thermal contrast curves) from the experimental tests, as well as from the use of thermal modelling runs took place, indicating the thermal behaviour of building materials containing such defects. The results of this research show that IRT can be used for the detection and quantification of defects in structural materials.

  2. Towards proteomic analysis of milk proteins in historical building materials

    Science.gov (United States)

    Kuckova, S.; Crhova, M.; Vankova, L.; Hnizda, A.; Hynek, R.; Kodicek, M.

    2009-07-01

    The addition of proteinaceous binders to mortars and plasters has a long tradition. The protein additions were identified in many sacral and secular historical buildings. For this method of peptide mass mapping, three model mortar samples with protein additives were prepared. These samples were analysed fresh (1-2 weeks old) and after 9 months of natural ageing. The optimal duration of tryptic cleavage (2 h) and the lowest amount of material needed for relevant analysis of fresh and weathered samples were found; the sufficient amounts of weathered and fresh mortars were set to 0.05 and 0.005 g. The list of main tryptic peptides coming from milk additives (bovine milk, curd, and whey), their relative intensities and theoretical amino acid sequences assignment is presented. Several sequences have been "de novo" confirmed by mass spectrometry.

  3. Review on phase change materials for building applications

    Directory of Open Access Journals (Sweden)

    Lavinia SOCACIU

    2014-11-01

    Full Text Available In nowadays, the Phase Change Material (PCM is a viable alternative for reducing the energy consumption and for increase the thermal comfort in buildings. The use of PCM in building applications provides the potential to increase the indoor thermal comfort for occupants due to the reduced indoor temperature fluctuations and lower global energy consumption. The possibility to incorporate the PCM into the material of construction for cooling and heating the buildings gained the interest of researchers from all the world because the PCM have a high heat of fusion, meaning it is capable to storing and release large amounts of energy in the form of heat during its melting and solidifying process at a specific temperature.

  4. Selection of material for building pressure vessels and chemical plants

    Energy Technology Data Exchange (ETDEWEB)

    Huppertz, P.H.; Retter, A.

    1979-06-01

    The authors give on extensive survey on the materials used in building pressure vessels and chemical plants for a temperature region of -200 to +1000/sup 0/C. The effect of various influences on the material behaviour is critically examined on the existing control plant, where the differences to foreign control are indicated. NE metals also come into consideration apart from steels, especially with low-temperature application.

  5. VOCs and odors: key factors in selecting `green` building materials?

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, C. [Steven Winter Associates Inc., Norwalk, CT and Washington DC (United States)

    1998-12-01

    The current state of knowledge available for selecting building materials on the basis of emissions of volatile organic compounds (VOCs) and odors is reviewed. The significance of VOCs and odors in building materials is related to their role in influencing indoor air quality. As far as toxicity is concerned, many of the VOCs detected in indoor air are relatively inert when considered singly. They are not however, unimportant because in actual fact they are invariably found in mixtures some of which can be toxic. Although knowledge of VOCs is incomplete, it is important to specify ozone-resistant polymeric building products, i.e. those that are chemically stable and inert to oxidation. In addition to VOCs, attention should also be focused on semi-volatile organic compounds (SVOCs) since they are even more persistent than VOCs and tend to offgas for prolonged periods of time. Similarly, it is reasonable to specify low-odor materials. Inclusion of issues related to complex indoor chemistry, less volatile emissions, in addition to VOCs and odor, should in time result in expanded choices of building materials that promote indoor air quality. 16 refs.,2 tabs.

  6. Synthesis of Li2Ti3O7 Anode Materials by Ultrasonic Spray Pyrolysis and Their Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Takayuki Kodera

    2013-06-01

    Full Text Available Ramsdellite-type lithium titanate (Li2Ti3O7 powders were synthesized by performing ultrasonic spray pyrolysis, and their chemical and physical properties were characterized by performing Scanning Electron Microscope (SEM, powder X-ray Diffraction (XRD, and Inductively Coupled Plasma (ICP analyses. The as-prepared Li2Ti3O7 precursor powders had spherical morphologies with hollow microstructures, but an irregularly shaped morphology was obtained after calcination above 900 °C. The ramsdellite Li2Ti3O7 crystal phase was obtained after the calcination at 1100 °C under an argon/hydrogen atmosphere. The first rechargeable capacity of the Li2Ti3O7 anode material was 168 mAh/g at 0.1 C and 82 mAh/g at 20 C, and the discharge capacity retention ratio was 99% at 1 C after the 500th cycle. The cycle performance of the Li2Ti3O7 anode was also highly stable at 50 °C, demonstrating the superiority of Li2Ti3O7 anode materials reported previously.

  7. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties

    Directory of Open Access Journals (Sweden)

    Almudena Díaz-García

    2017-01-01

    Full Text Available Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values.

  8. Intrinsic Evaporative Cooling by Hygroscopic Earth Materials

    Directory of Open Access Journals (Sweden)

    Alexandra R. Rempel

    2016-08-01

    Full Text Available The phase change of water from liquid to vapor is one of the most energy-intensive physical processes in nature, giving it immense potential for cooling. Diverse evaporative cooling strategies have resulted worldwide, including roof ponds and sprinklers, courtyard fountains, wind catchers with qanats, irrigated green roofs, and fan-assisted evaporative coolers. These methods all require water in bulk liquid form. The evaporation of moisture that has been sorbed from the atmosphere by hygroscopic materials is equally energy-intensive, however, yet has not been examined for its cooling potential. In arid and semi-arid climates, hygroscopic earth buildings occur widely and are known to maintain comfortable indoor temperatures, but evaporation of moisture from their walls and roofs has been regarded as unimportant since water scarcity limits irrigation and rainfall; instead, their cool interiors are attributed to well-established mass effects in delaying the transmission of sensible gains. Here, we investigate the cooling accomplished by daily cycles of moisture sorption and evaporation which, requiring only ambient humidity, we designate as “intrinsic” evaporative cooling. Connecting recent soil science to heat and moisture transport studies in building materials, we use soils, adobe, cob, unfired earth bricks, rammed earth, and limestone to reveal the effects of numerous parameters (temperature and relative humidity, material orientation, thickness, moisture retention properties, vapor diffusion resistance, and liquid transport properties on the magnitude of intrinsic evaporative cooling and the stabilization of indoor relative humidity. We further synthesize these effects into concrete design guidance. Together, these results show that earth buildings in diverse climates have significant potential to cool themselves evaporatively through sorption of moisture from humid night air and evaporation during the following day’s heat. This finding

  9. Preliminary experiments about the measure of the magnetic properties of a material by means of TDR probes

    Science.gov (United States)

    Persico, Raffaele

    2016-04-01

    In this contribution, the possibility of measuring possible magnetic properties of materials by means of a TDR probe is studied. A transmission line model is adopted and data in time and frequency domain are exploited together. Simulation results are shown, at the moment based on a bifilar line model. Magnetic properties of materials can be of interest for several applications. In particular, the presence of magnetic features in the soil or in any substance, might be associated to some contaminant (presumably containing some metallic element as iron, nickel or chromium [1]). This kind of pollution might occur close to some farms, especially regarding the dying of dresses, the production of some medicines, the tanning of leather issues. Moreover, modern agriculture puts in the soil several fertilizing substances, and there is a debate about the quantity of heavy metals spread in the terrain by these activities [2]. Still, some depuration-mud can be affected by an excessive presence of metallic elements, because of the presence of batteries, skins, varnishes, cosmetics, and so on [2]. Moreover, it is thought that the soil on the planet Mars might show magnetic properties [3]. Finally, in GPR prospecting, possible magnetic characteristics of the soil or of the targets might be of interest too [4], but they cannot be retrieved by means of only GPR data [5]. In the present paper, the results of a preliminary study are exposed with regard to the possibility to measure the magnetic properties of a material by mean of a TDR probe [6-7]. In particular a TDR probe is essentially a transmission line (a bifilar model will be exploited in this work) open at the end, form which most of the impinging energy (ideally the whole of thi energy in a lossless medium) is back reflected. In particular, this allows a customary measure of the propagation velocity in the medium if an impulsive signal is generated. In fact, the return time along a path of known length is measured. The

  10. Monte Carlo simulation of indoor external exposure due to gamma-emitting radionuclides in building materials

    Science.gov (United States)

    Deng, Jun; Cao, Lei; Su, Xu

    2014-10-01

    The use of building materials containing naturally occurring radionuclides, such as 40K, 238U, 232Th and their progeny, could lead to external exposures to the residents of such buildings. In this paper, a set of models are constructed to calculate the specific effective dose rates (the effective dose rate per Bq/kg of 40K, the 238U series, and the 232Th series) imposed on residents by building materials with the MCNPX code. The effect of chemical composition, position concerned in the room and thickness as well as density of material is analyzed. In order to facilitate more precise assessment of indoor external dose due to gamma-emitting radionuclides in building materials, three regressive expressions are proposed and validated by measured data to calculate specific effective rates for 40K. the 238U series and the 232Th series, respectively.

  11. Monte Carlo Simulation of Indoor External Exposure due to Gamma-emitting Radionuclides in Building Materials

    CERN Document Server

    Deng, Jun; Su, Xu

    2014-01-01

    The use of building materials containing naturally occurring radionuclides,such as K-40, U-238 and Th-232 and their progeny, could lead to external exposures of the residents of such buildings. In this paper, a set of models are set up to calculate the specific effective dose rates(the effective dose rate per Bq/kg of K-40, U-238 series, and Th-232 series) imposed to residents by building materials with MCNPX code. Effect of chemical composition, position concerned in the room and thickness as well as density of material is analyzed. In order to facilitate more precise assessment of indoor external dose due to gamma emitting radionuclides in building materials, three regressive expressions are proposed and validated by measured data to calculate specific effective rate for K-40, U-238 series and Th-232 series, respectively.

  12. Radioactivity of building materials and the gamma radiation in dwellings in Belo Horizonte, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Ludmila Souza [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil)]. E-mail: ludmiga@yahoo.com.br; Rocha, Zildete [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Quimica e Radioquimica]. E-mail: rochaz@cdtn.br

    2007-07-01

    Building materials are known to contain naturally occurring radioactive materials (NORM). The radionuclides which contribute to the external exposure are 40 K and the gamma emitters members of the natural decay series {sup 238}U, {sup 235}U and {sup 232}Th. Samples of the statistically more important buildings materials utilized in the Metropolitan area of Belo Horizonte were collected and their uranium and thorium concentration were determined by INAA. The gamma emitters were spectrometrically determined by solid state detectors HPGe in a very low background laboratory. A model room was used for calculating the indoor mean exposure in dwellings. Due to the lack of regulation for radioactivity in buildings in Brazil, the measured activity concentration was compared with those of other countries. A discussion about the utilization of building material containing TENORM industrial residues is presented. (author)

  13. Obesity-related changes in bone structural and material properties in hyperphagic OLETF rats and protection by voluntary wheel running

    Science.gov (United States)

    We conducted a study to examine how the development of obesity and the associated insulin resistance affect bone structural and material properties, and bone formation and resorption markers in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat model. This was a 36-week study of sedentary, hyperphag...

  14. Estimation of plate material properties by means of a complex wavenumber fit using Hankel's functions and the image source method

    Science.gov (United States)

    Roozen, N. B.; Leclère, Q.; Ege, K.; Gerges, Y.

    2017-03-01

    This paper presents a new wave fitting approach to estimate the frequency dependent material properties of thin isotropic plate structures from an experimentally obtained vibrational field, exciting the plate at a single point. The method projects the measurement data on to an analytical image source model, in which Hankel's functions are used for a description of the wave fields emanating from the point of excitation, including the reflected wave fields from the edges of the finite plate. By minimizing the error between the projected field and the measured field, varying the complex wave number and the source strengths of the image sources, an optimum fit is searched for. Thus the source strengths of the image sources do not need to be determined theoretically, but are estimated from the fit on to the experimental data instead (thus avoiding difficulties in theoretically assessing the reflection coefficient of the edges of the plate). The approach uses a complex wavenumber fit, enabling the determination of the dynamic stiffness of the plate structure and its damping properties as function of frequency. The method is especially suited for plates with a sufficient amount of damping, excited at high frequencies.

  15. The release of lindane from contaminated building materials.

    Science.gov (United States)

    Volchek, Konstantin; Thouin, Geneviève; Kuang, Wenxing; Li, Ken; Tezel, F Handan; Brown, Carl E

    2014-10-01

    The release of the organochlorine pesticide lindane (γ-hexachlorocyclohexane) from several types of contaminated building materials was studied to assess inhalation hazard and decontamination requirements in response to accidental and/or intentional spills. The materials included glass, polypropylene carpet, latex-painted drywall, ceramic tiles, vinyl floor tiles, and gypsum ceiling tiles. For each surface concentration, an equilibrium concentration was determined in the vapour phase of the surrounding air. Vapor concentrations depended upon initial surface concentration, temperature, and type of building material. A time-weighted average (TWA) concentration in the air was used to quantify the health risk associated with the inhalation of lindane vapors. Transformation products of lindane, namely α-hexachlorocyclohexane and pentachlorocyclohexene, were detected in the vapour phase at both temperatures and for all of the test materials. Their formation was greater on glass and ceramic tiles, compared to other building materials. An empiric Sips isotherm model was employed to approximate experimental results and to estimate the release of lindane and its transformation products. This helped determine the extent of decontamination required to reduce the surface concentrations of lindane to the levels corresponding to vapor concentrations below TWA.

  16. Building Mathematical Understanding through Collective Property Noticing

    Science.gov (United States)

    Towers, Jo; Martin, Lyndon C.

    2014-01-01

    In this article we explore the mechanisms through which one group of preservice teachers engage in "Collective Property Noticing"--a phenomenon in which group members integrate individual contributions such that the group, as a unit, notices mathematical properties of their collective image. Drawing on improvisational theory to help to…

  17. Heating Process of Thermosetting Insulation Materials for Buildings

    Institute of Scientific and Technical Information of China (English)

    SUN Shibing; MA Baoguo; CHEN Meng; WANG Zhaojun

    2012-01-01

    Polyurethane (PU) and phenolic (PF) foams used for building isolation were analyzed by thermal gravity/differential thermal analysis to determine their pyrolysis behavior,including the decomposition point and the maximum reaction rate point.Besides,the shape deformations of PU and PF foams were observed,and their oxygen index and the calorific value in combustion were also studied.The results showed that the pyrolysis of both PU and PF can be divided into three stages from room temperature to 1 000 ℃ in the atmospheric air,with total mass loss of 94.345% for PF and 88.191% for PU,respectively.The oxygen index of PU and PF decreased with increasing the temperature and the duration of the heat treatment.With the temperature increasing,the calorific values of both materials were reduced remarkably.These results of the PU and PF could provide basic data of the thermal stability and fire safety design in the application of thermosetting insulation materials.

  18. Exploring nanoscale electrical and electronic properties of organic and polymeric functional materials by atomic force microscopy based approaches.

    Science.gov (United States)

    Palermo, Vincenzo; Liscio, Andrea; Palma, Matteo; Surin, Mathieu; Lazzaroni, Roberto; Samorì, Paolo

    2007-08-28

    Beyond imaging, atomic force microscopy (AFM) based methodologies enable the quantitative investigation of a variety of physico-chemical properties of (multicomponent) materials with a spatial resolution of a few nanometers. This Feature Article is focused on two AFM modes, i.e. conducting and Kelvin probe force microscopies, which allow the study of electrical and electronic properties of organic thin films, respectively. These nanotools provide a wealth of information on (dynamic) characteristics of tailor-made functional architectures, opening pathways towards their technological application in electronics, catalysis and medicine.

  19. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    2005-01-01

    Provides detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. This textbook emphasizes understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors and features an extensive collection of tables of material parameters, figures, and problems.

  20. Mould growth on building materials under low water activities

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Holm, G.; Uttrup, L.P.;

    2004-01-01

    The influence of relative humidity (RH) and temperature on growth and metabolism of eight microfungi on 21 different types of building material was investigated. The fungi were applied as a dry mixture to the materials, which were incubated at 5degreesC, 10degreesC, 20degreesC and 25degrees......C at three humidity levels in the range 69-95% RH over 4-7 months. The lower limit for fungal growth on wood, wood composites and starch-containing materials was 78% RH at 20-25degreesC and increased to 90% RH at 5degreesC. An RH of 86% was necessary for growth on gypsum board. Ceramic materials supported...... growth at RH > 90%, although 95% RH was needed to yield chemically detectable quantities of biomass. Almost exclusively only Penicillium, Aspergillus and Eurotium (contaminant) species grew on the materials. Production of secondary metabolites and mycotoxins decreased with humidity and the quantities...

  1. The effect of atmospheric pollution on building materials

    Science.gov (United States)

    Grossi, C. M.; Brimblecombe, P.

    2002-11-01

    This chapter surveys main effects of atmospheric pollution on building materials. It summarises these effects on stone, bricks, mortar, concrete, glass, metals (iron, zinc, copper, bronze, aluminium, lead and silver), polymers, paints and timber. Special attention is paid to stone because of its extensive use as building material in the cultural heritage. In general, main damaging agent is sulfur dioxide which leads to sulfation of many materials, particularly carbonate-bearing stones. However, the decline of sulfur dioxide in cities means that the recognition of the prime role of this pollutant presents something of a dilemma. It is increasingly necessary to consider other substances that can contribute to material decay e.g. nitrogen oxides, chlorides and ozone, either acting as synergistic to the sulfation reaction or as main decay agents, such as the case of aluminium and polymers. Particulate matter often from diesel vehicles can also accelerate the oxidation of SO2 on the surface (traditionally sulfur dioxide with Fe-rich particles) and blacken the materials surface in the case of soot. These processes contribute to the formation of black-crusts when embedded in the gypsum layer resulting from the material sulfation, but again the rate in the modem atmosphere is a matter of much research.

  2. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T. D.; Easterling, S. D.

    2010-10-01

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  3. An in vitro comparative evaluation of physical properties of four different types of core materials

    OpenAIRE

    2014-01-01

    Introduction: Compressive and tensile stresses of core materials are important properties because cores usually replace a large bulk of tooth structure and must resist multidirectional masticatory forces for many years. Material and Methods: The present study was undertaken to find out the best core build up material with respect to their physical properties among resin-based composites. Individual compressive, tensile, and flexural strength of fiber-reinforced dual cure resin core build...

  4. Measurement of Mechanical Properties of Cantilever Shaped Materials

    Directory of Open Access Journals (Sweden)

    Thomas Thundat

    2008-05-01

    variations. When appropriate, we use continuum mechanics, which is justified according to the ratio between the cantilever thickness and the grain size of the materials. We will also address other potential applications such as the ageing process of nuclear materials, building materials, and optical fibers, which can be investigated by monitoring their mechanical changes with time. In summary, by virtue of the dynamic response of a miniaturized cantilever shaped material, we present useful measurements of the associated elastic properties.

  5. Material properties and modeling characteristics for MnFeP1-xAsx materials for application in magnetic refrigeration

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Nielsen, Kaspar Kirstein; Bahl, Christian R.H.;

    2013-01-01

    impact of hysteresis is a key element to guide successful material development and synthesis. The properties of a magnetocaloric MnFeP1-xAsx compound are characterized as a function of temperature and applied magnetic field, and the results are used to assess the effects of hysteresis on magnetocaloric...... properties. Different methods of building property functions from the measured specific heat, magnetization, and adiabatic temperature change are presented. It is shown that model predictions can be highly dependent on how the properties that are used by the AMR model are calculated. © 2013 AIP Publishing......Compounds of MnFeP1-xAsx have received attention recently for their use in active magnetic regenerators (AMR) because of their relatively high isothermal entropy change and adiabatic temperature change with magnetization. However, the materials also generally exhibit a significant magnetic...

  6. Drying and wetting of building materials and components

    CERN Document Server

    2014-01-01

    This book, Drying and Wetting of Building Materials and Components, provides a collection of recent contributions in the field of drying and wetting in porous building materials. The main benefit of the book is that it discusses some of the most important topics related to the drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.

  7. Using Selected Transient Methods for Measurements of Thermophysical Parameters of Building Materials

    Directory of Open Access Journals (Sweden)

    Cviklovič Vladimír

    2014-03-01

    Full Text Available This article deals with thermophysical properties of red and white bricks. If we want to protect the high standard of quality building materials, we need to know the physical parameters which can evaluate the quality. The most important for building materials are mainly thermophysical, mechanical parameters and parameters which can determine the structure of materials. The article presents results of thermophysical parameters measurements of red and white bricks during the temperature stabilization for different values of moisture content. For our measurements, we have chosen a hot wire method and a dynamic plane source method. Both methods are classified as transient methods and they are very convenient for measurements of thermophysical parameters of materials with a compact structure. The results of measurements show that temperature and moisture content have a significant effect on thermophysical parameters of bricks.

  8. The New Cispadana Motorway. Impact on Industrial Buildings Property Values

    Directory of Open Access Journals (Sweden)

    Simona Tondelli

    2012-11-01

    Full Text Available Infrastructures, through externalities, modify the territorial status quo: by creating advantages and disadvantages, they lead to inequalities and territorial cohesion problems, calling for a setup of territorial equalization mechanisms. In this paper, the estimation of the costs and benefits generated from the building of the new Cispadana regional motorway (Emilia-Romagna Region, Italy is described. The study focuses on the price variations of the industrial buildings property values in the real estate market after the new motorway will be built, aiming at developing a forecasting method, which could be repeatable and applicable to other kinds of externalities. Thanks to the hedonic pricing method, which is recurring in transport literature, using a multiple linear regression model based on ordinary least squares method (OLS, the contribution of the accessibility on the industrial buildings' pricing has been isolated; it was then possible to forecast the rise in the industrial buildings prices that will be due to the accessibility variation produced by the new infrastructure. The purpose of such a procedure is the setup of equalization mechanisms, which can re-balance the territorial effects though he so-called “land value capture” tools. Thanks to a relatively quick phase of development and implementation, the  described application could be used as a tool for the ex-ante evaluation of different infrastructure projects and as an ex-post analysis tool for the monitoring of an existing infrastructure. Finally, thanks to the chance to understand the contribution of each territorial feature to the final price of the good, this application could be very useful in participatory planning processes because it could provide a common knowledge base which could be used to support the public administration’s capability of negotiation with the private partner, both in the  participatory planning processes and in the public-private partnership

  9. Microstructures and mechanical properties of bulk nanocrystalline Fe{sub 3}Al materials with 5, 10 and 15 wt.% Cr prepared by aluminothermic reaction

    Energy Technology Data Exchange (ETDEWEB)

    La Peiqing, E-mail: pqla@lut.cn [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China); Wang Hongding; Bai Yaping; Yang Yang; Wei Yupeng; Lu Xuefeng; Zhao Yang; Cheng Chunjie [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China)

    2011-08-15

    Highlights: {yields} We prepare bulk nanocrystalline material by aluminothermic reaction. {yields} Microstructures keep bcc disordered structure of Fe{sub 3}Al. {yields} Materials have good plastic deformation and texture changes after compression. - Abstract: Bulk nanocrystalline Fe{sub 3}Al based materials with 5, 10 and 15 wt.% Cr were prepared by aluminothermic reaction, in which melts were superheated about 1500 K before solidification. Microstructures of the materials were investigated by optical microscope, electron probe microscope, X-ray diffraction and transmission electron microscope. It was shown that microstructure of the materials consist of nanocrystalline matrix phase, which was composed of Fe, Al and Cr elements, and a small amount of contamination. The nanocrystalline phase was disordered bcc structure, and which did not change with Cr content. Average grain sizes of the nanocrystalline phase of the materials with 5, 10 and 15 wt.% Cr were 33, 21 and 37 nm, respectively. Compressive properties and hardness of the materials were tested. It indicated that the materials had a considerable plastic deformation and were not fractured in compression. Yield strength of the materials were about three times higher but hardness were a little lower than those of Fe{sub 3}Al material with coarsen grain. The hardness and yield strength of the materials varied slightly with Cr content and that of the material with 10 wt.% Cr was slightly lower. Average grain sizes of the materials decreased and texture changes appeared after the compression.

  10. Acoustic Properties of a Renovated Building

    Directory of Open Access Journals (Sweden)

    Tomas Januševičius

    2011-02-01

    Full Text Available The article explores the effects of partitions, ceilings and facades on noise insulation in the renovated different buildings. The conducted experiments were aimed at analyzing partitions of 120 mm brick mounted gypsum panels while other walls were 520 mm thick and plastered on both sides. Under natural conditions, sound insulation factors of facades were measured and compared according to comfort classes. The obtained results revealed that thick brick walls of 520 mm insulated the sound of 58 decibels (dB (class B. In contrast, 120 mm brick masonry partition reduced sound only to 48 dB which is class E and agrees with the lowest class of sound insulation. We also calculated the sound insulation factor applying three formulas considering the mass law of sound insulation and comparing it with other previous studies. The paper examines and discusses the findings of the performed calculations and measurements.Article in Lithuanian

  11. Bioinspired Design of Building Materials for Blast and Ballistic Protection

    Directory of Open Access Journals (Sweden)

    Yu-Yan Sun

    2016-01-01

    Full Text Available Nacre in abalone shell exhibits high toughness despite the brittle nature of its major constituent (i.e., aragonite. Its specific structure is a major contributor to the energy absorption capacity of nacre. This paper reviews the mechanisms behind the performance of nacre under shear, uniaxial tension, compression, and bending conditions. The remarkable combination of stiffness and toughness on nacre can motivate the development of bioinspired building materials for impact resistance applications, and the possible toughness designs of cement-based and clay-based composite materials with a layered and staggered structure were discussed.

  12. Structure and mechanical properties of a multilayer carbide-hardened niobium composite material fabricated by diffusion welding

    Science.gov (United States)

    Korzhov, V. P.; Ershov, A. E.; Stroganova, T. S.; Prokhorov, D. V.

    2016-04-01

    The structure, the bending strength, and the fracture mechanism of an artificial niobium-based composite material, which is fabricated by high-pressure diffusion welding of multilayer stacks assembled from niobium foils with a two-sided carbon coating, are studied. The microstructure of the composite material is found to consist of alternating relatively plastic layers of the solid solution of carbon in niobium and hardening niobium carbide layers. The room-temperature proportional limit of the developed composite material is threefold that of the composite material fabricated from coating-free niobium foils using the proposed technology. The proportional limit of the developed composite material and the stress corresponding to the maximum load at 1100°C are 500 and 560 MPa, respectively. The developed material is considered as an alternative to Ni-Al superalloys.

  13. On Structure and Properties of Amorphous Materials

    Directory of Open Access Journals (Sweden)

    Zbigniew H. Stachurski

    2011-09-01

    Full Text Available Mechanical, optical, magnetic and electronic properties of amorphous materials hold great promise towards current and emergent technologies. We distinguish at least four categories of amorphous (glassy materials: (i metallic; (ii thin films; (iii organic and inorganic thermoplastics; and (iv amorphous permanent networks. Some fundamental questions about the atomic arrangements remain unresolved. This paper focuses on the models of atomic arrangements in amorphous materials. The earliest ideas of Bernal on the structure of liquids were followed by experiments and computer models for the packing of spheres. Modern approach is to carry out computer simulations with prediction that can be tested by experiments. A geometrical concept of an ideal amorphous solid is presented as a novel contribution to the understanding of atomic arrangements in amorphous solids.

  14. Thermal analysis of a building brick containing phase change material

    Energy Technology Data Exchange (ETDEWEB)

    Alawadhi, E.M. [Kuwait Univ., Safat (Kuwait). Dept. of Mechanical Engineering

    2008-07-01

    This paper presents the thermal analysis of a building brick containing phase change material (PCM) to be used in hot climates. The objective of using the PCM is to utilize its high latent heat of fusion to reduce the heat gain by absorbing the heat in the bricks through the melting process before it reaches the indoor space. The considered model consists of bricks with cylindrical holes filled with PCM. The problem is solved in a two-dimensional space using the finite element method. The thermal effectiveness of the proposed brick-PCM system is evaluated by comparing the heat flux at the indoor surface to a wall without the PCM during typical working hours. A paramedic study is conducted to assess the effect of different design parameters, such as the PCM's quantity, type, and location in the brick. The results indicate that the heat gain is significantly reduced when the PCM is incorporated into the brick, and increasing the quantity of the PCM has a positive effect. PCM cylinders located at the centerline of the bricks shows the best performance. (author)

  15. Study on basic material properties of artificial snow

    OpenAIRE

    Lintzen, Nina; Edeskär, Tommy

    2012-01-01

    For buildings and constructions made by snow, like for example the ICEHOTEL in Jukkasjärvi, generally artificial snow is used. Both for safety reasons and for design purposes it is hence of importance to understand the material behaviour of artificial snow. Many buildings and structures made by snow and ice are constructed using knowledge obtained by experience.When subjected to a load snow undergoes an immediate elastic deformation and a time-dependent irreversible deformation, known as snow...

  16. Use of Advanced Plastic Materials in Nigeria: Performance Assessment of Expanded Polystyrene Building Technology System

    Directory of Open Access Journals (Sweden)

    Anthony Nkem Ede (PhD

    2016-08-01

    Full Text Available The provision of affordable residential houses for the masses in the developing nations has been a mirage over the years and the future does not portend good as the cost of adopting conventional concrete material technologies is escalating while so many environmental issues like climate change are being raised in the recent times.To circumvent this poor housing provision trend, some innovative construction materials and technologies are being introduced to facilitate unique modular designs, reduction of labour, decline in the depletion of exhaustible materials,savings of time and fund. One of such materials is the expanded polystyrene. The introduction of advanced plastic materials and in particular the expanded polystyrene building technologies in the Nigerian constructionindustry will be a very useful and brilliant initiative that will aid the reduction of cost of construction and facilitate access to affordable houses for the masses.This researchaims at studying the applications of this innovative plastic material in the Nigerian building industry with special regard to the performance perception by the clients and the end users. A building estate where expanded polystyrene building technology has been predominantly used in Abuja is considered as a case study. Questionnaires were distributed among clients and residents of the building estate and statistical tools were used to analyse the data collected. Great satisfaction verified among the clients and residents and the high ranking performance confirmed for recyclability, reliability, versatility and moisture resistance of EPS building products all herald a great future for the applications of this advanced building products in the Nigerian building industry.

  17. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials.

    Science.gov (United States)

    Dhami, Navdeep Kaur; Reddy, M Sudhakara; Mukherjee, Abhijit

    2013-12-01

    Microbially induced calcium carbonate precipitation is a biomineralization process that has various applications in remediation and restoration of range of building materials. In the present study, calcifying bacteria, Bacillus megaterium SS3 isolated from calcareous soil was applied as biosealant to enhance the durability of low energy, green building materials (soil-cement blocks). This bacterial isolate produced high amounts of urease, carbonic anhydrase, extra polymeric substances and biofilm. The calcium carbonate polymorphs produced by B. megaterium SS3 were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X-ray diffraction and Fourier transmission infra red spectroscopy. These results suggested that calcite is the most predominant carbonate formed by this bacteria followed by vaterite. Application of B. megaterium SS3 as biogenic surface treatment led to 40 % decrease in water absorption, 31 % decrease in porosity and 18 % increase in compressive strength of low energy building materials. From the present investigation, it is clear that surface treatment of building materials by B. megaterium SS3 is very effective and eco friendly way of biodeposition of coherent carbonates that enhances the durability of building materials.

  18. Radon exhalation from building materials for decorative use.

    Science.gov (United States)

    Chen, Jing; Rahman, Naureen M; Abu Atiya, Ibrahim

    2010-04-01

    Long-term exposure to radon increases the risk of developing lung cancer. There is considerable public concern about radon exhalation from building materials and the contribution to indoor radon levels. To address this concern, radon exhalation rates were determined for 53 different samples of drywall, tile and granite available on the Canadian market for interior home decoration. The radon exhalation rates ranged from non-detectable to 312 Bq m(-2) d(-1). Slate tiles and granite slabs had relatively higher radon exhalation rates than other decorative materials, such as ceramic or porcelain tiles. The average radon exhalation rates were 30 Bq m(-2) d(-1) for slate tiles and 42 Bq m(-2) d(-1) for granite slabs of various types and origins. Analysis showed that even if an entire floor was covered with a material having a radon exhalation rate of 300 Bq m(-2) d(-1), it would contribute only 18 Bq m(-3) to a tightly sealed house with an air exchange rate of 0.3 per hour. Generally speaking, building materials used in home decoration make no significant contribution to indoor radon for a house with adequate air exchange.

  19. Luminescence dosimetry using building materials and personal objects.

    Science.gov (United States)

    Göksu, H Y; Bailiff, I K

    2006-01-01

    There is a growing public awareness of the risk of accidental radiation exposure due to ageing nuclear power installations, illegal dumping of nuclear waste and terrorist activities, and of the consequential health risks to populations in addition to social and economic disturbance extending beyond national boundaries. In the event of catastrophic incidents where no direct radiation monitoring data are available, the application of retrospective dosimetry techniques such as luminescence may be employed with materials from the immediate environment to confirm values of cumulative gamma dose to compare with or augment computational modeling calculations. Application of the method to post-Chernobyl studies has resulted in the development of new procedures using fired building materials with the capability to measure cumulative doses owing to artificial sources of gamma radiation as low as 20 mGy. Combined with Monte Carlo simulations of photon transport, values of cumulative dose in brick can be presented in a form suitable for use in dose-reconstruction efforts. Recent investigations have also shown that certain types of cementitious building material, including concrete, mortar and plaster, and personal objects in the form of telephone cards containing microchips and dental ceramics have the potential to be used for retrospective dosimetry. Examples of the most recent research concerning new materials and examples of application to sites in the Former Soviet Union are discussed.

  20. Electrochemical properties of Si/(FeSiB) anode materials prepared by high-energy mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ho Tak; Loka, Chadrasekhar [Department of Advanced Materials Engineering, Kongju National University, Cheonan City 330-717 (Korea, Republic of); Lee, Kee-Sun, E-mail: kslee@kongju.ac.kr [Department of Advanced Materials Engineering, Kongju National University, Cheonan City 330-717 (Korea, Republic of); Cho, Jong Soo; Lee, Sang Han [Research Institute, MK electronics, Yongin City 449-821 (Korea, Republic of)

    2013-12-01

    Highlights: • Si-embedded in less-active FeSiB nano-composite structures synthesized. • Capacity of Si anode is 540 mAh g{sup −1} and 533 mAh g{sup −1} after the 3rd and 50th cycle. • The nano-composite exhibited 99% efficiency until the 50th cycle. • Cracks or voids in coin cells are rarely observed during cycling. • Elastic recoverable energy range of FeSiB is 2.96 times higher than Si. -- Abstract: Nano-structured composite with overall atomic composition Si{sub 60}/(FeSiB){sub 40} has been synthesized by high-energy mechanical milling (HEMM) for Lithium-ion rechargeable batteries as anode material. Crystal structure, microstructure, electrochemical properties, elastic modulus and Vickers hardness (H{sub V}) have been observed by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM), electrochemical test and nano-indentation test. With increasing milling time from 6 to 10 h, we observed a relatively homogeneous structure comprised of nano-crystalline active silicon (Si) embedded in less active FeSiB matrix phase. Electrochemical properties of 10 h milled nano-composite powder offers low capacity fade, high coulombic efficiency from 3rd cycle (540 mAh g{sup −1}) to until 102nd cycle (495 mAh g{sup −1}). The coulombic efficiencies of both 6 and 10 h milled powders are 98% and 99%, respectively. Coin cell cross sections of 6 and 10 h milled powders showed evidence for the void formation during lithiation and delithiation. Nano-indentation results exhibited that the amorphous FeSiB flakes have 2.96 times higher recoverable energy than Si. Resultant composite powders showed high irreversible capacity and stable lithiation and delithiation due to the reduced particle size, increased surface area and the highly elastic FeSiB matrix phase. Research reveals that the obtained nano-composite can be a promising candidate for lithium-ion rechargeable batteries.

  1. RELATION BETWEEN PARTICLES SIZE OF RAW MATERIALS AND PROPERTIES OF MULLITE–ZrO2 COMPOSITES PREPARED BY REACTION-SINTERING

    Directory of Open Access Journals (Sweden)

    M. RAHMANI

    2012-09-01

    Full Text Available In this investigation, the mullite–zirconia composites were prepared by reaction-sintering of alumina and zircon powder. Besides, the slip casting method was employed for fabrication of these composites and different times of milling process were used for reducing the particles size of raw materials. Then, the effect of raw materials particles size on the properties of these composites was investigated. The physical properties, fracture toughness, flexural strength, phase composition and microstructure of these composites after firing at 1600°C were studied. The results showed that the milling time and then, particles size of raw materials have a great effect on the phase composition and properties of mullite–zirconia composites. The formation of tetragonal-zirconia is favored by reducing of particle size which, leads to increasing of the fracture toughness and flexural strength of these composites.

  2. Spin-crossover materials properties and applications

    CERN Document Server

    Halcrow, Malcolm A

    2013-01-01

    The phenomenon of spin-crossover has a large impact on the physical properties of a solid material, including its colour, magnetic moment, and electrical resistance. Some materials also show a structural phase change during the transition. Several practical applications of spin-crossover materials have been demonstrated including display and memory devices, electrical and electroluminescent devices, and MRI contrast agents. Switchable liquid crystals, nanoparticles, and thin films of spin-crossover materials have also been achieved. Spin-Crossover Materials: Properties and Applicat

  3. Simple hydrazone building blocks for complicated functional materials.

    Science.gov (United States)

    Tatum, Luke A; Su, Xin; Aprahamian, Ivan

    2014-07-15

    CONSPECTUS: The ability to selectively and effectively control various molecular processes via specific stimuli is a hallmark of the complexity of biological systems. The development of synthetic structures that can mimic such processes, even on the fundamental level, is one of the main goals of supramolecular chemistry. Having this in mind, there has been a foray of research in the past two decades aimed at developing molecular architectures, whose properties can be modulated using external inputs. In most cases, reversible conformational, configurational, or translational motions, as well as bond formation or cleavage reactions have been used in such modulations, which are usually initiated using inputs including, irradiation, metalation, or changes in pH. This research activity has led to the development of a diverse array of impressive adaptive systems that have been used in showcasing the potential of molecular switches and machines. That being said, there are still numerous obstacles to be tackled in the field, ranging from difficulties in getting molecular switches to communicate and work together to complications in integrating and interfacing them with surfaces and bulk materials. Addressing these challenges will necessitate the development of creative new approaches in the field, the improvement of the currently available materials, and the discovery of new molecular switches. This Account will describe how our quest to design new molecular switches has led us to the development of structurally simple systems that can be used for complicated functions. Our focus on the modular and tunable hydrazone functional group was instigated by the desire to simplify the structure and design of molecular switches in order to circumvent multistep synthesis. We hypothesized that by avoiding this synthetic bottleneck, which is one of the factors that hinder fast progress in the field, we can expedite the development and deployment of our adaptive materials. It should be

  4. Emissivity measurements on historic building materials using dual-wavelength infrared thermography

    Science.gov (United States)

    Moropoulou, Antonia; Avdelidis, Nicolas P.

    2001-03-01

    The most reliable method to obtain correct emissivity values for the infrared thermographic systems and applications is to determine the emissivity of the targets to be tested. Although this approach is not possible during in situ applications, samples of the targets can be collected and measured, as in this work, in the laboratory. In the present work, the emissivity values of selected historic building materials were measured at a variety of temperatures, in the 3-5.4 micrometers and 8-12 micrometers regions of the infrared spectrum. Porous stones from the Mediterranean area and marbles, used as historic building materials, were investigated. The examined materials presented different emissivity values, caused by their surface state and microstructure. In addition, the effect of temperature and wavelength on the emissivity values of such historic building materials was also considered.

  5. Nanocellulose as Material Building Block for Energy and Flexible Electronics

    Science.gov (United States)

    Hu, Liangbing

    2014-03-01

    In this talk, I will discuss the fabrications, properties and device applications of functional nanostructured paper based on nanocellulose. Nanostructures with tunable optical, electrical, ionic and mechanical properties will be discussed. Lab-scale demonstration devices, including low-cost Na-ion batteries, microbial fuel cells, solar cells, transparent transistors, actuators and touch screens will be briefly mentioned. These studies show that nanocellulose is a promising green material for electronics and energy devices.

  6. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    2010-01-01

    This fourth edition of the well-established Fundamentals of Semiconductors serves to fill the gap between a general solid-state physics textbook and research articles by providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. The approach is physical and intuitive rather than formal and pedantic. Theories are presented to explain experimental results. This textbook has been written with both students and researchers in mind. Its emphasis is on understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors. The explanations are based on physical insights. Each chapter is enriched by an extensive collection of tables of material parameters, figures, and problems. Many of these problems "lead the student by the hand" to arrive at the results. The major changes made in the fourth edition include: an extensive appendix about the important and by now well-established deep center known as the DX center, additional problems...

  7. Properties of Three Pseudo-Spins in Ferroelectric or Ferro-Antiferroelectric Materials Described by a Transverse Ising Model

    Institute of Scientific and Technical Information of China (English)

    JIANG Wei; Veng-Cheong Lo

    2005-01-01

    Ferroelectric phase diagrams and the temperature dependence of polarization, dielectric properties of the three pseudo-spin in ferroelectric or ferro-antiferroelectric system described by a transverse Ising models are investigated on the basis of the effective-field theory with the differential operator technique. The effects of the transverse field and the coupling strength between the nearest-neighboring pseudo-spin on the physical properties are discussed in detail.

  8. Hygrothermal Simulation of Foundations: Part 1 - Soil Material Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kehrer, Manfred [ORNL; Pallin, Simon B [ORNL

    2012-10-01

    The hygrothermal performance of soils coupled to buildings is a complicated process. A computational approach for heat transfer through the ground has been well defined (EN ISO 13370:2007, 2007), and simplified methods have been developed (Staszczuk, Radon, and Holm 2010). However, these approaches generally ignore the transfer of soil moisture, which is not negligible (Janssen, Carmeliet, and Hens 2004). This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from Soil Science. The obtained information must be applicable to related tasks in Building Science and validated with hygrothermal calculation tools. Future parts of this study will focus on the validation aspect of the soil properties to be implemented. Basic changes in the software code may be requested at this time. Different types of basement construction will be created with a hygrothermal calculation tool, WUFI. Simulations from WUFI will be compared with existing or ongoing measurements. The intentions of the first part of this study have been fulfilled. The soil properties of interest in Building Science have been defined for 12 different soil textures. These properties will serve as input parameters when performing hygrothermal calculations of building constructions coupled to soil materials. The reliability of the soil parameters will be further evaluated with measurements in Part 2.

  9. Tailoring of epoxy material properties

    NARCIS (Netherlands)

    Nakka, J.S.

    2010-01-01

    This research work is aimed to understand the effect of resin chemistry on the physical properties (e.g. moduli, viscoelasticity, moisture uptake, coefficient of thermal expansion) of cured aromatic epoxy-amine thermoset resins. This understanding will result into a good first approximation of the f

  10. Low-Cost Bio-Based Phase Change Materials as an Energy Storage Medium in Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL; Abhari, Mr. Ramin [Renewable Energy Group, Inc.; Shukla, Dr. Nitin [Fraunhofer USA, Center for Sustainable Energy Systems (CSE), Boston; Kosny, Dr. Jan [Fraunhofer USA, Center for Sustainable Energy Systems (CSE), Boston

    2015-01-01

    A promising approach to increasing the energy efficiency of buildings is the implementation of phase change material (PCM) in building envelope systems. Several studies have reported the energy saving potential of PCM in building envelopes. However, wide application of PCMs in building applications has been inhibited, in part, by their high cost. This article describes a novel paraffin product made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application, with the ultimate goal of commercializing a low-cost PCM platform. The low-cost PCM pellets were mixed with cellulose insulation, installed in external walls and field-tested under natural weatherization conditions for a period of several months. In addition, several PCM samples and PCM-cellulose samples were prepared under controlled conditions for laboratory-scale testing. The laboratory tests were performed to determine the phase change properties of PCM-enhanced cellulose insulation both at microscopic and macroscopic levels. This article presents the data and analysis from the exterior test wall and the laboratory-scale test data. PCM behavior is influenced by the weather and interior conditions, PCM phase change temperature and PCM distribution within the wall cavity, among other factors. Under optimal conditions, the field data showed up to 20% reduction in weekly heat transfer through an external wall due to the PCM compared to cellulose-only insulation.

  11. Fundamental properties of semiconductor materials, and material performance in detectors

    Science.gov (United States)

    Casper, K. J.

    1973-01-01

    Procedures for determining fundamental properties of semiconductor materials, their performance as radiation detectors, and their service life as such detectors are given. Relationships were established between the minority carrier lifetime in the bulk of the material and the charge collection efficiency of the detector.

  12. Use of industrial waste for the manufacturing of sustainable building materials.

    Science.gov (United States)

    Sugrañez, Rafael; Cruz-Yusta, Manuel; Mármol, Isabel; Martín, Francisco; Morales, Julián; Sánchez, Luis

    2012-04-01

    Presently, appropriate waste management is one of the main requisites for sustainable development; this task is tackled by the material construction industry. The work described herein is focused on the valorization of granite waste through incorporation, as a filler-functional admixture, into cement-based mortar formulations. The main components of the waste are SiO(2) (62.1 %), Al(2)O(3) (13.2 %), Fe(2)O(3) (10.1 %), and CaO (4.6 %). The presence of iron oxides is used to develop the photocatalytic properties of the waste. Following heating at 700 °C, α-Fe(2)O(3) forms in the waste. The inclusion of the heated sample as a filler admixture in a cement-based mortar is possible. Moreover, this sample exhibits a moderate ability in the photodegradation of organic dye solutions. Also, the plastering mortars, in which the heated samples have been used, show self-cleaning properties. The preparation of sustainable building materials is demonstrated through the adequate reuse of the granite waste.

  13. [A comparative study of mechanical properties of materials for custom-made impression trays used by implant-fixed restorations].

    Science.gov (United States)

    Gvetadze, R Sh; Abramian, S V; Rusanov, F S; Nubarian, A P; Ivanov, A A

    2012-01-01

    Materials for custom-made impression trays used for impression by implant fixed restorations were compared in the study. The analysis included such values as flexural strength and elasticity modulus, impression material adhesion strength with the use of adhesive and without it. Light-cured plastic Elite LC Tray had the best rates of bending strength and elasticity modulus and the Protakril M had the highest adhesion strength both with and without adhesive.

  14. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    1996-01-01

    Fundamentals of Semiconductors attempts to fill the gap between a general solid-state physics textbook and research articles by providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors The approach is physical and intuitive rather than formal and pedantic Theories are presented to explain experimental results This textbook has been written with both students and researchers in mind Its emphasis is on understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors The explanations are based on physical insights Each chapter is enriched by an extensive collection of tables of material parameters, figures and problems Many of these problems 'lead the student by the hand' to arrive at the results

  15. Properties and characterization of modern materials

    CERN Document Server

    Altenbach, Holm

    2017-01-01

    This book focuses on robust characterization and prediction methods for materials in technical applications as well as the materials’ safety features during operation. In particular, it presents methods for reliably predicting material properties, an aspect that is becoming increasingly important as engineering materials are pushed closer and closer to their limits to boost the performance of machines and structures. To increase their engineering value, components are now designed under the consideration of their multiphysical properties and functions, which requires much more intensive investigation and characterization of these materials. The materials covered in this monograph range from metal-based groups such as lightweight alloys, to advanced high-strength steels and modern titanium alloys. Furthermore, a wide range of polymers and composite materials (e.g. with micro- and nanoparticles or fibres) is covered. The book explores methods for property prediction from classical mechanical characterization-...

  16. Preparation and Characterization of Microencapsulated Phase Change Materials for Use in Building Applications

    Directory of Open Access Journals (Sweden)

    Jessica Giro-Paloma

    2015-12-01

    Full Text Available A method for preparing and characterizing microencapsulated phase change materials (MPCM was developed. A comparison with a commercial MPCM is also presented. Both MPCM contained paraffin wax as PCM with acrylic shell. The melting temperature of the PCM was around 21 °C, suitable for building applications. The M-2 (our laboratory made sample and Micronal® DS 5008 X (BASF samples were characterized using SEM, DSC, nano-indentation technique, and Gas Chromatography/Mass spectrometry (GC-MS. Both samples presented a 6 μm average size and a spherical shape. Thermal energy storage (TES capacities were 111.73 J·g−1 and 99.3 J·g−1 for M-2 and Micronal® DS 5008 X, respectively. Mechanical characterization of the samples was performed by nano-indentation technique in order to determine the elastic modulus (E, load at maximum displacement (Pm, and displacement at maximum load (hm, concluding that M-2 presented slightly better mechanical properties. Finally, an important parameter for considering use in buildings is the release of volatile organic compounds (VOC’s. This characteristic was studied at 65 °C by CG-MS. Both samples showed VOC’s emission after 10 min of heating, however peaks intensity of VOC’s generated from M-2 microcapsules showed a lower concentration than Micronal® DS 5008 X.

  17. Learning targeted materials properties from data

    Science.gov (United States)

    Lookman, Turab; Balachandran, Prasanna V.; Dezhen, Xue; Theiler, James; Hogden, John

    We compare several strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young's (E) modulus] have been computed using density functional theory. The strategy is decomposed into two steps: a regressor is trained to predict elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions to choose the next material to investigate. The ultimate goal is to obtain a material with desired elastic properties. We examine how the choice of data set size, regressor and selector impact the results.

  18. Synthesis of new materials with properties ameliorated

    Science.gov (United States)

    Baira, F.; Benfarhi, S.; Zidani, S.

    2012-09-01

    Cellulose is the most abundant polymer in nature. It is used mainly for the production of paper bet also as a reinforcement in the polymer matrixes[1]. The modification of this polysaccharide presents a great interest, for it is the main constituent of agricultural wastes. It is well known that the microcrystalline cellulose gives, after chemical modification, new biodegradable materials[2], which may be used, for instance, for packaging. The esterification of cellulose necessitates an acid pretreatment which makes hydroxyl groups more accessible by breaking hydrogen bonds. X-rays diffraction analysis showed a feeble diminution of the treated samples cristallinity[3]. Cellulose, activated in this way, is esterified in a classic way in DMF, in the presence of triethylamine, LiCl and acid chloride at 60C° for 24 hours[4]. The obtained ester is precipitated in MeOH. The residue, dissolved in CHCl3, gives after evaporation in the open air, a plastic film surface. The water drop test has shown the hydrophobe properties of the plastic film surface. Our work is the study of the preparation of composite materials from the basis of their derivatives. Well as the study of the photopolymerisation kinetic, and the chemical degradation. The obtained films were analyzed by IR-TF, and the volumetrie[5,6]. As a conclusion, we have prepared composite materials with improved properties with reference to the matrix alone.

  19. Dynamic properties of ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Grady, D.E. [Sandia National Labs., Albuquerque, NM (United States). Experimental Impact Physics Dept.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process.

  20. Thermal Performance of Typical Residential Building in Karachi with Different Materials for Construction

    Directory of Open Access Journals (Sweden)

    Nafeesa Shaheen

    2016-04-01

    Full Text Available This research work deals with a study of a residential building located in climatic context of Karachi with the objective of being the study of thermal performance based upon passive design techniques. The study helps in reducing the electricity consumption by improving indoor temperatures. The existing residential buildings in Karachi were studied with reference to their planning and design, analyzed and evaluated. Different construction?s compositions of buildings were identified, surveyed and analyzed in making of the effective building envelops. Autodesk® Ecotect, 2011 was used to determine indoor comfort conditions and HVAC (Heating, Ventilation, Air-Conditioning and Cooling loads. The result of the research depicted significant energy savings of 38.5% in HVAC loads with proposed building envelop of locally available materials and glazing.

  1. Thermal Radiative Properties of Xonotlite Insulation Material

    Institute of Scientific and Technical Information of China (English)

    Xinxin ZHANG; Gaosheng WEI; Fan YU

    2005-01-01

    This paper presents experimental results of thermal radiative properties of xonotlite-type calcium silicate insulation material. Transmittance spectra were first taken using Fourier transform infrared spectrometer (FTIR)for the samples with ρ = 234 kg/m3. Specific extinction coefficient spectra were then obtained by applying Beer's law.Finally,by using the diffusion approximation,the specific Rossland mean extinction coefficients and radiative thermal conductivities were obtained for various temperatures. The results show that the specific spectral extinction coefficient of xonotlite is larger than 7 m2/kg in the whole measured spectra, and diffusion approximation equation is a reasonable description of radiative heat transfer in xonotlite insulation material. The specific Rossland mean extinction coefficient of xonotlite has a maximum ualue at 400 K and the radiative thermal conductivity is almost proportional to the cube of temperature.

  2. Determination of fungal spore release from wet building materials.

    Science.gov (United States)

    Kildesø, J; Würtz, H; Nielsen, K F; Kruse, P; Wilkins, K; Thrane, U; Gravesen, S; Nielsen, P A; Schneider, T

    2003-06-01

    The release and transport of fungal spores from water-damaged building materials is a key factor for understanding the exposure to particles of fungal origin as a possible cause of adverse health effects associated to growth of fungi indoors. In this study, the release of spores from nine species of typical indoor fungi has been measured under controlled conditions. The fungi were cultivated for a period of 4-6 weeks on sterilized wet wallpapered gypsum boards at a relative humidity (RH) of approximately 97%. A specially designed small chamber (P-FLEC) was placed on the gypsum board. The release of fungal spores was induced by well-defined jets of air impacting from rotating nozzles. The spores and other particles released from the surface were transported by the air flowing from the chamber through a top outlet to a particle counter and sizer. For two of the fungi (Penicillium chrysogenum and Trichoderma harzianum), the number of spores produced on the gypsum board and subsequently released was quantified. Also the relationship between air velocities from 0.3 to 3 m/s over the surface and spore release has been measured. The method was found to give very reproducible results for each fungal isolate, whereas the spore release is very different for different fungi under identical conditions. Also, the relationship between air velocity and spore release depends on the fungus. For some fungi a significant number of particles smaller than the spore size were released. The method applied in the study may also be useful for field studies and for generation of spores for exposure studies.

  3. Natural radioactivity measurements in building materials in Southern Lebanon.

    Science.gov (United States)

    Kobeissi, M A; El Samad, O; Zahraman, K; Milky, S; Bahsoun, F; Abumurad, K M

    2008-08-01

    Using gamma-spectroscopy and CR-39 detector, concentration C of naturally occurring radioactive nuclides (226)Ra, (222)Rn, (214)Bi, (228)Ac, (212)Pb, (212)Bi and (40)K, has been measured in sand, cement, gravel, gypsum, and paint, which are used as building materials in Lebanon. Sand samples were collected from 10 different sandbank locations in the southern part of the country. Gravel samples of different types and forms were collected from several quarries. White and gray cement fabricated by Shaka Co. were obtained. gamma-spectroscopy measurements in sand gave Ra concentration ranging from 4.2+/-0.4 to 60.8+/-2.2 Bq kg(-1) and Ra concentration equivalents from 8.8+/-1.0 to 74.3+/-9.2 Bq kg(-1). The highest Ra concentration was in gray and white cement having the values 73.2+/-3.0 and 76.3+/-3.0 Bq kg(-1), respectively. Gravel results showed Ra concentration between 20.2+/-1.0 and 31.7+/-1.4 Bq kg(-1) with an average of 27.5+/-1.3 Bq kg(-1). Radon concentration in paint was determined by CR-39 detector. In sand, the average (222)Rn concentration ranged between 291+/-69 and 1774+/-339 Bq m(-3) among the sandbanks with a total average value of 704+/-139 Bq m(-3). For gravel, the range was found to be from 52+/-9 to 3077+/-370 Bq m(-3) with an average value of 608+/-85 Bq m(-3). Aerial and mass exhalation rates of (222)Rn were also calculated and found to be between 44+/-7 and 2226+/-267 mBq m(-2)h(-1), and between 0.40+/-0.07 and 20.0+/-0.3 mBq kg(-1)h(-1), respectively.

  4. Decreased bio-inhibition of building materials due to transport of biocides

    NARCIS (Netherlands)

    Erich, S.J.F.; Mendoza, S.M.; Floor, W.; Hermanns, S.P.M.; Homan, W.J.; Adan, O.C.G.

    2011-01-01

    Bio-inhibition of buildings and structures is an important issue. In many cases building materials have biocides added to prevent growth of micro-organisms. Growth of microorganisms on building materials has several negative effects; (1) Aesthetic damage, e.g. fungi, algae grow on the material, resu

  5. Building construction materials effect in tropical wet and cold climates: A case study of office buildings in Cameroon

    Directory of Open Access Journals (Sweden)

    Modeste Kameni Nematchoua

    2016-03-01

    Full Text Available This paper presents the results of an experimental study that was conducted in 15 office buildings in the humid and cold tropics during the working hours of the dry and rainy seasons in Cameroon. This was with the aim to study the effects that local and imported materials had on indoor air quality. To achieve this objective, the adaptive model approach has been selected. In accordance with the conditions of this model, all workers were kept in natural ventilation and, in accordance with the general procedure, a questionnaire was distributed to them, while variables, like air temperature, wind speed, and relative humidity were sampled. The results showed a clear agreement between expected behaviour, in accordance with the characteristics of building construction, and its real indoor ambience once they were statistically analysed. On the other hand, old buildings showed a higher percentage of relative humidity and a lower degree of indoor air temperature. Despite this, local thermal comfort indices and questionnaires showed adequate indoor ambience in each group of buildings, except when marble was used for external tiling. The effect of marble as an external coating helps to improve indoor ambience during the dry season. This is due to more indoor air and relative humidity being accumulated. At the same time, these ambiences are degraded when relative humidity is higher. Finally, these results should be taken cognisance of by architects and building designers in order to improve indoor environment, and overcome thermal discomfort in the Saharan area.

  6. Integration of Agricultural Waste in Local Building Materials for their Exploitation: Application with Rice Straw

    Directory of Open Access Journals (Sweden)

    D. Sow

    2014-04-01

    Full Text Available Through experiments, we have determined the mechanical and thermal properties of samples. This allowed us to determine the most optimal formulations. Therefore, we have prepared samples constituted by two basic materials, clay and laterite, mixed with rice straw. Thus, agriculture is among the economic sectors that produce more waste. The latter are mainly the straw of the three most-produced cereals in the world: wheat, corn and rice. Concerning rice straw, its high content of cellulose makes it difficult to digest. So, few animals are able to use it as food. Most of the straws are lost, buried, burned or used as litter. Moreover, clay and laterite formations represent the most abundant materials resources in Africa. So, this study has allowed us to show that the integration of rice straw in lateritic and clay soils for its use as building materials will allow, in addition to its recycling, to greatly reduce the social habitat cost and to improve the thermal comfort.

  7. Mechanical properties of nanocrystalline metals, intermetalics and multiphase materials determined by tension, compression and disk-bend techniques

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, J.A.; Thompson, L.J.; DiMelfi, R.J. [Argonne National Lab., IL (United States); Choudry, M. [Argonne National Lab., IL (United States)]/[Illinois Inst. of Tech., Chicago, IL (United States); Dollar, M. [Illinois Inst. of Tech., Chicago, IL (United States); Weertman, J.R. [Northwestern Univ., Evanston, IL (United States); Rittner, M.N.; Youngdahl, C.J. [Argonne National Lab., IL (United States)]/[Northwestern Univ., Evanston, IL (United States)

    1997-02-01

    The mechanical behavior of nanocrystalline metallic, intermetallic, and multiphase materials was investigated using tension, compression, and disk-bend techniques. Nanocrystalline NiAl, Al-Al{sub 3}Zr, and Cu were synthesized by gas condensation and either resistive or electron beam heating followed by high temperature vacuum compaction. Disk- bend tests of nanocrystalline NiAl show evidence of improved ductility at room temperature in this normally extremely brittle material. In contrast, tension tests of multiphase nanocrystalline Al- Al{sub 3}Zr samples show significant increases in strength by substantial reductions in ductility with decreasing grain size. Compression tests of nanocrystalline copper result in substantially higher yield stress and total elongation values than those measured in tensile tests. Implications for operative deformation mechanisms in these materials are discussed.

  8. Relation of historical quarrying, material utilization and performance on buildings in Eastern Finland

    Science.gov (United States)

    Luodes, Nike M.; Pirinen, Heikki

    2016-04-01

    Finland might seem to have lower stone heritage compared to other southern European countries, but it has been the main exporter of dimension stone to the majestic buildings that made St.Petersburg a recognized cultural heritage. In Finland, though, the stone seems undervalued. The only dramatic and predominant stone buildings are those of agencies and administrations located in the towns, where the stone has been used to impress and symbolize value. Romantic style used massive bossy stone in building's full height and created fine traditional carvings. Otherwise the communities have mainly built settlements in contact with the nature, with materials easily available and of low cost, following architectonical trends of the periods and producing interesting stone details. During the past years, research has been conducted on historical buildings interconnecting scientific and artistic approach to evaluate material durability and cultural relevance of the artifacts. Generally until mid 20th century the stone has been traditionally used massive for basements and walls. The materials still present good mechanical characteristics and most often the weathering level after hundreds of years of exposure had reached only the first millimeters from the curst. Instead the old methodology for deposit exploitation has left visible signs on the buildings. Some examples are visible from Kuopio. The exploitation of small, easy-to-reach surface deposits, even if planned by local experts, has affected quality and appearance of historical buildings. As an example the excavation of shallow quarries where also weathered crop was kept as a product has characterized the basement of the Niirala school that presents change in colors due to original material more than to weathering on site. Fissuring is also visible on a couple of blocks while marks on the rocks depict the old excavation method. Most often the deposits had been in the vicinities, frequently hidden by further construction

  9. Material properties of the plantar aponeurosis.

    Science.gov (United States)

    Kitaoka, H B; Luo, Z P; Growney, E S; Berglund, L J; An, K N

    1994-10-01

    Material properties of the plantar aponeurosis were determined by a two-dimensional video tracking method to simultaneously measure the aponeurosis deformation. Failure loads averaged 1189 +/- 244 N and were higher in men. Average stiffness of the intact fascia was 203.7 +/- 50.5 N/mm at a loading rate of 11.12 N/sec and it did not vary significantly for the loading rates of 11.12 to 1112 N/sec. The high tensile loads required for failure were consistent with clinical and biomechanical studies and indicated the importance of the aponeurosis in foot function and arch stability.

  10. Magnetic materials fundamentals, products, properties, applications

    CERN Document Server

    Hilzinger, Rainer

    2013-01-01

    At a practical level, this compendium reviews the basics of soft and hard magnetic materials, discusses the advantages of the different processing routes for the exploitation of the magnetic properties and hence assists in proper, fail-safe and economic application of magnetic materials. Essential guidelines and formulas for the calculation of the magnetic and electrical properties, temperature and long-term stability of permanent magnets, of inductive components and magnetic shielding are compiled. Selected fields of application and case studies illustrate the large diversity of technical applications. Application engineers will appreciate the comprehensive compilation of the properties and detailed characteristic curves of modern soft and hard magnetic materials. Materials scientists will enjoy the presentation of the different processing routes and their impact on the magnetic properties and students will profit from the survey from the basics of magnetism down to the applications in inductive components, ...

  11. Radiological restrictions of using red mud as building material additive.

    Science.gov (United States)

    Gu, Hannian; Wang, Ning; Liu, Shirong

    2012-09-01

    Red mud remains as residue from the processing of bauxite using different methods. The chemical composition of red mud varies widely with respect to the types of bauxite ore and processing parameters. Red mud samples from Guizhou, China, were investigated using a X-ray fluorescence spectroscope, a quadrupole inductively coupled plasma mass spectrometer and a electron probe micro-analyzer. The results showed that red mud consisted of eight main chemical components--CaO, Al(2)O(3), SiO(2), Fe(2)O(3), TiO(2), Na(2)O, K(2)O and MgO--and dozens of trace elements, including natural radioactive elements, such as uranium and thorium. Gamma spectrometric analysis showed that the values of internal exposure index I (Ra) and external exposure index I (γ) of Guizhou red mud were 1.1-2.4 and 2.3-3.5 respectively. Thus, it should not be used as a main building material indiscriminately. The amount of red mud from Guizhou when it is used for main building materials in China should be less than 28-44%.

  12. Low-cost NORM concentrations measuring technique for building materials of Uzbekistan

    Science.gov (United States)

    Safarov, Akmal; Safarov, Askar; Azimov, Askarali; Darby, Iain G.

    2016-04-01

    Concentrations of natural radionuclides of building materials are important in order to estimate exposure of humans to radiation, who can spend up to 80% of their time indoors. One of the indicators of building materials' safety is the radium equivalent activity, which is regulated by national and international normative documents [1,2,3]. Materials with Ra(eq) =ageing. Long measurement times including ageing of samples are major constraints for performing large number of analyses [6]. Typically ageing of samples and analysis is 40 days. Gamma-spectrometric analysis of brick, crushed stone, red sand, granite, white marble and concrete cubes was performed both before and after ageing of samples (10, 20, 30 and 40 days). Measurement times of samples were 1, 3, 6 and 12 hours. Samples were measured in 1 liter Marinelli beaker geometry, using NaI(Tl) spectrometers with crystal sizes 2.5 x 2.5 in and 3.1 x 3.1 in. Efficiency calibration of spectrometers was done using certified volumetric (1 liter Marinelli beaker) Ra-226, Th-232 and K-40 sources filled with silica sand and density 1,7 kg/l. Herein we present results indicating that one hour measuring may be sufficient for samples in 1 liter Marinelli beakers offering prospect of significant time and cost improvements. References: 1. NEA-OECD (1979): Exposure to radiation from natural radioactivity in building materials. Report by Group of Experts of the OECD Nuclear Energy Agency (NEA) Paris 2. STUK (Radiation and Nuclear Safety Authority) (2003): The radioactivity of building materials and ash. Regulatory Guides on Radiation Safety (ST Guides) ST 12.2 (Finland) (8 October 2003) 3. GOST 30108-94 (1995): Building materials and elements. Determination of specific activity of natural radioactive nuclei. Interstate Standard. 4. Krisiuk E.M. et al., (1971). A study on Radioactivity in Building Materials (Leningrad: Research Institute for radiation Hygiene) 5. Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of

  13. Fault frictional parameters and material properties revealed by slow slip events at Kilauea volcano, Hawai`i

    Science.gov (United States)

    Foster, James H.; Lowry, Anthony R.; Brooks, Benjamin A.

    2013-12-01

    categorize slow slip events at Kilauea Volcano into two distinct families based on GPS measurements of the surface displacement patterns. An event correlation filter confirms that "eastern" and "western" families are statistically distinguishable, with the western family notably self-similar. The western family exhibits quasi-periodicity with regular repeat times, while eastern family events are aperiodic or have complicated periodicity. If the decollement is the source fault for both families of events, it must have varying frictional properties at the ~10 km scale of separation. The temporal slip and spatial scaling behavior are consistent with a simplistic rate- and state-dependent frictional formalism provided that the characteristic slip distance for state evolution, Dc, is of the order of millimeters rather than the 10-100 µm typically found in lab studies, and the shear rigidity is around 2 GPa, consistent with fault gouge material.

  14. CASTOR OIL-BASED BUILDING MATERIALS REINFORCED WITH FLY ASH, CLAY, EXPANDED PERLITE AND PUMICE POWDER

    Directory of Open Access Journals (Sweden)

    Figen Balo

    2011-09-01

    Full Text Available This paper reports the results of a study conducted to evaluate the influence of class C fly ash (FA, clay (C, expanded perlite (EP, pumice powder (PP and epoxidized castor oil (ECO on the density, thermal conductivity, compressive strength, tensile strength, abrasion loss and water absorption of building material. Density, thermal conductivity, compressive strength and tensile strength decreased with the increase of ECO and FA as replacement for building material. These properties also decreased with increasing process temperature. The addition of clay in the building material had an increasing effect on these properties. The addition of clay decreased abrasion loss and water absorption as a function of replacement percent. The minimum thermal conductivity and maximum water absorption observed for the sample made with minimum clay and maximum FA-ECO ratios processed at the highest process temperature. The maximum compression-tensile strengths and minimum abrasion loss observed for the sample with maximum clay and minimum FA-ECO ratios processed at the lowest process temperature.

  15. THE EFFECT OF DEGRADATION PROCESSES ON THE SERVICEABILITY OF BUILDING MATERIALS OF HISTORIC BUILDINGS

    Directory of Open Access Journals (Sweden)

    Jiří Witzany

    2016-10-01

    Full Text Available The article presents an analysis of degradation processes and partial results of an experimental research into materials and structures exposed to the effects of external environments with an emphasis on the effects of moisture and chemical degradation processes on major mechanical properties of sandstone.

  16. Asbestos-containing materials and airborne asbestos levels in industrial buildings in Korea.

    Science.gov (United States)

    Choi, Sangjun; Suk, Mee-Hee; Paik, Nam Won

    2010-03-01

    Recently in Korea, the treatment of asbestos-containing materials (ACM) in building has emerged as one of the most important environmental health issues. This study was conducted to identify the distribution and characteristics of ACM and airborne asbestos concentrations in industrial buildings in Korea. A total of 1285 presumed asbestos-containing material (PACM) samples were collected from 80 workplaces across the nation, and 40% of the PACMs contained more than 1% of asbestos. Overall, 94% of the surveyed workplaces contained ACM. The distribution of ACM did not show a significant difference by region, employment size, or industry. The total ACM area in the buildings surveyed was 436,710 m2. Ceiling tile ACM accounted for 61% (267,093 m2) of the total ACM area, followed by roof ACM (32%), surfacing ACM (6.1%), and thermal system insulation (TSI). In terms of asbestos type, 98% of total ACM was chrysotile, while crocidolite was not detected. A comparison of building material types showed that the material with the highest priority for regular management is ceiling tile, followed by roof, TSI, and surfacing material. The average airborne concentration of asbestos sampled without disturbing in-place ACM was 0.0028 fibers/cc by PCM, with all measurements below the standard of recommendation for indoor air quality in Korea (0.01 fibers/cc).

  17. Innovative Development of Building Materials Industry of the Region Based on the Cluster Approach

    Directory of Open Access Journals (Sweden)

    Mottaeva Asiiat

    2016-01-01

    Full Text Available The article discusses issues of innovative development of building materials industry of the region based on the cluster approach. Determined the significance of regional cluster development of the industry of construction materials as the effective implementation of the innovative breakthrough of the region as an important part of strategies for strengthening innovation activities may be to support the formation and development of cluster structures. Analyses the current situation with innovation in the building materials industry of the region based on the cluster approach. In the course of the study revealed a direct correlation between involvement in innovative activities on a cluster basis, and the level of development of industry of construction materials. The conducted research allowed identifying the factors that determine the innovation process, systematization and classification which determine the sustainable functioning of the building materials industry in the period of active innovation. The proposed grouping of innovations for the construction industry taking into account industry-specific characteristics that reflect modern trends of scientific and technological progress in construction. Significance of the study lies in the fact that the proposals and practical recommendations can be used in the formation mechanism of innovative development of building materials industry and the overall regional construction complex of Russian regions by creating clusters of construction.

  18. Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: A review

    Energy Technology Data Exchange (ETDEWEB)

    L. Reijnders [University of Amsterdam, Amsterdam (Netherlands)

    2007-02-15

    Application of phosphogypsum, coal combustion ashes and waste incineration ashes in building materials has been limited by the presence of minor components that are hazardous, such as radioactive substances, chlorinated dioxins and heavy metals, or have a negative impact on product quality or production economics, such as phosphate, fluoride, carbon and chloride. Source reduction, destruction of persistent organics and separation techniques may reduce the concentrations of such components. With a few exceptions, separation techniques currently lead to significantly higher (private) costs. Higher waste disposal costs, tighter regulations and higher prices for competing virgin minerals could make the use of the purified phosphogypsum and ashes in building materials more attractive.

  19. Measurement of thermal properties of PCM materials

    Energy Technology Data Exchange (ETDEWEB)

    Domanski, R.; Jaworski, M. [Warsaw Univ. of Technology (Poland). Inst. of Heat Engineering

    1994-12-31

    In the article results of measurements of thermal properties of PCM (phase change materials) and their stability are presented. These include specific heat, temperature of phase change, latent heat and enthalpy as a function of temperature. Different kind of materials were considered, especially some waxes, n-alkanes and salt hydrates. Measurements of thermal capacity of materials were performed using two techniques - standard DSC (for small samples and pure materials) and simple thermal analysis based on the measurement of temperature field in relatively big samples (about 20-50 g). Stability of thermal properties in many cycles of melting and solidification for some materials obtained in special set-up (for fast cycling) are presented. On the base of measurements mathematical formulas describing enthalpy vs. temperature for some materials were developed. These are very useful in computer simulation of thermal storage systems with PCM. (orig.)

  20. Structural properties of porous materials and powders used in different fields of science and technology

    CERN Document Server

    Volfkovich, Yury Mironovich; Bagotsky, Vladimir Sergeevich

    2014-01-01

    This book provides a comprehensive and concise description of most important aspects of experimental and theoretical investigations of porous materials and powders, with the use and application of these materials in different fields of science, technology, national economy and environment. It allows the reader to understand the basic regularities of heat and mass transfer and adsorption occurring in qualitatively different porous materials and products, and allows the reader to optimize the functional properties of porous and powdered products and materials. Written in an straightforward and transparent manner, this book is accessible to both experts and those without specialist knowledge, and it is further elucidated by drawings, schemes and photographs. Porous materials and powders with different pore sizes are used in many areas of industry, geology, agriculture and science. These areas include (i) a variety of devices and supplies; (ii) thermal insulation and building materials; (iii) oil-bearing geologic...

  1. Thermoelectric properties of BiSbx (x=0.6-0.8) thermoelectric materials fabricated by different processing

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In order to improve the thermoelectric properties, hot-pressing sintering and ultra high pressure sintering methods wereadopted to fabricate BiSbx. The phase and crystal structures were determined by X-ray diffraction analysis (XRD). The thermoelectricproperties were measured at 303 K along the direction parallel to the pressing direction. The electric conductivity of the samples wasmeasured at 303 K by the four-probe technique. To measure the Seebeck coefficient, heat was applied to the samples placed betweentwo Cu discs. The thermoelectric electromotive force (E) was measured upon applying small temperature differences ( △T<2℃)between the both ends of the samples. The Seebeck coefficient of the samples was determined from the value of E/△T. The resultsindicate that the thermoelectric properties of the samples fabricated by UHPS (ultra high pressure sintering) method are much higherthan that by HPS (hot pressing sintering) method and have the highest values at x=0.7.

  2. State of the art on historic building insulation materials and retrofit strategies

    DEFF Research Database (Denmark)

    Blumberga, Andra; Kass, Kristaps; Kamendere, Edite

    2016-01-01

    This report provides an analysis and evaluation of a state-of-the-art of internal insulation materials and methods for application in historic buildings, and review on methods, tools and guidelines used as decision making tools for implementation of internal insulation in historic buildings....... Historic buildings in RIBuild represent all types of protected1 and non-protected buildings built before 1945. The survey is limited to buildings with heavy walls (stone, brick, timber framing), thus excluding wooden buildings....

  3. Analysis of magneto-optical properties for three-dimensional photonic crystals in high-symmetry arrangement doped by metamaterials and uniaxial materials

    Science.gov (United States)

    Yu, Bing; Li, Heming; Wang, Shenyun; Wan, Fayu; Ge, Junxiang

    2016-11-01

    In this paper, we use a modified plane wave expansion (PWE) method to investigate the properties of photonic band gaps (PBGs) for the extraordinary mode in the three-dimensional (3D) photonic crystals (PCs) which are composed of the anisotropic dielectric (the uniaxial materials) spheres immersed in the homogeneous metamaterials (epsilon-negative materials) background with high-symmetry (body-centered-cubic) lattices, as the magneto-optical Voigt effects are considered. The equations for calculating the PBGs in the first irreducible Brillouin zone are theoretically derived. It is numerically illustrated that the anisotropic PBGs and two flattened band regions can be achieved. The influences of the ordinary-refractive index, extraordinary-refractive index, filling factor of dielectric spheres, electronic plasma frequency and cyclotron frequency on the magneto-optical properties of such 3D PCs also are studied in detail, respectively, and some corresponding physical explanations are given. The numerical results demonstrate that the anisotropy can open partial band gaps in the proposed PCs, and the complete PBGs can be obtained compared with the conventional PCs only containing the isotropic material with similar structures. The bandwidths of PBGs can be tuned by introducing the epsilon-negative materials into such PCs containing the uniaxial materials. The anisotropic PBGs can be manipulated by the parameters as mentioned above. As the proposed PCs with high-symmetry lattices, the complete PBGs can be obtained by introducing the uniaxial materials.

  4. Extension of optical properties of ZnO/SiO2 materials induced by incorporation of Au or NiO nanoparticles

    Science.gov (United States)

    Rogozea, Elena Adina; Olteanu, Nicoleta Liliana; Petcu, Adina Roxana; Lazar, Cosmina Andreea; Meghea, Aurelia; Mihaly, Maria

    2016-06-01

    Incorporating noble metal nanoparticles (NPs) and oxides has been proved to be an effective method to tune the optical properties of silica based materials. In this paper the optical and photocatalytic properties have been studied for ZnO/SiO2 modified with Au or NiO nanoparticles. Changes in the optical properties of semiconductor ZnO particles have been observed due to the deposition of coloured Au and NiO nanoparticles by reducing the band gap energy and thus extending light absorption to visible domain. The excellent surface characteristics of NiO/ZnO/SiO2 and Au/ZnO/SiO2 favour the adsorption behaviour of these materials and limit the recombination of electron-holes pairs. Crystal Violet degradation under VIS light proved to have higher efficiency in the presence of Au/ZnO/SiO2 (97%) than for NiO/ZnO/SiO2 (60%).

  5. PCM-enhanced building components an application of phase change materials in building envelopes and internal structures

    CERN Document Server

    Kosny, Jan

    2015-01-01

    Presenting an overview of the use of Phase Change Materials (PCMs) within buildings, this book discusses the performance of PCM-enhanced building envelopes. It reviews the most common PCMs suitable for building applications, and discusses PCM encapsulation and packaging methods. In addition to this, it examines a range of PCM-enhanced building products in the process of development as well as examples of whole-building-scale field demonstrations. Further chapters discuss experimental and theoretical analyses (including available software) to determine dynamic thermal and energy performance ch

  6. Materials and building techniques in Mugello from the Late Middle Ages to the Early Modern Age

    Directory of Open Access Journals (Sweden)

    Andrea Arrighetti

    2017-01-01

    Full Text Available Mugello is a medium-high seismic risk area situated on the Italian Apennine mountain range, between Tuscany and Emilia Romagna. The territory is characterized by a large presence of long duration settlements characterized by well-preserved historic buildings, most of which are religious’ architectonical complexes. An area of Mugello, between 2010 and 2014, was characterized by the project “Archaeology of Buildings and seismic risk in Mugello”, a research focused on testing the potential information of the process of archaeological analysis of buildings as a form of knowledge, prevention and protection of medieval seismic risk settlements. Among the results that have emerged from the archaeoseismological investigation have played a central role the considerations pertaining to the supplying and use of building materials for the construction and modification of architectural structures, in a period between the late Middle Ages and the Modern Age.

  7. Bioactive glasses materials, properties and applications

    CERN Document Server

    Ylänen, Heimo

    2011-01-01

    Due to their biocompatibility and bioactivity, bioactive glasses are used as highly effective implant materials throughout the human body to replace or repair damaged tissue. As a result, they have been in continuous use since shortly after their invention in the late 1960s and are the subject of extensive research worldwide.Bioactive glasses provides readers with a detailed review of the current status of this unique material, its properties, technologies and applications. Chapters in part one deal with the materials and mechanical properties of bioactive glass, examining topics such

  8. The combination therapy with alfacalcidol and risedronate improves the mechanical property in lumbar spine by affecting the material properties in an ovariectomized rat model of osteoporosis

    Directory of Open Access Journals (Sweden)

    Ito Masako

    2009-06-01

    Full Text Available Abstract Background We conducted the present study to investigate the therapeutic effects of a combination treatment of alfacalcidol (ALF and risedronate (RIS on the bone mechanical properties of bone and calcium (Ca metabolism using an ovariectomized (OVX rat model of osteoporosis. Methods Female Wistar rats were OVX- or sham-operated at 40 weeks of age. Twelve weeks post-surgery, rats were randomized into seven groups: 1 sham + vehicle, 2 OVX + vehicle, 3 OVX + ALF 0.025 μg/kg/day, 4 OVX + ALF 0.05 μg, 5 OVX + RIS 0.3 mg, 6 OVX + RIS 3.0 mg, 7 OVX + ALF 0.025 μg + RIS 0.3 mg. Each drug was administered orally five times a week for 12 weeks. After treatment, we evaluated the mechanical properties of the lumbar vertebra and femoral midshaft. In the lumbar vertebra, structural and material analyses were performed using micro-computed tomography (micro-CT and microbeam X-ray diffraction (micro-XRD, respectively. Biochemical markers in serum and urine were also determined. Results (1 With respect to improvement in the mechanical strength of the lumbar spine and the femoral midshaft, the combination treatment of ALF and RIS at their sub-therapeutic doses was more effective than each administered as a monotherapy; (2 In the suppression of bone resorption and the amelioration of microstructural parameters, the effects of ALF and RIS were considered to be independent and additive; (3 The improvement of material properties, such as microstructural parameters and the biological apatite (Bap c-axis orientation, contributed to the reinforcement of spinal strength; and (4 The combination treatment of ALF and RIS normalized urinary Ca excretion, suggesting that this treatment ameliorated the changes in Ca metabolism. Conclusion These results demonstrate that the combination treatment of ALF and RIS at their sub-therapeutic doses can improve the mechanical properties of the spine as well as the femur and ameliorate changes in Ca metabolism in an animal

  9. Bio-aggregates based building materials state-of-the-art report of the RILEM Technical Committee 236-BBM

    CERN Document Server

    Collet, Florence

    2017-01-01

    The work of the RILEM Technical Committee (TC -236 BBM) was dedicated to the study of construction materials made from plant particles. It considered the question whether building materials containing as main raw material recyclable and easily available plant particles are renewable. This book includes a state-of-the-art report and an appendix. The state-of-the-art report relates to the description of vegetal aggregates. Then, hygrothermal properties, fire resistance, durability and finally the impact of the variability of the method of production of bio-based concrete are assessed. The appendix is a TC report which presents the experience of a working group. The goal was to define testing methods for the measurement of water absorption, bulk density, particle size distribution, and thermal conductivity of bio aggregates. The work is based on a first round robin test of the TC-BBM where the protocols in use by the different laboratories (labs) are compared. .

  10. From Microstructures to Predict Properties of Materials

    Science.gov (United States)

    Wang, Ke-Gang

    2010-03-01

    Understanding the precise and fundamental manner in which materials structures (nanostructures or microstructures) and their evolution influences properties and service lifetimes of advanced materials profoundly impacts material design and today materials design plays an increasingly important rôle in many engineering applications. Linking structures to properties and predicting properties of materials is fundamental step for materials design. First, a framework of applications of multiscale modeling to property prediction of advanced materials will be briefly presented. As an example, a methodology will be shown to link micro-scale to the continuum scale, integrating microstructure modeling with the large Thermo-Calc^ database. This paradigm was successfully applied to the case of Fe-12Ni-6Mn maraging steel. Next, methodology for integrating first-principle calculation into simulations of microstructure evolution will be reviewed. Our methods are sufficiently reliable to permit control and fabrication of quantum-dots structures, nanocrystals, and particle-reinforced nanocomposites, as well as assist in the predictive behavior of macro-scale colloids, aerosols, and other soft matter systems.

  11. Influence of TiN nanoparticles on the microstructure and properties of W matrix materials prepared by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuang [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Luo, Lai-Ma, E-mail: luolaima@126.com [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Engineering Research Center of Powder Metallurgy of Anhui Province, Hefei 230009 (China); Tan, Xiao-Yue [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Luo, Guang-Nan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zan, Xiang; Cheng, Ji-Gui; Zhu, Xiao-Yong; Wu, Yu-Cheng [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Engineering Research Center of Powder Metallurgy of Anhui Province, Hefei 230009 (China)

    2014-11-15

    Highlights: • Effect of TiN on microstructure and properties of composites were studied. • TiN particles exist in the grain interior and at the grain boundary. • The tensile strength reached 180 MPa when the content of TiN was 2 wt.%. - Abstract: W–(0.5, 1, 2, 4) wt.% TiN composite powders were formed by mechanical alloying for 5 h and sintered by spark plasma at 1800 °C. The effect of TiN nanoparticle content on the microstructure and properties of the composites were investigated by scanning electron microscopy, transmission electron microscopy, tensile test, microhardness test, and thermal conductivity test. With the addition of TiN ranging from 0.5 wt.% to 4 wt.%, SEM analysis results showed that TiN was distributed homogeneously and W grains were refined by TiN. The fracturing of pure W was intergranular, whereas cleavage fracture appeared in the W–TiN composites and increased with increased TiN content. The density was found to initially increase and then decrease with increased TiN content. The same trend was observed for the thermal conductivity. Microhardness increased with increased TiN content. The tensile strength reached 180 MPa when the content of TiN was 2 wt.%. Furthermore, the mechanical properties of 2 wt.% exceeded those of other alloys at different TiN weight percentages.

  12. 现代竹质工程材料的基本性能及其在建筑结构中的应用前景%BASIC PROPERTIES AND PROSPECTS OF MODERN BAMBOO ENGINEERING MATERIALS APPLIED IN BUILDING STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    魏洋; 张齐生; 蒋身学; 吕清芳; 吕志涛

    2011-01-01

    通过对比分析竹帘胶合板、竹材层积材、竹材重组材等现代竹质工程材料的工艺及基本性能,指出每种材料在建筑结构构件中的应用选择,结合现代竹结构安居示范房的设计与建造实例,分析竹结构的应用前景与优势.竹结构在设计与建造方面都具有非常好的灵活性,具有出色的抗震性能,其最大优势在于绿色、低碳、节能、减排,竹质工程材料能够达到现代结构工程的要求,使得竹结构的大规模推广应用成为可能.%The technologies and basic characteristics of some modern engineering bamboo materials, such as bamboo veneer, bamboo laminated wood and bamboo scrimber, etc., are analyzed and compared with each other to describe their different applications in architectural structural elements. The application outlook and advantages of bamboo structure are discussed according to the design and construction practices of modern bamboo structure demonstration building. Bamboo structure has favorable flexibility and outstanding seismic performance on both design and construction aspects. Its best advantages are green, energy saving and emission reduction. Modem engineering bamboo materials can satisfy the requirements of modern structural engineering,enabling promotion and application of bamboo structure on a large scale.

  13. Expanded polystyrene as the bearing building material of low energy construction

    Science.gov (United States)

    Mesaros, P.; Spisakova, M.; Kyjakova, L.; Mandicak, T.

    2015-01-01

    Sustainability of buildings is a really important issue for the construction industry. Sustainable buildings are characterized by the lower construction costs for energy consumption and operations, they are environmentally friendly, able to save natural resources and they are comfortable and healthy for their users. The European Union supports this trend through its Strategy 2020, respectively with document Energy Roadmap 2020. The strategy 2020 sets greenhouse gas emissions 20% lower than 1990, 20% of energy from renewable and 20% increase in energy efficiency. It manifests itself in introduction of modern technologies of house building. One potential for the energy saving is construction of low-energy buildings using modern materials. This paper focuses on the analysis of the low-energy buildings made by expanded polystyrene as the bearing building material. The paper analyzes their design and describes the benefits of this modern but unusual type of construction technology for houses. The examples from abroad clearly indicate that this technology has potential in modern architecture. The success and exploration of this technology potential in the conditions of Slovak construction sector is closely related to interest of investors and users of further sustainable houses which are design according the Strategy 2020 conditions.

  14. Learning physical descriptors for materials science by compressed sensing

    Science.gov (United States)

    Ghiringhelli, Luca M.; Vybiral, Jan; Ahmetcik, Emre; Ouyang, Runhai; Levchenko, Sergey V.; Draxl, Claudia; Scheffler, Matthias

    2017-02-01

    The availability of big data in materials science offers new routes for analyzing materials properties and functions and achieving scientific understanding. Finding structure in these data that is not directly visible by standard tools and exploitation of the scientific information requires new and dedicated methodology based on approaches from statistical learning, compressed sensing, and other recent methods from applied mathematics, computer science, statistics, signal processing, and information science. In this paper, we explain and demonstrate a compressed-sensing based methodology for feature selection, specifically for discovering physical descriptors, i.e., physical parameters that describe the material and its properties of interest, and associated equations that explicitly and quantitatively describe those relevant properties. As showcase application and proof of concept, we describe how to build a physical model for the quantitative prediction of the crystal structure of binary compound semiconductors.

  15. Thermal protection materials: Thermophysical property data

    Science.gov (United States)

    Williams, S. D.; Curry, Donald M.

    1992-01-01

    This publication presents a thermophysical property survey on materials that could potentially be used for future spacecraft thermal protection systems (TPS). This includes data that was reported in the 1960's as well as more current information reported through the 1980's. An attempt was made to cite the manufacturers as well as the data source in the bibliography. This volume represents an attempt to provide in a single source a complete set of thermophysical data on a large variety of materials used in spacecraft TPS analysis. The property data is divided into two categories: ablative and reusable. The ablative materials have been compiled into twelve categories that are descriptive of the material composition. An attempt was made to define the Arrhenius equation for each material although this data may not be available for some materials. In a similar manner, char data may not be available for some of the ablative materials. The reusable materials have been divided into three basic categories: thermal protection materials (such as insulators), adhesives, and structural materials.

  16. Characterization of organophosphorus flame retardants' sorption on building materials and consumer products

    Science.gov (United States)

    Liu, Xiaoyu; Allen, Matthew R.; Roache, Nancy F.

    2016-09-01

    Better understanding the transport mechanisms of organophosphorus flame-retardants (OPFRs) in the residential environment is important to more accurately estimate their indoor exposure and develop risk management strategies that protect human health. This study describes an improved dual small chamber testing method to characterize the sorption of OPFRs on indoor building materials and consumer products. The OPFRs studied were tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP). The test materials and products used as sinks include concrete, ceiling tile, vinyl flooring, carpet, latex painted gypsum wallboard, open cell polyurethane foam, mattress pad and liner, polyester clothing, cotton clothing, and uniform shirt. During the tests, the amount of OPFRs absorbed by the materials at different exposure times was determined simultaneously. OPFRs air concentrations at the inlet and inside the test chamber were monitored. The data were used to rank the sorption strength of the OPFRs on different materials. In general, building materials exhibited relatively stronger sorption strength than clothing textiles. The material-air partition and material phase diffusion coefficients were estimated by fitting a sink model to the sorption concentration data for twelve materials with three OPFRs. They are in the range of 2.72 × 105 to 3.99 × 108 (dimensionless) for the material-air partition coefficients and 1.13 × 10-14 to 5.83 × 10-9 (m2/h) for the material phase diffusion coefficients.

  17. Natural radioactivity measurements in building materials in Southern Lebanon

    Energy Technology Data Exchange (ETDEWEB)

    Kobeissi, M.A.; El Samad, O.; Zahraman, K. [Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11-8281, Beirut (Lebanon); Milky, S.; Bahsoun, F. [Department of Physics, Lebanese University, Faculty of Sciences (I), Hadeth, Beirut (Lebanon); Abumurad, K.M. [Department of Physics, Yarmouk University, P.O. Box 566, Irbid 21163 (Jordan)], E-mail: abumurad@yu.edu.jo

    2008-08-15

    Using {gamma}-spectroscopy and CR-39 detector, concentration C of naturally occurring radioactive nuclides {sup 226}Ra, {sup 222}Rn, {sup 214}Bi, {sup 228}Ac, {sup 212}Pb, {sup 212}Bi and {sup 40}K, has been measured in sand, cement, gravel, gypsum, and paint, which are used as building materials in Lebanon. Sand samples were collected from 10 different sandbank locations in the southern part of the country. Gravel samples of different types and forms were collected from several quarries. White and gray cement fabricated by Shaka Co. were obtained. {gamma}-Spectroscopy measurements in sand gave Ra concentration ranging from 4.2 {+-} 0.4 to 60.8 {+-} 2.2 Bq kg{sup -1} and Ra concentration equivalents from 8.8 {+-} 1.0 to 74.3 {+-} 9.2 Bq kg{sup -1}. The highest Ra concentration was in gray and white cement having the values 73.2 {+-} 3.0 and 76.3 {+-} 3.0 Bq kg{sup -1}, respectively. Gravel results showed Ra concentration between 20.2 {+-} 1.0 and 31.7 {+-} 1.4 Bq kg{sup -1} with an average of 27.5 {+-} 1.3 Bq kg{sup -1}. Radon concentration in paint was determined by CR-39 detector. In sand, the average {sup 222}Rn concentration ranged between 291 {+-} 69 and 1774 {+-} 339 Bq m{sup -3} among the sandbanks with a total average value of 704 {+-} 139 Bq m{sup -3}. For gravel, the range was found to be from 52 {+-} 9 to 3077 {+-} 370 Bq m{sup -3} with an average value of 608 {+-} 85 Bq m{sup -3}. Aerial and mass exhalation rates of {sup 222}Rn were also calculated and found to be between 44 {+-} 7 and 2226 {+-} 267 mBq m{sup -2} h{sup -1}, and between 0.40 {+-} 0.07 and 20.0 {+-} 0.3 mBq kg{sup -1} h{sup -1}, respectively.

  18. Assessment of thermal insulation materials and systems for building applications

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The primary goal of the study was to provide a proper foundation for decision making by the federal government, industry, and consumer. The report may be used to identify areas where new test methods and standards are needed to establish new programs for improving thermal performance of buildings, and as a basis for setting new or improved standards after the recommended test programs have been completed.

  19. Microfungal contamination of damp buildings--examples of risk constructions and risk materials.

    Science.gov (United States)

    Gravesen, S; Nielsen, P A; Iversen, R; Nielsen, K F

    1999-06-01

    To elucidate problems with microfungal infestation in indoor environments, a multidisciplinary collaborative pilot study, supported by a grant from the Danish Ministry of Housing and Urban Affairs, was performed on 72 mold-infected building materials from 23 buildings. Water leakage through roofs, rising damp, and defective plumbing installations were the main reasons for water damage with subsequent infestation of molds. From a score system assessing the bioavailability of the building materials, products most vulnerable to mold attacks were water damaged, aged organic materials containing cellulose, such as wooden materials, jute, wallpaper, and cardboard. The microfungal genera most frequently encountered were Penicillium (68%), Aspergillus (56%), Chaetomium (22%), Ulocladium, (21%), Stachybotrys (19%) and Cladosporium (15%). Penicillium chrysogenum, Aspergillus versicolor, and Stachybotrys chartarum were the most frequently occurring species. Under field conditions, several trichothecenes were detected in each of three commonly used building materials, heavily contaminated with S. chartarum. Under experimental conditions, four out of five isolates of S. chartarum produced satratoxin H and G when growing on new and old, very humid gypsum boards. A. versicolor produced the carcinogenic mycotoxin sterigmatocystin and 5-methoxysterigmatocystin under the same conditions.

  20. Bamboo as a Building Material. Peace Corps. Appropriate Technologies for Development. Reprint R-33.

    Science.gov (United States)

    McClure, F. A.

    This manual, developed by the U.S. Department of Agriculture under the Point Four program, presents critical features and principles of using bamboo as a building material. Information provided in the manual includes the following: parts of a house for which bamboos are suitable, bamboo reinforcement of concrete, geographical distribution of…

  1. Laboratory study of the PCB transport from primary sources to building materials

    Science.gov (United States)

    The sorption of airborne polychlorinated biphenyls (PCBs) by twenty building materials and their subsequent re-emission (desorption) from concrete were investigated using two 53-L environmental chambers connected in series with a field-collected caulk in the source chamber servin...

  2. Surface dispersive energy determined with IGC-ID in anti-graffiti-coated building materials

    OpenAIRE

    Carmona-Quiroga, Paula María; Rubio, J; Sánchez, M. J.; Martínez-Ramírez, Sagrario.; Blanco-Varela, María Teresa

    2011-01-01

    Coating building materials with anti-graffiti treatments hinders or prevents spray paint adherence by generating low energy surfaces. This paper describes the effect of coating cement paste, lime mortar, granite, limestone and brick with two anti-graffiti agents (a water-base fluoroalkylsiloxane, “Protectosil Antigraffiti®”, and a Zr ormosil) on the dispersive component of the surface energy of these five construction materials. The agents were rediluted in their respective solvents at concen...

  3. Finite element and micromechanical modeling for investigating effective material properties of polymer-matrix nanocomposites with microfiber, reinforced by CNT arrays

    Science.gov (United States)

    Tahouneh, Vahid; Mashhadi, Mahmoud Mosavi; Naei, Mohammad Hasan

    2016-09-01

    This paper is motivated by the lack of studies to investigate the effect of fiber reinforced CNT arrays on the material properties of nanocomposites. To make a comprehensive study, this research work is conducted in two ways. Firstly, the effect of microfiber as reinforcement on the effective material properties is investigated; secondly, the study is carried on as the microfibers reinforced by CNT arrays. In both above-mentioned approaches, the results are compared to the results of generalized mixture rule which is known as a widely used micro-mechanical model. The representative volume element (RVE) is considered as a well-known method to investigate the effect of adding CNT arrays on the skin of microfibers. The results show that Generalized Mixture Rule cannot properly predict the effects of changing the length and diameter of nanotubes on the effective properties of nanocomposites. The main objective of this research work is to determine the effects of increasing nanotubes on the elastic properties which are achieved using two aforementioned methods including FE and rule of mixture. It is also absorbed; effective properties of RVE can be improved by increasing the volume fraction, length and decreasing CNT arrays diameter.

  4. Millennium-long damage to building materials in London.

    Science.gov (United States)

    Brimblecombe, Peter; Grossi, Carlota M

    2009-02-01

    Damage functions from a range of sources are used to estimate deterioration of carbonate stone, iron and copper, in addition to the rate of blackening of stone surfaces in London across the period 1100-2100 CE. Meteorological and pollution input is available for only a relatively short part of this span, so non-instrumental weather records and modelled pollution are utilised for historic values, while future climate is adapted from the HadCM3A2 model output and pollution assessed from likely regulatory trends. The results from the different damage functions compare reasonably well showing comparable changes in damage rates with time. A potential square-root dependence of change in deposition velocity of SO2 to limestone suggests a possible overestimate of damage when pollution is high. Deterioration is especially intense from the 1700s. It is difficult to be certain whether the corrosion of copper accelerated as early as this or it developed in the 20th century. Nevertheless all the functions predict a decline in copper corrosion from the end of the 20th century. A blackening function was developed to relate elemental carbon concentration and the colour of deposited particulate matter to blackening rate, which suggests that soiling was particularly rapid in the late 19th century. The increase and subsequent decrease in damage to building materials is interpreted in terms of a Kuznets curve. The centuries where pollution controlled damage to durable building material seems to be over. Weathering, in a changing climate may have the greatest impact in the future.

  5. Cylinder components properties, applications, materials

    CERN Document Server

    2016-01-01

    Owing to the ever-increasing requirements to be met by gasoline and diesel engines in terms of CO2 reduction, emission behavior, weight, and service life, a comprehensive understanding of combustion engine components is essential today. It is no longer possible for professionals in automotive engineering to manage without the corresponding expertise, whether they work in the field of design, development, testing, or maintenance. This technical book provides in-depth answers to questions about design, production, and machining of cylinder components. In this second edition, every section has been revised and expanded to include the latest developments in the combustion engine. Content Piston rings Piston pins and piston pin circlips Bearings Connecting rods Crankcase and cylinder liners Target audience Engineers in the field of engine development and maintenanceLecturers and students in the areas of mechanical engineering, engine technology, and vehicle constructionAnyone interested in technology Publisher MAH...

  6. Effect of stacking fault energy on mechanical properties of nanostructured FCC materials processed by the ARB process

    Energy Technology Data Exchange (ETDEWEB)

    Jamaati, Roohollah, E-mail: r.jamaatikenari@ma.iut.ac.ir [Young Researchers and Elite Club, Ayatollah Amoli Branch, Islamic Azad University, Amol (Iran, Islamic Republic of); Toroghinejad, Mohammad Reza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2014-06-01

    In the present work, the effect of stacking fault energy on the mechanical properties of aluminum, copper, and brass fabricated via the accumulative roll bonding (ARB) process was investigated. Mechanical properties and microstructural evaluation of the samples were evaluated by tensile and hardness tests and also transmission electron microscopy (TEM). It was found that differences in the mechanical properties during the ARB process of aluminum, copper, and brass were completely related to their stacking fault energies (SFEs). The tensile strength of the brass was much higher than that of the copper and aluminum at all ARB cycles. This was attributed to smaller grain size, higher dislocation density and higher twin density of the brass during the ARB process. It was realized that the ductility of the brass was higher than that of the copper for all ARB cycles. This was related to higher twin density in the brass sample. The hardness results were indicated that the saturation of dislocation density that occurred at the second, third, and fifth cycles for aluminum, copper, and brass, respectively. In fact, when the SFE was decreased, the number of ARB cycles for saturation of hardness increased.

  7. Effects of substrate materials on piezoelectric properties of BaTiO3 thick films deposited by aerosol deposition

    Science.gov (United States)

    Kawakami, Yoshihiro; Watanabe, Masato; Arai, Ken-Ichi; Sugimoto, Satoshi

    2016-10-01

    Piezoelectric properties were evaluated for annealed BaTiO3 (BT) films formed by aerosol deposition on yttria-stabilized zirconia (YSZ) and Fe-Cr-Al-based heat-resistant stainless steel (SS). The piezoelectric constants d 31 of BT films annealed at 1200 °C formed on YSZ and SS were -71 and -41 pm/V, respectively. The effects of different substrates on piezoelectric properties were investigated. The grain sizes of the films formed on YSZ and SS were 1.5 and 1.0 µm, respectively. X-ray diffraction analysis using a two-dimensional stress method revealed that the respective residual stresses of the films formed on YSZ and SS were -55 ± 8 and -32 ± 7 MPa, respectively, as compressive stresses. The c-domain structure was formed preferentially in the films on SS because of its larger compressive stress. These results suggest that differences in piezoelectric properties attributable to substrates result from differences in compressive stress magnitude and the volume fraction between the c- and a-domains.

  8. Environmentally suitable building materials. Grey energy and sustainability of buildings; Umweltgerechte Baustoffe. Graue Energie und Nachhaltigkeit von Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Pueschel, Danny; Teller, Matthias (eds.)

    2013-02-01

    The editors of the book under consideration present a compilation of contributions on environmentally suitable building materials from different perspectives. It provides an overview of 'Grey Energy' and a total energy balance of buildings. The most contributions are based on lectures of a symposium in April, 2011, in the Knobelsdorff School in Berlin-Spandau (Federal Republic of Germany).

  9. Building Halos by Digesting Satellites

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    We think galactic halos are built through the addition of material from the smaller subhalos of satellites digested by their hosts. Though most of the stars in Milky-Way-mass halos were probably formed in situ, many were instead accumulated over time, as orbiting dwarf galaxies were torn apart and their stars flung throughout the host galaxy. A recent set of simulations has examined this brutal formation process.In the authors simulations, a subhalo first falls into the host halo. At this point, it can either survive to present day as a satellite galaxy, or it can be destroyed, its stars scattering throughout the host halo. [Deason et al. 2016]Subhalo FateThere are many open questions about the growth of Milky-Way-mass halos from the accretion of subhalos. Which subhalos are torn apart and accreted, and which ones survive intact? Are more small or large subhalos accreted? Does subhalo accretion affect the host galaxys metallicity? And what can we learn from all of this about the Milky Ways formation history?In a recently published study, a team of scientists from Stanford University and SLAC National Accelerator Laboratory set out to answer these questions using a suite of 45 zoom-in simulations of Milky-Way-mass halos. Led by Alis Deason, the team tracked the accretion history of these 45 test galaxies to determine how their halos were built.Piecing Together HistoryDeason and collaborators reach several new and interesting conclusions based on the outcomes of their simulations.Average accreted stellar mass from destroyed dwarfs for each host halo, as a function of the time of the last major accretion event. More stellar mass is accreted in more recent accretion events. [Deason et al. 2016]Most of the stellar mass accreted by the Milky-Way-mass halos typically comes from only one or two destroyed dwarfs. The accreted dwarfs are usually low-mass if they were accreted early on in the simulation (i.e., in the early universe), and high-mass if they were accreted

  10. Environmental assessment of building properties - where natural and social sciences meet: The case of EcoEffect

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, G. [School of Chemical Sciences and Engineering, Royal Institute of Technology, Industrial Ecology, Teknikringen 34, SE 100 44 Stockholm (Sweden); Glaumann, M.; Eriksson, O. [Department of Technology and Built Environment, Building Quality, University of Gaevle, Soedra Sjoetullsgatan 3, SE 802 57 Gaevle (Sweden); Malmqvist, T. [Department of Infrastructure, Royal Institute of Technology, Built Environment Analysis, Drottning Kristinas vaeg 30, SE 100 44 Stockholm (Sweden); Kindembe, B. [White Arkitekter OEstgoetagatan 100, Box 4700, 116 92 Stockholm (Sweden); Hult, M.; Myhr, U. [Swedish University of Agricultural Sciences, Landscape Architecture, P.O. Box 7070, SE-750 07 Uppsala (Sweden)

    2007-03-15

    The EcoEffect method of assessing external and internal impacts of building properties is briefly described. The external impacts of manufacturing and transport of the building materials, the generation of power and heat consumed during the operation phase are assessed using life-cycle methodology. Emissions and waste; natural resource depletion and toxic substances in building materials are accounted for. Here methodologies from natural sciences are employed. The internal impacts involve the assessment of the risk for discomfort and ill-being due to features and properties of both the indoor environment and outdoor environment within the boundary of the building properties. This risk is calculated based on data and information from questionnaires; measurements and inspection where methodologies mainly from social sciences are used. Life-cycle costs covering investment and utilities costs as well as maintenance costs summed up over the lifetime of the building are also calculated. The result presentation offers extensive layers of diagrams and data tables ranging from an aggregated diagram of environmental efficiency to quantitative indicators of different aspects and factors. Environmental efficiency provides a relative measure of the internal quality of a building property in relation to its external impact vis-a-vis its performance relative to other building properties. (author)

  11. Optical properties of opaline photonic crystals covered by phase-change material Ge$_2$Sb$_2$Te$_5$

    CERN Document Server

    Dyakov, Sergey A; Voronov, Mikhail M; Yakovlev, Sergey A; Pevtsov, Alexander B; Akimov, Ilya A; Tikhodeev, Sergei G

    2016-01-01

    Reflection spectra from 3D opaline photonic crystals covered with phase-change material Ge$_2$Sb$_2$Te$_5$ are studied for different incident angles of light both experimentally and theoretically. We demonstrate that in presence of Ge$_2$Sb$_2$Te$_5$ chalcogenide capping layer, the reflection spectra have peaks associated with resonant Wood's anomalies. The experimental reflection spectra are in a good agreement with theoretical calculations performed by the Fourier modal method in the scattering matrix form. The electromagnetic near-field distributions of incident light at resonant frequencies are calculated.

  12. Finite Element Method for Analysis of Material Properties

    DEFF Research Database (Denmark)

    Rauhe, Jens Christian

    description of the material microstructure the finite element models must contain a large number of elements and this problem is solved by using the preconditioned conjugated gradient solver with an Element-By-Element preconditioner. Finite element analysis provides the volume averaged stresses and strains...... and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... which are used for the determination of the effective properties of the heterogeneous material. Generally, the properties determined using the finite element method coupled with X-ray microtomography are in good agreement with both experimentally determined properties and properties determined using...

  13. Nano-coatings Used in Building Materials%建筑纳米涂料崭露头角

    Institute of Scientific and Technical Information of China (English)

    杨忠敏

    2012-01-01

    To introduce the definition,application,status quo,properties,and market prospect of nano-coatings used in building materials.%介绍建筑纳米涂料定义,应用现状,性能优势和市场前景。

  14. A Review of Performance of Insulating Material in Buildings

    Directory of Open Access Journals (Sweden)

    Tazyeen Ahmad

    2014-11-01

    Full Text Available Today India is a fast developing economy; its GDP is increasing so the per capita income is also increasing. To meet the comfort requirements, especially in scorching summer and chilling winter in one form or other, we need modern amenities like air-conditioners and room heaters. Both need energy (electricity as a fuel to perform their function, so at individual level or at national view point, energy saving has to be done. The phrase will not be wrong: “Let the energy be saved, though the heaven falls”. In this paper, a review of insulation materials along with their properties has been presented. The information given is relevant and useful for architects and engineers. This paper also has glimpses of past and future of insulating materials.

  15. Old and Modern Construction Materials In Yemen: The Effect In Building Construction In Sana'a

    Directory of Open Access Journals (Sweden)

    ISSA A.M. Al_Kahtani

    2007-01-01

    Full Text Available Sana’a city in Yemen is one of the oldest cities in the worlds, which has different forms of building built with different types of materials. In the present work, the old and new forms of building construction and the building materials used in Sana’a, the sources available for the new material, the effects of new material usage on building forms are all presented with the advantages and disadvantages of each material. The old shapes of buildings in Yemen and the classical and modern forms of construction using different types of materials are considered in the study. Survey is used to investigate the building forms and material types in Sana’a. Several conclusions are submitted showing that, the new building material, such as concrete block, is preferred in building comparing with old material, such as stone, which makes it the best choice for the low income people but sometimes the limited resources make old material the only available choice. Several steps needed to develop and encourage the use of new building materials are recommended.

  16. Fundamental mass transfer modeling of emission of volatile organic compounds from building materials

    Science.gov (United States)

    Bodalal, Awad Saad

    In this study, a mass transfer theory based model is presented for characterizing the VOC emissions from building materials. A 3-D diffusion model is developed to describe the emissions of volatile organic compounds (VOCs) from individual sources. Then the formulation is extended to include the emissions from composite sources (system comprising an assemblage of individual sources). The key parameters for the model (The diffusion coefficient of the VOC in the source material D, and the equilibrium partition coefficient k e) were determined independently (model parameters are determined without the use of chamber emission data). This procedure eliminated to a large extent the need for emission testing using environmental chambers, which is costly, time consuming, and may be subject to confounding sink effects. An experimental method is developed and implemented to measure directly the internal diffusion (D) and partition coefficients ( ke). The use of the method is illustrated for three types of VOC's: (i) Aliphatic Hydrocarbons, (ii) Aromatic Hydrocarbons and ( iii) Aldehydes, through typical dry building materials (carpet, plywood, particleboard, vinyl floor tile, gypsum board, sub-floor tile and OSB). Then correlations for predicting D and ke based solely on commonly available properties such as molecular weight and vapour pressure were proposed for each product and type of VOC. These correlations can be used to estimate the D and ke when direct measurement data are not available, and thus facilitate the prediction of VOC emissions from the building materials using mass transfer theory. The VOC emissions from a sub-floor material (made of the recycled automobile tires), and a particleboard are measured and predicted. Finally, a mathematical model to predict the diffusion coefficient through complex sources (floor adhesive) as a function of time was developed. Then this model (for diffusion coefficient in complex sources) was used to predict the emission rate from

  17. SEMICONDUCTOR MATERIALS Electrical and optical properties of deep ultraviolet transparent conductive Ga2O3/ITO films by magnetron sputtering

    Science.gov (United States)

    Jianjun, Liu; Jinliang, Yan; Liang, Shi; Ting, Li

    2010-10-01

    Ga2O3/ITO films were prepared by magnetron sputtering on quartz glass substrates. The transmittance and sheet resistance of ITO films and Ga2O3/ITO films were measured by using a double beam spectrophotometer and four point probes. The effect of the ITO layer and Ga2O3 layer thickness on the electrical and optical properties of Ga2O3/ITO bi-layer films were investigated in detail. Ga2O3 (50 nm)/ITO (23 nm) films exhibited a low sheet resistance of 323 Ω/□ and high deep ultraviolet transmittance of 77.6% at a wavelength of 280 nm. The ITO layer controls the ultraviolet transmittance and sheet resistance of Ga2O3/ITO films. The Ga2O3 layer thickness has a marked effect on the transmission spectral shape of Ga2O3/ITO films in the violet spectral region.

  18. Infrared Emissivity Measurements for Mineral Materials and Materials Used for Infrastructure Building

    Science.gov (United States)

    Monchau, Jean-Pierre; Ibos, Laurent; Marchetti, Mario; Dumoulin, Jean; Feuillet, Vincent; Candau, Yves; Ausset, Patrick

    2013-04-01

    The knowledge of the infrared emissivity of materials used in buildings, civil engineering structures and soils studies is useful for two specific approaches. Firstly, quantitative diagnosis of buildings or civil engineering infrastructures using infrared thermography requires the emissivity value of materials in the spectral bandwidth of the camera. For instance emissivity in the band III domain is required when using cameras with uncooled detectors like micro-bolometers arrays. The knowledge of emissivity is in that case needed for computation of surface temperature fields. Secondly, accurate thermal balance requires the emissivity value in a large wavelength domain. This is for instance the case for computing roads surface temperature to predict ice forming. A measurement of emissivity just after construction and a regular survey of its variations due to ageing or soiling of surfaces could be useful in many situations like thermal mapping of roads or building insulation diagnosis. For mineral materials, a lot of studies exist, but often in situ value of emissivity could be different. Mineral materials are not pure, and could be soiled. Real value obtained with a field device is required. The use of portable emissivity measurement devices is required for that purpose. Thus, two devices using the indirect measurement method were developed. The emissivity value is deduced from the measurement of the reflectivity of the material under study after calibration with a highly reflective surface. The first device uses a slow modulation frequency well adapted to laboratory measurements whereas the second one is a portable system using a faster modulation frequency authorizing outdoor measurements. Both devices allow measurements in broad band (1 to 40μm) and band III (8 to 14μm). Experiments were performed on a large number of materials commonly used in buildings and civil engineering structures. For instance at that time 180 samples of different pavement wearing course

  19. Evidence on dynamic effects in the water content – water potential relation of building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2008-01-01

    the required material functions, i.e. the moisture storage characteristic and the liquid water conductivity, from measured basic properties. The current state of the art in material modelling as well as the corresponding transport theory implies that the moisture transport function is unique...... and that the moisture storage characteristic is process dependent with varying significance for the numerical simulation. On the basis of different building materials, a comprehensive instantaneous profile measurement study has been accomplished. Profiles of water content and relative humidity were obtained during...... a series of adsorption and desorption processes. The data provides clear evidence that the water content – water potential relationship is not only dependent on the process history, but also on the process dynamics. The higher moisture potential gradients were induced, the larger was the deviation between...

  20. Quality Improvement of Granular Wastes-The Effective Way to Recycle Secondary Raw Building Materials

    Institute of Scientific and Technical Information of China (English)

    XING Wei-hong; Charles Hendriks; Alex Fraaij; Peter Rem

    2004-01-01

    Granular wastes have negative effects on the environment due to contamination. On the other hand, stony components in granular wastes have a potential good perspectives for utilization in civil engineering works as secondary raw building materials. To reuse such materials without environmental risks, all contaminants must be removed or reduced to an acceptable level. Therefore liberation of materials is an important step in waste treatment. For this purpose, separation and cleansing techniques are suitable. Based on the analysis of contaminants in wastes, it is discussed how to select suitable techniques. The rules for technique selection and processes for quality improvement are set up. To evaluate the environmental quality and technical quality of output products, it is necessary to check leaching behaviours and physical properties.

  1. The interface bonding mechanism and related mechanical properties of Mg/Al compound materials fabricated by insert molding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.C.; Hu, J.; Nie, X.Y. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Li, H.X., E-mail: hxli@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Du, Q. [SINTEF Materials and Chemistry, Trondheim (Norway); Zhang, J.S.; Zhuang, L.Z. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-05-21

    To overcome the shortcomings of magnesium alloys such as low strength at an elevated temperature and poor corrosion resistance, the fabrication of Mg/Al compound materials has attracted more and more attention in the recent years. Among the various fabrication methods such as diffusion bonding, friction-stir welding, and fusion welding, insert molding technique has shown some advantages such as low production cost, short processing time and the ability of producing complex shape. However, there are only a few documents about this preparation method. In this paper, the corresponding study is carried out via inserting 6061 aluminum alloy into AZ31 magnesium alloy melt. The interface bonding mechanism and its mechanical behavior are investigated as well. It has been found that a good metallurgical bonding can be formed at the interface, which consists of three layers, i.e., Al{sub 3}Mg{sub 2}, Al{sub 12}Mg{sub 17}, and Al{sub 12}Mg{sub 17}+(Mg) eutectic structure. The average shear strength is 20 MPa, which is close to the reported shear strength of the samples prepared by other methods. This research provides a new insight for the fabrication of Mg/Al compound materials.

  2. Study of the mechanical properties of photo-cured epoxy resin fabricated by stereolithography process

    Directory of Open Access Journals (Sweden)

    Nattapon Chantarapanich

    2013-02-01

    Full Text Available Stereolithography process enables various freeform geometries to be manufactured, which are beneficial to manyresearch and development fields, particularly on medicine. The mechanical properties of stereolithography models can begenerally but not only influenced by the material characteristics, but also by the method of manufacturing. Since thestereolithography process involves building three dimensional objects by depositing material layer-by-layer as well as thepost-curing by ultraviolet light, it is therefore possible for stereolithography models to exhibit a directional dependence of themechanical properties. The objectives of the study focused on the influence of build orientations and ultraviolet post-curingperiod on the mechanical properties. In the experiments, Watershed 11122 commercial epoxy photo-curable resin was used.The in-house developed stereolithography machine of the National Metal and Materials Technology Center of Thailand wasused to fabricate tensile test specimens (American Society for Testing Materials Standard D638 with different build orientations. Main build orientations included flat and edge. Each main build orientation contained three sub-build orientationswhich were 0 degree, 45 degrees, and 90 degrees to the x-axis. The mechanical properties including elastic modulus, ultimatetensile strength, elongation at ultimate tensile strength, and elongation at break were evaluated by tensile test with a universal testing machine. The results indicated that the mechanical properties of specimens were slightly different among thesub-build orientations. The larger differences of mechanical properties of specimens were found between main build orientations. The mechanical strength of specimens improved corresponding to the increase of UV post-curing period ranged from0 to 4 hours whereas the post-curing period using 4 hours onward, the mechanical properties of specimens were nearlyconstant.

  3. Microbes on building materials - Evaluation of DNA extraction protocols as common basis for molecular analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ettenauer, Joerg D., E-mail: joerg.ettenauer@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Pinar, Guadalupe, E-mail: Guadalupe.Pinar@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Lopandic, Ksenija, E-mail: Ksenija.Lopandic@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Spangl, Bernhard, E-mail: Bernhard.Spangl@boku.ac.at [University of Natural Resources and Life Sciences, Department of Landscape, Spatial and Infrastructure Science, Institute of Applied Statistics and Computing (IASC), Gregor Mendel-Str. 33, A-1180 Vienna (Austria); Ellersdorfer, Guenther, E-mail: Guenther.Ellersdorfer@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Voitl, Christian, E-mail: Christian.Voitl@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Sterflinger, Katja, E-mail: Katja.Sterflinger@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria)

    2012-11-15

    The study of microbial life in building materials is an emerging topic concerning biodeterioration of materials as well as health risks in houses and at working places. Biodegradation and potential health implications associated with microbial growth in our residues claim for more precise methods for quantification and identification. To date, cultivation experiments are commonly used to gain insight into the microbial diversity. Nowadays, molecular techniques for the identification of microorganisms provide efficient methods that can be applied in this field. The efficiency of DNA extraction is decisive in order to perform a reliable and reproducible quantification of the microorganisms by qPCR or to characterize the structure of the microbial community. In this study we tested thirteen DNA extraction methods and evaluated their efficiency for identifying (1) the quantity of DNA, (2) the quality and purity of DNA and (3) the ability of the DNA to be amplified in a PCR reaction using three universal primer sets for the ITS region of fungi as well as one primer pair targeting the 16S rRNA of bacteria with three typical building materials - common plaster, red brick and gypsum cardboard. DNA concentration measurements showed strong variations among the tested methods and materials. Measurement of the DNA yield showed up to three orders of magnitude variation from the same samples, whereas A260/A280 ratios often prognosticated biases in the PCR amplifications. Visualization of the crude DNA extracts and the comparison of DGGE fingerprints showed additional drawbacks of some methods. The FastDNA Spin kit for soil showed to be the best DNA extraction method and could provide positive results for all tests with the three building materials. Therefore, we suggest this method as a gold standard for quantification of indoor fungi and bacteria in building materials. -- Highlights: Black-Right-Pointing-Pointer Up to thirteen extraction methods were evaluated with three

  4. Size-Dependent Materials Properties Toward a Universal Equation

    Directory of Open Access Journals (Sweden)

    Guisbiers G

    2010-01-01

    Full Text Available Abstract Due to the lack of experimental values concerning some material properties at the nanoscale, it is interesting to evaluate this theoretically. Through a “top–down” approach, a universal equation is developed here which is particularly helpful when experiments are difficult to lead on a specific material property. It only requires the knowledge of the surface area to volume ratio of the nanomaterial, its size as well as the statistic (Fermi–Dirac or Bose–Einstein followed by the particles involved in the considered material property. Comparison between different existing theoretical models and the proposed equation is done.

  5. Experimental study on the material dynamic fracture properties by Instrumented Charpy Impact test with single specimen method

    Science.gov (United States)

    Jian, F.; Fulian, D.; Chengzhong, W.

    2003-09-01

    With the determination of load-time curve recorded by Amsler/Roell RKP 450 Instrumented Charpy Impact test and based on the Newton's Second Law, Impact character of a single standard V-notch specimen of X70 pipeline steel under the low temperature -70 ^{circ}C was investigated by studying the impact energy distribution. It was revealed that maximum load point (Fm point) was not exact the dynamic crack initiation, which was detected somewhere prior and very close to Fm point by using Compliance Changing Rate method. This fact was also confirmed by Dynamic CTOD method. That is to say, Impact energy related to the Fm point (i.e. Em) consists not only the crack initiation energy Ei, but a small part of crack extension energy as well. Ratio of Ei/Em was found to be 0.90 just applicable to the material used here. Dynamic fracture toughness JJd was then estimated by modified Rice equation. Crack extension behavior and dynamic crack growth resistance curve (J-Δa) during stable crack propagation period was carefully analyzed by Key Curve method. Finally, methods for evaluating tearing module Tmat, and CTOD curve under the impact test were also briefly introduced in the paper.

  6. Comparative Thermal Analysis of Different Cool Roof Materials for Minimizing Building Energy Consumption

    Directory of Open Access Journals (Sweden)

    Y. Anand

    2014-01-01

    Full Text Available The roof and walls in the urban areas contribute to major share in the absorption of solar radiations and also retard the outflow of the absorbed radiation from the building envelope, thereby increasing the global warming by inducing the heat island effect. The impact of using cool roof technologies on the thermal comfort of the office buildings has been estimated. Cool roofs reduce electricity consumption for maintaining the temperature of the air-conditioned buildings in the comfort level and also increase comfort in buildings merely not relying completely on cooling equipment. The cool roofs and cool pavements, however, can mitigate summer urban heat islands by improving indoor air quality and comfort. The thermal analysis of different materials has been carried out to analyze the impact of the rate of heat transfer on the building envelope and the results obtained indicate that different cool roof techniques are beneficial in maintaining the comfort level of the building which purely depends on the ambient temperature conditions.

  7. A quantitative structure- property relationship of gas chromatographic/mass spectrometric retention data of 85 volatile organic compounds as air pollutant materials by multivariate methods

    Directory of Open Access Journals (Sweden)

    Sarkhosh Maryam

    2012-05-01

    Full Text Available Abstract A quantitative structure-property relationship (QSPR study is suggested for the prediction of retention times of volatile organic compounds. Various kinds of molecular descriptors were calculated to represent the molecular structure of compounds. Modeling of retention times of these compounds as a function of the theoretically derived descriptors was established by multiple linear regression (MLR and artificial neural network (ANN. The stepwise regression was used for the selection of the variables which gives the best-fitted models. After variable selection ANN, MLR methods were used with leave-one-out cross validation for building the regression models. The prediction results are in very good agreement with the experimental values. MLR as the linear regression method shows good ability in the prediction of the retention times of the prediction set. This provided a new and effective method for predicting the chromatography retention index for the volatile organic compounds.

  8. Optimization of a phase change material wallboard for building use

    Energy Technology Data Exchange (ETDEWEB)

    Kuznik, Frederic; Virgone, Joseph [Thermal Sciences Center of Lyon, CNRS, UMR 5008, INSA de Lyon, Universite Lyon 1, Bat Freyssinet, 40 Rue des Arts, 69621 Villeurbanne Cedex (France); Noel, Jean [Free-lance Scientific Software Developer, 15 Place Carnot, 69002 Lyon (France)

    2008-08-15

    In construction, the use of phase change materials (PCM) allows the storage/release of energy from the solar radiation and/or internal loads. The application of such materials for lightweight construction (e.g., a wood house) makes it possible to improve thermal comfort and reduce energy consumption. A wallboard composed of a new PCM material is investigated in this paper to enhance the thermal behavior of a lightweight internal partition wall. The paper focuses on the optimization of phase change material thickness. The in-house software CODYMUR is used to optimize the PCM wallboard by the means of numerical simulations. The results show that an optimal PCM thickness exists. The optimal PCM thickness value is then calculated for use in construction. (author)

  9. Aspects regarding the use of the industrial wastes as raw materials for the manufacture of building materials

    Directory of Open Access Journals (Sweden)

    R. G. Popa

    2015-01-01

    Full Text Available In this article are present the results of physical and chemical characterisation activities, of industrial wastes: ash and slag, drilling sludge, metallurgical slag. Also, were established the conditions in which these industrial waste types could be used as raw materials for manufacture some building materials. The ash can be assimilated with a lightweight aggregate similar to the natural sands, the oil-well drilling sludge presents an advanced similarity with the suspensions of fine particles of sand clays, the steel melting slag in electric furnace has the characteristics of a dense granular aggregate and the secondary treatment steel slag is characterized by the high content of calcium oxide.

  10. Mechanical properties of low dimensional materials

    Science.gov (United States)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  11. Structure and properties of layered inorganic materials

    Institute of Scientific and Technical Information of China (English)

    Xue Duan

    2010-01-01

    @@ Inorganic layered materials are a class of advanced functional materials that have attracted considerable attention by virtue of their practical applications in a wide variety of fields. Sys-tematic studies of structure, design, synthesis, and fabrication processing may extend the range of practical utility of inor-ganic layered functional materials, in areas such as food industry,chemical industry, energy engineering, environmental engineer-ing, drug and gene delivery, electronics technology, and materials protection.

  12. Nanostructured Hydrogenated Silicon Films by Hot-Wire Chemical Vapor Deposition: the Influence of Substrate Temperature on Material Properties

    Directory of Open Access Journals (Sweden)

    V.S. Waman

    2011-01-01

    Full Text Available Thin films of hydrogenated nanocrystalline silicon are prepared at reasonably higher deposition rates (9-13 Å/s by indigenously fabricated hot-wire chemical vapor deposition system at various substrate temperatures (Ts. In this paper we report extensively studied structural, optical and electrical properties of these films by Fourier transform infrared (FTIR spectroscopy, low angle X-ray diffraction (low angle XRD, micro-Raman spectroscopy and UV-Visible spectroscopy. The low angle XRD and micro-Raman spectroscopy analysis indicate amorphous-to-nanocrystalline transition occurred at Ts = 300 °C. It is observed that volume fraction of crystallites and its size increases with increase in Ts. The low angle XRD study also shows nc-Si:H films with well-identified lattice planes of (111 orientation. In addition, it is observed from the FTIR spectroscopy that the hydrogen is incorporated in the film mainly in Si-H2 and (Si-H2n complexes. The nc-Si:H films with low hydrogen content (< 4 at. % and wide band gap (1.83-1.89 eV and low refractive index (< 3 is useful for various device applications.

  13. High Strength Phosphogypsum and Its Use as a Building Material

    Science.gov (United States)

    Kanno, Wellington Massayuki; Rossetto, Hebert Luis; de Souza, Milton Ferreira; Máduar, Marcelo Francis; de Campos, Marcia Pires; Mazzilli, Barbara Paci

    2008-08-01

    A new process (patent applied) that works equally well with both plaster of mineral gypsum and phosphogypsum for the preparation of gypsum components, UCOS, has been developed. The process consists of the following steps: humidification of plaster by fine water droplets, uni-axial compression, hydration reaction and drying. Strong hydrogen bonds develop among the crystals together with adhesion provided by confined water that accounts for nearly 70% of the adhesion forces. By reducing the plaster to water ratio to close the minimum necessary, new features are generated. An experimental house has been constructed, in which walls and ceilings have been built of gypsum and phosphogypsum. Since phosphogypsum potentially contain radioactive elements, the application of an activity concentration index to the phosphogypsum employed in the building was carried out.

  14. Fire Safety Aspects of Polymeric Materials. Volume 7. Buildings

    Science.gov (United States)

    1979-01-01

    Custodial Buildings 136 4.5.5 Retail Stores, Malls, etc. 138 l’ 4.5.6 Restaurants and Nightclubs 4.5.7 Public Assembly Occupancies - Auditoria , Theaters... auditoria , theaters, exhibition halls, arenas, transportation terminals; educational buildings and indus- trial buildings. Many of the fire safety...usage are developed. 4.5.7 Public Assembly Occupancies - Auditoria , Theaters, Exhibition Halls, Arenas, Transportation Terminals, Etc. The factors

  15. On the Mechanical Properties of Hybrid Aluminium 7075 Matrix Composite Material Reinforced with SiC and TiC Produced by Powder Metallurgy Method

    Directory of Open Access Journals (Sweden)

    S. Pradeep Devaneyan

    2017-01-01

    Full Text Available Metal matrix composites are widely used in components of various components of industrial equipment because of their superior material properties like high stiffness to weight ratio and high impact strength and fracture toughness while compared to the conventional material. Due to the concepts of high strength to low weight ratio, Al 7075 was extensively applied in aircraft engine and wings. Even if Al 7075 has higher hardness, higher strength, excellent wear resistance, and high-temperature corrosion protection, it is in need of further enhancement of properties for increasing its applicability. This paper presents the mechanical behavior of aluminium 7075 reinforced with Silicon Carbide (SiC and Titanium Carbide (TiC through powder metallurgy route. These specimens were produced by powder metallurgy method. The hybrid composite was made by Al 7075 alloy as the matrix with Silicon Carbide and Titanium Carbide as reinforcement. Silicon Carbide and Titanium Carbide are mixed in different weight ratio based on the design matrix formulated through a statistical tool, namely, Response Surface Methodology (RSM. Enhanced mechanical properties have been obtained with 90% of Al 7075, 4% of TiC, and 8% of SiC composition in the composite. Coefficient of friction appears to be more which has been determined by ring compression test.

  16. Preparation and Properties of Paraffin/TiO2/Active-carbon Composite Phase Change Materials

    Directory of Open Access Journals (Sweden)

    HAO Yong-gan

    2016-11-01

    Full Text Available A novel composite phase change materials (PCMs of paraffin/TiO2/active-carbon was prepared by a microemulsion method, where paraffin acted as a PCM and titanium dioxide (TiO2 as matrix material, and a small amount of active carbon was added to improve the thermal conductivity. The compositions, morphology and thermal properties of the paraffin/TiO2/active-carbon composite PCMs were characterized by XRD, SEM, TGA and DSC respectively. The shape stability during phase change process of this composite was also tested. The results show that paraffin is well encapsulated by TiO2 matrix, and thus exhibiting excellent shape-stabilized phase change feature. Besides, this composite PCM also presents superhydrophobic property. Therefore, these multifunctional features will endow PCMs with important application potential in energy efficient buildings.

  17. Steady-State Thermal Properties of Rectangular Straw-Bales (RSB for Building

    Directory of Open Access Journals (Sweden)

    Leonardo Conti

    2016-10-01

    Full Text Available Straw is an inevitable product of cereal production and is available in huge quantities in the world. In order to use straw-bales as a building material, the characteristic values of the thermal performances should be determined. To not lose the benefits of the cheapness and sustainability of the material, the characteristics must be determined with simple and inexpensive means and procedures. This research aims to implement tools and methods focused at the determination of the thermal properties of straw-bales. For this study, the guidelines dictated by ASTM and ISO were followed. A measurement system consisting of a Metering Chamber (MC was realized. The MC was placed inside a Climate Chamber (CC. During the test, a known quantity of energy is introduced inside MC. When the steady-state is reached, all the energy put into MC passes through its walls in CC, where it is absorbed by the air-conditioner. A series of thermopiles detect the temperature of the surfaces of the measurement system and of the specimen. Determining the amount of energy transmitted by the various parts of MC and by the specimen, it is possible to apply Fourier’s law to calculate the thermal conductivity of the specimen.

  18. Identification of construction material pathologies in historical buildings using infrared thermography

    OpenAIRE

    Lerma Elvira, Carlos; Mas Tomas, Maria De Los Angeles; Gil Benso, Enrique; VERCHER SANCHIS, JOSÉ MARÍA

    2013-01-01

    [en] Study of historic buildings requires a pathology analysis of the construction materials used in order to define their conservation state. Usually we can find capillary moisture, salt crystallization or density differences by deterioration. Sometimes this issue is carried out by destructive testing which determine materials’ physical and chemical characteristics. However, they are unfavorable regarding the building’s integrity, and they are sometimes difficult to implement. This paper pre...

  19. Verification of some building materials as gamma-ray shields.

    Science.gov (United States)

    Mann, Kulwinder Singh; Singla, Jyoti; Kumar, Vipan; Sidhu, G S

    2012-08-01

    The shielding properties for gamma rays of a few low Z materials were investigated. The values of the mass attenuation coefficient, equivalent atomic number, effective atomic number, exposure buildup factor and energy absorption buildup factor were calculated and used to estimate the shielding effectiveness of the samples under investigation. It has been observed that the shielding effectiveness of a sample is directly related to its effective atomic number. The shielding character of any sample is a function of the incident photon energy. Good shielding behaviour has been verified in soil samples in the photon energy region of 0.015-0.30 MeV and of dolomite in 3-15 MeV. The results have been shown graphically with more useful conclusions.

  20. Use of Secondary Building Materials in EU - Different National Strategies; Anvaendning av restprodukter inom EU - Olika nationella strategier

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Gunilla; Wilhelmsson, Anna (Ramboell Sverige AB, Goeteborg (Sweden))

    2008-06-15

    The aim of this report is to show how use of waste/secondary building materials/aggregates for construction purposes is managed in 8 different countries within the European Union. A short review is done how national legislations and guidelines support, and restrict, reuse in an environmentally responsible way, and experiences from and control of some construction purposes. Different national strategies are used in the studied countries, depending on their previous experiences of reuse of secondary building materials, natural conditions and energy systems, and administrative traditions. In general the actual regulations are built on high demands on protection of water and soil resources and protection of health and environment, with the pronounced aim of supporting waste reuse for construction purposes. In most countries regulations of environmentally controlled use of secondary building materials contains these elements as a basis: - Inert waste are often free for construction use; - Specific waste fractions are allowed; - Specified use is defined; - Different material categories might be used/prescribed for different purposes; - Ashes of different origin is an important source for secondary aggregates; - Quality control of materials and construction is essential; - Specified precaution or remediation are prescribed, according to the purpose; - Reporting or simplified permit processes are prescribed. There is generally a specific regulation concerning use of secondary materials. If used in other circumstances than prescribed/listed, it will normally need a regular environmental permit process. Important experiences are that proper design and control of the construction is essential, based on know-how, research and feed-back from experience. It exists a broad base of knowledge in the studied European countries, including material properties, leaching behaviour and testing methods for a wide range of materials. Many successful ways of promoting cooperation between

  1. Impact of temperature and humidity on chemical and sensory emissions from building materials.

    Science.gov (United States)

    Fang, L; Clausen, G; Fanger, P O

    1999-09-01

    The chemical and sensory emissions from five building materials (carpet, polyvinyl chloride (PVC) flooring, sealant, floor varnish and wall paint) were tested under different combinations of temperature and relative humidity in the ranges 18-28 degrees C and 30-70% relative humidity (RH). The experiment was performed in a climate chamber where a specially designed test system was built to study emissions from the five materials. The test system could provide different temperatures and humidities of air around the materials, while the air, after being polluted by the emissions from the materials, could be reconditioned to 23 degrees C and 50% RH for sensory assessments. The experiment was designed to separate the direct impact of temperature and humidity on perception from the impact on sensory emission. The study found little influence of temperature on the emissions from the five materials whether expressed in chemical or sensory terms. The effect of humidity was found to be significant only for the waterborne materials--floor varnish and wall paint. Compared with the direct impact of temperature and humidity on the perception of air quality, the impact of temperature and humidity on sensory emissions from the building materials has a secondary influence on perceived air quality.

  2. Assessment of suitability of some chosen functions for describing of sorption isotherms in building materials

    Science.gov (United States)

    Stolarska, Agata; Garbalińska, Halina

    2016-10-01

    This paper presents results of tests and studies conducted on six common building materials, used for constructing and finishing of external walls. These included: ceramic brick, silicate brick, autoclaved aerated concrete, cement mortar, cement-lime mortar and cement mortar modified with polypropylene fibers. Each of these materials is distinguished by the other structure of porousness, affecting both the course of sorption processes and the isotherms obtained. At first, measurements of moisture sorption kinetics at temperatures of 5, 20 and 35 °C were performed, each time at six levels of relative humidity. Then, when the sorption processes expired, equilibrium moisture sorption values were determined for the materials in 18 individual temperature and humidity conditions. The experimental data were used to determine the sorption isotherm courses for each material at the three temperatures. Then, theoretical analysis was performed in order to determine, which of the models available in the literature described the sorption isotherms of the concerned building materials the best. For each material and each of the three temperature values, twenty-four equations were tested. In each case, those of them were identified which ensured the best matching between the theoretical courses and the experimental data. The obtained results indicate that the Chen's model proved to be the most versatile. It ensured a detailed description of the sorption isotherms for each material and temperature tested.

  3. Build Skills by Doing History

    Science.gov (United States)

    Monte-Sano, Chauncey

    2012-01-01

    No Child Left Behind has profoundly limited the teaching of history over the past 10 years. Now, the Common Core State Standards offers an opportunity to reverse this decline by giving history a more prominent place in the school curriculum alongside literacy goals. Learning history and argumentative writing is key to developing analytical ways of…

  4. Large difference between the magnetic properties of Ba and Ti co-doped BiFeO3 bulk materials and their corresponding nanoparticles prepared by ultrasonication

    Science.gov (United States)

    Ahmmad, Bashir; Kanomata, Kensaku; Koike, Kunihiro; Kubota, Shigeru; Kato, Hiroaki; Hirose, Fumihiko; Billah, Areef; Jalil, M. A.; Basith, M. A.

    2016-07-01

    The ceramic pellets of the nominal compositions Bi0.7Ba0.3Fe1-x Ti x O3 (x  =  0.00-0.20) were prepared initially by standard solid state reaction technique. The pellets were then ground into micrometer-sized powders and mixed with isopropanol in an ultrasonic bath to prepare nanoparticles. The x-ray diffraction patterns demonstrate the presence of a significant number of impurity phases in bulk powder materials. Interestingly, these secondary phases were completely removed due to the sonication of these bulk powder materials for 60 minutes. The field and temperature dependent magnetization measurements exhibited significant difference between the magnetic properties of the bulk materials and their corresponding nanoparticles. We anticipate that the large difference in the magnetic behavior may be associated with the presence and absence of secondary impurity phases in the bulk materials and their corresponding nanoparticles, respectively. The leakage current density of the bulk materials was also found to suppress in the ultrasonically prepared nanoparticles compared to that of bulk counterparts.

  5. Development and application of new building materials%新型建筑材料的发展及应用

    Institute of Scientific and Technical Information of China (English)

    王兰

    2015-01-01

    我国新型建材工业是伴随着改革开放的不断深入而发展起来的.新型建材具有轻质、高强度、保温、节能等特点.本文从新型建筑材料的现状出发,重点探讨了新型建筑材料的发展及应用.%New building materials industry in China is accompanied by the deepening of the reform and opening up and developed. New building materials are lightweight,high strength,insulation,energy-saving features,In this paper,starting from the present situation of new building materials,Focus on the development and application of new building materials are discussed.

  6. 10 CFR 435.3 - Material incorporated by reference.

    Science.gov (United States)

    2010-01-01

    ... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435... this material by the standard-setting organization will not affect the DOE building energy...

  7. Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation

    Science.gov (United States)

    Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.

  8. Radon diffusion studies in some building materials using solid state nuclear track detectors

    CERN Document Server

    Singh, S; Singh, B; Singh, J

    1999-01-01

    LR-115 plastic track detector has been used to study radon diffusion through some building materials, viz. cement, soil, marble chips, sand and lime as well as air. Diffusion constant and diffusion length is calculated for all these materials.

  9. Study on characteristics of double surface VOC emissions from dry flat-plate building materials

    Institute of Scientific and Technical Information of China (English)

    WANG Xinke; ZHANG Yinping; ZHAO Rongyi

    2006-01-01

    This paper sets up an analytic model of double surface emission of volatile organic compound (VOC) from dry, flat-plate building materials. Based on it, the influence of factors including air change rate, loading factor of materials in the room, mass diffusion coefficient, partition coefficient, convective mass transfer coefficient, thickness of materials, asymmetric convective flow and initial VOC concentration distribution in the building material on emission is discussed. The conditions for simplifying double surface emission into single surface emission are also discussed. The model is helpful to assess the double surface VOC emission from flat-plate building materials used in indoor furniture and space partition.

  10. ENVIRONMENTAL ETHICS IN GOVERNING RECYCLED MATERIAL STYROFOAM FOR BUILDING HUMAN HABITAT

    Directory of Open Access Journals (Sweden)

    Kartini Aboo Talib Khalid

    2012-01-01

    Full Text Available Styrofoam is extensively used in food packaging businesses throughout the world. Its light weight makes it a favorite food package for entrepreneurs in food businesses. However, unlike its content, the food, which decomposed easily after some time, Styrofoam remains un-decomposed due to its oil-based structure. This study discusses the prospects of re-utilization of Styrofoam as environmentally friendly recycled material. This study uses the data from an exploratory survey on the usage of Styrofoam for food packaging-conducted in the district of Bangi, Malaysia-to highlight the magnitude of Styrofoam-waste generated in these activities. The study shows that Styrofoam can be used in combination of cement and concrete to produce a light weight, energy efficient and strong building can be built. Since there are a lot of supplies of waste Styrofoam, this material can be re-used in as part of construction material. In addition the use of Styrofoam in construction could be an innovative way for constructing termite’s free buildings. This study shows that recycling Styrofoam can assist in building environmentally friendly and cost efficient human habitat. Styrofoam can be channeled for a good cause and ways of governing the recycled materials. As such, the industrial waste generated by Styrofoam can be turned into other uses, thus reducing its environmental problems.

  11. Radon-222 exhalation from Danish building materials: H + H Industri A/S results

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.E

    1999-08-01

    This report describes a closed-chamber method for laboratory measurements of the rate at which radon-222 degasses (exhales) from small building material samples. The chamber is 55 L in volume and the main sample geometry is a slab of dimensions 5x30x30 cm{sup 3} . Numerical modelling is used to assess (and partly remove) the bias of the method relative to an ideal measurement of the free exhalation rate. Experimental results obtained with the method are found to be in agreement with the results of an open-chamber method (which is subject to different sources of error). Results of radon-222 exhalation rate measurements for 10 samples of Danish building materials are reported. Samples include ordinary concrete, lightweight aggregate concrete, autoclaved aerated concrete, bricks, and gypsum board. The maximum mass-specific exhalation rate is about 20 mBq h{sup -1} kg{sup -1}. Under consideration of the specific applications of the investigated building materials, the contribution to the indoor radon-222 concentration in a single-family reference house is calculated. Numerical modelling is used to help extrapolate the laboratory measurements on small samples to full scale walls. Application of typical materials will increase the indoor concentration by less than 10 Bq m{sup -3}. (au) 6 tabs., 15 ills., 29 refs.

  12. Potential Damage to Modern Building Materials from 21st Century Air Pollution

    Directory of Open Access Journals (Sweden)

    Peter Brimblecombe

    2010-01-01

    Full Text Available The evolution of damage to building materials has been estimated for the 21st century, with a particular focus on aluminum, zinc, copper, plastic, paint, and rubber in urban areas. We set idealized air pollution and climates to represent London and Prague across the period 1950–2100. Environmental parameters were used to estimate future recession, corrosion, and loss of properties through published damage or dose-response functions. The 21st century seems to provide a less aggressive environment for stone and metals than recent times. Improvements in air quality are the most relevant drivers for this amelioration. Changes in climate predicted for the 21st century do not alter this picture. On the other hand, polymeric materials, plastic, paint, and rubber might show slightly increased rates of degradation, to some extent the result of enhanced oxidant concentrations, but also the possibility of contributions from more solar radiation.

  13. Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry.

    Science.gov (United States)

    Ravisankar, R; Vanasundari, K; Chandrasekaran, A; Rajalakshmi, A; Suganya, M; Vijayagopal, P; Meenakshisundaram, V

    2012-04-01

    The natural level of radioactivity in building materials is one of the major causes of external exposure to γ-rays. The primordial radionuclides in building materials are one of the sources of radiation hazard in dwellings made of these materials. By the determination of the radioactivity level in building materials, the indoor radiological hazard to human health can be assessed. This is an important precautionary measure whenever the dose rate is found to be above the recommended limits. The aim of this work was to measure the specific activity concentration of (226)Ra, (232)Th and (40)K in commonly used building materials from Namakkal, Tamil Nadu, India, using gamma-ray spectrometer. The radiation hazard due to the total natural radioactivity in the studied building materials was estimated by different approaches. The concentrations of the natural radionuclides and the radium equivalent activity in studied samples were compared with the corresponding results of different countries. From the analysis, it is found that these materials may be safely used as construction materials and do not pose significant radiation hazards.

  14. Properties of nanoclay PVA composites materials

    Directory of Open Access Journals (Sweden)

    Mohamed H. M. Ali

    2012-03-01

    Full Text Available Polyvinyl alcohol (PVA/ Na-rich Montmorillonite (MMT nanocomposites were prepared using solution method to create polymer-clay nanocomposite (PCN material. The PCN material was studied using X-ray diffraction (XRD, demonstrating polymer-clay intercalation that has a high d-spacing (lower diffraction angles in the PCN XRD pattern, compared to the pure MMT clay XRD pattern, which has a low d-spacing (high diffraction angles. The nano-scanning electron microscope (NSEM was used to study the morphological image of the PVA, MMT and PCN materials. The results showed that intercalation that took place between the PVA and MMT produced the PCN material. The mechanical properties of the pure PVA and the intercalated polymer material were studied. It was found that the small amount of MMT clay made the tensile modulus and percentage of the total elongation of the nano-composite significantly higher than the pure PVA polymer value, due to polymer-clay intercalation. The thermal stability of the intercalated polymer has been studied using thermal analytical techniques such as thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The results showed that the PCN material is more thermally stable than the pure PVA polymer.

  15. The contribute of using vernacular materials and techniques for sustainable building

    OpenAIRE

    Fernandes, Jorge Emanuel Pereira; Mateus, Ricardo; Bragança, L.

    2013-01-01

    The use of local materials and techniques is one of the main features from vernacular architecture. When compared with industrially-produced materials, vernacular materials have low environmental impacts, being an alternative for sustainable building. However, industrialization have brought new standardized materials that led to the homogenization of the different building approaches and spawned a universal architecture often with no context concerns and with significant environmental i...

  16. Thermal Shape Factor : The impact of the building shape and thermal properties on the heating energy demand in Swedish climates

    OpenAIRE

    2016-01-01

    In the year 2006, the energy performance directive 2002/91/EG was passed by the European Union, according to this directive the Swedish building code was supplemented by a key measure of energy use intensity (EUI). The implemented EUI equals some energy use within a building divided by its floor area and must be calculated in new housing estate and shown when renting or selling housing property. In order to improve the EUI, energy efficiency refurbishments could be implemented. Building energ...

  17. Infrared Emissivity Measurements of Building and Civil Engineering Materials: A New Device for Measuring Emissivity

    Science.gov (United States)

    Monchau, Jean-Pierre; Marchetti, Mario; Ibos, Laurent; Dumoulin, Jean; Feuillet, Vincent; Candau, Yves

    2014-10-01

    The knowledge of the infrared emissivity of materials used in buildings and civil engineering structures is useful for two specific approaches. First, quantitative diagnosis of buildings or civil engineering infrastructures by infrared thermography requires emissivity values in the spectral bandwidth of the camera used for measurements, in order to obtain accurate surface temperatures; for instance, emissivity in the band III domain is required when using cameras with uncooled detectors (such as micro-bolometer arrays). Second, setting up accurate thermal balances by numerical modeling requires the total emissivity value for a large wavelength domain; this is, for instance, the case for computing the road surface temperature to predict ice occurrence. Furthermore, periodical surveys of emissivity variations due to aging or soiling of surfaces could be useful in many situations such as thermal mapping of roads or building insulation diagnosis. The use of portable emissivity measurement devices is required for that purpose. A device using an indirect measurement method was previously developed in our lab; the method uses measurement of the reflectivity from a modulated IR source and requires calibration with a highly reflective surface. However, that device uses a low-frequency, thermal modulation well adapted to laboratory measurements but unfit for fast and in situ measurements. Therefore, a new, portable system which retains the principle of an indirect measurement but uses a faster-frequency, mechanical modulation more appropriate to outdoor measurements was developed. Both devices allow measurements in the broad m to m) and narrow m to m) bands. Experiments were performed on a large number of materials commonly used in buildings and civil engineering structures. The final objective of this work is to build a database of emissivity of these materials. A comparison of laboratory and on-site measurements of emissivity values obtained in both spectral bands will be

  18. Pulsed power experiments in hydrodynamics and material properties

    CERN Document Server

    Reinovsky, R E

    1999-01-01

    A new application for high performance pulsed power program, the production of high energy density environments in materials for the study of material properties and hydrodynamics in complex geometries, has joined family of radiation source applications in the Stockpile Stewardship. The principle tool for producing high energy density environments is the high precision, magnetically imploded, near-solid density liner. The most attractive pulsed power system for driving such experiments is an ultra-high current, low impedance, microsecond time scale source that is economical both to build and operate. The 25-MJ Atlas capacitor bank system currently under construction at Los Alamos is the first system of its scale specifically designed to drive high precision solid liners. Delivering 30 MA, Atlas will provide liner velocities 12-15 km/sec and kinetic energies of 1-2 MJ /cm with extensive diagnostics and excellent reproducibility. Explosive flux compressor technology provides access to currents exceeding 100 MA ...

  19. Non-woven fibrous materials with antibacterial properties prepared by tailored attachment of quaternized chitosan to electrospun mats from maleic anhydride copolymer.

    Science.gov (United States)

    Ignatova, Milena; Petkova, Zhanina; Manolova, Nevena; Markova, Nadya; Rashkov, Iliya

    2012-01-01

    In order to impart antibacterial properties to microfibrous electrospun materials from styrene/maleic anhydride copolymers, quaternized chitosan derivatives (QCh) containing alkyl substituents of different chain lengths are covalently attached to the mats. A complete inhibition of the growth of bacteria, S. aureus (Gram-positive) and E. coli (Gram-negative), for a contact time of 30–120 min or a decrease of the bacterial titer by 2–3 log units is observed depending on the quaternization degree, the chain length of the alkyl substituent, and the molar mass of QCh. The modified mats are also effective in suppressing the adhesion of pathogenic S. aureus bacteria.

  20. Building Materials Realized with Ultra-Fine Fly Ash and Silica Fume

    Directory of Open Access Journals (Sweden)

    Cătălin Badea

    2005-01-01

    Full Text Available The author’s experimental researches presented in this paper were focused on the building materials obtained by using ultra-fine fly ash and silica fume (like heavy mortars or compacted lightweight concretes. From experimental determinations there have been studied the following characteristics: the water absorption in function of mass, apparent density, tensile and compression strength (at 7 and 28 days, technical efficiency at 28 days and shrinkage.

  1. Energy Saving Potentials of Phase Change Materials Applied to Lightweight Building Envelopes

    Directory of Open Access Journals (Sweden)

    Yoon-Bok Seong

    2013-10-01

    Full Text Available Phase change materials (PCMs have been considered as an innovative technology that can reduce the peak loads and heating, ventilating and air conditioning (HVAC energy consumption in buildings. Basically they are substances capable of storing or releasing thermal energy as latent heat. Because the amount of latent heat absorbed or released is much larger than the sensible heat, the application of PCMs in buildings has significant potential to reduce energy consumption. However, because each PCM has its own phase change temperature, which is the temperature at which latent heat is absorbed or released, it is important to use an appropriate PCM for the purpose of building envelope design. Therefore, this paper aims to investigate the energy saving potentials in buildings when various PCMs with different phase change temperatures are applied to a lightweight building envelope by analyzing the thermal load characteristics. As results, the annual heating load increased at every phase change temperature, but the peak heating load decreased by 3.19% with heptadecane (phase change temperature 21 °C, and the lowest indoor temperature increased by 0.86 °C with heptadecane (phase change temperature 21 °C. The annual cooling load decreased by 1.05% with dodecanol (phase change temperature 24 °C, the peak cooling load decreased by 1.30% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.50 °C with octadecane (phase change temperature 29 °C. When the night ventilation was applied to the building HVAC system for better passive cooling performance, the annual cooling load decreased by 9.28% with dodecanol (phase change temperature 24 °C, the peak load decreased by 11.33% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.85 °C with octadecane (phase change temperature 29 °C.

  2. Absorption properties of waste matrix materials

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, J.B. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-06-01

    This paper very briefly discusses the need for studies of the limiting critical concentration of radioactive waste matrix materials. Calculated limiting critical concentration values for some common waste materials are listed. However, for systems containing large quantities of waste materials, differences up to 10% in calculated k{sub eff} values are obtained by changing cross section data sets. Therefore, experimental results are needed to compare with calculation results for resolving these differences and establishing realistic biases.

  3. Guidelines for Assessment and Abatement of Asbestos-Containing Materials in Buildings.

    Science.gov (United States)

    Pielert, James H.; Mathey, Robert G.

    This report presents guidelines, based on available information, for the assessment and abatement of asbestos-containing materials in buildings. Section 1 provides background information on the history and use of asbestos-containing products in buildings, the characteristics of asbestos fibers, products and materials containing asbestos, and…

  4. Investigation of thermal effect on exterior wall surface of building material at urban city area

    OpenAIRE

    Mohd Fadhil Md Din, Hazlini Dzinun, M. Ponraj, Shreeshivadasan Chelliapan, Zainura Zainun Noor, Dilshah Remaz, Kenzo Iwao

    2012-01-01

    This paper describes the investigation of heat impact on the vertical surfaces of buildings based on their thermal behavior. The study was performed based on four building materials that is commonly used in Malaysia; brick, concrete, granite and white concrete tiles. The thermal performances on the building materials were investigated using a surface temperature sensor, data logging system and infrared thermography. Results showed that the brick had the capability to absorb and store heat gre...

  5. Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Burn, G. (comp.)

    1990-07-01

    The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Programs is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months..

  6. Simulated Aging and Characterization of Phase Change Materials for Thermal Management of Building Envelopes

    Science.gov (United States)

    2015-09-01

    Method B). West Conshohocken, PA: ASTM International. ———. 2009. Standard Method for Surface Burning Characteristics of Building Materials. ASTM E84-09...storage in buildings : A state of art. Renewable and Sustainable Energy Reviews 11(6):1146-1166 Yu, S., S. Jeong, C. Chyoung, and S. Kim. 2014. Bio-based...Simulated Aging and Characterization of Phase Change Materials for lhermal Management of Building Envelopes Elizabeth J. Gao, Jignesh Patel, Veera M. Boddu

  7. Understanding Materials Science History · Properties · Applications

    CERN Document Server

    Hummel, Rolf E

    2005-01-01

    This introduction to materials science both for students of engineering and physics and for the interested general public examines not only the physical and engineering properties of virtually all kinds of materials, but also their history, uses, development, and some of the implications of resource depletion and recycling. It covers all topics on materials from an entirely novel perspective: the role materials have played throughout history in the development of humankind and technologies. Specifically, it shows the connection between the technical and the cultural, economic, ecological, and societal aspects of materials science. It aims to whet the appetite of its readers and inspire them to further explore the properties and applications of metals, alloys, ceramics, plastics, and electronic materials by presenting easily understandable explanations and entertaining historical facts. It is also intended to raise the reader’s awareness of their obligations to society as practicing engineers and scientists....

  8. Cytocompatibility and Antibacterial Properties of Capping Materials

    Science.gov (United States)

    Arciola, Carla Renata; Monaco, Annachiara; Lombardini, Marco

    2014-01-01

    The aim of this study was to evaluate and compare the antimicrobial activity and cytocompatibility of six different pulp-capping materials: Dycal (Dentsply), Calcicur (Voco), Calcimol LC (Voco), TheraCal LC (Bisco), MTA Angelus (Angelus), and Biodentine (Septodont). To evaluate antimicrobial activity, materials were challenged in vitro with Streptococcus mutans, Streptococcus salivarius, and Streptococcus sanguis in the agar disc diffusion test. Cytocompatibility of the assayed materials towards rat MDPC-23 cells was evaluated at different times by both MTT and apoptosis assays. Results significantly differed among the different materials tested. Both bacterial growth inhibition halos and cytocompatibility performances were significantly different among materials with different composition. MTA-based products showed lower cytotoxicity and valuable antibacterial activity, different from calcium hydroxide-based materials, which exhibited not only higher antibacterial activity but also higher cytotoxicity. PMID:24959601

  9. Cytocompatibility and Antibacterial Properties of Capping Materials

    Directory of Open Access Journals (Sweden)

    Claudio Poggio

    2014-01-01

    Full Text Available The aim of this study was to evaluate and compare the antimicrobial activity and cytocompatibility of six different pulp-capping materials: Dycal (Dentsply, Calcicur (Voco, Calcimol LC (Voco, TheraCal LC (Bisco, MTA Angelus (Angelus, and Biodentine (Septodont. To evaluate antimicrobial activity, materials were challenged in vitro with Streptococcus mutans, Streptococcus salivarius, and Streptococcus sanguis in the agar disc diffusion test. Cytocompatibility of the assayed materials towards rat MDPC-23 cells was evaluated at different times by both MTT and apoptosis assays. Results significantly differed among the different materials tested. Both bacterial growth inhibition halos and cytocompatibility performances were significantly different among materials with different composition. MTA-based products showed lower cytotoxicity and valuable antibacterial activity, different from calcium hydroxide-based materials, which exhibited not only higher antibacterial activity but also higher cytotoxicity.

  10. Life Cycle Assessment of the inclusion of phase change materials (PCM) in experimental buildings

    Energy Technology Data Exchange (ETDEWEB)

    de Gracia, Alvaro; Rincon, Lidia; Castell, Albert; Medrano, Marc; Cabeza, Luisa F. [GREA Innovacio concurrent, Edifici CREA, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida (Spain); Jimenez, Melanie; Boer, Dieter [Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Paisos Catalans, 26, 43007 Tarragona (Spain)

    2010-09-15

    The present work evaluates the environmental impact of including phase change materials (PCM) in a typical Mediterranean building. A Life Cycle Assessment (LCA) is developed for three monitored cubicles built in Puigverd de Lleida (Spain). It is possible to control the inner temperature of the cubicles using a domestic heat pump for cooling and an electrical radiator for heating: The energy consumption is registered to determine the energy savings achieved. The aim is to analyze if these energy savings are large enough to balance the environmental impact originated during the manufacturing of PCM. Some hypothetical scenarios, such as different systems to control the temperature different PCM types or different weather conditions are proposed and studied using LCA process to point out the critical issues. Furthermore, a parametric analysis of the lifetime of buildings is developed. Results show that the addition of PCM in the building envelope, although decreasing the energy consumption during operation, does not reduce significantly the global impact throughout the lifetime of the building. For the hypothetical scenario considering summer conditions all year around and a lifetime of the building of 100 years, the use of PCM reduces the overall impact by more than 10%. (author)

  11. Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system

    Directory of Open Access Journals (Sweden)

    Marco A. Velasco

    2016-10-01

    Full Text Available Scaffolds are essential in bone tissue engineering, as they provide support to cells and growth factors necessary to regenerate tissue. In addition, they meet the mechanical function of the bone while it regenerates. Currently, the multiple methods for designing and manufacturing scaffolds are based on regular structures from a unit cell that repeats in a given domain. However, these methods do not resemble the actual structure of the trabecular bone which may work against osseous tissue regeneration. To explore the design of porous structures with similar mechanical properties to native bone, a geometric generation scheme from a reaction-diffusion model and its manufacturing via a material jetting system is proposed. This article presents the methodology used, the geometric characteristics and the modulus of elasticity of the scaffolds designed and manufactured. The method proposed shows its potential to generate structures that allow to control the basic scaffold properties for bone tissue engineering such as the width of the channels and porosity. The mechanical properties of our scaffolds are similar to trabecular tissue present in vertebrae and tibia bones. Tests on the manufactured scaffolds show that it is necessary to consider the orientation of the object relative to the printing system because the channel geometry, mechanical properties and roughness are heavily influenced by the position of the surface analyzed with respect to the printing axis. A possible line for future work may be the establishment of a set of guidelines to consider the effects of manufacturing processes in designing stages.

  12. Preparation and characterization of phase change material for thermal energy storage in buildings

    Science.gov (United States)

    Lo, Tommy Y.

    2016-04-01

    The paper presents the developing of novel form-stable composite phase change material (PCM) by incorporation of paraffin into lightweight aggregate through vacuum impregnation. The macro-encapsulated Paraffin-lightweight aggregate is a chemical compatible, thermal stable and thermal reliable PCM material for thermal energy storage applications in buildings. The 28 days compressive strength of NWAC using PCM-LWA is 33 - 53 MPa, which has an opportunity for structural purpose. Scanning electronic microscopic images indicated the paraffin can be held inside the porous structure of the aggregate. Thermal performance test showed that the cement paste panel with composite PCM can reduce the indoor temperature.

  13. New Construction for Commercial Building (Restaurant) By Considering The Green Building Strategies

    OpenAIRE

    MF Baharom; Ahmad, K.; M. N. M. Nasir; W.M Bukhari; H.I. Jaafar

    2015-01-01

    The Green Building Index (GBI) is one of green building strategies that are needed in order to decrease the human technologies and waste made by them. Moreover, GBI is the latest green building strategies that been implemented in the new building construction in Malaysia. It is proven as the building sector consumes 40% of the total energy consumption in the world, thus increasing the environmental problems. Mechanical, cooling, lighting and ventilating spaces consume by far the most energy i...

  14. The design and modeling of periodic materials with novel properties

    Science.gov (United States)

    Berger, Jonathan Bernard

    Cellular materials are ubiquitous in our world being found in natural and engineered systems as structural materials, sound and energy absorbers, heat insulators and more. Stochastic foams made of polymers, metals and even ceramics find wide use due to their novel properties when compared to monolithic materials. Properties of these so called hybrid materials, those that combine materials or materials and space, are derived from the localization of thermomechanical stresses and strains on the mesoscale as a function of cell topology. The effects of localization can only be generalized in stochastic materials arising from their inherent potential complexity, possessing variations in local chemistry, microstructural inhomogeneity and topological variations. Ordered cellular materials on the other hand, such as lattices and honeycombs, make for much easier study, often requiring analysis of only a single unit-cell. Theoretical bounds predict that hybrid materials have the potential to push design envelopes offering lighter stiffer and stronger materials. Hybrid materials can achieve very low and even negative coefficients of thermal expansion (CTE) while retaining a relatively high stiffness -- properties completely unmatched by monolithic materials. In the first chapter of this thesis a two-dimensional lattice is detailed that possess near maximum stiffness, relative to the tightest theoretical bound, and low, zero and even appreciably negative thermal expansion. Its CTE and stiffness are given in closed form as a function of geometric parameters and the material properties. This result is confirmed with finite elements (FE) and experiment. In the second chapter the compressive stiffness of three-dimensional ordered foams, both closed and open cell, are predicted with FE and the results placed in property space in terms of stiffness and density. A novel structure is identified that effectively achieves theoretical bounds for Young's, shear and bulk modulus

  15. Nearly Zero Energy Standard for Non-Residential Buildings with high Energy Demands—An Empirical Case Study Using the State-Related Properties of BAVARIA

    Directory of Open Access Journals (Sweden)

    Michael Keltsch

    2017-03-01

    Full Text Available The Energy Performance of Buildings Directive (EPBD 2010 calls for the Nearly Zero Energy Building (nZEB Standard for new buildings from 2021 onwards: Buildings using “almost no energy” are powered by renewable sources or by the energy produced by the building itself. For residential buildings, this ambitious new standard has already been reached. But for other building types, this goal is still far away. The potential of these buildings to meet a nZEB Standard was investigated by analyzing ten case studies, representing non-residential buildings with different uses. The analysis shows that the primary characteristics common to critical building types are a dense building context with a very high degree of technical installation (such as hospital, research, and laboratory buildings. The large primary energy demand of these types of buildings cannot be compensated by building- and property-related energy generation, including off-site renewables. If the future nZEB Standard were to be defined with lower requirements because of this, the state-related properties of Bavaria suggest that the real potential energy savings available in at least 85% of all new buildings would be insufficiently exploited. Therefore, it would be more useful to individualize the legal energy verification process for new buildings, to distinguish critical building types such as laboratories and hospitals from the other building types.

  16. Semiconductor Nanocrystals Hybridized with Functional Ligands: New Composite Materials with Tunable Properties

    Directory of Open Access Journals (Sweden)

    Nathan I. Hammer

    2010-01-01

    Full Text Available Semiconductor nanocrystals hybridized with functional ligands represent an important new class of composite nanomaterials. The development of these new nanoscale building blocks has intensified over the past few years and offer significant advantages in a wide array of applications. Functional ligands allow for incorporation of nanocrystals into areas where their unique photophysics can be exploited. Energy and charge transfer between the ligands and the nanocrystal also result in enhanced physical properties that can be tuned by the choice of ligand architecture. Here, progress in the development and applications involving this new class of composite materials will be discussed.

  17. Energy Savings by Treating Buildings as Systems

    Science.gov (United States)

    Harvey, L. D. Danny

    2008-09-01

    This paper reviews the opportunities for dramatically reducing energy use in buildings by treating buildings as systems, rather than focusing on device efficiencies. Systems-level considerations are relevant for the operation of heat pumps (where the temperatures at which heat or coldness are distributed are particularly important); the joint or separate provision of heating, cooling, and ventilation; the joint or separate removal of sensible heat and moisture; and in the operation of fluid systems having pumps. Passive heating, cooling, and ventilation, as well as daylighting (use of sunlight for lighting purposes) also require consideration of buildings as systems. In order to achieve the significant (50-75%) energy savings that are possible through a systems approach, the design process itself has to involve a high degree of integration between the architect and various engineering disciplines (structural, mechanical, electrical), and requires the systematic examination and adjustment of alternative designs using computer simulation models.

  18. Investigation of thermal properties of raw materials of asphalt mixtures

    Science.gov (United States)

    Géber, R.; Simon, A.; Kocserha, I.

    2017-02-01

    Asphalt mixtures are composite materials, which are made of different grades of mineral aggregates and bitumen. During the mixing process mineral materials were blended with bitumen at relatively high temperature (∼200 °C). As the binding process come off in these higher temperature range, thermal properties of asphaltic materials are important. The aim of this project is to reveal the thermal properties of raw materials. During our research two types of mineral aggregates were tested (limestone and dolomite) by different methods. Differential thermal analysis, thermal expansion and thermal conductivity were investigated at technologically important temperatures. The results showed that the structure of mineral materials did not change at elevated temperatures, expansion of samples was neglible, while thermal conductivity changed by temperature.

  19. Smart Materials For The Realization Of An Adaptive Building Component

    NARCIS (Netherlands)

    Lelieveld, C.M.J.L.

    2013-01-01

    This research focusses on the realization of adaptive architecture with the use of advanced material technology. Current material research has shown significant advances with the development of “smart” materials. Smart materials are “capable of automatically and inherently sensing or detecting chang

  20. Understanding and Predicting the Properties of Complex Materials

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Mauro, John C.; Yue, Yuanzheng

    Predicting the properties of new materials prior to manufacturing is a topic attracting great industrial and scientific interest. Mechanical properties are currently of particular interest given the increasing demand for stronger, thinner, and more flexible materials in recent years. Property...... prediction for ceramic materials is facilitated by the periodic short- and long-range order of crystals. Based on J.C. Phillips’s theory for the ionicity of chemical bonding from ~1970, a method for predicting the hardness of covalent crystals was developed in the 2000s, which is now widely applied...... for the design of new superhard ceramic materials. It took another 10 years before the same predictions became possible for glassy systems, in which the lack of long-range order and the long time scales for relaxation greatly complicate the traditional modeling efforts. The key for making progress was to extract...

  1. Wear Property of Cast Steel Wheel Material in Rail Truck

    Institute of Scientific and Technical Information of China (English)

    MI Guo-fa; LIU Yan-lei; ZHANG Bin; FU Xiu-qin; ZHANG Hong; SONG Guo-xiang

    2009-01-01

    Wear property of material plays a key role in the service time of workpiece.A major objective in the development of new wheel materials is to improve the wear performance.The wear property of B and B+ grade cast steel materials was reported.The results showed that B+ grade cast steel material exhibited better wear property than the B grade material.Carbon content related to the hardness match was the principal factor affecting the wear properties.

  2. Research on Assessment Label of Green Building Materials in China%我国绿色建材评价标识问题研究

    Institute of Scientific and Technical Information of China (English)

    路晓亮; 王建廷

    2016-01-01

    从绿色建材的定义和性质出发,探讨了绿色建材评价标准的目标和任务,尝试构建了绿色建材评价指标体系和标识方法,以期为国家《绿色建材评价标准》的编制提供思路,促进绿色建材产业快速健康发展。%From the definition and properties of green building materials,this paper discusses the target and task of the assessment standard of green building materials,and tries to construct a green building assessment index system and label method with the intention to provide some suggestions for the compilation of Green Building Material Assessment Standard and to promote the rapid and healthy development of green building material industry.

  3. Materials with complex behaviour II properties, non-classical materials and new technologies

    CERN Document Server

    Oechsner, Andreas

    2012-01-01

    This book reviews developments and trends in advanced materials and their properties; modeling and simulation of non-classical materials and new technologies for joining materials. Offers tools for characterizing and predicting properties and behavior.

  4. Evaluation of desiccated and deformed diaspores from natural building materials

    Directory of Open Access Journals (Sweden)

    Tamás Henn

    2015-03-01

    Full Text Available With the increasing sophistication of paleoethnobotanical methods, it is now possible to reconstruct new aspects of the day-to-day life of past peoples, and, ultimately, gain information about their cultivated plants, land-use practices, architecture, diet, and trade. Reliable identification of plant remains, however, remains essential to the study of paleoethnobotany, and there is still much to learn about precise identification. This paper describes and evaluates the most frequent types of deformed desiccated diaspores revealed from adobe bricks used in buildings in Southwestern Hungary that were built primarily between 1850 and 1950. A total of 24,634 diaspores were recovered from 333.05 kg adobe samples. These seeds and fruits belong to 303 taxa, and the majority were arable and ruderal weed species. A total of 98.97% of the diaspores were identified to species. In other cases, identification was possible only to genus or family (0.93% and 0.10% of diaspores, respectively. Difficulties in identification were caused mainly by morphological changes in the size, shape, color, and surface features of diaspores. Most diaspores were darker in color and significantly smaller than fresh or recently desiccated seeds and fruits. Surface features were often absent or fragmented. The most problematic seeds to identify were those of Centaurea cyanus, Consolida regalis, Scleranthus annuus and Daucus carota ssp. carota, which are discussed in detail. Our research aids archaeobotanists in the identification of desiccated and deformed diaspores.

  5. SEWABILITY PROPERTIES OF GARMENT LEATHERS TANNED WITH VARIOUS TANNING MATERIALS

    Directory of Open Access Journals (Sweden)

    ORK Nilay

    2016-05-01

    Full Text Available Chromium tannage is the most used technology in processing of garment leathers. Due to environmental requirements and demands on natural products there is an increasing interest on alternatives to chromium tannage especially on vegetable tanned leathers. Leather properties vary in a very wide range depending on the animal type it is obtained from and the process type and chemicals used in the manufacturing. In this study, the effect of various tanning materials to the sewability of garment leathers was investigated. For this purpose, vegetable, chromium and chromium-vegetable combination tanned garment leathers from the same animal origin were supplied from a garment leather manufacturing factory. Needle penetration force and the sewability values of these leathers were determined by using L&M Sewability Tester. It was found that material properties and sewing properties showed differences regarding to the tanning material used even in same type of raw material. Chromium tanned leathers had sewability values of 13.4% horizontal and 14.2% vertical which are considered good to fair. Vegetable tanned leathers and chromium-vegetable tanned leathers had sewability values of 38.2% horizontal, 49.2% vertical and 98% horizontal, 98.5% vertical respectively which are considered poor. The results of the study conclude that, there is a big difference in material properties when the tanning technology and material is changed which also affects the sewing properties.

  6. Superconductivity and magnetism: Materials properties and developments

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, N.H.; Bay, N.; Grivel, J.C. (eds.) [and others

    2003-07-01

    The 24th Risoe International Symposium on Materials Science focuses on development of new materials, devices and applications, as well as experimental and theoretical studies of novel and unexplained phenomena in superconductivity and magnetism, e.g. within high.T{sub c} superconductivity, magnetic superconductors, MgB{sub 2}, CMR materials, nanomagnetism and spin-tronics. The aim is to stimulate exchange of ideas and establish new collaborations between leading Danish and international scientists. The topics are addressed by presentations from 24 invited speakers and by 41 contributed papers. (ln)

  7. Implant materials modified by colloids

    Directory of Open Access Journals (Sweden)

    Zboromirska-Wnukiewicz Beata

    2016-03-01

    Full Text Available Recent advances in general medicine led to the development of biomaterials. Implant material should be characterized by a high biocompatibility to the tissue and appropriate functionality, i.e. to have high mechanical and electrical strength and be stable in an electrolyte environment – these are the most important properties of bioceramic materials. Considerations of biomaterials design embrace also electrical properties occurring on the implant-body fluid interface and consequently the electrokinetic potential, which can be altered by modifying the surface of the implant. In this work, the surface of the implants was modified to decrease the risk of infection by using metal colloids. Nanocolloids were obtained using different chemical and electrical methods. It was found that the colloids obtained by physical and electrical methods are more stable than colloids obtained by chemical route. In this work the surface of modified corundum implants was investigated. The implant modified by nanosilver, obtained by electrical method was selected. The in vivo research on animals was carried out. Clinical observations showed that the implants with modified surface could be applied to wounds caused by atherosclerotic skeleton, for curing the chronic and bacterial inflammations as well as for skeletal reconstruction surgery.

  8. The MaSe decision support system: Development of an integrated information system for the selection of environmentally preferable materials and products in the building process

    Energy Technology Data Exchange (ETDEWEB)

    Strand, Sigrid Melby

    2003-07-01

    the assessment of the indoor environmental influence of a material includes emissions of substances and fibres, cleaning methods, cleaning chemicals, cleaning friendliness and dust adhering properties. The results from each sub area are weighted into one index, referred to as the Environmental index. Each material is characterised with this index and a judgement. All costs related to the production, use and disposal of a material are included in the MaSe system evaluation. The MaSe system is suited for use in the relevant phases of the building process. It is possible to use the system on different levels and with different input, from client priorities to details of the different products studied by the contractor. Economy is included in the system, and this one important aspect that separates the MaSe system from many of the existing systems. Many different products and materials can be handled within the system as long as the functional unit (FU) of the data are carefully defined. The structure of the scorecards and the aggregation of information into one index using Analytical Hierarchical Process (AHP) and pair wise comparison, makes it possible to include new information as it is made available. (author)

  9. CSCEC and Chinalco Joined Hands to Invest 5 Billion Yuan for Making Deployment in Building New Materials

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    CSCEC-Chinalco New Material Co.,Ltd,a company jointly invested by China State Construction Engineering Corporation(CSCEC)and Chinalco,was inaugurated in Chengdu,Sichuan,on December 15,CSCECChinalco will invest nearly 5 billion yuan capital in the next five years to makedeployment in the building new materials

  10. Green Sharing: The Proposed Criteria in Green Building Standards to Promote the Usage of Natural Handicrafts in Building Materials

    Directory of Open Access Journals (Sweden)

    Krasae-In Aracha

    2016-01-01

    Full Text Available Sustainable development has been a great challenge to the building and construction industry for decades. There have been many initiatives and attempts to create sustainability for the industry through the concept of the Green Building certificate in order to reduce the impact to environment and society while promoting better living conditions of the people involved in the project. This paper aims to examine all three aspects of sustainability; economy, environment and society, in the building and construction industry by proposing new criteria for the green building certificate. This will create opportunities for the community based handicraft building products to be specified and purchased to be used in the modern building and construction industry and share the economic value to the community.

  11. Nonlinear Effect of Moisture Content on Effective Thermal Conductivity of Building Materials with Different Pore Size Distributions

    Science.gov (United States)

    Liu, Yanfeng; Ma, Chao; Wang, Dengjia; Wang, Yingying; Liu, Jiaping

    2016-06-01

    Understanding the quantitative relationship between the effective thermal conductivity and the moisture content of a material is required to accurately calculate the envelope heat and mass transfer and, subsequently, the building energy consumption. We experimentally analyzed the pore size distributions and porosities of common building materials and the influence of the moisture content on the effective thermal conductivity of building materials. We determined the quantitative relationship between the effective thermal conductivity and moisture content of building materials. The results showed that a larger porosity led to a more significant effect of the moisture content on the effective thermal conductivity. When the volumetric moisture content reached 10 %, the thermal conductivities of foam concrete and aerated concrete increased by approximately 200 % and 100 %, respectively. The effective thermal conductivity increased rapidly in the low moisture content range and increased slowly in the high moisture content range. The effective thermal conductivity is related to the moisture content of the materials through an approximate power function. As the moisture content in the walls of a new building stabilizes, the effective thermal conductivity of normal concrete varies only slightly, whereas that of aerated concrete varies more significantly. The effective thermal conductivity of the material is proportional to the relative humidity of the environment. This trend is most noticeable when the wall material is aerated concrete.

  12. 建筑材料在建筑表皮中的生态运用%Building Materials in Ecological Application of the Construction Skin

    Institute of Scientific and Technical Information of China (English)

    邓玮; 徐峰

    2012-01-01

    本文以建筑材料为切人点,着重阐述了建筑材料在建筑表皮中的生态运用策略。建筑材料的使用贯穿了建筑建造、维护以及改造等整个生命周期。材料会对建筑的外观、性能和建造成本造成影响。经过几十年的发展科研人员对材料的特性有了新的了解。材料有了全生命周期评价(LCA),当材料选择时可以考虑在建造过程中的可持续问题。通过材料在建筑表皮中的分层组成方式的分析模拟,设备的控制以及空腔等系统和材料自身物理性能,来完成应对气候和建筑微气候的适应及其变化。%This article to the point of building materials, focused on the ecological strategy of building material in the skin. Construction materials use · d throughout the building of the construction, maintenance and transformation throughout the life cycle. Material impact on the appearance, performance and construction of the building cost, After several decades of development researchers new understanding of the properties of the materials. Materials have a life-cycle assessment (LCA), when the material can be taken into account in the construction of sustainability issues in the process. By material in the skin of a hierarchical composition analysis of simulation, device control, and systems such as cavities and the physical properties of the material itself, to complete the adaptation to climate and building micro-climate and its changes.

  13. Fundamental Material Properties Underlying Solid Oxide Electrochemistry

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hansen, Karin Vels; Holtappels, Peter;

    2012-01-01

    such as “this is the rate limiting step of H2 oxidation in a Ni-zirconia cermet electrode...” will ever be found because the actual electrode properties are so dependent on the fabrication and operation history of the electrode. This does not mean, however, that deep knowledge of mechanisms of specific SOC...... in the TPB region. Also, segregations to the surfaces and interfaces of the electrode materials, which may affect the electrode reaction mechanism, are very dependent on the exact history of fabrication and operation. The positive effects of even small concentrations of nanoparticles in the electrodes may...

  14. Amoebae and other protozoa in material samples from moisture-damaged buildings.

    Science.gov (United States)

    Yli-Pirilä, Terhi; Kusnetsov, Jaana; Haatainen, Susanna; Hänninen, Marja; Jalava, Pasi; Reiman, Marjut; Seuri, Markku; Hirvonen, Maija-Riitta; Nevalainen, Aino

    2004-11-01

    Mold growth in buildings has been shown to be associated with adverse health effects. The fungal and bacterial growth on moistened building materials has been studied, but little attention has been paid to the other organisms spawning in the damaged materials. We examined moist building materials for protozoa, concentrating on amoebae. Material samples (n = 124) from moisture-damaged buildings were analyzed for amoebae, fungi, and bacteria. Amoebae were detected in 22% of the samples, and they were found to favor cooccurrence with bacteria and the fungi Acremonium spp., Aspergillus versicolor, Chaetomium spp., and Trichoderma spp. In addition, 11 seriously damaged samples were screened for other protozoa. Ciliates and flagellates were found in almost every sample analyzed. Amoebae are known to host pathogenic bacteria, such as chlamydiae, legionellae, and mycobacteria and they may have a role in the complex of exposure that contributes to the health effects associated with moisture damage in buildings.

  15. Thermal properties of graphene and nanostructured carbon materials

    Science.gov (United States)

    Balandin, Alexander A.

    2011-08-01

    Recent years have seen a rapid growth of interest by the scientific and engineering communities in the thermal properties of materials. Heat removal has become a crucial issue for continuing progress in the electronic industry, and thermal conduction in low-dimensional structures has revealed truly intriguing features. Carbon allotropes and their derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range -- of over five orders of magnitude -- from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. Here, I review the thermal properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. Special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe the prospects of applications of graphene and carbon materials for thermal management of electronics.

  16. Effects of material variables and process parameters on properties of investment casting shells

    Science.gov (United States)

    Tumurugoti, Priyatham

    Manufacture of investment casting shells is a complex process. The choice of raw materials - refractory powders or grains, binders and additives - affects the properties of investment casting shells. In this study, different systems of shells were prepared, according to a design of experiments, with commercially available raw materials that differ in chemistry, particle size or particle size distribution. Shell strength was measured in green, fired and cooled, and hot conditions and the results were analyzed for strength -- material property relation. Various microstructures of polished cross sections of these shells were characterized using scanning electron microscope. It was determined that the amount of matrix holding the stucco grains was dominant factor affecting green strength. Fired and hot strengths were observed to vary depending on interactions between different phases of matrix and stucco. In addition to the material properties, control of shell building parameters is critical to achieve quality shells. Process parameters affect strength of the shell by providing a means to change the relative amounts of stucco, slurry and porosity. To study the microstructural variations, shells were prepared by varying process parameters like slurry viscosity and stucco size. Data from image analysis of different microstructures were correlated to their respective fired strengths. It was determined that the shells prepared from high viscosity slurry and fine stucco had the highest strength.

  17. Measurement of natural radioactivity in building materials used in Urumqi, China.

    Science.gov (United States)

    Ding, Xiang; Lu, Xinwei; Zhao, Caifeng; Yang, Guang; Li, Nan

    2013-07-01

    Building materials contain natural radionuclides (226)Ra, (232)Th and (40)K, which cause direct radiation exposure of the public. The concentrations of (226)Ra, (232)Th and (40)K in commonly used building materials of Urumqi, China have been analysed using gamma-ray spectrometry. The concentrations of (226)Ra, (40)K and (232)Th in the studied building materials range from 19.8 to 87.4, from 273.3 to 981.2 and from 11.6 to 47.7 Bq kg(-1), respectively. The radium equivalent activity (Raeq), gamma index (Iγ) and alpha index (Iα) were calculated to assess the radiation hazards to people living in dwellings made of the materials studied. The calculated Raeq values of all the building materials are lower than the limit of 370 Bq kg(-1) for building materials. The values of Iγ and Iα of all the building materials are less than unity. The study shows that these materials may be safely used as construction materials and do not pose significant radiation hazards.

  18. Comparison of the molecular mass and optical properties of colored dissolved organic material in two rivers and coastal waters by flow field-flow fractionation.

    Science.gov (United States)

    Zanardi-Lamardo, Eliete; Clark, Catherine D; Moore, Cynthia A; Zika, Rod G

    2002-07-01

    Colored dissolved organic material (CDOM) is an important sunlight absorbing substance affecting the optical properties of natural waters. However, little is known about its structural and optical properties mainly due to its complex matrix and the limitation of the techniques available. A comparison of two southwestern Florida rivers [the Caloosahatchee River (CR) and the Shark River (SR)] was done in terms of molecular mass (MM) and diffusion coefficients (D). The novel technique Frit inlet/frit outlet-flow field-flow fractionation (FIFO-FIFFF) with absorbance and fluorescence detectors was used to determine these properties. The SR receives organic material from the Everglades. By contrast, the CR arises from Lake Okeechobee in central Florida, receiving anthropogenic inputs, farming runoff, and natural organics. Both rivers discharge to the Gulf of Mexico. Fluorescence identified, for both rivers, two different MM distributions in low salinity water samples: the first was centered at approximately 1.7 kDa (CR) and approximately 2 kDa (SR); the second centered at approximately 13 kDa for both rivers, which disappeared gradually in the river plumes to below detection limit in coastal waters. Absorbance detected only one MM distribution centered at approximately 2 kDa (CR) and 2.2-2.4 kDa (SR). Fluorescence in general peaked at a lower MM than absorbance, suggesting a different size distribution for fluorophores vs chromophores. A photochemical study showed that, after sunlight, irradiated freshwater samples have similar characteristics to more marine waters, including a shift in MM distribution of chromophores. The differences observed between the rivers in the optical characteristics, MM distributions, and D values suggest that the CDOM sources, physical, and photochemical degradation processes are different for these two rivers.

  19. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-30

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data as it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.

  20. Standard Guide for Identification of Fibers, Fillers, and Core Materials in Computerized Material Property Databases

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1992-01-01

    1.1 This guide establishes the essential and desirable elements of data required for the identification in computerized material property databases of fibers, fillers, and core materials used in composite materials. A recommended format for entry of these fields into a computerized database is provided. Examples of the application of this guide are also included. 1.2 The recommended format described in this guide is suggested for use in recording data in a database, which is different from contractural reporting of actual test results. The latter type of information is described in materials specifications shown in business transactions and is subject to agreement between vendor and purchaser. 1.3 The materials covered by this guide include fibers, both continuous and discontinuous, and fillers of various geometries which are used as reinforcements in composite materials, as well as core materials used in sandwich composites. Cores may be foam, honeycomb, or naturally occurring materials such as balsa wood....

  1. Investigation of thermal effect on exterior wall surface of building material at urban city area

    Energy Technology Data Exchange (ETDEWEB)

    Md Din, Mohd Fadhil; Dzinun, Hazlini; Ponraj, M.; Chelliapan, Shreeshivadasan; Noor, Zainura Zainun [Institute of Environmental Water Resources and Management (IPASA), Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Remaz, Dilshah [Faculty of Built Environment, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Iwao, Kenzo [Nagoya Institute of Technology, Nagoya (Japan)

    2012-07-01

    This paper describes the investigation of heat impact on the vertical surfaces of buildings based on their thermal behavior. The study was performed based on four building materials that is commonly used in Malaysia; brick, concrete, granite and white concrete tiles. The thermal performances on the building materials were investigated using a surface temperature sensor, data logging system and infrared thermography. Results showed that the brick had the capability to absorb and store heat greater than other materials during the investigation period. The normalized heat (total heat/solar radiation) of the brick was 0.093 and produces high heat (51% compared to granite), confirming a substantial amount of heat being released into the atmosphere through radiation and convection. The most sensitive material that absorbs and stores heat was in the following order: brick > concrete > granite > white concrete tiles. It was concluded that the type of exterior wall material used in buildings had significant impact to the environment.

  2. Investigation of thermal effect on exterior wall surface of building material at urban city area

    Directory of Open Access Journals (Sweden)

    Mohd Fadhil Md Din, Hazlini Dzinun, M. Ponraj, Shreeshivadasan Chelliapan, Zainura Zainun Noor, Dilshah Remaz, Kenzo Iwao

    2012-01-01

    Full Text Available This paper describes the investigation of heat impact on the vertical surfaces of buildings based on their thermal behavior. The study was performed based on four building materials that is commonly used in Malaysia; brick, concrete, granite and white concrete tiles. The thermal performances on the building materials were investigated using a surface temperature sensor, data logging system and infrared thermography. Results showed that the brick had the capability to absorb and store heat greater than other materials during the investigation period. The normalized heat (total heat/solar radiation of the brick was 0.093 and produces high heat (51% compared to granite, confirming a substantial amount of heat being released into the atmosphere through radiation and convection. The most sensitive material that absorbs and stores heat was in the following order: brick > concrete > granite > white concrete tiles. It was concluded that the type of exterior wall material used in buildings had significant impact to the environment.

  3. Building Partnerships by Design or by Default?

    Science.gov (United States)

    2012-05-24

    means of security. For the first 150 years of American history, this was predominately accomplished through purchase, occupation , or through the use...senior enlisted and junior officers) from the region, including Azerbaijan, Georgia, Bulgaria, Greece, Lithuania , Malta, Poland, Romania, and the... disease , hunger, or privation that might present a serious threat to life or that can result in great damage to or loss of property. Humanitarian

  4. New Porous Material Made from Industrial and Municipal Waste for Building Application

    Directory of Open Access Journals (Sweden)

    Diana BAJARE

    2014-09-01

    Full Text Available The aim of this study was to find a new method for usage of the hazardous waste coming from recycling industry. Two hazardous wastes – aluminium recycling final dross or non-metallic product (NMP and lead – silica glass (LSG were investigated. It is generally considered that NMP is a process waste and subject to disposal after residual metal has been recovered from primary dross. NMP is impurities which are removed from the molten metal in dross recycling process and it could be defined as a hazardous waste product in aluminium recycling industry. LSG comes from fluorescence lamp recycling plant and could be classified as hazardous waste due to high amount of lead in the composition and re-melting problems. The new alkali activated material, which can be defined as porous building material, was created. Composition of this material consisted of aluminium recycling waste, recycled fluorescent lamp LSG, sintered kaolin clay as well as commercially available alkali flakes (NaOH and liquid glass (Na2SiO3 + nH2O. Physical and mechanical properties of the obtained material were tested. Density of the obtained material was from (460 – 550 kg/m3 and the total porosity was from 82 % – 83 %. The compressive strength of the material was in range from 1.1 MPa to 2.3 MPa. The thermal conductivity was determined. The pore microstructure was investigated and the mineralogical composition of porous material was determined. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4330

  5. Amplitude-sensitive modulation thermography to measure moisture in building materials

    Science.gov (United States)

    Wild, Walter; Buescher, Konstantin A.; Wiggenhauser, Herbert

    1998-03-01

    There have been reports about moisture detection in building walls by reflective IR-thermography. Typically, only limited results could be obtained because of the emission coefficient variations, leaking radiation or inhomogeneous illumination of the object. In addition, the quantitative relation between remission spectra and the moisture has often been unclear. Reflectometry uses constant excitation illumination which is recorded by the IR camera. With the use of the 'lock-in-technology' a low frequency modulated signal of an IR radiation source is coupled with the thermo camera and a frequency and phase sensitive signal from the thermal images can be derived. The advantage is, that emission coefficient dependencies are eliminated and that leaking radiation does not have any influence on the measured signal. The selective water measurement is possible, because there is an interference filter mounted in front of the radiator which has its transmission maximum at the wavelength of an absorption band of water. The area investigated is therefore illuminated under well defined circumstances and quantitative moisture measurement on the surface of building materials becomes a possibility. The illumination modulation is done with a sine wave to facilitate the calculation of the temporal intensity behavior of the amplitude signal. Subsequently, the amplitude image is used to determine the distribution and the level of moisture quantitatively. Point measurements in the laboratory were carried out on several building materials with changing moisture levels. It could be shown that this method successfully eliminates disturbing contributions to the measured signal like surface effects or leaking radiation.

  6. Preparation and Electrochemical Properties of Coral-like Li2FeSiO4/C Cathode Material by Two-Step Precipitation Method

    Science.gov (United States)

    Yan, Yinglin; Ren, Bing; Xu, Yunhua; Wang, Juan; Yang, Rong; Zhong, Lisheng; Zhao, Nana; Wu, Hong

    2016-10-01

    Lithium iron silicate (Li2FeSiO4) cathode materials have been synthesized by a soft chemical method combined with spray drying, being both simple and economical. Super P, as a new kind of nanoscale carbon black, was added in the synthesis process. The phase and microstructure of the samples were characterized by x-ray diffraction analysis, scanning electron microscopy, and transmission electron microscopy. The results show that the obtained Li2FeSiO4 possessed coral-like morphology with size range from 250 nm to 450 nm. Super P was decorated on the surface of the Li2FeSiO4 particles. Furthermore, the electrochemical properties of the products were tested, indicating that the as-obtained Li2FeSiO4/C composite presented high specific discharge capacities and stable cycling performance, which can be attributed to the coral-like morphology and Super P coating.

  7. Determination of Physical Properties of Carbon Materials by Results of Ablative Experiments Con-ducted in the Jets of Gas Dynamic Units

    Directory of Open Access Journals (Sweden)

    V. V. Gorsky

    2015-01-01

    Full Text Available The process of hypersonic vehicles’ movement in the dense layers of the atmosphere is accompanied by the considerable combustion of heat shield, which effects on the aerodynamic, mass-inertial and centering characteristics of the product.For correct calculation of model's movement parameters it is necessary:* Using the theoretical and computation methods for determining ablative characteristics of heat-protective materials;* Taking into account all the basic physical and chemical processes, involved in their ablation, using the above mentioned methods;* Testing these techniques in the wide range of experimental data. This physic-mathematical model of carbon materials (CM aerothermochemical destruction is based on using the following:* Arrhenius equations to calculate carbon kinetic oxidation;* Langmuir-Knudsen formula to calculate the velocity of non-equilibrium carbon’s sublimation;* Carbon erosion law represented as a unique dependence of this process velocity on the gas pressure on the wall.Mathematical description of all major processes included in this formulation of the problem, contains a number of "free" parameters that can be determined only on the basis of comparison of theoretical and experimental data according to total ablation characteristics of these materials.This comparison was performed in the article applicable to the tests conditions of modern CM in the stream of electric arc plant and in combustion products of liquid-propellant rocket engines.As the result, the data of kinetic of carbon oxidation by atomic oxygen at sublimation mode of material ablation were obtained for the first time. Carbon erosion law under high pressure was established for the first time.The new approach to processing of ablation experiments is enunciated. Using this approach allows to turn this experiments for CM from comparative tests into the tests to determine ablation properties of thermal protection. Moreover, it enables us also to use the

  8. Assessment of natural radioactivity and associated radiation hazards in some building materials used in Kilpenathur, Tiruvannamalai dist, Tamilnadu, India

    Energy Technology Data Exchange (ETDEWEB)

    Raghu, Y. [Department of Physics, AarupadaiVeedu Institute of Technology, Paiyanoor, Chennai 603 104, Tamilnadu (India); Harikrishnan, N.; Ravisankar, R., E-mail: ravisankarphysics@gmail.com [Department of Physics, Government Arts College, Tiruvannamalai 606603, Tamilnadu (India); Chandrasekaran, A. [Departement of physics, SSN College of Engineering, Chennai- 603110, Tamilnadu India (India)

    2015-08-28

    The present study aimed to measure the radioactivity concentration of naturally occuring radionuclides in the locally used building materials from Kilpenthaur, Tiruvannmalai Dist, Tamilnadu, India. This study will also evaluate the radiation hazard arising due to the use of these materials in the construction of dwellings. The concentrations of natural radionuclides {sup 226}Ra, {sup 232}Th and {sup 40}K in five types of building materials have been measured by gamma spectrometry using NaI (Tl) 3” x 3”detector. The estimated radium equivalent activities (Ra{sub eq}), indoor absorbed gamma dose rate (D{sub R}), annual effective dose rate (H{sub R}) and the external hazard indexes(H{sub ex}) were lower than the recommended safe limit and are comparable with results from similar studies conducted in other countries. Therefore, the use of these building material samples under investigation in the construction of dwellings is considered to be safe for inhabitants.

  9. Leveraging "raw materials" as building blocks and bioactive signals in regenerative medicine.

    Science.gov (United States)

    Renth, Amanda N; Detamore, Michael S

    2012-10-01

    Components found within the extracellular matrix (ECM) have emerged as an essential subset of biomaterials for tissue engineering scaffolds. Collagen, glycosaminoglycans, bioceramics, and ECM-based matrices are the main categories of "raw materials" used in a wide variety of tissue engineering strategies. The advantages of raw materials include their inherent ability to create a microenvironment that contains physical, chemical, and mechanical cues similar to native tissue, which prove unmatched by synthetic biomaterials alone. Moreover, these raw materials provide a head start in the regeneration of tissues by providing building blocks to be bioresorbed and incorporated into the tissue as opposed to being biodegraded into waste products and removed. This article reviews the strategies and applications of employing raw materials as components of tissue engineering constructs. Utilizing raw materials holds the potential to provide both a scaffold and a signal, perhaps even without the addition of exogenous growth factors or cytokines. Raw materials contain endogenous proteins that may also help to improve the translational success of tissue engineering solutions to progress from laboratory bench to clinical therapies. Traditionally, the tissue engineering triad has included cells, signals, and materials. Whether raw materials represent their own new paradigm or are categorized as a bridge between signals and materials, it is clear that they have emerged as a leading strategy in regenerative medicine. The common use of raw materials in commercial products as well as their growing presence in the research community speak to their potential. However, there has heretofore not been a coordinated or organized effort to classify these approaches, and as such we recommend that the use of raw materials be introduced into the collective consciousness of our field as a recognized classification of regenerative medicine strategies.

  10. Probing the mechanical properties and microstructure of WSi2/SixGe1-x multiphase thermoelectric material by nanoindentation, electron and focused ion beam microscopy methods

    Science.gov (United States)

    Sola, Francisco; Dynys, Frederick

    2015-03-01

    Silicon germanium (SiGe) thermoelectric (TE) alloys have been traditionally used in radioisotope thermoelectric generators (RTG) NASA applications. While RTG applications is the main driver of our current research, we are exploring other applications in the energy harvesting arena. There is still a need to improve the TE figure of merit (ZT) of SiGe based TE alloys and we have been working on ways to improve it by incorporating tungsten di-silicide (WSi2) phases in to the matrix by directional solidification process. Considerable efforts have been focused until now in microstructural engineering methods that can lead to ZT improvement by microstructure optimization. Although critical for the previous mentioned applications, work pertinent to the mechanical integrity of WSi2/SiGe based TE materials is lacking. In this presentation, we report local mechanical properties (hardness, modulus and fracture toughness) and microstructure of WSi2/SiGe multiphase thermoelectric material by nanoindentation, scanning electron microscopy, focused ion beam and transmission electron microscopy methods.

  11. Natural radioactivity in granite stones used as building materials in Iran.

    Science.gov (United States)

    Asgharizadeh, F; Abbasi, A; Hochaghani, O; Gooya, E S

    2012-04-01

    Due to increasing concern about environmental radiological protection, specific radioactivity concentrations of (226)Ra, (232)Th and (40)K in different types of commonly used granite stone samples collected from the Tehran city of Iran have been determined by means of a high-resolution HPGe gamma-spectroscopy system. The activity concentrations of (232)Th, (226)Ra and (40)K in the selected granite samples ranged from 18 to 178, 6 to 160 and 556 to 1539 Bq kg(-1), respectively. The radium equivalent activities (Ra(eq)) are lower than the limit of 370 Bq kg(-1) set by NEA-OECD [Nuclear Energy Agency. Exposure to radiation from natural radioactivity in building materials. Report by NEA Group of Experts. OECD (1979)], except in two samples. The internal hazard indexes have been found well below the acceptable limit in most of the samples. Five samples of investigated commercial granite stones do not satisfy the safety criterion illustrated by UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation. Exposure from natural sources of radiation. Report to the General Assembly (1993). Applying dose criteria recently recommended by the EC [European Commission Report on Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials. Radiation Protection 112 (1999)] for superficial materials, all investigated samples meet the exemption dose limit of 0.3 mSv y(-1).

  12. Influence of nitrogen flow rates on materials properties of CrN films grown by reactive magnetron sputtering

    Indian Academy of Sciences (India)

    B Subramanian; K Prabakaran; M Jayachandran

    2012-08-01

    Chromium nitride (CrN) hard thin films were deposited on different substrates by reactive direct current (d.c.) magnetron sputtering with different nitrogen flow rates. The X-ray diffraction patterns showed mixed Cr2N and CrN phases. The variations in structural parameters are discussed. The grain size increased with increasing nitrogen flow rates. Scanning electron microscopy image showed columnar and dense microstructure with varying nitrogen flow rates. An elemental analysis of the samples was realized by means of energy dispersive spectroscopy. The electrical studies indicated the semiconducting behaviour of the films at the nitrogen flow rate of 15 sccm.

  13. SOME PHYSICO-CHEMICAL PROPERTIES OF SURIMI-LIKE MATERIAL MADE FROM GOAT MEAT AS AFFECTED BY SUCROSE LEVEL

    Directory of Open Access Journals (Sweden)

    O. Mega

    2014-10-01

    Full Text Available This experiment was carried out to study the effect of sucrose level on the physico-chemicalproperties of goat surimi. The muscle tissue of round meat of goat was separated from fat andconnective tissue manually and then was cut into 3 cm size of meat for mincing by using meat mincer.Then, the minced meat was washed three times by using chilling water (5-10oC which the final washingused chilled 0.5% NaCl solution. The ratio of water to minced meat in washing was 3:1. The final stepwas dewatering by pressing washed minced meat in the screen of linen mesh manually. Finally, rawsurimi was stirred with sucrose 3% (P1, 4% (P2 and 5% (P3 and added sodium tripolyphosphate 0.2%for each treatment. The result showed that both pH and Water Holding Capacity (WHC increasedsignificantly from P1 (P<0.05, whereas the gel strength was no different. The incline of WHC wasfollowed by the incline of crude protein content. However, sucrose could not affect ash and fat contentas well as salt-soluble protein. Sucrose supplementation at 4% in goat surimi produced the bestcharacteristics of goat surimi.

  14. Low-Cost Phase Change Material for Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Abhari, Ramin [Renewable Energy Group

    2015-08-06

    A low-cost PCM process consisting of conversion of fats and oils to PCM-range paraffins, and subsequent “encapsulation” of the paraffin using conventional plastic compounding/pelletizing equipment was demonstrated. The PCM pellets produced were field-tested in a building envelope application. This involved combining the PCM pellets with cellulose insulation, whereby 33% reduction in peak heat flux and 12% reduction in heat gain was observed (average summertime performance). The selling price of the PCM pellets produced according to this low-cost process is expected to be in the $1.50-$3.00/lb range, compared to current encapsulated PCM price of about $7.00/lb. Whole-building simulations using corresponding PCM thermal analysis data suggest a payback time of 8 to 16 years (at current energy prices) for an attic insulation retrofit project in the Phoenix climate area.

  15. The potential of vernacular materials to the sustainable building design

    OpenAIRE

    Fernandes, Jorge Emanuel Pereira; Mateus, Ricardo; Bragança, L.

    2014-01-01

    Publicado em "Vernacular heritage and earthen architecture : contributions for sustainable development", ISBN 978-1-138-00083-4 Vernacular architecture embodies a plurality of constraints from places where it belongs, in which the use of local materials and techniques is one of the main features. When compared with industrially-produced materials, vernacular materials have low environmental impacts, being an alternative for sustainable construction. The increasing use of new industrially-p...

  16. An in vitro comparative evaluation of physical properties of four different types of core materials

    Directory of Open Access Journals (Sweden)

    Antara Agrawal

    2014-01-01

    Full Text Available Introduction: Compressive and tensile stresses of core materials are important properties because cores usually replace a large bulk of tooth structure and must resist multidirectional masticatory forces for many years. Material and Methods: The present study was undertaken to find out the best core build up material with respect to their physical properties among resin-based composites. Individual compressive, tensile, and flexural strength of fiber-reinforced dual cure resin core build up material, silorane-based composite resin, and dual curing composite for core build up with silver amalgam core was used as control were evaluated and compared using universal testing machine. Data were statistical analysed using Kruskal-Wallis test to determine whether statistically significant differences (P < 0.05 existed among core materials. Both dual cure composite materials with nanofillers were found superior to amalgam core. The silorane-based material showed the highest flexural strength, but other mechanical properties were inferior to dual cure composite materials with nanofillers.

  17. Synthesis of two-dimensional materials by selective extraction.

    Science.gov (United States)

    Naguib, Michael; Gogotsi, Yury

    2015-01-20

    CONSPECTUS: Two-dimensional (2D) materials have attracted much attention in the past decade. They offer high specific surface area, as well as electronic structure and properties that differ from their bulk counterparts due to the low dimensionality. Graphene is the best known and the most studied 2D material, but metal oxides and hydroxides (including clays), dichalcogenides, boron nitride (BN), and other materials that are one or several atoms thick are receiving increasing attention. They may deliver a combination of properties that cannot be provided by other materials. The most common synthesis approach in general is by reacting different elements or compounds to form a new compound. However, this approach does not necessarily work well for low-dimensional structures, since it favors formation of energetically preferred 3D (bulk) solids. Many 2D materials are produced by exfoliation of van der Waals solids, such as graphite or MoS2, breaking large particles into 2D layers. However, these approaches are not universal; for example, 2D transition metal carbides cannot be produced by any of them. An alternative but less studied way of material synthesis is the selective extraction process, which is based on the difference in reactivity and stability between the different components (elements or structural units) of the original material. It can be achieved using thermal, chemical, or electrochemical processes. Many 2D materials have been synthesized using selective extraction, such as graphene from SiC, transition metal oxides (TMO) from layered 3D salts, and transition metal carbides or carbonitrides (MXenes) from MAX phases. Selective extraction synthesis is critically important when the bonds between the building blocks of the material are too strong (e.g., in carbides) to be broken mechanically in order to form nanostructures. Unlike extractive metallurgy, where the extracted metal is the goal of the process, selective extraction of one or more elements from

  18. Sequestering carbon dioxide in industrial polymers: Building materials for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Molton, P.M.; Nelson, D.A.

    1993-06-01

    This study was undertaken to determine the possibility of developing beneficial uses for carbon dioxide as a key component for a large-volume building product. Such a use may provide an alternative to storing the gas in oceanic sinks or clathrates as a way to slow the rate of global warming. The authors investigated the concept that carbon dioxide might be used with other chemicals to make carbon-dioxide-based polymers which would be lightweight, strong, and economical alternatives to some types of wood and silica-based building materials. As a construction-grade material, carbon dioxide would be fixed in a solid, useful form where it would not contribute to global warming. With the probable imposition of a fuel carbon tax in industrialized countries, this alternative would allow beneficial use of the carbon dioxide and could remove it from the tax basis if legislation were structured appropriately. Hence, there would be an economic driver towards the use of carbon-dioxide-based polymers which would enhance their future applications. Information was obtained through literature searches and personal contacts on carbon dioxide polymers which showed that the concept (1) is technically feasible, (2) is economically defensible, and (3) has an existing industrial infrastructure which could logically develop it. The technology exists for production of building materials which are strong enough for use by industry and which contain up to 90% by weight of carbon dioxide, both chemically and physically bound. A significant side-benefit of using this material would be that it is self-extinguishing in case of fire. This report is the first stage in the investigation. Further work being proposed will provide details on costs, specific applications and volumes, and potential impacts of this technology.

  19. High Temperature Thermoelectric Properties of ZnO Based Materials

    DEFF Research Database (Denmark)

    Han, Li

    This thesis investigated the high temperature thermoelectric properties of ZnO based materials. The investigation first focused on the doping mechanisms of Al-doped ZnO, and then the influence of spark plasma sintering conditions on the thermoelectric properties of Al, Ga-dually doped ZnO. Follow......This thesis investigated the high temperature thermoelectric properties of ZnO based materials. The investigation first focused on the doping mechanisms of Al-doped ZnO, and then the influence of spark plasma sintering conditions on the thermoelectric properties of Al, Ga-dually doped Zn...... for conventional ZnO materials. For Al-doped ZnO, α- and γ-Al2O3 were selectively used as dopants in order to understand the doping mechanism of each phase and their effects on the thermoelectric properties. The samples were prepared by the spark plasma sintering technique from precursors calcined at various...... temperatures. Clear correlations between the initial crystallographic phase of the dopants and the thermoelectric properties of the resulting Al-doped ZnO were observed. For Al, Ga-dually doped ZnO, the spark plasma sintering conditions together with the microstructural evolution and thermoelectric properties...

  20. On the Mechanical Properties of Hybrid Aluminium 7075 Matrix Composite Material Reinforced with SiC and TiC Produced by Powder Metallurgy Method

    OpenAIRE

    S. Pradeep Devaneyan; R Ganesh; T. Senthilvelan

    2017-01-01

    Metal matrix composites are widely used in components of various components of industrial equipment because of their superior material properties like high stiffness to weight ratio and high impact strength and fracture toughness while compared to the conventional material. Due to the concepts of high strength to low weight ratio, Al 7075 was extensively applied in aircraft engine and wings. Even if Al 7075 has higher hardness, higher strength, excellent wear resistance, and high-temperature ...

  1. Building cooling by night-time ventilation

    Institute of Scientific and Technical Information of China (English)

    卢军; 王曦; 甘灵丽

    2009-01-01

    Nowadays,the world is short of energy source,and larger proportion of building energy consumption is occupied by air conditioning system. It is urgent that not only importance should be attached on energy saving but also arcology energy technology based on green and sustainable thought should be advocated. Considering the ever growing energy consumption of residential buildings,intermittent ventilation is a solution to saving energy consumption and improving indoor thermal comfort. Aiming at reducing indoor air temperature by intermittent ventilation and decrease energy consumption of air conditioning system,with the help of DeST (Designer’s Simulation Toolkit) this paper analyzes the characteristics of air conditioning load and year round air conditioning time in Chongqing located in hot summer and cold winter zone,obtains the amount of energy consumption saved at different ventilation rates,and recommends suitable ventilation rate in hot summer and cold winter zone.

  2. Monitoring of Water Content in Building Materials Using a Wireless Passive Sensor

    Directory of Open Access Journals (Sweden)

    Goran Stojanović

    2010-04-01

    Full Text Available This paper describes an innovative design of a wireless, passive LC sensor and its application for monitoring of water content in building materials. The sensor was embedded in test material samples so that the internal water content of the samples could be measured with an antenna by tracking the changes in the sensor’s resonant frequency. Since the dielectric constant of water was much higher compared with that of the test samples, the presence of water in the samples increased the capacitance of the LC circuit, thus decreasing the sensor’s resonant frequency. The sensor is made up of a printed circuit board in one metal layer and water content has been determined for clay brick and autoclaved aerated concrete block, both widely used construction materials. Measurements were conducted at room temperature using a HP-4194A Impedance/Gain-Phase Analyzer instrument.

  3. Direct Imaging of Anisotropic Material Properties using Photorefractive Laser Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Telschow, Kenneth Louis; Deason, Vance Albert; Schley, Robert Scott; Watson, Scott Marshall

    1999-07-01

    Anisotropic properties of materials can be determined by measuring the propagation of elastic waves in different directions. A laser imaging approach is presented that utilizes the adaptive property of photorefractive materials to produce a real-time measurement of the antisymmetric Lamb or flexural traveling wave mode displacement and phase. Continuous excitation is employed and the data is recorded and displayed in all directions simultaneously at video camera frame rates. Fourier transform of the data produces an image of the wave slowness in all planar directions. The results demonstrate imaging of microstructural isotropy and anisotropy and stress induced ansiotropy in plates.

  4. Direct Imaging of Anisotropic Material Properties using Photorefractive Laser Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    K.L. Telschow; R.S. Schley; S.M. Watson; V.A. Deason

    1999-06-01

    Anisotropic properties of materials can be determined by measuring the propagation of elastic waves in different directions. A laser imaging approach is presented that utilizes the adaptive property of photorefractive materials to produce a real-time measurement of the antisymmetric Lamb or flexural traveling wave mode displacement and phase. Continuous excitation is employed and the data is recorded and displayed in all directions simultaneously at video camera frame rates. Fourier transform of the data produces an image of the wave slowness in all planar directions. The results demonstrate imaging of microstructural isotropy and anisotropy and stress induced ansiotropy in plates.

  5. Synthesis, Properties and Mineralogy of Important Inorganic Materials

    CERN Document Server

    Warner, Terence E

    2010-01-01

    Intended as a textbook for courses involving preparative solid-state chemistry, this book offers clear and detailed descriptions on how to prepare a selection of inorganic materials that exhibit important optical, magnetic and electrical properties, on a laboratory scale. The text covers a wide range of preparative methods and can be read as separate, independent chapters or as a unified coherent body of work. Discussions of various chemical systems reveal how the properties of a material can often be influenced by modifications to the preparative procedure, and vice versa. References to miner

  6. INVESTIGATION OF TRIBOLOGICAL PROPERTIES CuSn10 BEARING MATERIAL

    Directory of Open Access Journals (Sweden)

    Bekir Sadık ÜNLÜ

    2005-01-01

    Full Text Available Bronzes which copper based alloys is widely used because of properties physical, thermal and tribological as journal bearing material. This material that has tribological performance good conclusions gives at journal bearings. In this study, CuSn10 bronze that were manufactured journal bearings friction and wear properties has been examined and compared. SAE 1050 steel shaft has been used as counter abrader. Experiments have been carried out 10 N and 20 N loads, 750 and 1500 rpm, dry and lubricated conditions by using radial journal bearing wear test rig. As a results, high friction coefficient and weigh loss have been obtained at dry condition more than lubricated condition.

  7. Properties and extraction of pectin-enriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water.

    Science.gov (United States)

    Chen, Hai-ming; Fu, Xiong; Luo, Zhi-gang

    2015-02-01

    Pectin-enriched material (PEM) was extracted from sugar beet pulp using subcritical water combined with ultrasonic-assisted treatment. Optimisation of the reaction parameters for maximum extraction yield of PEM was carried out using response surface methodology. Optimum modification conditions were as follows: liquid/solid ratio 44.03, extraction temperature 120.72°C, extraction time 30.49min and extraction pressure 10.70MPa. Under optimal conditions, the maximum yield of PEM was 24.63%. The composition of the PEM was determined. The data showed that the contents of galacturonic acid and arabinose were 59.12% and 21.66%, respectively. The flow behaviours were investigated by a rheometer. The effects of PEM on the pasting and thermal properties of maize starch were also conducted. The results showed that the addition of PEM increased pasting temperature and decreased other pasting parameters. Increasing PEM concentrations resulted in increased gelatinisation temperature and enthalpy.

  8. GROWTH RESPONSE OF STACHYBOTRYS CHARTARUM TO MOISTURE VARIATION ON COMMON BUILDING MATERIALS

    Science.gov (United States)

    The mold Stachybotrys chartarum has been found to be associated with idiopathic pulmonary hemorrhage in infants and has been studied for toxin production and its occurrence in water damaged buildings. Growth of S. chartarum on building materials such as drywall has been frequentl...

  9. Frequency-dependent dynamic effective properties of porous materials

    Institute of Scientific and Technical Information of China (English)

    Peijun Wei; Zhuping Huang

    2005-01-01

    The frequency-dependent dynamic effective properties (phase velocity, attenuation and elastic modulus) of porous materials are studied numerically. The coherent plane longitudinal and shear wave equations, which are obtained by averaging on the multiple scattering fields, are used to evaluate the frequency-dependent dynamic effective properties of a porous material. It is found that the prediction of the dynamic effective properties includes the size effects of voids which are not included in most prediction of the traditional static effective properties. The prediction of the dynamic effective elastic modulus at a relatively low frequency range is compared with that of the traditional static effective elastic modulus, and the dynamic effective elastic modulus is found to be very close to the Hashin-Shtrikman upper bound.

  10. Identification of material properties of sandwich structure with piezoelectric patches

    Directory of Open Access Journals (Sweden)

    Zemčík R.

    2008-11-01

    Full Text Available The work focuses on light-weight sandwich structures made of carbon-epoxy skins and foam core which have unique bending stiffness compared to conventional materials. The skins are manufactured by vacuum autoclave technology from unidirectional prepregs and the sandwich is then glued together. The resulting material properties of the structure usually differ from those provided by manufacturer or even those obtained from experimental tests on separate materials, which makes computational models unreliable. Therefore, the properties are identified using the combination of experimental analysis of the sandwich with attached piezoelectric transducer and corresponding static and modal finite element analyses. Simple mathematical optimization with repetitive finite element solution is used. The model is then verified by transient analysis when the piezoelectric patch is excited by harmonic signals covering the first two eigen-frequencies and the induced oscillations are measured by laser sensor.

  11. Mechanical properties of some polymer materials used for tooth positioners.

    Science.gov (United States)

    Collett, A R; Cook, W D; West, V C

    1994-10-01

    The chemical composition, thermal behaviour and mechanical properties of three tooth positioner materials, Urethane P1 (P1), White Rubber (WR) and Elastocryl (EL) were investigated. Infra-red spectrophotometry indicated the P1 polyurethane material to be of the polyether type, and EL to be a blend of poly(ethyl methacrylate) and poly(methyl methacrylate) while WR appeared to be filled cis-poly (isoprene) (natural rubber). The glass transition temperature (Tg) for EL was determined as approximately 10 degrees C, and for both P1 and WR the Tg was less than -50 degrees C. The stress relaxation behaviour was assessed in compression by measuring the stress variation with time. The results for all three materials conformed to the superelastic theory of rubber elasticity. EL exhibited both a more rapid rate and higher degree of stress relaxation than did P1 and WR. Recovery from deformation was assessed by compressing cylinders for given periods of time and then measuring the level of reduced residual strain of the material with time. All three materials exhibited significant residual strain (epsilon(t)) over 'clinically relevant' time periods, and the reduced residual strain (epsilon(t)/epsilon(O)) following deformation was greater for EL than P1 or WR. There was some indication that the three materials have some permanent set following deformation. It was concluded that, in considering desirable mechanical properties of tooth positioner materials, EL is the least suitable of the three examined, with none of the materials being ideal.

  12. Characterization of mechanical properties of materials using ultrasound broadband spectroscopy.

    Science.gov (United States)

    Agrawal, Megha; Prasad, Abhinav; Bellare, Jayesh R; Seshia, Ashwin A

    2016-01-01

    This article explores the characterization of homogenous materials (metals, alloys, glass and polymers) by a simple broadband ultrasonic interrogation method. The novelty lies in the use of ultrasound in a continuous way with very low input power (0 dBm or less) and analysis of the transmitted acoustic wave spectrum for material property characterization like speed of sound, density and dimensions of a material. Measurements were conducted on various thicknesses of samples immersed in liquid where continuous-wave, frequency swept ultrasonic energy was incident normal to the sample surface. The electro-acoustic transmission response is analyzed in the frequency domain with respect to a specifically constructed multi-layered analytical model. From the acoustic signature of the sample materials, material properties such as speed of sound and acoustic impedance can be calculated with experimentally derived values found to be in general agreement with the literature and with pulse-echo technique establishing the basis for a non-contact and non-destructive technique for material characterization. Further, by looking at the frequency spacing of the peaks of water when the sample is immersed, the thickness of the sample can be calculated independently from the acoustic response. This technique can prove to be an effective non-contact, non-destructive and fast material characterization technique for a wide variety of materials.

  13. Handbook on dielectric and thermal properties of microwaveable materials

    CERN Document Server

    Komarov, Vyacheslav V

    2012-01-01

    The application of microwave energy for thermal processing of different materials and substances is a rapidly growing trend in modern science and engineering. In fact, optimal design work involving microwaves is impossible without solid knowledge of the properties of these materials. Here s a practical reference that collects essential data on the dielectric and thermal properties of microwaveable materials, saving you countless hours on projects in a wide range of areas, including microwave design and heating, applied electrodynamics, food science, and medical technology. This unique book provides hard-to-find information on complex dielectric permittivity of media at industrial, scientific, and medical frequencies (430 MHz, 915MHz, 2.45GHz, 5.8 GHz, and 24.125GHz). Written by a leading expert in the field, this authoritative book does an exceptional job at presenting critical data on various materials and explaining what their key characteristics are concerning microwaves.

  14. Fabrication, properties, and tritium recovery from solid breeder materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.E. (Argonne National Lab., IL (USA)); Kondo, T. (Japan Atomic Energy Research Inst., Tokyo (Japan)); Roux, N. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)); Tanaka, S. (Tokyo Univ. (Japan)); Vollath, D. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.))

    1991-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Experimental Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 133 refs., 1 fig.

  15. Bone Material Properties in Osteogenesis Imperfecta.

    Science.gov (United States)

    Bishop, Nick

    2016-04-01

    Osteogenesis imperfecta entrains changes at every level in bone tissue, from the disorganization of the collagen molecules and mineral platelets within and between collagen fibrils to the macroarchitecture of the whole skeleton. Investigations using an array of sophisticated instruments at multiple scale levels have now determined many aspects of the effect of the disease on the material properties of bone tissue. The brittle nature of bone in osteogenesis imperfecta reflects both increased bone mineralization density-the quantity of mineral in relation to the quantity of matrix within a specific bone volume-and altered matrix-matrix and matrix mineral interactions. Contributions to fracture resistance at multiple scale lengths are discussed, comparing normal and brittle bone. Integrating the available information provides both a better understanding of the effect of current approaches to treatment-largely improved architecture and possibly some macroscale toughening-and indicates potential opportunities for alternative strategies that can influence fracture resistance at longer-length scales.

  16. Properties of Sealing Materials in Groundwater Wells

    DEFF Research Database (Denmark)

    Köser, Claus

    on the maximum swelling pressure; i) the bulk density of the sample, and ii) whether the sample is sorted or unsorted. CT scans (Computed Tomography) have been used to evaluate certain properties of bentonite seals in a limited volume. In this context, a set of algorithms to convert CT numbers (HU unit......) into densities for clay/water systems has been developed. This method has successfully been used to evaluate e.g., macroporosity, homogenization of the bentonite seal during the hydration of water, hydraulic conductivity and the creation of channels in the bentonite seals. Based on the results obtained...... in this Ph.D. thesis, a number of recommendations has been offered; i) a change regarding the production of pellets and ii) how sealing material must be treated in the actual construction of groundwater wells....

  17. Mining Building Metadata by Data Stream Comparison

    DEFF Research Database (Denmark)

    Holmegaard, Emil; Kjærgaard, Mikkel Baun

    2017-01-01

    to handle data streams with only slightly similar patterns. We have evaluated Metafier with points and data from one building located in Denmark. We have evaluated Metafier with 903 points, and the overall accuracy, with only 3 known examples, was 94.71%. Furthermore we found that using DTW for mining...... ways to annotate sensor and actuation points. This makes it difficult to create intuitive queries for retrieving data streams from points. Another problem is the amount of insufficient or missing metadata. We introduce Metafier, a tool for extracting metadata from comparing data streams. Metafier...... enables a semi-automatic labeling of metadata to building instrumentation. Metafier annotates points with metadata by comparing the data from a set of validated points with unvalidated points. Metafier has three different algorithms to compare points with based on their data. The three algorithms...

  18. Textile materials for lightweight constructions technologies, methods, materials, properties

    CERN Document Server

    2016-01-01

    In this book, experts on textile technologies convey both general and specific informa­tion on various aspects of textile engineering, ready-made technologies, and textile chemistry. They describe the entire process chain from fiber materials to various yarn constructions, 2D and 3D textile constructions, preforms, and interface layer design. In addition, the authors introduce testing methods, shaping and simulation techniques for the characterization of and structural mechanics calculations on anisotropic, pliable high-performance textiles, including specific examples from the fields of fiber plastic composites, textile concrete, and textile membranes. Readers will also be familiarized with the potential offered by increasingly popular textile structures, for instance in the fields of composite technology, construction technology, security technology, and membrane technology. Textile materials and semi-finished products have widely varied potential characteristics, and are commonly used as essential element...

  19. Further Development of Selective Dyeing Method for Detecting Chrysotile Asbestos in Building Materials

    Science.gov (United States)

    Oke, Y.; Yamasaki, N.; Maeta, N.; Fujimaki, H.; Hashida, T.

    2008-02-01

    Extensive usage of chrysotile asbestos has resulted in the remains of large numbers of chrysotile asbestos-containing buildings to be surveyed. We have recently developed a simple dyeing method for detecting chrysotile asbestos in building materials, which involves pretreatment with calcium-chelating agent and dyeing treatment with magnesium-chelating organic dyes. In this study, we further developed a method which eliminates dyed asbestos substitutes containing magnesium, potentially present in building materials. In the new method, post-treatment with formic acid was conducted to dissolve the non-chrysotile asbestos materials in order to delineate dyed chrysotile asbestos. The calcium-masking process was also shown to be an essential process even when the post-treatment was conducted. It was shown that the new method developed in this study may enable us to dye chrysotile asbestos only without detecting asbestos substitutes in building materials.

  20. 29 CFR 779.355 - Classification of lumber and building materials sales.

    Science.gov (United States)

    2010-07-01

    ... LABOR STANDARDS ACT AS APPLIED TO RETAILERS OF GOODS OR SERVICES Exemptions for Certain Retail or... business rather than a function of a retail merchant; (2) Sales of lumber and building materials in...

  1. The Monastery of Uclés (Cuenca, Spain: characterization and deterioration of building materials

    Directory of Open Access Journals (Sweden)

    Álvarez De Buergo, M.

    2004-09-01

    Full Text Available Building materials from the Monastery of Uclés façades, in Cuenca (16th-18 th centuries, have been characterised, as well as identified their deterioration forms. Characterization consisted of the determination o mineralogical and petrographical properties of building materials; petrophysical and petrochemical characterization of building stones were also carried out. Stony materials are basically of two types, dolostones and limestones. Ashlars joint mortars are of three classes, chronologically from the oldest to the newest: lime mortars with siliceous and dolomitic aggregates, gypsum/lime mortars with dolomitic aggregates, and gypsum/lime mortars with siliceous aggregates. The façades have been protected with artificial patinas of three kinds: lime, lime/gypsum and gypsum patinas, chronologically from the oldest to the newest, with a variable thickness from 500 µm. The dolomitic fades are better conserved than the calcareous ones, and the covering artificial patinas presence have preserved the materials on which they were applied.

    Se han caracterizado ¡os materiales de construcción de las fachadas del Monasterio de Uclés en Cuenca (s. XVI-XVIII así como sus formas de deterioro. La caracterización consistió en la determinación de sus características mineralógicas, petrográficas y petroquímicas, asi como la caracterización petrofisica de los materiales pétreos. Las piedras de construcción son, fundamentalmente, de dos tipos, dolomías y calizas. Los morteros de rejuntado de los sillares son de tres tipos, en orden cronológico, de más antiguos a más modernos: morteros de cal con áridos silíceos y dolomíticos, morteros de cal/yeso con áridos dolomílicos, y morteros de yeso/cal con áridos silíceos. Las fachadas han estado protegidas por pátinas artificiales de tres tipos: de cal, de cal/yeso y de yeso; en orden cronológico, de más antiguas a más modernas, con espesores variables desde < 100µm

  2. New Construction for Commercial Building (Restaurant By Considering The Green Building Strategies

    Directory of Open Access Journals (Sweden)

    MF Baharom

    2015-08-01

    Full Text Available The Green Building Index (GBI is one of green building strategies that are needed in order to decrease the human technologies and waste made by them. Moreover, GBI is the latest green building strategies that been implemented in the new building construction in Malaysia. It is proven as the building sector consumes 40% of the total energy consumption in the world, thus increasing the environmental problems. Mechanical, cooling, lighting and ventilating spaces consume by far the most energy in buildings. Besides the energy consumption, the cost needed to develop the new building also been increased. This project sought to provide an understanding on the new construction of commercial building (restaurant which is selected with the objectives which to design all the electrical installation including the lighting system, air-conditioner, switch socket outlet (SSO, protection system, and cable selection in the commercial building (restaurant based on the Malaysia’s GBI, to analyze the lighting system by using DIALux software and all the connected electrical loads after implementing the GBI standards, and lastly to analyze the energy consumption as well as the cost in the new construction for commercial building (restaurant. The electrical installation and building design are done by using AutoCAD software whereas the lighting system is analyzed by using DIALux software. The load calculation, energy and cost consumption are been analyzed based on the GBI and electrical standards. Based on the results obtained, the overall energy and cost consumptions in the commercial building had been improved after implementing the green building strategies. The overall electrical installation in the building will be based on energy efficiency criteria of the GBI assessment criteria on the non-residential (commercial building which having the highest point. An electrical installation design, AutoCAD design, load calculation, energy and cost consumption are made

  3. Tribological Property of Polyimide Porous Materials

    Institute of Scientific and Technical Information of China (English)

    PU Yu-ping; L(U) Guang-shu; LI Xiao-jun; XIAO Han-cheng

    2006-01-01

    The friction performance of the polyimide (PI) porous composite materials made by moulding method with MoS2 or polytetrafluoroethylene (PTFE) appended are disserted. The result shows that all the PI-based porous composites have the performance of transfer lubrication in the friction process, and the transfer film is built between the counter friction bodies; with the increasing of the MoS2 a mount from 0 to 20%, the friction coefficient trends toward decrease, and the tr ansfer lubricate phenomenon become more obvious; when adding PTFE as synergist t o the porous PI+MoS2 composite material, the synergistic effect happens, which can improve the friction performance of the material effectively.

  4. The influence of rainwater composition on the conservation state of cementitious building materials

    Energy Technology Data Exchange (ETDEWEB)

    Morillas, Héctor, E-mail: hector.morillas@ehu.es [Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country (Spain); Marcaida, Iker [Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country (Spain); Maguregui, Maite [Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080 Vitoria-Gasteiz, Basque Country (Spain); Carrero, Jose Antonio; Madariaga, Juan Manuel [Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country (Spain)

    2016-01-15

    Rainwater is one of the main pollution tracers around the world. There are many reasons that can explain the presence of high concentrations of certain hazardous elements (HEs) in the rainwater (traffic, marine port activities, industry, etc.). In this work, rainwater samples were collected at six different locations in the Metropolitan Bilbao (Basque Country, north of Spain) during November 2014. HE concentrations were determined by means of inductively coupled plasma mass spectrometry (ICP-MS) and anions by ion chromatography. The pH and redox potential values on these samples were also assessed. According to the obtained results, different trends along the estuary of Bilbao have been observed. To corroborate some hypothesis, thermodynamic simulations and correlation analyses were also carried out using quantitative data. These trends are closely related to the surrounding pollution and marine influence. Finally, in order to ascertain the influence of the Metropolitan Bilbao rainwater on buildings materials, a recent construction was characterized. Using techniques such as Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy (SEM–EDS) and Raman Spectroscopy, different types of sulfates and nitrates were observed. - Highlights: • Rainwater from six sampling points along Nervion River (Bilbao, Spain) were analyzed. • Ion chromatography, ICP-MS and chemometrics were used for the rainwater analyses. • The interaction between wet depositions and building materials was studied. • Cementitious materials were analyzed using µ-Raman spectroscopy and SEM–EDS.

  5. Thermal properties of hemp fibre non-woven materials

    Science.gov (United States)

    Freivalde, Liga; Kukle, Silvija; Russell, Stephen

    2013-12-01

    This review considers the thermal properties analysis of hemp fiber non-woven materials made by three different manufacturing technologies - thermal bonding, needle-punching and hydro-entanglement. For non-wovens development two hemp fibers cultivars grown in Latvia were used - Purini and Bialobrzeskie. Thermal resistance, conductivity and the effects of several parameters on thermal performance are revised.

  6. Food material properties and early hominin processing techniques.

    Science.gov (United States)

    Zink, Katherine D; Lieberman, Daniel E; Lucas, Peter W

    2014-12-01

    Although early Homo is hypothesized to have used tools more than australopiths to process foods prior to consumption, it is unknown how much the food processing techniques they used altered the material properties of foods, and therefore the masticatory forces they generated, and how well they were able to comminute foods. This study presents experimental data on changes to food material properties caused by mechanical tenderization (pounding with a stone tool) and cooking (dry roasting) of two foods likely to have been important components of the hominin diet: meat and tubers. Mechanical tenderization significantly decreased tuber toughness by 42%, but had no effect on meat toughness. Roasting significantly decreased several material properties of tubers correlated with masticatory effort including toughness (49%), fracture stress (28%) and elastic modulus (45%), but increased the toughness (77%), fracture stress (50%-222%), and elastic modulus of muscle fibers in meat (308%). Despite increasing many material properties of meat associated with higher masticatory forces, roasting also decreased measured energy loss by 28%, which likely makes it easier to chew. These results suggest that the use of food processing techniques by early Homo probably differed for meat and tubers, but together would have reduced masticatory effort, helping to relax selection to maintain large, robust faces and large, thickly enameled teeth.

  7. The synthesis and properties of nanoscale ionic materials

    KAUST Repository

    Rodriguez, Robert Salgado

    2010-02-17

    In this article we discuss the effect of constituents on structure, flow, and thermal properties of nanoscale ionic materials (NIMs). NIMs are a new class of nanohybrids consisting of a nanometer-sized core, a charged corona covalently attached to the core, and an oppositely charged canopy. The hybrid nature of NIMs allows for their properties to be engineered by selectively varying their components. The unique properties associated with these systems can help overcome some of the issues facing the implementation of nanohybrids to various commercial applications, including carbon dioxide capture,water desalinization and as lubricants. Copyright © 2010 John Wiley & Sons, Ltd.

  8. Experiences Acquired by a Building Collapse

    Directory of Open Access Journals (Sweden)

    Murat Durusu

    2012-04-01

    Full Text Available In this study, it has been purposed to share practice of event-scene administration, search and rescue and evacuation of injured and acquired experiences carried out throughout a building collapse. After an explosion at Diyarbakir Kurdoglu housings at 11 December 2006 about 08:20AM, five flats of an apartment that has five floors-ten flats were collapsed. Local military hospital ambulances, city ambulances, and fire-fighting vehicles arrived to event-place 10 minutes later. It has been found out that there were 13 people inside, 6 of which were children. Army rescue team arrived event-place about 01:30PM, then all non-professional persons has been sent away from region. Eight dead including five children, and five injured including one child have been taken out. Two people from close area have been also injured mildly due to the explosion. It has been found out that accident caused by boiler tank exploding. Sixth of total eight injured had only superficial wounds. Other two injured have been followed because of head trauma at first one and hepatic contusion and rib fracture at the other one. No complication observed after follow-up. Building collapses can create disaster potential according to the number of people inside and facilities of nearby region of the place accident taken place. The evaluation of the direction of building collapse during search and rescue operation would enhance possibility to reach more living in shorter time. Building collapses which can be considered as a miniature of big disaster potentials like earthquakes can be appraised as an important practical training and experience source on event-place administration, search and rescue operations and injured evacuation. We believe that share of the analysis and acquired experiences of this kind of studies would contribute interfering big disaster potentials. [TAF Prev Med Bull 2012; 11(2.000: 241-244

  9. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    OpenAIRE

    Marynowicz Andrzej

    2016-01-01

    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera du...

  10. Review of Development Survey of Phase Change Material Models in Building Applications

    Directory of Open Access Journals (Sweden)

    Hussein J. Akeiber

    2014-01-01

    Full Text Available The application of phase change materials (PCMs in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data.

  11. Analysis of Phase Change Material in Glazing Systems in Future Zero-Energy-Buildings

    DEFF Research Database (Denmark)

    Winther, Frederik Vildbrad; Heiselberg, Per; Jensen, Rasmus Lund

    2016-01-01

    the thermal storage capacity of the glazed facade by using phase change material (PCM), in the glazing cavity, reduces the cooling demand. When wanting to use this technology under colder weather conditions, the pane can potentially reduce the heat loss of the pane thereby minimizing energy demand for heating.......When designing glazed constructions, this often results in thermally light constructions, with a low time constant. In order for these buildings to improve the redistribution of loads between night and day, solutions such as active slabs and exposed concrete cores are often used. However...

  12. The Feasibility of Wood and its Derivatives as a Bicycle Frame Building Material

    OpenAIRE

    BRENT TAYLOR, NICHOLAS

    2016-01-01

    [EN] ABSTRACT Nicholas Brent Taylor: The Feasibility of Wood and its Derivatives as a Bicycle Frame Building Material The bicycle is often considered as one of the most important inventions of all time. In addition, it is the most efficient form of human transport in the world. It is non pollutant, uses no fuel other than human power and its carbon footprint is neutralised in a short time. Today, faced with the threat of global warming brought about by fossil fuels, countries such as De...

  13. Diffuse Reflectance Infrared Fourier Transform Spectroscopy for the Determination of Asbestos Species in Bulk Building Materials

    Directory of Open Access Journals (Sweden)

    Grazia Accardo

    2014-01-01

    Full Text Available Diffuse reflectance infrared Fourier transform (DRIFT spectroscopy is a well-known technique for thin film characterization. Since all asbestos species exhibit intense adsorptions peaks in the 4000–400 cm−1 region of the infrared spectrum, a quantitative analysis of asbestos in bulk samples by DRIFT is possible. In this work, different quantitative analytical procedures have been used to quantify chrysotile content in bulk materials produced by building requalification: partial least squares (PLS chemometrics, the Linear Calibration Curve Method (LCM and the Method of Additions (MoA. Each method has its own pros and cons, but all give affordable results for material characterization: the amount of asbestos (around 10%, weight by weight can be determined with precision and accuracy (errors less than 0.1.

  14. Thermal comfort in residential buildings by the millions

    DEFF Research Database (Denmark)

    Østergård, Torben; Jensen, Rasmus Lund; Maagaard, Steffen

    2016-01-01

    In Danish building code and many design briefings, criteria regarding thermal comfort are defined for “critical” rooms in residential buildings. Identifying the critical room is both difficult and time-consuming for large, multistory buildings. To reduce costs and time, such requirement often...... in most residential buildings. For each room variation, we perform 100.000 simulations while varying important design inputs such as window-floor-ratio, ventilation rates, glazing properties, and shading properties. Prior to this, the Morris method was used to identify and fixate insignificant inputs...

  15. 气相色谱法测定建材市场空气中的苯、甲苯和二甲苯%Determination of Benzene, Toluene and Xylene in Building Materials Market Air by Gas Chromatography

    Institute of Scientific and Technical Information of China (English)

    林建原; 刘俊波

    2009-01-01

    采用活性炭吸附-CS_2解析毛细管气相色谱法,对建材市场空气中的苯、甲苯、二甲苯进行了测定.采用活性炭管采集样品,经CS_2解析,FID做检测器,考察了苯、甲苯、二甲苯的线性关系.经实验测得解吸率在90%以上,苯、甲苯、二甲苯的加标回收率在96.6%-102.1%,线性方程的相对系数在0.999以上.该方法采样装置体积小、噪音低、操作简便,适用于同时进行苯、甲苯、二甲苯的快速测定.%Benzene, toluene and xylene in building materials market air were determined by using activated charcoal adsoption CS_2 analysis capillary vessel gas chromatography. Activated carbon tube was used to collect samples with FID detector. Linearity of benzene, toluene and xylene were studied, results showed that after process experiment, samples desorption rate was above 90%, Canadian sign returns ratio of benzene, toluene and xylene was 96.6%~102.1%, relative coefficient of linear equation above 0.999. The sampling devices were small size, low noise and easy to operate, which are applicable for fast determining benzene,toluene and xylene simultaneously.

  16. C-Depth Method to Determine Diffusion Coefficient and Partition Coefficient of PCB in Building Materials.

    Science.gov (United States)

    Liu, Cong; Kolarik, Barbara; Gunnarsen, Lars; Zhang, Yinping

    2015-10-20

    Polychlorinated biphenyls (PCBs) have been found to be persistent in the environment and possibly harmful. Many buildings are characterized with high PCB concentrations. Knowledge about partitioning between primary sources and building materials is critical for exposure assessment and practical remediation of PCB contamination. This study develops a C-depth method to determine diffusion coefficient (D) and partition coefficient (K), two key parameters governing the partitioning process. For concrete, a primary material studied here, relative standard deviations of results among five data sets are 5%-22% for K and 42-66% for D. Compared with existing methods, C-depth method overcomes the inability to obtain unique estimation for nonlinear regression and does not require assumed correlations for D and K among congeners. Comparison with a more sophisticated two-term approach implies significant uncertainty for D, and smaller uncertainty for K. However, considering uncertainties associated with sampling and chemical analysis, and impact of environmental factors, the results are acceptable for engineering applications. This was supported by good agreement between model prediction and measurement. Sensitivity analysis indicated that effective diffusion distance, contacting time of materials with primary sources, and depth of measured concentrations are critical for determining D, and PCB concentration in primary sources is critical for K.

  17. Building with Sand

    Science.gov (United States)

    Ashbrook, Peggy

    2010-01-01

    Children playing in damp sand invariably try to make a tower or a tunnel. By providing experiences with a variety of materials, alone and together, teachers set up the conditions for children to learn through their senses and ensure that a class approaches a topic with a common set of experiences to build on. Learning about the properties of…

  18. A Materials Life Cycle Assessment of a Net-Zero Energy Building

    Directory of Open Access Journals (Sweden)

    Laura A. Schaefer

    2013-02-01

    Full Text Available This study analyzed the environmental impacts of the materials phase of a net-zero energy building. The Center for Sustainable Landscapes (CSL is a three-story, 24,350 square foot educational, research, and administrative office in Pittsburgh, PA, USA. This net-zero energy building is designed to meet Living Building Challenge criteria. The largest environmental impacts from the production of building materials is from concrete, structural steel, photovoltaic (PV panels, inverters, and gravel. Comparing the LCA results of the CSL to standard commercial structures reveals a 10% larger global warming potential and a nearly equal embodied energy per square feet, largely due to the CSL’s PV system. As a net-zero energy building, the environmental impacts associated with the use phase are expected to be very low relative to standard structures. Future studies will incorporate the construction and use phases of the CSL for a more comprehensive life cycle perspective.

  19. Measurement of color in different construction materials. The restoration in sandstone buildings

    Directory of Open Access Journals (Sweden)

    García Pascua, N.

    1999-03-01

    Full Text Available The use of construction materials and their subsequent repair purposes include a search of knowledge and preservation of their original appearance. For this reason, the main aim of this study is to determine a color range which does not change with the possible actions on a building, both when restoration works which imply the use and repair of "ancient" materials are carried out, and when construction is carried out with new materials. It is necessary to obtain the quantification of this property in order to check its variation over the passage of time. Each construction material must be taken into account as an isolated problem, since the color is different in each case.

    El empleo de materiales de construcción y la aplicación sobre ellos de productos de reparación requiere un detallado estudio sobre su forma de actuación y la importancia de la conservación del aspecto original de los mismos. Por este motivo, el objetivo principal de este estudio es el determinar un intervalo de color que se conserve a pesar de todas las posibles intervenciones que se acometan en el edificio, tanto cuando se realizan trabajos de restauración, que implican el uso y reparación de materiales "viejos", o bien cuando se llevan a cabo trabajos de construcción con materiales nuevos. Es necesario cuantificar dicha propiedad para poder controlar el paso del tiempo. Cada material de construcción debe ser considerado como un problema aislado, ya que el color es distinto en cada caso.

  20. Development and Analysis of Synthetic Composite Materials Emulating Patient AAA Wall Material Properties

    Science.gov (United States)

    Margossian, Christa M.

    Abdominal Aortic Aneurysm (AAA) rupture accounts for 14,000 deaths a year in the United States. Since the number of ruptures has not decreased significantly in recent years despite improvements in imaging and surgical procedures, there is a need for an accurate, noninvasive technique capable of establishing rupture risk for specific patients and discriminating lesions at high risk. In this project, synthetic composite materials replicating patient-specific wall stiffness and strength were developed and their material properties evaluated. Composites utilizing various fibers were developed to give a range of stiffness from 1825.75 kPa up through 8187.64 kPa with one base material, Sylgard 170. A range of strength from 631.12 kPa to 1083 kPa with the same base material was also found. By evaluating various base materials and various reinforcing fibers, a catalogue of stiffnesses and strengths was started to allow for adaptation to specific patient properties. Three specific patient properties were well-matched with two composites fabricated: silk thread-reinforced Sylgard 170 and silk thread-reinforced Dragon Skin 20. The composites showed similar stiffnesses to the specific patients while reaching target stresses at particular strains. Not all patients were matched with composites as of yet, but recommendations for future matches are able to be determined. These composites will allow for the future evaluation of flow-induced wall stresses in models replicating patient material properties and geometries.

  1. Suitable Friction Sliding Materials for Base Isolation of Masonry Buildings

    Directory of Open Access Journals (Sweden)

    Radhikesh P. Nanda

    2012-01-01

    Full Text Available A feasibility study of friction base isolation system for seismic protection has been performed. Four different sliding interfaces, namely, green marble/High Density Poly Ethylene (HDPE, green marble/green marble, green marble/geosynthetic, and green marble/ rubber layers have been studied through experimental and analytical investigations. The experimental investigations show that the coefficient of friction values of these interfaces lies in the desirable range for seismic protection, i.e., 0.05 to 0.15. The analytical investigation reveals that most of these sliding interfaces are effective in reducing spectral accelerations up to 50% and the sliding displacement is restricted within plinth projection of 75 mm (3 in. Green marble and geosynthetic are found to be better alternatives for use in friction isolation system with equal effectiveness of energy dissipation and limiting the earthquake energy transmission to super structure during strong earthquake leading to a low cost, durable solution for earthquake protection of masonry buildings.

  2. Preparation and Properties of Carbon Fiber Chiral Materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; HUANG Zhixin; WANG Guoqing

    2008-01-01

    The chiral materials were prepared by using the carbon fiber helices as chiral inclusions,and the composite of Fe3O4 and polyaniline as matrix.The electromagnetic properties,including the rotation angles,the axial ratios and the complex chirality parameters,were measured by using a circular waveguide method in the 8.5-11.0 GHz frequency range.The dependence of these electromagnetic properties on the frequency and the concentration of the Fe3O4 in the composite matrix were analyzed.The results show that an appropriate concentration of Fe3O4 in the matrix is useful in improving the electromagnetic properties of the chiral material.

  3. Broadband optical characterization of material properties

    DEFF Research Database (Denmark)

    Nielsen, Otto Højager Attermann

    , as well as details of the absorption spectrum which relate to chemical composition. The thesis focuses on two production process from the food industry. The first process is from the dairy industry where discrimination between chemical and structural properties is of importance. To explore...... inspection system for spectrallyresolved Static Light Scattering (SLS). (II) Photon Time-of-Flight (PToF) spectroscopy, which is a state of the art technique for characterization of turbid media. (III) A new hyperspectral imaging system based on full-field illumination by diffuse laser light. This thesis...... the fermentation process. It has also been shown that the optical inspection methods sense changes to structural properties before any are detected by traditional mechanical rheology. Finally, the developed hyperspectral imaging system was used to quantify the content of astaxanthin in fish feed, and performed...

  4. Combustion Properties of Textiles Applied in Tibet Ancient Buildings and Their Clean Flame Retarding Designs

    Institute of Scientific and Technical Information of China (English)

    YOU Fei; HU Yuan; SHI Hu

    2006-01-01

    In the Tibet ancient buildings, there are large amounts of combustible decorative textiles that pose great potential fire hazards. Some typical textile samples were collected from the Potala Palace. Their combustion properties were analyzed by UL 94 Vertical Burning test and Limiting Oxygen Index test. The effects of plateau climate on combustion properties, an important fact required to be considered in the flame retarding design for combustible textiles, were preliminarily compared via test data in the plain and those in the plateau. Based on the foregoing analyses, some thoughts were presented on the clean and feasible flame retarding means for the decorative textiles due to their special applications in Tibet, in ancient buildings and in plateau climate. The fire resistance, weather resistance, UV resistance, endurance, ornamentation and religious performances for these textiles must be taken into considerations comprehensively in the designs.

  5. Development of phase change materials based microencapsulated technology for buildings: A review

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, V.V.; Kaushik, S.C. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Tyagi, S.K. [School of Infrastructure Technology and Resource Management, Shri Mata Vaishno Devi University, Katra 182320, J and K (India); Akiyama, T. [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-86283 (Japan)

    2011-02-15

    Thermal energy storage (TES) systems using phase change material (PCM) have been recognized as one of the most advanced energy technologies in enhancing the energy efficiency and sustainability of buildings. Now the research is focus on suitable method to incorporate PCMs with building. There are several methods to use phase change materials (PCMs) in thermal energy storage (TES) for different applications. Microencapsulation is one of the well known and advanced technologies for better utilization of PCMs with building parts, such as, wall, roof and floor besides, within the building materials. Phase change materials based microencapsulation for latent heat thermal storage (LHTS) systems for building application offers a challenging option to be employed as effective thermal energy storage and a retrieval device. Since the particular interest in using microencapsulation PCMs for concrete and wall/wallboards, the specific research efforts on both subjects are reviewed separately. This paper presents an overview of the previous research work on microencapsulation technology for thermal energy storage incorporating the phase change materials (PCMs) in the building applications, along with few useful conclusive remarks concluded from the available literature. (author)

  6. EXPERIMENTAL DEVELOPMENT OF BIO-BASED POLYMER MATRIX BUILDING MATERIAL AND FISH BONE DIAGRAM FOR MATERIAL EFFECT ON QUALITY

    Directory of Open Access Journals (Sweden)

    Asmamaw Tegegne

    2014-06-01

    Full Text Available These days cost of building materials are continuously increasing and the conventional construction materials for this particular purpose become low and low. The weight of conventional construction materials particularly building block is heavy and costly due to particularly cement. Thus, the objective of this paper is to develop an alternative light weight, high strength and relatively cost effective building material that satisfy the quality standard used in the country. A bio-based polymer matrix composite material for residential construction was experimentally developed. Sugar cane bagasse, thermoplastics (polyethylene g roup sand and red ash were used as materials alternatively. Mixing of the additives,melting of the hermoplastics, molding and curing (dryingwere the common methods used on the forming process of the samples. Mechanical behavior evaluation (testing of the product was carried out. Totally 45 specimens were produced and three replicate tests were performed per each test type. Quality analysis was carried out for group B material using Ishikawa diagram. The tensile strength of group A specimen was approximately 3 times greater than that of group B specimens. The compression strength of group A specimens were nearly 2 times greater than group B. Comparing to the conventional building materials(concert block and agrostoneproduced in the country, which the compression strength is 7Mpa and 16Mpa respectively, the newly produced materials show much better results in which Group A is 25.66 Mpa and group B is 16.66 Mpa. energy absorption capacity of group A specimens was approximately 3 times better than that of group B. Water absorption test was carried out for both groups and both showed excellent resistivity. Group A composite material specimens, showed better results in all parameters.

  7. Building a Data Warehouse step by step

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Data warehouses have been developed to answer the increasing demands of quality information required by the top managers and economic analysts of organizations. Their importance in now a day business area is unanimous recognized, being the foundation for developing business intelligence systems. Data warehouses offer support for decision-making process, allowing complex analyses which cannot be properly achieved from operational systems. This paper presents the ways in which a data warehouse may be developed and the stages of building it.

  8. Preparation and electrochemical properties of a LiFePO{sub 4}/C composite cathode material by a polymer-pyrolysis-reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Yang Kerun; Lin Ziji [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Hu Xuebu [Department of Chemistry and Materials, Sichuan Normal University, Chengdu, Sichuan 610066 (China); Deng Zhenghua, E-mail: zhdeng@cioc.ac.c [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Zhongke Laifang Power Science and Technology Co., Ltd., Chengdu, Sichuan 610041 (China); Suo Jishuan [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China)

    2011-02-28

    A LiFePO{sub 4}/C composite was successfully prepared by a polymer-pyrolysis-reduction method, using FePO{sub 4}.2H{sub 2}O and lithium polyacrylate (PAALi) as raw materials. The structure of the LiFePO{sub 4}/C composites was investigated by X-ray diffraction (XRD). The micromorphology of the precursor and LiFePO{sub 4}/C powders was observed using scanning electron microscopy (SEM), and the in situ coating of carbon on the particles was observed by transmission electron microscopy (TEM). Furthermore, the electrochemical properties were evaluated by cyclic voltammograms (CVs), electrochemical impedance spectra (EIS) and constant current charge/discharge cycling tests. The results showed that the sample synthesized at 700 {sup o}C had the best electrochemical performance, exhibiting initial discharge capacities of 157, 139 and 109 mAh g{sup -1} at rates of 0.1, 1 and 5 C, respectively. Moreover, the sample presented excellent capacity retention as there was no significant capacity fade after 50 cycles.

  9. PROPERTIES AND BEHAVIOR OF 238PU RELEVANT TO DECONTAMINATION OF BUILDING 235-F

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, A.; Kane, M.

    2009-11-24

    This report was prepared to document the physical, chemical and radiological properties of plutonium oxide materials that were processed in the Plutonium Fuel Form Facility (PuFF) in building 235-F at the Savannah River Plant (now known as the Savannah River Site) in the late 1970s and early 1980s. An understanding of these properties is needed to support current project planning for the safe and effective decontamination and deactivation (D&D) of PuFF. The PuFF mission was production of heat sources to power Radioisotope Thermoelectric Generators (RTGs) used in space craft. The specification for the PuO{sub 2} used to fabricate the heat sources required that the isotopic content of the plutonium be 83 {+-} 1% Pu-238 due to its high decay heat of 0.57 W/g. The high specific activity of Pu-238 (17.1 Ci/g) due to alpha decay makes this material very difficult to manage. The production process produced micron-sized particles which proved difficult to contain during operations, creating personnel contamination concerns and resulting in the expenditure of significant resources to decontaminate spaces after loss of material containment. This report examines high {sup 238}Pu-content material properties relevant to the D&D of PuFF. These relevant properties are those that contribute to the mobility of the material. Physical properties which produce or maintain small particle size work to increase particle mobility. Early workers with {sup 238}PuO{sub 2} felt that, unlike most small particles, Pu-238 oxide particles would not naturally agglomerate to form larger, less mobile particles. It was thought that the heat generated by the particles would prevent water molecules from binding to the particle surface. Particles covered with bound water tend to agglomerate more easily. However, it is now understood that the self-heating effect is not sufficient to prevent adsorption of water on particle surfaces and thus would not prevent agglomeration of particles. Operational

  10. Measurements of radioactivity and dose assessments in some building materials in Bitlis, Turkey.

    Science.gov (United States)

    Kayakökü, Halime; Karatepe, Şule; Doğru, Mahmut

    2016-09-01

    In this study, samples of perlite, pumice and Ahlat stones (Ignimbrite) extracted from mines in Bitlis and samples of other building materials produced in facilities in Bitlis were collected and analyzed. Activity concentrations of (226)Ra, (232)Th and (40)K in samples of building materials were measured using NaI detector (NaI(Tl)) with an efficiency of 24%. The radon measurements of building material samples were determined using CR-39 nuclear track detectors. (226)Ra, (232)Th and (40)K radioactivity concentrations ranged from (29.6±5.9 to 228.2±38.1Bq/kg), (10.8±5.4 to 95.5±26.1Bq/kg) and (249.3±124.7 to 2580.1±266.9Bq/kg), respectively. Radon concentration, radium equivalent activities, absorbed dose rate, excess lifetime cancer risk and the values of hazard indices were calculated for the measured samples to assess the radiation hazards arising from using those materials in the construction of dwellings. Radon concentration ranged between 89.2±12.0Bq/m(3) and 1141.0±225.0Bq/m(3). It was determined that Raeq values of samples conformed to world standards except for perlite and single samples of brick and Ahlat stone. Calculated values of absorbed dose rate ranged from 81.3±20.5 to 420.6±42.8nGy/h. ELCR values ranged from (1.8±0.3)×10(-3) to (9.0±1.0)×10(-3). All samples had ELCR values higher than the world average. The values of Hin and Hex varied from 0.35±0.11 to 1.78±0.18 and from 0.37±0.09 to 1.17±0.13, respectively. The results were compared with standard radioactivity values determined by international organizations and with similar studies. There would be a radiation risk for people living in buildings made of perlite, Ahlat-1 and Brick-3.

  11. Tailoring material properties of a nanofibrous extracellular matrix derived hydrogel

    Science.gov (United States)

    Johnson, Todd D.; Lin, Stephen Y.; Christman, Karen L.

    2011-12-01

    In the native tissue, the interaction between cells and the extracellular matrix (ECM) is essential for cell migration, proliferation, differentiation, mechanical stability, and signaling. It has been shown that decellularized ECMs can be processed into injectable formulations, thereby allowing for minimally invasive delivery. Upon injection and increase in temperature, these materials self-assemble into porous gels forming a complex network of fibers with nanoscale structure. In this study we aimed to examine and tailor the material properties of a self-assembling ECM hydrogel derived from porcine myocardial tissue, which was developed as a tissue specific injectable scaffold for cardiac tissue engineering. The impact of gelation parameters on ECM hydrogels has not previously been explored. We examined how modulating pH, temperature, ionic strength, and concentration affected the nanoscale architecture, mechanical properties, and gelation kinetics. These material characteristics were assessed using scanning electron microscopy, rheometry, and spectrophotometry, respectively. Since the main component of the myocardial matrix is collagen, many similarities between the ECM hydrogel and collagen gels were observed in terms of the nanofibrous structure and modulation of properties by altering ionic strength. However, variation from collagen gels was noted for the gelation temperature along with varied times and rates of gelation. These discrepancies when compared to collagen are likely due to the presence of other ECM components in the decellularized ECM based hydrogel. These results demonstrate how the material properties of ECM hydrogels could be tailored for future in vitro and in vivo applications.

  12. Estimating Energy Conversion Efficiency of Thermoelectric Materials: Constant Property Versus Average Property Models

    Science.gov (United States)

    Armstrong, Hannah; Boese, Matthew; Carmichael, Cody; Dimich, Hannah; Seay, Dylan; Sheppard, Nathan; Beekman, Matt

    2017-01-01

    Maximum thermoelectric energy conversion efficiencies are calculated using the conventional "constant property" model and the recently proposed "cumulative/average property" model (Kim et al. in Proc Natl Acad Sci USA 112:8205, 2015) for 18 high-performance thermoelectric materials. We find that the constant property model generally predicts higher energy conversion efficiency for nearly all materials and temperature differences studied. Although significant deviations are observed in some cases, on average the constant property model predicts an efficiency that is a factor of 1.16 larger than that predicted by the average property model, with even lower deviations for temperature differences typical of energy harvesting applications. Based on our analysis, we conclude that the conventional dimensionless figure of merit ZT obtained from the constant property model, while not applicable for some materials with strongly temperature-dependent thermoelectric properties, remains a simple yet useful metric for initial evaluation and/or comparison of thermoelectric materials, provided the ZT at the average temperature of projected operation, not the peak ZT, is used.

  13. Gamma Radiation Measurements and Dose Rates in Commonly Used Building Materials in Cyprus

    CERN Document Server

    Michael, F; Parpottas, Y

    2010-01-01

    A first comprehensive study is presented on radioactivity concentrations and dose rates in 87 commonly used materials, manufactured or imported in Cyprus, for building purposes. The natural radioactivity of K-40, Th-232, U-238 and Ra-226 is determined using high-resolution gamma ray spectroscopy. The respective dose rates and the associated radiological effect indices are also calculated. A comparison of the measured specific activity values with the corresponding world average values shows that most of them are below the world average activity values. The annual indoor effective dose rates received by an individual from three measured imported granites and four measured imported ceramics are found to be higher than the world upper limit value of 1 mSv y-1. Hence, these materials should have a restricted use according to their corresponding calculated activity concentration index values and the related EC 1999 guidelines.

  14. Estimation of building material moisture using non-invasive TDR sensors

    Science.gov (United States)

    Suchorab, Zbigniew; Sobczuk, Henryk; Łagód, Grzegorz

    2016-07-01

    The article presents the noninvasive attempt to measure moisture of building materials with the use of electric methods. Comparing to the other techniques of moisture detection like chemical or physical, the electric methods enable quick moisture estimation and they seem to be a suitable solution to monitor moisture changes. Most of electric moisture meters are the capacitance and resistance sensors. A perspective technique to determine moisture of building materials and barriers is Time Domain Reflectometry (TDR) method. This method has been successfully applied for moisture determination of the soils and since a few years has been used to measure moisture of building materials. The attempts to measure moisture of building materials require modification of traditional TDR sensor construction and extra calibration procedures. Sensors applied for building materials, comparing to the traditional ones are noninvasive. The advantages of surface sensors proposed in this article are the following: no influence on material structure, easier sample preparation for laboratory measurements, good possibility to apply for in-situ measurements. Major disadvantage of the described sensors is the difficulty of outgoing sensor signal interpretation and thus the possibility of the increase of measurement uncertainty. Anyhow it must be underlined that proposed in the article sensor constructions seem to be a balanced alternative for quick moisture detection.

  15. Permittivity spectroscopy - an insight into materials properties.

    Science.gov (United States)

    Stoynov, Zdravko; Mladenova, Emiliya; Levi, Daniela; Vladikova, Daria

    2014-01-01

    Permittivity Spectroscopy is a branch of the Impedance Spectroscopy specially tuned for measurements and analyses of dielectrics permittivity properties. The present paper presents experimental results on permittivity properties of composite objects in which a polarizable dielectric is distributed in a fine non-polarizable matrix (solid or liquid) measured in frequency range 1 MHz down to 0.01 Hz. Two types of objects are studied - water in porous functional ceramics and lubricating oils. In both systems gigantic enhancement of the effective capacitance is observed. The first series of experiments was performed on porous membranes of yttrium doped barium cerate, which is a proton conducting ceramics with hydrophilic properties. At a given level of watering the measured capacitance is sharply increasing (3 to 5 orders of magnitude) in the lower frequency range. The second example covers permittivity study of lubricating oils, where the increase is 2-3 orders of magnitude. The phenomenon of gigantic enhancement of the effective capacitance could be related to a formation of dipole volume structures induced by the external alternating electrical field.

  16. Electrokinetic salt removal from porous building materials using ion exchange membranes

    NARCIS (Netherlands)

    Kamran, K.; Van Soestbergen, M.; Pel, L.

    The removal of salt from porous building materials under the influence of an applied voltage gradient normally results in high pH gradients due to the formation of protons and hydroxyl ions at the electrodes. The formed acidic and alkaline regions not only lead to disintegration of the porous materi

  17. Microstructure characterization and magnetic properties of nano structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.C

    2000-07-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe{sub 78}Si{sub 9}B{sub 13} ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy [eds.]; selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  18. Optical properties of ITO nanocoatings for photovoltaic and energy building applications

    Science.gov (United States)

    Kaplani, E.; Kaplanis, S.; Panagiotaras, D.; Stathatos, E.

    2014-10-01

    Targeting energy savings in buildings, photovoltaics and other sectors, significant research activity is nowadays focused on the production of spectral selective nanocoatings. In the present study an ITO coating on glass substrate is prepared from ITO powder, characterized and analysed. The spectral transmittance and reflectance of the ITO coated glass and of two other commercially developed ITO coatings on glass substrate were measured and compared. Furthermore, a simulation algorithm was developed to determine the optical properties of the ITO coatings in the visible, solar and near infrared regions in order to assess the impact of the ITO coatings in the energy performance of buildings, and particularly the application in smart windows. In addition, the current density produced by a PV assuming each of the ITO coated glass served as a cover was computed, in order to assess their effect in PV performance. The preliminary ITO coating prepared and the two other coatings exhibit different optical properties and, thus, have different impact on energy performance. The analysis assists in a better understanding of the desired optical properties of nanocoatings for improved energy performance in PV and buildings.

  19. Plasma technology for creation of protective and decorative coatings for building materials

    Science.gov (United States)

    Volokitin, Oleg; Volokitin, Gennady; Skripnikova, Nelli; Shekhovtsov, Valentin

    2016-01-01

    An experimental setup is developed to create a protective and decorative coating on the surface of building materials. Experimental study is conducted to create a protective coating using low-temperature plasma. The properties of the surface before and after the plasma treatment are investigated. At the increase of the plasma generator power (56-75 kW) the rate of the vitreous coating formation is significantly reduced, and the destruction of hydrous calcium silicates occurs at a lower depth (0.5-2.0 mm). In this case, the adhesive strength increases up to 2.34 MPa. At the increase of the exposure time at 56 kW (0.045 m/s melting rate) plasma generation power, the melt formation is observed not only at the surface but at depth of 0.7 mm and deeper. Also, a deep degradation of the material occurs and the adhesive strength decreases. The optimal heat flux density of plasma generator was established at 1.8-2.6 . 106 W/m2, which allows the achievement of the uniform layer formation on the wood surface that preserves its natural pattern visible.

  20. Exposure to radiation from the natural radioactivity in Tunisian building materials.

    Science.gov (United States)

    Gharbi, F; Oueslati, M; Abdelli, W; Samaali, M; Ben Tekaya, M

    2012-12-01

    Building materials can expose public and workers to radiation because of their content of radium, thorium and potassium isotopes. This is why it is very important from the radiological point of view to survey the natural radioactivity content of commonly used building materials in any country. This work consists of the measurement of (226)Ra, (232)Th and (40)K activity concentrations in a variety of commonly used building materials in Tunisia and on the estimation of their radiological hazard. The maximum value of radium equivalent for the studied materials was equal to 169 Bq kg(-1) and corresponds to the clay brick, which is lower than the recommended value of 370 Bq kg(-1). In this work, several radiological indexes were calculated and were found to be under their highest permitted limit.