WorldWideScience

Sample records for building large area

  1. Building Large Area CZT Imaging Detectors for a Wide-Field Hard X-ray Telescope - ProtoEXIST1

    CERN Document Server

    Hong, J; Grindlay, J; Chammas, N; Barthelemy, S; Baker, R; Gehrels, N; Nelson, K E; Labov, S; Collins, J; Cook, W R; McLean, R; Harrison, F

    2009-01-01

    We have constructed a moderately large area (32 cm2), fine pixel (2.5 mm pixel, 5 mm thick) CZT imaging detector which constitutes the first section of a detector module (256 cm2) developed for a balloon-borne wide-field hard X-ray telescope, ProtoEXIST1. ProtoEXIST1 is a prototype for the High Energy Telescope (HET) in the Energetic X-ray imaging Survey Telescope (EXIST), a next generation space-borne multi-wavelength telescope. We have constructed a large (nearly gapless) detector plane through a modularization scheme by tiling of a large number of 2 cm x 2 cm CZT crystals. Our innovative packaging method is ideal for many applications such as coded-aperture imaging, where a large, continuous detector plane is desirable for the optimal performance. Currently we have been able to achieve an energy resolution of 3.2 keV (FWHM) at 59.6 keV on average, which is exceptional considering the moderate pixel size and the number of detectors in simultaneous operation. We expect to complete two modules (512 cm2) withi...

  2. Building a large-area GEM-based readout chamber for the upgrade of the ALICE TPC

    CERN Document Server

    Gasik, Piotr

    2016-01-01

    A large Time Projection Chamber (TPC) is the main device for tracking and charged-particle identification in the ALICE experiment at the CERN LHC. After the second long shutdown in 2019-2020, the LHC will deliver Pb beams colliding at an interaction rate up to 50 kHz, which is about a factor of 100 above the present read-out rate of the TPC. To fully exploit the LHC potential the TPC will be upgraded based on the Gas Electron Multiplier (GEM) technology. A prototype of an ALICE TPC Outer Read-Out Chamber (OROC) was equipped with twelve large-size GEM foils as amplification stage to demonstrate the feasibility of replacing the current Multi Wire Proportional Chambers with the new technology. With a total area of $\\sim$0.76 m$^2$ it is the largest GEM-based detector built to date. The GEM OROC was installed within a test field cage and commissioned with radioactive sources.

  3. Collimated in-situ gamma spectrometry: a new method for fast clearance measurements of large areas or building structures of nuclear facilities under decommissioning

    International Nuclear Information System (INIS)

    The ideas in the late sixties which led to the use of bare spectrometric radiation detectors like NaI(Tl), Ge(Li) or nowadays high-purity germanium detectors (wage) for field measurements (in-situ gamma spectrometry) were to get easy and rapid information about the radiological state of outdoor grounds after nuclear weapon tests or to estimate dose rates created by natural radioactive nuclides in the soil. In this cases, it was assumed, that there was no disturbance of the source-detector geometry for many hundred square meters around the detector. After the nuclear accident in Chernobyl in 1986 these advantages focussed strong scientific interest at the in-situ technique and in 1993 it was established in the German regulatory for immission surveillance after significant radioactive emissions. For unrestricted release in decommissioning 'in-situ gamma spectrometry may be the only method of achieving validation of the release criteria, particularly for large areas outside the buildings'. In a late phase of the decommissioning of a nuclear power plant all components containing a significant inventor of radioactivity are removed, leaving large surfaces with often poorly knows contamination levels. Taking in account only buildings of restricted areas in the next 50 years in Germany 7E3 Mg activated and 5E6 Mg contaminated concrete must be released from facilities under decommissioning. Before the ground and the building structures of the facility can be conventionally pulled down, the remaining radioactivity must be determined in order to check the radiological relevance of the concerned part of the plant and to decide the possible path of material release. The basis of assessment may be the so-called '10 μSv-concept'. (author)

  4. Large area plasma source

    Science.gov (United States)

    Foster, John (Inventor); Patterson, Michael (Inventor)

    2008-01-01

    An all permanent magnet Electron Cyclotron Resonance, large diameter (e.g., 40 cm) plasma source suitable for ion/plasma processing or electric propulsion, is capable of producing uniform ion current densities at its exit plane at very low power (e.g., below 200 W), and is electrodeless to avoid sputtering or contamination issues. Microwave input power is efficiently coupled with an ionizing gas without using a dielectric microwave window and without developing a throat plasma by providing a ferromagnetic cylindrical chamber wall with a conical end narrowing to an axial entrance hole for microwaves supplied on-axis from an open-ended waveguide. Permanent magnet rings are attached inside the wall with alternating polarities against the wall. An entrance magnet ring surrounding the entrance hole has a ferromagnetic pole piece that extends into the chamber from the entrance hole to a continuing second face that extends radially across an inner pole of the entrance magnet ring.

  5. Large Area Sputter Coating on Glass

    Science.gov (United States)

    Katayama, Yoshihito

    Large glass has been used for commercial buildings, housings and vehicles for many years. Glass size for flat displays is getting larger and larger. The glass for the 8th generation is more than 5 m2 in area. Demand of the large glass is increasing not only in these markets but also in a solar cell market growing drastically. Therefore, large area coating is demanded to plus something else on glass more than ever. Sputtering and pyrolysis are the major coating methods on large glass today. Sputtering process is particularly popular because it can deposit a wide variety of materials in good coating uniformity on the glass. This paper describes typical industrial sputtering system and recent progress in sputtering technology. It also shows typical coated glass products in architectural, automotive and display fields and comments on their functions, film stacks and so on.

  6. Development of Tandem Amorphous/Microcrystalline Silicon Thin-Film Large-Area See-Through Color Solar Panels with Reflective Layer and 4-Step Laser Scribing for Building-Integrated Photovoltaic Applications

    OpenAIRE

    Chin-Yi Tsai; Chin-Yao Tsai

    2014-01-01

    In this work, tandem amorphous/microcrystalline silicon thin-film large-area see-through color solar modules were successfully designed and developed for building-integrated photovoltaic applications. Novel and key technologies of reflective layers and 4-step laser scribing were researched, developed, and introduced into the production line to produce solar panels with various colors, such as purple, dark blue, light blue, silver, golden, orange, red wine, and coffee. The highest module power...

  7. The Challenge of Building Large Area, High Precision Small-Strip Thin Gap Trigger Chambers for the Upgrade of the ATLAS Experiment

    CERN Document Server

    Maleev, Victor; The ATLAS collaboration

    2015-01-01

    The current innermost stations of the ATLAS muon end-cap system must be upgraded in 2018 and 2019 to retain the good precision tracking and trigger capabilities in the high background environment expected with the upcoming luminosity increase of the LHC. Large area small-strip Thin Gap Chambers (sTGC) up to 2 $m^2$ in size and totaling an active area of 1200 $m^2$ will be employed for fast and precise triggering. The precision reconstruction of tracks requires a spatial resolution of about 100 $\\mu m$ while the Level-1 trigger track segments need to be reconstructed with an angular resolution of 1 mrad. The upgraded detector will consist of eight layers each of Micromegas and sTGC’s detectors together forming the ATLAS New Small Wheels. The position of each strip must be known with an accuracy of 40 $\\mu m$ along the precision coordinate and 80 $\\mu m$ along the beam. On such large area detectors, the mechanical precision is a key point and then must be controlled and monitored all along the process of cons...

  8. The challenge of building large area, high precision small-strip Thin Gap Trigger Chambers for the upgrade of the ATLAS experiment

    CERN Document Server

    Maleev, Victor; The ATLAS collaboration

    2015-01-01

    The current innermost stations of the ATLAS muon endcap system must be upgraded in 2018 and 2019 to retain the good precision tracking and trigger capabilities in the high background environment expected with the upcoming luminosity increase of the LHC. Large area small-strip Thin Gap Chambers (sTGC) up to 2 m2 in size and totaling an active area of 1200 m2 will be employed for fast and precise triggering. The precision reconstruction of tracks requires a spatial resolution of about 100 μm to allow the Level-1 trigger track segments to be reconstructed with an angular resolution of 1mrad. The upgraded detector will consist of eight layers each of Micromegas and sTGC’s detectors together forming the ATLAS New Small Wheels. The position of each strip must be known with an accuracy of 30 µm along the precision coordinate and 80 µm along the beam. On such large area detectors, the mechanical precision is a key point and then must be controlled and monitored all along the process of construction and integrati...

  9. Advanced DInSAR analysis for building damage assessment in large urban areas: an application to the city of Roma, Italy

    Science.gov (United States)

    D'Aranno, Peppe J. V.; Marsella, Maria; Scifoni, Silvia; Scutti, Marianna; Sonnessa, Alberico; Bonano, Manuela

    2015-10-01

    Remote sensing data play an important role for the environmental monitoring because they allow to provide systematic information on very large areas and for a long period of time. Such information must be analyzed, validated and incorporated into proper modeling tools in order to become useful for performing risk assessment analysis. These approaches has been already applied in the field of natural hazard evaluation (i.e. for monitoring seismic, volcanic areas and landslides). However, not enough attention has been devoted to the development of validated methods for implementing quantitative analysis on civil structures. This work is dedicated to the comprehensive utilization of ERS / ENVISAT data store ESA SAR used to detect deformation trends and perform back-analysis of the investigated structures useful to calibrate the damage assessment models. After this preliminary analysis, SAR data of the new satellite mission (ie Cosmo SkyMed) were adopted to monitor the evolution of existent surface deformation processes and to detect new occurrence. The specific objective was to set up a data processing and data analysis chain tailored on a service that sustains the safe maintenance of the built-up environment, including critical construction such as public (schools, hospital, etc), strategic (dam, highways, etc) and also the cultural heritage sites. The analysis of the test area, in the southeastern sector of Roma, has provided three different levels and sub-levels of products from metropolitan area scale (territorial analysis), settlement scale (aggregated analysis) to single structure scale (damage degree associated to the structure).

  10. Large area mercuric iodide photodetectors

    International Nuclear Information System (INIS)

    Results of an investigation of large area mercuric iodide (HgI2) photodetectors are reported. Different entrance contacts were studied, including semitransparent metallic films and conductive liquids. Theoretical calculations of electronic noise of these photodetectors were compared with experimental results. HgI2 photodetectors with active area up to 4 cm2 were matched with NaI(Tl) and CsI(Tl) scintillation crystals and were evaluated as gamma-radiation spectrometers. Energy resolution of 9.3% for gamma radiation of 511 keV with a CsI(Tl) scintillator and energy resolution of 9.0% for gamma radiation of 622 keV with a NaI(Tl) scintillator have been obtained

  11. Large area mercuric iodide photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Iwanczyk, J.S.; Dabrowski, A.J.; Markakis, J.M.; Ortale, C.; Schnepple, W.F.

    1984-02-01

    Results of an investigation of large area mercuric iodide (HgI/sub 2/) photodetectors are reported. Different entrance contacts were studied, including semitransparent metallic films and conductive liquids. Theoretical calculations of electronic noise of these photodetectors were compared with experimental results. HgI/sub 2/ photodetectors with active area up to 4 cm/sup 2/ were matched with NaI(Tl) and CsI(Tl) scintillation crystals and were evaluated as gamma-radiation spectrometers. Energy resolution of 9.3% for gamma radiation of 511 keV with a CsI(Tl) scintillator and energy resolution of 9.0% for gamma radiation of 622 keV with a NaI(Tl) scintillator have been obtained.

  12. Large area and flexible electronics

    CERN Document Server

    Caironi, Mario

    2015-01-01

    From materials to applications, this ready reference covers the entire value chain from fundamentals via processing right up to devices, presenting different approaches to large-area electronics, thus enabling readers to compare materials, properties and performance.Divided into two parts, the first focuses on the materials used for the electronic functionality, covering organic and inorganic semiconductors, including vacuum and solution-processed metal-oxide semiconductors, nanomembranes and nanocrystals, as well as conductors and insulators. The second part reviews the devices and applicatio

  13. The evolutionary history of the Arabidopsis lyrata complex: a hybrid in the amphi-Beringian area closes a large distribution gap and builds up a genetic barrier

    Directory of Open Access Journals (Sweden)

    Koch Marcus A

    2010-04-01

    Full Text Available Abstract Background The genomes of higher plants are, on the majority, polyploid, and hybridisation is more frequent in plants than in animals. Both polyploidisation and hybridisation contribute to increased variability within species, and may transfer adaptations between species in a changing environment. Studying these aspects of evolution within a diversified species complex could help to clarify overall spatial and temporal patterns of plant speciation. The Arabidopsis lyrata complex, which is closely related to the model plant Arabidopsis thaliana, is a perennial, outcrossing, herbaceous species complex with a circumpolar distribution in the Northern Hemisphere as well as a disjunct Central European distribution in relictual habitats. This species complex comprises three species and four subspecies, mainly diploids but also several tetraploids, including one natural hybrid. The complex is ecologically, but not fully geographically, separated from members of the closely related species complex of Arabidopsis halleri, and the evolutionary histories of both species compexes have largely been influenced by Pleistocene climate oscillations. Results Using DNA sequence data from the nuclear encoded cytosolic phosphoglucoisomerase and Internal Transcribed Spacers 1 and 2 of the ribosomal DNA, as well as the trnL/F region from the chloroplast genome, we unravelled the phylogeography of the various taxonomic units of the A. lyrata complex. We demonstrate the existence of two major gene pools in Central Europe and Northern America. These two major gene pools are constructed from different taxonomic units. We also confirmed that A. kamchatica is the allotetraploid hybrid between A. lyrata and A. halleri, occupying the amphi-Beringian area in Eastern Asia and Northern America. This species closes the large distribution gap of the various other A. lyrata segregates. Furthermore, we revealed a threefold independent allopolyploid origin of this hybrid

  14. Development of Tandem Amorphous/Microcrystalline Silicon Thin-Film Large-Area See-Through Color Solar Panels with Reflective Layer and 4-Step Laser Scribing for Building-Integrated Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2014-01-01

    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film large-area see-through color solar modules were successfully designed and developed for building-integrated photovoltaic applications. Novel and key technologies of reflective layers and 4-step laser scribing were researched, developed, and introduced into the production line to produce solar panels with various colors, such as purple, dark blue, light blue, silver, golden, orange, red wine, and coffee. The highest module power is 105 W and the highest visible light transmittance is near 20%.

  15. Large area CMOS image sensors

    International Nuclear Information System (INIS)

    CMOS image sensors, also known as CMOS Active Pixel Sensors (APS) or Monolithic Active Pixel Sensors (MAPS), are today the dominant imaging devices. They are omnipresent in our daily life, as image sensors in cellular phones, web cams, digital cameras, ... In these applications, the pixels can be very small, in the micron range, and the sensors themselves tend to be limited in size. However, many scientific applications, like particle or X-ray detection, require large format, often with large pixels, as well as other specific performance, like low noise, radiation hardness or very fast readout. The sensors are also required to be sensitive to a broad spectrum of radiation: photons from the silicon cut-off in the IR down to UV and X- and gamma-rays through the visible spectrum as well as charged particles. This requirement calls for modifications to the substrate to be introduced to provide optimized sensitivity. This paper will review existing CMOS image sensors, whose size can be as large as a single CMOS wafer, and analyse the technical requirements and specific challenges of large format CMOS image sensors.

  16. Building and road detection from large aerial imagery

    Science.gov (United States)

    Saito, Shunta; Aoki, Yoshimitsu

    2015-02-01

    Building and road detection from aerial imagery has many applications in a wide range of areas including urban design, real-estate management, and disaster relief. The extracting buildings and roads from aerial imagery has been performed by human experts manually, so that it has been very costly and time-consuming process. Our goal is to develop a system for automatically detecting buildings and roads directly from aerial imagery. Many attempts at automatic aerial imagery interpretation have been proposed in remote sensing literature, but much of early works use local features to classify each pixel or segment to an object label, so that these kind of approach needs some prior knowledge on object appearance or class-conditional distribution of pixel values. Furthermore, some works also need a segmentation step as pre-processing. Therefore, we use Convolutional Neural Networks(CNN) to learn mapping from raw pixel values in aerial imagery to three object labels (buildings, roads, and others), in other words, we generate three-channel maps from raw aerial imagery input. We take a patch-based semantic segmentation approach, so we firstly divide large aerial imagery into small patches and then train the CNN with those patches and corresponding three-channel map patches. Finally, we evaluate our system on a large-scale road and building detection datasets that is publicly available.

  17. Chemical Vapour Deposition of Large Area Graphene

    OpenAIRE

    Larsen, Martin Benjamin Barbour Spanget; Bøggild, Peter; Booth, Tim; Jørgensen, Anders Michael

    2015-01-01

    Chemical Vapor Deposition (CVD) is a viable technique for fabrication of large areas of graphene. CVD fabrication is the most prominent and common way of fabricating graphene in industry. In this thesis I have attempted to optimize a growth recipe and catalyst layer for CVD fabrication of uniform, single layer, and high carrier mobility large area graphene. The main goals of this work are; (1) explore the graphene growth mechanics in a low pressure cold-wall CVD system on a copper substrate, ...

  18. Heating of Large Industrial and Agricultural Buildings

    Czech Academy of Sciences Publication Activity Database

    Zajíček, Milan; Kic, Pavel

    Tartu: Estonian University of Life Sciences, 2014, s. 237-244. ISSN 1406-894X. [Biosystems Engineering 2014. Tartu (EE), 08.05.2014-09.05.2014] Institutional support: RVO:67985556 Keywords : energy * radiation * thermal comfort * simulation Subject RIV: GB - Machines ; Buildings for Agriculture http://library.utia.cas.cz/separaty/2014/VS/zajicek-0428055.pdf

  19. Large area damage testing of optics

    International Nuclear Information System (INIS)

    The damage threshold specifications for the National Ignition Facility will include a mixture of standard small-area tests and new large-area tests. During our studies of laser damage and conditioning processes of various materials we have found that some damage morphologies are fairly small and this damage does not grow with further illumination. This type of damage might not be detrimental to the laser performance. We should therefore assume that some damage can be allowed on the optics, but decide on a maximum damage allowance of damage. A new specification of damage threshold termed open-quotes functional damage thresholdclose quotes was derived. Further correlation of damage size and type to system performance must be determined in order to use this measurement, but it is clear that it will be a large factor in the optics performance specifications. Large-area tests have verified that small-area testing is not always sufficient when the optic in question has defect-initiated damage. This was evident for example on sputtered polarizer and mirror coatings where the defect density was low enough that the features could be missed by standard small- area testing. For some materials, the scale-length at which damage non-uniformities occur will effect the comparison of small-area and large-area tests. An example of this was the sub-aperture tests on KD*P crystals on the Beamlet test station. The tests verified the large-area damage threshold to be similar to that found when testing a small-area. Implying that for this KD*P material, the dominate damage mechanism is of sufficiently small scale-length that small-area testing is capable of determining the threshold. The Beamlet test station experiments also demonstrated the use of on-line laser conditioning to increase the crystals damage threshold

  20. Idle School Buildings in Rural Areas: Will they Be Useful ?

    OpenAIRE

    Cheng, Qiang-ying; Shu, Wen

    2012-01-01

    Taking the case of Enshi City, we survey the supply of public services in rural areas from education, health, culture and social security, reveal the relationship between the use of idle school buildings in rural areas and the improvement of public services in rural areas. On the basis of expounding the status quo of idle school buildings and public services in rural areas of Enshi City, the following recommendations are put forward: using the idle school buildings to develop rural public edu...

  1. Idle School Buildings in Rural Areas: Will they Be Useful?

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Taking the case of Enshi City,we survey the supply of public services in rural areas from education,health,culture and social security; reveal the relationship between the use of idle school buildings in rural areas and the improvement of public services in rural areas. On the basis of expounding the status quo of idle school buildings and public services in rural areas of Enshi City,the following recommendations are put forward: using the idle school buildings to develop rural public education; using the idle school buildings to develop rural public health and medical services; using the idle school buildings to develop public cultural undertakings in rural areas; using the idle school buildings to develop social security undertakings in rural areas.

  2. Large Mode Area Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Nielsen, Martin Dybendal

    2004-01-01

    The photonic crystal fiber (PCF) is a novel single-material optical waveguide realized by an arrangement of air-holes running along the full length of the fiber. Since the proposal of the PCF in 1996, the technology has developed into being a well-established area of research and commercialisation...... PCFs are presented. The first is a large-mode area fiber optimised for visible light applications. The second is a fiber optimised for the telecommunication band realizing a nonlinear effective area 5 times larger than state of the art conventional fibers. Two examples of alternative designs are....... The work presented in this thesis deals with the optical properties of large-mode area PCFs for which the mode-field diameter, typically, is an order of magnitude larger than the free-space optical wavelength. Special emphasis is put on the description of relevant mechanisms of attenuation in these...

  3. Large area flow gas proportional counters

    International Nuclear Information System (INIS)

    The ZJ-LD-800 and ZJ-LD-240 large area flow gas proportional counter tubes are described in detail, and the design of counter tube is expounded. The counter tube there have better than plateau length of 200 V and plateau slope of 2%/100 V and window uniformity of 90% for beta counting. So the counters are ideally suitable for use in Area and Contamination Monitors where both alpha and beta radiation are anticipated

  4. Toward large-area targets for 'TRAKULA'

    International Nuclear Information System (INIS)

    TRAKULA (Transmutationsrelevante kernphysikalische Untersuchungen langlebiger Aktinide, i.e., nuclear physical investigations of long-lived actinides with relevance to transmutation) is a joint research project of the German Federal Ministry of Science and Education (BMBF) on nuclear physics investigations with modern scientific, technological and numerical methods. Experiments concerning the transmutation of radioactive waste are a central topic of the project. For this, large-area samples (≥40 cm2) of 235,238U and 239,242Pu compounds are required for the calibration of fission chambers and for fission yield measurements. Another topic within the project requires large-area targets for precise measurements of the half-life, t1/2, of very long-lived α-particle emitters like 144Nd (t1/2∼2x1015 y). Here, we report on electrodeposition tests with Gd and Nd (used as chemical homologs of the actinides), which were performed to find optimal deposition conditions for small-area targets that should be applicable to future large-area targets. The layers were produced by molecular plating. A new stirring technique, ultrasonic stirring, was adopted and found to be suitable for producing large-area targets. Moreover, two different current densities (namely 0.7 and 1.4 mA/cm2) were studied and found appropriate for target preparation. Characterization of the layers with different analytical techniques played a major role in these studies to gain a deeper understanding of the deposition process itself: neutron activation analysis and γ-spectroscopy were used for yield measurements, radiographic imaging for homogeneity studies, scanning electron microscopy for morphology studies, and atomic force microscopy for roughness studies. According to the obtained results, a new electrochemical cell for the production of large-area targets was designed.

  5. Quantitative Mapping of Large Area Graphene Conductance

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due; Petersen, Dirch Hjorth; Bøggild, Peter;

    2012-01-01

    We present quantitative mapping of large area graphene conductance by terahertz time-domain spectroscopy and micro four point probe. We observe a clear correlation between the techniques and identify the observed systematic differences to be directly related to imperfections of the graphene sheet...

  6. Large tenant : Controlling building operating costs

    Energy Technology Data Exchange (ETDEWEB)

    Rowles, P.

    2001-07-01

    This Power Point presentation deals with the topic of controlling building operating costs and the benefits that can be derived from such an approach. Energy Advantage provides to commercial, institutional and industrial end-users, an independent total energy management outsource. Environmentally acceptable energy is influenced by factors such as commodity prices, deregulation, technology and the environment. The author then displayed a diagram about short term gas price volatility during the winter of 2001, which was followed by a diagram showing the daily and hourly prices in Alberta in 2001. A map displayed the electricity deregulation status in the United States. The author discussed changes in energy technology and how they are affected by the Internet and wireless communications, smart metering and smart devices, new and improved heating, ventilation and air conditioning equipment, cogeneration, fuel cells, and renewable energy. Climate change and global warming also play a role. The reasons for effecting change in the energy sector are many: the owners get a better return on their investment, the property managers gain higher revenues and lower costs, the employees enjoy job security and job satisfaction, the tenants have lower costs, and the local community benefits from lower infrastructure costs. Finally we conserve energy for our children. A total energy management approach is required to attain these objectives. BP Amoco promises a reduction of greenhouse gas emissions to 10 per cent below 1990 levels. figs.

  7. Duct thermal performance models for large commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wray, Craig P.

    2003-10-01

    Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach

  8. Building Very Large Neighbour-Joining Trees

    DEFF Research Database (Denmark)

    Simonsen, Martin; Mailund, Thomas; Pedersen, Christian Nørgaard Storm

    2010-01-01

    The neighbour-joining method by Saitou and Nei is a widely used method for phylogenetic reconstruction, made popular by a combination of computational efficiency and reasonable accuracy. With its cubic running time by Studier and Kepler, the method scales to hundreds of species, and while it is...... usually possible to infer phylogenies with thousands of species, tens or hundreds of thousands of species is infeasible. Recently we developed a simple branch and bound heuristic, RapidNJ, which significantly reduces the average running time. However, the O(n2) space consumption of the RapidNJ method, and...... the NJ method in general, becomes a problem when inferring phylogenies with 10000+ taxa. In this paper we present two extentions of RapidNJ which reduce memory requirements and enable RapidNJ to infer very large phylogenetic trees efficiently. We also present an improved search heuristic for Rapid...

  9. Definition of nearly zero-energy building requirements based on a large building sample

    International Nuclear Information System (INIS)

    According to the recast of the Energy Performance Building Directive, Member States must give an exact definition for nearly zero-energy buildings to be introduced from 2018/2020. The requirement system stipulating the sustainable development of the building sector is usually based on the analysis of a few reference buildings, combining energy efficiency measures and HVAC systems. The risk of this method is that depending on the assumptions either the requirements do not provide sufficient incentives for energy saving measures and renewables or the requirements cannot be fulfilled with rational solutions in many cases. Our method is based on the artificial generation of a large building sample, where the buildings are defined by geometric and other parameters. Due to the large number of combinations, the effect of many variables appear in the results, with the deviations reflecting the sensitivity of the energy balance. The requirements are set based on some fundamental considerations and the statistical analysis of the sample. The method is demonstrated on the example of setting the requirements for residential buildings in Hungary. The proposed requirements are validated against the common European targets. The suggested method is suitable for developing building energy regulation threshold values, certification schemes or benchmarking values. - Highlights: • We analyse the European nearly zero-energy building definition. • We present a method for setting requirements based on a large building sample. • We demonstrate the method for residential buildings in Hungary. • We compare the results with the European targets

  10. Chemical Vapour Deposition of Large Area Graphene

    DEFF Research Database (Denmark)

    Larsen, Martin Benjamin Barbour Spanget

    Chemical Vapor Deposition (CVD) is a viable technique for fabrication of large areas of graphene. CVD fabrication is the most prominent and common way of fabricating graphene in industry. In this thesis I have attempted to optimize a growth recipe and catalyst layer for CVD fabrication of uniform......, single layer, and high carrier mobility large area graphene. The main goals of this work are; (1) explore the graphene growth mechanics in a low pressure cold-wall CVD system on a copper substrate, and (2) optimize the process of growing high quality graphene in terms of carrier mobility, and crystal...... structure. Optimization of a process for graphene growth on commercially available copper foil is limited by the number of aluminium oxide particles on the surface of the catalyst. By replacing the copper foil with a thin deposited copper film on a SiO2/Si or c-plane sapphire wafer the particles can...

  11. GLAST Large Area Telescope Multiwavelength Opportunities

    International Nuclear Information System (INIS)

    High-energy gamma-ray sources are inherently nonthermal, multiwavelength objects. With the launch of the Gamma-ray Large Area Space Telescope (GLAST) scheduled for later this year, the GLAST Large Area Telescope (LAT) Collaboration invites cooperative efforts from observers at all wavelengths. Among the many topics where multiwavelength studies will maximize the scientific understanding, two stand out for particular emphasis: (1) Active Galactic Nuclei. The study of AGN gamma-ray jets through time variability and spectral modeling can help link the accretion processes close to the black hole with the large-scale interaction of the AGN with its environment; (2) Unidentified Gamma-ray Sources. New gamma-ray sources need first to be identified with known objects seen at other wavelengths using position, spectrum, or time variability, and then multiwavelength studies can be used to explore the astrophysical implications of high-energy radiation from these sources. Observers interested in any type of coordinated observations should contact the LAT Multiwavelength Coordinating Group

  12. GLAST Large Area Telescope Multiwavelength Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David J.; /NASA, Goddard

    2007-10-10

    High-energy gamma-ray sources are inherently nonthermal, multiwavelength objects. With the launch of the Gamma-ray Large Area Space Telescope (GLAST) scheduled for later this year, the GLAST Large Area Telescope (LAT) Collaboration invites cooperative efforts from observers at all wavelengths. Among the many topics where multiwavelength studies will maximize the scientific understanding, two stand out for particular emphasis: (1) Active Galactic Nuclei. The study of AGN gamma-ray jets through time variability and spectral modeling can help link the accretion processes close to the black hole with the large-scale interaction of the AGN with its environment; (2) Unidentified Gamma-ray Sources. New gamma-ray sources need first to be identified with known objects seen at other wavelengths using position, spectrum, or time variability, and then multiwavelength studies can be used to explore the astrophysical implications of high-energy radiation from these sources. Observers interested in any type of coordinated observations should contact the LAT Multiwavelength Coordinating Group.

  13. Large area position sensitive β-detector

    International Nuclear Information System (INIS)

    A new conceptual design of a large area electron detector, which is position and energy sensitive, was developed. This detector is designed for beta decay energies up to 4 MeV, but in principle can be re-designed for higher energies. The detector incorporates one large plastic scintillator and, in general, a limited number of photomultipliers (7 presently). The current setup was designed and constructed after an extensive Geant4 simulation study. By comparison of a single hit light distribution between the various photomultipliers to a pre-measured accurate position-response map, the anticipated position resolution is around 5 mm. The first benchmark experiments have been conducted in order to calibrate and confirm the position resolution of the detector. The new method, results of the first test experiments and comparison to simulations are presented

  14. Large area position sensitive β-detector

    Science.gov (United States)

    Vaintraub, S.; Hass, M.; Edri, H.; Morali, N.; Segal, T.

    2015-03-01

    A new conceptual design of a large area electron detector, which is position and energy sensitive, was developed. This detector is designed for beta decay energies up to 4 MeV, but in principle can be re-designed for higher energies. The detector incorporates one large plastic scintillator and, in general, a limited number of photomultipliers (7 presently). The current setup was designed and constructed after an extensive Geant4 simulation study. By comparison of a single hit light distribution between the various photomultipliers to a pre-measured accurate position-response map, the anticipated position resolution is around 5 mm. The first benchmark experiments have been conducted in order to calibrate and confirm the position resolution of the detector. The new method, results of the first test experiments and comparison to simulations are presented.

  15. Timing Characteristics of Large Area Picosecond Photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Bernhard W.; Elagin, Andrey L.; Frisch, H.; Obaid, Razib; Oberla, E; Vostrikov, Alexander; Wagner, Robert G.; Wang, Jingbo; Wetstein, Matthew J.; Northrop, R

    2015-09-21

    The LAPPD Collaboration was formed to develop ultralast large-area imaging photodetectors based on new methods for fabricating microchannel plates (MCPs). In this paper we characterize the time response using a pulsed, sub picosecond laser. We observe single photoelectron time resolutions of a 20 cm x 20 cm MCP consistently below 70 ps, spatial resolutions of roughly 500 pm, and median gains higher than 10(7). The RMS measured at one particular point on an LAPPD detector is 58 ps, with in of 47 ps. The differential time resolution between the signal reaching the two ends of the delay line anode is measured to be 5.1 ps for large signals, with an asymptotic limit falling below 2 ps as noise-over-signal approaches zero.

  16. Fermi Large Area Telescope first source catalog

    OpenAIRE

    2010-01-01

    We present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11-month period, and the threshold likelihood Test St...

  17. Fermi Large Area Telescope Third Source Catalog

    OpenAIRE

    The Fermi-LAT Collaboration

    2015-01-01

    We present the third Fermi Large Area Telescope source catalog (3FGL) of sources in the 100 MeV-300 GeV range. Based on the first four years of science data from the Fermi Gamma-ray Space Telescope mission, it is the deepest yet in this energy range. Relative to the 2FGL catalog, the 3FGL catalog incorporates twice as much data as well as a number of analysis improvements, including improved calibrations at the event reconstruction level, an updated model for Galactic diffuse gamma-ray emissi...

  18. FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG

    OpenAIRE

    Nolan, P. L.; Abdo, A. A.; Ackermann et al., M.

    2012-01-01

    We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24-month period. The Second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% conf...

  19. Large Area X-Ray Spectroscopy Mission

    Science.gov (United States)

    Tananbaum, H.

    1997-01-01

    The Large Area X-ray Spectroscopy (LAXS) mission concept study continues to evolve strongly following the merging of the LAXS mission with the Next Generation X-ray Observatory (NGXO, PI: Nick White) into the re-named High Throughput X-ray Spectroscopy (HTXS) Mission. HTXS retains key elements of the LAXS proposal, including the use of multiple satellites for risk-reduction and cost savings. A key achievement of the program has been the recommendation by the Structure and Evolution of the Universe (SEUS) (April 1997) for a new start for the HTXS mission in the 2000-2004 timeframe.

  20. Performance of large area Micro Pixel Chamber

    OpenAIRE

    Nagayoshi, T.; Kubo, H.; Miuchi, K; Ochi, A.; Orito, R.; Takada, A; Tanimori, T.; Ueno, M

    2003-01-01

    A novel gaseous two-dimensional imaging detector "Micro Pixel Chamber (micro-PIC)" has been developed. This detector is based on double sided printed circuit board (PCB). We have developed large area (10cm x 10cm) micro-PICs with 65536 pixel anodes of 400um pitch on a 100um thick insulating substrate. Achieved energy resolution was 30% (FWHM) at 5.9keV, and a gas gain of 7000 was obtained with argon ethane (8:2) gas mixture. This gain is high enough to detect minimum ionizing particles with s...

  1. Excimer lasers drive large-area microprocessing

    Science.gov (United States)

    Delmdahl, Ralph; Tapié, Jean-Luc

    2012-09-01

    Excimer lasers emitting in the UV to far UV region are by nature the laser sources enabling the highest optical resolution and strongest material-photon interaction. At the same time, excimer lasers deliver unmatched UV pulse energies and output powers up to the kilowatt range. Thus, they are the key to fast and effective large area processing of smallest structures with micron precision. As a consequence, excimer lasers are the UV technology of choice when it comes to high-performance microstructuring with unsurpassed quality and process repeatability in applications such as drilling advanced ink jet nozzles or patterning biomedical sensor structures.

  2. Application of Mathematical Model of Evacuation for Large Stadium Building

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    2013-02-01

    Full Text Available The statistics of sports arena accidents show that the main reasons which leading to crowd stampede are the exports blockage and the poor surrounding transportations. In the process of evacuation, the most common problem is that there are a large number of people are stranded and also they are the main carrier which leading to crowded stampede. With large amounts of data and reasonable evaluations on staffs and transportation instruments. We propose inflow model in the crowding state, principle of maximum flow on channel design, optimal model of vehicle parking, evacuation model of subways and buses, according to sections of evacuation in stadiums. We analyze their usage area, marginal conditions and real data. Finally, we get some valuable results, which are curves of density and flow, evacuation time, formula for channel design, optimal parking design and formulas for evacuation time of subways and buses. Such data suits the real data from varied references. With the help of models and results, we get the total time of evacuation, simulation of progress and give parts of real situations of evacuation. According to such results, 100000 people’s evacuation can be finished in about 45 min. On such basis, we propose some optimal plans for stadium and its surroundings building.

  3. Large-area smart glass and integrated photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, C.M. [Star Science, 8730 Water Road, Cotati, CA 94931-4252 (United States)

    2003-04-01

    Several companies throughout the world are developing dynamic glazing and large-area flat panel displays. University and National Laboratory groups are researching new materials and processes to improve these products. The concept of a switchable glazing for building and vehicle application is very attractive. Conventional glazing only offers fixed transmittance and control of energy passing through it. Given the wide range of illumination conditions and glare, a dynamic glazing with adjustable transmittance offers the best solution. Photovoltaics can be integrated as power sources for smart windows. In this way a switchable window could be a completely stand alone smart system. A new range of large-area flat panel display including light-weight and flexible displays are being developed. These displays can be used for banner advertising, dynamic pricing in stores, electronic paper, and electronic books, to name only a few applications. This study covers selected switching technologies including electrochromism, suspended particles, and encapsulated liquid crystals.

  4. Large Area Lunar Dust Flux Measurement Instrument

    Science.gov (United States)

    Corsaro, R.; Giovane, F.; Liou, Jer-Chyi; Burchell, M.; Stansbery, Eugene; Lagakos, N.

    2009-01-01

    The instrument under development is designed to characterize the flux and size distribution of the lunar micrometeoroid and secondary ejecta environment. When deployed on the lunar surface, the data collected will benefit fundamental lunar science as well as enabling more reliable impact risk assessments for human lunar exploration activities. To perform this task, the instrument requirements are demanding. It must have as large a surface area as possible to sample the very sparse population of the larger potentially damage-inducing micrometeorites. It must also have very high sensitivity to enable it to measure the flux of small (instrument designed to meet these requirements is called FOMIS. It is a large-area thin film under tension (i.e. a drum) with multiple fiber optic displacement (FOD) sensors to monitor displacements of the film. This sensor was chosen since it can measure displacements over a wide dynamic range: 1 cm to sub-Angstrom. A prototype system was successfully demonstrated using the hypervelocity impact test facility at the University of Kent (Canterbury, UK). Based on these results, the prototype system can detect hypervelocity (approx.5 km/s) impacts by particles as small as 2 microns diameter. Additional tests using slow speeds find that it can detect secondary ejecta particles (which do not penetrate the film) with momentums as small as 15 pico-gram 100m/s, or nominally 5 microns diameter at 100 m/s.

  5. Excimer lasers drive large-area microprocessing

    International Nuclear Information System (INIS)

    Highlights: ► Multi-hundred watt UV excimer lasers are used in industrial high-volume microprocessing. ► Excimer laser operational lifetime of two years under typical production conditions yields affordable high power UV laser processing. ► Laser lift-off processing of LEDs is facilitated by the large per-shot-area of excimer lasers. - Abstract: Excimer lasers emitting in the UV to far UV region are by nature the laser sources enabling the highest optical resolution and strongest material–photon interaction. At the same time, excimer lasers deliver unmatched UV pulse energies and output powers up to the kilowatt range. Thus, they are the key to fast and effective large area processing of smallest structures with micron precision. As a consequence, excimer lasers are the UV technology of choice when it comes to high-performance microstructuring with unsurpassed quality and process repeatability in applications such as drilling advanced ink jet nozzles or patterning biomedical sensor structures.

  6. Tornado Protection: Selecting and Designing Safe Areas in Buildings.

    Science.gov (United States)

    Abernethy, James J.

    Tornadoes and extreme winds cause heavy loss of life and property damage throughout the United States. Most buildings offer significant protection from this danger, and building administrators should know the areas where this protection is available. This booklet presents a review of three schools, all of which were struck by tornadoes on April 3,…

  7. Large area cylindrical silicon drift detector

    International Nuclear Information System (INIS)

    An advanced silicon drift detector, a large area cylindrical drift detector, was designed, produced, tested and installed in the NA45 experiment. The active area of the detector is practically the total area of a 3 inch diameter wafer. Signal electrons created in the silicon detector by fast charged particles drift radially outside toward an array of 360 anodes located on the periphery of the detector. The drift time measures the radial coordinate of the particle's intersection; the charge sharing between anodes measures the azimuthal coordinate. The detector provides unambiguous pairs of r,φ coordinates for events with multiplicities up to several hundred. Its use in the experiment aims at a position resolution of 20 μm (rms) in each direction giving about 2 · 106 two-dimensional elements. There is a small hole in the center of the detector to allow the passage of the noninteracting particle beam. The longest drift distance is about 3 cm. The nominal value of the drift field is 500 V/cm resulting in a maximum drift time of 4 μs

  8. Large area cylindrical silicon drift detector

    International Nuclear Information System (INIS)

    This paper reports on an advanced silicone drift detector, a large area cylindrical drift detector that was designed, produced, tested and installed in the Na45 experiment. The active area of the detector is practically the total area of a 3 inch diameter wafer. Signal electrons created in the silicon detector by fast charged particles drift radially outside toward an array of 360 anodes located on the periphery of the detector. The drift time measures the radial coordinate of the particle's intersection; the charge sharing between anodes measures the azimuthal coordinate. The detector provides unambiguous pairs of r, φ coordinates for events with multiplicities up to several hundred. Its use in the experiment aims at a position resolution of 20 μm (rms) in each direction giving about 2 · 106 two-dimensional elements. There is a small hole in the center of the detector to allow the passage of the noninteracting particle beam. The longest drift distance is about 3 cm. The nominal value of the drift field is 500 V/cm resulting in a maximum drift time of 4 μs

  9. Large area electron beam diode development

    International Nuclear Information System (INIS)

    A large area annular electron beam diode has been tested at Physics International Co. on the multi-terawatt PITHON generator. A twelve element post hole convolute converted the coaxial MITL into a triaxial arrangement of anode current return structures both inside and outside the cathode structure. The presence of both inner and outer current return paths provide magnetic pressure balance for the beam, as determined by diode current measurements. X-ray pinhole photographs indicated uniform emission with intensity maxima between the post positions. Current losses in the post hole region were negligible, as evidenced by the absence of damage to the aluminum hardware. Radial electron flow near the cathode ring however did damage the inner anode cylinder between the post positions. Cutting away these regions prevented further damage of the transmission lines

  10. Modeling of large area hot embossing

    CERN Document Server

    Worgull, M; Marcotte, J -P; Hétu, J -F; Heckele, M

    2008-01-01

    Today, hot embossing and injection molding belong to the established plastic molding processes in microengineering. Based on experimental findings, a variety of microstructures have been replicated so far using the processes. However, with increasing requirements regarding the embossing surface and the simultaneous decrease of the structure size down into the nanorange, increasing know-how is needed to adapt hot embossing to industrial standards. To reach this objective, a German-Canadian cooperation project has been launched to study hot embossing theoretically by a process simulation and experimentally. The present publication shall report about the first results of the simulation - the modeling and simulation of large area replication based on an eight inch microstructured mold.

  11. Dose reduction factors from a radioactive cloud for large buildings

    Energy Technology Data Exchange (ETDEWEB)

    Grand, J. le; Roux, Y.; Patau, J.P.

    1986-01-01

    A set of complex and accurate computer codes has been established to determine the transport of photons emitted from a radioactive cloud through various media. The geometrical and physical description of large buildings with various numbers of floors and rooms can be done by the user. The codes can calculate, in any room or apartment, the characteristics of the photon fields (photon flux, energy flux and distribution, direction distribution) and whole-body absorbed dose rates in a phantom standing or lying on the floor. The dose reduction factor is then the quotient of the mean absorbed dose rate in the apartment to the absorbed dose rate in the phantom standing on the ground outdoors. Applications to several modern multistorey buildings are presented. The results show the influence of various parameters such as density and composition of building materials, the fraction of the external building surface containing apertures and initial photon energy.

  12. Introduction to Loss of Large Area Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Mee Jeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lim, Heoksoon; Kim, Myungsu [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-10-15

    New U.S. licensed commercial nuclear power plant operators are required to provide a LOLA (Loss of Large Area) analysis as per the U.S. Code of Federal Regulations, 10CFR50.54(hh). To better understand how the LOLA analysis, which would typically be considered more of a safety issue rather than a security problem, has come to be incorporated into security requirements for new NPPs within the U.S., a brief chronological history of LOLA is provided. As a result of these initial post 9-11 assessments in February 2002, the NRC issued an interim safeguards and security compensatory measures order. In 'Interim Compensatory Measures for High Threat Environment,' Section B.5.b (not publically available) of this order, current NPP licensees had to adopt mitigation strategies using readily available resources to maintain or restore reactor core cooling, containment, and spent fuel pool (SFP) cooling capabilities to cope with a LOLA due to large fires and explosions from any cause, including beyond-design basis threat (BDBT) aircraft impacts. However these B.5.b measures did not specify the measure to be taken. Therefore, in this paper, we are introducing the LOLA and a LOLA analysis methodology. For the export of Korean nuclear power plant, it would be required to analyze LOLA. Therefore, it is necessary to prepare our own guidance for a development of LOLA strategies because the phase 1 of US guidance is classified as 'NRC Safeguards Information'.

  13. RADON DIAGNOSTIC MEASUREMENT GUIDANCE FOR LARGE BUILDINGS - VOLUME 2. APPENDICES

    Science.gov (United States)

    The report discusses the development of radon diagnostic procedures and mitigation strategies applicable to a variety of large non-residential buildings commonly found in Florida. The investigations document and evaluate the nature of radon occurrence and entry mechanisms for rad...

  14. Ways of modernization of large-panel residential buildings in Yerevan

    Directory of Open Access Journals (Sweden)

    Hakobyan Tigran Davidovich

    Full Text Available The present article discusses some problems of renovation and modernization of large-panel residential buildings built in the postwar period in Yerevan. The analysis of the current situation showed that today these buildings have many problems related to their functional and aesthetic aspects of quality and become obsolete. The floor plans don’t satisfy modern functional requirements of inhabitants: similar and repeatable types of buildings became the reason of large arrays of monotonously built up districts with low indicators of quality. Furthermore, there are many low quality extensions and add-ins to the buildings made by inhabitants without control, which destroy the architectural appearance of habitat. Yard places of large-panel residential buildings are occupied by car parks and road travel, buildings are cut off from courtyard areas, which as a consequence don’t meet tsocial and functional requirements of the people. The consideration of the international experience of large-panel old housing renovation in European countries has shown that the main activities include improving the energy efficiency of residential buildings with removing heat loss and using solar panels, contrast changes in architectural appearance with large terraces, loggias, using wide range of colors, add-in attics and enlarging the height and the use of space-planning decisions to increase the living space. Analyzing the current situation of the housing and the international experience of modernization the concept of complex modernization of large-panel buildings was offered, which suggested bringing it to life on three main levels of habitat: apartments, building shapes, residential environment and areas. The main goals of the concept are increasing the comfort of planning decisions as well as the total size of the apartment, improving architectural appearance of the building and introducing areas for public services to housing, increasing energy efficiency and

  15. BUILDINGS DENSITY AND THE AIR TEMPERATURE OF URBAN AREA

    OpenAIRE

    BARBARA ŚLESAK; DAMIAN ABSALON

    2012-01-01

    Buildings density and the air temperature of urban area. This paper attempts to assess the impact of air temperature increase connected with the degree of anthropogenic transformation of an area on the subjectively perceived quality of life. The area under study is the Metropolitan Association of Upper Silesia (Polish: Górnośląski Związek Metropolitalny – GZM). We analyzed the average monthly temperatures in different seasons and compared with size and density of buildings in the analyzed are...

  16. Large areas elemental mapping by ion beam analysis techniques

    Science.gov (United States)

    Silva, T. F.; Rodrigues, C. L.; Curado, J. F.; Allegro, P.; Moro, M. V.; Campos, P. H. O. V.; Santos, S. B.; Kajiya, E. A. M.; Rizzutto, M. A.; Added, N.; Tabacniks, M. H.

    2015-07-01

    The external beam line of the Laboratory for Material Analysis with Ion Beams (LAMFI) is a versatile setup for multi-technique analysis. X-ray detectors for Particle Induced X-rays Emission (PIXE) measurements, a Gamma-ray detector for Particle Induced Gamma- ray Emission (PIGE), and a particle detector for scattering analysis, such as Rutherford Backscattering Spectrometry (RBS), were already installed. In this work, we present some results, using a large (60-cm range) XYZ computer controlled sample positioning system, completely developed and build in our laboratory. The XYZ stage was installed at the external beam line and its high spacial resolution (better than 5 μm over the full range) enables positioning the sample with high accuracy and high reproducibility. The combination of a sub-millimeter beam with the large range XYZ robotic stage is being used to produce elemental maps of large areas in samples like paintings, ceramics, stones, fossils, and all sort of samples. Due to its particular characteristics, this is a unique device in the sense of multi-technique analysis of large areas. With the continuous development of the external beam line at LAMFI, coupled to the robotic XYZ stage, it is becoming a robust and reliable option for regular analysis of trace elements (Z > 5) competing with the traditional in-vacuum ion-beam-analysis with the advantage of automatic rastering.

  17. Fermi Large Area Telescope Third Source Catalog

    CERN Document Server

    ,

    2015-01-01

    We present the third Fermi Large Area Telescope source catalog (3FGL) of sources in the 100~MeV--300~GeV range. Based on the first four years of science data from the Fermi Gamma-ray Space Telescope mission, it is the deepest yet in this energy range. Relative to the 2FGL catalog, the 3FGL catalog incorporates twice as much data as well as a number of analysis improvements, including improved calibrations at the event reconstruction level, an updated model for Galactic diffuse gamma-ray emission, a refined procedure for source detection, and improved methods for associating LAT sources with potential counterparts at other wavelengths. The 3FGL catalog includes 3033 sources above 4 sigma significance, with source location regions, spectral properties, and monthly light curves for each. Of these, 78 are flagged as potentially being due to imperfections in the model for Galactic diffuse emission. Twenty-five sources are modeled explicitly as spatially extended, and overall 232 sources are considered as identifie...

  18. Fermi Large Area Telescope Second Source Catalog

    Science.gov (United States)

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; Ajello, M; Allafort, A.; Antolini, E; Bonnell, J.; Cannon, A.; Celik O.; Corbet, R.; Davis, D. S.; DeCesar, M. E.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. E.; McConville, W.; McEnery, J. E; Perkins, J. S.; Racusin, J. L; Scargle, J. D.; Stephens, T. E.; Thompson, D. J.; Troja, E.

    2012-01-01

    We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24-month period. The Second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in 5 energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 11eV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely gamma-ray-producing source classes.

  19. Performance of large area Micro Pixel Chamber

    CERN Document Server

    Nagayoshi, T; Miuchi, K; Ochi, A; Orito, R; Takada, A; Tanimori, T; Ueno, M

    2003-01-01

    A novel gaseous two-dimensional imaging detector "Micro Pixel Chamber (micro-PIC)" has been developed. This detector is based on double sided printed circuit board (PCB). We have developed large area (10cm x 10cm) micro-PICs with 65536 pixel anodes of 400um pitch on a 100um thick insulating substrate. Achieved energy resolution was 30% (FWHM) at 5.9keV, and a gas gain of 7000 was obtained with argon ethane (8:2) gas mixture. This gain is high enough to detect minimum ionizing particles with such a small electrode pitch. Although several discharges occurred during 65 hours continuous operation, the detectors have kept stable operation with high gain. The micro-PIC is a useful detector for many applications e.g. X-ray, gamma ray, and charged particle imaging. The micro electrode structure allows us to measure directions of primary electrons due to incident X-rays or gamma rays, which provide a strong method for X-ray polarimetry and gamma-ray imaging.

  20. FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, P. L.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Abdo, A. A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Antolini, E.; Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Atwood, W. B.; Belfiore, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Axelsson, M. [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Baldini, L.; Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bignami, G. F., E-mail: digel@stanford.edu, E-mail: Gino.Tosti@pg.infn.it, E-mail: jean.ballet@cea.fr, E-mail: tburnett@u.washington.edu [Istituto Universitario di Studi Superiori (IUSS), I-27100 Pavia (Italy); and others

    2012-04-01

    We present the second catalog of high-energy {gamma}-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely {gamma}-ray-producing source classes.

  1. FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG

    International Nuclear Information System (INIS)

    We present the second catalog of high-energy γ-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely γ-ray-producing source classes.

  2. Fermi Large Area Telescope Second Source Catalog

    CERN Document Server

    ,

    2011-01-01

    We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24-month period. The Second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in 5 energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we att...

  3. Studies on wind environment around high buildings in urban areas

    Institute of Scientific and Technical Information of China (English)

    LIU; Huizhi; JIANG; Yujun; LIANG; Bin; ZHU; Fengrong; ZHAN

    2005-01-01

    High buildings or architectural complex in urban areas remarkably distort the urban surface wind fields. As the air flow approaches,local strong wind may appear around the buildings. The strong wind makes the pedestrians on sidewalks, entrances and terrace very uncomfortable and causes the pedestrian level wind environment problem. In this studies, hot-wire wind measurement, wind scouring in wind tunnel and numerical computation were carried out to evaluate the wind environment of tall buildings in the prevailing flow conditions in Beijing areas. The results obtained by three techniques were compared and mutually verified. The conclusions drawn from three approaches agree with each other. Also the advantages and limitations of each method were analyzed. It is suggested that the combination of different techniques may produce better assessment of wind environment around high buildings.

  4. Energy Savings Modeling of Standard Commercial Building Re-tuning Measures: Large Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2012-06-01

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS's capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This report investigates the energy savings potential of several common HVAC system retuning measures on a typical large office building prototype model, using the Department of Energy's building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated - each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All of these measures and combinations were simulated in 16 cities representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy

  5. Building Development Practice in Flood Prone Area: Case of Ogbaru Council Area of Anambra State Nigeria

    Directory of Open Access Journals (Sweden)

    Peter Uchenna Okoye

    2015-08-01

    Full Text Available This study examined the practice of building development in flood prone areas and how it has contributed to the menace of flooding in Ogbaru Council Area of Anambra State Nigeria. It was a survey research where questionnaires were distributed to heads of the selected households, in addition to physical observations on buildings within the selected households. Four towns out of sixteen towns that made up Ogbaru Council Area of Anambra State were purposefully selected. From these towns, 96 households each were randomly selected and a total of 384 questionnaires were administered to the head of each household or their representative, whereas 242 copies were completed, returned and found useful, thus, giving a response rate of 62.92%. The study found that siting of buildings on waterways, flood channels/plains, inadequate/lack of drains in the compounds, lack of planning restriction/developmental control, size of the building/area occupied by the building among others contribute greatly to the incessant flood menace in the study area. The study therefore deduced that some building practices such as those identified above have the ability of exacerbating the velocity and rate of flooding in the area which turned into natural disaster, and thus, recommended strict enforcement of building and urban development laws and control in the state to reduce indiscriminate erecting of building structures on waterways, including planlessness of our emerging urban centres.

  6. FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG

    International Nuclear Information System (INIS)

    We present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11 month period, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4σ. The 1FGL catalog includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and power-law spectral fits as well as flux measurements in five energy bands for each source. In addition, monthly light curves are provided. Using a protocol defined before launch we have tested for several populations of gamma-ray sources among the sources in the catalog. For individual LAT-detected sources we provide firm identifications or plausible associations with sources in other astronomical catalogs. Identifications are based on correlated variability with counterparts at other wavelengths, or on spin or orbital periodicity. For the catalogs and association criteria that we have selected, 630 of the sources are unassociated. Care was taken to characterize the sensitivity of the results to the model of interstellar diffuse gamma-ray emission used to model the bright foreground, with the result that 161 sources at low Galactic latitudes and toward bright local interstellar clouds are flagged as having properties that are strongly dependent on the model or as potentially being due to incorrectly modeled structure in the Galactic diffuse emission.

  7. ISABELLE. Volume 3. Experimental areas, large detectors

    International Nuclear Information System (INIS)

    This section presents the papers which resulted from work in the Experimental Areas portion of the Workshop. The immediate task of the group was to address three topics. The topics were dictated by the present state of ISABELLE experimental areas construction, the possibility of a phased ISABELLE and trends in physics and detectors

  8. ISABELLE. Volume 3. Experimental areas, large detectors

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This section presents the papers which resulted from work in the Experimental Areas portion of the Workshop. The immediate task of the group was to address three topics. The topics were dictated by the present state of ISABELLE experimental areas construction, the possibility of a phased ISABELLE and trends in physics and detectors.

  9. Large eddy simulation of urban features for Copenhagen metropolitan area

    Directory of Open Access Journals (Sweden)

    A. Mahura

    2005-11-01

    Full Text Available The large eddy simulations employing the SUBMESO model with the urban soil layer model SM2-U were performed for the model domain covering the Danish Island of Sealand and including the Copenhagen metropolitan area. Monthly and diurnal cycle variability were studied for the net radiation, sensible and storage heat fluxes, surface's temperatures, and others. These were evaluated for selected urban vs. non urban related types of covers/surfaces and urban districts such as city center, high buildings, industrial, and residential. Results showed strong effects of urban features on temporal and spatial variability. They are useful and applicable for verification of numerical weather prediction models and development of urban canopy parameterizations.

  10. Installation errors in calculating large-panel buildings (rus

    Directory of Open Access Journals (Sweden)

    Nedviga E.S.

    2011-10-01

    Full Text Available Every year the problem of civil and erection work quality gets sharper in Russia. The article is devoted to solving the identified problem not from the point of organizational and technological aspects of building but from the point of design and calculation. The paper considers the influence of offsetting and axes fractures of wall panels in the process of its installation into large-panel building. Comparative analysis of design schemes that takes into account different types of errors in installation is done. The structure calculation taking into account errors of details installation was made. Obtained efforts in structural elements exceeded allowable values prescribed in the standard documentation. Conclusions about need to consider installation errors (caused by a deviation from the design of vertical structures in design model were made, including calculation in the CAD software.

  11. Large-area mercuric iodide photodectors

    Science.gov (United States)

    Markakis, J.; Ortale, C.; Schnepple, W.; Iwanczyk, J.; Dabrowski, A.

    1983-07-01

    The limits of the active area of mercuric iodide photodetectors imposed by the size of available crystals, electronic noise, and the uniformity of charge carrier collection are discussed. Theoretical calculations of the photodetector electronic noise are compared with the experimental results. Different entrance contacts were studied including semitransparent palladium films and conductive liquids. HgI2 photodetectors with active area up to 4 sq cm are matched with NaI(Tl) and CsI(Tl) scintillation crystals and are evaluated as gamma radiation spectrometers.

  12. Large-area mercuric iodide photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Markakis, J.; Ortale, C.; Schnepple, W.; Iwanczyk, J.; Dabrowski, A.

    1983-01-01

    This article discusses the limits of the active area of mercuric iodide photodetectors imposed by the size of available crystals, electronic noise, and the uniformity of charge carrier collection. Theoretical calculations of the photodetector electronic noise are compared with the experimental results. Different entrance contacts were studied including semitransparent palladium films and conductive liquids. HgI/sub 2/ photodetectors with active area up to 4 sq cm are matched with NaI(Tl) and CsI(Tl) scintillation crystals and are evaluated as gamma radiation spectrometers.

  13. Large-area mercuric iodide photodetectors

    International Nuclear Information System (INIS)

    This article discusses the limits of the active area of mercuric iodide photodetectors imposed by the size of available crystals, electronic noise, and the uniformity of charge carrier collection. Theoretical calculations of the photodetector electronic noise are compared with the experimental results. Different entrance contacts were studied including semitransparent palladium films and conductive liquids. HgI2 photodetectors with active area up to 4 sq cm are matched with NaI(Tl) and CsI(Tl) scintillation crystals and are evaluated as gamma radiation spectrometers

  14. Large-area settlement pattern recognition from Landsat-8 data

    Science.gov (United States)

    Wieland, Marc; Pittore, Massimiliano

    2016-09-01

    The study presents an image processing and analysis pipeline that combines object-based image analysis with a Support Vector Machine to derive a multi-layered settlement product from Landsat-8 data over large areas. 43 image scenes are processed over large parts of Central Asia (Southern Kazakhstan, Kyrgyzstan, Tajikistan and Eastern Uzbekistan). The main tasks tackled by this work include built-up area identification, settlement type classification and urban structure types pattern recognition. Besides commonly used accuracy assessments of the resulting map products, thorough performance evaluations are carried out under varying conditions to tune algorithm parameters and assess their applicability for the given tasks. As part of this, several research questions are being addressed. In particular the influence of the improved spatial and spectral resolution of Landsat-8 on the SVM performance to identify built-up areas and urban structure types are evaluated. Also the influence of an extended feature space including digital elevation model features is tested for mountainous regions. Moreover, the spatial distribution of classification uncertainties is analyzed and compared to the heterogeneity of the building stock within the computational unit of the segments. The study concludes that the information content of Landsat-8 images is sufficient for the tested classification tasks and even detailed urban structures could be extracted with satisfying accuracy. Freely available ancillary settlement point location data could further improve the built-up area classification. Digital elevation features and pan-sharpening could, however, not significantly improve the classification results. The study highlights the importance of dynamically tuned classifier parameters, and underlines the use of Shannon entropy computed from the soft answers of the SVM as a valid measure of the spatial distribution of classification uncertainties.

  15. Development of large Area Covering Height Model

    OpenAIRE

    Jacobsen, K.

    2014-01-01

    Height information is a basic part of topographic mapping. Only in special areas frequent update of height models is required, usually the update cycle is quite lower as for horizontal map information. Some height models are available free of charge in the internet; for commercial height models a fee has to be paid. Mostly digital surface models (DSM) with the height of the visible surface are given and not the bare ground height, as required for standard mapping. Nevertheless by fil...

  16. Large area epitaxial germanane for electronic devices

    Science.gov (United States)

    Amamou, Walid; Odenthal, Patrick M.; Bushong, Elizabeth J.; O'Hara, Dante J.; Luo, Yunqiu Kelly; van Baren, Jeremiah; Pinchuk, Igor; Wu, Yi; Ahmed, Adam S.; Katoch, Jyoti; Bockrath, Marc W.; Tom, Harry W. K.; Goldberger, Joshua E.; Kawakami, Roland K.

    2015-09-01

    We report the synthesis and transfer of epitaxial germanane (GeH) onto arbitrary substrates by electrochemical delamination and investigate its optoelectronic properties. GeH films with thickness ranging from 1 to 600 nm (2-1000 layers) and areas up to ˜1 cm2 have been reliably transferred and characterized by photoluminescence, x-ray diffraction, and energy-dispersive x-ray spectroscopy. Wavelength dependent photoconductivity measurements on few-layer GeH exhibit an absorption edge and provide a sensitive characterization tool for ultrathin germanane materials. The transfer process also enables the possibility of integrating germanane into vertically stacked heterostructures.

  17. The European Large Area ISO Survey

    DEFF Research Database (Denmark)

    Oliver, S.; Rowan-Robinson, M.; Alexander, D.M.;

    2000-01-01

    primary survey, with 6 deg(2) being covered at 6.7 mu m and 1 deg(2) at 175 mu m. This paper discusses the goals of the project and the techniques employed in its construction, as well as presenting details of the observations carried out, the data from which are now in the public domain. We outline the...... best studied areas of their size in the entire sky, and, therefore, natural targets for future surveys. This paper accompanies the release of extremely reliable subsets of the 'preliminary analysis' products. Subsequent papers in this series will give further details of our data reduction techniques...

  18. Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Nathaniel; Qin, Yining; Fridley, David

    2010-09-15

    Buildings are at the locus of three trends driving China's increased energy use and emissions: urbanization, growing personal consumption, and surging heavy industrial production. Migration to cities and urban growth create demand for new building construction. Higher levels of per-capita income and consumption drive building operational energy use with demand for higher intensity lighting, thermal comfort, and plug-load power. Demand for new buildings, infrastructure, and electricity requires heavy industrial production. In order to quantify the implications of China's ongoing urbanization, rising personal consumption, and booming heavy industrial sector, this study presents a lifecycle assessment (LCA) of the energy use and carbon emissions related to residential and commercial buildings. The purpose of the LCA model is to quantify the impact of a given building and identify policy linkages to mitigate energy demand and emissions growth related to China's new building construction. As efficiency has become a higher priority with growing energy demand, policy and academic attention to buildings has focused primarily on operational energy use. Existing studies estimate that building operational energy consumption accounts for approximately 25% of total primary energy use in China. However, buildings also require energy for mining, extracting, processing, manufacturing, and transporting materials, as well as energy for construction, maintenance, and decommissioning. Building and supporting infrastructure construction is a major driver of industry consumption--in 2008 industry accounted for 72% of total Chinese energy use. The magnitude of new building construction is large in China--in 2007, for example, total built floor area reached 58 billion square meters. During the construction boom in 2007 and 2008, more than two billion m{sup 2} of building space were added annually; China's recent construction is estimated to account for half of global

  19. EMCS and time-series energy data analysis in a large government office building

    International Nuclear Information System (INIS)

    Energy Management Control System (EMCS) data are an underutilized source of information on the performance of commercial buildings. Newer EMCS's have the ability and storage capacity to trend large amounts of data and perform preliminary analyses; however, these features often receive little or no use, as operators are generally not trained in data management, visualization, and analysis. Whole-building hourly electric-utility data are another readily available and underutilized source of information. This paper outlines the use of EMCS and utility data to evaluate the performance of the Ronald V. Dellums Federal Building in Oakland, California, a large office building operated by the Federal General Services Administration (GSA). The project began as an exploratory effort at Lawrence Berkeley National Laboratory (LBNL) to examine the procedures operators were using to obtain information and operate their buildings. Trending capabilities were available, but in limited use by the operators. LBNL worked with the building operators to use EMCS to trend one-minute data for over one-hundred points. Hourly electricity-use data were also used to understand usage patterns and peak demand. The paper describes LBNL's key findings in the following areas: Characterization of cooling plant operations; Characterization of economizer performance; Analysis of annual energy use and peak demand operations; Techniques, strengths, and shortcomings of EMCS data analysis; Future plans at the building for web-based remote monitoring and diagnostics. These findings have helped GSA develop strategies for peak demand reduction in this and other GSA buildings. Such activities are of great interest in California and elsewhere, where electricity reliability and demand are currently problematic. Overall, though the building's energy use is fairly low, significant energy savings are available by improving the existing EMCS control strategies

  20. Building Toxic Metal Characterization and Decontamination Report: Area 6, Building 914

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Industrial Hygiene

    2011-08-15

    The purpose of this report is to outline the toxic metal characterization and decontamination efforts in Area 6, Building 914. This includes the initial building inspection, the hotspot sampling, results/findings, building cleanup, and the verification sampling. Building 914 is a steel light frame building that was constructed in 1992. It is about 16,454 square feet, and five employees are assigned to this building. According to the building's floor plan blueprints, it could be inferred that this building was once a Wiremen/Lineman shop. In 2002-2004, the National Nuclear Security Administration Nevada Site Office embarked on a broad characterization of beryllium (Be) surface concentrations throughout the North Las Vegas Facility, the Nevada National Security Site (NNSS), and ancillary facilities like the Special Technologies Laboratory, Remote Sensing Laboratory, etc. Building 914 was part of this characterization. The results of the 2002 study illustrated that the metal housekeeping limits were within acceptable limits and from a Be standpoint, the building was determined to be fit for occupancy. On March 2, 2011, based on a request from Building 914 users, National Security Technologies, LLC (NSTec) Industrial Hygiene (IH) collected bulk samples from the southwest corner of Building 914 at heights above 6 feet where black dust had been noticed on this particular wall. IH conducted surface swipe sampling of the area and analyzed the samples for toxic metals, namely, beryllium (Be), cadmium (Cd), chromium (Cr), lead (Pb), and manganese (Mn). The sample results indicated values two to four times above the housekeeping threshold for Be, Cd, Cr, Pb, and Mn. Subsequently, the facility was closed and posted; the necessary personnel were notified; and controls were instituted for ingress and egress of the building. On March 17, 2011, IH performed an extensive sampling event involving the entire warehouse in accordance with NSTec Organization Procedure OP-P250

  1. Tritium analysis: an actual problem for large building decommissioning - 59406

    International Nuclear Information System (INIS)

    Document available in abstract form only. Full text of publication follows: Radioactive waste management is nowadays, after nearly 50 years of concern, a technical and economical challenge faced by existing nuclear power countries. In decommissioning of nuclear facilities and after disposal of the nuclear equipments (laboratory materials, glove boxes,..), the radioactive inventory of the various building materials is needed to state the working condition for dismantling. A 150 m2 laboratory which accommodated preparations of 3H and 14C labeled molecules is currently under investigation in order to be dismantled in the next decade. 3H is particularly difficult to measure because of its lability and because of the low energy of its beta emission. In order to classify the various building materials, different techniques of measurements have been implemented after a grid has been marked on the floor. Firstly, a smear of each square was carried out and 3H was analyzed leading to a first radiological area classification. Secondly, the technique called digital photo stimulated luminescence (PSL) autoradiography (usually used in biology) has been developed in order to identify radioactive spots in the laboratory. This technique consists in depositing the radiation sensitive film on the floor. After an exposure time of two days, a scan by laser leads to a 2D image

  2. Enabling technologies and building blocks for large planetary orbiters

    Science.gov (United States)

    Poncy, J.; Roser, X.; Couzin, P.

    2013-09-01

    Thales Alenia Space reports how, beyond ExoMars, enabling technologies and their corresponding building blocks for large orbiters and mother ships will play a key-role in the exploration of our System. We first make a census of the targets, of the induced missions for the next decades and of the constraints they place on the physical and functional architecture of the main spacecraft. As a function of the maturity of the related technologies, and of the urgency of scientific and exploration needs, we then introduce the time dimension per target and mission type, as an input for establishing a future comprehensive road map. We conclude by recalling the most urgent developments.

  3. Large-area single-mode photonic bandgap vcsels

    DEFF Research Database (Denmark)

    Birkedal, Dan; Gregersen, N.; Bischoff, S.; Madsen, M.; Romstad, F.; Oestergaard, J.

    We demonstrate that the photonic bandgap effect can be used to control the modes of large area vertical cavity surface emitting lasers. We obtain more than 20 dB side mode suppression ratios in a 10-micron area device.......We demonstrate that the photonic bandgap effect can be used to control the modes of large area vertical cavity surface emitting lasers. We obtain more than 20 dB side mode suppression ratios in a 10-micron area device....

  4. On Building Large Shopping Malls in Shenzhen-Hong Kong Border Area%深港边境地区建设大型购物场所构想

    Institute of Scientific and Technical Information of China (English)

    麦永冠

    2015-01-01

    文章对在深港边境建设购物场所,疏导购物压力问题进行了分析,基于赴港购物人流基本情况和赴港购物问题的深层原因,提出了若干对策建议:在深圳湾和沙头角南部建设购物场;调动落马洲等地民间力量发展自营经济;探索前海蛇口自贸区和福田保税区港货直销中心;有序开发线路,适度分散赴港购物人流;标本兼治水客问题。%To alleviate the adverse impact of the mainland resident shopping behavior in Hongkong, the paper focuses on the problem of building the shopping place nearby the border of Hongkong and Shenzhen. It analyses the basic situation of the shopping flow to Hongkong, and the underlying causes of the problem of flowing to Hongkong for shopping andputs forward five suggestions, namely, to construct the shopping centers on the south of the Shenzhen Bay and Sha Tau Kok, to mobilize the non-governmental forces in Lok Ma Chau, etc. to develop the self-employed economic, to explore pickup Outlet Center in Qianhai FTA and Futian Free Trade Zone, to appropriately disperse the crowd by the orderly development of the travel lines and to solve the problem of the parallel traders and porters.

  5. On Building Large Shopping Malls in Shenzhen-Hong Kong Border Area%深港边境地区建设大型购物场所构想

    Institute of Scientific and Technical Information of China (English)

    麦永冠

    2015-01-01

    To alleviate the adverse impact of the mainland resident shopping behavior in Hongkong, the paper focuses on the problem of building the shopping place nearby the border of Hongkong and Shenzhen. It analyses the basic situation of the shopping flow to Hongkong, and the underlying causes of the problem of flowing to Hongkong for shopping andputs forward five suggestions, namely, to construct the shopping centers on the south of the Shenzhen Bay and Sha Tau Kok, to mobilize the non-governmental forces in Lok Ma Chau, etc. to develop the self-employed economic, to explore pickup Outlet Center in Qianhai FTA and Futian Free Trade Zone, to appropriately disperse the crowd by the orderly development of the travel lines and to solve the problem of the parallel traders and porters.%文章对在深港边境建设购物场所,疏导购物压力问题进行了分析,基于赴港购物人流基本情况和赴港购物问题的深层原因,提出了若干对策建议:在深圳湾和沙头角南部建设购物场;调动落马洲等地民间力量发展自营经济;探索前海蛇口自贸区和福田保税区港货直销中心;有序开发线路,适度分散赴港购物人流;标本兼治水客问题。

  6. Knowledge Sharing Strategies for Large Complex Building Projects.

    Directory of Open Access Journals (Sweden)

    Esra Bektas

    2013-06-01

    Full Text Available The construction industry is a project-based sector with a myriad of actors such as architects, construction companies, consultants, producers of building materials (Anumba et al., 2005. The interaction between the project partners is often quite limited, which leads to insufficient knowledge sharing during the project and knowledge being unavailable for reuse (Fruchter et al. 2002. The result can be a considerable amount of extra work, delays and cost overruns. Design outcomes that are supposed to function as boundary objects across different disciplines can lead to misinterpretation of requirements, project content and objectives. In this research, knowledge is seen as resulting from social interactions; knowledge resides in communities and it is generated through social relationships (Wenger 1998, Olsson et al. 2008. Knowledge is often tacit, intangible and context-dependent and it is articulated in the changing responsibilities, roles, attitudes and values that are present in the work environment (Bresnen et al., 2003. In a project environment, knowledge enables individuals to solve problems, take decisions, and apply these decisions to actions. In order to achieve a shared understanding and minimize the misunderstanding and misinterpretations among project actors, it is necessary to share knowledge (Fong 2003.Sharing knowledge is particularly crucial in large complex building projects (LCBPs in order to accelerate the building process, improve architectural quality and prevent mistakes or undesirable results. However, knowledge sharing is often hampered through professional or organizational boundaries or contractual concerns. When knowledge is seen as an organizational asset, there is little willingness among project organizations to share their knowledge. Individual people may recognize the need to promote knowledge sharing throughout the project, but typically there is no deliberate strategy agreed by all project partners to address

  7. Measuring ultracool properties from the UKIDSS Large Area Survey

    OpenAIRE

    Jenkins James; Lucas Phil; Gallardo Jose; Jones Hugh; Ruiz Maria-Teresa; Deacon Nial; Burningham Ben; Zhang Zenghua; Pinfield David; Marocco Federico; Day-Jones Avril; Gomes Joana; Folkes Stuart; Clarke James

    2013-01-01

    We discuss the properties and of ultracool and brown dwarfs that can be measured from current large area surveys and how fundamental parameters, such as the mass function and formation history can be measured, describing our own first measurement of the formation history in the sub-stellar regime using data from the UKIDSS Large Area Survey.

  8. Artificial intelligence applications in fixed area monitor for TRIGA reactor building and service building

    International Nuclear Information System (INIS)

    This system is intended for the protection of personnel working in those areas of the Reactor Building and Service Building where high gamma radiation fields are expected. A detector, sensitive to gamma radiation, is installed in each of the areas to be monitored. The detector will send a signal, proportional to the radiation level in the area, to a corresponding electronic module (Alarm Unit), where the signal will be amplified and checked against alarm set points for possible alarming conditions. In case the field exceeds the alarm set values, the Alarm Unit will produce a signal that will trigger the field alarms (Horn and Beacon) located in the area where the condition occurred. Each Alarm Unit will send a numerical input to central computer command. he system is required to accomplish the following tasks: - Monitors the level of gamma radiation in those areas of the Station where high radiation fields are expected; - Provides a continuous and centralized display of the radiation level in each of the monitored areas. The display shall be in exposure rate units (R/h); - Provides a visual and audible alarm in each monitored areas; Allows the control room operator to check at any time the radiation levels and alarm conditions in each of the monitored areas; - Control room operator shall be alerted of any alarm conditions that occurs in the Station. A typical monitoring loop is composed of the following components: Detector Assembly type: CI-MA - 522 two channels, two ranges; Horn and Beacon Assembly; Remote Indicating Meter with Warning Lights; Central computer; common equipment for all 40 loops. (authors)

  9. Potential building sand deposits in Songkhla province area

    Directory of Open Access Journals (Sweden)

    Kooptarnond, K.

    2002-10-01

    Full Text Available An investigation of potential building sand deposits in Songkhla province area subdivided them into four regions according to their accumulation in various alluvial plains, meanders throughout alluvial deposits and residual soils. Four selected deposits, were Rattaphum-Khuan Niang, U-Taphao river, Na Mom, and Chana-Thepha regions. Information obtained from these deposits revealed a good correlation between the geomorphological features as interpreted from aerial photographs and those identified from vertical electrical resistivity sounding results. Sand samples were analysed for their physical and chemical properties. Petrographic studies were also undertaken to characterize the composition types, texture and shapes. An overview of the sand properties was used them to be within the acceptable limits for building sand. However, relatively high organic impurities and soundness were found in sand from Khuan Niang and Na Mom deposits. The result indicated a potential reconnaissance mineral resource of about 46 square kilometres.A reserve evaluation for natural building sand was carried out by using Geographic Information System (GIS. Maps of the various parameters considered were constructed in digital database format with the aid of Arc/Info and ArcView software. Overlay mapping and buffer zone modules were performed to evaluate inferred resources of building sand. The key parameters of analysis included the distance from transportation, distance from streams, lithology and thickness of sand layers. The remaining inferred sand total was of about 386 million cubic metres or about 1,021 million metric tons was therefore estimated, of which 60 percent lies in the Rattaphum-Khuan Niang region and 40 percent in the other regions.

  10. Details of large-panel buildings seismic analysis

    Directory of Open Access Journals (Sweden)

    Sergei Emelyanov

    2016-06-01

    Full Text Available The normative requirements of different European countries, USA, CIS, Canada, etc. codes on ensuring of buildings and structures safety at earthquakes are analyzed. The methodology based on non-elastic response spectrum of buildings and allows taking into account non-linear behaviour of structure are proposed in elaboration of Eurocode 8 requirements. The report provides the calculation examples of non-linear displacements of framed and frameless concrete buildings with application of that methodology.

  11. Radon in large buildings: The development of a protocol

    International Nuclear Information System (INIS)

    Over the past several years, considerable research has been devoted by the US Environmental Protection Agency (USEPA) and others to develop radon sampling protocols for single family residences and schools. However, very little research has been performed on measuring radon in the work place. To evaluate possible sampling protocols, 833 buildings throughout the United States were selected for extensive radon testing. The buildings tested (warehouses, production plants and office buildings) were representative of commercial buildings across the country both in design, size and use. Based on the results, preliminary radon sampling protocols for the work place have been developed

  12. Implementing effect of energy efficiency supervision system for government office buildings and large-scale public buildings in China

    International Nuclear Information System (INIS)

    The Chinese central government released a document to initiate a task of energy efficiency supervision system construction for government office buildings and large-scale public buildings in 2007, which marks the overall start of existing buildings energy efficiency management in China with the government office buildings and large-scale public buildings as a breakthrough. This paper focused on the implementing effect in the demonstration region all over China for less than one year, firstly introduced the target and path of energy efficiency supervision system, then described the achievements and problems during the implementing process in the first demonstration provinces and cities. A certain data from the energy efficiency public notice in some typical demonstration provinces and cities were analyzed statistically. It can be concluded that different functional buildings have different energy consumption and the average energy consumption of large-scale public buildings is too high in China compared with the common public buildings and residential buildings. The obstacles need to be overcome afterward were summarized and the prospects for the future work were also put forward in the end.

  13. Satellite image collection modeling for large area hazard emergency response

    Science.gov (United States)

    Liu, Shufan; Hodgson, Michael E.

    2016-08-01

    Timely collection of critical hazard information is the key to intelligent and effective hazard emergency response decisions. Satellite remote sensing imagery provides an effective way to collect critical information. Natural hazards, however, often have large impact areas - larger than a single satellite scene. Additionally, the hazard impact area may be discontinuous, particularly in flooding or tornado hazard events. In this paper, a spatial optimization model is proposed to solve the large area satellite image acquisition planning problem in the context of hazard emergency response. In the model, a large hazard impact area is represented as multiple polygons and image collection priorities for different portion of impact area are addressed. The optimization problem is solved with an exact algorithm. Application results demonstrate that the proposed method can address the satellite image acquisition planning problem. A spatial decision support system supporting the optimization model was developed. Several examples of image acquisition problems are used to demonstrate the complexity of the problem and derive optimized solutions.

  14. Populations and determinants of airborne fungi in large office buildings

    OpenAIRE

    Chao, H Jasmine; Burge, Harriet A.; Schwartz, Joel David; Milton, Donald Kirby

    2002-01-01

    Bioaerosol concentrations in office environments and their roles in causing building-related symptoms have drawn much attention in recent years. Most bioaerosol studies have been cross-sectional. We conducted a longitudinal study to examine the characteristics of airborne fungal populations and correlations with other environmental parameters in office environments. We investigated four office buildings in Boston, Massachusetts, during 1 year beginning May 1997, recruiting 21 offices with ope...

  15. Attribution and Characterisation of Sclerophyll Forested Landscapes Over Large Areas

    Science.gov (United States)

    Jones, Simon; Soto-Berelov, Mariela; Suarez, Lola; Wilkes, Phil; Woodgate, Will; Haywood, Andrew

    2016-06-01

    This paper presents a methodology for the attribution and characterisation of Sclerophyll forested landscapes over large areas. First we define a set of woody vegetation data primitives (e.g. canopy cover, leaf area index (LAI), bole density, canopy height), which are then scaled-up using multiple remote sensing data sources to characterise and extract landscape woody vegetation features. The advantage of this approach is that vegetation landscape features can be described from composites of these data primitives. The proposed data primitives act as building blocks for the re-creation of past woody characterisation schemes as well as allowing for re-compilation to support present and future policy and management and decision making needs. Three main research sites were attributed; representative of different sclerophyll woody vegetated systems (Box Iron-bark forest; Mountain Ash forest; Mixed Species foothills forest). High resolution hyperspectral and full waveform LiDAR data was acquired over the three research sites. At the same time, land management agencies (Victorian Department of Environment, Land Water and Planning) and researchers (RMIT, CRC for Spatial Information and CSIRO) conducted fieldwork to collect structural and functional measurements of vegetation, using traditional forest mensuration transects and plots, terrestrial lidar scanning and high temporal resolution in-situ autonomous laser (VegNet) scanners. Results are presented of: 1) inter-comparisons of LAI estimations made using ground based hemispherical photography, LAI 2200 PCA, CI-110 and terrestrial and airborne laser scanners; 2) canopy height and vertical canopy complexity derived from airborne LiDAR validated using ground observations; and, 3) time-series characterisation of land cover features. 1. Accuracy targets for remotely sensed LAI products to match within ground based estimates are ± 0.5 LAI or a 20% maximum (CEOS/GCOS) with new aspirational targets of 5%). In this research we

  16. Areas for IT research and promotion in Danish building

    DEFF Research Database (Denmark)

    Howard, Rob

    1998-01-01

    A short report on the need for standards for building data, the development of CAD standards and the need to promote various standards in Denmark. The opportunites for using the high levels of building management data to set up systems to use IT in transferring this to building users from design...

  17. RADON PREVENTION IN THE DESIGN & CONSTRUCTION OF SCHOOLS & OTHER LARGE BUILDINGS

    Science.gov (United States)

    It is typically easier and much less expensive to design and construct a new building with radon-resistant and/or easy-to-mitigate features, than to add these features after the building is completed and occupied. Therefore, when building in an area with the potential for elevate...

  18. Computer simulation for better design and operation of large office building air-conditioning

    NARCIS (Netherlands)

    Lain, M.; Hensen, J.; Zmrhal, V.

    2009-01-01

    The paper deals with the use of computer simulations both for the design support of a new buildings and HVAC system development and for the optimisation of the system control strategy in the building. This is presented on a real office building in Prague. For a new large bank head office in Prague,

  19. Plasma and Ion Sources in Large Area Coatings: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2005-02-28

    Efficient deposition of high-quality coatings often requires controlled application of excited or ionized particles. These particles are either condensing (film-forming) or assisting by providing energy and momentum to the film growth process, resulting in densification, sputtering/etching, modification of stress, roughness, texture, etc. In this review, the technical means are surveyed enabling large area application of ions and plasmas, with ion energies ranging from a few eV to a few keV. Both semiconductortype large area (single wafer or batch processing with {approx} 1000 cm{sup 2}) and in-line web and glass-coating-type large area (> 10{sup 7} m{sup 2} annually) are considered. Characteristics and differences between plasma and ion sources are explained. The latter include gridded and gridless sources. Many examples are given, including sources based on DC, RF, and microwave discharges, some with special geometries like hollow cathodes and E x B configurations.

  20. Growth of large area graphene from sputtered films

    OpenAIRE

    Pan, Genhua; Heath, Mark; Horsell, David; Wears, M. Lesley

    2012-01-01

    Techniques for mass-production of large area graphene using an industrial scale thin film deposition tool could be the key to the practical realization of a wide range of technological applications of this material. Here, we demonstrate the growth of large area polycrystalline graphene from sputtered films (a carbon-containing layer and a metallic layer) using in-situ or ex-situ rapid thermal processing in the temperature range from 650 to 1000 oC. It was found that graphene always grows on t...

  1. Large-area metallic photonic lattices for military applications.

    Energy Technology Data Exchange (ETDEWEB)

    Luk, Ting Shan

    2007-11-01

    In this project we developed photonic crystal modeling capability and fabrication technology that is scaleable to large area. An intelligent optimization code was developed to find the optimal structure for the desired spectral response. In terms of fabrication, an exhaustive survey of fabrication techniques that would meet the large area requirement was reduced to Deep X-ray Lithography (DXRL) and nano-imprint. Using DXRL, we fabricated a gold logpile photonic crystal in the <100> plane. For the nano-imprint technique, we fabricated a cubic array of gold squares. These two examples also represent two classes of metallic photonic crystal topologies, the connected network and cermet arrangement.

  2. Developmental experiments on large-area silicon solar cells

    Science.gov (United States)

    Silard, Andrei P.; Nani, Gabriel

    1989-05-01

    Practical ways of attenuating the severe limitations imposed by areal inhomogeneities on the performance of large-area solar cells fabricated on both p- and n-silicon wafers are described, and the results of tests are presented. The p(+)-n-n(+) and n(+)-p-p(+) cells were processed as bifacial devices and tested under both frontside and backside AM1 illumination. It is shown that the combination of a simple design and some of the technological approaches evaluated in this study result in low-cost high-efficiency large-area bifacial silicon solar cells that exhibit with good electrooptical performance.

  3. Semiconductor-based, large-area, flexible, electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Amit (Knoxville, TN)

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  4. Technique investigation on large area neutron scintillation detector array

    International Nuclear Information System (INIS)

    The detailed project for developing Large Area Neutron Scintillation Detector Array (LaNSA) to be used for measuring fusion fuel area density on Shenguang III prototype is presented, including experimental principle, detector working principle, electronics system design and the needs for target chamber etc. The detailed parameters for parts are given and the main causes affecting the system function are analyzed. The realization path is introduced. (authors)

  5. Building Participation in Large-scale Conservation: Lessons from Belize and Panama

    Directory of Open Access Journals (Sweden)

    Jesse Guite Hastings

    2015-01-01

    Full Text Available Motivated by biogeography and a desire for alignment with the funding priorities of donors, the twenty-first century has seen big international NGOs shifting towards a large-scale conservation approach. This shift has meant that even before stakeholders at the national and local scale are involved, conservation programmes often have their objectives defined and funding allocated. This paper uses the experiences of Conservation International′s Marine Management Area Science (MMAS programme in Belize and Panama to explore how to build participation at the national and local scale while working within the bounds of the current conservation paradigm. Qualitative data about MMAS was gathered through a multi-sited ethnographic research process, utilising document review, direct observation, and semi-structured interviews with 82 informants in Belize, Panama, and the United States of America. Results indicate that while a large-scale approach to conservation disadvantages early national and local stakeholder participation, this effect can be mediated through focusing engagement efforts, paying attention to context, building horizontal and vertical partnerships, and using deliberative processes that promote learning. While explicit consideration of geopolitics and local complexity alongside biogeography in the planning phase of a large-scale conservation programme is ideal, actions taken by programme managers during implementation can still have a substantial impact on conservation outcomes.

  6. Toward large-area targets for “TRAKULA”

    Science.gov (United States)

    Vascon, A.; Düllmann, Ch. E.; Eberhardt, K.; Kindler, B.; Lommel, B.; Runke, J.

    2011-11-01

    TRAKULA ( Transmutationsrelevante kernphysikalische Untersuchungen langlebiger Aktinide, i.e., nuclear physical investigations of long-lived actinides with relevance to transmutation) is a joint research project of the German Federal Ministry of Science and Education (BMBF) on nuclear physics investigations with modern scientific, technological and numerical methods. Experiments concerning the transmutation of radioactive waste are a central topic of the project. For this, large-area samples (≥40 cm 2) of 235,238U and 239,242Pu compounds are required for the calibration of fission chambers and for fission yield measurements. Another topic within the project requires large-area targets for precise measurements of the half-life, t1/2, of very long-lived α-particle emitters like 144Nd ( t1/2≈2×10 15 y). Here, we report on electrodeposition tests with Gd and Nd (used as chemical homologs of the actinides), which were performed to find optimal deposition conditions for small-area targets that should be applicable to future large-area targets. The layers were produced by molecular plating. A new stirring technique, ultrasonic stirring, was adopted and found to be suitable for producing large-area targets. Moreover, two different current densities (namely 0.7 and 1.4 mA/cm 2) were studied and found appropriate for target preparation. Characterization of the layers with different analytical techniques played a major role in these studies to gain a deeper understanding of the deposition process itself: neutron activation analysis and γ-spectroscopy were used for yield measurements, radiographic imaging for homogeneity studies, scanning electron microscopy for morphology studies, and atomic force microscopy for roughness studies. According to the obtained results, a new electrochemical cell for the production of large-area targets was designed.

  7. Knowledge Sharing Strategies for Large Complex Building Projects.

    OpenAIRE

    Esra Bektas

    2013-01-01

    The construction industry is a project-based sector with a myriad of actors such as architects, construction companies, consultants, producers of building materials (Anumba et al., 2005). The interaction between the project partners is often quite limited, which leads to insufficient knowledge sharing during the project and knowledge being unavailable for reuse (Fruchter et al. 2002). The result can be a considerable amount of extra work, delays and cost overruns. Design outcomes that are sup...

  8. Building DNN Acoustic Models for Large Vocabulary Speech Recognition

    OpenAIRE

    Maas, Andrew L.; Qi, Peng; Xie, Ziang; Hannun, Awni Y.; Lengerich, Christopher T.; Jurafsky, Daniel; Ng, Andrew Y.

    2014-01-01

    Deep neural networks (DNNs) are now a central component of nearly all state-of-the-art speech recognition systems. Building neural network acoustic models requires several design decisions including network architecture, size, and training loss function. This paper offers an empirical investigation on which aspects of DNN acoustic model design are most important for speech recognition system performance. We report DNN classifier performance and final speech recognizer word error rates, and co...

  9. Identifying Corridors among Large Protected Areas in the United States.

    Science.gov (United States)

    Belote, R Travis; Dietz, Matthew S; McRae, Brad H; Theobald, David M; McClure, Meredith L; Irwin, G Hugh; McKinley, Peter S; Gage, Josh A; Aplet, Gregory H

    2016-01-01

    Conservation scientists emphasize the importance of maintaining a connected network of protected areas to prevent ecosystems and populations from becoming isolated, reduce the risk of extinction, and ultimately sustain biodiversity. Keeping protected areas connected in a network is increasingly recognized as a conservation priority in the current era of rapid climate change. Models that identify suitable linkages between core areas have been used to prioritize potentially important corridors for maintaining functional connectivity. Here, we identify the most "natural" (i.e., least human-modified) corridors between large protected areas in the contiguous Unites States. We aggregated results from multiple connectivity models to develop a composite map of corridors reflecting agreement of models run under different assumptions about how human modification of land may influence connectivity. To identify which land units are most important for sustaining structural connectivity, we used the composite map of corridors to evaluate connectivity priorities in two ways: (1) among land units outside of our pool of large core protected areas and (2) among units administratively protected as Inventoried Roadless (IRAs) or Wilderness Study Areas (WSAs). Corridor values varied substantially among classes of "unprotected" non-core land units, and land units of high connectivity value and priority represent diverse ownerships and existing levels of protections. We provide a ranking of IRAs and WSAs that should be prioritized for additional protection to maintain minimal human modification. Our results provide a coarse-scale assessment of connectivity priorities for maintaining a connected network of protected areas. PMID:27104683

  10. Beam test of a large area silicon drift detector

    International Nuclear Information System (INIS)

    The results from the tests of the first large area (4x4 cm2) planar silicon drift detector prototyp in a pion beam are reported. The measured position resolution in the drift direction is σ=40±10 μm. (orig.)

  11. Hydrocode studies of flows generated by large area fires

    International Nuclear Information System (INIS)

    The global computational approach to the simulation of the meso-scale motions generated by a large area fire is described. Existing hydrocode solutions are reviewed and ongoing calculations discussed. Assumptions applied in many hydrocode solutions are assessed, and modeling requirements based on recent analytical efforts are defined

  12. Ultrahigh conductivity of large area suspended few layer graphene films

    Science.gov (United States)

    Rouhi, Nima; Wang, Yung Yu; Burke, Peter J.

    2012-12-01

    Room-temperature (atmospheric-pressure) electrical conductivity measurements of wafer-scale, large-area suspended (few layer) graphene membranes with areas up to 1000 μm2 (30 μm × 30 μm) are presented. Multiple devices on one wafer can be fabricated with high yield from the same chemical vapor deposition grown graphene sheet, transferred from a nickel growth substrate to large opening in a suspended silicon nitride support membrane. This represents areas two to orders of magnitude larger than prior transport studies on any suspended graphene device (single or few layer). We find a sheet conductivity of ˜2500 e2/h (or about 10 Ω/sq) of the suspended graphene, which is an order of magnitude higher than any previously reported sheet conductance of few layer graphene.

  13. Modal instabilities in very large mode area rod fiber amplifiers

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Hansen, Kristian Rymann; Laurila, Marko;

    finite element method to allow complex micro structured fibers to be considered. Thereby the modal instability threshold is estimated for very large mode area fiber amplifiers of various photonic crystal fiber designs. Experimentally the modal instability threshold for very large mode area fiber......-100 microns, by reducing all index contrasts to very low values, and possibly utilizing advanced photonic-band gap cladding designs to filter out higher-order modes [2], see Fig. 1. The guided modes of such cores are very sensitive to perturbations. An unavoidable perturbation at large average power is the...... modal instability [3-5], represented in Fig. 2 as the growth of the higher order mode content. This is a fundamental obstacle for power scaling in fiber amplifiers that significantly reduces beam quality and stability. We combine analytic considerations for thermally induced mode coupling with the...

  14. Characterization of large area nanostructured surfaces using AFM measurements

    DEFF Research Database (Denmark)

    Calaon, Matteo; Hansen, Hans Nørgaard; Tosello, Guido;

    2012-01-01

    A surface characterisation study has been developed to validate an innovative tool making solution for nano patterning large areas via anodizing of aluminium (Al) and subsequent nickel electroforming. A surface topography characterization through atomic force microscopy (AFM) indicated a decreased...... magnitude of the 3D surface amplitude parameters chosen for the analysis, when increasing the Al purity from 99,5% to 99,999%. AFM was then employed to evaluate the periodical arrangements of the nano structured cells. Image processing was used to estimate the average areas value, the height variation...

  15. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    International Nuclear Information System (INIS)

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China.

  16. Innovative carbon nanotube-silicon large area photodetector

    International Nuclear Information System (INIS)

    We report on a new photodetector fabricated using carbon nanostructures grown on a silicon substrate. This device exhibits low noise, a good conversion efficiency of photons into electrical current and a good signal linearity in a wide range of radiation wavelengths ranging from ultraviolet to infrared at room temperature. The maximum quantum efficiency of 37% at 880 nm has been measured without signal amplification. Such innovative devices can be easily produced on large scales by Chemical Vapour Deposition (CVD) through a relatively inexpensive chemical process, which allows large sensitive areas from a few mm2 up to hundreds of cm2 to be covered.

  17. Influence of domestic hot water parameters on the energy consumption of large buildings in Senegal

    International Nuclear Information System (INIS)

    This paper investigates the effects of domestic hot water (DHW) parameters on the energy consumption of large buildings in Senegal. Three types of reference buildings have been selected and developed (residence, office and hotel), and for each of them, the standard values of the three studied parameters (distribution temperature, flow rate and heat tank losses) are defined. The DOE-2.1E building energy program has been employed for computer simulations. It has been found that if the magnitude of their positive incremental impact is considered, the DHW parameters can be classified according to the following decreasing order: 1. heat tank losses, 2. flow rate and 3. distribution temperature. Then, for each of the three types of buildings, we established a discrete series of options of electricity consumption reduction by limitation of the DHW parameters values. For further developments, these options can be employed by researchers to build an Energy Efficiency Code applicable to large buildings in West Africa

  18. Characterization of Large Area APDs for the EXO-200 Detector

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, R.; LePort, F.; Pocar, A.; /Stanford U., Phys. Dept.; Kumar, K.; /Massachusetts U., Amherst; Odian, A.; Prescott, C.Y.; /SLAC; Tenev, V.; /Stanford U., Phys. Dept.; Ackerman, N.; /SLAC; Akimov, D.; /Moscow, ITEP; Auger, M.; /Bern U., LHEP; Benitez-Medina, C.; /Colorado State U.; Breidenbach, M.; /SLAC; Burenkov, A.; /Moscow, ITEP; Conley, R.; /SLAC; Cook, S.; /Colorado State U.; deVoe, R.; Dolinski, M.J.; /Stanford U., Phys. Dept.; Fairbank, W., Jr.; /Colorado State U.; Farine, J.; /Laurentian U.; Fierlinger, P.; Flatt, B.; /Stanford U., Phys. Dept. /Bern U., LHEP /Stanford U., Phys. Dept. /Maryland U. /Colorado State U. /Laurentian U. /Carleton U. /SLAC /Maryland U. /Moscow, ITEP /Alabama U. /SLAC /Colorado State U. /Stanford U., Phys. Dept. /Alabama U. /Stanford U., Phys. Dept. /Alabama U. /SLAC /Carleton U. /SLAC /Maryland U. /Moscow, ITEP /Carleton U. /Stanford U., Phys. Dept. /Bern U., LHEP /SLAC /Laurentian U. /SLAC /Maryland U.

    2011-12-02

    EXO-200 uses 468 large area avalanche photodiodes (LAAPDs) for detection of scintillation light in an ultra-low-background liquid xenon (LXe) detector. We describe initial measurements of dark noise, gain and response to xenon scintillation light of LAAPDs at temperatures from room temperature to 169 K - the temperature of liquid xenon. We also describe the individual characterization of more than 800 LAAPDs for selective installation in the EXO-200 detector.

  19. Split Architecture for Large Scale Wide Area Networks

    OpenAIRE

    John, Wolfgang; Devlic, Alisa; Ding, Zhemin; Jocha, David; Kern, Andras; Kind, Mario; Köpsel, Andreas; Nordell, Viktor; Sharma, Sachin; Sköldström, Pontus; Staessens, Dimitri; Takacs, Attila; Topp, Steffen; Westphal, F. -Joachim; Woesner, Hagen

    2014-01-01

    This report defines a carrier-grade split architecture based on requirements identified during the SPARC project. It presents the SplitArchitecture proposal, the SPARC concept for Software Defined Networking (SDN) introduced for large-scale wide area networks such as access/aggregation networks, and evaluates technical issues against architectural trade-offs. First we present the control and management architecture of the proposed SplitArchitecture. Here, we discuss a recursive control archit...

  20. High Energy Astrophysics with the Fermi Large Area Telescope

    Science.gov (United States)

    Hays, Elizabeth

    2009-01-01

    This slide presentation reviews some of the findings of the Large Area Telescope (LAT) aboard the Fermi Observatory. It includes information about the LAT, and the Gamma-Ray Burst Monitor (GBM), detection of the quiet sun and the moon in gamma rays, Pulsars observed by the observatory, Globular Star Clusters, Active Galactic Nucleus, and Gamma-Ray Bursts, with specific information about GRB 080916C.

  1. An insulating grid spacer for large-area MICROMEGAS chambers

    International Nuclear Information System (INIS)

    We present a novel design for large-area gaseous detectors based on the MICROMEGAS technology. This technology incorporates an insulating grid, sandwiched between the micro-mesh and the anode-pad plane, which provides a uniform 200 μm amplification gap. The uniformity of the amplification gap thickness has been verified. The gain performances of the detector are presented and compared to the values obtained with detectors using cylindrical micro spacers. The new design presents several technical and financial advantages

  2. The European Large Area ISO Survey: Latest Result

    OpenAIRE

    Oliver, Seb; Serjeant, S.; Efstathiou, A.; Crockett, H.; Gruppioni, C; La Franca, F.; Rowan-Robinson, M.; Consortium, the ELAIS

    2000-01-01

    We present some recent results from the European Large Area ISO Survey (ELAIS). This survey was the largest non-serendipitous ISO field survey. A preliminary reduction has recently been completed and catalogues of sources released to the community. Early results show strongly evolving source counts. A comprehensive identification programme is underway and a number of extremely luminous objects have already been discovered. This survey provides an exciting legacy from the ISO mission and (amon...

  3. Spatial Non-uniformity Measurements of Large Area Silicon Photodiodes

    OpenAIRE

    DURAK, Murat; SAMADOV, Farhad; TÜRKOĞLU, A. Kamuran

    2002-01-01

    Accurate determination of the responsivity of silicon photodiodes are highly desired in photometry. The change of responsivity over the surface, the so-called spatial non-uniformity, effects power measurements especially in photodiodes with large active areas. To study this effect, first an intensity-stabilized laser source-optics has been established. A purpose-built step-motor controlled two axis micro mechanical stage has been designed to scan the photodiode surface. In this stu...

  4. Large-area travelling-wave dielectrophoresis particle separator

    OpenAIRE

    Morgan, Hywel; Green, Nicolas G; Hughes, M. P.; Monaghan, W; Tan, T C

    1997-01-01

    Multilayering microelectrode techniques have been developed to construct large-area travelling-wave dielectrophoresis (TWD) separators. Novel electrode designs have enabled arrays with up to 25 000 electrodes to be constructed. The separation capacity of a 1000 electrode (20 mm) array has been demonstrated by separating components of whole blood. The development of sophisticated bio-particle separators capable of separating cells, viruses and proteins is discussed.

  5. Large-mode-area leaky optical fibre fabricated by MCVD

    OpenAIRE

    Dussardier, Bernard; Trzesien, Stanislaw; Ude, Michèle; Rastogi, Vipul; Kumar, Ajeet; Monnom, Gérard

    2008-01-01

    A large mode area single-mode optical fibre based on leaky mode filtering was prepared by MCVD. The cladding structure discriminates the fundamental mode from the higher order ones. A preliminary version has 25-$\\mu$m core diameter and 0.11 numerical aperture. A Gaussian-like mode with 22-$\\mu$m MFD is observed after 3-m propagation, in agreement with modeling.

  6. Large-area, high-sensitivity heat-flow sensor

    International Nuclear Information System (INIS)

    A heat-flow sensor based on ac resistance thermometry and utilizing synchronous detection is described. The sensor design permits large-area sensors to be constructed economically. Calibration of an initial 0.09 m2 prototype yielded a linear response with a sensitivity of (37.610.01) mV(W/m2)-1. The minimum detectable heat flux is no larger than 0.08 W/m2

  7. Potential energy savings with exterior shades in large office buildings and the impact of discomfort glare

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Sabine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lee, Eleanor [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-04-01

    Exterior shades are highly efficient for reducing solar load in commercial buildings. Their impact on net energy use depends on the annual energy balance of heating, cooling, fan and lighting energy. This paper discusses the overall energy use intensity of various external shading systems for a prototypical large office building split into the different types of energy use and for different orientations and window sizes. Lighting energy was calculated for a constant lighting power as well as for dimmed lighting fixtures (daylighting control). In Section 3, slat angles and solar cut-off angles were varied for fixed exterior slat shading systems. While the most light-blocking shades performed best for the case without daylighting controls, the optimum cut-off angle with daylighting controls was found to be 30 deg for the office building prototype used in Chicago and Houston. For large window-to-wall (WWR) ratios, window related annual energy use could be reduced by at least 70 % without daylighting control and by a minimum of 86 % with daylighting control in average over all orientations. The occurrence of discomfort glare was is considered in Section 4 of the paper, which looks at the performance of commercially available exterior shading systems when an interior shade is used in addition to the exterior shade during hours when occupants would experience discomfort glare. Glare control impacts overall energy use intensity significantly for exterior shades with high transmittance, especially when daylighting controls are used. In these cases, exterior shades are only beneficial for window-to-wall areas ≥ 45% in the hot Houston climate. For smaller windows and in a heating/cooling climate like Chicago, exterior shades can increase energy consumption

  8. Mechanism of Liquefaction-Induced Large Settlements of Buildings

    Directory of Open Access Journals (Sweden)

    Zaheer Ahmed Almani

    2012-10-01

    Full Text Available In this paper, mechanism of liquefaction-related large settlements of the soil-structure system during the earthquake was studied using numerical modelling. The isolated shallow strip plane strain footing pad, supporting a typical simple frame structure, was founded on the ground at the shallow depth from the level ground surface. This system was modelled as plane-strain using the FLAC (Fast Lagrangian Analysis of continua 2D dynamic modelling and analysis code. This case focuses on the basic mechanisms of liquefaction-induced large deformations of the structure during an earthquake and will provide a benchmark model case for comparison with the model case in which jet grouted columns are provided as ground reinforcement. The results showed that large settlements of shallow foundations in punching shear are triggered during cyclic excitation. These large settlements under the structure are driven by load of structure and earthquake excitation. Monotonic shear deformation, lateral shear deformations and volume change of soil are main phenomena under the structure when the pore pressure rises and soil is liquefied in cyclic loading.

  9. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-02-05

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT "dark current" background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or "Back" detector, to both (1) minimize Compton background in the low-energy portion of the "Front" scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as impelmented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors.

  10. Large area radiation source for water and wastewater treatment

    Science.gov (United States)

    Mueller, Michael T.; Lee, Seungwoo; Kloba, Anthony; Hellmer, Ronald; Kumar, Nalin; Eaton, Mark; Rambo, Charlotte; Pillai, Suresh

    2011-06-01

    There is a strong desire for processes that improve the safety of water supplies and that minimize disinfection byproducts. Stellarray is developing mercury-free next-generation x-ray and UV-C radiation sources in flat-panel and pipe form factors for water and wastewater treatment applications. These new radiation sources are designed to sterilize sludge and effluent, and to enable new treatment approaches to emerging environmental concerns such as the accumulation of estrogenic compounds in water. Our UV-C source, based on cathodoluminescent technology, differs significantly from traditional disinfection approaches using mercury arc lamps or UV LEDs. Our sources accelerate electrons across a vacuum gap, converting their energy into UV-C when striking a phosphor, or x-rays when striking a metallic anode target. Stellarray's large area radiation sources for wastewater treatment allow matching of the radiation source area to the sterilization target area for maximum coverage and improved efficiency.

  11. Design of passive solar buildings in urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Tombazis, A.N.; Preuss, S.A. [Meletitiki-Alexandros N. Tombazis and Associates Architects Ltd., Athens (Greece)

    2001-07-01

    This paper is about designing solar buildings within given urban contexts and the resulting restrictions rather than about town planning with the freedom to arrange buildings freely so as to maximise access to natural resources. A comprehensive bioclimatic design in such a given urban environment must carefully investigate and assess the building's access to natural resources while taking into account the negative influences that might prevail around the site. The associated constraints can be a challenging but very interesting and rewarding starting point for architectural design. If understood and considered from the beginning these constraints can lead to creative, innovative and beautiful architectural solutions, in other words, to real architecture. (Author)

  12. Building a Large-Scale Knowledge Base for Machine Translation

    CERN Document Server

    Knight, K; Knight, Kevin; Luk, Steve K.

    1994-01-01

    Knowledge-based machine translation (KBMT) systems have achieved excellent results in constrained domains, but have not yet scaled up to newspaper text. The reason is that knowledge resources (lexicons, grammar rules, world models) must be painstakingly handcrafted from scratch. One of the hypotheses being tested in the PANGLOSS machine translation project is whether or not these resources can be semi-automatically acquired on a very large scale. This paper focuses on the construction of a large ontology (or knowledge base, or world model) for supporting KBMT. It contains representations for some 70,000 commonly encountered objects, processes, qualities, and relations. The ontology was constructed by merging various online dictionaries, semantic networks, and bilingual resources, through semi-automatic methods. Some of these methods (e.g., conceptual matching of semantic taxonomies) are broadly applicable to problems of importing/exporting knowledge from one KB to another. Other methods (e.g., bilingual match...

  13. Mechanism of Liquefaction-Induced Large Settlements of Buildings

    OpenAIRE

    Zaheer Ahmed Almani; Kamran Ansari; Ashfaque Ahmed Memon

    2012-01-01

    In this paper, mechanism of liquefaction-related large settlements of the soil-structure system during the earthquake was studied using numerical modelling. The isolated shallow strip plane strain footing pad, supporting a typical simple frame structure, was founded on the ground at the shallow depth from the level ground surface. This system was modelled as plane-strain using the FLAC (Fast Lagrangian Analysis of continua) 2D dynamic modelling and analysis code. This case focuses...

  14. Axiomatic design in large systems complex products, buildings and manufacturing systems

    CERN Document Server

    Suh, Nam

    2016-01-01

    This book provides a synthesis of recent developments in Axiomatic Design theory and its application in large complex systems. Introductory chapters provide concise tutorial materials for graduate students and new practitioners, presenting the fundamentals of Axiomatic Design and relating its key concepts to those of model-based systems engineering. A mathematical exposition of design axioms is also provided. The main body of the book, which represents a concentrated treatment of several applications, is divided into three parts covering work on: complex products; buildings; and manufacturing systems. The book shows how design work in these areas can benefit from the scientific and systematic underpinning provided by Axiomatic Design, and in so doing effectively combines the state of the art in design research with practice. All contributions were written by an international group of leading proponents of Axiomatic Design. The book concludes with a call to action motivating further research into the engineeri...

  15. Large Area Projection Microstereolithography: Characterization and Optimization of 3D Printing Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Melissa R. [Ohlone College, Fremont, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moran, Bryan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bekker, Logan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dudukovic, Nikola [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-12

    Large Area Projection Microstereolithography (LAPμSL) is a new technology that allows the additive manufacture of parts that have feature sizes spanning from centimeters to tens of microns. Knowing the accuracy of builds from a system like this is a crucial step in development. This project explored the capabilities of the second and newest LAPμSL system that was built by comparing the features of actual builds to the desired structures. The system was then characterized in order to achieve the best results. The photo polymeric resins that were used were Autodesk PR48 and HDDA. Build parameters for Autodesk PR48 were found that allowed the prints to progress while using the full capacity of the system to print quality parts in a relatively short amount of time. One of the larger prints in particular had a print time that was nearly eighteen times faster than it would have been had printed in the first LAPμSL system. The characterization of HDDA resin helped the understanding that the flux of the light projected into the resin also affected the quality of the builds, rather than just the dose of light given. Future work for this project includes exploring the use of other resins in the LAPμSL systems, exploring the use of Raman Spectroscopy to analyze builds, and completing the characterization of the LAPμSL system.

  16. National Weatherization Assistance Program Impact Evaluation: Energy Impacts for Large Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Blasnik, Michael [Blasnik & Associates, Roslindale, MA (United States); Dalhoff, Greg [Dalhoff & Associates, Verona, WI (United States); Carroll, David [APPRISE, Inc., Princeton, NJ (United States); Ucar, Ferit [APPRISE, Inc., Princeton, NJ (United States)

    2015-10-01

    This report estimates energy savings, energy cost savings, and cost effectiveness attributable to weatherizing large multifamily buildings under the auspices of the Department of Energy's Weatherization Assistance Program during Program Year 2008.

  17. Loop-polishing machining technology of large area lightweight mirror

    Science.gov (United States)

    Chen, Xian-he; Zhang, Cheng-qun; Tian, Xiao-qing; Liu, Haiwei

    2010-10-01

    Lightweight mirror is a key part in image-stabilized day/night optoelectronic observe/aim system. It is made of special structure titanium alloy base with sintered layer of optical glass. To meet with the requirement to reduce weight, honeycomb structure is adopted on the titanium alloy substrate. The depth of the optical glass is very thin. Due to its special & complex structure, high index requirement on image-stabilized technology, technology efficiency is very low with traditional polishing, and the quality is not stable. The loop polishing machine characterized with its stressless machining, is a kind of plain polishing machine tool, which has unique advantage in plain polishing machining of high accuracy large size and extra thin, changeable optical elements. We adopt loop-polishing technology in large area lightweight mirror machining. After parts fine grinding, first we adopt traditional polishing technique to conform pre-polishing for parts, then perform stressless polishing in loop polishing machine. Via tests and batch production, it solves the technical problems such as facial contour control and surface quality of the large area lightweight mirror; its working efficiency is 3-5 times than the traditional polishing technology.

  18. Large-scale building integrated photovoltaics field trial. First technical report - installation phase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the results of the first eighteen months of the Large-Scale Building Integrated Photovoltaic Field Trial focussing on technical aspects. The project aims included increasing awareness and application of the technology, raising the UK capabilities in application of the technology, and assessing the potential for building integrated photovoltaics (BIPV). Details are given of technology choices; project organisation, cost, and status; and the evaluation criteria. Installations of BIPV described include University buildings, commercial centres, and a sports stadium, wildlife park, church hall, and district council building. Lessons learnt are discussed, and a further report covering monitoring aspects is planned.

  19. Nengo: a Python tool for building large-scale functional brain models

    OpenAIRE

    Bekolay, Trevor; Bergstra, James; Hunsberger, Eric; DeWolf, Travis; Terrence C Stewart; Rasmussen, Daniel; Choo, Xuan; Voelker, Aaron Russell; Eliasmith, Chris

    2014-01-01

    Neuroscience currently lacks a comprehensive theory of how cognitive processes can be implemented in a biological substrate. The Neural Engineering Framework (NEF) proposes one such theory, but has not yet gathered significant empirical support, partly due to the technical challenge of building and simulating large-scale models with the NEF. Nengo is a software tool that can be used to build and simulate large-scale models based on the NEF; currently, it is the primary resource for both teach...

  20. MILDOS-AREA: An enhanced version of MILDOS for large-area sources

    International Nuclear Information System (INIS)

    The MILDOS-AREA computer code is a modified version of the MILDOS code, which estimates the radiological impacts of airborne emissions from uranium mining and milling facilities or any other large-area source involving emissions of radioisotopes of the uranium-238 series. MILDOS-AREA is designed for execution on personal computers. The modifications incorporated in the MILDOS-AREA code provide enhanced capabilities for calculating doses from large-area sources and update dosimetry calculations. The major revision from the original MILDOS code is the treatment of atmospheric dispersion from area sources: MILDOS-AREA substitutes a finite element integration approach for the virtual-point method (the algorithm used in the original MILDOS code) when specified by the user. Other revisions include the option of using Martin-Tickvart dispersion coefficients in place of Briggs coefficients for a given source, consideration of plume reflection, and updated internal dosimetry calculations based on the most recent recommendations of the International Commission on Radiation Protection and the age-specific dose calculation methodology developed by Oak Ridge National Laboratory. This report also discusses changes in computer code structure incorporated into MILDOS-AREA, summarizes data input requirements, and provides instructions for installing and using the program on personal computers. 15 refs., 9 figs., 26 tabs

  1. Segmentation of Shadowed Buildings in Dense Urban Areas from Aerial Photographs

    Directory of Open Access Journals (Sweden)

    Junichi Susaki

    2012-03-01

    Full Text Available Segmentation of buildings in urban areas, especially dense urban areas, by using remotely sensed images is highly desirable. However, segmentation results obtained by using existing algorithms are unsatisfactory because of the unclear boundaries between buildings and the shadows cast by neighboring buildings. In this paper, an algorithm is proposed that successfully segments buildings from aerial photographs, including shadowed buildings in dense urban areas. To handle roofs having rough textures, digital numbers (DNs are quantized into several quantum values. Quantization using several interval widths is applied during segmentation, and for each quantization, areas with homogeneous values are labeled in an image. Edges determined from the homogeneous areas obtained at each quantization are then merged, and frequently observed edges are extracted. By using a “rectangular index”, regions whose shapes are close to being rectangular are thus selected as buildings. Experimental results show that the proposed algorithm generates more practical segmentation results than an existing algorithm does. Therefore, the main factors in successful segmentation of shadowed roofs are (1 combination of different quantization results, (2 selection of buildings according to the rectangular index, and (3 edge completion by the inclusion of non-edge pixels that have a high probability of being edges. By utilizing these factors, the proposed algorithm optimizes the spatial filtering scale with respect to the size of building roofs in a locality. The proposed algorithm is considered to be useful for conducting building segmentation for various purposes.

  2. INNOVATIVE DYNAMIC BUILDING COMPONENT FOR THE MEDITERRANEAN AREA

    OpenAIRE

    Sala M.; Romano R.

    2013-01-01

    Appropriate building envelope is the main strategy for sustainable design, but in the mild temperate/mesothermal climates, the rapid changing of outdoor conditions push toward a dynamic response of envelope parameters to allow the maintenance of interior good adaptive comfort. The traditional response of the windows components that characterizes the Mediterranean architecture has recently developed by the ABITA Centre to a new range of innovative facade modules and new materials able to pl...

  3. A three dimensionally position sensitive large area detector

    Science.gov (United States)

    Pochodzalla, J.; Butsch, R.; Heck, B.; Hlawatsch, G.; Miczaika, A.; Rabe, H. J.; Rosner, G.

    1985-01-01

    A large area detector consisting of a parallel plate avalanche counter (PPAC) and a trapezohedral ionization chamber (TIC) is described. Its active area is 184 cm 2. The time resolution of the PPAC is 175 ps. The energy resolution of the TIC is 0.4%, the energy loss resolution 2.8%, the nuclear charge resolution 2.3%. The TIC is position sensitive in three dimensions. The position x is measured via a saw-tooth anode with a resolution of 0.7 mm; the drift time coordinate shows a resolution of δy ≅ mm. The range z is determined by a new technique, a graded density Frisch grid. It enlarges the dynamic range of the charge measurement down to the Bragg maximum at E/ A ˜ 1 MeV. The resolution is δZ/ Z ≅ 3.5%

  4. A three dimensionally position sensitive large area detector

    International Nuclear Information System (INIS)

    A large area detector consisting of a parallel plate avalanche counter (PPAC) and a trapezohedral ionization chamber (TIC) is described. Its active area is 184 cm2. The time resolution of the PPAC is 175 ps. The energy resolution of the TIC is 0.4%, the energy loss resolution 2.8%, the nuclear charge resolution 2.3%. The TIC is position sensitive in three dimensions. The position x is measured via a saw-tooth anode with a resolution of 0.7 mm; the drift time coordinate shows a resolution of deltaγ approx.= 1 mm. The range z is determined by a new technique, a graded density Frisch grid. It enlarges the dynamic range of the charge measurement down to the Bragg maximum at E/A proportional 1 MeV. The resolution is deltaZ/Z approx.= 3.5%. (orig.)

  5. Large area forest inventory using Landsat ETM+: A geostatistical approach

    Science.gov (United States)

    Meng, Qingmin; Cieszewski, Chris; Madden, Marguerite

    Large area forest inventory is important for understanding and managing forest resources and ecosystems. Remote sensing, the Global Positioning System (GPS), and geographic information systems (GIS) provide new opportunities for forest inventory. This paper develops a new systematic geostatistical approach for predicting forest parameters, using integrated Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images, GPS, and GIS. Forest parameters, such as basal area, height, health conditions, biomass, or carbon, can be incorporated as a response variable, and the geostatistical approach can be used to predict parameter values for uninventoried points. Using basal area as the response and Landsat ETM+ images of pine stands in Georgia as auxiliary data, this approach includes univariate kriging (ordinary kriging and universal kriging) and multivariable kriging (co-kriging and regression kriging). The combination of bands 4, 3, and 2, as well as the combination of bands 5, 4, and 3, normalized difference vegetation index (NDVI), and principal components (PCs) were used in this study with co-kriging and regression kriging. Validation based on 200 randomly sampling points withheld field inventory was computed to evaluate the kriging performance and demonstrated that band combination 543 performed better than band combination 432, NDVI, and PCs. Regression kriging resulted in the smallest errors and the highest R-squared indicating the best geostatistical method for spatial predictions of pine basal area.

  6. LLNL large-area inductively coupled plasma (ICP) source: Experiments

    International Nuclear Information System (INIS)

    We describe initial experiments with a large (76-cm diameter) plasma source chamber to explore the problems associated with large-area inductively coupled plasma (ICP) sources to produce high density plasmas useful for processing 400-mm semiconductor wafers. Our experiments typically use a 640-nun diameter planar ICP coil driven at 13.56 MHz. Plasma and system data are taken in Ar and N2 over the pressure range 3-50 mtorr. RF inductive power was run up to 2000W, but typically data were taken over the range 100-1000W. Diagnostics include optical emission spectroscopy, Langmuir probes, and B probes as well as electrical circuit measurements. The B and E-M measurements are compared with models based on commercial E-M codes. Initial indications are that uniform plasmas suitable for 400-mm processing are attainable

  7. Large Area Scintillator Fiber Ion Detector Array Used in Vacuum

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The large area plastic scintillator fiber(BCF-12)ion detector array is mainly made of 4×108 fibers,2×108 photo-transmitters and 2×108 photomultiplier tubes.The fiber with single clad is about 111cm long and its cross seetion is a square whose size is 5 mm×5 mm.The fibers are arrayed perpendicularly to the direction of the incident beam.Each end side of every four pieces of fiber is connected to a bended photo-transmitter

  8. Method of manufacturing a large-area segmented photovoltaic module

    Science.gov (United States)

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  9. Creating large area molecular electronic junctions using atomic layer deposition

    International Nuclear Information System (INIS)

    We demonstrate a technique for creating large area, electrically stable molecular junctions. We use atomic layer deposition to create nanometer thick passivating layers of aluminum oxide on top of self-assembled organic monolayers with hydrophilic terminal groups. This layer acts as a protective barrier and allows simple vapor deposition of the top electrode without short circuits or molecular damage. This method allows nonshorting molecular junctions of up to 9 mm2 to be easily and reliably fabricated. The effect of passivation on molecular monolayers is studied with Auger and x-ray spectroscopy, while electronic transport measurements confirm molecular tunneling as the transport mechanism for these devices

  10. Low-temperature performance of a large area avalanche photodiode

    International Nuclear Information System (INIS)

    A Large Area Avalanche Photodiode was studied, aiming to access its performance as light detector at low temperatures, down to -80 deg. C. The excess noise factor, F, was measured and found to be approximately independent of the temperature. A linear dependence of F on the APD gain with a slope of 0.00239±0.00008 was observed for gains >100. The detection of low intensity light pulses, producing only a few primary electron-hole pairs in the photodiode, is reported

  11. Noise-Immune Conjugate Large-Area Atom Interferometers

    International Nuclear Information System (INIS)

    We present a pair of simultaneous conjugate Ramsey-Borde atom interferometers using large (20(ℎ/2π)k)-momentum transfer beam splitters, where (ℎ/2π)k is the photon momentum. Simultaneous operation allows for common-mode rejection of vibrational noise. This allows us to surpass the enclosed space-time area of previous interferometers with a splitting of 20(ℎ/2π)k by a factor of 2500. Using a splitting of 10(ℎ/2π)k, we demonstrate a 3.4 ppb resolution in the measurement of the fine structure constant. Examples for applications in tests of fundamental laws of physics are given.

  12. An insulating grid spacer for large-area MICROMEGAS chambers

    CERN Document Server

    Bernard, D; D'Enterria, D G; Le Guay, M; Martínez, G; Mora, M J; Pichot, P; Roy, D; Schutz, Y; Gandi, A; De Oliveira, R

    2002-01-01

    We present an original design for large area gaseous detectors based on the MICROMEGAS technology. This technology incorporates an insulating grid, sandwiched between the micro-mesh and the anode-pad plane, which provides an uniform 200 $\\mu$m amplification gap. The uniformity of the amplification gap thickness has been verified under several experimental conditions. The gain performances of the detector are presented and compared to the values obtained with detectors using cylindrical micro spacers. The new design presents several technical and financial advantages.

  13. Fermi Large Area Telescope Bright Gamma-ray Source List

    OpenAIRE

    Abdo, A. A.

    2009-01-01

    Following its launch in June 2008, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in 3 months produced a deeper and better-resolved map of the gamma-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than ~10-sigma) gamma-ray sources in these data. These are the best-characterized and best-localized point-like (i.e.,...

  14. The ASTRO-F Mission : Large Area Infrared Survey

    OpenAIRE

    Matsuhara, Hideo; Shibai, Hiroshi; Onaka, Takashi; Usui, Fumihiko

    2005-01-01

    ASTRO-F is the first Japanese satellite mission dedicated for large area surveys in the infrared. The 69cm aperture telescope and scientific instruments are cooled to 6K by liquid Helium and mechanical coolers. During the expected mission life of more than 500 days, ASTRO-F will make the most advanced all-sky survey in the mid- to far-infrared since the Infrared astronomical Satellite (IRAS). The survey will be made in 6 wavebands and will include the first all sky survey at >100-160(mu)m. De...

  15. Large-area boron and carbon scatterers and filters

    Energy Technology Data Exchange (ETDEWEB)

    Woehrle, T.G.

    1979-03-16

    A technique was developed for making large-area boron and carbon scatterers or filters for use on nuclear field experiments and in the ion accelerator/subkilovolt x-ray facility in the Lawrence Livermore Laboratory. These scatterers and filters were made by spraying a mixture of boron in ethyl alcohol or of carbon in isopropyl alcohol on a backing material of 0.00185-cm polyethylene (-CH/sub 2/CH/sub 2/-). In place of the polyethelene, any suitable backing material can be used.

  16. Connected fit algorithm for optical investigations of large area coatings

    International Nuclear Information System (INIS)

    In large area coating by reactive sputtering the homogeneity of the growing films is often essential. This property tends to depend critically on the geometry of the process chamber, arrangement of the magnetrons and construction of the gas inlets. In order to identify new ways to improve sputter equipment, film homogeneity has to be thoroughly studied. Often optical methods can be used for this purpose. We demonstrate how optical measurements combined with a novel fit algorithm can be used to gain insight into the details of the reactive sputter process of tin doped indium oxide and open new ways for improvement of the sputter equipment

  17. Large area x-ray detectors for cargo radiography

    Science.gov (United States)

    Bueno, C.; Albagli, D.; Bendahan, J.; Castleberry, D.; Gordon, C.; Hopkins, F.; Ross, W.

    2007-04-01

    Large area x-ray detectors based on phosphors coupled to flat panel amorphous silicon diode technology offer significant advances for cargo radiologic imaging. Flat panel area detectors provide large object coverage offering high throughput inspections to meet the high flow rate of container commerce. These detectors provide excellent spatial resolution when needed, and enhanced SNR through low noise electronics. If the resolution is reduced through pixel binning, further advances in SNR are achievable. Extended exposure imaging and frame averaging enables improved x-ray penetration of ultra-thick objects, or "select-your-own" contrast sensitivity at a rate many times faster than LDAs. The areal coverage of flat panel technology provides inherent volumetric imaging with the appropriate scanning methods. Flat panel area detectors have flexible designs in terms of electronic control, scintillator selection, pixel pitch, and frame rates. Their cost is becoming more competitive as production ramps up for the healthcare, nondestructive testing (NDT), and homeland protection industries. Typically used medical and industrial polycrystalline phosphor materials such as Gd2O2S:Tb (GOS) can be applied to megavolt applications if the phosphor layer is sufficiently thick to enhance x-ray absorption, and if a metal radiator is used to augment the quantum detection efficiency and reduce x-ray scatter. Phosphor layers ranging from 0.2-mm to 1-mm can be "sandwiched" between amorphous silicon flat panel diode arrays and metal radiators. Metal plates consisting of W, Pb or Cu, with thicknesses ranging from 0.25-mm to well over 1-mm can be used by covering the entire area of the phosphor plate. In some combinations of high density metal and phosphor layers, the metal plate provides an intensification of 25% in signal due to electron emission from the plate and subsequent excitation within the phosphor material. This further improves the SNR of the system.

  18. Deep Australia telescope large area survey radio observations of the European large area ISO survey S1/Spitzer wide-area infrared extragalactic field

    OpenAIRE

    Middelberg, Enno; Norris, Ray P.; Cornwell, Tim J.; Voronkov, Maxim A.; Siana, Brian D.; Boyle, Brian J.; Ciliegi, Paolo; Jackson, Carole A.; Huynh, Minh T.; Berta, Stefano; Rubele, Stefano; Lonsdale, Carol J.; Ivison, Rob J.; Smail, Ian

    2008-01-01

    We have conducted sensitive (1 σ < 30 μJy) 1.4 GHz radio observations with the Australia Telescope Compact Array of a field largely coincident with infrared observations of the Spitzer Wide-Area Extragalactic Survey. The field is centered on the European Large Area ISO Survey S1 region and has a total area of 3.9°. We describe the observations and calibration, source extraction, and cross-matching to infrared sources. Two catalogs are presented: one of the radio components found in the image ...

  19. Research on buildings impacting on aerosol diffusing in urban area using remote sensing

    Institute of Scientific and Technical Information of China (English)

    YANG Sheng-tian; YANG Zhi-feng; MAO Xian-qiang; ZHU Qi-jiang

    2004-01-01

    Employing remote sensing method to interpret the building volumetric ratio and aerosol status in Guangzhou, China. The relation between them and identified characteristics of their spatial distribution was analyzed. Results showed that building density and aerosol status are strongly correlated. It is indicated that the resistance of building to aerosol diffusing is one of factors influencing air pollution in urban area. On the basis of calculated results, building voluminous ratio of 5.6 is taken as the threshold impacting on aerosol diffusing, so the building voluminous ratio of Guangzhou should be limited to less than 5.6 in order to alleviate air pollution.

  20. Duct leakage impacts on VAV system performance in California large commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wray, Craig P.; Matson, Nance E.

    2003-10-01

    The purpose of this study is to evaluate the variability of duct leakage impacts on air distribution system performance for typical large commercial buildings in California. Specifically, a hybrid DOE-2/TRNSYS sequential simulation approach was used to model the energy use of a low-pressure terminal-reheat variable-air-volume (VAV) HVAC system with six duct leakage configurations (tight to leaky) in nine prototypical large office buildings (representing three construction eras in three California climates where these types of buildings are common). Combined fan power for the variable-speed-controlled supply and return fans at design conditions was assumed to be 0.8 W/cfm. Based on our analyses of the 54 simulation cases, the increase in annual fan energy is estimated to be 40 to 50% for a system with a total leakage of 19% at design conditions compared to a tight system with 5% leakage. Annual cooling plant energy also increases by about 7 to 10%, but reheat energy decreases (about 3 to 10%). In combination, the increase in total annual HVAC site energy is 2 to 14%. The total HVAC site energy use includes supply and return fan electricity consumption, chiller and cooling tower electricity consumption, boiler electricity consumption, and boiler natural gas consumption. Using year 2000 average commercial sector energy prices for California ($0.0986/kWh and $7.71/Million Btu), the energy increases result in 9 to 18% ($7,400 to $9,500) increases in HVAC system annual operating costs. Normalized by duct surface area, the increases in annual operating costs are 0.14 to 0.18 $/ft{sup 2}. Using a suggested one-time duct sealing cost of $0.20 per square foot of duct surface area, these results indicate that sealing leaky ducts in VAV systems has a simple payback period of about 1.3 years. Even with total leakage rates as low as 10%, duct sealing is still cost effective. This suggests that duct sealing should be considered at least for VAV systems with 10% or more total duct

  1. A review of radon mitigation in large buildings in the US

    International Nuclear Information System (INIS)

    The Environmental Protection Agency of the US carried out its initial research on radon mitigation in houses, both existing and new. A review of this work is presented in another paper at this workshop. Four years ago, this work was expanded to include the study of radon in schools, both new and existing, and now includes studies in other large buildings, as well. Factors affecting ease of mitigation of existing schools using active soil depressurisation (ASD) have been identified and quantified. Examination of the building and architectural plans makes it possible to predict the ease of mitigation of a specific building. Many schools can be easily and inexpensively mitigated using ASD. However, examination of a fairly large number of schools has shown that a significant percentage of existing schools will be hard to mitigate with ASD. In some cases, the heating, ventilating, and air conditioning (HVAC) system can be used to pressurise the building and retard radon entry. However, in some cases no central HVAC system exists and the school is difficult and/or expensive to mitigate by any technique. Prevention of radon entry is relatively easy and inexpensive to accomplish during construction of schools and other large buildings. It is also possible to control radon to near ambient levels in new construction, a goal which is much more difficult to approach in existing large buildings. The preferred method of radon prevention in the construction of large buildings is to design the HVAC system for building pressurisation, install a simple ASD system, and seal all entry routes between the sub-slab and the building interior. (author)

  2. Cleanup of large areas contaminated as a result of a nuclear accident

    International Nuclear Information System (INIS)

    The purposes of the report are to provide an overview of the methodology and technology available to clean up contaminated areas and to give preliminary guidance on matters related to the planning, implementation and management of such cleanups. This report provides an integrated overview of important aspects related to the cleanup of very large areas contaminated as a result of a serious nuclear accident, including information on methods and equipment available to: characterize the affected area and the radioactive fallout; stabilize or isolate the contamination; and clean up contaminated urban, rural and forested areas. The report also includes brief sections on planning and management considerations and the transport and disposal of the large volumes of wastes arising from such cleanups. For the purposes of this report, nuclear accidents which could result in the deposition of decontamination over large areas if the outer containment fails badly include: 1) An accident with a nuclear weapon involving detonation of the chemical high explosive but little, if any, nuclear fission. 2) A major loss of medium/high level liquid waste (HLLW) due to an explosion/fire at a storage site for such waste. 3) An accident at a nuclear power plant (NPP), for example a loss of coolant accident, which results in some core disruption and fuel melting. 4) An accident at an NPP involving an uncontrolled reactivity excursion resulting in the violent ejection of a reactor core material and rupture of the containment building. 117 refs, 32 figs, 12 tabs

  3. An advanced open path atmospheric pollution monitor for large areas

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.; Suhre, D.; Mani, S. [and others

    1996-12-31

    Over 100 million gallons of radioactive and toxic waste materials generated in weapon materials production are stored in 322 tanks buried within large areas at DOE sites. Toxic vapors occur in the tank headspace due to the solvents used and chemical reactions within the tanks. To prevent flammable or explosive concentration of volatile vapors, the headspace are vented, either manually or automatically, to the atmosphere when the headspace pressure exceeds preset values. Furthermore, 67 of the 177 tanks at the DOE Hanford Site are suspected or are known to be leaking into the ground. These underground storage tanks are grouped into tank farms which contain closely spaced tanks in areas as large as 1 km{sup 2}. The objective of this program is to protect DOE personnel and the public by monitoring the air above these tank farms for toxic air pollutants without the monitor entering the tanks farms, which can be radioactive. A secondary objective is to protect personnel by monitoring the air above buried 50 gallon drums containing moderately low radioactive materials but which could also emit toxic air pollutants.

  4. Wind Data Analysis and Wind Flow Simulation Over Large Areas

    Directory of Open Access Journals (Sweden)

    Terziev Angel

    2014-03-01

    Full Text Available Increasing the share of renewable energy sources is one of the core policies of the European Union. This is because of the fact that this energy is essential in reducing the greenhouse gas emissions and securing energy supplies. Currently, the share of wind energy from all renewable energy sources is relatively low. The choice of location for a certain wind farm installation strongly depends on the wind potential. Therefore the accurate assessment of wind potential is extremely important. In the present paper an analysis is made on the impact of significant possible parameters on the determination of wind energy potential for relatively large areas. In the analysis the type of measurements (short- and long-term on-site measurements, the type of instrumentation and the terrain roughness factor are considered. The study on the impact of turbulence on the wind flow distribution over complex terrain is presented, and it is based on the real on-site data collected by the meteorological tall towers installed in the northern part of Bulgaria. By means of CFD based software a wind map is developed for relatively large areas. Different turbulent models in numerical calculations were tested and recommendations for the usage of the specific models in flows modeling over complex terrains are presented. The role of each parameter in wind map development is made. Different approaches for determination of wind energy potential based on the preliminary developed wind map are presented.

  5. Background simulations for the Large Area Detector onboard LOFT

    CERN Document Server

    Campana, R; Del Monte, E; Mineo, T; Lund, N; Fraser, G W

    2013-01-01

    The Large Observatory For X-ray Timing (LOFT), currently in an assessment phase in the framework the ESA M3 Cosmic Vision programme, is an innovative medium-class mission specifically designed to answer fundamental questions about the behaviour of matter, in the very strong gravitational and magnetic fields around compact objects and in supranuclear density conditions. Having an effective area of ~10 m^2 at 8 keV, LOFT will be able to measure with high sensitivity very fast variability in the X-ray fluxes and spectra. A good knowledge of the in-orbit background environment is essential to assess the scientific performance of the mission and optimize the design of its main instrument, the Large Area Detector (LAD). In this paper the results of an extensive Geant-4 simulation of the instrument will be discussed, showing the main contributions to the background and the design solutions for its reduction and control. Our results show that the current LOFT/LAD design is expected to meet its scientific requirement ...

  6. Large area shunt defect free GaAs solar cells

    International Nuclear Information System (INIS)

    Shunt defects have been found to be the type of defect that can degrade and cause failure in GaAs solar cells. Because of their catastrophic effects, it is necessary to insure that no shunt defects are formed in the solar cell. A technique for fabricating large area shunt defect free GaAs solar cells has been investigated. A Be doped GaAlAs window layer was grown directly on a n-type GaAs substrate by isothermal liquid phase epitaxial growth (ILPE). By growing directly on the GaAs substrate and not growing the usual buffer, absorber, collector, and window layer combination, the fabrication is simplified and yields can be large. It was found that the Be from the liquid GaAlAs melt diffused into the GaAs to form a complete collector layer. Because the collector is complete, a shunt defect free solar cell is produced. The results of the ILPE growth are reported for both 5.1 cm2 and 0.12 cm2 solar cells. The technique is very versatile and may be used to fabricate larger area solar cells

  7. Scaling Up Nature: Large Area Flexible Biomimetic Surfaces.

    Science.gov (United States)

    Li, Yinyong; John, Jacob; Kolewe, Kristopher W; Schiffman, Jessica D; Carter, Kenneth R

    2015-10-28

    The fabrication and advanced function of large area biomimetic superhydrophobic surfaces (SHS) and slippery lubricant-infused porous surfaces (SLIPS) are reported. The use of roll-to-roll nanoimprinting techniques enabled the continuous fabrication of SHS and SLIPS based on hierarchically wrinkled surfaces. Perfluoropolyether hybrid molds were used as flexible molds for roll-to-roll imprinting into a newly designed thiol-ene based photopolymer resin coated on flexible polyethylene terephthalate films. The patterned surfaces exhibit feasible superhydrophobicity with a water contact angle around 160° without any further surface modification. The SHS can be easily converted into SLIPS by roll-to-roll coating of a fluorinated lubricant, and these surfaces have outstanding repellence to a variety of liquids. Furthermore, both SHS and SLIPS display antibiofouling properties when challenged with Escherichia coli K12 MG1655. The current article describes the transformation of artificial biomimetic structures from small, lab-scale coupons to low-cost, large area platforms. PMID:26423494

  8. Characterization of new hexagonal large area Geiger Avalanche Photodiodes

    International Nuclear Information System (INIS)

    Photomultipliers (PMTs) are the standard detector for construction of the current generation of imaging Atmospheric Cherenkov Telescopes (IACTs). Despite impressive improvements in QE and reliability in the last years, these devices suffer from the limitation of being unable to operate in the partially illuminated sky (during full or partial moon periods) as the excess light leads to a significant increase in the rate of ageing of the devices themselves and consequently limit the life of the camera. A viable alternative is the large area Geiger-mode avalanche photodiodes (G-APDs also known as Silicon Photomultipliers or SiPMs) that are commercially available from different producers in various types and dimensions. The sufficiency of the maturity of this technology for application to Cherenkov Astronomy has already been demonstrated by the FACT telescope. One of the camera designs under study for the 4 m Davies Cotton Telescope foresees the utilization of a large area G-APDs coupled to non imaging light concentrators. In collaboration with Hamamatsu and deriving from their current technology, we have designed a new hexagonal shaped large area G-APD HEX S12516 which when coupled to a Winston cone of 24 degrees cutting angle allows for a pixel angular resolution of 0.25 degrees for a f/D 1.4 telescope with a diameter of 4 m. The device, available in 2 different cell size configurations (50 μm and 100 μm), is divided into 4 different channels powered in common cathode mode. A temperature sensor was included for a better temperature evaluation in the characterization phase. The first 3 prototypes were fully characterized and the results are compared to the larger area devices commercially available such as the S10985-050C (2x2 array of 3x3 mm2 G-APDs). The photo-detection efficiency is measured applying the Poisson statistics method using pulsed LED at 7 different wavelengths from 355 to 670 nm and for different bias over-voltages (Vov). Optical crosstalk and after

  9. Large-Area Epitaxial Monolayer MoS2.

    Science.gov (United States)

    Dumcenco, Dumitru; Ovchinnikov, Dmitry; Marinov, Kolyo; Lazić, Predrag; Gibertini, Marco; Marzari, Nicola; Lopez Sanchez, Oriol; Kung, Yen-Cheng; Krasnozhon, Daria; Chen, Ming-Wei; Bertolazzi, Simone; Gillet, Philippe; Fontcuberta i Morral, Anna; Radenovic, Aleksandra; Kis, Andras

    2015-04-28

    Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and energy harvesting. Large-area growth methods are needed to open the way to applications. Control over lattice orientation during growth remains a challenge. This is needed to minimize or even avoid the formation of grain boundaries, detrimental to electrical, optical, and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the growth of high-quality monolayer MoS2 with control over lattice orientation. We show that the monolayer film is composed of coalescing single islands with limited numbers of lattice orientation due to an epitaxial growth mechanism. Optical absorbance spectra acquired over large areas show significant absorbance in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment via van der Waals interaction, we can easily transfer the grown material and fabricate devices. Local potential mapping along channels in field-effect transistors shows that the single-crystal MoS2 grains in our film are well connected, with interfaces that do not degrade the electrical conductivity. This is also confirmed by the relatively large and length-independent mobility in devices with a channel length reaching 80 μm. PMID:25843548

  10. The ASTRO-F Mission Large Area Infrared Survey

    CERN Document Server

    Matsuhara, H; Onaka, T; Usui, F; Matsuhara, Hideo; Shibai, Hiroshi; Onaka, Takashi; Usui, Fumihiko

    2005-01-01

    ASTRO-F is the first Japanese satellite mission dedicated for large area surveys in the infrared. The 69cm aperture telescope and scientific instruments are cooled to 6K by liquid Helium and mechanical coolers. During the expected mission life of more than 500 days, ASTRO-F will make the most advanced all-sky survey in the mid- to far-infrared since the Infrared astronomical Satellite (IRAS). The survey will be made in 6 wavebands and will include the first all sky survey at >100-160(mu)m. Deep imaging and spectroscopic surveys with pointed observations will also be carried out in 13 wavelength bands from 2-160(mu)m. ASTRO-F should detect more than a half million galaxies tracing the large-scale structure of the Universe out to redshifts of unity, detecting rare, exotic extraordinarily luminous objects at high redshift, numerous brown dwarfs, Vega-like stars, protostars, and will reveal the large-scale structure of nearby galactic star forming regions. ASTRO-F is a perfect complement to Spitzer Space Telescop...

  11. Serviceability criteria for buildings in mine subsidence area -- Adjustment to Eurocodes

    International Nuclear Information System (INIS)

    Due to ground deformations caused by underground mining, building structures in mining areas are frequently subjected to considerable deformations and damage to the finishing and structural elements. As a consequence, serviceable values of such structures are distinctly diminished, and in extreme cases, seriously damaged structures may be exempted from further service. These problems are not duly represented in the existing building standard codes. It is also important to determine relationship between damage stage and value of the building, and hence the strategy for reconstruction or renovation works. The paper presents proposals concerning serviceability criteria of building structures in mining areas, in terms of basic standard requirements valid in building in Poland, as well as proposals of Eurocodes. Building structures under consideration have been divided into structures designed to resist mining influences and existing structures, not adapted to conform to these influences at the design and erection stages

  12. Assessment of seismic resistance of two-storey office building in the area of Kamnik

    OpenAIRE

    Jamšek, Aleš

    2014-01-01

    In thesis, the seismic analysis of two-storey office building in the area of Kamnik is performed. The building, which was designed in 1978 by using the then applicable rules for earthquake-resistant design of buildings, consisting of reinforced concrete frame and masonry infills. Basic articles of regulation valid in 1978 are firstly presented. Follow explanation of the Eurocodes with an emphasis on rules which address the consideration of the effects of masonry infills. In the second part of...

  13. 'Energy research in the building area is very successful'

    International Nuclear Information System (INIS)

    In this interview with Tony Kaiser, president of the Swiss Energy Research Commission CORE, the urgent necessity for the reduction of climate-damaging greenhouse gas emissions is stressed. The main requirement placed on energy research is noted as being its orientation toward long-term goals in order to support the development of efficient and sustainable technologies. Topics discussed also include the current situation in Switzerland, experience gained in the course of activities carried out within the framework of the current 2008 - 2011 Master Plan, the concrete goals of the research program, energy use in buildings, the 2000-Watt Society, work already planned for the 2012 -2015 period, international aspects and co-operation with academia

  14. ATLAS barrel toroid integration and test area in building 180

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two 'double-pancake' windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. The barrel toroid is being assembled in building 180 on the Meyrin site. In the first phase of assembly, the coils are packed into their aluminium-alloy casing. These photos show the double-pancake coils from ANSALDO and the coil casings from ALSTOM. In the foreground is the tooling from COSMI used to turn over the coil casings during this first phase. In the right background is the yellow lifting gantry manufactured at JINR-Dubna, Russia which will transport the coil casings to a heating table for prestressing. Two test benches with magnetic mirror are also visible.

  15. Large-area multilayer infrared nano-wire grid polarizers

    Science.gov (United States)

    Gayduk, Alexey E.; Prinz, Victor Ya.; Seleznev, Vladimir A.; Rechkunov, Sergey N.

    2016-03-01

    We have developed a technology for fabricating infrared polarizers based on double- and four-layer metal-dielectric nanogratings. Due to the use of nanoimprint lithography, the size of fabricated samples with 190-nm grating period could be made exceeding 170 cm2. The fabricated polarizers are flexible, and they have high quality over the entire area of the sample. Spectrophotometric measurements and numerical simulations have showed that the polarizers exhibited a large transmission coefficient and a high extinction ratio (over 3 ṡ 104). In order to expand applications of polarizers to the bio-inspired wide field-of-view systems, technology for fabricating polarizers on curved surfaces prepared by 3D printing has been developed. The obtained results offer much promise for polarimetry purposes.

  16. Large area nuclear particle detectors using ET materials, phase 2

    Science.gov (United States)

    Wrigley, Charles Y.; Storti, George M.; Walter, Lee; Mathews, Scott

    1990-01-01

    This report presents work done under a Phase 2 SBIR contract for demonstrating large area detector planes utilizing Quantex electron trapping materials as a film medium for storing high-energy nuclide impingement information. The detector planes utilize energy dissipated by passage of the high-energy nuclides to produce localized populations of electrons stored in traps. Readout of the localized trapped electron populations is effected by scanning the ET plane with near-infrared, which frees the trapped electrons and results in optical emission at visible wavelengths. The effort involved both optimizing fabrication technology for the detector planes and developing a readout system capable of high spatial resolution for displaying the recorded nuclide passage tracks.

  17. The gamma-ray large area space telescope (GLAST)

    International Nuclear Information System (INIS)

    The Gamma-ray Large Area Space Telescope is planned as NASA's next major mission in high-energy gamma-ray astronomy. It is included in the Space Science Enterprise Strategic Plan as a 2002 'New Start', with a planned 2005 launch. NASA commissioned a Facility Science Team (FST) of both advocates and non-advocates to establish the framework of the mission. The FST developed a Science Requirements Document that outlines the specifications of an instrument needed to make the next advance in this field. The adopted specifications will lead to an investigation with an energy response extending to 300 GeV, ten times higher than the EGRET instrument on the Compton Observatory, and with a source sensitivity 50 times greater. In addition there would be gains in spectral and spatial resolution. A heavy emphasis will be placed on multi-wavelength observations to maximize the science from the mission

  18. The Spitzer-HETDEX Exploratory Large-area Survey

    Science.gov (United States)

    Papovich, C.; Shipley, H. V.; Mehrtens, N.; Lanham, C.; Lacy, M.; Ciardullo, R.; Finkelstein, S. L.; Bassett, R.; Behroozi, P.; Blanc, G. A.; de Jong, R. S.; DePoy, D. L.; Drory, N.; Gawiser, E.; Gebhardt, K.; Gronwall, C.; Hill, G. J.; Hopp, U.; Jogee, S.; Kawinwanichakij, L.; Marshall, J. L.; McLinden, E.; Mentuch Cooper, E.; Somerville, R. S.; Steinmetz, M.; Tran, K.-V.; Tuttle, S.; Viero, M.; Wechsler, R.; Zeimann, G.

    2016-06-01

    We present post-cryogenic Spitzer imaging at 3.6 and 4.5 μm with the Infrared Array Camera (IRAC) of the Spitzer/HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers ≈24 deg2 of the Sloan Digital Sky Survey “Stripe 82” region, and falls within the footprints of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R ˜ 800 spectroscopy will produce ˜200,000 redshifts from the Lyα emission for galaxies in the range 1.9 scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, the presence of active galactic nuclei, and environment over a co-moving volume of ˜0.5 Gpc3 at 1.9 publication.

  19. Fermi Large Area Telescope observations of GRB 110625A

    CERN Document Server

    Tam, P H Thomas; Fan, Yi-Zhong

    2012-01-01

    Gamma-ray bursts (GRBs) that emit photons at GeV energies form a small but significant population of GRBs. However, the number of GRBs whose GeV-emitting period is simultaneously observed in X-rays remains small. We report gamma-ray observations of GRB 110625A using Fermi's Large Area Telescope (LAT) in the energy range 100 MeV to 20 GeV. Gamma-ray emission at these energies was clearly detected using data taken between 180s and 580s after the burst, an epoch after the prompt emission phase. The GeV light curve differs from a simple power-law decay, and probably consists of two emission periods. Simultaneous Swift/XRT observations did not show flaring behaviors as in the case of GRB 100728A. We discuss the possibility that the GeV emission is the synchrotron self-Compton radiation of underlying ultraviolet flares.

  20. Large-area wide-angle spectrally selective plasmonic absorber

    Science.gov (United States)

    Wu, Chihhui; Neuner, Burton, III; Shvets, Gennady; John, Jeremy; Milder, Andrew; Zollars, Byron; Savoy, Steve

    2011-08-01

    A simple metamaterial-based wide-angle plasmonic absorber is introduced, fabricated, and experimentally characterized using angle-resolved infrared spectroscopy. The metamaterials are prepared by nano-imprint lithography, an attractive low-cost technology for making large-area samples. The matching of the metamaterial’s impedance to that of vacuum is responsible for the observed spectrally selective “perfect” absorption of infrared light. The impedance is theoretically calculated in the single-resonance approximation, and the responsible resonance is identified as a short-range surface plasmon. The spectral position of the absorption peak (which is as high as 95%) is experimentally shown to be controlled by the metamaterial’s dimensions. The persistence of “perfect” absorption with variable metamaterial parameters is theoretically explained. The wide-angle nature of the absorber can be utilized for subdiffraction-scale infrared pixels exhibiting spectrally selective absorption/emissivity.

  1. Large-area, wide-angle, spectrally selective plasmonic absorber

    CERN Document Server

    Wu, Chihhui; John, Jeremy; Milder, Andrew; Zollars, Byron; Savoy, Steve; Shvets, Gennady

    2011-01-01

    A simple metamaterial-based wide-angle plasmonic absorber is introduced, fabricated, and experimentally characterized using angle-resolved infrared spectroscopy. The metamaterials are prepared by nano-imprint lithography, an attractive low-cost technology for making large-area samples. The matching of the metamaterial's impedance to that of vacuum is responsible for the observed spectrally selective "perfect" absorption of infrared light. The impedance is theoretically calculated in the single-resonance approximation, and the responsible resonance is identified as a short-range surface plasmon. The spectral position of the absorption peak (which is as high as 95%) is experimentally shown to be controlled by the metamaterial's dimensions. The persistence of "perfect" absorption with variable metamaterial parameters is theoretically explained. The wide-angle nature of the absorber can be utilized for sub-diffraction-scale infrared pixels exhibiting spectrally selective absorption/emissivity.

  2. Large Area Printing of 3D Photonic Crystals

    Science.gov (United States)

    Watkins, James J.; Beaulieu, Michael R.; Hendricks, Nicholas R.; Kothari, Rohit

    2014-03-01

    We have developed a readily scalable print, lift, and stack approach for producing large area, 3D photonic crystal (PC) structures. UV-assisted nanoimprint lithography (UV-NIL) was used to pattern grating structures comprised of highly filled nanoparticle polymer composite resists with tune-able refractive indices (RI). The gratings were robust and upon release from a support substrate were oriented and stacked to yield 3D PCs. The RI of the composite resists was tuned between 1.58 and 1.92 at 800 nm while maintaining excellent optical transparency. The grating structure dimensions, line width, depth, and pitch, were easily varied by simply changing the imprint mold. For example, a 6 layer log-pile stack was prepared using a composite resist a RI of 1.72 yielding 72 % reflection at 900 nm. The process is scalable for roll-to-roll (R2R) production. Center for Hierarchical Manufacturing - an NSF Nanoscale Science and Engineering Center.

  3. Large area high efficiency multicrystalline silicon solar cell

    Science.gov (United States)

    Shirasawa, Katsuhiko; Yamashita, Hironori; Fukui, Kenji; Takayama, Michihiro; Okada, Kenichi

    A high-efficiency, low-cost large-area multicrystalline silicon solar cell having a cell size of 15 cm x 15 cm and a substrate made by the casting method has been developed. The bifacial silicon nitride solar cell (BSNSC) fabrication process was used to construct the cell. By incorporating a new structure at the cell surface, an optimized back-surface field (BSF) process, and an electrode with a ratio of 5.2 percent into the BSNSC fabrication process, a conversion efficiency of 15.1 percent (global, AM1.5, 100 mW/sq cm, 25 C) has been obtained. The uniformity of the electrical performance of the cell has been studied by measuring the distribution of the spectral response at various points on the cell. The results of uniformity testing are presented.

  4. Digital radiography with large-area flat-panel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kotter, E.; Langer, M. [Department of Diagnostic Radiology, Freiburg University Hospital, Hugstetterstrasse 55, 79106 Freiburg (Germany)

    2002-10-01

    Large-area flat-panel detectors with active readout mechanisms have been on the market for the past 2 years. This article describes different detector technologies. An important distinction is made between detectors with direct and those with indirect conversion of X-rays into electrical charges. Detectors with indirect conversion are built with unstructured or structured scintillators, the latter resulting in less lateral diffusion of emitted light. Some important qualities of flat-panel detectors are discussed. The first phantom and clinical studies published report an image quality at least comparable to that of screen-film systems and a potential for dose reduction. The available studies are summarised in this article. (orig.)

  5. Digital radiography with large-area flat-panel detectors

    International Nuclear Information System (INIS)

    Large-area flat-panel detectors with active readout mechanisms have been on the market for the past 2 years. This article describes different detector technologies. An important distinction is made between detectors with direct and those with indirect conversion of X-rays into electrical charges. Detectors with indirect conversion are built with unstructured or structured scintillators, the latter resulting in less lateral diffusion of emitted light. Some important qualities of flat-panel detectors are discussed. The first phantom and clinical studies published report an image quality at least comparable to that of screen-film systems and a potential for dose reduction. The available studies are summarised in this article. (orig.)

  6. Optical Distortion Evaluation in Large Area Windows using Interferometry

    Science.gov (United States)

    Youngquist, Robert C.; Skow, Miles; Nurge, Mark A.

    2015-01-01

    It is important that imagery seen through large area windows, such as those used on space vehicles, not be substantially distorted. Many approaches are described in the literature for measuring the distortion of an optical window, but most suffer from either poor resolution or processing difficulties. In this paper a new definition of distortion is presented, allowing accurate measurement using an optical interferometer. This new definition is shown to be equivalent to the definitions provided by the military and the standards organizations. In order to determine the advantages and disadvantages of this new approach the distortion of an acrylic window is measured using three different methods; image comparison, Moiré interferometry, and phase-shifting interferometry.

  7. Large area sheet from P/M materials

    International Nuclear Information System (INIS)

    A P/M process has been developed that provides a means of producing large area thin sheets of cemented tungsten carbide or heavy metal alloys. The process employs a flowable slurry comprising a liquid vehicle and the solid particulate material. The resulting slurry composition can be formed into sheets, or it can be shaped in a mold cavity. The slurry upon exposure to the atmosphere, and either with or without the application of heat, will set up in a dimensionally stable form and can, thereafter, be sintered to form a solid article. Any fraction of the vehicle which remains after the solvent evaporates, vaporizes during sintering and the final product consists only of the particulate material in sintered form. Typical uses for the cemented tungsten carbide sheets are for wear applications. The heavy metal alloy sheets typically are used in applications where high density materials are required

  8. Plasma diagnostics in large area plasma processing system

    International Nuclear Information System (INIS)

    A series of plasma diagnostic have been carried out in our large area plasma processing system which is based on a modulated electron-beam produced plasma. These discharges were created in both electrically conducting and insulated vacuum chambers operated in 30-120 mTorr of pure gases (argon, oxygen, and nitrogen). Langmuir probes, microwave transmission, mass spectrometry, and external current sensors show robust discharges were made over fairly wide parameter ranges resulting in plasma densities of 1-4x1011 cm-3 and temperature ranging from 0.2 eV for the molecular gases and 1.4 eV for argon. The effects of various experimental techniques, parameters, and contamination issues are discussed in detail

  9. A new approach for defect inspection on large area masks

    Science.gov (United States)

    Scheuring, Gerd; Döbereiner, Stefan; Hillmann, Frank; Falk, Günther; Brück, Hans-Jürgen

    2007-02-01

    Besides the mask market for IC manufacturing, which mainly uses 6 inch sized masks, the market for the so called large area masks is growing very rapidly. Typical applications of these masks are mainly wafer bumping for current packaging processes, color filters on TFTs, and Flip Chip manufacturing. To expose e.g. bumps and similar features on 200 mm wafers under proximity exposure conditions 9 inch masks are used, while in 300 mm wafer bumping processes (Fig. 1) 14 inch masks are handled. Flip Chip manufacturing needs masks up to 28 by 32 inch. This current maximum mask dimension is expected to hold for the next 5 years in industrial production. On the other hand shrinking feature sizes, just as in case of the IC masks, demand enhanced sensitivity of the inspection tools. A defect inspection tool for those masks is valuable for both the mask maker, who has to deliver a defect free mask to his customer, and for the mask user to supervise the mask behavior conditions during its lifetime. This is necessary because large area masks are mainly used for proximity exposures. During this process itself the mask is vulnerable by contacting the resist on top of the wafers. Therefore a regular inspection of the mask after 25, 50, or 100 exposures has to be done during its whole lifetime. Thus critical resist contamination and other defects, which lead to yield losses, can be recognized early. In the future shrinking feature dimensions will require even more sensitive and reliable defect inspection methods than they do presently. Besides the sole inspection capability the tools should also provide highly precise measurement capabilities and extended review options.

  10. A large area, silicon photomultiplier-based PET detector module

    Science.gov (United States)

    Raylman, R. R.; Stolin, A.; Majewski, S.; Proffitt, J.

    2014-01-01

    The introduction of silicon photomultipliers (SiPM) has facilitated construction of compact, efficient and magnetic field-hardened positron emission tomography (PET) scanners. To take full advantage of these devices, methods for using them to produce large field-of-view PET scanners are needed. In this investigation, we explored techniques to combine two SiPM arrays to form the building block for a small animal PET scanner. The module consists of a 26×58 array of 1.5×1.5 mm2 LYSO elements (spanning 41×91 mm2) coupled to two SensL SiPM arrays. The SiPMs were read out with new multiplexing electronics developed for this project. To facilitate calculation of event position with multiple SiPM arrays it was necessary to spread scintillation light amongst a number of elements with a small light guide. This method was successful in permitting identification of all detector elements, even at the seam between two SiPM arrays. Since the performance of SiPMs is enhanced by cooling, the detector module was fitted with a cooling jacket, which allowed the temperature of the device and electronics to be controlled. Testing demonstrated that the peak-to-valley contrast ratio of the light detected from the scintillation array was increased by ~45% when the temperature was reduced from 28 °C to 16 °C. Energy resolution for 511 keV photons improved slightly from 18.8% at 28 °C to 17.8% at 16 °C. Finally, the coincidence timing resolution of the module was found to be insufficient for time-of-flight applications (~2100 ps at 14 °C). The first use of these new modules will be in the construction of a small animal PET scanner to be integrated with a 3 T clinical magnetic resonance imaging scanner.

  11. A large area, silicon photomultiplier-based PET detector module

    International Nuclear Information System (INIS)

    The introduction of silicon photomultipliers (SiPM) has facilitated construction of compact, efficient and magnetic field-hardened positron emission tomography (PET) scanners. To take full advantage of these devices, methods for using them to produce large field-of-view PET scanners are needed. In this investigation, we explored techniques to combine two SiPM arrays to form the building block for a small animal PET scanner. The module consists of a 26×58 array of 1.5×1.5 mm2 LYSO elements (spanning 41×91 mm2) coupled to two SensL SiPM arrays. The SiPMs were read out with new multiplexing electronics developed for this project. To facilitate calculation of event position with multiple SiPM arrays it was necessary to spread scintillation light amongst a number of elements with a small light guide. This method was successful in permitting identification of all detector elements, even at the seam between two SiPM arrays. Since the performance of SiPMs is enhanced by cooling, the detector module was fitted with a cooling jacket, which allowed the temperature of the device and electronics to be controlled. Testing demonstrated that the peak-to-valley contrast ratio of the light detected from the scintillation array was increased by ∼45% when the temperature was reduced from 28 °C to 16 °C. Energy resolution for 511 keV photons improved slightly from 18.8% at 28 °C to 17.8% at 16 °C. Finally, the coincidence timing resolution of the module was found to be insufficient for time-of-flight applications (∼2100 ps at 14 °C). The first use of these new modules will be in the construction of a small animal PET scanner to be integrated with a 3 T clinical magnetic resonance imaging scanner

  12. Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Torcellini, P.; Shelton, D.

    2011-05-01

    This paper will review a procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners developed and implemented an energy performance based design-build process to procure a 220,000 ft2 office building with contractual requirements to meet demand side energy and LEED goals. We will outline the key procurement steps needed to ensure achievement of our energy efficiency and ZEB goals. The development of a clear and comprehensive Request for Proposals (RFP) that includes specific and measurable energy use intensity goals is critical to ensure energy goals are met in a cost effective manner. The RFP includes a contractual requirement to meet an absolute demand side energy use requirement of 25 kBtu/ft2, with specific calculation methods on what loads are included, how to normalize the energy goal based on increased space efficiency and data center allocation, specific plug loads and schedules, and calculation details on how to account for energy used from the campus hot and chilled water supply. Additional advantages of integrating energy requirements into this procurement process include leveraging the voluntary incentive program, which is a financial incentive based on how well the owner feels the design-build team is meeting the RFP goals.

  13. High-efficiency large-area CdTe modules

    Science.gov (United States)

    Albright, S. P.; Ackerman, B.

    1989-10-01

    A small solar cell with an efficiency of 12.3 percent was examined. The high efficiency of this device was largely due to improving the window layer. Analyzing the diode characteristics of this cell indicates that the largest potential for fill-factor improvement lies in reducing the diode quality factor. Through outdoor life testing of encapsulated modules and accelerated life testing of laboratory cells, the CdS/CdTe structure has demonstrated the long term stability necessary for photovoltaic products. Also described is a preformed metal backcap, which is fitted with hermetic feed-through tubes and used for encapsulization. Using the results of these studies, PEI produced sample modules with efficiencies very close to the original objectives, including a 1 sq ft module with an output of 6.1 W and an active area of 754 sq cm. For this module, the active area efficiency was 8.1 percent and the aperture efficiency was 7.3 percent.

  14. High-efficiency large-area CdTe modules

    Energy Technology Data Exchange (ETDEWEB)

    Albright, S.P.; Ackerman, B. (Photon Energy, Inc., El Paso, TX (USA))

    1989-10-01

    This annual technical progress report covers Photon Energy Inc. (PEI) work to produce a small solar cell with an efficiency of 12.3%. The high efficiency of this device was largely due to improving the window layer. Analyzing the diode characteristics of this cell indicates that the largest potential for fill-factor improvement lies in reducing the diode quality factor. Through outdoor life-testing of encapsulated modules and accelerated lifetesting of laboratory cells, the CdS/CdTe structure has demonstrated the long-term stability necessary for photovoltaic products. Also described is a preformed metal backcap, which is fitted with hermetic feed-through tubes and used for encapsulization. Using the results of these studies, PEI produced sample modules with efficiencies very close to the original objectives, including a l-ft{sup 2} module with an output of 6.1 W and an active area of 754 cm{sup 2}. For this module, the active-area efficiency was 8.1% and the aperture efficiency was 7.3%. 9 refs., 12 figs., 3 tabs.

  15. A large area detector for x-ray applications

    International Nuclear Information System (INIS)

    A large area detector for x-ray synchrotron applications has been developed. The front end of this device consist of a scintillator coupled to a fiber-optic taper. The fiber-optic taper is comprised of 4 smaller (70 mm x 70 mm) tapers fused together in a square matrix giving an active area of 140 mm x 140 mm. Each taper has a demagnification of 5.5 resulting in four small ends that are 12 mm diagonally across. The small ends of each taper are coupled to four microchannel-plate-based image intensifiers. The output from each image intensifier is focused onto a Charge Coupled Device (CCD) detector. The four CCDs are read out in parallel and are independently controlled. The image intensifiers also act as fast (20 ns) electronic shutters. The system is capable of displaying images in real time. Additionally, with independent control on the readout of each row of data from the CCD, the system is capable of performing high speed imaging through novel readout manipulation

  16. The Fermi Large Area Telescope as a Galactic Supernovae Axionscope

    CERN Document Server

    Meyer, Manuel; Mirizzi, Alessandro; Conrad, Jan; Sanchez-Conde, Miguel

    2016-01-01

    In a Galactic core-collapse supernova (SN), axionlike particles (ALPs) could be emitted via the Primakoff process and eventually convert into $\\gamma$ rays in the magnetic field of the Milky Way. From a data-driven sensitivity estimate, we find that, for a SN exploding in our Galaxy, the Fermi Large Area Telescope (LAT) would be able to explore the photon-ALP coupling down to $g_{a\\gamma} \\simeq 2 \\times 10^{-13}\\,$GeV$^{-1}$ for an ALP mass $m_a \\lesssim 10^{-9}\\,$eV. These values are out of reach of next generation laboratory experiments. In this event, the Fermi LAT would probe large regions of the ALP parameter space invoked to explain the anomalous transparency of the Universe to $\\gamma$ rays, stellar cooling anomalies, and cold dark matter. If no $\\gamma$-ray emission were to be detected, Fermi-LAT observations would improve current bounds derived from SN1987A by more than one order of magnitude.

  17. Assessment of Retrofitting Measures for a Large Historic Research Facility Using a Building Energy Simulation Model

    OpenAIRE

    Young Tae Chae; Lee, Young M.; David Longinott

    2016-01-01

    A calibrated building simulation model was developed to assess the energy performance of a large historic research building. The complexity of space functions and operational conditions with limited availability of energy meters makes it hard to understand the end-used energy consumption in detail and to identify appropriate retrofitting options for reducing energy consumption and greenhouse gas (GHG) emissions. An energy simulation model was developed to study the energy usage patterns not o...

  18. Building adaptive capacity for flood proofing in urban areas through synergistic interventions

    OpenAIRE

    Veerbeek, W.; Ashley, R.M.; Zevenbergen, C.; Rijke, J.S.; B. Gersonius

    2010-01-01

    Few, if any urban areas are nowadays built in isolation from existing developments. Therefore, urban expansion and making existing urban areas more sustainable is a contemporary goal. There are major opportunities to do this through the ‘normal’ renewal of urban infrastructure and building stocks both now and in the future. However, significant building renewal cycles occur every 30-50 years and major infrastructure renewal cycles at even longer timescales of more than 100 years. Despite this...

  19. Micro wind turbines for energy gathering in build up areas

    OpenAIRE

    Bui, Duong Minh; Melis, Wim J.C.

    2013-01-01

    In a city environment, wind direction is often not predictable and is easily re-directed in different ways by all kinds of obstacles. Consequently, large size wind turbines do not work effectively, not to mention the requirement for planning permission often needed for their installation. In an attempt to overcome these problems, this paper proposes the design of vertical-axis micro turbines with a maximum diameter of 30cm, which generate electric power for low voltage DC loads. The paper loo...

  20. JUSTIFICATION OF RATIONAL FOUNDATION DESIGN FOR A BUILDING WITH A HIGH CENTER OF GRAVITY FOR CONSTRUCTION IN SEISMIC AREAS

    Directory of Open Access Journals (Sweden)

    Marinichev M. B.

    2015-01-01

    Full Text Available The subjects of the study are the foundations of buildings with a high center of gravity, in particular, the foundations of high-rise buildings with developed upper floors due to the large consoles. From a set of loads, transferred to the high-rise building with a high center of gravity, we can highlight the most significant impacts, affecting the distribution of forces in the elements of the foundation. We reveal the factors playing a special role in the choice of design solutions for the foundations. The practical significance of this research is due to the demand for ground areas in the cities which are being developed, although they were previously considered unsuitable for construction. Today, one of the primary tasks for engineers and architects is increasing technical and economic performance of construction projects and meeting customers' requirements in the individual architecture. As a variant of increasing technical and economic performance of buildings in dense city building conditions is to use the arm structures in their design solutions that both low-rise and high-rise building can achieve the architectural attractiveness of the building and significantly increase the usable floor area. In the research, two types of the foundations were projected for the object which is an eight-apartment building in the ground conditions of Sochi. The analysis was carried out with such software as PC ING +. After receiving the results of numerical analyses we performed a comparative analysis of pile-slab and slab foundation with the seismicity of the construction site. Therefore, we have identified the most rational of two types of foundations

  1. Energy Savings Modelling of Re-tuning Energy Conservation Measures in Large Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2014-10-20

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS’s capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This paper investigates the energy savings potential of several common HVAC system re-tuning measures on a typical large office building, using the Department of Energy’s building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply-air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated – each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All the individual measures and combinations were simulated in 16 climate locations representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual total HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy

  2. A large area Micromegas TPC for tracking at the ILC

    International Nuclear Information System (INIS)

    The study of the fundamental building blocks of matter necessitates always more powerful accelerators. New particles are produced in high energy collisions of protons or electrons. The by-Products of these collisions are detected in large apparatus surrounding the interaction point. The 125 GeV Higgs particle discovered at LHC will be studied in detail in the next e+e- collider. The leading project for this is called ILC. The team that I joined is working on the R and D for a Time Projection Chamber (TPC) to detect the charged tracks by the ionization they leave in a gas volume, optimised for use at ILC. This primary ionization is amplified by the so-Called Micromegas device, with a charge-Sharing anode made of a resistive-Capacitive coating. After a presentation of the physics motivation for the ILC and ILD detector, I will review the principle of operation of a TPC (Chapter 2) and underline the advantages of the Micromegas readout with charge sharing. The main part of this PhD work concerns the detailed study of up to 12 prototypes of various kinds. The modules and their readout electronics are described in Chapter 3. A test-Bench setup has been assembled at CERN (Chapter 4) to study the response to a 55Fe source, allowing an energy calibration and a uniformity study. In Chapter 5, the ion back-flow is studied using a bulk Micromegas and the gas gain is measured using a calibrated electronics chain. With the same setup, the electron transparency is measured as a function of the field ratio (drift/amplification). Also, several beam tests have been carried out at DESY with a 5 GeV electron beam in a 1 T superconducting magnet. These beam tests allowed the detailed study of the spatial resolution. In the final test, the endplate was equipped with seven modules, bringing sensitivity to misalignment and distortions. Such a study required software developments (Chapter 6) to make optimal use of the charge sharing and to reconstruct multiple tracks through several

  3. Detections of millisecond pulsars with the FERMI Large Area Telescope

    International Nuclear Information System (INIS)

    The Fermi observatory was launched on June 11, 2008. It hosts the Large Area Telescope (LAT), sensitive to gamma-ray photons from 20 MeV to over 300 GeV. When the LAT began its activity, nine young and energetic pulsars were known in gamma ray range. At least several tens of pulsar detections by the LAT were predicted before launch. The LAT also allowed the study of millisecond pulsars (MSPs), never firmly detected in gamma ray range before Fermi. This thesis first presents the pulsar timing campaign for the LAT, in collaboration with large radio telescopes and X-ray telescopes, allowing for high sensitivity pulsed searches. Furthermore, it lead to quasi-homogeneous coverage of the galactic MSPs, so that the search for pulsations in LAT data for this population of stars was not affected by an a-priori bias. We present a search for pulsations from these objects in LAT data. For the first time, eight galactic MSPs have been detected as sources of pulsed gamma-ray emission over 100 MeV. In addition, a couple of good candidates for future detection are seen. A similar search for globular cluster MSPs was not successful so far. Comparison of the phase-aligned gamma-ray and radio light curves, as well as the spectral shapes, leads to the conclusion that their gamma-ray emission is similar to that of normal pulsars, and is probably produced in the outer-magnetosphere. This discovery suggests that many unresolved gamma-ray sources are unknown MSPs. (author)

  4. Large-Area Permanent-Magnet ECR Plasma Source

    Science.gov (United States)

    Foster, John E.

    2007-01-01

    A 40-cm-diameter plasma device has been developed as a source of ions for material-processing and ion-thruster applications. Like the device described in the immediately preceding article, this device utilizes electron cyclotron resonance (ECR) excited by microwave power in a magnetic field to generate a plasma in an electrodeless (noncontact) manner and without need for an electrically insulating, microwave-transmissive window at the source. Hence, this device offers the same advantages of electrodeless, windowless design - low contamination and long operational life. The device generates a uniform, high-density plasma capable of sustaining uniform ion-current densities at its exit plane while operating at low pressure [source, there are no cumbersome, power-hungry electromagnets. The magnetic field in this device is generated by a permanent-magnet circuit that is optimized to generate resonance surfaces. The microwave power is injected on the centerline of the device. The resulting discharge plasma jumps into a "high mode" when the input power rises above 150 W. This mode is associated with elevated plasma density and high uniformity. The large area and uniformity of the plasma and the low operating pressure are well suited for such material-processing applications as etching and deposition on large silicon wafers. The high exit-plane ion-current density makes it possible to attain a high rate of etching or deposition. The plasma potential is <3 V low enough that there is little likelihood of sputtering, which, in plasma processing, is undesired because it is associated with erosion and contamination. The electron temperature is low and does not vary appreciably with power.

  5. Prospects for the implementation and integration of information-analytical systems for environmental monitoring area of building construction

    Directory of Open Access Journals (Sweden)

    Tatyana Cigikalo

    2013-04-01

    Full Text Available The article is devoted to the prospects for the introduction and implementation of information-analytical systems for environmental monitoring area of building construction. The article describes the current problems in the field of environmental monitoring areas of building construction. As a solution to these problems, proposed creation of an information system implementing a comprehensive environmental monitoring areas of building construction.

  6. Influence of the Earth's magnetic field on large area photomultipliers

    International Nuclear Information System (INIS)

    The influence of the Earth's magnetic field on large area photomultipliers proposed for a future deep sea neutrino telescope was studied under the EU-funded KM3NeT design study. The aims were to evaluate variations in PMT performance in the Earth's magnetic field and to decide whether the use of magnetic shielding is necessary. Measurements were performed on three Hamamatsu PMTs: two 8-inch R5912 types, one of these with super-bi-alkali photocathode, and a 10-inch R7081 type with a standard bi-alkali photocathode. The various characteristics of the PMTs were measured while varying the PMT orientations with respect to the Earth's magnetic field, both with and without a mu-metal cage as magnetic shield. In the 8-inch PMTs the impact of the magnetic field was found to be smaller than that on the 10-inch PMT. The increased quantum efficiency in the 8 super-bi-alkali PMT almost compensated its smaller detection surface compared to the 10' PMT. No significant effects were measured upon transit time and the fraction of spurious pulses. (authors)

  7. The Spitzer-HETDEX Exploratory Large-Area Survey

    CERN Document Server

    Papovich, Casey; Mehrtens, N; Lanham, C; Lacy, M; Ciardullo, R; Finkelstein, S L; Bassett, R; Behroozi, P; Blanc, G A; de Jong, R S; DePoy, D L; Drory, N; Gawiser, E; Gebhardt, K; Gronwall, C; Hill, G J; Hopp, U; Jogee, S; Kawinwanichakij, L; Marshall, J L; McLinden, E; Cooper, E Mentuch; Somerville, R S; Steinmetz, M; Tran, K -V; Tuttle, S; Viero, M; Wechsler, R; Zeimann, G

    2016-01-01

    We present post-cryogenic Spitzer imaging at 3.6 and 4.5 micron with the Infrared Array Camera (IRAC) of the Spitzer/HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers $\\sim$deg$^2$ of the Sloan Digital Sky Survey "Stripe 82" region, and falls within the footprints of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R $\\sim$ 800 spectroscopy will produce $\\sim$ 200,000 redshifts from the Lyman-$\\alpha$ emission for galaxies in the range 1.9 < z < 3.5, and an additional $\\sim$200,000 redshifts from the [OII] emission for galaxies at z < 0.5. When combined with deep ugriz images from the Dark Energy Camera, K-band images from NEWFIRM, and other ancillary data, the IRAC photometry from Spitzer will enable a broad range of scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, AGN, and environment over a co-moving volume of $\\sim$0.5 Gpc$^3$ at 1.9 < z < 3.5. Here, we discuss the properties o...

  8. Searches for Dark Matter with the Fermi Large Area Telescope

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The nature of dark matter is a longstanding enigma of physics; it may consist of particles beyond the Standard Model that are still elusive to experiments. Among indirect search techniques, which look for stable products from the annihilation or decay of dark matter particles, or from axions coupling to high-energy photons, observations of the gamma-ray sky have come to prominence over the last few years, because of the excellent sensitivity and full-sky coverage of the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope mission. The LAT energy range from 20 MeV to above 300 GeV is particularly well suited for searching for products of the interactions of dark matter particles. In this talk I will describe targets studied for evidence of dark matter with the LAT, and review the status of searches performed with up to six years of LAT data. I will also discuss the factors that determine the sensitivities of these searches, including the magnitudes of the signals and the relevant backgrounds, c...

  9. Large area self-powered gamma ray detector

    International Nuclear Information System (INIS)

    The purpose of this research was to develop a large area self-powered gamma detector (LASPGD) capable of detecting the movement of sealed radiation sources into and out of industrial radiographic units and to construct a prototype source position monitor (SPM) for these units utilizing the LASPGD. Prototype isotropic and directional LASPGDs, with solid and inert gas dielectrics, were developed and extensively tested using calibrated gamma sources (i.e., Cs-137, and Co-60). The sensitivities of the isotropic detectors, with inert gas dielectrics, were found to be approximately a factor of ten greater than those measured for the solid dielectric LASPGDs. Directionally sensitive self-powered detectors were found to exhibit a forward-to-back hemispherical sensitivity ratio of approximately 2 to 1. Industrial radiographic units containing Ir-192 sources with different activities were used to test the performance of the SPM. The SPM, which utilized a gas dielectric LASPGD, performed as designed. That is, the current generated in the LASPGD was converted to a voltage, amplified and used to control the on/off state of an incandescent lamp. The incandescent lamp, which functions as the source/out warning indicator, flashes at a rate of one flash per second when the source is in use (i.e. out of its shield)

  10. Research and Development of Large Area Color AC Plasma Displays

    Science.gov (United States)

    Shinoda, Tsutae

    1998-10-01

    Plasma display is essentially a gas discharge device using discharges in small cavities about 0. 1 m. The color plasma displays utilize the visible light from phosphors excited by the ultra-violet by discharge in contrast to monochrome plasma displays utilizing visible light directly from gas discharges. At the early stage of the color plasma display development, the degradation of the phosphors and unstable operating voltage prevented to realize a practical color plasma display. The introduction of the three-electrode surface-discharge technology opened the way to solve the problems. Two key technologies of a simple panel structure with a stripe rib and phosphor alignment and a full color image driving method with an address-and-display-period-separated sub-field method have realized practically available full color plasma displays. A full color plasma display has been firstly developed in 1992 with a 21-in.-diagonal PDP and then a 42-in.-diagonal PDP in 1995 Currently a 50-in.-diagonal color plasma display has been developed. The large area color plasma displays have already been put into the market and are creating new markets, such as a wall hanging TV and multimedia displays for advertisement, information, etc. This paper will show the history of the surface-discharge color plasma display technologies and current status of the color plasma display.

  11. Large-area monolayer hexagonal boron nitride on Pt foil.

    Science.gov (United States)

    Park, Ji-Hoon; Park, Jin Cheol; Yun, Seok Joon; Kim, Hyun; Luong, Dinh Hoa; Kim, Soo Min; Choi, Soo Ho; Yang, Woochul; Kong, Jing; Kim, Ki Kang; Lee, Young Hee

    2014-08-26

    Hexagonal boron nitride (h-BN) has recently been in the spotlight due to its numerous applications including its being an ideal substrate for two-dimensional electronics, a tunneling material for vertical tunneling devices, and a growth template for heterostructures. However, to obtain a large area of h-BN film while maintaining uniform thickness is still challenging and has not been realized. Here, we report the systematical study of h-BN growth on Pt foil by using low pressure chemical vapor deposition with a borazine source. The monolayer h-BN film was obtained over the whole Pt foil (2 × 5 cm(2)) under film. The total pressure and orientation of the Pt lattice plane are crucial parameters for thickness control. At high pressure (∼0.5 Torr), thick film was grown on Pt (111), and in contrast, thin film was grown on Pt (001). Our advances in monolayer h-BN growth will play an important role to further develop a high quality h-BN film that can be used for vertical tunneling, optoelectronic devices and growth templates for a variety of heterostructures. PMID:25094030

  12. FERMI LARGE AREA TELESCOPE OBSERVATION OF SUPERNOVA REMNANT S147

    Energy Technology Data Exchange (ETDEWEB)

    Katsuta, J.; Uchiyama, Y.; Tanaka, T.; Tajima, H.; Bechtol, K.; Funk, S.; Lande, J. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Hanabata, Y. [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Lemoine-Goumard, M. [Universite Bordeaux 1, CNRS/IN2p3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, 33175 Gradignan (France); Takahashi, T., E-mail: katsuta@slac.stanford.edu, E-mail: uchiyama@slac.stanford.edu [Institute of Space and Astronautical Science, Japanese Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2012-06-20

    We present an analysis of gamma-ray data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope in the region around supernova remnant (SNR) S147 (G180.0-1.7). A spatially extended gamma-ray source detected in an energy range of 0.2-10 GeV is found to coincide with SNR S147. We confirm its spatial extension at >5{sigma} confidence level. The gamma-ray flux is (3.8 {+-} 0.6) Multiplication-Sign 10{sup -8} photons cm{sup -2} s{sup -1}, corresponding to a luminosity of 1.3 Multiplication-Sign 10{sup 34} (d/1.3 kpc){sup 2} erg s{sup -1} in this energy range. The gamma-ray emission exhibits a possible spatial correlation with the prominent H{alpha} filaments of SNR S147. There is no indication that the gamma-ray emission comes from the associated pulsar PSR J0538+2817. The gamma-ray spectrum integrated over the remnant is likely dominated by the decay of neutral {pi} mesons produced through the proton-proton collisions in the filaments. The reacceleration of the pre-existing cosmic rays and subsequent adiabatic compression in the filaments is sufficient to provide the energy density required of high-energy protons.

  13. Homestake Large Area Scintillation Detector and cosmic ray telescope

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, M.L.; Corbato, S.; Kieda, D.; Lande, K.; Lee, C.K.; Steinberg, R.I.

    1985-01-25

    The Homestake Large Area Scintillation Detector consists of 140 tons of liquid scintillator in a hollow 8 m x 8 m x 16 m box surrounding the Brookhaven /sup 37/Cl solar neutrino detector. The experiment is located at a depth of 4850 ft. (4200 m.w.e.) in the Homestake Gold Mine. Half of the detector is currently running; the full detector will be taking data early in 1985. An extensive air shower array is also currently under construction on the earth's surface above the underground chamber, consisting of 100 scintillators, each 3 m/sup 2/, covering approximately 0.8 km/sup 2/; the first portion of the surface array will also be providing data in early 1985. Together, the new Homestake detectors (Fig. 1) will be used to search for slow, massive magnetic monopoles; study the zenith angle distribution of neutrino-induced muons; search for neutrino bursts from the gravitational collapse of massive stars; measure the multiplicity and transverse momentum distributions of cosmic ray muons; and study the composition of the primary cosmic rays. In this paper, we present a progress report on the new detectors. In Sec. I we describe the underground device and its capabilities as a monopole detector; in Sec. II we describe the surface array and the cosmic ray studies; the neutrino measurements have been discussed elsewhere.

  14. Homestake Large Area Scintillation Detector and cosmic ray telescope

    International Nuclear Information System (INIS)

    The Homestake Large Area Scintillation Detector consists of 140 tons of liquid scintillator in a hollow 8 m x 8 m x 16 m box surrounding the Brookhaven 37Cl solar neutrino detector. The experiment is located at a depth of 4850 ft. (4200 m.w.e.) in the Homestake Gold Mine. Half of the detector is currently running; the full detector will be taking data early in 1985. An extensive air shower array is also currently under construction on the earth's surface above the underground chamber, consisting of 100 scintillators, each 3 m2, covering approximately 0.8 km2; the first portion of the surface array will also be providing data in early 1985. Together, the new Homestake detectors (Fig. 1) will be used to search for slow, massive magnetic monopoles; study the zenith angle distribution of neutrino-induced muons; search for neutrino bursts from the gravitational collapse of massive stars; measure the multiplicity and transverse momentum distributions of cosmic ray muons; and study the composition of the primary cosmic rays. In this paper, we present a progress report on the new detectors. In Sec. I we describe the underground device and its capabilities as a monopole detector; in Sec. II we describe the surface array and the cosmic ray studies; the neutrino measurements have been discussed elsewhere

  15. Aging characterization on large area photo-multipliers

    International Nuclear Information System (INIS)

    An accurate study and measurement about the aging effects on two large area photomultipliers (PMT) has been performed for over 3 years. The PMTs were 10 in., 10 stages Hamamatsu R7081, one with standard bialkali and the other one with super-bialkali photocathode. The gain, dark count rate, charge and timing properties have been measured, as well as the fraction of the spurious pulses. During the aging cycles, the anode current of the two photo-multipliers has been monitored and recorded in order to measure the total output anode charge and determine the aging grade. The aging conditions have been set by the use of a 400 nm LED regulated to about 3 photoelectrons (pe) at about 400 kHz. The aging process was stopped when the total charge arrived up to about 2000 C for both the PMTs. Measurements of the parameters of the two PMTs have been performed periodically using a 400 nm pulsed laser in single photoelectron condition. Considering the main results, only the gain showed a variation while all the other parameters remain quite stable. A first phase of up-drift shows an increase of the gain of about 10% and is followed by a final phase of down drift, which shows a faster diminution of the gain of about 30%. The mechanism of the gain drift has been modeled and compared with the results

  16. FERMI LARGE AREA TELESCOPE DETECTION OF SUPERNOVA REMNANT RCW 86

    International Nuclear Information System (INIS)

    Using 5.4 yr Fermi Large Area Telescope data, we report the detection of GeV γ-ray emission from the shell-type supernova remnant RCW 86 (G315.4-2.3) with a significance of ∼5.1σ. The data slightly favors an extended emission of this supernova remnant. The spectral index of RCW 86 is found to be very hard, Γ ∼ 1.4, in the 0.4-300 GeV range. A one-zone leptonic model can well fit the multi-wavelength data from radio to very high energy γ-rays. The very hard GeV γ-ray spectrum and the inferred low gas density seem to disfavor a hadronic origin for the γ-rays. The γ-ray behavior of RCW 86 is very similar to several other TeV shell-type supernova remnants, e.g., RX J1713.7-3946, RX J0852.0-4622, SN 1006, and HESS J1731-347

  17. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA PULSAR

    International Nuclear Information System (INIS)

    The Vela pulsar is the brightest persistent source in the GeV sky and thus is the traditional first target for new γ-ray observatories. We report here on initial Fermi Large Area Telescope observations during verification phase pointed exposure and early sky survey scanning. We have used the Vela signal to verify Fermi timing and angular resolution. The high-quality pulse profile, with some 32,400 pulsed photons at E ≥ 0.03 GeV, shows new features, including pulse structure as fine as 0.3 ms and a distinct third peak, which shifts in phase with energy. We examine the high-energy behavior of the pulsed emission; initial spectra suggest a phase-averaged power-law index of Γ = 1.51+0.05-0.04 with an exponential cutoff at Ec = 2.9 ± 0.1 GeV. Spectral fits with generalized cutoffs of the form e-(E/Ec)b require b ≤ 1, which is inconsistent with magnetic pair attenuation, and thus favor outer-magnetosphere emission models. Finally, we report on upper limits to any unpulsed component, as might be associated with a surrounding pulsar wind nebula.

  18. FERMI LARGE AREA TELESCOPE OBSERVATION OF SUPERNOVA REMNANT S147

    International Nuclear Information System (INIS)

    We present an analysis of gamma-ray data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope in the region around supernova remnant (SNR) S147 (G180.0–1.7). A spatially extended gamma-ray source detected in an energy range of 0.2-10 GeV is found to coincide with SNR S147. We confirm its spatial extension at >5σ confidence level. The gamma-ray flux is (3.8 ± 0.6) × 10–8 photons cm–2 s–1, corresponding to a luminosity of 1.3 × 1034 (d/1.3 kpc)2 erg s–1 in this energy range. The gamma-ray emission exhibits a possible spatial correlation with the prominent Hα filaments of SNR S147. There is no indication that the gamma-ray emission comes from the associated pulsar PSR J0538+2817. The gamma-ray spectrum integrated over the remnant is likely dominated by the decay of neutral π mesons produced through the proton-proton collisions in the filaments. The reacceleration of the pre-existing cosmic rays and subsequent adiabatic compression in the filaments is sufficient to provide the energy density required of high-energy protons.

  19. GLAST large area telescope - daily survey of high energy sky

    International Nuclear Information System (INIS)

    GLAST Large Area Telescope was proposed to NASA in 1999 as a follow-up of EGRET on-board Compton Gamma-Ray Observatory by an international collaboration. The proposal has been approved as a part of the GLAST observatory mission in its capability to explore a wide range of astrophysics with 5-40 times higher sensitivity and extended energy coverage (20MeV to 300GeV) than EGRET. The instrument consists of 16 towers of e+e- pair tracker, 16 blocks of segmented electro-magnetic calorimeter, and a set of anti-coicidence plastic scintillator tiles covering the tracker towers. It will have 5-10 times larger on-axis effective area, 6 times wider field-of-view (FOV), and up to 5 times better angular resolution when compared with EGRET. The Large Area Telescope will cover about 40% of the sky above the Earth's horizon in its FOV at any given time and will scan nearly the entire Universe every orbit (∼ 90min): about 20% of Gamma-Ray Bursts will be observed from the onset of the bursts to the initial after-glow phase; all longer-lasting transients and variabilities will be detected daily at the improved sensitivity. The instrument has been prototyped twice between 1995 and 2001, designed almost to the Flight Model by the international collaboration of the US (NASA and DoE), France, Italy, Japan, and Sweden. The first prototype consisted of one tower of e+e- pair trackers, one block of segmented calorimeters and a smaller set of anti-coicidence plastic scintillator tiles (Beam Test Engineering Model, BTEM), which was put into e+, p, and γ beams at SLAC in the winter of 1999-2000. It was subsequently modified for a balloon experiment (Balloon Flight Engineering Model, BFEM) and flown at Palestine, Texas in August 2001. Data collected in the test experiments have been analyzed and compared with predictions of computer simulation codes such as Geant4. These studies have confirmed validity of the basic design, brought up a few issues for further improvement, and gathered data on

  20. GLAST large area telescope - daily survey of high energy sky

    Science.gov (United States)

    Kamae, Tuneyoshi

    2003-07-01

    GLAST Large Area Telescope was proposed to NASA in 1999 as a follow-up of EGRET on-board Compton Gamma-Ray Observatory by an international collaboration. The proposal has been approved as a part of the GLAST observatory mission in its capability to explore a wide range of astrophysics with 5-40 times higher sensitivity and extended energy coverage (20MeV to 300GeV) than EGRET. The instrument consists of 16 towers of e+e- pair tracker, 16 blocks of segmented electro-magnetic calorimeter, and a set of anti-coicidence plastic scintillator tiles covering the tracker towers. It will have 5-10 times larger on-axis effective area, 6 times wider field-of-view (FOV), and up to 5 times better angular resolution when compared with EGRET. The Large Area Telescope will cover about 40% of the sky above the Earth's horizon in its FOV at any given time and will scan nearly the entire Universe every orbit (~ 90min): about 20% of Gamma-Ray Bursts will be observed from the onset of the bursts to the initial after-glow phase; all longer-lasting transients and variabilities will be detected daily at the improved sensitivity. The instrument has been prototyped twice between 1995 and 2001, designed almost to the Flight Model by the international collaboration of the US (NASA and DoE), France, Italy, Japan, and Sweden. The first prototype consisted of one tower of e+e- pair trackers, one block of segmented calorimeters and a smaller set of anti-coicidence plastic scintillator tiles (Beam Test Engineering Model, BTEM), which was put into e+, p, and γ beams at SLAC in the winter of 1999-2000. It was subsequently modified for a balloon experiment (Balloon Flight Engineering Model, BFEM) and flown at Palestine, Texas in August 2001. Data collected in the test experiments have been analyzed and compared with predictions of computer simulation codes such as Geant4. These studies have confirmed validity of the basic design, brought up a few issues for further improvement, and gathered data on

  1. Mapping availability of sea view for potential building development areas.

    Science.gov (United States)

    Alphan, Hakan; Sonmez, Fizyon

    2015-07-01

    Scenic attraction can be regarded as one of the most important factors for recreation- and/or tourism-oriented landscape planning and management processes. Sea view is generally one of the most predominant scenery components of coastal landscapes. Therefore, presence and degree of its availability contribute to scenic attraction of residential development sites. This attribute of the environment can be quantified by GIS-based visibility analyses that rely on multiple viewshed calculations, during which observation and/or target locations are taken as variables. The main aim of this paper is to analyze availability of sea view for currently undeveloped (i.e., non-built-up) areas in an urbanized coast in the Mediterranean region of Turkey. Four study sites (sites 1-4) of varying geomorphological and built-up features, located approximately 40 km south of the city of Mersin, were taken into consideration. Multiple viewshed analyses were performed using a high-resolution terrain model and 541, 533, 540, and 532 observation points for the sites, 1, 2, 3, and 4, respectively. Impact of topography and built-up features on sea visibility was discussed in the light of visibility information classified as percentage visibility of the sea surface available from each of the sites. PMID:26050064

  2. Verification of the local structural response of building structures in the anchorage areas of heavy components

    International Nuclear Information System (INIS)

    In conventional dynamic structural analyses for determining dynamic system response for various locations at which components are installed inside the structures it is common practice (in order to simplify analytical effort) to assume that the anchorage (anchor plate, anchor bolts or throughbolts, concrete and reinforcement in the area of bound) has rigid body characteristics and that the building structure itself does not display any local response of its own. The influence of the stiffness of the anchor plate as well anchor bolts and its stress level on the dynamic response is also neglected. For a large number of anchoring systems, especially for all those components and systems having only a small mass, this assumption is certainly appropriate. At some locations, particularly at points where heavy components are anchored or when loading input has been increased, this can lead to local loading of the anchor system as well as of the building structure well into the nonlinear range. Often, verification of capability to accommodate these loads is not possible without changing the wall thicknesses or increasing the percentage of reinforcement. Since the presence of linear or nonlinear effects can be expected to result in energy dissipation (increase in damping capacity and also a change in the stiffness of the coupled system) it must be assumed that the dynamic response between the theoretical coupling point A and the real connection point B of the component on the anchor plate can be considerably altered. Some changes of the dynamic response in the connection point B have to be expected generally even in cases of linear-elastic loading of the anchorage. Using typical anchoring systems as an example, the influence of consideration of nonlinear effects in the anchorage area of a typical anchor plate on the dynamic response as well as the conservatism of conventional analytical approaches are investigated

  3. MONITORING OF LARGE INSTABLE AREAS: system reliability and new tools.

    Science.gov (United States)

    Leandro, G.; Mucciarelli, M.; Pellicani, R.; Spilotro, G.

    2009-04-01

    The monitoring of unstable or potentially unstable areas is a necessary operation every time you can not remove the conditions of risk and apply to mitigation measures. In Italian Apennine regions there are many urban or extra-urban areas affected by instability, for which it is impracticable to remove hazard conditions, because of size and cost problems. The technological evolution exportable to the field of land instability monitoring is particularly lively and allows the use of warning systems unthinkable just few years ago. However, the monitoring of unstable or potentially unstable areas requires a very great knowledge of the specific problems, without which the reliability of the system may be dangerously overestimated. The movement may arise, indeed, in areas not covered by instrumentation, or covered with vegetation that prevents the acquisition of both reflected signals in the multi-beam laser techniques and radar signals. Environmental conditions (wind, concentrated sources of light, temperature changes, presence of animals) may also invalidate the accuracy of the measures, by introducing modulations or disturbance at a level well above the threshold of alarm signal, leading consequently to raise the values of the warning threshold. The Authors have gained long experience with the observation and monitoring of some large landslides in the Southern Apennine (Aliano, Buoninventre, Calciano, Carlantino, etc.) and unstable areas also at regional scale. One of the most important experiences is about the case of landslides of extensive areas, where unstable and stables zones coexist along transverse and longitudinal axis. In many of these cases you need the accurate control of the movement at selected points to evaluate the trend of displacement velocity, which can be achieved by means of a single-beam laser. The control of these movements, however, does not provide information on stress pattern into the stable areas. Among the sensitive precursors, acoustic

  4. Building adaptive capacity for flood proofing in urban areas through synergistic interventions

    NARCIS (Netherlands)

    Veerbeek, W.; Ashley, R.M.; Zevenbergen, C.; Rijke, J.S.; Gersonius, B.

    2010-01-01

    Few, if any urban areas are nowadays built in isolation from existing developments. Therefore, urban expansion and making existing urban areas more sustainable is a contemporary goal. There are major opportunities to do this through the ‘normal’ renewal of urban infrastructure and building stocks bo

  5. RADON PREVENTION IN THE DESIGN AND CONSTRUCTION OF SCHOOLS AND OTHER LARGE BUILDINGS

    Science.gov (United States)

    The paper discusses radon prevention in the design and construction of schools and other large buildings. ased on studies in progress for the past 3 years, the U.S. EPA's Office of Research and Development (ORD) has started incorporating radon control measures into the design and...

  6. Evaluating biodiversity conservation around a large Sumatran protected area.

    Science.gov (United States)

    Linkie, Matthew; Smith, Robert J; Zhu, Yu; Martyr, Deborah J; Suedmeyer, Beth; Pramono, Joko; Leader-Williams, Nigel

    2008-06-01

    Many of the large, donor-funded community-based conservation projects that seek to reduce biodiversity loss in the tropics have been unsuccessful. There is, therefore, a need for empirical evaluations to identify the driving factors and to provide evidence that supports the development of context-specific conservation projects. We used a quantitative approach to measure, post hoc, the effectiveness of a US$19 million Integrated Conservation and Development Project (ICDP) that sought to reduce biodiversity loss through the development of villages bordering Kerinci Seblat National Park, a UNESCO World Heritage Site in Indonesia. We focused on the success of the ICDP component that disbursed a total of US$1.5 million through development grants to 66 villages in return for their commitment to stop illegally clearing the forest. To investigate whether the ICDP lowered deforestation rates in focal villages, we selected a subset of non-ICDP villages that had similar physical and socioeconomic features and compared their respective deforestation rates. Village participation in the ICDP and its development schemes had no effect on deforestation. Instead, accessible areas where village land-tenure had been undermined by the designation of selective-logging concessions tended to have the highest deforestation rates. Our results indicate that the goal of the ICDP was not met and, furthermore, suggest that both law enforcement inside the park and local property rights outside the park need to be strengthened. Our results also emphasize the importance of quantitative approaches in helping to inform successful and cost-effective strategies for tropical biodiversity conservation. PMID:18336620

  7. Evaluation of exposure to lead from drinking water in large buildings.

    Science.gov (United States)

    Deshommes, Elise; Andrews, Robert C; Gagnon, Graham; McCluskey, Tim; McIlwain, Brad; Doré, Evelyne; Nour, Shokoufeh; Prévost, Michèle

    2016-08-01

    Lead results from 78,971 water samples collected in four Canadian provinces from elementary schools, daycares, and other large buildings using regulatory and investigative sampling protocols were analyzed to provide lead concentration distributions. Maximum concentrations reached 13,200 and 3890 μg/L following long and short stagnation periods respectively. High lead levels were persistent in some large buildings, reflected by high median values considering all taps, or specific to a few taps in the building. Simulations using the Integrated Uptake Biokinetic (IEUBK) model and lead concentrations after 30 min of stagnation in the dataset showed that, for most buildings, exposure to lead at the tap does not increase children's blood lead levels (BLLs). However, buildings or taps with extreme concentrations represent a significant health risk to young children attending school or daycare, as the estimated BLL far exceeded the 5 μg/dL threshold. Ingestion of water from specific taps could lead to acute exposure. Finally, for a few taps, the total daily lead intake reached the former World Health Organization (WHO) tolerable level for adults, suggesting potential health risks. PMID:27132198

  8. Opportunities for low carbon sustainability in large commercial buildings in China

    International Nuclear Information System (INIS)

    China's building sector consumes one quarter of total energy consumption in the country and plays an important role in long-term ability of the country to achieve sustainable development. This paper discusses a comprehensive approach to achieving low carbon sustainability in large commercial buildings in China incorporating both energy and carbon-reduction strategies. The approach concentrates primarily on three complementary aspects: (a) the introduction of an effective energy management system; (b) the incorporation of relevant advanced energy saving technologies and measures and (c) the promotion of awareness among occupants to make changes in their behaviour towards a more environmental-friendly behaviour. However, reference is also made to the role that renewable energy and offsetting may have in the effective management and environmental performance of buildings. Nine examples of large commercial buildings in Beijing and Shanghai were studied and the average electricity consumption of around 153 kWh/m2 per annum is about 5 times higher than average electricity use in residential buildings. At the same time the associated green house gas (GHG) emissions are around 158 kg/m2 per annum.

  9. Decontamination of radium from a commercial building located in a large Canadian city

    International Nuclear Information System (INIS)

    In August 1975, the Ministry of Health of the Province of Ontario at the request of one of the tenants of a building in a large Canadian city conducted a radiation survey of the third floor of the building. The survey, although preliminary, showed that high radiation existed on the third and second floors and that significant contamination existed in some other parts of the six-floor building. The contamination was identified as radium-226. An investigation revealed that the third floor of the building had been used during World War II for processing radium and also for some radium dial painting work. The Atomic Energy Control Board (AECB) requested Atomic Energy of Canada Limited (AECL) to remove the radium contaminant from the building. AECL assigned the job to its Chalk River Nuclear Laboratories (CRNL). The objectives were to reduce the radium concentration throughout the building so that radon decay products would be less than 0.02 Working Levels (WL) and exposure rates would be less than 50 μR/h. The techniques used and the extent of decontamination achieved are reported

  10. Contamination source review for Building E3162, Edgewood Area, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.A.; Draugelis, A.K.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review for Building E3162 at the Aberdeen Proving Ground (APG) in Maryland. The report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, geophysical investigation, and collection of air samples. The field investigations were performed by ANL during 1994 and 1995. Building E3162 (APG designation) is part of the Medical Research Laboratories Building E3160 Complex. This research laboratory complex is located west of Kings Creek, east of the airfield and Ricketts Point Road, and south of Kings Creek Road in the Edgewood Area of APG. The original structures in the E3160 Complex were constructed during World War 2. The complex was originally used as a medical research laboratory. Much of the research involved wound assessment involving chemical warfare agents. Building E3162 was used as a holding and study area for animals involved in non-agent burns. The building was constructed in 1952, placed on inactive status in 1983, and remains unoccupied. Analytical results from these air samples revealed no distinguishable difference in hydrocarbon and chlorinated solvent levels between the two background samples and the sample taken inside Building E3162.

  11. The Large Area Detector of LOFT: the Large Observatory for X-ray Timing

    CERN Document Server

    Zane, S; Kennedy, T; Feroci, M; Herder, J -W Den; Ahangarianabhari, M; Argan, A; Azzarello, P; Baldazzi, G; Barbera, M; Barret, D; Bertuccio, G; Bodin, P; Bozzo, E; Bradley, L; Cadoux, F; Cais, P; Campana, R; Coker, J; Cros, A; Del Monte, E; De Rosa, A; Di Cosimo, S; Donnarumma, I; Evangelista, Y; Favre, Y; Feldman, C; Fraser, G; Fuschino, F; Grassi, M; Hailey, M R; Hudec, R; Labanti, C; Macera, D; Malcovati, P; Marisaldi, M; Martindale, A; Mineo, T; Muleri, F; Nowak, M; Orlandini, M; Pacciani, L; Perinati, E; Petracek, V; Pohl, M; Rachevski, A; Smith, P; Santangelo, A; Seyler, J -Y; Schmid, C; Soffitta, P; Suchy, S; Tenzer, C; Uttley, P; Vacchi, A; Zampa, G; Zampa, N; Wilms, J; Winter, B

    2014-01-01

    LOFT (Large Observatory for X-ray Timing) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. Its pointed instrument is the Large Area Detector (LAD), a 10 m 2 -class instrument operating in the 2-30keV range, which holds the capability to revolutionise studies of variability from X-ray sources on the millisecond time scales. The LAD instrument has now completed the assessment phase but was not down-selected for launch. However, during the assessment, most of the trade-offs have been closed leading to a robust and well documented design that will be re- proposed in future ESA calls. In this talk, we will summarize the characteristics of the LAD design and give an overview of the expectations for the instrument capabilities.

  12. Investigation on mechanical exhaust of cabin fire in large-space building

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A calculation model for mechanical exhaust rate in large-space building in the case of cabin fire is proposed through theoretical analysis. Full-scale hot smoke tests are then performed to study the cabin fire spreading to large-space building at different air change rates (ACH). The result indicates that under the standard prescribed ACH, the effective air heights in the large spaces are respectively 6, 4 and 2 m in the case of cabin fires of 0.34, 0.67 and 1 MW. Numerical experiment has been conducted using self-developing two-zone model. The smoke control efficiency is compared by varying the large space's air change rate in the case of cabin fires ranging from 0.25 to 4 MW. The calculation results show that the air change rates are respectively 3, 6, 10 and 10 ACH when the smoke layer is kept above 5 m, indicating that the centralized exhaust rates far exceed the standard prescribed value. To address this problem, a set of subsidiary distributed mechanical exhaust installing in the cabin with high fire loads is proposed. The simulation shows that both from the safety and economy point of view, the adoption of subsidiary distributed cabin exhaust design may effectively reduce the demand of designed air change rate for large-space building.

  13. Investigation on mechanical exhaust of cabin fire in large-space building

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A calculation model for mechanical exhaust rate in large-space building in the case of cabin fire is proposed through theoretical analysis. Full-scale hot smoke tests are then performed to study the cabin fire spreading to large-space building at dif- ferent air change rates (ACH). The result indicates that under the standard pre- scribed ACH, the effective air heights in the large spaces are respectively 6, 4 and 2 m in the case of cabin fires of 0.34, 0.67 and 1 MW. Numerical experiment has been conducted using self-developing two-zone model. The smoke control effi- ciency is compared by varying the large space’s air change rate in the case of cabin fires ranging from 0.25 to 4 MW. The calculation results show that the air change rates are respectively 3, 6, 10 and 10 ACH when the smoke layer is kept above 5 m, indicating that the centralized exhaust rates far exceed the standard prescribed value. To address this problem, a set of subsidiary distributed mechanical exhaust installing in the cabin with high fire loads is proposed. The simulation shows that both from the safety and economy point of view, the adoption of subsidiary dis- tributed cabin exhaust design may effectively reduce the demand of designed air change rate for large-space building.

  14. Glass-covering of large building volumes. An interdisciplinary evaluation of a shopping centre

    Energy Technology Data Exchange (ETDEWEB)

    Oeman, R. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Building Technology

    1994-12-31

    Systematized experiences of the function of large glass-covered spaces related to shopping centres, hotels, office buildings etc. are still relatively limited. With the glazed pedestrian precincts of the rebuilt Skaerholmen Centre in Stockholm as the main object of interdisciplinary studies, the aim of this thesis is to provide additional knowledge of large glass-covered spaces (atrium buildings). The studies comprises thermal comfort, temperature conditions, ventilation, energy balance, humidity - mycology, acoustics, operation - maintenance - durability and sociology. To sum up, it is clear that in the Scandinavian climate there is every likelihood of large glass-covered spaces in the public places functioning well from a technical as well as a social point of view. The energy consumption on heating the whole complex, based on theoretical calculations and measurement, is shown to have been reduced by the order of 10%. figs., tabs., refs.

  15. Portable Beryllium Prospecting Instrument With Large Sensitive Area

    International Nuclear Information System (INIS)

    The instrument described was designed on the basis of the photoneutron method of determining beryllium in rock surfaces and developed with a view to prospecting beryllium minerals in the Ilímaussaq intrusion, south Greenland. These minerals occur,mainly in hydrothermal veins which are from 1 mm to about 2 m wide. Of the ten beryllium minerals found until now, chkalovite (12% BeO) is the most common. The distinctive feature of the prospecting instrument is a comparatively large effective measuring area (∼500 cm2). Since the instrument is intended for use in a difficult terrain without roads, it has been necessary to limit its weight and size as much as possible. The instrument consists of a detector unit and a control unit. The detector unit has the dimensions 46 x 21 x 10 cm, weighs 20 kg, and contains a 30 cm long gamma-activation device, a biological radiation shield, and two 30-cm long 3He-filled neutron proportional detectors embedded in paraffin wax. The gamma- activation device consists of 31 identical 12Sb-sources placed in a steel tube with spacings decreasing towards the ends of the tube and with a total activity of 20 mCi. During transport of the instrument the gamma-activation device is placed at the centre of the radiation shield, when the maximum dose-rate on the surface of the detector unit is 200 mR/h. When the instrument is in use, the activation device is turned to a position just above the bottom of the detector unit. The sensitivity per cm2 of the bottom surface to a 5-cm thick layer of beryllium is 20% of its value at the centre of the bottom surface along a curve which is roughly an ellipse with axes 34 and 18 cm The total sensitivity of the instrument is about 35 counts/min per % BeO per mCi 124Sb, and the background count-rate is 12-20 counts/mm. The corresponding theoretical detection limit for a single measurement of 8-min duration is 35-50 ppm BeO. (author)

  16. Building

    OpenAIRE

    Seavy, Ryan

    2014-01-01

    Building for concrete is temporary. The building of wood and steel stands against the concrete to give form and then gives way, leaving a trace of its existence behind. Concrete is not a building material. One does not build with concrete. One builds for concrete.

  17. Quality control for the first large areas of triple GEM chambers for the CMS endcaps

    CERN Document Server

    Tytgat, Michael

    2015-01-01

    The CMS GEM collaboration plans to equip the very forward muon system with triple GEM detectors that can withstand the environment of the high-luminosity LHC. This project is at the final stages of R and D and moving to production. An unprecedented large area of several 100m2 are to be instrumented with GEM detectors which will be produced in six different sites around the world. A common construction and quality control procedure is required to ensure the performance of each detector. The quality control steps will include optical inspection, cleaning and baking of all materials and parts used to build the detector, leakage current tests of the GEM foils, high voltage tests, gas leak tests of the chambers and monitoring pressure drop vs. time, gain calibration to know the optimal operation region of the detector, gain uniformity tests, and studying the efficiency, noise and tracking performance of the detectors in a cosmic stand using scintillators.

  18. Numerical analysis on behavior of seismic isolated building during hypothetical large earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, K. [Central Research Inst. of Electric Power Industry, Chiba (Japan); Mazda, T. [Kyushu Univ., Fukuoka (Japan); Moteki, M.; Ishii, T.; Kawai, N.; Yasui, K. [Okumura Corp., Ibaraki (Japan)

    1995-12-01

    The authors past numerical analysis of the response of an existing seismic isolation building to actual earthquakes has confirmed the following; (1) A lumped mass model can be used to estimate the response of the upper structure and the deformation of the isolation device, as the dynamic behavior of the base isolated building is dominated by the first vibration mode. (2) A finite element model (FEM) more accurately simulates the higher modes and is recommended when the effect of high-frequency mode is significant. The past study was carried out to analyze the behavior observed during medium earthquakes where the relative displacement of the isolation device was less than the yielding displacement of the damper. In this study, the authors use the same numerical methods, which have been demonstrated to be useful in the past analysis for medium earthquakes, to study the behavior of the existing four-story building during a hypothetical large earthquake.

  19. Assessment of the physical flood susceptibility of buildings on a large scale - conceptual and methodological frameworks

    Science.gov (United States)

    Blanco-Vogt, A.; Schanze, J.

    2014-08-01

    There are various approaches available for assessing the flood vulnerability and damage to buildings and critical infrastructure. They cover pre- and post-event methods for different scales. However, there can hardly be found any method that allows for a large-scale pre-event assessment of the built structures with a high resolution. To make advancements in this respect, the paper presents, first, a conceptual framework for understanding the physical flood susceptibility of buildings and, second, a methodological framework for its assessment. The latter ranges from semi-automatic extraction of buildings, mainly from remote sensing with a subsequent classification and systematic characterisation, to the assessment of the physical flood susceptibility on the basis of depth-impact functions. The work shows results of the methodology's implementation and testing in a settlement of the city of Magangué, along the Magdalena River in Colombia.

  20. Windows of Opportunities : The Glazed Area and its Impact on the Energy Balance of Buildings

    OpenAIRE

    Persson, Mari-Louise

    2006-01-01

    The impact of window area on the energy balance of a building was investigated by simulations in DEROB-LTH. The glazed area was varied in three types of buildings with different types of glazing and for several climates. One low energy house was compared to a less insulated house but identical in size and layout. Three different types of glazing were used; uncoated double glazing, double glazing with one low-e coated pane and triple glazing with two low-e coated panes. Climates with variation...

  1. Large area controlled assembly of transparent conductive networks

    Science.gov (United States)

    Ivanov, Ilia N.; Simpson, John T.

    2015-09-29

    A method of preparing a network comprises disposing a solution comprising particulate materials in a solvent onto a superhydrophobic surface comprising a plurality of superhydrophobic features and interfacial areas between the superhydrophobic features. The plurality of superhydrophobic features has a water contact angle of at least about 150.degree.. The method of preparing the network also comprises removing the solvent from the solution of the particulate materials, and forming a network of the particulate materials in the interfacial areas, the particulate materials receding to the interfacial areas as the solvent is removed.

  2. Large-area silicon detection in hadronic sampling calorimetry

    International Nuclear Information System (INIS)

    The usage of a maximum size silicon wafer area was optimized by using a geometry with two trapezoidal detectors, each of 28 cm2. In order to enable the use of silicon detectors for hadron calorimeters a mosaic module consisting of 18 trapezoidal detectors was developed and assembled. Laser cutting technique was employed to minimize the dead area of the mosaic. In the performed investigations no physical deterioration was observed. (orig.)

  3. Automated Science Processing for the Fermi Large Area Telescope

    Science.gov (United States)

    Chiang, James

    2012-03-01

    The Large Area Telescope (LAT) onboard the Fermi γ-ray Space Telescope provides high sensitivity to emission from astronomical sources over a broad energy range (20MeV to >300 GeV) and has substantially improved spatial, energy, and timing resolution compared with previous observatories at these energies [4]. One of the LAT's most innovative features is that it performs continuous monitoring of the gamma-ray sky with all-sky coverage every 3 h. This survey strategy greatly enables the search for transient behavior from both previously known and unknown sources. In addition, the constant accumulation of data allows for increasingly improved measurements of persistent sources. These include the Milky Way Galaxy itself, which produces gamma-ray emission as a result from interactions of cosmic rays with gas in the Galaxy, and potential signals from candidate dark matter particles in the Milky Way and its neighboring galaxies. The automated science processing (ASP) functionality of the Fermi Instrument Science Operations Center (ISOC) is a part of the automated data pipeline that processes the raw data arriving from the spacecraft and puts it into a form amenable to scientific analysis. ASP operates at the end of the pipeline on the processed data and is intended to detect and characterize transient behavior (e.g., short time scale increases or “flares” in the gamma-ray flux) from astronomical sources. On detection of a flaring event, ASP will alert other observatories on a timely basis so that they may train their telescopes on the flaring source in order to detect possible correlated activity in other wavelength bands. Since the data from the LAT is archived and publicly available as soon as it is processed, ASP serves mainly to provide triggers for those follow-up observations; its estimates of the properties of the flaring sources (flux, spectral index, location) need not be the best possible, as subsequent off-line analysis can provide more refined

  4. Assessment of Retrofitting Measures for a Large Historic Research Facility Using a Building Energy Simulation Model

    Directory of Open Access Journals (Sweden)

    Young Tae Chae

    2016-06-01

    Full Text Available A calibrated building simulation model was developed to assess the energy performance of a large historic research building. The complexity of space functions and operational conditions with limited availability of energy meters makes it hard to understand the end-used energy consumption in detail and to identify appropriate retrofitting options for reducing energy consumption and greenhouse gas (GHG emissions. An energy simulation model was developed to study the energy usage patterns not only at a building level, but also of the internal thermal zones, and system operations. The model was validated using site measurements of energy usage and a detailed audit of the internal load conditions, system operation, and space programs to minimize the discrepancy between the documented status and actual operational conditions. Based on the results of the calibrated model and end-used energy consumption, the study proposed potential energy conservation measures (ECMs for the building envelope, HVAC system operational methods, and system replacement. It also evaluated each ECM from the perspective of both energy and utility cost saving potentials to help retrofitting plan decision making. The study shows that the energy consumption of the building was highly dominated by the thermal requirements of laboratory spaces. Among other ECMs the demand management option of overriding the setpoint temperature is the most cost effective measure.

  5. Final environmental assessment: TRU waste drum staging building, Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Much of the US Department of Energy's (DOE's) research on plutonium metallurgy and plutonium processing is performed at Los Alamos National Laboratory (LANL), in Los Alamos, New Mexico. LANL's main facility for plutonium research is the Plutonium Facility, also referred to as Technical Area 55 (TA-55). The main laboratory building for plutonium work within the Plutonium Facility (TA-55) is the Plutonium Facility Building 4, or PF-4. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if DOE were to stage sealed containers of transuranic (TRU) and TRU mixed waste in a support building at the Plutonium Facility (TA-55) that is adjacent to PF-4. At present, the waste containers are staged in the basement of PF-4. The proposed project is to convert an existing support structure (Building 185), a prefabricated metal building on a concrete foundation, and operate it as a temporary staging facility for sealed containers of solid TRU and TRU mixed waste. The TRU and TRU mixed wastes would be contained in sealed 55-gallon drums and standard waste boxes as they await approval to be transported to TA-54. The containers would then be transported to a longer term TRU waste storage area at TA-54. The TRU wastes are generated from plutonium operations carried out in PF-4. The drum staging building would also be used to store and prepare for use new, empty TRU waste containers

  6. Contamination source review for Building E3180, Edgewood Area, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, S.D.; Smits, M.P.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E3180 at the Aberdeen Proving Ground (APG) in Maryland. The report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, geophysical investigation, collection of air samples, and review of available records regarding underground storage tanks associated with Building E3180. The field investigations were performed by ANL during 1994. Building,E3180 (current APG designation) is located near the eastern end of Kings Creek Road, north of Kings Creek, and about 0.5 miles east of the airstrip within APG`s Edgewood Area. The building was constructed in 1944 as a facsimile of a Japanese pillbox and used for the development of flame weapons systems until 1957 (EAI Corporation 1989). The building was not used from 1957 until 1965, when it was converted and used as a flame and incendiary laboratory. During the 1970s, the building was converted to a machine (metal) shop and used for that purpose until 1988.

  7. Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays.

    Science.gov (United States)

    Xu, Wei-Zong; Ren, Fang-Fang; Ye, Jiandong; Lu, Hai; Liang, Lanju; Huang, Xiaoming; Liu, Mingkai; Shadrivov, Ilya V; Powell, David A; Yu, Guang; Jin, Biaobing; Zhang, Rong; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati

    2016-01-01

    Engineering metamaterials with tunable resonances are of great importance for improving the functionality and flexibility of terahertz (THz) systems. An ongoing challenge in THz science and technology is to create large-area active metamaterials as building blocks to enable efficient and precise control of THz signals. Here, an active metamaterial device based on enhancement-mode transparent amorphous oxide thin-film transistor arrays for THz modulation is demonstrated. Analytical modelling based on full-wave techniques and multipole theory exhibits excellent consistent with the experimental observations and reveals that the intrinsic resonance mode at 0.75 THz is dominated by an electric response. The resonant behavior can be effectively tuned by controlling the channel conductivity through an external bias. Such metal/oxide thin-film transistor based controllable metamaterials are energy saving, low cost, large area and ready for mass-production, which are expected to be widely used in future THz imaging, sensing, communications and other applications. PMID:27000419

  8. Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires.

    Science.gov (United States)

    Dawood, M K; Liew, T H; Lianto, P; Hong, M H; Tripathy, S; Thong, J T L; Choi, W K

    2010-05-21

    We report a simple and cost effective method for the synthesis of large-area, precisely located silicon nanocones from nanowires. The nanowires were obtained from our interference lithography and catalytic etching (IL-CE) method. We found that porous silicon was formed near the Au catalyst during the fabrication of the nanowires. The porous silicon exhibited enhanced oxidation ability when exposed to atmospheric conditions or in wet oxidation ambient. Very well located nanocones with uniform sharpness resulted when these oxidized nanowires were etched in 10% HF. Nanocones of different heights were obtained by varying the doping concentration of the silicon wafers. We believe this is a novel method of producing large-area, low cost, well defined nanocones from nanowires both in terms of the control of location and shape of the nanocones. A wide range of potential applications of the nanocone array can be found as a master copy for nanoimprinted polymer substrates for possible biomedical research; as a candidate for making sharp probes for scanning probe nanolithography; or as a building block for field emitting tips or photodetectors in electronic/optoelectronic applications. PMID:20418606

  9. Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays

    Science.gov (United States)

    Xu, Wei-Zong; Ren, Fang-Fang; Ye, Jiandong; Lu, Hai; Liang, Lanju; Huang, Xiaoming; Liu, Mingkai; Shadrivov, Ilya V.; Powell, David A.; Yu, Guang; Jin, Biaobing; Zhang, Rong; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati

    2016-03-01

    Engineering metamaterials with tunable resonances are of great importance for improving the functionality and flexibility of terahertz (THz) systems. An ongoing challenge in THz science and technology is to create large-area active metamaterials as building blocks to enable efficient and precise control of THz signals. Here, an active metamaterial device based on enhancement-mode transparent amorphous oxide thin-film transistor arrays for THz modulation is demonstrated. Analytical modelling based on full-wave techniques and multipole theory exhibits excellent consistent with the experimental observations and reveals that the intrinsic resonance mode at 0.75 THz is dominated by an electric response. The resonant behavior can be effectively tuned by controlling the channel conductivity through an external bias. Such metal/oxide thin-film transistor based controllable metamaterials are energy saving, low cost, large area and ready for mass-production, which are expected to be widely used in future THz imaging, sensing, communications and other applications.

  10. Development of a large-area detector for position and energy resolving detection of molecular fragments

    Energy Technology Data Exchange (ETDEWEB)

    Gamer, L.; Fleischmann, A.; Gastaldo, L.; Kampkoetter, A.; Kempf, S.; Pies, C.; Ranitzsch, P.; Schaefer, S.; Wolf, T.; Enss, C. [Kirchhoff Institute for Physics, Heidelberg University. (Germany)

    2013-07-01

    To investigate reactions like the dissociative recombination in laboratory environment, the Max-Planck Institute for Nuclear Physics in Heidelberg is presently building a cryogenic storage ring to prepare molecular ions in their rotational groundstate. The full kinematics of these processes can be resolved by a position and energy sensitive detection of the reaction products/molecule fragments. We describe the development of a large-area MMC for position sensitive detection of massive particles with kinetic energies of a few keV. The detector encompasses sixteen slice-shaped large-area absorbers to form a circular whole with a diameter of 36 mm. The temperature sensor is positioned on the outer edge of each absorber. Due to the finite thermal diffusivity in the absorber material, the rise-time of the detector-signal depends on the impact location of the particle. We compare a numerical analysis for the energy and position dependence of the detector signal to results of recent test measurements where energy was deposited at different positions by LED light pulses as well as x-ray photons delivered by an {sup 55}Fe source. For massive particles, potential degradation of instrumental line width as well as energy losses by backscattering, sputtering and lattice damages are discussed using Monte Carlo simulations.

  11. Development of a large-area detector for position and energy resolving detection of molecular fragments

    International Nuclear Information System (INIS)

    To investigate reactions like the dissociative recombination in laboratory environment, the Max-Planck Institute for Nuclear Physics in Heidelberg is presently building a cryogenic storage ring to prepare molecular ions in their rotational groundstate. The full kinematics of these processes can be resolved by a position and energy sensitive detection of the reaction products/molecule fragments. We describe the development of a large-area MMC for position sensitive detection of massive particles with kinetic energies of a few keV. The detector encompasses sixteen slice-shaped large-area absorbers to form a circular whole with a diameter of 36 mm. The temperature sensor is positioned on the outer edge of each absorber. Due to the finite thermal diffusivity in the absorber material, the rise-time of the detector-signal depends on the impact location of the particle. We compare a numerical analysis for the energy and position dependence of the detector signal to results of recent test measurements where energy was deposited at different positions by LED light pulses as well as x-ray photons delivered by an 55Fe source. For massive particles, potential degradation of instrumental line width as well as energy losses by backscattering, sputtering and lattice damages are discussed using Monte Carlo simulations.

  12. Excess heat production of future net zero energy buildings within district heating areas in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Möller, Bernd

    2012-01-01

    excess heat production from solar thermal collectors. The main findings are that the excess heat from NZEBs can benefit DH systems by decreasing the production from production units utilizing combustible fuels. In DH areas where the heat demand in summer months is already covered by renewable energy...... buildings in Denmark are connected to electricity grids and around half are connected to districtheating (DH) systems. Connecting buildings to larger energy systems enables them to send and receive energy from these systems. This paper’s objective is to examine how excess heat production from NZEBs......Denmark’s long-term energy goal is to develop an energy system solely based on renewable energy sources by 2050. To reach this goal, energy savings in buildings is essential. Therefore, the focus on energy efficient measures in buildings and netzeroenergybuildings (NZEBs) has increased. Most...

  13. Reliability and sustainability analysis of large panel residential buildings in Sofia, Skopje and Novi Sad

    OpenAIRE

    Folić Radomir; Laban Mirjana; Milanko Verica

    2011-01-01

    Large panel residential buildings, dating from second half of 20 Century, are to be found in almost every urban settlement across Europe. Within the context of three case studies of urban blocks in Bulgaria (Mladost - Sofia), Macedonia (Karpos III - Skopje) and Serbia (Detelinara - Novi Sad), comparative analysis and evaluation of technical and structural characteristics according to reliability (seismic resistance and fire safety) and sustainability (energy efficiency, internal air quality, ...

  14. Large-eddy simulation of an offshore Mediterranean area

    DEFF Research Database (Denmark)

    Rizza, Umberto; Miglietta, Mario M.; Sempreviva, Anna Maria;

    2014-01-01

    . Results show that for all the calculated fields the nudged LES outperforms the simulation without nudging, demonstrating that incorporating changes in the large-scale features is necessary in order to provide a realistic evolution of the modelled meteorological fields at local scale. Thus, appropriately......The aim of this study is to gain further understanding of the structure of the marine atmospheric boundary layer (MABL) and its interaction with ynoptic-scale forcing. A possible application of this study is to simulate mean and turbulent spatial and temporal structure of the marine boundary layer...... in order to optimize the structural design of offshore large wind turbines that today reach heights up to 200 m. Large-eddy simulations (LESs) have been performed and compared with offshore experimental data collected during the LASIE campaign performed in the Mediterranean during summer 2007. Two...

  15. Statistical Process Control Concerning the Glazed Areas Influence on the Energy Efficiency of Buildings

    Directory of Open Access Journals (Sweden)

    Daniel Lepădatu

    2008-01-01

    Full Text Available The aim of this paper is to present a statistical investigation, for analyzing the buildings characteristics from the energy efficiency point of view. The energy efficiency of buildings may be estimated by their capacity to ensure a healthy and comfortable environment, with low energy consumption during the whole year. The glazed areas have a decisive role in the building energy efficiency having in view the complex functions that they play in the system. A parametric study, based on the method of factorial plan of experience with two levels, allows us to emphasize the measure in which the geometric and energetic characteristics of glazed areas influence the energy efficiency, estimated by the yearly energy needs, to ensure a comfortable and healthy environment.

  16. Seafloor mapping of large areas using multibeam system - Indian experience

    Digital Repository Service at National Institute of Oceanography (India)

    Kodagali, V.N.; KameshRaju, K.A.; Ramprasad, T.

    depth in the basin is about 5100 m a line spacing 5 nm ensured 100% coverage of the entire area. Over 31 nm million depth data points were collected from the multibeam sonar system in the CIB. By developing new software, data from different lines were...

  17. 300 Area D4 Project Fiscal Year 2007 Building Completion Report

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Westberg

    2009-01-15

    This report documents the deactivation, decontamination, decommissioning, and demolition (D4) of twenty buildings in the 300 Area of the Hanford Site. The D4 of these facilties included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation, as appropriate.

  18. Background simulations for the Large Area Detector onboard LOFT

    DEFF Research Database (Denmark)

    Campana, Riccardo; Feroci, Marco; Ettore, Del Monte;

    2013-01-01

    The Large Observatory For X-ray Timing (LOFT), currently in an assessment phase in the framework the ESA M3 Cosmic Vision programme, is an innovative medium-class mission specifically designed to answer fundamental questions about the behaviour of matter, in the very strong gravitational and magn...

  19. Monitoring gamma radioactivity over large land areas using portable equipment

    International Nuclear Information System (INIS)

    The principal objective of this research has been to provide information on cost-effective techniques to detect localized areas of gamma-emitting radionuclides. This objective has been achieved by determining the time required to scan unit area as a function of depth of the gamma source below the site surface, the activity of the gamma source, the energy of the emitted gamma-ray, and the gamma transport properties of the site material. A comparison between survey and sampling techniques is made, and the advantages of using survey techniques to detect localized gamma-ray sources are discussed. A survey technique based on an adaptive moving array detector system is described. A field experiment has been carried out to verify the results of calculations of the sensitivity of the techniques described

  20. Tritium retention in nanostructured tungsten with large effective surface area

    International Nuclear Information System (INIS)

    Tungsten specimens with fiberform nanostructure (Nano-W) were prepared by exposure to helium plasma in the divertor plasma simulator NAGDIS-II with different amounts of helium fluence. For comparison, tungsten specimens with smooth surface (Polished-W) were also prepared. Surface area of Nano-W was measured by using Brunauer, Emmet and Teller (B.E.T.) method. Tritium retention of Nano-W and Polished-W was investigated by an imaging plate (IP) and β-ray induced X-ray spectrometry (BIXS) technique exposure to mixture gas of deuterium and tritium. It was found that surface area of Nano-W was significantly larger than that of Polished-W and increased in proportion to the amount of helium irradiation. On the other hand, tritium retention showed a saturation trend when the helium fluence was higher than 5.0 × 1025 m−2

  1. Large-Area Nanopatterned Graphene For Ultrasensitive Gas Sensing

    OpenAIRE

    Cagliani, Alberto; MacKenzie, David; Tschammer, Lisa Katharina; Pizzocchero, Filippo; Almdal, Kristoffer; Bøggild, Peter

    2014-01-01

    Chemical vapor deposited graphene is nanopatterned by a spherical block-copolymer etch mask. The use of spherical rather than cylindrical block copolymers allows homogeneous patterning of cm-scale areas without any substrate surface treatment. Raman spectroscopy was used to study the controlled generation of point defects in the graphene lattice with increasing etching time, confirming that alongside the nanomesh patterning, the nanopatterned CVD graphene presents a high defect density betwee...

  2. A Large Area Fiber Optic Gyroscope on multiplexed fiber network

    OpenAIRE

    Costanzo, Giovanni Antonio; Pizzocaro, Marco; Clivati, Cecilia

    2013-01-01

    We describe a fiber optical gyroscope based on the Sagnac effect realized on a multiplexed telecom fiber network. Our loop encloses an area of 20 km2 and coexists with Internet data traffic. This Sagnac interferometer achieves a sensitivity of about (10-8 rad/s)/sqrt(Hz), thus approaching ring laser gyroscopes without using narrow linewidth laser nor sophisticated optics. The proposed gyroscope is sensitive enough for seismic applications, opening new possibilities for this kind of optical fi...

  3. A Large Area Fiber Optic Gyroscope on multiplexed fiber network

    OpenAIRE

    Clivati, Cecilia; Calonico, Davide; Giovanni A. Costanzo; Mura, Alberto; Pizzocaro, Marco; Levi, Filippo

    2012-01-01

    We describe a fiber optical gyroscope based on the Sagnac effect realized on a multiplexed telecom fiber network. Our loop encloses an area of 20 km^2 and coexists with Internet data traffic. This Sagnac interferometer achieves a sensitivity of about 1e-8 (rad/s)/sqrt(Hz), thus approaching ring laser gyroscopes without using narrow-linewidth laser nor sophisticated optics. The proposed gyroscope is sensitive enough for seismic applications, opening new possibilities for this kind of optical f...

  4. Cleaning of large area by excimer laser ablation

    Science.gov (United States)

    Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir I.; Uteza, Olivier P.

    2000-01-01

    Surface removal technologies are being challenged from environmental and economic perspectives. This paper is concerned with laser ablation applied to large surface cleaning with an automatized excimer laser unit. The study focused on metallic surfaces that are oxidized and are representative of contaminated surfaces with radionuclides in a context of nuclear power plant maintenance. The whole system is described: laser, beam deliver, particle collection cell, real time control of cleaning processes. Results concerning surface laser interaction and substrate modifications are presented.

  5. Interactive effects of fire and large herbivores on web-building spiders.

    Science.gov (United States)

    Foster, C N; Barton, P S; Wood, J T; Lindenmayer, D B

    2015-09-01

    Altered disturbance regimes are a major driver of biodiversity loss worldwide. Maintaining or re-creating natural disturbance regimes is therefore the focus of many conservation programmes. A key challenge, however, is to understand how co-occurring disturbances interact to affect biodiversity. We experimentally tested for the interactive effects of prescribed fire and large macropod herbivores on the web-building spider assemblage of a eucalypt forest understorey and investigated the role of vegetation in mediating these effects using path analysis. Fire had strong negative effects on the density of web-building spiders, which were partly mediated by effects on vegetation structure, while negative effects of large herbivores on web density were not related to changes in vegetation. Fire amplified the effects of large herbivores on spiders, both via vegetation-mediated pathways and by increasing herbivore activity. The importance of vegetation-mediated pathways and fire-herbivore interactions differed for web density and richness and also differed between web types. Our results demonstrate that for some groups of web-building spiders, the effects of co-occurring disturbance drivers may be mostly additive, whereas for other groups, interactions between drivers can amplify disturbance effects. In our study system, the use of prescribed fire in the presence of high densities of herbivores could lead to reduced densities and altered composition of web-building spiders, with potential cascading effects through the arthropod food web. Our study highlights the importance of considering both the independent and interactive effects of disturbances, as well as the mechanisms driving their effects, in the management of disturbance regimes. PMID:25935217

  6. Government regulation and associated innovations in building energy-efficiency supervisory systems for large-scale public buildings in a market economy

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Xuezhi; Di, Yanqiang [China Academy of Building Research, Beijing 100013 (China); Wu, Yong [Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China); Li, Qiaoyan [Department of Building, School of Design and Environment, National University of Singapore (Singapore)

    2009-06-15

    The supervision of energy efficiency in government office buildings and large-scale public buildings is the main embodiment for government implementation of Public Administration in the fields of resource saving and environmental protection. Aimed at improving the current situation of lack of government administration in building energy efficiency, this paper proposes the concept of 'change and redesign of governmental supervision in building energy efficiency', repositioning the role of government supervision. Based on this theory and other related theories in regulation economic and modern management, this paper analyzes and researches the action and function of all level governments in execution of the supervisory system of building energy efficiency in government office buildings and large-scale public buildings. This paper also defines the importance of government supervision in energy-efficiency system. Finally, this paper analyzes and researches the interaction mechanism between government and owners of different type buildings, government and energy-efficiency service institution with gambling as main features. This paper also presents some measurements to achieve a common benefit community in implementation of building energy-efficiency supervisory system. (author)

  7. Government regulation and associated innovations in building energy-efficiency supervisory systems for large-scale public buildings in a market economy

    Energy Technology Data Exchange (ETDEWEB)

    Dai Xuezhi [China Academy of Building Research, Beijing 100013 (China)], E-mail: daixz9999@126.com; Wu Yong [Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China); Di Yanqiang [China Academy of Building Research, Beijing 100013 (China); Li Qiaoyan [Department of Building, School of Design and Environment, National University of Singapore (Singapore)

    2009-06-15

    The supervision of energy efficiency in government office buildings and large-scale public buildings is the main embodiment for government implementation of Public Administration in the fields of resource saving and environmental protection. Aimed at improving the current situation of lack of government administration in building energy efficiency, this paper proposes the concept of 'change and redesign of governmental supervision in building energy efficiency', repositioning the role of government supervision. Based on this theory and other related theories in regulation economic and modern management, this paper analyzes and researches the action and function of all level governments in execution of the supervisory system of building energy efficiency in government office buildings and large-scale public buildings. This paper also defines the importance of government supervision in energy-efficiency system. Finally, this paper analyzes and researches the interaction mechanism between government and owners of different type buildings, government and energy-efficiency service institution with gambling as main features. This paper also presents some measurements to achieve a common benefit community in implementation of building energy-efficiency supervisory system.

  8. Government regulation and associated innovations in building energy-efficiency supervisory systems for large-scale public buildings in a market economy

    International Nuclear Information System (INIS)

    The supervision of energy efficiency in government office buildings and large-scale public buildings is the main embodiment for government implementation of Public Administration in the fields of resource saving and environmental protection. Aimed at improving the current situation of lack of government administration in building energy efficiency, this paper proposes the concept of 'change and redesign of governmental supervision in building energy efficiency', repositioning the role of government supervision. Based on this theory and other related theories in regulation economic and modern management, this paper analyzes and researches the action and function of all level governments in execution of the supervisory system of building energy efficiency in government office buildings and large-scale public buildings. This paper also defines the importance of government supervision in energy-efficiency system. Finally, this paper analyzes and researches the interaction mechanism between government and owners of different type buildings, government and energy-efficiency service institution with gambling as main features. This paper also presents some measurements to achieve a common benefit community in implementation of building energy-efficiency supervisory system.

  9. Technical Support Document: Strategies for 50% Energy Savings in Large Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Leach, M.; Lobato, C.; Hirsch, A.; Pless, S.; Torcellini, P.

    2010-09-01

    This Technical Support Document (TSD) documents technical analysis that informs design guidance for designing and constructing large office buildings that achieve 50% net site energy savings over baseline buildings defined by minimal compliance with respect to ANSI/ASHRAE/IESNA Standard 90.1-2004. This report also represents a step toward developing a methodology for using energy modeling in the design process to achieve aggressive energy savings targets. This report documents the modeling and analysis methods used to identify design recommendations for six climate zones that capture the range of U.S. climate variability; demonstrates how energy savings change between ASHRAE Standard 90.1-2007 and Standard 90.1-2004 to determine baseline energy use; uses a four-story 'low-rise' prototype to analyze the effect of building aspect ratio on energy use intensity; explores comparisons between baseline and low-energy building energy use for alternate energy metrics (net source energy, energy emissions, and energy cost); and examines the extent to which glass curtain construction limits achieve energy savings by using a 12-story 'high-rise' prototype.

  10. Evaluation of a turbine driven CCHP system for large office buildings under different operating strategies

    Energy Technology Data Exchange (ETDEWEB)

    Mago, Pedro J.; Hueffed, Anna K. [Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS (United States)

    2010-10-15

    Combined cooling, heating, and power (CCHP) systems use waste heat from on-site electricity generation to meet the thermal demand of the facility. This paper models a CCHP system for a large office building and examines its primary energy consumption (PEC), operational costs, and carbon dioxide emissions (CDE) with respect to a reference building using conventional technologies. The prime mover used in this investigation is a load share turbine, and the CCHP system is evaluated under three different operation strategies: following the electric demand of the facility, following the thermal demand of the facility, and following a seasonal strategy. For the various strategies, the percentages of total carbon dioxide emissions by source are presented. This paper explores the use of carbon credits to show how the reduction in carbon dioxide emissions that is possible from the CCHP system could translate into economic benefits. In addition, the capital costs available for the CCHP system are determined using the simple payback period. Results indicate that for the evaluated office building located in Chicago the CCHP operation reduces the operational cost, PEC, and CDE from the reference building by an average of 2.6%, 12.1%, and 40.6%, respectively, for all the different operational strategies. (author)

  11. Progress in amorphous silicon based large-area multijunction modules

    Science.gov (United States)

    Carlson, D. E.; Arya, R. R.; Bennett, M.; Chen, L.-F.; Jansen, K.; Li, Y.-M.; Maley, N.; Morris, J.; Newton, J.; Oswald, R. S.; Rajan, K.; Vezzetti, D.; Willing, F.; Yang, L.

    1996-01-01

    Solarex, a business unit of Amoco/Enron Solar, is scaling up its a-Si:H/a-SiGe:H tandem device technology for the production of 8 ft2 modules. The current R&D effort is focused on improving the performance, reliability and cost-effectiveness of the tandem junction technology by systematically optimizing the materials and interfaces in small-area single- and tandem junction cells. Average initial conversion efficiencies of 8.8% at 85% yield have been obtained in pilot production runs with 4 ft2 tandem modules.

  12. Low cost, large area silicon detectors for calorimetry

    International Nuclear Information System (INIS)

    Trapezoidal detectors with 28 cm2 active area have been fabricated on >2500 Ωcm, 4 in. diameter n-type silicon wafers. Instead of the commonly used ion implantation method, low-cost, high volume solid state diffusion technology along with phosphosilicate-glass and TCA gettering was adopted for boron and phosphorus doping. Typically the diode dark current was 15 μA at sign 100 volts. Efforts are being made to obtain a finished device yield of 80% to meet the $2/cm2 price goal of SSC semiconductor detector group. 20 refs., 4 figs

  13. Rapid fabrication of large area binary polystyrene colloidal crystals

    Science.gov (United States)

    Luo, Chun-Li; Yang, Rui-Xia; Yan, Wei-Guo; Zhao, Jian; Yang, Guang-Wu; Jia, Guo-Zhi

    2016-07-01

    Binary colloidal crystals (BCCs) possess great potentials in tuning material and optical properties. In this paper, the combination of interface transferred method and spin-coating method is used to fabricate BCCs with different patterns via controlling the size ratio of small (S) to large (L) colloidal spheres and the spin speeds. It is found that BCCs formed LS2, LS4 and LS6 by changing the size ratio. In addition, there are some new and complicated structures, such as LS12, Janus arrays, formed at the low spin speed. This simple assembly method has potential to allow for the creation of optical metmaterials and the plasmonic structures with chiral optical properties.

  14. Acrolein Microspheres Are Bonded To Large-Area Substrates

    Science.gov (United States)

    Rembaum, Alan; Yen, Richard C. K.

    1988-01-01

    Reactive cross-linked microspheres produced under influence of ionizing radiation in aqueous solutions of unsaturated aldehydes, such as acrolein, with sodium dodecyl sulfate. Diameters of spheres depend on concentrations of ingredients. If polystyrene, polymethylmethacrylate, or polypropylene object immersed in solution during irradiation, microspheres become attached to surface. Resulting modified surface has grainy coating with reactivity similar to free microspheres. Aldehyde-substituted-functional microspheres react under mild conditions with number of organic reagents and with most proteins. Microsphere-coated macrospheres or films used to immobilize high concentrations of proteins, enzymes, hormones, viruses, cells, and large number of organic compounds. Applications include separation techniques, clinical diagnostic tests, catalytic processes, and battery separators.

  15. Experimental Analyses of Yellow Tuff Spandrels of Post-medieval Buildings in the Naples Area

    International Nuclear Information System (INIS)

    Experimental analyses have been carried out on tuff masonry specimens in order to investigate the structural behaviour of historical buildings in the Naples area (Southern Italy). Spandrels of post-medieval buildings (late XVI to early XX century) have been analysed, with emphasis on morphological characteristics according to chronological indicators. Results of the experimentation on scaled models (1:10) are discussed and the better behaviour of historical masonry typologies on respect to the modern one is highlighted. Comparison with theoretical formulations of ultimate shear resistance are provided too

  16. Visual Localization in Urban Area Using Orthogonal Building Boundaries and a GIS Database

    Institute of Scientific and Technical Information of China (English)

    LI Haifeng; LIU Jingtai; LU Xiang

    2012-01-01

    A framework is presented for robustly estimating the location of a mobile robot in urban areas based on images extracted from a monocular onboard camera, given a 2D map with building outlines with neither 3D geometric information nor appearance data. The proposed method firstly reconstructs a set of vertical planes by sampling and clustering vertical lines from the image with random sample consensus (RANSAC), using the derived 1D homographies to inform the planar model. Then, an optimal autonomous localization algorithm based on the 2D building boundary map is proposed. The physical experiments are carried out to validate the robustness and accuracy of our localization approach.

  17. Nengo: A Python tool for building large-scale functional brain models

    Directory of Open Access Journals (Sweden)

    Trevor eBekolay

    2014-01-01

    Full Text Available Neuroscience currently lacks a comprehensive theory of how cognitive processes can be implemented in a biological substrate. The Neural Engineering Framework (NEF proposes one such theory, but has not yet gathered significant empirical support, partly due to the technical challenge of building and simulating large-scale models with the NEF. Nengo is a software tool that can be used to build and simulate large-scale models based on the NEF; currently, it is the primary resource for both teaching how the NEF is used, and for doing research that generates specific NEF models to explain experimental data. Nengo 1.4, which was implemented in Java, was used to create Spaun, the world’s largest functional brain model (Eliasmith et al., 2012. Simulating Spaun highlighted limitations in Nengo 1.4’s ability to support model construction with simple syntax, to simulate large models quickly, and to collect large amounts of data for subsequent analysis. This paper describes Nengo 2.0, which is implemented in Python and overcomes these limitations. It uses simple and extendable syntax, simulates a benchmark model on the scale of Spaun 50 times faster than Nengo 1.4, and has a flexible mechanism for collecting simulation results.

  18. Fully low voltage and large area searching scanning tunneling microscope

    International Nuclear Information System (INIS)

    We present a novel scanning tunneling microscope (STM), which allows the tip to travel a large distance (millimeters) on the sample and take images (to find microscopic targets) anywhere it reaches without losing atomic resolution. This broad range searching capability, together with the coarse approach and scan motion, is all done with only one single piezoelectric tube scanner as well as with only low voltages (<15 V). Simple structure, low interference and high precision are thus achieved. To this end, a pillar and a tube scanner are mounted in parallel on a base with one ball glued on the pillar top and two balls glued on the scanner top. These three balls form a narrow triangle, which supports a triangular slider piece. By inertial stepping, the scanner can move the slider toward the pillar (coarse approach) or rotate the slider about the pillar (travel along sample surface). Since all the stepping motions are driven by the scanner's lateral bending which is large per unit voltage, high voltages are unnecessary. The technology is also applicable to scanning force microscopes (SFM) such as atomic force microscopes (AFM), etc

  19. Safety assessment of A92 reactor building for large commercial aircraft crash

    International Nuclear Information System (INIS)

    The current paper presents key elements of the comprehensive analyses of the effects due to a large aircraft collision with the reactor building of Belene NPP in Bulgaria. The reactor building is a VVER A92; it belongs to the third+ generation and includes structural measures for protection against an aircraft impact as standard design. The A92 reactor building implements a double shell concept and is composed of thick RC external walls and an external shell which surrounds an internal pre-stressed containment and the internal walls of the auxiliary building. The malevolent large aircraft impact is considered as a beyond design base accident (Design Extended Conditions, DEC). The main issues under consideration are the structural integrity, the equipment safety due to the induced vibrations, and the fire safety of the entire installation. Many impact scenarios are analyzed varying both impact locations and loading intensity. A large number of non-linear dynamic analyses are used for assessment of the structural response and capacity, including different type of structural models, different finite element codes, and different material laws. The corresponding impact loadings are represented by load time functions calculated according to three different approaches, i.e. loading determined by Riera's method (Riera, 1968), load time function calculated by finite element analysis (Henkel and Klein, 2007), and coupled dynamic analysis with dynamic interaction between target and projectile. Based on the numerical results and engineering assessments the capacity of the A92 reactor building to resist a malevolent impact of a large aircraft is evaluated. Significant efforts are spent on safety assessment of equipment by using an evaluation procedure based on damage indicating parameters. As a result of these analyses several design modifications of structure elements are performed. There are changes of the layout of reinforcement, special arrangements and spatial

  20. Large-area nanopatterned graphene for ultrasensitive gas sensing

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Mackenzie, David Micheal Angus; Tschammer, Lisa Katharina;

    2014-01-01

    Chemical vapor deposited (CVD) graphene is nanopatterned using a spherical block copolymer etch mask. The use of spherical rather than cylindrical block copolymers allows homogeneous patterning of cm-scale areas without any substrate surface treatment. Raman spectroscopy was used to study...... the controlled generation of point defects in the graphene lattice with increasing etching time, confirming that alongside the nanomesh patterning, the nanopatterned CVD graphene presents a high defect density between the mesh holes. The nanopatterned samples showed sensitivities for NO2 of more than one order...... of magnitude higher than for non-patterned graphene. NO2 concentrations as low as 300 ppt were detected with an ultimate detection limit of tens of ppt. This is the smallest value reported so far for non-UV illuminated graphene chemiresistive NO2 gas sensors. The dramatic improvement in the gas sensitivity...

  1. Large area, direct write focused ion beam lithography system

    International Nuclear Information System (INIS)

    A system for maskless ion beam milling based on a high brightness RF plasma ion source and a compact focusing column using electrostatic elements is designed and developed. So far 1.5 μm spot size with current density of 350 mA/cm2 could be achieved. Pattering is carried out by scanning the sample using high precision 3-axis stage. The size of the micropattering area is only limited by the span of the translation stage which is 25 mm x 25 mm in our case. Measurements to estimate the focused spot size and ion beam profile at the focal plane are carried out by using knife edge scanning method. This article describes the micromachining system, a few examples of micro pattering and possible future programs. This paper also addresses a few issues on focusing low energy beam from plasma sources to micron and submicron dimensions and challenges of measuring their sizes. (author)

  2. Electron Emission from Ultra-Large Area MOS Electron Emitters

    DEFF Research Database (Denmark)

    Thomsen, Lasse Bjørchmar; Nielsen, Gunver; Vendelbo, Søren Bastholm;

    2009-01-01

    Ultralarge metal-oxide-semiconductor (MOS) devices with an active oxide area of 1 cm2 have been fabricated for use as electron emitters. The MOS structures consist of a Si substrate, a SiO2 tunnel barrier (~5 nm), a Ti wetting layer (3–10 Å), and a Au top layer (5–60 nm). Electron emission from the...... layer is varied from 3 to 10 Å which changes the emission efficiency by more than one order of magnitude. The apparent mean free path of ~5 eV electrons in Au is found to be 52 Å. Deposition of Cs on the Au film increased the electron emission efficiency to 4.3% at 4 V by lowering the work function....... Electron emission under high pressures (up to 2 bars) of Ar was observed. ©2009 American Vacuum Society...

  3. Large area spark counters with fine time and position resolution

    International Nuclear Information System (INIS)

    Spark counters trace their history back over three decades but have been used in only a limited number of experiments. The key properties of these devices include their capability of precision timing (at the sub 100 ps level) and of measuring the position of the charged particle to high accuracy. At SLAC we have undertaken a program to develop these devices for use in high energy physics experiments involving large detectors. A spark counter of size 1.2 m x 0.1 m has been constructed and has been operating continuously in our test setup for several months. In this talk I will discuss some details of its construction and its properties as a particle detector. 14 references

  4. Large area magnetic micropallet arrays for cell colony sorting.

    Science.gov (United States)

    Cox-Muranami, Wesley A; Nelson, Edward L; Li, G P; Bachman, Mark

    2016-01-01

    A new micropallet array platform for adherent cell colony sorting has been developed. The platform consisted of thousands of square plastic pallets, 270 μm by 270 μm on each side, large enough to hold a single colony of cells. Each pallet included a magnetic core, allowing them to be collected with a magnet after being released using a microscope mounted laser system. The micropallets were patterned from 1002F epoxy resist and were fabricated on translucent, gold coated microscope slides. The gold layer was used as seed for electroplating the ferromagnetic cores within every individual pallet. The gold layer also facilitated the release of each micropallet during laser release. This array allows for individual observation, sorting and collection of isolated cell colonies for biological cell colony research. In addition to consistent release and recovery of individual colonies, we demonstrated stable biocompatibility and minimal loss in imaging quality compared to previously developed micropallet arrays. PMID:26606460

  5. Large area CCD image sensors for space astronomy

    Science.gov (United States)

    Schwarzschild, M.

    1979-01-01

    The Defense Advanced Research Projects Agency (DARPA) has a substantial program to develop a 2200 x 2200 pixel CCD (Charge Coupled Device) mosaic array made up of 400 individual CCD's, 110 x 110 pixels square. This type of image sensor appeared to have application in space and ground-based astronomy. Under this grant a CCD television camera system was built which was capable of operating an array of 4 CCD's to explore the suitability of the CCD's to explore the suitability of the CCD for astronomical applications. Two individual packaged CCD's were received and evaluated. Evaluation of the basic characteristics of the best individual chips was encouraging, but the manufacturer found that their yield in manufacturing this design is two low to supply sufficient CDD's for the DARPA mosaic array. The potential utility of large mosaic arrays in astronomy is still substantial and continued monitoring of the manufacturers progress in the coming year is recommended.

  6. Reconfigurable large-area magnetic vortex circulation patterns

    Science.gov (United States)

    Streubel, Robert; Kronast, Florian; Rößler, Ulrich K.; Schmidt, Oliver G.; Makarov, Denys

    2015-09-01

    Magnetic vortices in nanodots own a switchable circulation sense. These nontrivial magnetization configurations can be arranged into extended and interacting patterns. We have experimentally created large arrays of magnetically reconfigurable vortex patterns in nonplanar honeycomb lattices using particle lithography. Optimizing height asymmetry of the vertices and applying an in-plane magnetic field provide means to switch between homocircular and staggered vortex patterns with a potentially high impact on magnonics and spintronics relying on chiral noncollinear spin textures. To this end, exchange coupling of extended vortex lattices with an out-of-plane magnetized layer allows one to realize artificial skyrmionic core textures with controllable circulation and topological properties in extended exchange coupled honeycomb lattices that may pave the way towards magnetic memory and logic devices based on artificial skyrmions.

  7. Readout for a large area neutron sensitive microchannel plate detector

    International Nuclear Information System (INIS)

    A neutron sensitive microchannel plate (MCP) detector was developed for neutron imaging on the beamline of a compact pulsed hadron source (CPHS). The detector was set up with a Wedge-and-Strip Anode (WSA) and a delay line anode readout to compare the spatial resolution and throughput with these two anodes. Tests show that the WSA readout is suitable for small area imaging with a spatial resolution of 200 μm with low energy X-rays in a 50 mm diameter MCP–WSA assembly. However, the spatial resolution deteriorated to ~2 mm in a 106 mm diameter MCP–WSA assembly because the noise caused by the parasitic capacitance is 10 times larger in the larger assembly than in the 50 mm diameter assembly. A 120 mm by 120 mm delay line anode was then used for the 106 mm MCP readout. The spatial resolution was evaluated for various voltages applied to the MCP V-stack, various readout voltages and various distances between the MCP V-stack rear face and the delay line. The delay line readout had resolutions of 65.6 μm in the x direction and 63.7 μm in the y direction and the throughput was greater than 600 kcps. The MCP was then used to acquire a neutron image of an USAF1951 Gd-mask

  8. A large-area RF source for negative hydrogen ions

    Science.gov (United States)

    Frank, P.; Feist, J. H.; Kraus, W.; Speth, E.; Heinemann, B.; Probst, F.; Trainham, R.; Jacquot, C.

    1998-08-01

    In a collaboration with CEA Cadarache, IPP is presently developing an rf source, in which the production of negative ions (H-/D-) is being investigated. It utilizes PINI-size rf sources with an external antenna and for the first step a small size extraction system with 48 cm2 net extraction area. First results from BATMAN (Ba¯varian T_est Ma¯chine for N_egative Ions) show (without Cs) a linear dependence of the negative ion yield with rf power, without any sign of saturation. At elevated pressure (1.6 Pa) a current density of 4.5 mA/cm2 H- (without Cs) has been found so far. At medium pressure (0.6 Pa) the current density is lower by approx. a factor of 5, but preliminary results with Cesium injection show a relative increase by almost the same factor in this pressure range. Langmuir probe measurements indicate an electron temperature Te>2 eV close to the plasma grid with a moderate magnetic filter (700 Gcm). Attempts to improve the performance by using different magnetic configurations and different wall materials are under way.

  9. A new large area lanthanum hexaboride plasma source

    International Nuclear Information System (INIS)

    A new 18x18 cm2 active area lanthanum hexaboride (LaB6) plasma source for use in a dc discharge has been developed at UCLA. The cathode consists of four tiled LaB6 pieces indirectly heated to electron emission (1750 deg. C) by a graphite heater. A molybdenum mesh anode 33 cm in front of the LaB6 accelerates the electrons, ionizing a fill gas to create a 20x20 cm2 nearly square plasma. The source is run in pulsed operation with the anode biased up to +400 V dc with respect to the cathode for up to 100 ms at a 1 Hz repetition rate. Both the cathode and anode ''float'' electrically with respect to the chamber walls. The source is placed in a toroidal chamber 2 m wide and 3 m tall with a major radius of 5 m. Toroidal and vertical magnetic fields confine the current-free plasma which follows the field in a helix. The plasma starts on the bottom of the machine and spirals around it up to four times (120 m) and can be configured to terminate either on the top wall or on the neutral gas itself. The source typically operates with a discharge current up to 250 A in helium making plasmas with Teie13 cm-3 in a background field of 100 Go<320 G, giving a magnetized plasma with 0.1<β<1.

  10. Readout for a large area neutron sensitive microchannel plate detector

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yiming [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Yang, Yigang, E-mail: yangyigang@mail.tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Wang, Xuewu; Li, Yuanjing [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China)

    2015-06-01

    A neutron sensitive microchannel plate (MCP) detector was developed for neutron imaging on the beamline of a compact pulsed hadron source (CPHS). The detector was set up with a Wedge-and-Strip Anode (WSA) and a delay line anode readout to compare the spatial resolution and throughput with these two anodes. Tests show that the WSA readout is suitable for small area imaging with a spatial resolution of 200 μm with low energy X-rays in a 50 mm diameter MCP–WSA assembly. However, the spatial resolution deteriorated to ~2 mm in a 106 mm diameter MCP–WSA assembly because the noise caused by the parasitic capacitance is 10 times larger in the larger assembly than in the 50 mm diameter assembly. A 120 mm by 120 mm delay line anode was then used for the 106 mm MCP readout. The spatial resolution was evaluated for various voltages applied to the MCP V-stack, various readout voltages and various distances between the MCP V-stack rear face and the delay line. The delay line readout had resolutions of 65.6 μm in the x direction and 63.7 μm in the y direction and the throughput was greater than 600 kcps. The MCP was then used to acquire a neutron image of an USAF1951 Gd-mask.

  11. Readout for a large area neutron sensitive microchannel plate detector

    Science.gov (United States)

    Wang, Yiming; Yang, Yigang; Wang, Xuewu; Li, Yuanjing

    2015-06-01

    A neutron sensitive microchannel plate (MCP) detector was developed for neutron imaging on the beamline of a compact pulsed hadron source (CPHS). The detector was set up with a Wedge-and-Strip Anode (WSA) and a delay line anode readout to compare the spatial resolution and throughput with these two anodes. Tests show that the WSA readout is suitable for small area imaging with a spatial resolution of 200 μm with low energy X-rays in a 50 mm diameter MCP-WSA assembly. However, the spatial resolution deteriorated to ~2 mm in a 106 mm diameter MCP-WSA assembly because the noise caused by the parasitic capacitance is 10 times larger in the larger assembly than in the 50 mm diameter assembly. A 120 mm by 120 mm delay line anode was then used for the 106 mm MCP readout. The spatial resolution was evaluated for various voltages applied to the MCP V-stack, various readout voltages and various distances between the MCP V-stack rear face and the delay line. The delay line readout had resolutions of 65.6 μm in the x direction and 63.7 μm in the y direction and the throughput was greater than 600 kcps. The MCP was then used to acquire a neutron image of an USAF1951 Gd-mask.

  12. Performance model for large area solid oxide fuel cells

    Science.gov (United States)

    Klotz, Dino; Schmidt, Jan Philipp; Weber, André; Ivers-Tiffée, Ellen

    2014-08-01

    A parameter set obtained from a 1 cm2 size electrode cell is used to develop and calibrate a one-dimensional spatially resolved model. It is demonstrated that this performance model precalculates the evolving operating parameters along the gas channel of a large-sized cell. Input parameters are: (i) number of discretization elements N, accounting for anodic gas conversion, (ii) anodic gas flow rate and composition and (iv) operating voltage. The model calculations based on data from the 1 cm2 cell are scaled to be equivalent to a larger cell with 16 cm2 electrode size which is used to validate the performance model. The current/voltage characteristics can be predicted very accurately, even when anodic gas flow rates vary by as much as a factor of four. The performance model presented herein simulates the total overvoltage and does so in a broad range of operation conditions. This is done with an accuracy of the simulated current better than 6.1% for UOP = 0.85 V, 3.8% for UOP = 0.8 V and 3.7% for UOP = 0.75 V. It is hoped that these equations will form the basis of a greater model, capable of predicting all the conditions found throughout any industrial stack.

  13. Large-Area Semiconducting Graphene Nanomesh Tailored by Interferometric Lithography

    Science.gov (United States)

    Kazemi, Alireza; He, Xiang; Alaie, Seyedhamidreza; Ghasemi, Javad; Dawson, Noel Mayur; Cavallo, Francesca; Habteyes, Terefe G.; Brueck, Steven R. J.; Krishna, Sanjay

    2015-07-01

    Graphene nanostructures are attracting a great deal of interest because of newly emerging properties originating from quantum confinement effects. We report on using interferometric lithography to fabricate uniform, chip-scale, semiconducting graphene nanomesh (GNM) with sub-10 nm neck widths (smallest edge-to-edge distance between two nanoholes). This approach is based on fast, low-cost, and high-yield lithographic technologies and demonstrates the feasibility of cost-effective development of large-scale semiconducting graphene sheets and devices. The GNM is estimated to have a room temperature energy bandgap of ~30 meV. Raman studies showed that the G band of the GNM experiences a blue shift and broadening compared to pristine graphene, a change which was attributed to quantum confinement and localization effects. A single-layer GNM field effect transistor exhibited promising drive current of ~3.9 μA/μm and ON/OFF current ratios of ~35 at room temperature. The ON/OFF current ratio of the GNM-device displayed distinct temperature dependence with about 24-fold enhancement at 77 K.

  14. Recommendations for Large-scale Farmland Operation in Hilly Areas Based on Long Tail Theory

    Institute of Scientific and Technical Information of China (English)

    Changsheng; QIU; Dingxiang; LIU

    2014-01-01

    At the background of urban and rural integration,this paper analyzed and discussed factors restricting large-scale farmland operation in China’s hilly areas from the qualitative perspective. It recognized large-scale farmland operation on the basis of the long tail theory. Finally,it came up with recommendations for developing large-scale farmland operation in hilly areas.

  15. Recording of building development patterns in rural areas: Case of Podravska region

    Directory of Open Access Journals (Sweden)

    Nuša Voda

    2014-10-01

    Full Text Available The rural areas of today involve a range of different activities. On the one hand, this is perceived as changes that are reflected in the frequent abandonment of utilised agricultural areas or in the changed land use, and, on the other hand, in the continuous transformation of the image of our villages, and the artistic and aesthetic transformation of the built form (Fikfak, 2008. We can see that the connection between the house in the countryside, and the land on which it stands, has been devalued in the last decades in terms of the quality of living and functional connections inside the building and with exterior areas. The primary objective of the research was the recording of the existing patterns of development in selected rural settlements and to find the connection between the residential buildings and appertaining land, and, furthermore, the connection with adjacent structures and land. The research into development patterns in the Slovenian countryside was performed through the application on a case study, i.e. on three rural settlements of the Podravska Region (the region along the Drava River. The research methodology was based on a systematic elaboration of presentations from the geographic information system (GIS, surveying groundwork, field observations and photography of incidence of three different types of building (a traditional rural house, a standard detached house design and a contemporary rural house. The existing development patterns in the settlements were recorded and the relationships between the respective land plots and residential buildings, and the adjacent land and residential buildings, were described.

  16. A Novel Visualization Tool for Manual Annotation when Building Large Speech Corpora

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel visualized sound description, called sound dendrogram is proposed to make manual annotation easier when building large speech corpora. It is a lattice structure built from a group of "seed regions" and through an iterative procedure of mergence. A simple but reliable extraction method of "seed regions" and advanced distance metric are adopted to construct the sound dendrogram, so that it can present speech's structure character ranging from coarse to fine in a visualized way. Tests show that all phonemic boundaries are contained in the lattice structure of sound dendrogram and very easy to identify. Sound dendrogram can be a powerful assistant tool during the process of speech corpora's manual annotation.

  17. Reliability and sustainability analysis of large panel residential buildings in Sofia, Skopje and Novi Sad

    Directory of Open Access Journals (Sweden)

    Folić Radomir

    2011-01-01

    Full Text Available Large panel residential buildings, dating from second half of 20 Century, are to be found in almost every urban settlement across Europe. Within the context of three case studies of urban blocks in Bulgaria (Mladost - Sofia, Macedonia (Karpos III - Skopje and Serbia (Detelinara - Novi Sad, comparative analysis and evaluation of technical and structural characteristics according to reliability (seismic resistance and fire safety and sustainability (energy efficiency, internal air quality, accessibility criteria has been conducted. Additionally, previous experiences from individual renewal projects are reviewed. Previous experiences and comparative analysis results, could contribute to formulation of wider applicable solutions and development of new urban renewal strategies.

  18. NAVIGATION IN LARGE-FORMAT BUILDINGS BASED ON RFID SENSORS AND QR AND AR MARKERS

    Directory of Open Access Journals (Sweden)

    Tomasz Szymczyk

    2016-09-01

    Full Text Available The authors address the problem of passive navigation in large buildings. Based on the example of several interconnected buildings housing departments of the Lublin University of Technology, as well as the conceptual navigation system, the paper presents one of the possible ways of leading the user from the entrance of the building to a particular room. An analysis of different types of users is made and different (best for them ways of navigating the intricate corridors are proposed. Three ways of user localisation are suggested: RFID, AR and QR markers. A graph of connections between specific rooms was made and weights proposed, representing “the difficulty of covering a given distance”. In the process of navigation Dijkstra’s algorithm was used. The road is indicated as multimedia information: a voice-over or animated arrow showing the direction displayed on the smart phone screen with proprietary software installed. It is also possible to inform the user of the position of the location in which he currently is, based on the static information stored in the QR code.

  19. Dynamic classification system in large-scale supervision of energy efficiency in buildings

    International Nuclear Information System (INIS)

    Highlights: • Rough set approximation of classification improves energy efficiency prediction. • Dynamic features of diagnostic classification allow for its precise prediction. • Indiscernibility in large population enhances identification of process features. • Diagnostic information can be refined by dynamic references to local neighbourhood. • We introduce data exploration validation based on system dynamics and uncertainty. - Abstract: Data mining and knowledge discovery applied to the billing data provide the diagnostic instruments for the evaluation of energy use in buildings connected to a district heating network. To ensure the validity of an algorithm-based classification system, the dynamic properties of a sequence of partitions for consecutive detected events were investigated. The information regarding the dynamic properties of the classification system refers to the similarities between the supervised objects and migrations that originate from the changes in the building energy use and loss similarity to their neighbourhood and thus represents the refinement of knowledge. In this study, we demonstrate that algorithm-based diagnostic knowledge has dynamic properties that can be exploited with a rough set predictor to evaluate whether the implementation of classification for supervision of energy use aligns with the dynamics of changes of district heating-supplied building properties. Moreover, we demonstrate the refinement of the current knowledge with the previous findings and we present the creation of predictive diagnostic systems based on knowledge dynamics with a satisfactory level of classification errors, even for non-stationary data

  20. 300 Area D4 Project 1st Quarter Fiscal Year 2006 Building Completion Report

    Energy Technology Data Exchange (ETDEWEB)

    David S. Smith

    2006-04-20

    This report documents the deactivation, decontamination, decommissioning, and demolition of the MO-052, 3225, 334, 334A, and 334-TF Buildings in the 300 Area of the Hanford Site. The D4 of these facilities included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation as appropriate.

  1. 300 Area D4 Project Fiscal Year 2009 Building Completion Report

    Energy Technology Data Exchange (ETDEWEB)

    B. J. Skwarek

    2010-01-27

    This report summarizes the deactivation, decontamination, decommissioning, and demolition activities of seven facilities in the 300 Area of the Hanford Site in fiscal year 2009. The D4 of these facilities included characterization; engineering; removal of hazardous and radiologically contaminated materials; equipment removal; utility disconnection; deactivation, decontamination, demolition of the structure; and stabilization or removal of slabs and foundations. This report also summarizes the nine below-grade slabs/foundations removed in FY09 of buildings demolished in previous fiscal years.

  2. 300 Area D4 Project Fiscal Year 2008 Building Completion Report

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Westberg

    2009-01-15

    This report documents the deactivation, decontamination, decommissioning, and demolition (D4) of eighteen buildings in the 300 Area of the Hanford Site that were demolished in Fiscal Year 2008. The D4 of these facilties included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation, as appropriate.

  3. Derived concentration guideline levels for Argonne National Laboratory's building 310 area.

    Energy Technology Data Exchange (ETDEWEB)

    Kamboj, S., Dr.; Yu, C ., Dr. (Environmental Science Division)

    2011-08-12

    The derived concentration guideline level (DCGL) is the allowable residual radionuclide concentration that can remain in soil after remediation of the site without radiological restrictions on the use of the site. It is sometimes called the single radionuclide soil guideline or the soil cleanup criteria. This report documents the methodology, scenarios, and parameters used in the analysis to support establishing radionuclide DCGLs for Argonne National Laboratory's Building 310 area.

  4. Comparative analysis for detecting areas with building damage from several destructive earthquakes using satellite synthetic aperture radar images

    Science.gov (United States)

    Matsuoka, Masashi; Yamazaki, Fumio

    2010-11-01

    Earthquakes that have caused large-scale damage in developed areas, such as the 1994 Northridge and 1995 Kobe events, remind us of the importance of making quick damage assessments in order to facilitate the resumption of normal activities and restoration planning. Synthetic aperture radar (SAR) can be used to record physical aspects of the Earth's surface under any weather conditions, making it a powerful tool in the development of an applicable method for assessing damage following natural disasters. Detailed building damage data recorded on the ground following the 1995 Kobe earthquake may provide an invaluable opportunity to investigate the relationship between the backscattering properties and the degree of damage. This paper aims to investigate the differences between the backscattering coefficients and the correlations derived from pre- and post-earthquake SAR intensity images to smoothly detect areas with building damage. This method was then applied to SAR images recorded over the areas affected by the 1999 Kocaeli earthquake in Turkey, the 2001 Gujarat earthquake in India, and the 2003 Boumerdes earthquake in Algeria. The accuracy of the proposed method was examined and confirmed by comparing the results of the SAR analyses with the field survey data.

  5. Optimization of a hybrid electric power system design for large commercial buildings: An application design guide

    Science.gov (United States)

    Lee, Keun

    with the optimization of the hybrid system design (which consists of PV panels and/or wind turbines and/or storage devices for building applications) by developing an algorithm designed to make the system cost effective and energy efficient. Input data includes electrical load demand profile of the buildings, buildings' structural and geographical characteristics, real time pricing of electricity, and the costs of hybrid systems and storage devices. When the electrical load demand profile of a building that is being studied is available, a measured demand profile is directly used as input data. However, if that information is not available, a building's electric load demand is estimated using a developed algorithm based on three large data sources from a public domain, and used as input data. Using the acquired input data, the algorithm of this research is designed and programmed in order to determine the size of renewable components and to minimize the total yearly net cost. This dissertation also addresses the parametric sensitivity analysis to determine which factors are more significant and are expected to produce useful guidelines in the decision making process. An engineered and more practical, simplified solution has been provided for the optimized design process.

  6. Should we build more large dams? The actual costs of hydropower megaproject development

    International Nuclear Information System (INIS)

    A brisk building boom of hydropower mega-dams is underway from China to Brazil. Whether benefits of new dams will outweigh costs remains unresolved despite contentious debates. We investigate this question with the “outside view” or “reference class forecasting” based on literature on decision-making under uncertainty in psychology. We find overwhelming evidence that budgets are systematically biased below actual costs of large hydropower dams—excluding inflation, substantial debt servicing, environmental, and social costs. Using the largest and most reliable reference data of its kind and multilevel statistical techniques applied to large dams for the first time, we were successful in fitting parsimonious models to predict cost and schedule overruns. The outside view suggests that in most countries large hydropower dams will be too costly in absolute terms and take too long to build to deliver a positive risk-adjusted return unless suitable risk management measures outlined in this paper can be affordably provided. Policymakers, particularly in developing countries, are advised to prefer agile energy alternatives that can be built over shorter time horizons to energy megaprojects. - Highlights: • We investigate ex post outcomes of schedule and cost estimates of hydropower dams. • We use the “outside view” based on Kahneman and Tversky's research in psychology. • Estimates are systematically and severely biased below actual values. • Projects that take longer have greater cost overruns; bigger projects take longer. • Uplift required to de-bias systematic cost underestimation for large dams is +99%

  7. Analysis of impact of large commercial aircraft on a prestressed containment building

    International Nuclear Information System (INIS)

    Highlights: • Aircraft impact analyses are performed using the missile–target interaction method. • A large commercial B747 aircraft is considered with erosion effect. • The rigid wall impact test shows the validity of the developed aircraft model. • The parametric studies on the fictitious containment building are performed. • The plastic failure of the target is governed by the impulse of aircraft at the first momentum peak. - Abstract: In this paper, the results of nonlinear dynamic analyses of a concrete containment building under extreme loads are presented. The impact of a large commercial B747 airliner is investigated as the extreme load, and a rigid wall impact test is performed using commercial nonlinear finite element codes. The impact forces exerted by the aircraft are verified compared with the time-dependent impact force provided by OECD/NEA (2002), which was calculated based on the so-called Riera method. The rigid wall impact analysis shows that the finite element model of a B747 is appropriate for the purpose of the aircraft crash analysis exposed to the external hazard of “Beyond Design-Basis Events” defined by U.S. Nuclear Regulatory Commission. Finally, the applicability of this methodology is further studied and verified by conducting parametric studies on the critical infrastructures of nuclear power plant containment structures

  8. Large area atmospheric pressure plasma processes: Applications of the LARGE plasma source

    OpenAIRE

    Kotte, Liliana; Roch, Julius; Mäder, Gerrit; Haag, Jana; Mertens, Tobias

    2015-01-01

    The LARGE plasma source based on an extended DC arc offers a scalable working width up to 350 mm and operates with a range of plasma gases like argon, plus molecular gases like H2, O2, CO2, N2 or pure nitrogen and compressed air. Selected plasma gas mixtures were characterized (temperature and OES). Application such as SiO2 adhesion layers on titan or plasma pre-treatment of CFRP will be presented.

  9. Contextual classification of lidar data and building object detection in urban areas

    Science.gov (United States)

    Niemeyer, Joachim; Rottensteiner, Franz; Soergel, Uwe

    2014-01-01

    In this work we address the task of the contextual classification of an airborne LiDAR point cloud. For that purpose, we integrate a Random Forest classifier into a Conditional Random Field (CRF) framework. It is a flexible approach for obtaining a reliable classification result even in complex urban scenes. In this way, we benefit from the consideration of context on the one hand and from the opportunity to use a large amount of features on the other hand. Considering the interactions in our experiments increases the overall accuracy by 2%, though a larger improvement becomes apparent in the completeness and correctness of some of the seven classes discerned in our experiments. We compare the Random Forest approach to linear models for the computation of unary and pairwise potentials of the CRF, and investigate the relevance of different features for the LiDAR points as well as for the interaction of neighbouring points. In a second step, building objects are detected based on the classified point cloud. For that purpose, the CRF probabilities for the classes are plugged into a Markov Random Field as unary potentials, in which the pairwise potentials are based on a Potts model. The 2D binary building object masks are extracted and evaluated by the benchmark ISPRS Test Project on Urban Classification and 3D Building Reconstruction. The evaluation shows that the main buildings (larger than 50 m2) can be detected very reliably with a correctness larger than 96% and a completeness of 100%.

  10. Fabrication of large-area arrays of hybrid nanostructures on polymer-derived chemically patterned surfaces

    Science.gov (United States)

    Liu, Xiaoying; Nepal, Dhriti; Biswas, Sushmita; Park, Kyoungweon; Vaia, Richard; Nealey, Paul; Air Force Research Laboratories Collaboration; University of Chicago Team

    2014-03-01

    The precise placement and assembly of nanoparticles (NPs) into large-area nanostructure arrays will allow for the design and implementation of advanced nanoscale devices for applications in fields such as quantum computing, optical sensing, superlenses, photocatalysis, photovoltaics, and non-linear optics. Our work is focused on using chemically nanopatterned surfaces to fabricate arrays of hybrid nanostructures with each component of the building block at well-defined positions. The precise chemical contrast patterns with densities and resolution of features created using standard tools of lithography, polymer self-assembly, and surface functionalization allow for control of position and interparticle spacing through selective surface-particle and particle-particle interactions. We have demonstrated the assembly of NPs, including metallic NPs and semiconductor quantum dots, into arrays of hybrid structures with various geometries, such as monomers, dimers, quatrefoils, stripes, and chains. We have developed protocols to fabricate NP arrays over a variety of substrates, which allows for the design and characterization of optical and electronic nanostructures and devices to meet the requirements of various technological applications.

  11. Magnetron sputtering synthesis of large area well-ordered boron nanowire arrays

    Institute of Scientific and Technical Information of China (English)

    CAO; Limin; ZHANG; Ze; WANG; Wenkui

    2004-01-01

    One-dimensionally nanostructured materials, such as nanowires and nanotubes, are the smallest dimensional structures for efficient transport of electrons and excitons, and are therefore critical building blocks for nanoscale electronic and mechanical devices. In this paper, boron nanowires with uniform diameters from 20 to 80nm were synthesized by radio-frequency magnetron sputtering of pure boron powder and B2O3 powder mixtures in argon atmosphere. The boron nanowires produced stand vertically on the substrate surface to form well-ordered arrays over large areas with selforganized arrangements without involvement of any template and patterned catalyst. The high-density boron nanowires are parallel to each other and well distributed, forming highly ordered and uniform arrays. A more interesting and unique feature of the boron nanowires is that most of their tips are flat rather than hemispherical in morphologies.Detailed studies on its structure and composition indicate that boron nanowires are amorphous. Boron nanowire appears as a new member in the family of one-dimensional nanostructures. Considering the unique properties of boron-rich solids and other nanostructures, it is reasonable to expect that the boron nanowires will display some exceptional and interesting properties. A vapor-cluster-solid (VCS) mechanism was proposed to explain the growth of boron nanowires based on our experimental observations.

  12. Large-area detector for position and energy resolving detection of molecular fragments

    International Nuclear Information System (INIS)

    To study reactions like the dissociative recombination in laboratory environment, the MPI-K Heidelberg is building a cryogenic storage ring to prepare molecular ions in their rotational groundstate. The kinematics of these processes can be resolved by a position and energy sensitive detection of the produced molecule fragments. Previously, we described a magnetic calorimeter for position and energy sensitive detection of massive particles. The detector encompasses 16 large-area absorbers, the temperature of each is monitored by a paramagnetic sensor located at a short edge of the absorber. Due to the finite thermal diffusivity in the absorber material, the rise-time of the detector depends on the impact location of the particle. Now, we compare the expected energy resolution and position sensitivity of this detector to experimental results where energy was deposited at different positions. We investigate the impact of backscattering, sputtering and lattice damage effects on the instrumental linewidth by means of Monte Carlo simulations and measurements performed with a similar detector that was irradiated with ions and small molecules. We find that the degradation of energy resolution is less than predicted and show that molecular fragments differing by only 1 mass unit can clearly be resolved.

  13. Large-area detector for position and energy resolving detection of molecular fragments

    Energy Technology Data Exchange (ETDEWEB)

    Gamer, L.; Allgeier, S.; Hengstler, D.; Kempf, S.; Pabinger, A.; Pies, C.; Gastaldo, L.; Fleischmann, A.; Enss, C. [KIP Heidelberg University (Germany); Krantz, C.; Wolf, A. [MPI-K Heidelberg (Germany); Novotny, O. [Columbia Astrophysics Laboratory, New York (United States)

    2014-07-01

    To study reactions like the dissociative recombination in laboratory environment, the MPI-K Heidelberg is building a cryogenic storage ring to prepare molecular ions in their rotational groundstate. The kinematics of these processes can be resolved by a position and energy sensitive detection of the produced molecule fragments. Previously, we described a magnetic calorimeter for position and energy sensitive detection of massive particles. The detector encompasses 16 large-area absorbers, the temperature of each is monitored by a paramagnetic sensor located at a short edge of the absorber. Due to the finite thermal diffusivity in the absorber material, the rise-time of the detector depends on the impact location of the particle. Now, we compare the expected energy resolution and position sensitivity of this detector to experimental results where energy was deposited at different positions. We investigate the impact of backscattering, sputtering and lattice damage effects on the instrumental linewidth by means of Monte Carlo simulations and measurements performed with a similar detector that was irradiated with ions and small molecules. We find that the degradation of energy resolution is less than predicted and show that molecular fragments differing by only 1 mass unit can clearly be resolved.

  14. Full- and Model Scale Study of Wind Effects on a medium-rise Building in a built up Area

    OpenAIRE

    Snæbjörnsson, Jónas Thór

    2002-01-01

    The present study deals with full- and model scale study of wind effects on a medium-rise building in a built up area.Most low-rise building experiments have been based on an isolated building placed in a relatively uniform terrain. Similarly, the very tall buildings often extend out from their environment in a similar fashion. However, buildings are constructed in various shapes and placed in different types of terrain and topography. Therefore, despite a number of studies made in the past, ...

  15. Safety appraisement on building natural gas pipeline over coal mining subsidence area

    Institute of Scientific and Technical Information of China (English)

    GUO Wei-jia; LIU Jin-xiao; WEN Xing-lin

    2007-01-01

    The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures to ensure safe circulation of natural pipeline. Analysed the influence on natural pipeline from coal mining subsidence in the way of pipeline grade variation, vertical curve variation, transverse deformation, horizontal pull and compression deformation and pipe stress variation etc., and described detailed surface subsidence product and its used time among initial phase, active phase and decline phase in the course of surface movement deformation time. In the context of considering surface subsidence that doesn't reach basic latter end and residual subsidence quantity, the text confirmed the calculation method of residual deformation in surface subsidence area, and gave the technological measures about building natural gas pipeline in subsidence area finally.

  16. Capacity building for the effective adoption of renewable energy technologies in rural areas. Experience of India NGOs

    Energy Technology Data Exchange (ETDEWEB)

    Myles, R. [Integrated Sustainable Energy and Ecological Development Association (INSEDA), New Delhi (India)

    2002-07-01

    The experience of NGO network in the promotions of biogas and other low cost RET gadgets, devices, equipments and machines in the rural areas of India, for over two decades, have shown that there are serveral problems yet challenging opportunities in the promotion and implementation of renewable energy technologies in villages. First of all, the field and extension organizations should recognise that these technologies are new and aliens to the rural people, therefore like any other technologies, developed outside the rural environment, RETs are first view with skepticism by the rural community. Even if 100 units of a RE technology are successfully demonstrated, failure of even one could create negative impact within a radius of 30-50 KMs, and its shortcomings are spread like a wild fire. The appropriate technology demonstration backed by systematic capacity building of different stakeholders/actors/players (i.e. Energy Producers, Energy Service Providers and the Energy End Users) is a must for the acceptance and large-scale adoption of RETs in rural areas of the developing countries. The programme funds for the promotion and implementation of RETs should have good percentage earmarked for the capacity building as well as supporting infrastructure for awareness, motivation, promotional and post installation services activities by local field level organizations and NGOs on a long term basis. (orig.)

  17. A Tool for Optimizing the Build Performance of Large Software Code Bases

    OpenAIRE

    Telea, Alexandru; Voinea, Lucian; Kontogiannis, K; Tjortjis, C.; Winter, A.

    2008-01-01

    We present Build Analyzer, a tool that helps developers optimize the build performance of huge systems written in C Due to complex C header dependencies, even small code changes can cause extremely long rebuilds, which are problematic when code is shared and modified by teams of hundreds of individuals. Build Analyzer supports several use cases. For developers, it provides an estimate of the build impact and distribution caused by a given change. For architects, it shows why a build is costly...

  18. Improved time response for large area microchannel plate photomultiplier tubes in fusion diagnostics

    International Nuclear Information System (INIS)

    Fusion diagnostics that utilise high speed scintillators often need to capture a large area of light with a high degree of time accuracy. Microchannel plate (MCP) photomultiplier tubes (PMTs) are recognised as the leading device for capturing fast optical signals. However, when manufactured in their traditional proximity focused construction, the time response performance is reduced as the active area increases. This is due to two main factors: the capacitance of a large anode and the difficulty of obtaining small pore MCPs with a large area. Collaboration between Photek and AWE has produced prototype devices that combine the excellent time response of small area MCP-PMTs with a large active area by replacing the traditional proximity-gap front section with an electro-optically focused photocathode to MCP. We present results from both single and double MCP devices with a 40 mm diameter active area and show simulations for the 100 mm device being built this year

  19. Improved time response for large area microchannel plate photomultiplier tubes in fusion diagnostics

    Science.gov (United States)

    Milnes, J. S.; Horsfield, C. J.; Conneely, T. M.; Howorth, J.

    2014-11-01

    Fusion diagnostics that utilise high speed scintillators often need to capture a large area of light with a high degree of time accuracy. Microchannel plate (MCP) photomultiplier tubes (PMTs) are recognised as the leading device for capturing fast optical signals. However, when manufactured in their traditional proximity focused construction, the time response performance is reduced as the active area increases. This is due to two main factors: the capacitance of a large anode and the difficulty of obtaining small pore MCPs with a large area. Collaboration between Photek and AWE has produced prototype devices that combine the excellent time response of small area MCP-PMTs with a large active area by replacing the traditional proximity-gap front section with an electro-optically focused photocathode to MCP. We present results from both single and double MCP devices with a 40 mm diameter active area and show simulations for the 100 mm device being built this year.

  20. Development of a photogrammetry technique for large-area deformation monitoring in coal mining areas

    International Nuclear Information System (INIS)

    The investigations of ground movements in coal mining areas during the past 10 years have been performed by methods of aerial photogrammetry. The ground points used for the determination of the movement in urban areas are manhole covers. The measurements must be repeated every three or four years. These facts have motivated the development of a new automatic method for measuring photo coordinates. This method is implemented on the Rollei RS1 (Reseau-Scanner Monocomparator. The approximate photo coordinates that are needed for this instrument can be computed from the old ground coordinates of each point. The manhole cover will be first recognised with a sort of template matching. Its central point will then be computed by using an ellipse operator. (orig.)

  1. Change detection-based updating of constructed land in large area

    OpenAIRE

    H. Xing; Chen, J.; Wu, H; Lu, M

    2014-01-01

    Urban development significantly changes constructed land across both urban and rural areas around the world in recent years. It is vital to keep constructed land data "fresh" for its application and development. Change detection with remotely sensed imagery is an effective way to updating land cover in large area. In this paper, the updating requirements of constructed land in large area are analysed. A strategy is proposed to select suitable change detection method from data source,...

  2. Key ingredients needed when building large data processing systems for scientists

    Science.gov (United States)

    Miller, K. C.

    2002-01-01

    Why is building a large science software system so painful? Weren't teams of software engineers supposed to make life easier for scientists? Does it sometimes feel as if it would be easier to write the million lines of code in Fortran 77 yourself? The cause of this dissatisfaction is that many of the needs of the science customer remain hidden in discussions with software engineers until after a system has already been built. In fact, many of the hidden needs of the science customer conflict with stated needs and are therefore very difficult to meet unless they are addressed from the outset in a system's architectural requirements. What's missing is the consideration of a small set of key software properties in initial agreements about the requirements, the design and the cost of the system.

  3. Building community disaster resilience: perspectives from a large urban county department of public health.

    Science.gov (United States)

    Plough, Alonzo; Fielding, Jonathan E; Chandra, Anita; Williams, Malcolm; Eisenman, David; Wells, Kenneth B; Law, Grace Y; Fogleman, Stella; Magaña, Aizita

    2013-07-01

    An emerging approach to public health emergency preparedness and response, community resilience encompasses individual preparedness as well as establishing a supportive social context in communities to withstand and recover from disasters. We examine why building community resilience has become a key component of national policy across multiple federal agencies and discuss the core principles embodied in community resilience theory-specifically, the focus on incorporating equity and social justice considerations in preparedness planning and response. We also examine the challenges of integrating community resilience with traditional public health practices and the importance of developing metrics for evaluation and strategic planning purposes. Using the example of the Los Angeles County Community Disaster Resilience Project, we discuss our experience and perspective from a large urban county to better understand how to implement a community resilience framework in public health practice. PMID:23678937

  4. Suitability assessment of building energy saving technologies for office buildings in cold areas of China based on an assessment framework

    International Nuclear Information System (INIS)

    Highlights: • An assessment method considering economy, environment and technology is proposed. • Office buildings are classified into 3 types and weights are calculated respectively. • BESTs were summed up as 3 suitability levels. • Recommendations are proposed for adopting in design stage. - Abstract: Blind application and extensive copy of building energy saving technologies have been found very common through investigation in China. Emphases should be put on the suitability assessment when selecting and optimizing building energy saving technologies. This paper created an assessment method, namely an assessment framework to assess the suitability level of building energy saving technologies from a holistic point of view. Fuzzy analytic hierarchy process was adopted. 3 factors and 8 sub-factors were included in the framework. The office buildings were classified into 3 types to calculate weights of factors and sub-factors. The assessment framework was established for each type of office buildings. 20 energy saving technologies from surveyed cases was selected as case study. Ranks of suitability level of the assessment objects were obtained for each type of office buildings. The assessment results could be referred when selecting building energy saving technologies in the design stage

  5. Buildings and Terrain of Urban Area Point Cloud Segmentation based on PCL

    International Nuclear Information System (INIS)

    One current problem with laser radar point data classification is building and urban terrain segmentation, this paper proposes a point cloud segmentation method base on PCL libraries. PCL is a large cross-platform open source C++ programming library, which implements a large number of point cloud related efficient data structures and generic algorithms involving point cloud retrieval, filtering, segmentation, registration, feature extraction and curved surface reconstruction, visualization, etc. Due to laser radar point cloud characteristics with large amount of data, unsymmetrical distribution, this paper proposes using the data structure of kd-tree to organize data; then using Voxel Grid filter for point cloud resampling, namely to reduce the amount of point cloud data, and at the same time keep the point cloud shape characteristic; use PCL Segmentation Module, we use a Euclidean Cluster Extraction class with Europe clustering for buildings and ground three-dimensional point cloud segmentation. The experimental results show that this method avoids the multiple copy system existing data needs, saves the program storage space through the call of PCL library method and class, shortens the program compiled time and improves the running speed of the program

  6. Legal and Technical Aspects of Modernization of Land and Buildings Cadastre in Selected Area

    Science.gov (United States)

    Siejka, Monika; Ślusarski, Marek; Mika, Monika

    2015-12-01

    Modernization of the land and buildings cadastre is a set of actions aimed at improving the quality of data collected there. Application in the process of modernization of the sources of information from the land surveying, gives fully satisfactory results. On the other hand the use of photogrammetric measurements is the solution more economical in terms of financial and time. However, there is a danger of obtaining the results which do not meet the standards of accuracy of the border points position. The paper presents an example of the results of the influence of the process of modernizing the land and buildings cadastre for the areas where the source material are cadastral maps in the scale 1: 2000, created on the basis of photomaps or cadastral maps in the scale 1: 2880. An assessment of the suitability of these materials in the process of modernization and their impact on the current form of the land and building cadastre as a public register was made.

  7. Automated Building Extraction from High-Resolution Satellite Imagery in Urban Areas Using Structural, Contextual, and Spectral Information

    Directory of Open Access Journals (Sweden)

    Jin Xiaoying

    2005-01-01

    Full Text Available High-resolution satellite imagery provides an important new data source for building extraction. We demonstrate an integrated strategy for identifying buildings in 1-meter resolution satellite imagery of urban areas. Buildings are extracted using structural, contextual, and spectral information. First, a series of geodesic opening and closing operations are used to build a differential morphological profile (DMP that provides image structural information. Building hypotheses are generated and verified through shape analysis applied to the DMP. Second, shadows are extracted using the DMP to provide reliable contextual information to hypothesize position and size of adjacent buildings. Seed building rectangles are verified and grown on a finely segmented image. Next, bright buildings are extracted using spectral information. The extraction results from the different information sources are combined after independent extraction. Performance evaluation of the building extraction on an urban test site using IKONOS satellite imagery of the City of Columbia, Missouri, is reported. With the combination of structural, contextual, and spectral information, of the building areas are extracted with a quality percentage .

  8. Graphene-based large area dye-sensitized solar cell modules

    Science.gov (United States)

    Casaluci, Simone; Gemmi, Mauro; Pellegrini, Vittorio; di Carlo, Aldo; Bonaccorso, Francesco

    2016-02-01

    We demonstrate spray coating of graphene ink as a viable method for large-area fabrication of graphene-based dye-sensitized solar cell (DSSC) modules. A graphene-based ink produced by liquid phase exfoliation of graphite is spray coated onto a transparent conductive oxide substrate to realize a large area (>90 cm2) semi-transparent (transmittance 44%) counter-electrode (CE) replacing platinum, the standard CE material. The graphene-based CE is successfully integrated in a large-area (43.2 cm2 active area) DSSC module achieving a power conversion efficiency of 3.5%. The approach demonstrated here paves the way to all-printed, flexible, and transparent graphene-based large-area and cost-effective photovoltaic devices on arbitrary substrates.

  9. Research on fiber-based portable large area surface contamination monitor

    International Nuclear Information System (INIS)

    Large area portable surface contamination monitor is suitable searching the hot point, especially in the situations of large contamination area such as work site radioactive monitoring, nuclear facility decommissioning or nuclear emergency response. This paper focus on beta radioactive surface contamination. Through researching upon the detector which is made of large area plastic scintillation coupled with fibers, the first large area plastic scintillation surface contamination monitor was established. The effective area of detector reaches 1200 cm2. The verifying experiments indicates that the detection efficiency to 90Sr-90Y plate source comes to 7%. The results show this kind of detector is competent for beta radioactive surface contamination. This work laid a foundation for research and development of the relative instrument. (authors)

  10. Large ore-concentrated area of uranium deposits and uranium metellogeny

    International Nuclear Information System (INIS)

    The formation of large ore-concentrated are results from the anomalous concentration of multi-mineral resources and large amount of ore materials during the process of geologic evolution history. Different ore-concentrated areas are characterized by different typical mineral resources and typical ore deposits. By taking uranium deposit as an example, the author recognizes 14 large ore-concentrated areas of uranium deposit in the world, and studies the time-space constraints of large ore-concentrated areas of uranium deposits and their relation with geodynamic evolution, and on the above basis, discusses the unusual concentration of ore elements in large ore-concentrated areas of uranium deposits, as well as proposes the characteristics of 'unusual concentration in certain points and areas' and 'explosion metallogeny in a short period of time' of multiple mineral resources. According to the three basic 'links', i.e. 'source, transportation and precipitation', the author proposes the metallogeny of large ore-concentrated areas of uranium deposits. Of them, the study on the deep-source metallogeny, water-rock intereaction of special alkaline fluid and precipitation environment has made a foundation for the establishment of prospecting model of large uranium ore-concentration areas

  11. Control of high natural activity building materials and land areas in the Nordic countries

    International Nuclear Information System (INIS)

    Enhanced levels of natural radioactivity in the ground can cause problems with high concentrations of indoor 222Rn, elevated levels of gamma radiation and natural radioactive elements in drinking water. Of the Nordic countries it is essentially Finland, Norway and Sweden that have problems with enhanced natural radioactivity in the ground and in building materials. Finland and Sweden have among the highest mean 222Rn concentrations in dwellings in the world, 123 Bq m-3 and 108 Bq m-3 with a corresponding mean annual effective dose of about 2 mSv. In Sweden about 500,000 and in Finland and Norway about 200,000 persons get their drinking water from wells drilled in bedrock. The water from a large number of these wells contain elevated levels of naturally occurring radioactive elements, primarily 222Rn. The action levels for 222Rn in dwellings and above-ground workplaces are essentially the same in Finland, Norway and Sweden: 200 Bq m-3 for new buildings and 400 Bq m-3 for existing buildings. For mines and underground excavations, however, there are some differences. The treatment of gamma emitting natural radionuclides in building materials etc. is similar, although there are differences in the degree of control. The action levels for 222Rn in drinking water differ from 100 Bq l-1 to 500 Bq l-1. The action level in Finland has the form of an activity index that restricts also other radioactive nuclides. Denmark has not adopted a formal radon policy and has no recommended or legally binding action levels for 222Rn or any other naturally occurring radionuclides. (author)

  12. Large area substrate for surface enhanced Raman spectroscopy (SERS) using glass-drawing technique

    Science.gov (United States)

    Ivanov, Ilia N.; Simpson, John T.

    2012-06-26

    A method of making a large area substrate comprises drawing a plurality of tubes to form a plurality of drawn tubes, and cutting the plurality of drawn tubes into cut drawn tubes. Each cut drawn tube has a first end and a second end along the longitudinal direction of the respective cut drawn tube. The cut drawn tubes collectively have a predetermined periodicity. The method of making a large area substrate also comprises forming a metal layer on the first ends of the cut drawn tubes to provide a large area substrate.

  13. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and

  14. Methodology for high resolution spatial analysis of the physical flood susceptibility of buildings in large river floodplains

    OpenAIRE

    Blanco-Vogt, Ángela

    2016-01-01

    The impacts of floods on buildings in urban areas are increasing due to the intensification of extreme weather events, unplanned or uncontrolled settlements and the rising vulnerability of assets. There are some approaches available for assessing the flood damage to buildings and critical infrastructure. To this point, however, it is extremely difficult to adapt these methods widely, due to the lack of high resolution classification and characterisation approaches for built structures. To ove...

  15. A study on large area Hamamatsu photomultipliers for Cherenkov neutrino detectors

    International Nuclear Information System (INIS)

    Many of the existing neutrino telescopes use large area photomultipliers integrated into transparent glass vessels to make the detection element called ''optical module''. The characteristics of the photomultipliers have a severe impact on the performance of the whole detectors. This paper describes a large work of characterization of large area photomultipliers performed in the frame of R and D activities of large volume underwater neutrino detectors. Dedicated studies are also reported about noise pulses, super bialkali photocathode photomultipliers, ageing effects, influences of the Earth's magnetic field and on the effects of the external glass vessels on the optical module's noise pulses

  16. Quantification of fossil fuel CO2 at the building/street level for large US cities

    Science.gov (United States)

    Gurney, K. R.; Razlivanov, I. N.; Song, Y.

    2012-12-01

    Quantification of fossil fuel CO2 emissions from the bottom-up perspective is a critical element in emerging plans on a global, integrated, carbon monitoring system (CMS). A space/time explicit emissions data product can act as both a verification and planning system. It can verify atmospheric CO2 measurements (in situ and remote) and offer detailed mitigation information to management authorities in order to optimize the mix of mitigation efforts. Here, we present the Hestia Project, an effort aimed at building a high resolution (eg. building and road link-specific, hourly) fossil fuel CO2 emissions data product for the urban domain as a pilot effort to a CMS. A complete data product has been built for the city of Indianapolis and preliminary quantification has been completed for Los Angeles and Phoenix (see figure). The effort in Indianapolis is now part of a larger effort aimed at a convergent top-down/bottom-up assessment of greenhouse gas emissions, called INFLUX. Our urban-level quantification relies on a mixture of data and modeling structures. We start with the sector-specific Vulcan Project estimate at the mix of geocoded and county-wide levels. The Hestia aim is to distribute the Vulcan result in space and time. Two components take the majority of effort: buildings and onroad emissions. In collaboration with our INFLUX colleagues, we are transporting these high resolution emissions through an atmospheric transport model for a forward comparison of the Hestia data product with atmospheric measurements, collected on aircraft and cell towers. In preparation for a formal urban-scale inversion, these forward comparisons offer insights into both improving our emissions data product and measurement strategies. A key benefit of the approach taken in this study is the tracking and archiving of fuel and process-level detail (eg. combustion process, other pollutants), allowing for a more thorough understanding and analysis of energy throughputs in the urban

  17. Mounting the large-size building blocks of the reactor room structure at the Kozloduj NPP fifth power unit (Bulgaria)

    International Nuclear Information System (INIS)

    Pecularities of the construction of Kozloduj NPP fifth power unit with a WWER-1000 reactor are described. Methods of mounting reactor well, storage pond and underwater reloading well using large-size building blocks are presented. The described methods can be applied for the construction of NPPs with WWER-1000 reactors using a high capacity crane (not less than 200 t) erected in the centre of the reactor building

  18. Development of Residential Prototype Building Models and Analysis System for Large-Scale Energy Efficiency Studies Using EnergyPlus

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V.; Taylor, Zachary T.

    2014-09-10

    ABSTRACT: Recent advances in residential building energy efficiency and codes have resulted in increased interest in detailed residential building energy models using the latest energy simulation software. One of the challenges of developing residential building models to characterize new residential building stock is to allow for flexibility to address variability in house features like geometry, configuration, HVAC systems etc. Researchers solved this problem in a novel way by creating a simulation structure capable of creating fully-functional EnergyPlus batch runs using a completely scalable residential EnergyPlus template system. This system was used to create a set of thirty-two residential prototype building models covering single- and multifamily buildings, four common foundation types and four common heating system types found in the United States (US). A weighting scheme with detailed state-wise and national weighting factors was designed to supplement the residential prototype models. The complete set is designed to represent a majority of new residential construction stock. The entire structure consists of a system of utility programs developed around the core EnergyPlus simulation engine to automate the creation and management of large-scale simulation studies with minimal human effort. The simulation structure and the residential prototype building models have been used for numerous large-scale studies, one of which is briefly discussed in this paper.

  19. Building Extraction from High Resolution Space Images in High Density Residential Areas in the Great Cairo Region

    Directory of Open Access Journals (Sweden)

    Mohamed A. Sherief

    2011-04-01

    Full Text Available This study evaluates a methodology for using IKONOS stereo imagery to determine the height and position of buildings in dense residential areas. The method was tested on three selected sites in an area of 8.5 km long by 7 km wide and covered by two overlapping (97% overlap IKONOS images. The images were oriented using rational function models in addition to ground control points. Buildings were identified using an algorithm that utilized the Digital Surface Model (DSM extracted from the images in addition to the image spectral properties. A digital terrain model was used with the DSM created from the IKONOS stereo imagery to compute building heights. Positional accuracy and building heights were evaluated using corner coordinates extracted from topographic maps and surveyed building heights. The results showed that the average building detection percentage for the test area was 82.6% with an average missing factor of 0.16. When the image rational polynomial coefficients were used to build the image model, results showed a horizontal accuracy of 2.42 and 2.39 m Root Mean Square Error (RMSE for the easting and northing coordinates, respectively. When ground control points were used, the results improved to the sub-meter level. Differences between building heights extracted from the image model and the corresponding heights obtained through traditional ground surveying had a RMSE of 1.05 m.

  20. A new large area scintillator screen for X-ray imaging

    International Nuclear Information System (INIS)

    We report on the development of a new, large area, powdered scintillator screen based on Lu2O3(Eu). As reported earlier, the transparent ceramic form of this material has a very high density of 9.4 g/cm3, a high light output comparable to that of CsI(Tl), and emits in a narrow spectral band centered at about 610 nm. Research into fabrication of this ceramic scintillator in a large area format is currently underway, however the process is not yet practical for large scale production. Here we have explored fabrication of large area screens using precursor powders from which the ceramics are fabricated. To date we have produced up to 16 x 16 cm2 area screens with thickness in the range of 18 mg/cm2. This paper outlines the screen fabrication technique and presents its imaging performance in comparison with a commercial Gd2O2S:Tb (GOS) screen

  1. Ultra large mode area fibers with aperiodic cladding structure for high power single mode lasers

    OpenAIRE

    Roy, Philippe; Dauliat, Romain; Benoit, Aurélien; Darwich, Dia; Kobelke, Jens; Schuster, Kay; Grimm, Stephan; Salin, François; Jamier, Raphaël

    2015-01-01

    This communication presents the latest designs, fabrication steps and first results of large mode area fibres with aperiodic cladding structure for high power singlemode emission. Pre-compensation of thermal loading and first laser emission are detailed.

  2. EnviroAtlas - Percent Large, Medium, and Small Natural Areas for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains the percentage of small, medium, and large natural areas for each Watershed Boundary Dataset (WBD) 12-Digit Hydrologic Unit Code...

  3. Intermodal parametric gain of degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    OpenAIRE

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2013-01-01

    Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process.

  4. Large-Area, UV-Optimized, Back-Illuminated Silicon Photomultiplier Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Large-area (3m2), UV-sensitive focal plane arrays are needed for observation of air showers from ultra-high energy cosmic rays (JEM-EUSO) as well as for...

  5. Large-area low-cost fabrication of complex plasmonic nanostructures for sensing applications

    OpenAIRE

    Zhao, Jun

    2015-01-01

    In this thesis, we introduce hole-mask colloidal lithography and nanosphere lithography techniques for low-cost nanofabrication of large-area (about 1 cm^2) plasmonic nanostructures with different complex shapes. For the first one, we use thin film PMMA-gold hole-masks, which are first prepared with polystyrene colloids, combined with following tilted-angle-rotation evaporation to fabricate large-area randomly deposited plasmonic nanostructures. For the second one, we use hexagonal close-pack...

  6. Prototype tests of a ''jet cell'' drift chamber for large-area muon detection

    International Nuclear Information System (INIS)

    Large-area, high-precision drift chambers, based on the ''jet cell'' concept, have been developed for the muon spectrometer of the ATLAS experiment at LHC. Emphasis is placed on the control and reduction of systematic error in the drift measurement and in the mechanical construction. Results of measurements on prototypes are given. These indicate that a global precision of σ< or∼70 μm is achievable for large-area chambers. (orig.)

  7. Prototype tests of a ``jet cell`` drift chamber for large-area muon detection

    Energy Technology Data Exchange (ETDEWEB)

    Bagnaia, P. [University ``La Sapienza`` and INFN, Rome (Italy); Barberio, E. [Phys. Dep. Calabria University and INFN, Cosenza (Italy); Beker, H. [University ``La Sapienza`` and INFN, Rome (Italy); Bilokon, H. [Laboratori Nationali di Frascati dell`INFN, Frascati (Italy); Bonini, R. [Laboratori Nationali di Frascati dell`INFN, Frascati (Italy); Borisov, A. [Institut Fiziki Vysokikh Ehnergij, Protvino (Russian Federation); Bussmann, K. [CERN, Geneva (Switzerland); Capradossi, G. [University ``La Sapienza`` and INFN, Rome (Italy); Chevalley, J.L. [CERN, Geneva (Switzerland); Chiarella, V. [Laboratori Nationali di Frascati dell`INFN, Frascati (Italy); Ciapetti, G. [University ``La Sapienza`` and INFN, Rome (Italy); Curatolo, M. [Laboratori Nationali di Frascati dell`INFN, Frascati (Italy); Di Tore, G. [CERN, Geneva (Switzerland); Dris, M. [National Technical Univ., Athens (Greece); Esposito, B. [Laboratori Nationali di Frascati dell`INFN, Frascati (Italy); Fabjan, C.W. [CERN, Geneva (Switzerland); Filippas, T. [National Technical Univ., Athens (Greece); Franz, A. [CERN, Geneva (Switzerland); Gaumann, E. [CERN, Geneva (Switzerland); Gayde, J.C. [CERN, Geneva (Switzerland); Gazis, E.N. [National Technical Univ., Athens (Greece); Goret, B. [CERN, Geneva (Switzerland); Goryatchev, V. [Institut Fiziki Vysokikh Ehnergij, Protvino (Russian Federation); Klempt, W. [CERN, Geneva (Switzerland); Kobayashi, T. [University of Tokyo, Tokyo (Japan); Komamiya, S. [University of Tokyo, Tokyo (Japan); Kozhin, A. [Institut Fiziki Vysokikh Ehnergij, Protvino (Russian Federation); Lasseur, C. [CERN, Geneva (Switzerland); Liguori, D. [Phys. Dep. Calabria University and INFN, Cosenza (Italy); Mashimo, T. [University of Tokyo, Tokyo (Japan); Nisati, A. [University ``La Sapienza`` and INFN, Rome (Italy); Passamonti, L. [Laboratori Nationali di Frascati dell`INFN, Frascati (Italy); Perciballi, M. [University ``La Sapienza`` and INFN, Rome (Italy)

    1996-01-21

    Large-area, high-precision drift chambers, based on the ``jet cell`` concept, have been developed for the muon spectrometer of the ATLAS experiment at LHC. Emphasis is placed on the control and reduction of systematic error in the drift measurement and in the mechanical construction. Results of measurements on prototypes are given. These indicate that a global precision of {sigma}large-area chambers. (orig.).

  8. Intermodal parametric gain of degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2013-01-01

    Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process.......Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process....

  9. Assessing the Land Subsidence Governance in Ningbo City: By a Close Study of the Building Collapse at the Strictly Protected Land Subsidence Area

    Science.gov (United States)

    Yu, Xia

    2016-04-01

    Ningbo is a coastal city in East China, its land subsidence problem was noticed in the 1960s. However, scientific management was insufficient at that time, so with the fast city development from the 1980s, groundwater was used by a large amount of small factories, and tall buildings were built on the land. It was in 2008, scientists predicted that if without doing anything to prevent the land from subsiding, the city will be covered by the East Sea in 2030. From then on, the local government implied several policies, such as shut down most of the groundwater pumping wells, set up a new authority to enhance the cooperation among different administration departments, and also set up a land subsidence monitoring center for the city. Recently, it is declared that a Stereo regulatory system of land subsidence governance has been achieved. However, in 2012, a 23-years old building in the city center collapsed. According to the City Planning 2009, this building is located just in the strictly protected land subsidence area. The experts, however, think that land subsidence is not the main reason, since there are many illegal changes to the building during the past 23 years. The aim of my research is to assess the land subsidence governance in Ningbo city. I studied the collapsed building, how it was built, what has changed after building, how the environment changed in this area, and how this area became the strictly protected land subsidence area, and what kind of protections have been made. Actually, during the case study I discuss the land subsidence governance design of Ningbo, and to see what practices and lessons we can learn from this case.

  10. Results of testing the energy dispersive Si detector with large working area

    Science.gov (United States)

    Gogolev, A. S.; Hampai, D.; Khusainov, A. Kh.; Zhukov, M. P.; Dabagov, S. B.; Potylitsyn, A. P.; Liedl, A.; Polese, C.

    2015-07-01

    In this work the testing results for the spectrometer with a large sensitive area developed for the crystal monitoring station of modern hadron accelerator control systems used for the beam collimation are presented. The investigations were carried out at the XLab Frascati LNF laboratory aiming mostly in studying the detector sensitivity uniformity throughout the sensor area.

  11. Development of large area and thin silicon dE/dX detectors

    International Nuclear Information System (INIS)

    The aim of this report is to demonstrate the feasibility of thin dE/dX detectors of large areas with today available ultrathin silicon membranes. With a fast and easy manufacturing procedure, very performant surface barriers with areas up to 1010 mm2 and about 50 μm thick have been realized

  12. Simplified Floor-Area-Based Energy-Moisture-Economic Model for Residential Buildings

    Science.gov (United States)

    Martinez, Luis A.

    2009-01-01

    In the United States, 21% of all energy is used in residential buildings (40% of which is for heating and cooling homes). Promising improvements in residential building energy efficiency are underway such as the Building America Program and the Passive House Concept. The ability of improving energy efficiency in buildings is enhanced by building…

  13. Automatically building large-scale named entity recognition corpora from Chinese Wikipedia

    Institute of Scientific and Technical Information of China (English)

    Jie ZHOU; Bi-cheng LI; Gang CHEN

    2015-01-01

    Named entity recognition (NER) is a core component in many natural language processing applications. Most NER systems rely on supervised machine learning methods, which depend on time-consuming and expensive annotations in different languages and domains. This paper presents a method for automatically building silver-standard NER corpora from Chinese Wikipedia. We refine novel and language-dependent features by exploiting the text and structure of Chinese Wikipedia. To reduce tagging errors caused by entity classification, we design four types of heuristic rules based on the characteristics of Chinese Wikipedia and train a supervised NE classifier, and a combined method is used to improve the precision and coverage. Then, we realize type identification of implicit mention by using boundary information of outgoing links. By selecting the sentences related with the domains of test data, we can train better NER models. In the experiments, large-scale NER corpora containing 2.3 million sentences are built from Chinese Wikipedia. The results show the effectiveness of automatically annotated corpora, and the trained NER models achieve the best performance when combining our silver-standard corpora with gold-standard corpora.

  14. Experimental Investigation considering the Stressed State of some Essential Constructions of Large Hydropower Buildings

    Directory of Open Access Journals (Sweden)

    S.N. Eigenson

    2014-02-01

    Full Text Available The article is concerned with the experimental investigation considering the stressed state of essential constructions of hydropower buildings: the pressure pipeline “fork” of large hydropower unit and elastically restrained heavy arches weakened with round holes. The precise knowledge of the stress-strain state (SSS of the structure during the design phase is essential to the construction’s durability. Analytical methods of calculations, including numerical ones (e.g, finite element method - FEM, are being developed and improved. Experimental methods for studying the stress-strain state of structures on models complement the analytical calculations and combine with them effectively. The research was carried out by the method of photoelasticity "freezing" of deformations using the ability of epoxide polymers to maintain the constant optical anisotropy, caused with loading of the model, after unloading. The results allowed to specify the stress distribution in significant critical structural sections, to evaluate the reliability of estimates of stress concentrations by the holes in arches, fulfilled by finite-element method.

  15. Measurements of indoor thermal environment and energy analysis in a large space building in typical seasons

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chen; Zou, Zhijun; Li, Meiling; Wang, Xin; Huang, Wugang; Yang, Jiangang [University of Shanghai for Science and Technology, Shanghai (China); Li, Wei; Xiao, Xueqin [Shanghai International Gymnastics Stadium, Shanghai (China)

    2007-05-15

    Shanghai International Gymnastics Stadium is the selected object for site-measurement. The site-measurements have been carried out during summer, winter, and the transitional seasons. Their indoor thermal environments were controlled by continuous air-conditioning, intermittent air-conditioning and natural ventilation, respectively. The site-measurement includes outdoor environment (the weather conditions and peripheral hallway), indoor air temperature distribution (the occupant zone temperature, radial temperature near upper openings and the vertical temperature distributions, etc.), and the heat balance of air-conditioning system, etc. It is found that temperature stratification in winter with air-conditioning is most obvious. The maximum difference of vertical temperature is 15{sup o}C in winter. The second largest one is 12{sup o}C in summer, and less than 2{sup o}C in the transitional season. The results of measurements indicate that it is different in the characteristics on energy saving of upper openings during the different seasons. With heat balance measurements, it is discovered that the roof load and ventilated and infiltrated load account for larger percentages in terms of cooling and heating load. In this paper, many discussions on the results of site measurements show some characteristics and regulations of indoor thermal environment in large space building. (author)

  16. A facility for the test of large area muon chambers at high rate

    OpenAIRE

    Agosteo, S.; Altieri, S.; Belli, G; Bonifas, A.; Carabelli, V.; Gatignon, L.; Hessey, N.; Maggi, M; Peigneux, J. P.; Reithler, H; Silari, M; Vitulo, P.; Wegner, M.

    2000-01-01

    Operation of large area muon detectors at the future Large Hadron Collider (LHC) will be characterized by large sustained hit rates over the whole area, reaching the range of kHz/\\scm. We describe a dedicated test zone built at CERN to test the performance and the aging of the muon chambers currently under development. A radioactive source delivers photons causing the sustained rate of random hits, while a narrow beam of high energy muons is used to directly calibrate the detector performance...

  17. ENERGY DEMANDS OF THE EXISTING COLLECTIVE BUILDINGS WITH BEARING STRUCTURE OF LARGE PRECAST CONCRETE PANELS FROM TIMISOARA

    Directory of Open Access Journals (Sweden)

    Pescari S.

    2015-05-01

    Full Text Available One of the targets of EU Directives on the energy performance of buildings is to reduce the energy consumption of the existing buildings by finding efficient solutions for thermal rehabilitation. In order to find the adequate solutions, the first step is to establish the current state of the buildings and to determine their actual energy consumption. The current paper aims to present the energy demands of the existing buildings with bearing structure of large precast concrete panels in the city of Timisoara. Timisoara is one of the most important cities in the west side of Romania, being on the third place in terms of size and economic development. The Census of Population and Housing of 2011 states that Timisoara has about 127841 private dwellings and 60 percent of them are collective buildings. Energy demand values of the existing buildings with bearing structure of large precast concrete panels in Timisoara, in their current condition, are higher than the accepted values provided in the Romanian normative, C107. The difference between these two values can reach up to 300 percent.

  18. Study of power coupling experiments in a large-area transformer coupled plasma source

    International Nuclear Information System (INIS)

    A large-area transformer coupled plasma (TCP) source has been designed and constructed. In this design, a plasma generation chamber and a RF (Radio-Frequency) antenna chamber have been separated with dielectric material, and differentially pumped to accommodate large-area, relatively thin dielectric window against mechanical pressures. With large diameter (78cm) chamber, low frequency (4-5MHz) RF source has been chosen. By calculating plasma impedance from TCPRP code based on 2D heating theory, the diameter of a single-turn copper coil antenna was optimized to provide high-density plasmas in large area. Also the impedance matching circuit of this large-area TCP source has been designed from the calculated plasma impedance. Large-area helium plasma was successfully generated and used to study power coupling in this source using the single-turn antenna. E-H transition phenomenon was observed, and threshold current was measured. Threshold current and power were measured to be lower at low pressure than at high pressure, and look to be linear with pressure. In H-mode antenna impedance and reactance decrease as RF power increases. This means that increased mutual inductance between antenna and plasma loop decreases primary side inductance as plasma density increase. Power transfer is more efficient at low pressure than high pressure. From these results, optimum pressure range is observed to be 1-10mTorr

  19. Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, Jeffrey L

    2009-05-22

    Neutron scattering is a powerful technique that is critically important for materials science and structural biology applications. The knowledge gained from past developments has resulted in far-reaching advances in engineering, pharmaceutical and biotechnology industries, to name a few. New facilities for neutron generation at much higher flux, such as the SNS at Oak Ridge, TN, will greatly enhance the capabilities of neutron scattering, with benefits that extend to many fields and include, for example, development of improved drug therapies and materials that are stronger, longer-lasting, and more impact-resistant. In order to fully realize this enhanced potential, however, higher neutron rates must be met with improved detection capabilities, particularly higher count rate capability in large size detectors, while maintaining practicality. We have developed a neutron detector with the technical and economic advantages to accomplish this goal. This new detector has a large sensitive area, offers 3D spatial resolution, high sensitivity and high count rate capability, and it is economical and practical to produce. The proposed detector technology is based on B-10 thin film conversion of neutrons in long straw-like gas detectors. A stack of many such detectors, each 1 meter in length, and 4 mm in diameter, has a stopping power that exceeds that of He-3 gas, contained at practical pressures within an area detector. With simple electronic readout methods, straw detector arrays can provide spatial resolution of 4 mm FWHM or better, and since an array detector of such form consists of several thousand individual elements per square meter, count rates in a 1 m^2 detector can reach 2?10^7 cps. Moreover, each individual event can be timetagged with a time resolution of less than 0.1 ?sec, allowing accurate identification of neutron energy by time of flight. Considering basic elemental cost, this novel neutron imaging detector can be commercially produced economically

  20. Very large area YBa2Cu3O7-δ film deposition

    International Nuclear Information System (INIS)

    Large area deposition of YBa2Cu3O7-δ is desirable for cost-effective production of thin superconducting films at larger scale. The authors' technique of thermal co-evaporation should be particularly well suited for this goal because it is intrinsically homogeneous. They have achieved large area deposition by using a rotating disk heater with an oxygen pocket. This arrangement allows for intermittent metal deposition and oxidation in spatially separated zones. Here they present an improved version of this deposition scheme with which they fabricate high quality YBCO films on an area which is 9 inches in diameter. The area is used for simultaneous deposition on smaller wafers, e.g. 12 wafers of 2 inches, or for large sapphire wafers of 8 inches

  1. CVD diamond wafers as large-area thermoluminescence detectors for measuring the spatial distribution of dose

    International Nuclear Information System (INIS)

    The applicability of large-area CVD diamond wafers (diameter about 5 cm, thickness about 0.1 mm), read out as thermoluminescence (TL) detectors, for assessing two-dimensional (2-D) dose distribution over their area, was investigated. To obtain 2-D TL images, a special TL reader equipped with large-area planchet and a CCD camera instead of the usual PM tube was developed. Several 2-D TL images: of an alpha source (Am-241), a Ra-226 needle source and a Ru-106 ophthalmic applicator, were measured and high-resolution digital images obtained. Our preliminary results demonstrate the potential capability of large-area CVD diamond wafers, read out as TL detectors, in 2-D dosimetry for medical applications. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. BLOCK-MODULE METHOD FOR DESIGNING RESIDENTIAL BUILDINGS OF RURAL AREA IN HAINAN PROVINCE

    Directory of Open Access Journals (Sweden)

    Fan Jinyong

    2009-01-01

    Full Text Available The most widely-spread type of a rural dwelling-house in the Hainan province presenting the most populated part of China is a «Siheyuan» country estate. Its lay-out structure contains an open internal courtyard and all the buildings are practically always located symmetrically relative to a central axis on the sides of the courtyard. The Siheyuan composition permits to divide it in elements which are convenient for a separate construction and for being connected in multi-element block-schemes.  In this connection the designing block-module method can be recommended as the most prospective one for improvement of the methodology for designing rural dwelling houses. Their large-scale construction on the valley territories of the Hainan province is planned by the leadership of the People’s Republic of China. 

  3. National Ignition Facility subsystem design requirements laser and target area building (LTAB) SSDR 1.2.2.1

    International Nuclear Information System (INIS)

    This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements for the conventional building systems and subsystems of the Laser and Target Area Building (LTAB), including those that house and support the operation of high-energy laser equipment and the operational flow of personnel and materials throughout the facility. This SSDR addresses the following subsystems associated with the LTAB: Building structural systems for the Target Bay, Switchyards, Diagnostic Building, Decontamination Area, Laser Bays, Capacitor Bays and Operations Support Area, and the necessary space associated with building-support equipment; Architectural building features associated with housing the space and with the operational cleanliness of the functional operation of the facilities; Heating, Ventilating, and Air Conditioning (HVAC) systems for maintaining a clean and thermally stable ambient environment within the facilities; Plumbing systems that provide potable water and sanitary facilities for the occupants, plus stormwater drainage for transporting rainwater; Fire Protection systems that guard against fire damage to the facilities and their contents; Material handling systems for transporting personnel and heavy materials within the building areas; Mechanical process piping systems for liquids and gases that provide cooling and other service to experimental laser equipment and components; Electrical power and grounding systems that provide service and standby power to building and experimental equipment, including lighting distribution and communications systems for the facilities; Instrumentation and control systems that ensure the safe operation of conventional facilities systems, such as those listed above. Detailed requirements for building subsystems that are not addressed in this document (such as specific sizes, locations, or capacities) are included in detail-level NIP Project Interface Control Documents (ICDS)

  4. Development of broadband X-ray interference lithography large area exposure system.

    Science.gov (United States)

    Xue, Chaofan; Wu, Yanqing; Zhu, Fangyuan; Yang, Shumin; Liu, Haigang; Zhao, Jun; Wang, Liansheng; Tai, Renzhong

    2016-04-01

    The single-exposure patterned area is about several 10(2) × 10(2) μm(2) which is mainly decided by the mask area in multi-beam X-ray interference lithography (XIL). The exposure area is difficult to stitch to a larger one because the patterned area is surrounded by 0th diffraction exposure areas. To block the 0th diffraction beams precisely and effectively, a new large area exposure technology is developed in the Shanghai Synchrotron Radiation Facility by applying an order-sorting aperture with a new in situ monitoring scheme in the XIL system. The patterned area could be stitched readily up to several square centimeters and even bigger by this technology. PMID:27131667

  5. In-situ device integration of large-area patterned organic nanowire arrays for high-performance optical sensors.

    Science.gov (United States)

    Wu, Yiming; Zhang, Xiujuan; Pan, Huanhuan; Deng, Wei; Zhang, Xiaohong; Zhang, Xiwei; Jie, Jiansheng

    2013-01-01

    Single-crystalline organic nanowires (NWs) are important building blocks for future low-cost and efficient nano-optoelectronic devices due to their extraordinary properties. However, it remains a critical challenge to achieve large-scale organic NW array assembly and device integration. Herein, we demonstrate a feasible one-step method for large-area patterned growth of cross-aligned single-crystalline organic NW arrays and their in-situ device integration for optical image sensors. The integrated image sensor circuitry contained a 10 × 10 pixel array in an area of 1.3 × 1.3 mm(2), showing high spatial resolution, excellent stability and reproducibility. More importantly, 100% of the pixels successfully operated at a high response speed and relatively small pixel-to-pixel variation. The high yield and high spatial resolution of the operational pixels, along with the high integration level of the device, clearly demonstrate the great potential of the one-step organic NW array growth and device construction approach for large-scale optoelectronic device integration. PMID:24287887

  6. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots.

    Science.gov (United States)

    Meinardi, Francesco; McDaniel, Hunter; Carulli, Francesco; Colombo, Annalisa; Velizhanin, Kirill A; Makarov, Nikolay S; Simonutti, Roberto; Klimov, Victor I; Brovelli, Sergio

    2015-10-01

    Luminescent solar concentrators serving as semitransparent photovoltaic windows could become an important element in net zero energy consumption buildings of the future. Colloidal quantum dots are promising materials for luminescent solar concentrators as they can be engineered to provide the large Stokes shift necessary for suppressing reabsorption losses in large-area devices. Existing Stokes-shift-engineered quantum dots allow for only partial coverage of the solar spectrum, which limits their light-harvesting ability and leads to colouring of the luminescent solar concentrators, complicating their use in architecture. Here, we use quantum dots of ternary I-III-VI2 semiconductors to realize the first large-area quantum dot-luminescent solar concentrators free of toxic elements, with reduced reabsorption and extended coverage of the solar spectrum. By incorporating CuInSexS2-x quantum dots into photo-polymerized poly(lauryl methacrylate), we obtain freestanding, colourless slabs that introduce no distortion to perceived colours and are thus well suited for the realization of photovoltaic windows. Thanks to the suppressed reabsorption and high emission efficiencies of the quantum dots, we achieve an optical power efficiency of 3.2%. Ultrafast spectroscopy studies suggest that the Stokes-shifted emission involves a conduction-band electron and a hole residing in an intragap state associated with a native defect. PMID:26301902

  7. Building an Undergraduate Book Approval Plan for a Large Academic Library

    Directory of Open Access Journals (Sweden)

    Denise Koufogiannakis

    2007-05-01

    Full Text Available The University of Alberta Libraries (UAL, working with two book vendors, created large-scale undergraduate book approval plans to deliver new publications. Detailed selections profiles were created for many subject areas, designed to deliver books that would have been obvious choices by subject selectors. More than 5800 monographs were received through the book approval plans during the pilot period. These volumes proved to be highly relevant to users, showing twice as much circulation as other monographs acquired during the same time period. Goals achieved through this project include: release of selectors’ time from routine work, systematic acquisition of a broadly based high-demand undergraduate collection and faster delivery of undergraduate materials. This successful program will be expanded and incorporated into UAL’s normal acquisitions processes for undergraduate materials.

  8. Synthesis of Large Area Graphene for High Performance in Flexible Optoelectronic Devices

    Science.gov (United States)

    Polat, Emre O.; Balci, Osman; Kakenov, Nurbek; Uzlu, Hasan Burkay; Kocabas, Coskun; Dahiya, Ravinder

    2015-11-01

    This work demonstrates an attractive low-cost route to obtain large area and high-quality graphene films by using the ultra-smooth copper foils which are typically used as the negative electrodes in lithium-ion batteries. We first compared the electronic transport properties of our new graphene film with the one synthesized by using commonly used standard copper foils in chemical vapor deposition (CVD). We observed a stark improvement in the electrical performance of the transistors realized on our graphene films. To study the optical properties on large area, we transferred CVD based graphene to transparent flexible substrates using hot lamination method and performed large area optical scanning. We demonstrate the promise of our high quality graphene films for large areas with ~400 cm2 flexible optical modulators. We obtained a profound light modulation over a broad spectrum by using the fabricated large area transparent graphene supercapacitors and we compared the performance of our devices with the one based on graphene from standard copper. We propose that the copper foils used in the lithium-ion batteries could be used to obtain high-quality graphene at much lower-cost, with the improved performance of electrical transport and optical properties in the devices made from them.

  9. Synthesis of Large Area Graphene for High Performance in Flexible Optoelectronic Devices.

    Science.gov (United States)

    Polat, Emre O; Balci, Osman; Kakenov, Nurbek; Uzlu, Hasan Burkay; Kocabas, Coskun; Dahiya, Ravinder

    2015-01-01

    This work demonstrates an attractive low-cost route to obtain large area and high-quality graphene films by using the ultra-smooth copper foils which are typically used as the negative electrodes in lithium-ion batteries. We first compared the electronic transport properties of our new graphene film with the one synthesized by using commonly used standard copper foils in chemical vapor deposition (CVD). We observed a stark improvement in the electrical performance of the transistors realized on our graphene films. To study the optical properties on large area, we transferred CVD based graphene to transparent flexible substrates using hot lamination method and performed large area optical scanning. We demonstrate the promise of our high quality graphene films for large areas with ~400 cm(2) flexible optical modulators. We obtained a profound light modulation over a broad spectrum by using the fabricated large area transparent graphene supercapacitors and we compared the performance of our devices with the one based on graphene from standard copper. We propose that the copper foils used in the lithium-ion batteries could be used to obtain high-quality graphene at much lower-cost, with the improved performance of electrical transport and optical properties in the devices made from them. PMID:26578425

  10. Enabling the 2nd Generation in Space: Building Blocks for Large Scale Space Endeavours

    Science.gov (United States)

    Barnhardt, D.; Garretson, P.; Will, P.

    Today the world operates within a "first generation" space industrial enterprise, i.e. all industry is on Earth, all value from space is from bits (data essentially), and the focus is Earth-centric, with very limited parts of our population and industry participating in space. We are limited in access, manoeuvring, on-orbit servicing, in-space power, in-space manufacturing and assembly. The transition to a "Starship culture" requires the Earth to progress to a "second generation" space industrial base, which implies the need to expand the economic sphere of activity of mankind outside of an Earth-centric zone and into CIS-lunar space and beyond, with an equal ability to tap the indigenous resources in space (energy, location, materials) that will contribute to an expanding space economy. Right now, there is no comfortable place for space applications that are not discovery science, exploration, military, or established earth bound services. For the most part, space applications leave out -- or at least leave nebulous, unconsolidated, and without a critical mass -- programs and development efforts for infrastructure, industrialization, space resources (survey and process maturation), non-traditional and persistent security situational awareness, and global utilities -- all of which, to a far greater extent than a discovery and exploration program, may help determine the elements of a 2nd generation space capability. We propose a focus to seed the pre-competitive research that will enable global industry to develop the necessary competencies that we currently lack to build large scale space structures on-orbit, that in turn would lay the foundation for long duration spacecraft travel (i.e. key technologies in access, manoeuvrability, etc.). This paper will posit a vision-to-reality for a step wise approach to the types of activities the US and global space providers could embark upon to lay the foundation for the 2nd generation of Earth in space.

  11. Fast and large-area growth of uniform MoS2 monolayers on molybdenum foils

    Science.gov (United States)

    Tai, Guoan; Zeng, Tian; Yu, Jin; Zhou, Jianxin; You, Yuncheng; Wang, Xufeng; Wu, Hongrong; Sun, Xu; Hu, Tingsong; Guo, Wanlin

    2016-01-01

    A controllable synthesis of two-dimensional crystal monolayers in a large area is a prerequisite for potential applications, but the growth of transition metal dichalcogenide monolayers in a large area with spatial homogeneity remains a great challenge. Here we report a novel and efficient method to fabricate large-scale MoS2 monolayers by direct sulfurization of pre-annealed molybdenum foil surfaces with large grain boundaries of more than 50 μm in size at elevated temperatures. Continuous MoS2 monolayers can be formed uniformly by sulfurizing the Mo foils in sulfur vapor at 600 °C within 1 min. At a lower temperature even down to 500 °C, uniform MoS2 monolayers can still be obtained but in a much longer sulfurizing duration. It is demonstrated that the formed monolayers can be nondestructively transferred onto arbitrary substrates by removing the Mo foil using diluted ferric chloride solution and can be successfully fabricated into photodetectors. The results show a novel avenue to efficiently fabricate two-dimensional crystals in a large area in a highly controllable way and should have great potential for the development of large-scale applications of two-dimensional crystals in electrophotonic systems.A controllable synthesis of two-dimensional crystal monolayers in a large area is a prerequisite for potential applications, but the growth of transition metal dichalcogenide monolayers in a large area with spatial homogeneity remains a great challenge. Here we report a novel and efficient method to fabricate large-scale MoS2 monolayers by direct sulfurization of pre-annealed molybdenum foil surfaces with large grain boundaries of more than 50 μm in size at elevated temperatures. Continuous MoS2 monolayers can be formed uniformly by sulfurizing the Mo foils in sulfur vapor at 600 °C within 1 min. At a lower temperature even down to 500 °C, uniform MoS2 monolayers can still be obtained but in a much longer sulfurizing duration. It is demonstrated that the

  12. Productivity and efficiency of economic activity of the Lower Silesia's large area farms in comparison with other large area farms in Poland

    Directory of Open Access Journals (Sweden)

    Stanisław Minta

    2009-01-01

    Full Text Available The paper shows economical and financial situation of the agricultural companies which have most of the grounds in lease. Analysed objects were settled on Lower Silesia (the province in the south – west Poland. The main part of the results of research was about productivity and efficiency of economic resources in these objects. The research was made in years 2000-2002. The results of research in analyzed Lower Silesia’s companies were compared with the best Polish large area farms in order of law and organisation forms: leased farms, private farms and partnerships of Polish public agency AWRSP.

  13. Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Peng; Yin, Rongxin; Brown, Carrie; Kim, DongEun

    2009-06-01

    The potential for using building thermal mass for load shifting and peak energy demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. Previous Lawrence Berkeley National Laboratory research has demonstrated that the approach is very effective in cool and moderately warm climate conditions (California Climate Zones 2-4). However, this method had not been tested in hotter climate zones. This project studied the potential of pre-cooling the building early in the morning and increasing temperature setpoints during peak hours to reduce cooling-related demand in two typical office buildings in hotter California climates ? one in Visalia (CEC Climate Zone 13) and the other in San Bernardino (CEC Climate Zone 10). The conclusion of the work to date is that pre-cooling in hotter climates has similar potential to that seen previously in cool and moderate climates. All other factors being equal, results to date indicate that pre-cooling increases the depth (kW) and duration (kWh) of the possible demand shed of a given building. The effectiveness of night pre-cooling in typical office building under hot weather conditions is very limited. However, night pre-cooling is helpful for office buildings with an undersized HVAC system. Further work is required to duplicate the tests in other typical buildings and in other hot climate zones and prove that pre-cooling is truly effective.

  14. Capacity building and policy development in Belize marine protected areas, an example for Caribbean integrated coastal management

    OpenAIRE

    Crabbe, M. James C.

    2014-01-01

    Sustainability science can, through capacity building, allow for integrated stakeholder management of the vital Caribbean marine ecosystems. We did a capacity building exercise in two major coral reef areas in Southern Belize. The key outcome was a six-month personal/professional action plan developed by each participant about tactics for leading, educating and supporting issues regarding sustainable development and tactics for collaboration to influence policy decisions. Our results can be a...

  15. Low-energy district heating in energy-efficient building areas

    International Nuclear Information System (INIS)

    This paper presents an innovative low-energy district heating (DH) concept based on low-temperature operation. The decreased heating demand from low-energy buildings affects the cost-effectiveness of traditionally-designed DH systems, so we carried out a case study of the annual energy performance of a low-energy network for low-energy houses in Denmark. We took into account the effect of human behaviour on energy demand, the effect of the number of buildings connected to the network, a socio-economic comparison with ground source heat pumps, and opportunities for the optimization of the network design, and operational temperature and pressure. In the north-European climate, we found that human behaviour can lead to 50% higher heating demand and 60% higher heating power than those anticipated in the reference values in the standard calculations for energy demand patterns in energy-efficient buildings. This considerable impact of human behaviour should clearly be included in energy simulations. We also showed that low-energy DH systems are robust systems that ensure security of supply for each customer in a cost-effective and environmentally friendly way in areas with linear heat density down to 0.20 MWh/(m year), and that the levelized cost of energy in low-energy DH supply is competitive with a scenario based on ground source heat pumps. The investment costs represent up to three quarters of the overall expenditure, over a time horizon of 30 years; so, the implementation of an energy system that fully relies on renewable energy needs substantial capital investment, but in the long term this is sustainable from the environmental and socio-economic points of view. Having demonstrated the value of the low-energy DH concept, we evaluated various possible designs with the aim of finding the optimal solution with regard to economic and energy efficiency issues. Here we showed the advantage of low supply and return temperatures, their effect on energy efficiency and that

  16. A new large-area 2π proportional counting system at NIST

    International Nuclear Information System (INIS)

    A new large-area gas flow multi-wire proportional counter has been developed to replace the large-area counting system that is currently in use at the National Institute of Standards and Technology (NIST) and several Department of Defense counting facilities for calibrating large-area alpha and beta sources. The current systems are over 20 years old and part replacement is very difficult. The new systems have been built using specifications that will improve on the current systems and allow collecting data at pressures up to 0.2 MPa. The ability to operate at higher pressures will increase the beta efficiency of the counter and lead to improved precision in the final measured results. Comparison of the results from the old and new systems is presented for both alpha and beta sources

  17. Uniformity of large-area bilayer graphene grown by chemical vapor deposition

    Science.gov (United States)

    Sheng, Yuewen; Rong, Youmin; He, Zhengyu; Fan, Ye; Warner, Jamie H.

    2015-10-01

    Graphene grown by chemical vapor deposition (CVD) on copper foils is a viable method for large area films for transparent conducting electrode (TCE) applications. We examine the spatial uniformity of large area films on the centimeter scale when transferred onto both Si substrates with 300 nm oxide and flexible transparent polyethylene terephthalate substrates. A difference in the quality of graphene, as measured by the sheet resistance and transparency, is found for the areas at the edges of large sheets that depends on the supporting boat used for the CVD growth. Bilayer graphene is grown with uniform properties on the centimeter scale when a flat support is used for CVD growth. The flat support provides consistent delivery of precursor to the copper catalyst for graphene growth. These results provide important insights into the upscaling of CVD methods for growing high quality graphene and its transfer onto flexible substrates for potential applications as a TCE.

  18. Government management and implementation of national real-time energy monitoring system for China large-scale public building

    International Nuclear Information System (INIS)

    The supervision of energy efficiency in government office buildings and large-scale public buildings (GOBLPB) is the main embodiment for government implementation of Public Administration in the fields of resource saving and environmental protection. It is significant for China government to achieve the target: reducing building energy consumption by 11 million ton standard coal before 2010. In the framework of a national demonstration project concerning the energy management system, Shenzhen Municipality has been selected for the implementation of the system. A data acquisition system and a methodology concerning the energy consumption of the GOBLPB have been developed. This paper summarizes the various features of the system incorporated into identifying the building consumes and energy saving potential. This paper also defines the methods to achieve the real-time monitoring and diagnosis: the meters installed at each building, the data transmitted through internet to a center server, the analysis and unification at the center server and the publication through web. Furthermore, this paper introduces the plans to implement the system and to extend countrywide. Finally, this paper presents some measurements to achieve a common benefit community in implementation of building energy efficiency supervisory system on GOBLPB in its construction, reconstruction or operation stages.

  19. Large Area Silicon Tracking Detectors with Fast Signal Readout for the Large Hadron Collider (LHC) at CERN

    CERN Document Server

    Köstner, S

    2005-01-01

    The Standard Model of elementary particles, which is summarized briefly in the second chapter, incorporates a number of successful theories to explain the nature and consistency of matter. However not all building blocks of this model could yet be tested by experiment. To confirm existing theories and to improve nowadays understanding of matter a new machine is currently being built at CERN, the Large Hadron Collider (LHC), described in the third chapter. LHC is a proton-proton collider which will reach unprecedented luminosities and center of mass energies. Five experiments are attached to it to give answers to questions like the existence of the Higgs meson, which allows to explain the mass content of matter, and the origin of CP-violation, which plays an important role in the baryogenesis of the universe. Supersymmetric theories, proposing a bosonic superpartner for each fermion and vice versa, will be tested. By colliding heavy ions, high energy and particle densities can be achieved and probed. This stat...

  20. The use of large area silicon sensors for thermal neutron detection

    International Nuclear Information System (INIS)

    The use of large area planar silicon detectors coupled with gadolinium foils has been investigated to develop a thermal neutron detector having a large area-efficiency (Aε) product. Noise levels due to high detector capacitance limit the size of silicon detectors that can be utilized. Calculations using the Monte Carlo code, MCNP, have been made to determine the variation of intrinsic detection efficiency as a function of the discriminator threshold level required to eliminate the detector noise. Measurements of the noise levels for planar silicon detectors of various resistivities (400, 3000 and 5000 Ω cm) have been made and the optimal detector area-efficiency products have been determined. The response of a Si-Gd-Si sandwich detector with areas between 1 cm2 and 10.5 cm2 is presented and the effects of the detector capacitance and reverse current are discussed. ((orig.))

  1. Data Acquisition and Control System for High-Performance Large-Area CCD Systems

    CERN Document Server

    Afanasieva, I V

    2015-01-01

    Astronomical CCD systems based on second-generation DINACON controllers were developed at the SAO RAS Advanced Design Laboratory more than seven years ago and since then have been in constant operation at the 6-meter and Zeiss-1000 telescopes. Such systems use monolithic large-area CCDs. We describe the software developed for the control of a family of large-area CCD systems equipped with a DINACON-II controller. The software suite serves for acquisition, primary reduction, visualization, and storage of video data, and also for the control, setup, and diagnostics of the CCD system.

  2. Large-Area Binary Blazed Grating Coupler between Nanophotonic Waveguide and LED

    OpenAIRE

    Hongqiang Li; Wenqian Zhou; Meiling Zhang; Yu Liu; Cheng Zhang; Enbang Li; Changyun Miao; Chunxiao Tang

    2014-01-01

    A large-area binary blazed grating coupler for the arrayed waveguide grating (AWG) demodulation integrated microsystem on silicon-on-insulator (SOI) was designed for the first time. Through the coupler, light can be coupled into the SOI waveguide from the InP-based C-band LED for the AWG demodulation integrated microsystem to function. Both the length and width of the grating coupler are 360 μm, as large as the InP-based C-band LED light emitting area in the system. The coupler was designed a...

  3. Quantum efficiency measurement system for large area CsI photodetectors

    CERN Document Server

    Cusanno, F; Colilli, S; Crateri, R; Fratoni, R; Frullani, S; Garibaldi, F; Giuliani, F; Gricia, M; Lucentini, M; Mostarda, A; Santavenere, F; Veneroni, P; Breuer, H; Iodice, M; Urciuoli, G M; De Cataldo, G; De Leo, R; Lagamba, L; Braem, André

    2003-01-01

    A proximity focusing freon/CsI RICH detector has been built for kaon physics at Thomas Jefferson National Accelerator Facility (TJNAF or Jefferson Lab), Hall A. The Cherenkov photons are detected by a UV photosensitive CsI film which has been obtained by vacuum evaporation. A dedicated evaporation facility for large area photocathodes has been built for this task. A measuring system has been built to allow the evaluation of the absolute quantum efficiency (QE) just after the evaporation. The evaporation facility is described here, as well as the quantum efficiency measurement device. Results of the QE on-line measurements, for the first time on large area photocathodes, are reported.

  4. Tailoring the parametric gain in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2013-01-01

    The spectral width of parametric gain peaks due to degenerate four-wave mixing is investigated numerically in large-mode-area hybrid photonic crystal fibers. The width is varied for a maintained pump wavelength and gain maximum position by tailoring the dispersion.......The spectral width of parametric gain peaks due to degenerate four-wave mixing is investigated numerically in large-mode-area hybrid photonic crystal fibers. The width is varied for a maintained pump wavelength and gain maximum position by tailoring the dispersion....

  5. A novel method for the activity measurement of large-area beta reference sources.

    Science.gov (United States)

    Stanga, D; De Felice, P; Keightley, J; Capogni, M; Ioan, M R

    2016-03-01

    A novel method has been developed for the activity measurement of large-area beta reference sources. It makes use of two emission rate measurements and is based on the weak dependence between the source activity and the activity distribution for a given value of transmission coefficient. The method was checked experimentally by measuring the activity of two ((60)Co and (137)Cs) large-area reference sources constructed from anodized aluminum foils. Measurement results were compared with the activity values measured by gamma spectrometry. For each source, they agree within one standard uncertainty and also agree within the same limits with the certified values of the source activity. PMID:26701656

  6. System and method for interfacing large-area electronics with integrated circuit devices

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Naveen; Glisic, Branko; Sturm, James; Wagner, Sigurd

    2016-07-12

    A system and method for interfacing large-area electronics with integrated circuit devices is provided. The system may be implemented in an electronic device including a large area electronic (LAE) device disposed on a substrate. An integrated circuit IC is disposed on the substrate. A non-contact interface is disposed on the substrate and coupled between the LAE device and the IC. The non-contact interface is configured to provide at least one of a data acquisition path or control path between the LAE device and the IC.

  7. Development of large-area composite stilbene scintillator for fast neutron detection

    International Nuclear Information System (INIS)

    Fast neutron applications have gained popularity with the growth of fast neutron production facilities. Covering a larger area and/or wider angle can be one of the advantages of a fast neutron detector. In the present study, a large-area composite stilbene scintillator with the dimensions of 200 mm (D) × 20 mm (H) was fabricated to examine its scintillation properties and to evaluate its applicability to fast neutron detection. The detector response of small- and large-area composite stilbene scintillators for neutrons and gamma rays was measured and compared with that of commercial and small single-crystal stilbene scintillators. To this end, the response of each scintillator was measured for radioisotopes as well as mono-energetic neutrons generated by a Tandem accelerator. The neutron–gamma separation performance of the large-area composite stilbene scintillator was evaluated in terms of figure-of-merit (FoM) using the digital pulse shape discrimination method. The composite stilbene scintillator showed good energy linearity, as determined from its recoil proton spectra, with reasonable n–γ separation capability. The results indicated that the composite stilbene scintillator could be applied to the field of fast neutron detection, especially when a large area and/or a wide angle is to be covered and could be a good alternative to liquid scintillators. (author)

  8. Assessment of technical and economical viability for large-scale conversion of single family residential buildings into zero energy buildings in Brazil: Climatic and cultural considerations

    International Nuclear Information System (INIS)

    This paper addresses the viability of converting single-family residential buildings in Brazil into zero energy buildings (ZEBs). The European Union and the United States aim ZEBs implementation to address ‘peak oil’ and environmental concerns. However, literature shows no agreement on a consensual definition of ZEB. Seeking a Brazilian ZEB definition, this paper addresses PassivHaus and thermal comfort standards for hot climates, source metrics for ZEB, Brazil′s energy mix, residential energy end uses and Brazilian legal framework for residential photovoltaic (PV) generation. Internal Rate of Return for PV systems in two Brazilian cities is calculated under various scenarios. It shows grid parity was reached from April 2012 to November 2012 assuming residential electric tariffs of that period and the financial conditions given by the Brazilian government for the construction of new dams in the Amazon and the lowest rates offered by Brazilian banks to private individuals. Governmental decision to lower electric residential tariffs in November 2012 reduced the scope of grid parity. Later revocation of a tax exemption in April 2013 ended grid parity in Brazil. It concludes, conversely to developed countries, it is the volatile Brazilian energy policy, instead of economical barriers, the main obstacle for ZEB viability in Brazil. - Highlights: • Critique on super insolated buildings as a good solution for hot climates. • PV parity already reached in some parts of Brazil. • Proposal for a zero energy building definition for Brazil. • Critique of the source metric for energy balance in zero energy buildings. • Average roof area in Brazil enough for PV array to meet average energy consumption

  9. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  10. Large-area scanning x-ray source to maximize contrast sensitivity by minimizing scatter detection

    International Nuclear Information System (INIS)

    Reverse Geometry X-ray reg-sign (RGX reg-sign) systems, by reversing the conventional configuration of x-ray source, object, and x-ray detector, obtain (a) high contrast sensitivity due to minimal scatter detection, with (b) large-area imaging capability. Additional advantages include real-time first generation digital image quality, computerized control of scanning area and high resolution object magnification, increased freedom of source-detector alignment, and real-time stereoscopy

  11. A Brief Technical History of the Large-Area Picosecond Photodetector (LAPPD) Collaboration

    CERN Document Server

    Adams, Bernhard W; Bogdan, Mircea; Byrum, Karen; Elagin, Andrey; Elam, Jeffrey W; Frisch, Henry J; Genat, Jean-Francois; Grabas, Herve; Gregar, Joseph; Hahn, Elaine; Heintz, Mary; Insepov, Zinetula; Ivanov, Valentin; Jelinsky, Sharon; Jokely, Slade; Lee, Sun Wu; Mane, Anil U; McPhate, Jason; Minot, Michael J; Murat, Pavel; Nishimura, Kurtis; Northrop, Richard; Obaid, Razib; Oberla, Eric; Ramberg, Erik; Ronzhin, Anatoly; Siegmund, Oswald H; Sellberg, Gregory; Sullivan, Neal T; Tremsin, Anton; Varner, Gary; Veryovkin, Igor; Vostrikov, Alexei; Wagner, Robert G; Walters, Dean; Wang, Hsien-Hau; Wetstein, Matthew; Xi, Junqi; Yusov, Zikri; Zinovev, Alexander

    2016-01-01

    The Large Area Picosecond PhotoDetector (LAPPD) Collaboration was formed in 2009 to develop large-area photodetectors capable of time resolutions measured in pico-seconds, with accompanying sub-millimeter spatial resolution. During the next three and one-half years the Collaboration developed the LAPPD design of 20 x 20 cm modules with gains greater than $10^7$ and non-uniformity less than $15\\%$, time resolution less than 50 psec for single photons and spatial resolution of 700~microns in both lateral dimensions. We describe the R\\&D performed to develop large-area micro-channel plate glass substrates, resistive and secondary-emitting coatings, large-area bialkali photocathodes, and RF-capable hermetic packaging. In addition, the Collaboration developed the necessary electronics for large systems capable of precise timing, built up from a custom low-power 15-GigaSample/sec waveform sampling 6-channel integrated circuit and supported by a two-level modular data acquisition system based on Field-Programmab...

  12. A Brief Technical History of the Large-Area Picosecond Photodetector (LAPPD) Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Adams, B.W.; et al.

    2016-03-06

    The Large Area Picosecond PhotoDetector (LAPPD) Collaboration was formed in 2009 to develop large-area photodetectors capable of time resolutions measured in pico-seconds, with accompanying sub-millimeter spatial resolution. During the next three and one-half years the Collaboration developed the LAPPD design of 20 x 20 cm modules with gains greater than $10^7$ and non-uniformity less than $15\\%$, time resolution less than 50 psec for single photons and spatial resolution of 700~microns in both lateral dimensions. We describe the R\\&D performed to develop large-area micro-channel plate glass substrates, resistive and secondary-emitting coatings, large-area bialkali photocathodes, and RF-capable hermetic packaging. In addition, the Collaboration developed the necessary electronics for large systems capable of precise timing, built up from a custom low-power 15-GigaSample/sec waveform sampling 6-channel integrated circuit and supported by a two-level modular data acquisition system based on Field-Programmable Gate Arrays for local control, data-sparcification, and triggering. We discuss the formation, organization, and technical successes and short-comings of the Collaboration. The Collaboration ended in December 2012 with a transition from R\\&D to commercialization.

  13. Demand Shifting With Thermal Mass in Large Commercial Buildings:Field Tests, Simulation and Audits

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

    2005-09-01

    The principle of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling in the building thermal mass and thereby reducing cooling loads and reducing or shedding related electrical demand during the peak periods. Cost savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies (Braun 1990, Ruud et al. 1990, Conniff 1991, Andresen and Brandemuehl 1992, Mahajan et al. 1993, Morris et al. 1994, Keeney and Braun 1997, Becker and Paciuk 2002, Xu et al. 2003). This technology appears to have significant potential for demand reduction if applied within an overall demand response program. The primary goal associated with this research is to develop information and tools necessary to assess the viability of and, where appropriate, implement demand response programs involving building thermal mass in buildings throughout California. The project involves evaluating the technology readiness, overall demand reduction potential, and customer acceptance for different classes of buildings. This information can be used along with estimates of the impact of the strategies on energy use to design appropriate incentives for customers.

  14. Large-eddy simulation of pollutant dispersion from a ground-level area source over urban street canyons with irreversible chemical reactions

    OpenAIRE

    Du, T. Z.; Liu, C.-H.; Zhao, Y. B.

    2014-01-01

    In this study, the dispersion of chemically reactive pollutants is calculated by large-eddy simulation (LES) in a neutrally stratified urban canopy layer (UCL) over urban areas. As a pilot attempt, idealized street canyons of unity building-height-to-street-width (aspect) ratio are used. Nitric oxide (NO) is emitted from the ground surface of the first street canyon into the domain doped with ozone (O3). In the absence of ultraviolet radiation, this irreversible chemistry pr...

  15. Large area synchrotron X-ray fluorescence mapping of biological samples

    International Nuclear Information System (INIS)

    Large area mapping of inorganic material in biological samples has suffered severely from prohibitively long acquisition times. With the advent of new detector technology we can now generate statistically relevant information for studying cell populations, inter-variability and bioinorganic chemistry in large specimen. We have been implementing ultrafast synchrotron-based XRF mapping afforded by the MAIA detector for large area mapping of biological material. For example, a 2.5 million pixel map can be acquired in 3 hours, compared to a typical synchrotron XRF set-up needing over 1 month of uninterrupted beamtime. Of particular focus to us is the fate of metals and nanoparticles in cells, 3D tissue models and animal tissues. The large area scanning has for the first time provided statistically significant information on sufficiently large numbers of cells to provide data on intercellular variability in uptake of nanoparticles. Techniques such as flow cytometry generally require analysis of thousands of cells for statistically meaningful comparison, due to the large degree of variability. Large area XRF now gives comparable information in a quantifiable manner. Furthermore, we can now image localised deposition of nanoparticles in tissues that would be highly improbable to 'find' by typical XRF imaging. In addition, the ultra fast nature also makes it viable to conduct 3D XRF tomography over large dimensions. This technology avails new opportunities in biomonitoring and understanding metal and nanoparticle fate ex-vivo. Following from this is extension to molecular imaging through specific anti-body targeted nanoparticles to label specific tissues and monitor cellular process or biological consequence

  16. A new-type large-area plasma source produced by electromagnetic surface waves

    International Nuclear Information System (INIS)

    The design and experimental investigation of a new-type plasma source produced by electromagnetic surface waves is given. The experimental results show that the source has successfully produced a homogeneous plasma column in diameter over 160 mm with electron density of 1010-1011 cm-3 and electron temperature of several eV at a pressure below 230 Pa. This manifests that the source is adaptable to large-area and large-volume plasmas

  17. Development of a Large-Area Aerogel Cherenkov Counter Onboard BESS

    OpenAIRE

    Asaoka, Y.; Abe, K; Yoshimura, K.; Ishino, M.; Fujikawa, M.; Orito, S

    1998-01-01

    This paper describes the development of a threshold type aerogel Cherenkov counter with a large sensitive area of 0.6 m$^2$ to be carried onboard the BESS rigidity spectrometer to detect cosmic-ray antiprotons. The design incorporates a large diffusion box containing 46 finemesh photomultipliers, with special attention being paid to achieving good performance under a magnetic field and providing sufficient endurance while minimizing material usage. The refractive index of the aerogel was chos...

  18. Analysis Methods for Extracting Knowledge from Large-Scale WiFi Monitoring to Inform Building Facility Planning

    DEFF Research Database (Denmark)

    Ruiz-Ruiz, Antonio; Blunck, Henrik; Prentow, Thor Siiger;

    2014-01-01

    realistic data to inform facility planning. In this paper, we propose analysis methods to extract knowledge from large sets of network collected WiFi traces to better inform facility management and planning in large building complexes. The analysis methods, which build on a rich set of temporal and spatial....... Spatio-temporal visualization tools built on top of these methods enable planners to inspect and explore extracted information to inform facility-planning activities. To evaluate the methods, we present results for a large hospital complex covering more than 10 hectares. The evaluation is based on WiFi...... traces collected in the hospital’s WiFi infrastructure over two weeks observing around 18000 different devices recording more than a billion individual WiFi measurements. For the presented analysis methods we present quantitative performance results, e.g., demonstrating over 95% accuracy for correct...

  19. Specific features of engineering for mounting large-sized heavy components of reactor building of the Voronezh district heating plant

    International Nuclear Information System (INIS)

    Scheme of mechanization of construction and mounting works when building reactor compartment of the Voronezh district heating plant (DHP) is considered. Two water cooled and moderated heterogeneous 500 MWt power reactors of AST-500 type with natural convection are installed at the DHP. The main building comprises reactor compartments of the both units, compartment of special water purification and waste storage, maintenance shops, fresh fuel storages and general administration services. The equipment mounting is performed using two SKR-2200 cranes and a mobile CC-4000 Demag crane with large load capacity

  20. A large-scale deforestation experiment: Effects of patch area and isolation on Amazon birds

    Science.gov (United States)

    Ferraz, G.; Nichols, J.D.; Hines, J.E.; Stouffer, P.C.; Bierregaard, R.O.; Lovejoy, T.E.

    2007-01-01

    As compared with extensive contiguous areas, small isolated habitat patches lack many species. Some species disappear after isolation; others are rarely found in any small patch, regardless of isolation. We used a 13-year data set of bird captures from a large landscape-manipulation experiment in a Brazilian Amazon forest to model the extinction-colonization dynamics of 55 species and tested basic predictions of island biogeography and metapopulation theory. From our models, we derived two metrics of species vulnerability to changes in isolation and patch area. We found a strong effect of area and a variable effect of isolation on the predicted patch occupancy by birds.

  1. Development of local-scale high-resolution atmospheric dispersion model using large-eddy simulation. Part 3. Turbulent flow and plume dispersion in building arrays

    International Nuclear Information System (INIS)

    We have developed a LOcal-scale High-resolution atmospheric DIspersion Model using Large-Eddy Simulation (LOHDIM-LES) to assess the safety at nuclear facilities and to respond to emergencies against accidental or intentional release of radioactive materials (e.g., a terrorist attack in an urban area). In Part 1, the unsteady behavior of a plume over a flat terrain was successfully simulated. In Part 2, a new scheme to generate a spatially developing turbulent boundary layer flow was proposed. Then, the large-eddy simulation (LES) model for turbulent flow and plume dispersion around an isolated building was validated. In this study, we extend the LES model to turbulent flows and plume dispersion in various building arrays that represent typical urban surface geometries. Concerning the characteristics of flow and dispersion in building arrays, the flow patterns associated with obstacle densities and the distribution patterns of mean and root-mean-square (r.m.s.) concentrations agree well with those of the wind tunnel experiments. It is shown that the LES model successfully simulates the unsteady behaviors of turbulent flows and plume dispersion in urban-type surface geometries. (author)

  2. Impact of the atmospheric boundary layer profile on the ventilation of a cubic building with two large opposite openings

    CERN Document Server

    Bastide, Alain; Boyer, Harry

    2014-01-01

    The aim of this paper is to show the influence of the atmospheric boundary layer profile on the distribution of velocity in a building having two large openings. The knowledge of the flow form inside a building is useful to define a thermal environment favourable with thermal comfort and good air quality. In computational fluid dynamics, several profiles of atmospheric boundary layer can be used like logarithmic profiles or power profiles. This paper shows the impact of these profiles on the indoor airflow. Non-ventilated or ventilated parts of room are found. They show respectively ineffective ventilation and effective ventilation. A qualitative and global approach allows to observe the flows in a cubic building and to show the influence of each profile according to the external ground roughness and the incidence angle of the wind. Some zones, where occupants move, are named volumes of life. Ventilation is there observed using traditional tools in order to analyze quantitatively the ventilation of these zone...

  3. Conceptual and methodological frameworks for large scale and high resolution analysis of the physical flood susceptibility of buildings

    Science.gov (United States)

    Blanco-Vogt, A.; Schanze, J.

    2013-10-01

    There are some approaches available for assessing flood damage to buildings and critical infrastructure. However, these methods up to now can hardly be adapted to a large scale because of lacking high resolution classification and characterisation approaches for the built structures. To overcome this obstacle, the paper presents, first, a conceptual framework for understanding physical flood susceptibility of buildings; and second, a methodological framework for its analysis. The latter ranges from automatic extraction of buildings mainly from remote sensing with their subsequent classification and characterisation to a systematic physical flood susceptibility assessment. The work shows the results of implementation and testing a respective methodology in a district of the city of Magangué, Magdalena River Colombia.

  4. Large-Area Metasurface Perfect Absorbers from Visible to Near-Infrared.

    Science.gov (United States)

    Akselrod, Gleb M; Huang, Jiani; Hoang, Thang B; Bowen, Patrick T; Su, Logan; Smith, David R; Mikkelsen, Maiken H

    2015-12-22

    An absorptive metasurface based on film-coupled colloidal silver nanocubes is demonstrated. The metasurfaces are fabricated using simple dip-coating methods and can be deposited over large areas and on arbitrarily shaped objects. The surfaces show nearly complete absorption, good off-angle performance, and the resonance can be tuned from the visible to the near-infrared. PMID:26549512

  5. Single-grain Silicon Technology for Large Area X-ray Imaging

    OpenAIRE

    Arslan, A

    2015-01-01

    Digital flat panel X-ray imagers are currently using a-Si and poly-Si thin-film-transistors (TFTs). a-Si TFT permits the use of large area substrates, however, due to the amorphous nature, the carrier mobility is very low (

  6. Improve large area uniformity and production capacity of laser interference lithography with beam flattening device

    Science.gov (United States)

    Yang, Yin-Kuang; Wu, Yu-Xiang; Lin, Te-Hsun; Yu, Chun-Wen; Fu, Chien-Chung

    2016-03-01

    Laser interference lithography (LIL) is a maskless lithography technique with many advantages such as simple optical design, inexpensive, infinite depth of focus, and large area patterning with single exposure. However, the intensity of normal laser beam is Gaussian distribution. In order to obtain large area uniform structure, we have to expand the laser beam much bigger than the wafer and use only the center part of the beam. Resulting in wasting lots of energy and the production capacity decrease. In this study, we designed a beam shaping device which consists of two parallel fused silicon optical window with different coating on both side. Two optical window form an air thin film. When the expanded laser beam pass through the device, the beam will experience many refraction and reflection between two optical window and interference with each other. The transmittance of laser beam will depend on the incident angle. The output intensity distribution will change from Gaussian distribution to a flat top distribution. In our experiment, we combined the beam shaping device with a Lloyd's mirror LIL system. Experiment results indicated that the LIL system with beam shaping device can obtain large area uniform pattern. And compare with the traditional Lloyd's mirror LIL system, the exposure time is shorten up to 4.5 times. In conclusion, this study design a beam flattening device for LIL system. The flat top beam can improve the large area uniformity and the production capacity of LIL. Making LIL more suitable for industry application.

  7. Results from the beam test of the engineering model of the GLAST large area telescope

    International Nuclear Information System (INIS)

    This paper describes the results of a beam test using the Engineering Model of the GLAST Large Area Telescope, which was installed in a beam of positrons, hadrons and tagged photons at SLAC. The performance of the four subsystems, Anti Coincidence Detector, Silicon Tracker, Calorimeter and Data Acquisition will be described

  8. Large area flexible lighting foils using distributed bare LED dies on polyester substrates

    NARCIS (Netherlands)

    Ende, D.A. van den; Kusters, R.H.L.; Cauwe, M.; Waal, A. van der; Brand, J. van den

    2013-01-01

    Integration of LEDs on flexible foil substrates is of interest for flexible lighting applications and for backlights for flexible displays. Such a large area lighting device can be made by integrating a matrix of closely spaced LEDs on a flexible foil substrate. Preferably, these LEDs are integrated

  9. Process variations in surface nano geometries manufacture on large area substrates

    DEFF Research Database (Denmark)

    Calaon, Matteo; Hansen, Hans Nørgaard; Tosello, Guido;

    2014-01-01

    The need of transporting, treating and measuring increasingly smaller biomedical samples has pushed the integration of a far reaching number of nanofeatures over large substrates size in respect to the conventional processes working area windows. Dimensional stability of nano fabrication processes...

  10. A liquid-helium cooled large-area silicon PIN photodiode x-ray detector

    OpenAIRE

    Inoue, Yoshizumi; Moriyama, Shigetaka; Hara, Hideyuki; Minowa, Makoto; Shimokoshi, Fumio

    1995-01-01

    An x-ray detector using a liquid-helium cooled large-area silicon PIN photodiode has been developed along with a tailor-made charge sensitive preamplifier whose first-stage JFET has been cooled. The operating temperature of the JFET has been varied separately and optimized. The x- and $\\gamma$-ray energy spectra for an \

  11. Independent Peer Evaluation of the Large Area Crop Inventory Experiment (LACIE): The LACIE Symposium

    Science.gov (United States)

    1978-01-01

    Yield models and crop estimate accuracy are discussed within the Large Area Crop Inventory Experiment. The wheat yield estimates in the United States, Canada, and U.S.S.R. are emphasized. Experimental results design, system implementation, data processing systems, and applications were considered.

  12. Development and testing of a large-area underwater survey device

    International Nuclear Information System (INIS)

    A large-area underwater radioactive survey device was developed for a contamination survey of Johnston Atoll. A towed device consisting of a single photomultiplier and a single scintillator crystal is described. Results from the development and deployment of the device are presented

  13. Large-Area Polyimide/SWCNT Nanocable Cathode for Flexible Lithium-Ion Batteries.

    Science.gov (United States)

    Wu, Haiping; Meng, Qinghai; Yang, Qian; Zhang, Miao; Lu, Kun; Wei, Zhixiang

    2015-11-01

    A large-area flexible polymer electrode is fabricated using a new type of polyimide/single-walled carbon nanotube (SWCNT) nanocable composite. SWCNTs serve as the current collector and conductive network, and polyimide nanoparticles anchored on carbon nanotubes act as active materials. The electrode shows superior rate performance, good cycling stability, and high flexibility. PMID:26418281

  14. Single-grain Silicon Technology for Large Area X-ray Imaging

    NARCIS (Netherlands)

    Arslan, A.

    2015-01-01

    Digital flat panel X-ray imagers are currently using a-Si and poly-Si thin-film-transistors (TFTs). a-Si TFT permits the use of large area substrates, however, due to the amorphous nature, the carrier mobility is very low (<1 cm2/Vs). Poly-Si TFT improves the mobility (~150 cm2/Vs) but due to random

  15. Homeless Students and Academic Achievement: Evidence from a Large Urban Area

    Science.gov (United States)

    Tobin, Kerri J.

    2016-01-01

    Child homelessness has recently reached levels unprecedented in the United States since the Great Depression. Contemporary research has attempted to isolate the effects of homelessness on education, with mixed results. This study reports results from a study in one large urban area and finds that there is no meaningful difference in achievement…

  16. Nanotechnological Advances in Catalytic Thin Films for Green Large-Area Surfaces

    Directory of Open Access Journals (Sweden)

    Suzan Biran Ay

    2015-01-01

    Full Text Available Large-area catalytic thin films offer great potential for green technology applications in order to save energy, combat pollution, and reduce global warming. These films, either embedded with nanoparticles, shaped with nanostructuring techniques, hybridized with other systems, or functionalized with bionanotechnological methods, can include many different surface properties including photocatalytic, antifouling, abrasion resistant and mechanically resistive, self-cleaning, antibacterial, hydrophobic, and oleophobic features. Thus, surface functionalization with such advanced structuring methods is of significance to increase the performance and wide usage of large-area thin film coatings specifically for environmental remediation. In this review, we focus on methods to increase the efficiency of catalytic reactions in thin film and hence improve the performance in relevant applications while eliminating high cost with the purpose of widespread usage. However, we also include the most recent hybrid architectures, which have potential to make a transformational change in surface applications as soon as high quality and large area production techniques are available. Hence, we present and discuss research studies regarding both organic and inorganic methods that are used to structure thin films that have potential for large-area and eco-friendly coatings.

  17. Large-area fabrication of superhydrophobic surfaces for practical applications: an overview

    Directory of Open Access Journals (Sweden)

    Chao-Hua Xue, Shun-Tian Jia, Jing Zhang and Jian-Zhong Ma

    2010-01-01

    Full Text Available This review summarizes the key topics in the field of large-area fabrication of superhydrophobic surfaces, concentrating on substrates that have been used in commercial applications. Practical approaches to superhydrophobic surface construction and hydrophobization are discussed. Applications of superhydrophobic surfaces are described and future trends in superhydrophobic surfaces are predicted.

  18. Large-area fabrication of superhydrophobic surfaces for practical applications: an overview

    International Nuclear Information System (INIS)

    This review summarizes the key topics in the field of large-area fabrication of superhydrophobic surfaces, concentrating on substrates that have been used in commercial applications. Practical approaches to superhydrophobic surface construction and hydrophobization are discussed. Applications of superhydrophobic surfaces are described and future trends in superhydrophobic surfaces are predicted. (topical review)

  19. Large-mode-area hybrid photonic crystal fiber amplifier at 1178 nm

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Chen, Mingchen; Shirakawa, Akira; Olausson, Christina Bjarnal Thulin; Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper

    2015-01-01

    Amplification of 1178 nm light is demonstrated in a large-mode-area single-mode ytterbium-doped hybrid photonic crystal fiber, relying on distributed spectral filtering of spontaneous emission at shorter wavelengths. An output power of 53 W is achieved with 29 dB suppression of parasitic lasing...

  20. The spatial thickness distribution of metal films produced by large area pulsed laser deposition

    DEFF Research Database (Denmark)

    Pryds, Nini; Schou, Jørgen; Linderoth, Søren

    2007-01-01

    Thin films of metals have been deposited in the large-area Pulsed Laser Deposition (PLD) Facility at Riso National Laboratory. Thin films of Ag and Ni were deposited with laser pulses from an excimer laser at 248 nm with a rectangular beam spot at a fluence of 10 J/cm(2) on glass substrates of 127...

  1. Terahertz and M4PP conductivity mapping of large area CVD grown graphene films

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due; Petersen, Dirch Hjorth; Bøggild, Peter;

    We demonstrate mapping of magnitude and variation of the electrical conductance of large area CVD graphene films by terahertz time-domain spectroscopy (THz-TDS) and micro four-point-probe (M4PP). Non-trivial correlations between results obtained with the two techniques are discussed in relation to...... electrical properties of the graphene films....

  2. Characterization of large-area reference sources for the calibration of beta-contamination monitors

    Science.gov (United States)

    Janßen, H.; Klein, R.

    1996-02-01

    A method has been developed whereby the activity of a large-area reference source for the calibration of beta-contamination monitors can be determined from a series of measured countrates in a suitable detection system as a function of the distance between the surface of the source and the front face of the detector.

  3. Large-area Fabry-Perot modulator based on electro-optic polymers

    DEFF Research Database (Denmark)

    Benter, Nils; Bertram, Ralph Peter; Soergel, Elisabeth;

    2006-01-01

    We present a large-area electro-optic Fabry-Perot modulator utilizing a photoaddressable bis-azo polymer placed between two dielectric mirrors with an open aperture of 2 cm. A modulation efficientcy of 1% at an effective modulation voltage of 20 V for a wavelength of 1.55 mymeter is demonstrated...

  4. The Large Area Telescope in the context of the extended Fermi mission

    International Nuclear Information System (INIS)

    Launched on June 11, 2008 with the goal of a 10-year lifetime, the Fermi observatory is nearing completion of the 5-year prime phase of the mission. In this paper we briefly review the prospects of the Large Area Telescope (the main instrument on board Fermi) in the context of the extended mission

  5. Large-area fabrication of superhydrophobic surfaces for practical applications: an overview

    OpenAIRE

    Chao-Hua Xue, Shun-Tian Jia, Jing Zhang and Jian-Zhong Ma

    2010-01-01

    This review summarizes the key topics in the field of large-area fabrication of superhydrophobic surfaces, concentrating on substrates that have been used in commercial applications. Practical approaches to superhydrophobic surface construction and hydrophobization are discussed. Applications of superhydrophobic surfaces are described and future trends in superhydrophobic surfaces are predicted.

  6. Transverse charge transport through DNA oligomers in large-area molecular junctions

    NARCIS (Netherlands)

    Katsouras, I.; Piliego, C.; Blom, P.W.M.; Leeuw, D.M. de

    2013-01-01

    We investigate the nature of charge transport in deoxyribonucleic acid (DNA) using self-assembled layers of DNA in large-area molecular junctions. A protocol was developed that yields dense monolayers where the DNA molecules are not standing upright, but are lying flat on the substrate. As a result

  7. Construction and Validation of an Urban Area Flow and Dispersion Model on Building Scales

    Institute of Scientific and Technical Information of China (English)

    陈笔澄; 刘树华; 缪育聪; 王姝; 李源

    2013-01-01

    This paper presents a numerical model that simulates the wind fields, turbulence fields, and dispersion of gaseous substances in urban areas on building to city block scales. A Computational Fluid Dynamics (CFD) approach using the steady-state, Reynolds-Averaged Navier-Stokes (RANS) equations with the standard k-ε turbulence model within control volumes of non-uniform cuboid shapes has been employed. Dispersion field is computed by solving an unsteady transport equation of passive scalar. Another approach based on Gaussian plume model is used to correct the turbulent Schmidt number of tracer, in order to improve the dispersion simulation. The experimental data from a wind tunnel under neutral conditions are used to validate the numerical results of velocity, turbulence, and dispersion fields. The numerical results show a reasonable agreement with the wind tunnel data. The deviation of concentration between the simulation with corrected turbulent Schmidt number and the wind tunnel experiments may arise from 1) imperfect point sources, 2) heterogeneous turbulent diffusivity, and 3) the constant turbulent Schmidt assumption used in the model.

  8. Mapping regional patterns of large forest fires in Wildland-Urban Interface areas in Europe.

    Science.gov (United States)

    Modugno, Sirio; Balzter, Heiko; Cole, Beth; Borrelli, Pasquale

    2016-05-01

    Over recent decades, Land Use and Cover Change (LUCC) trends in many regions of Europe have reconfigured the landscape structures around many urban areas. In these areas, the proximity to landscape elements with high forest fuels has increased the fire risk to people and property. These Wildland-Urban Interface areas (WUI) can be defined as landscapes where anthropogenic urban land use and forest fuel mass come into contact. Mapping their extent is needed to prioritize fire risk control and inform local forest fire risk management strategies. This study proposes a method to map the extent and spatial patterns of the European WUI areas at continental scale. Using the European map of WUI areas, the hypothesis is tested that the distance from the nearest WUI area is related to the forest fire probability. Statistical relationships between the distance from the nearest WUI area, and large forest fire incidents from satellite remote sensing were subsequently modelled by logistic regression analysis. The first European scale map of the WUI extent and locations is presented. Country-specific positive and negative relationships of large fires and the proximity to the nearest WUI area are found. A regional-scale analysis shows a strong influence of the WUI zones on large fires in parts of the Mediterranean regions. Results indicate that the probability of large burned surfaces increases with diminishing WUI distance in touristic regions like Sardinia, Provence-Alpes-Côte d'Azur, or in regions with a strong peri-urban component as Catalunya, Comunidad de Madrid, Comunidad Valenciana. For the above regions, probability curves of large burned surfaces show statistical relationships (ROC value > 0.5) inside a 5000 m buffer of the nearest WUI. Wise land management can provide a valuable ecosystem service of fire risk reduction that is currently not explicitly included in ecosystem service valuations. The results re-emphasise the importance of including this ecosystem service

  9. Evaluation of the Seismic Vulnerability for P+4 Residential Buildings from the Urban Area of Iaşi Using the Finite Element Method

    OpenAIRE

    Toma, Ana-Maria; Gabriela M. ATANASIU

    2010-01-01

    The analysis of the seismic vulnerability for a typical dwelling structure, existing in a developed urban area, subjected to repetitive seismic actions, is performed. This type of residential building is met all over Romania, making more than 50% from the total number of buildings constructed in residential areas, built between 1965 and 1985. The structure chosen for analysis is a P+4 building, made of precast concrete panels. This type of building was selected because many districts in Iaşi ...

  10. Linear Plasma Sources for Large Area Film Deposition: A Brief Review

    International Nuclear Information System (INIS)

    By utilization of different excitation power sources, linear plasma sources can be differentiated into DC, RF, VHF, microwave and dual frequency types. Through installing several linear plasma sources in parallel or adopting the so-called roll-to-roll (air-to-air) process, scale uniform linear plasma sources were realized and successfully applied to the deposition of large area uniform dielectric thin films. Furthermore, the magnetic field system can effectively reduce the recombination losses on the wall of the vacuum chamber and enhance the plasma density. Linear plasma sources with approximately one square meter deposition area with the plasma density of 1011 cm−3 have been developed, some of which have been used for the deposition of dielectric layers and large area plasma etching. (low temperature plasma)

  11. The Anti-Coincidence Detector for the GLAST Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Moiseev, A.A.; Hartman, R.C.; Ormes, J.F.; Thompson, D.J.; Amato, M.J.; Johnson, T.E.; Segal, K.N.; Sheppard, D.A.

    2007-03-23

    This paper describes the design, fabrication and testing of the Anti-Coincidence Detector (ACD) for the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT). The ACD is LAT's first-level defense against the charged cosmic ray background that outnumbers the gamma rays by 3-5 orders of magnitude. The ACD covers the top and 4 sides of the LAT tracking detector, requiring a total active area of {approx}8.3 square meters. The ACD detector utilizes plastic scintillator tiles with wave-length shifting fiber readout. In order to suppress self-veto by shower particles at high gamma-ray energies, the ACD is segmented into 89 tiles of different sizes. The overall ACD efficiency for detection of singly charged relativistic particles entering the tracking detector from the top or sides of the LAT exceeds the required 0.9997.

  12. Very Large Area/Volume Microwave ECR Plasma and Ion Source

    Science.gov (United States)

    Foster, John E. (Inventor); Patterson, Michael J. (Inventor)

    2009-01-01

    The present invention is an apparatus and method for producing very large area and large volume plasmas. The invention utilizes electron cyclotron resonances in conjunction with permanent magnets to produce dense, uniform plasmas for long life ion thruster applications or for plasma processing applications such as etching, deposition, ion milling and ion implantation. The large area source is at least five times larger than the 12-inch wafers being processed to date. Its rectangular shape makes it easier to accommodate to materials processing than sources that are circular in shape. The source itself represents the largest ECR ion source built to date. It is electrodeless and does not utilize electromagnets to generate the ECR magnetic circuit, nor does it make use of windows.

  13. Monolithic cryogenic preamplifiers based on large gate-area GaAs MESFETs

    International Nuclear Information System (INIS)

    Monolithic preamplifiers using large gate-area Gallium-Arsenide Metal-Semiconductor Field-Effect Transistors (GaAs MESFETs) at the input have been designed and fabricated using an ion-implanted GaAs process. Large gate-area is necessary to obtain low series noise. A differential voltage-sensitive preamplifier has at the input two MESFETs with a gate width W = 6,000 microm, it is fully DC coupled, has a large common-mode rejection ratio (CMRR) and dissipates low power at 4 K. Dual current-sensitive preamplifiers using at the input MESFETs with W = 24,000 microm, designed for the readout of noble liquid calorimeters, have been integrated in a single chip. Recent tests with a LAr calorimeter prototype demonstrated strong noise reduction compared to previous state-of-the-art hybrid readout circuits. Radiation damage tests have been performed at cold on the current-sensitive preamplifier chips

  14. Large Area Transition Edge Sensor X-ray Microcalorimeters for Diffuse X-ray Background Studies

    Science.gov (United States)

    Morgan, K. M.; Busch, S. E.; Eckart, M. E.; Kilbourne, C. A.; McCammon, D.

    2014-08-01

    We are developing transition edge sensor (TES) mirocalorimeters with large area (0.72 mm) absorbers to study the keV diffuse X-ray background. The goal is to develop a 2 cm array of 256 pixels for a sounding rocket payload. We present a pixel design which includes a Mo/Au bilayer TES coupled to a large (850 x 850 x 0.2 m) gold absorber. Our simulations indicate that such a design can achieve energy resolution as good as 1.6 eV FWHM in our target bandpass of 0.05-1 keV. Additionally, thermal modelling shows that for typical gold layers, the position-dependent variation of the pulse shape over the large area of the absorber is not expected to significantly degrade this energy resolution. An array of devices will be fabricated in late 2013 to test this design.

  15. A facility for the test of large area muon chambers at high rates

    CERN Document Server

    Agosteo, S; Belli, G; Bonifas, A; Carabelli, V; Gatignon, L; Hessey, N P; Maggi, M; Peigneux, J P; Reithler, H; Silari, Marco; Vitulo, P; Wegner, M

    2000-01-01

    Operation of large area muon detectors at the future Large Hadron Collider (LHC) will be characterized by large sustained hit rates over the whole area, reaching the range of kHz/\\scm. We describe a dedicated test zone built at CERN to test the performance and the aging of the muon chambers currently under development. A radioactive source delivers photons causing the sustained rate of random hits, while a narrow beam of high energy muons is used to directly calibrate the detector performance. A system of remotely controlled lead filters serves to vary the rate of photons over four orders of magnitude, to allow the study of performance as a function of rate.

  16. A facility for the test of large-area muon chambers at high rates

    International Nuclear Information System (INIS)

    Operation of large-area muon detectors at the future Large Hadron Collider (LHC) will be characterized by large sustained hit rates over the whole area, reaching the range of kHz cm-2. We describe a dedicated test zone built at CERN to test the performance and the aging of the muon chambers currently under development. A radioactive source delivers photons causing the sustained rate of random hits, while a narrow beam of high-energy muons is used to directly calibrate the detector performance. A system of remotely controlled lead filters serves to vary the rate of photons over four orders of magnitude, to allow the study of performance as a function of rate. (authors)

  17. A facility for the test of large-area muon chambers at high rates

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S.; Altieri, S.; Belli, G.; Bonifas, A.; Carabelli, V.; Gatignon, L.; Hessey, N.; Maggi, M.; Peigneux, J.-P.; Reithler, H. E-mail: hans.reithler@cern.ch; Silari, M.; Vitulo, P.; Wegner, M

    2000-09-21

    Operation of large-area muon detectors at the future Large Hadron Collider (LHC) will be characterized by large sustained hit rates over the whole area, reaching the range of kHz cm{sup -2}. We describe a dedicated test zone built at CERN to test the performance and the aging of the muon chambers currently under development. A radioactive source delivers photons causing the sustained rate of random hits, while a narrow beam of high-energy muons is used to directly calibrate the detector performance. A system of remotely controlled lead filters serves to vary the rate of photons over four orders of magnitude, to allow the study of performance as a function of rate. (authors)

  18. A facility for the test of large-area muon chambers at high rates

    Science.gov (United States)

    Agosteo, S.; Altieri, S.; Belli, G.; Bonifas, A.; Carabelli, V.; Gatignon, L.; Hessey, N.; Maggi, M.; Peigneux, J.-P.; Reithler, H.; Silari, M.; Vitulo, P.; Wegner, M.

    2000-09-01

    Operation of large-area muon detectors at the future Large Hadron Collider (LHC) will be characterized by large sustained hit rates over the whole area, reaching the range of kHz cm -2. We describe a dedicated test zone built at CERN to test the performance and the aging of the muon chambers currently under development. A radioactive source delivers photons causing the sustained rate of random hits, while a narrow beam of high-energy muons is used to directly calibrate the detector performance. A system of remotely controlled lead filters serves to vary the rate of photons over four orders of magnitude, to allow the study of performance as a function of rate.

  19. Degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper

    2013-01-01

    Spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers, in which photonic bandgap guidance and index guidance is combined. Calculations show the parametric gain is maximum on the edge of a photonic bandgap, for a large range of pump...... wavelengths. The FWM products are observed on the edges of a transmission band experimentally, in good agreement with the numerical results. Thereby the bandedges can be used to control the spectral positions of FWM products through a proper fiber design. The parametric gain control combined with a large mode...... area fiber design potentially allows for power scaling of light at wavelengths not easily accessible with e.g. rare earth ions....

  20. Degenerate four wave mixing in large mode area hybrid photonic crystal fibers.

    Science.gov (United States)

    Petersen, Sidsel R; Alkeskjold, Thomas T; Lægsgaard, Jesper

    2013-07-29

    Spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers, in which photonic bandgap guidance and index guidance is combined. Calculations show the parametric gain is maximum on the edge of a photonic bandgap, for a large range of pump wavelengths. The FWM products are observed on the edges of a transmission band experimentally, in good agreement with the numerical results. Thereby the bandedges can be used to control the spectral positions of FWM products through a proper fiber design. The parametric gain control combined with a large mode area fiber design potentially allows for power scaling of light at wavelengths not easily accessible with e.g. rare earth ions. PMID:23938682

  1. Large-area aligned growth of single-crystalline organic nanowire arrays for high-performance photodetectors

    International Nuclear Information System (INIS)

    Due to their extraordinary properties, single-crystalline organic nanowires (NWs) are important building blocks for future low-cost and efficient nano-optoelectronic devices. However, it remains a critical challenge to assemble organic NWs rationally in an orientation-, dimensionality- and location-controlled manner. Herein, we demonstrate a feasible method for aligned growth of single-crystalline copper phthalocyanine (CuPc) NW arrays with high density, large-area uniformity and perfect crossed alignment by using Au film as a template. The growth process was investigated in detail. The Au film was found to have a critical function in the aligned growth of NWs, but may only serve as the active site for NW nucleation because of the large surface energy, as well as direct the subsequent aligned growth. The as-prepared NWs were then transferred to construct single NW-based photoconductive devices, which demonstrated excellent photoresponse properties with robust stability and reproducibility; the device showed a high switching ratio of ∼180, a fast response speed of ∼100 ms and could stand continuous operation up to 2 h. Importantly, this strategy can be extended to other organic molecules for their synthesis of NW arrays, revealing great potential for use in the construction of large-scale high-performance functional nano-optoelectronic devices. (paper)

  2. Large-area burns with pandrug-resistant Pseudomonas aeruginosa infection and respiratory failure

    Institute of Scientific and Technical Information of China (English)

    NING Fang-gang; ZHAO Xiao-zhuo; BIAN Jing; ZHANG Guo-an

    2011-01-01

    Background Infection due to pandrug-resistant Pseudomonas aeruginosa (PDRPA) has become a challenge in clinical practice. The aim of this research was to summarize the treatment of large-area burns (60%-80%) with PDRPA infection and respiratory failure in our hospital over the last two years, and to explore a feasible treatment protocol for such patients.Methods We retrospectively analyzed the treatment of five patients with large-area burns accompanied by PDRPA infection and respiratory failure transferred to our hospital from burn units in hospitals in other Chinese cities from January 2008 to February 2010. Before PDRPA infection occurred, all five patients had open wounds with large areas of granulation because of the failure of surgery and dissolving of scar tissue; they had also undergone long-term administration of carbapenems. This therapy included ventilatory support, rigorous repair of wounds, and combined antibiotic therapy targeted at drug-resistance mechanisms, including carbapenems, ciprofloxacin, macrolide antibiotics and β-lactamase inhibitors.Results Four patients recovered from bums and one died after therapy.Conclusions First, compromised immunity caused by delayed healing of burn wounds in patients with large-area bums and long-term administration of carbapenems may be the important factors in the initiation and progression of PDRPA infection. Second, if targeted at drug-resistance mechanisms, combined antibiotic therapy using carbapenems,ciprofloxacin, macrolide antibiotics and β-lactamase inhibitors could effectively control PDRPA infection. Third, although patients with large-area burns suffered respiratory failure and had high risks from anesthesia and surgery, only aggressive skin grafting with ventilatory support could control the infection and save lives. Patients may not be able to tolerate a long surgical procedure, so the duration of surgery should be minimized, and the frequency of surgery increased.

  3. A large-area ultra-precision 2D geometrical measurement technique based on statistical random phase detection

    International Nuclear Information System (INIS)

    The manufacturing of high-quality chrome masks used in the display industry for the manufacturing of liquid crystals, organic light emission diodes and other display devices would not be possible without high-precision large-area metrology. In contrast to the semiconductor industry where 6′ masks are most common, the quartz glass masks for the manufacturing of large area TVs can have sizes of up to 1.6 × 1.8 m2. Besides the large area, there are demands of sub-micrometer accuracy in ‘registration’, i.e. absolute dimensional measurements and nanometer requirements for ‘overlay’, i.e. repeatability. The technique for making such precise measurements on large masks is one of the most challenging tasks in dimensional metrology today. This paper presents a new approach to two-dimensional (2D) ultra-precision measurements based on random sampling. The technique was recently presented for ultra-precise one-dimensional (1D) measurement. The 1D method relies on timing the scanning of a focused laser beam 200 µm in the Y-direction from an interferometrically determined reference position. This microsweep is controlled by an acousto-optical deflector. By letting the microsweep scan from random X-positions, we can build XY-recordings through a time-to-space conversion that gives very precise maps of the feature edges of the masks. The method differs a lot from ordinary image processing methods using CCD or CMOS sensors for capturing images in the spatial domain. We use events grabbed by a single detector in the time domain in both the X- and Y-directions. After a simple scaling, we get precise and repeatable spatial information. Thanks to the extremely linear microsweep and its precise power control, spatial and intensity distortions, common in ordinary image processing systems using 2D optics and 2D sensors, can be practically eliminated. Our 2D method has proved to give a standard deviation in repeatability of less than 4 nm (1σ) in both the X- and Y

  4. Development of an array system of soft X-ray detectors with large sensitive area on the Large Helical Device

    International Nuclear Information System (INIS)

    A new 17-channel soft X-ray diagnostic system was developed for a study of magnetohydrodynamics (MHD) fluctuations and installed on the Large Helical Device (LHD). The Absolute X-ray Ultraviolet Photodiodes (AXUV diode) with a large sensitivity area 10 mm × 10 mm were adopted as the detectors. The sightlines were designed to cover the whole plasma with 3.8 cm space separation and the expected radial resolution was 7 cm at the equatorial plane of LHD. The toroidally elongated pin hole (25 mm × 7 mm) was used to increase the signal to noise ratio and a Be foil of 15 μm in thickness was used to shut the visible light. The detector array was placed inside the vertically elongated section of the LHD vacuum vessel, being shielded by an aluminum box. In the experimental campaign of LHD, this fiscal year 2011, various kinds of MHD fluctuations excited in core and edge plasma regions have clearly been detected by this newly installed diagnostic system. The characteristic behaviors of the ELM activity in H-mode plasmas and the “Fishbone”-like instabilities induced by the perpendicular neutral beam injection (NBI) were derived from the soft X-ray data. (author)

  5. Radon Prevention in the Design and Construction of Schools and Other Large Buildings.

    Science.gov (United States)

    Leovic, Kelly W.; Craig, A. B.

    Radon is a naturally occurring radioactive gas in ambient air that is estimated to cause thousands of deaths from lung cancer each year. This report outlines ways in which to ameliorate the presence of radon in schools buildings. The first section is a general introduction for those who need background information on the indoor radon problem and…

  6. Benchmarking Electron-Cloud Build-Up and Heat-Load Simulations against Large-Hadron-Collider Observations

    OpenAIRE

    Dominguez, O; Iriso, U; Maury, H.; Rumolo, G.; Zimmermann, F

    2011-01-01

    After reviewing the basic features of electron clouds in particle accelerators, the pertinent vacuum-chamber surface properties, and the electron-cloud simulation tools in use at CERN, we report recent observations of electron-cloud phenomena at the Large Hadron Collider (LHC) and ongoing attempts to benchmark the measured LHC vacuum pressure increases and heat loads against electron-cloud build-up simulations aimed at determining the actual surface parameters and at monitoring the so-called ...

  7. Tianmujian caldera. A potential area for locating rich and large uranium deposit

    International Nuclear Information System (INIS)

    Based on the comprehensive analysis on geologic, remote sensing, gravimetric, magnetic and geochemical data, and the field geologic investigation, the author has preliminarily ascertained the formation and the distribution characteristics of the Tianmujian caldera, and recognized the porphyroclastic lava system which is extensively distributed in the area. The authors suggest that the Tianmujian volcanic basin experienced two evolution stages--the thermal uplifting and the formation of caldera, that large concealed uranium-rich granitic massif occurs in the area, and during the vertical evolution process the uranium showed its concentration in the lower part and depletion in the upper part, and large amount of ore-forming material moved upward along with the magmatic hydrothermals entering the caldera to form uranium deposit. In addition, it is clarified that the NE-NW rhombic-formed basement structural pattern is predominated by the NE-trending fault. At the same time, the important role of the basement faults in controlling the magmatic activities, in the formation of volcanic basins, as well as the formation of uranium mineralization is emphasized. On the basis of the above comprehensive analysis the authors suggest that the Tianmujian caldera is a quite favourable potential area for possessing the basic conditions necessary for the formation of rich and large uranium deposit including uranium 'source, migration, concentration, preservation' and favourable multiple metallogenic information is displayed in the Tianmujian area

  8. Large area high-resolution CCD-based X-ray detector for macromolecular crystallography

    CERN Document Server

    Pokric, M; Jorden, A R; Cox, M P; Marshall, A; Long, P G; Moon, K; Jerram, P A; Pool, P; Nave, C; Derbyshire, G E; Helliwell, J R

    2002-01-01

    An X-ray detector system for macromolecular crystallography based on a large area charge-coupled device (CCD) sensor has been developed as part of a large research and development programme for advanced X-ray sensor technology, funded by industry and the Particle Physics and Astronomy Research Council (PPARC) in the UK. The prototype detector consists of two large area three-sides buttable charge-coupled devices (CCD 46-62 EEV), where the single CCD area is 55.3 mmx41.5 mm. Overall detector imaging area is easily extendable to 85 mmx110 mm. The detector consists of an optically coupled X-ray sensitive phosphor, skewed fibre-optic studs and CCDs. The crystallographic measurement requirements at synchrotron sources are met through a high spatial resolution (2048x1536 pixel array), high dynamic range (approx 10 sup 5), a fast readout (approx 1 s), low noise (<10e sup -) and much reduced parallax error. Additionally, the prototype detector system has been optimised by increasing its efficiency at low X-ray ene...

  9. Large area crystallization of amorphous Si with overlapping high repetition rate laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Sang-Gil [Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740 (United States); Gruber, Ivan [Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740 (United States); Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, Sonneggstrasse 3, ETH Zurich, 8092 Zurich (Switzerland); Grigoropoulos, Costas P., E-mail: cgrigoro@me.berkeley.edu [Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740 (United States); Poulikakos, Dimos [Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, Sonneggstrasse 3, ETH Zurich, 8092 Zurich (Switzerland); Moon, Seung-Jae [School of Mechanical Engineering, Hanyang University, 17 Haengdang1dong, Seondonggu, Seoul 133-791 (Korea, Republic of)

    2012-09-01

    This paper presents a pulsed laser crystallization technique, enabling large area crystallization of amorphous Si to produce grains having well-defined size and orientation. The method is developed by first determining the parameters influencing crystallization induced by single laser pulses of circular cross-sectional profile. In a second step, crystallization by overlapping round spots is examined. The experiments reveal three zones characterized by distinctly different crystallized morphologies following the laser irradiation. One of these zones corresponds to the regime of lateral crystal growth, wherein grains are driven towards the center of the spot by the radial temperature gradient. These findings are then applied to processing via line beam profiles that facilitate large area crystallization upon rapid translation of the specimen. Crystallization of extended areas hinges on the determination of the crystal growth length for a single spot. The pitch between successive pulses is then set on the basis of this information. It is shown that the pulse energy has only a weak effect on the crystal growth length. - Highlights: Black-Right-Pointing-Pointer Investigated lateral crystal growth in laser annealing of thin silicon films Black-Right-Pointing-Pointer Examined effects of laser beam profile and pulse energy on crystallization Black-Right-Pointing-Pointer Showed the dependence of lateral crystal growth length on laser fluence Black-Right-Pointing-Pointer Demonstrated large area film crystallization using overlapping laser pulses.

  10. Activity of CERN and LNF groups on large area GEM detectors

    CERN Document Server

    Alfonsi, M; Brock, I; Cerioni, S; Croci, G; David, E; De Lucia, E; De Oliveira, R; De Robertis, G; Domenici, D; Duarte Pinto, S; Felici, G; Gatta, M; Jacewicz, M; Loddo, F; Morello, G; Pistilli, M; Ranieri, A; Ropelewski, L; Sauli, F; Schioppa, M; Van Stenis, M

    2010-01-01

    We report on the activity of CERN and INFN-LNF groups on the development of large area GEM detectors. The two groups work together within the RD51 Collaboration, to aim at the development of Micro-pattern Gas detectors technologies. The vast request for large area foils by the GEM community has driven a change in the manufacturing procedure by the TS-DEM-PMT laboratory, needed to overcome the previous size limitation of 450 x 450 mm2. Now a single-mask technology is used allowing foils to be made as large as 450 x 2000 mm2. The limitation in the short size, due to the definite width of the raw material, can be overcome by splicing more foils together. A 10 x 10 cm2 GEM detector with the new single-mask foil has been tested with X-rays and the results are shown. Possible future applications for large area GEM are the TOTEM experiment upgrade at CERN, and the KLOE-2 experiment at the Dafne Φ-factory in Frascati.

  11. Activity of CERN and LNF groups on large area GEM detectors

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsi, M. [CERN, Geneva (Switzerland); Bencivenni, G. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Brock, I. [Physikalisches Institute der Universitat Bonn, Bonn (Germany); Cerioni, S. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Croci, G.; David, E. [CERN, Geneva (Switzerland); De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Oliveira, R. [CERN, Geneva (Switzerland); De Robertis, G. [Sezione INFN di Bari, Bari (Italy); Domenici, D., E-mail: Danilo.Domenici@lnf.infn.i [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Duarte Pinto, S. [CERN, Geneva (Switzerland); Felici, G.; Gatta, M.; Jacewicz, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Loddo, F. [Sezione INFN di Bari, Bari (Italy); Morello, G. [Dipeartimento di Fisica Universita della Calabria e INFN, Cosenza (Italy); Pistilli, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Ranieri, A. [Sezione INFN di Bari, Bari (Italy); Ropelewski, L. [CERN, Geneva (Switzerland); Sauli, F. [TERA Foundation, Novara (Italy)

    2010-05-21

    We report on the activity of CERN and INFN-LNF groups on the development of large area GEM detectors. The two groups work together within the RD51 Collaboration, to aim at the development of Micro-pattern Gas detectors technologies. The vast request for large area foils by the GEM community has driven a change in the manufacturing procedure by the TS-DEM-PMT laboratory, needed to overcome the previous size limitation of 450x450mm{sup 2}. Now a single-mask technology is used allowing foils to be made as large as 450x2000mm{sup 2}. The limitation in the short size, due to the definite width of the raw material, can be overcome by splicing more foils together. A 10x10cm{sup 2} GEM detector with the new single-mask foil has been tested with X-rays and the results are shown. Possible future applications for large area GEM are the TOTEM experiment upgrade at CERN, and the KLOE-2 experiment at the Dafne {Phi}-factory in Frascati.

  12. Activity of CERN and LNF groups on large area GEM detectors

    International Nuclear Information System (INIS)

    We report on the activity of CERN and INFN-LNF groups on the development of large area GEM detectors. The two groups work together within the RD51 Collaboration, to aim at the development of Micro-pattern Gas detectors technologies. The vast request for large area foils by the GEM community has driven a change in the manufacturing procedure by the TS-DEM-PMT laboratory, needed to overcome the previous size limitation of 450x450mm2. Now a single-mask technology is used allowing foils to be made as large as 450x2000mm2. The limitation in the short size, due to the definite width of the raw material, can be overcome by splicing more foils together. A 10x10cm2 GEM detector with the new single-mask foil has been tested with X-rays and the results are shown. Possible future applications for large area GEM are the TOTEM experiment upgrade at CERN, and the KLOE-2 experiment at the Dafne Φ-factory in Frascati.

  13. Performance characterization of large-area CMOS FPD for micro-CT applications

    Energy Technology Data Exchange (ETDEWEB)

    Kam, Soohwa; Kim, Hokyung; Jeon, Hosang [Pusan National Univ., Busan (Korea, Republic of)

    2013-10-15

    Recent advanced echnologies in a Si wafer growth and buttable detector module have overcomes the imaging detector size limitation to develop a large area digital radiography (DR) detector. With these advantages, the usage of the CMOS FPD for large-area x-ray detector applications (small-animal imaging, fluoroscopy, angiography, etc.) has been recently spotlighted. Although a-Si FPDs have many advantages such as a large imaging area, thin structure, and veiling glares, there are still some technical difficulties including relatively large pixel size and image lag to apply for a dynamic imaging applications such as a micro-CT for small-animal imaging. However, CMOS technology can be a solution for these technical limitations. Therefore, it is necessary to characterize the quantitative performance of CMOS FPD for small animal micro-CT application. In this study, we have investigated an imaging performance of CMOS FPD. As an imaging performance metrics, sensitivity, modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE) have been investigated.

  14. 324 Building radiochemical engineering cells, high-level vault, low-level vault, and associated areas closure plan

    International Nuclear Information System (INIS)

    The Hanford Site, located adjacent to and north of Richland, Washington, is operated by the US Department of Energy, Richland Operations Office (RL). The 324 Building is located in the 300 Area of the Hanford Site. The 324 Building was constructed in the 1960s to support materials and chemical process research and development activities ranging from laboratory/bench-scale studies to full engineering-scale pilot plant demonstrations. In the mid-1990s, it was determined that dangerous waste and waste residues were being stored for greater than 90 days in the 324 Building Radiochemical Engineering Cells (REC) and in the High-Level Vault/Low-Level Vault (HLV/LLV) tanks. [These areas are not Resource Conservation and Recovery Act of 1976 (RCRA) permitted portions of the 324 Building.] Through the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-89, agreement was reached to close the nonpermitted RCRA unit in the 324 Building. This closure plan, managed under TPA Milestone M-20-55, addresses the identified building areas targeted by the Tri-Party Agreement and provides commitments to achieve the highest degree of compliance practicable, given the special technical difficulties of managing mixed waste that contains high-activity radioactive materials, and the physical limitations of working remotely in the areas within the subject closure unit. This closure plan is divided into nine chapters. Chapter 1.0 provides the introduction, historical perspective, 324 Building history and current mission, and the regulatory basis and strategy for managing the closure unit. Chapters 2.0, 3.0, 4.0, and 5.0 discuss the detailed facility description, process information, waste characteristics, and groundwater monitoring respectively. Chapter 6.0 deals with the closure strategy and performance standard, including the closure activities for the B-Cell, D-Cell, HLV, LLV; piping and miscellaneous associated building areas. Chapter 7.0 addresses the

  15. 324 Building radiochemical engineering cells, high-level vault, low-level vault, and associated areas closure plan

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J.M.

    1998-03-25

    The Hanford Site, located adjacent to and north of Richland, Washington, is operated by the US Department of Energy, Richland Operations Office (RL). The 324 Building is located in the 300 Area of the Hanford Site. The 324 Building was constructed in the 1960s to support materials and chemical process research and development activities ranging from laboratory/bench-scale studies to full engineering-scale pilot plant demonstrations. In the mid-1990s, it was determined that dangerous waste and waste residues were being stored for greater than 90 days in the 324 Building Radiochemical Engineering Cells (REC) and in the High-Level Vault/Low-Level Vault (HLV/LLV) tanks. [These areas are not Resource Conservation and Recovery Act of 1976 (RCRA) permitted portions of the 324 Building.] Through the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-89, agreement was reached to close the nonpermitted RCRA unit in the 324 Building. This closure plan, managed under TPA Milestone M-20-55, addresses the identified building areas targeted by the Tri-Party Agreement and provides commitments to achieve the highest degree of compliance practicable, given the special technical difficulties of managing mixed waste that contains high-activity radioactive materials, and the physical limitations of working remotely in the areas within the subject closure unit. This closure plan is divided into nine chapters. Chapter 1.0 provides the introduction, historical perspective, 324 Building history and current mission, and the regulatory basis and strategy for managing the closure unit. Chapters 2.0, 3.0, 4.0, and 5.0 discuss the detailed facility description, process information, waste characteristics, and groundwater monitoring respectively. Chapter 6.0 deals with the closure strategy and performance standard, including the closure activities for the B-Cell, D-Cell, HLV, LLV; piping and miscellaneous associated building areas. Chapter 7.0 addresses the

  16. Fabrication of stable, large-area thin-film CdTe photovoltaic modules

    Science.gov (United States)

    Zhou, T. X.

    1995-06-01

    During the period of this subcontract, May 1991 through February 1995, Solar Cells, Inc. has developed and demonstrated a low-cost process to fabricate stable large-area cadmium telluride based thin-film photovoltaic modules. This report summarizes the final phase of the project which is concentrated on process optimization and product life tests. One of the major post-deposition process steps, the CdCl2 heat treatment, has been experimentally replaced with alternative treatments with vapor chloride or chlorine gas. Material and device qualities associated with alternative treatments are comparable or superior to those with the conventional treatment. Extensive experiments have been conducted to optimize the back-electrode structure in order to ensure long term device stability. Numerous small-area cells and minimodules have been subjected to a variety of stress tests, including but not limited to continuous light soak under open or short circuit or with resistive load, for over 10,000 hours. Satisfactory stability has been demonstrated on 48 and 64 sq cm minimodules under accelerated tests and on 7200 sq cm large modules under normal operating conditions. The conversion efficiency has also been significantly improved during this period. The total area efficiency of 7200 sq cm module has reached 8.4%, corresponding to a 60.3 W normalized output; the efficiency of 64 sq cm minimodules and 1.1 sq cm cells has reached 10.5% (aperture area) and 12.4% (total area), respectively.

  17. Area balance method for calculation of air interchange in fire-resesistance testing laboratory for building products and constructions

    Directory of Open Access Journals (Sweden)

    Sargsyan Samvel Volodyaevich

    2014-09-01

    Full Text Available Fire-resistance testing laboratory for building products and constructions is a production room with a substantial excess heat (over 23 W/m . Significant sources of heat inside the aforementioned laboratory are firing furnace, designed to simulate high temperature effects on structures and products of various types in case of fire development. The excess heat production in the laboratory during the tests is due to firing furnaces. The laboratory room is considered as an object consisting of two control volumes (CV, in each of which there may be air intake and air removal, pollutant absorption or emission. In modeling air exchange conditions the following processes are being considered: the processes connected with air movement in the laboratory room: the jet stream in a confined space, distribution of air parameters, air motion and impurity diffusion in the ventilated room. General upward ventilation seems to be the most rational due to impossibility of using local exhaust ventilation. It is connected with the peculiarities of technological processes in the laboratory. Air jets spouted through large-perforated surface mounted at the height of 2 m from the floor level, "flood" the lower control volume, entrained by natural convective currents from heat sources upward and removed from the upper area. In order to take advantage of the proposed method of the required air exchange calculation, you must enter additional conditions, taking into account the provision of sanitary-hygienic characteristics of the current at the entrance of the service (work area. Exhaust air containing pollutants (combustion products, is expelled into the atmosphere by vertical jet discharge. Dividing ventilated rooms into two control volumes allows describing the research process in a ventilated room more accurately and finding the air exchange in the lab room during the tests on a more reasonable basis, allowing to provide safe working conditions for the staff without

  18. Simulation of thermal indoor climate in buildings by using human Projected Area Factors

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik

    2009-01-01

    these large windows on a cold winter day it is recognized that this can cause thermal discomfort. The calculation of this discomfort needs to be taken properly into account in the simulation of the thermal indoor climate and energy consumption of the rooms. The operative temperature can be used as a...... simple measure for thermal environ-ment. The operative temperature is a function of the air temperature, the mean radiant temperature and the relative air velocity. However, in many programs for calculation of energy consumption and thermal indoor climate the model for calculating the mean radiant...... temperature has traditionally been based on the calculation of an area weighted mean value independently of the location in the room. In practice the location of the per-son in the room has a significant influence and inhomogeneous radiation plays an important role for the us-ability and functionality of the...

  19. Fast printing of thin, large area, ITO free electrochromics on flexible barrier foil

    DEFF Research Database (Denmark)

    Søndergaard, Roar R.; Hösel, Markus; Jørgensen, Mikkel;

    2013-01-01

    Processing of large area, indium tin oxide (ITO) free electrochromic (EC) devices has been carried out using roll-toroll (R2R) processing. By use of very fine high-conductive silver grids with a hexagonal structure, it is possible to achieve good transparency of the electrode covered substrates and...... when used in EC devices switching times are similar to corresponding ITO devices. This is obtained without the uneven switching of larger areas, which is generally observed when using ITO because of its high-sheet resistance. The silver electrode structures for 18 ×18 cm2 devices can be processed at...

  20. A large area two-dimensional position sensitive multiwire proportional detector

    CERN Document Server

    Moura, M M D; Souza, F A; Alonso, E E; Fujii, R J; Meyknecht, A B; Added, N; Aissaoui, N; Cardenas, W H Z; Ferraretto, M D; Schnitter, U; Szanto, E M; Szanto de Toledo, A; Yamamura, M S; Carlin, N

    1999-01-01

    Large area two-dimensional position sensitive multiwire proportional detectors were developed to be used in the study of light heavy-ion nuclear reactions at the University of Sao Paulo Pelletron Laboratory. Each detector has a 20x20 cm sup 2 active area and consists of three grids (X-position, anode and Y-position) made of 25 mu m diameter gold plated tungsten wires. The position is determined through resistive divider chains. Results for position resolution, linearity and efficiency as a function of energy and position for different elements are reported.

  1. The European Large Area ISO Survey II: mid-infrared extragalactic source counts

    OpenAIRE

    Serjeant, Stephen; Oliver, Seb; Rowan-Robinson, Michael; Crockett, Hans; Missoulis, Vasilis; Sumner, Tim; Gruppioni, Carlotta; Mann, Robert G.; Eaton, Nick; Elbaz, David; Clements, David L.; Baker, Amanda; Efstathiou, Andreas; Cesarsky, Catherine; Danese, Luigi

    2000-01-01

    We present preliminary source counts at 6.7 and 15 μm from the preliminary analysis of the European Large Area ISO Survey, with limiting flux densities of ∼2 mJy at 15 μm and ∼1 mJy at 6.7 μm. We separate the stellar contribution from the extragalactic using identifications with automated plate measurement sources made with the likelihood ratio technique. We quantify the completeness and reliability of our source extraction using (a) repeated observations over small areas, (b) cross-identific...

  2. A large-area microstrip-gas-counter for X-ray astronomy

    Science.gov (United States)

    Ramsey, B. D.; Apple, J. A.; Austin, R. A.; Dietz, K. L.; Minamitani, T.; Kolodziejczak, J. J.; Weisskopf, M. C.

    1996-02-01

    We have developed a large-area coded-mask telescope for hard-X-ray astronomy. The heart of the instrument is an imaging microstrip-gas-counter of active area 30 cm × 30 cm and filled with 2 × 105 Pa of xenon + 2% isobutylene. Fabricated on a single sheet of borosilicate glass, 1 mm thick, the microstrip features fine anodes (10 μm) and interleaved cathodes from which the position sensing is derived. Rear pickup electrodes provide the second coordinate. Full details of the instrument and its performance are presented. A first flight, from a high-altitude balloon, is scheduled for the Spring of 1977.

  3. GFM-II large area surface monitor for alpha beta contamination

    CERN Document Server

    Du Xiang Yang; Han Shu Ping; Zhang Xia

    2002-01-01

    GFM-II large area surface monitor for alpha/beta contamination is equipped with four independent detecting channels, each channel consists one probe and one charge sensitive amplifier. The pancake probe is flow gas proportional counter tubes array. Total active area of the instrument is 1000 cm sup 2. This instrument has an rolling frame, so it can move rapidly on flat ground. Its characteristics is that: 1) Use flow gas proportional counter array instead of single counter, 2) Lower working voltage, 3) Simultaneously rapid measurement for alpha/beta

  4. GFM-II large area surface monitor for α β contamination

    International Nuclear Information System (INIS)

    GFM-II large area surface monitor for α/β contamination is equipped with four independent detecting channels, each channel consists one probe and one charge sensitive amplifier. The pancake probe is flow gas proportional counter tubes array. Total active area of the instrument is 1000 cm2. This instrument has an rolling frame, so it can move rapidly on flat ground. Its characteristics is that: 1) Use flow gas proportional counter array instead of single counter, 2) Lower working voltage, 3) Simultaneously rapid measurement for α/β

  5. Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications

    OpenAIRE

    Feng, Xian; Loh, Wei H.; Flanagan, Joanne C.; Camerlingo, Angela; Dasgupta, Sonali; Petropoulos, Periklis; Horak, Peter; Frampton, Ken; White, Nicholas M.; Price, Jonathan H.V.; Rutt, Harvey N.; Richardson, David J.

    2008-01-01

    We report the fabrication of a large mode area tellurite holey fiber from an extruded perform, with a mode area of 3000µm2. Robust single-mode guidance at 1.55µm was confirmed by both optical measurement and numerical simulation. The propagation loss was measured as 2.9dB/m at 1.55µm. A broad and flat supercontinuum from 0.9 to 2.5µm with 6mW output was obtained with a 9cm length of this fiber.

  6. Large-Area Synthesis and Microstructural Investigations of Silicon Nano wires and Core-Shell Structures

    International Nuclear Information System (INIS)

    Large-area randomly-oriented silicon nano wires (SiNWs) were synthesized using Au-coated p-type Si(100) substrate via the solid-liquid-solid (SLS) process [1] under different growth conditions. Microstructural studies on the NWs produced show that straight crystalline nano wires of large aspect ratios were generally obtained at a growth temperature of 1000 degree Celsius along with some worm-like amorphous structures. Figure shows the SEM image of a NW sample. Typical high angle X-ray diffractogram in Figure reveals that the NWs are, in general, crystalline. (author)

  7. Observation of cladding modes spatio-spectral distribution in large mode area photonic crystal fiber

    International Nuclear Information System (INIS)

    We report the observation of spatio-spectral distribution in cladding modes of a single-mode large mode area photonic crystal fiber. The cladding modes excitation was achieved without any external fiber exposure. The optical field patterns of the cladding modes within different pump wavelength are investigated. To the best of knowledge the spatio- spectral distribution in cladding modes of large mode photonic crystal fiber is demonstrated for the first time. The results are of immediate interest in applications demanding devices based on core and cladding mode coupling in photonic crystal fibers

  8. A Large Area CCD Camera for the Schmidt Telescope at the Venezuelan National Astronomical Observatory

    OpenAIRE

    Baltay, C.; Snyder, J. A.; Andrews, P.; Emmet, W.; Schaefer, B.; Sinnott, J.; Bailyn, C.; de Coppi, P.; Oemler, A.; Sabbey, C. N.; Sofia, S.; van Altena, W.; Vivas, A. K.; Abad, C; Briceno, C.

    2002-01-01

    We have designed, constructed and put into operation a large area CCD camera that covers a large fraction of the image plane of the 1 meter Schmidt telescope at Llano del Hato in Venezuela. The camera consists of 16 CCD devices arranged in a 4 x 4 mosaic covering 2.3 degrees x 3.5 degrees of sky. The CCDs are 2048 x 2048 LORAL devices with 15 micron pixels. The camera is optimized for drift scan photometry and objective prism spectroscopy. The design considerations, construction features and ...

  9. A Large Area CCD Camera for the Schmidt Telescope at the Venezuelan National Astronomical Observatory

    CERN Document Server

    Baltay, C; Andrews, P; Emmet, W; Schaefer, B; Sinnott, J; Bailyn, C D; Coppi, P S; Oemler, A E; Sabbey, C N; Sofia, S; Van Altena, W F; Vivas, A K; Abad, C; Briceño, C; Bruzual, G; Magris, G; Stock, J; Prugna, F D; Sánchez, G; Schenner, H; Adams, B; Gebhard, M; Honeycutt, R K; Musser, J; Harris, F; Geary, J; Sanchez, Ge.; Sanchez, Gu.

    2002-01-01

    We have designed, constructed and put into operation a large area CCD camera that covers a large fraction of the image plane of the 1 meter Schmidt telescope at Llano del Hato in Venezuela. The camera consists of 16 CCD devices arranged in a 4 x 4 mosaic covering 2.3 degrees x 3.5 degrees of sky. The CCDs are 2048 x 2048 LORAL devices with 15 micron pixels. The camera is optimized for drift scan photometry and objective prism spectroscopy. The design considerations, construction features and performance parameters are described in the following article.

  10. Large mode area aperiodic fiber designs for robust singlemode emission under high thermal load

    OpenAIRE

    Dauliat, Romain; Coscelli, Enrico; Poli, Federica; Darwich, Dia; Benoit, Aurélien; Jamier, Raphaël; Schuster, Kay; Grimm, Stephan; Cucinotta, Annamaria; Selleri, Stefano; Salin, François; Roy, Philippe

    2015-01-01

    In this paper, we investigate the potential of various large mode area bers under thermal load, that is the state-of-the-art air-silica large pitch bers, as well as the recently devised symmetry-reduced photonic crystal ber and aperiodic all-solid by carefully considering the degrees of freedom oered all along the ber fabrication. This work aims to discuss the mode ltering ability of these structures in regard to the power scaling and to conrm their potential for robust singlemode operation a...

  11. Indoor air quality large building characterization project planning. Report for September 1992--May 1997

    International Nuclear Information System (INIS)

    Three buildings were characterized in this project by examining radon concentrations and indoor air quality (IAQ) levels as affected by building ventilation dynamics. IAQ data collection stations (IAQDS) for monitoring and data logging, remote switches (pressure and sail switches), and a weather station were installed. Measurements of indoor radon carbon dioxide, particle concentrations, temperature, humidity, pressure differentials, ambient and sub-slab radon concentrations, and outdoor air (OA) intake flow rates were collected. The OA intake was adjusted when possible, and fan cycles were controlled while tracer gas measurements were taken in all zones and IAQDS data were collected. Ventilation, infiltration, mixing rates, radon entry, pressure/temperature convective driving forces, CO2 generation/decay rates, and IAQ levels were established for baseline and OA-adjusted conditions

  12. Fine-grain Indoor Localization Infrastructure for Real-time Inspectionof Large Buildings

    OpenAIRE

    Raja, Asad Khalid

    2015-01-01

    This master thesis project is about the systems integration of an indoor localizationsystem using Ultra Wideband Impulse Radio and a drone platform which uses theParrot AR.DRONE 2.0 along with the Robot Operating System (ROS). The goal wasto use o-the-shelf components to integrate an indoor localization system which can beused for energy modelling, indoor environmental panoramas and visual inspection oflarge buildings. The system architecture is explored, implemented and then subjectedto exte...

  13. Reinforced Epoxy Nanocomposite Sheets Utilizing Large Interfacial Area from a High Surface Area Single-Walled Carbon Nanotube Scaffold

    Science.gov (United States)

    Kobashi, Kazufumi; Nishino, Hidekazu; Yamada, Takeo; Futaba, Don; Yumura, Motoo; Hata, Kenji

    2011-03-01

    We employed single-walled carbon nanotubes (SWNTs) with the available highest specific surface area (more than 1000 m2/g) that provided very large interfacial area for the matrix to fabricate epoxy composite sheets. Through mechanical redirection of the SWNT alignment to horizontal to create a laterally aligned scaffold sheet, into which epoxy resin was impregnated. The SWNT scaffold was engineered in structure to meet the these two nearly mutually exclusive demands, i.e. to have nanometer meso-pores (2-50 nm) to facilitate homogeneous impregnation of the epoxy resin and to have mechanical strength to tolerate the compaction forces generated during impregnation. Through this approach, a SWNT/epoxy composite sheet with a nearly ideal morphology was realized where long and aligned SWNTs were loaded at high weight fraction (33 percent) with an intertube distance approaching the radius of gyration for polymers. The resultant composite showed a Young's modulus of 15.0 GPa and a tensile strength of 104 MPa, thus achieving 5.4 and 2.1 times reinforcement as compared to the neat epoxy resin.

  14. An advanced method of activity determination of large area beta emitting sources

    International Nuclear Information System (INIS)

    The presented advanced method of activity determination of large area beta emitting sources is based on a version of efficiency tracing method using a test foil placed between the source and a conventional large area detector. It is shown that the total efficiency of the measuring system may depend on a dimensionless parameter derived from the difference in count rates caused by inserting the test foil while other disturbing effects are mostly reduced or compensated. - Highlights: • Efficiency tracing transmission method of beta activity determination. • Efficiency determined by means of a parameter independent of initial absorption conditions. • Parameter is derived from two counting results obtained with using a test foil. • Particularly useful for calibration and measurement of radionuclide standard sources

  15. Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene.

    Science.gov (United States)

    Ago, Hiroki; Ogawa, Yui; Tsuji, Masaharu; Mizuno, Seigi; Hibino, Hiroki

    2012-08-16

    For electronic applications, synthesis of large-area, single-layer graphene with high crystallinity is required. One of the most promising and widely employed methods is chemical vapor deposition (CVD) using Cu foil/film as the catalyst. However, the CVD graphene is generally polycrystalline and contains a significant amount of domain boundaries that limit intrinsic physical properties of graphene. In this Perspective, we discuss the growth mechanism of graphene on a Cu catalyst and review recent development in the observation and control of the domain structure of graphene. We emphasize the importance of the growth condition and crystallinity of the Cu catalyst for the realization of large-area, single-crystalline graphene. PMID:26295775

  16. Large-area imaging micro-well detectors for high-energy astrophysics

    CERN Document Server

    Deines-Jones, P; Hunter, S D; Jahoda, K; Owens, S M

    2002-01-01

    Micro-well detectors are pixelized imaging sensors that can be inexpensively fabricated in very large arrays. Owing to their intrinsic gain and operation at room temperature, they can be instrumented at very low power, per unit area, making them valuable for a variety of space-flight applications where wide-angle X-ray imaging or large-area particle tracking is required. For example, micro-well detectors have been chosen as the focal plane imager for Lobster-ISS, a proposed soft X-ray all-sky monitor. We have fabricated detectors which image X-rays with 200 mu m FWHM resolution at 3 keV. In agreement with other groups using similar geometries, we find nominal proportional counter energy resolution (20% at 6 keV in P-10), and stable operation at gas gains up to 30,000.

  17. The silicon tracker/converter for the gamma-ray large area space telescope

    International Nuclear Information System (INIS)

    The Silicon Tracker/Converter of the Gamma-ray Large Area Space Telescope (GLAST) will have an active area of 80 m2, representing one of the largest planned applications of the silicon-strip detector technology. The large number of channels (1.3 million) to read out, together with the requirement that the tracker provide the trigger to the data acquisition, force the readout electronics to be of very low noise. Furthermore, to fit into the power constraints of the satellite environment, the electronics must have an ultra-low power consumption. To fulfill these requirements, plus others imposed by the space environment, such as redundancy, a mixed mode CMOS front-end readout chip and a digital readout controller chip have been designed and prototyped. In this article, we present the status of the readout electronics and the results from a test-beam study with a small GLAST tracker prototype. (author)

  18. The Area Law in Matrix Models for Large N QCD Strings

    Science.gov (United States)

    Anagnostopoulos, K. N.; Bietenholz, W.; Nishimura, J.

    We study the question whether matrix models obtained in the zero volume limit of 4d Yang-Mills theories can describe large N QCD strings. The matrix model we use is a variant of the Eguchi-Kawai model in terms of Hermitian matrices, but without any twists or quenching. This model was originally proposed as a toy model of the IIB matrix model. In contrast to common expectations, we do observe the area law for Wilson loops in a significant range of scale of the loop area. Numerical simulations show that this range is stable as N increases up to 768, which strongly suggests that it persists in the large N limit. Hence the equivalence to QCD strings may hold for length scales inside a finite regime.

  19. The Area Law in Matrix Models for Large N QCD Strings

    CERN Document Server

    Anagnostopoulos, K N; Nishimura, J

    2002-01-01

    We study the question whether matrix models obtained in the zero volume limit of 4d Yang-Mills theories can describe large N QCD strings. The matrix model we use is a variant of the Eguchi-Kawai model in terms of Hermitian matrices, but without any twists or quenching. This model was originally proposed as a toy model of the IIB matrix model. In contrast to common expectations, we do observe the area law for Wilson loops in a significant range of scale of the loop area. Numerical simulations show that this range is stable as N increases up to 768, which strongly suggests that it persists in the large N limit. Hence the equivalence to QCD strings may hold for length scales inside a finite regime.

  20. Large area mold fabrication for the nanoimprint lithography using electron beam lithography

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The mold fabrication is a critical issue for the development of nanoimprint lithography as an effective low-cost and mass production process.This paper describes the fabrication process developed to fabricate the large area nanoimprint molds on the silicon wafers.The optimization of e-beam exposure dose and pattern design is presented.The overlayer process is developed to improve the field stitching accuracy of e-beam exposure,and around 10 nm field stitching accuracy is obtained.By means of the optimization of the e-beam exposure dose,pattern design and overlayer process,large area nanoimprint molds having dense line structures with around 10 nm field stitching accuracy have been fabricated.The fabricated mold was used to imprint commercial imprinting resist.

  1. A liquid-helium cooled large-area silicon PIN photodiode X-ray detector

    International Nuclear Information System (INIS)

    An X-ray detector using a liquid-helium cooled large-area silicon PIN photodiode has been developed along with a tailor-made charge sensitive preamplifier whose first-stage JFET has been cooled. The operating temperature of the JFET has been varied separately and optimized. The X- and γ-ray energy spectra for an 241Am source have been measured with the photodiode operated at 13 K. An energy resolution of 1.60 keV (FWHM) has been obtained for 60-keV γ rays and 1.30 keV (FWHM) for the pulser. The energy threshold could be set as low as 3 keV. It has been shown that a silicon PIN photodiode serves as a low-cost excellent X-ray detector which covers a large area at 13 K. (orig.)

  2. Fabrication of large area silicon solar cells by rapid thermal processing

    Science.gov (United States)

    Sivoththaman, S.; Laureys, W.; Nijs, J.; Mertens, R.

    1995-10-01

    Large area n+pp+ solar cells have been fabricated on 10 cm×10 cm pseudo-quasi-square CZ silicon wafers (1 Ω cm, p-type) predominantly used by the photovoltaic (PV) industry. All the high-temperature steps have been performed by rapid thermal processing (RTP). Emitter formation, back surface field (BSF) formation, and surface oxidation have been performed in just two RTP steps each lasting 50 s. Solar cells of 15% efficiency have been fabricated this way, demonstrating the applicability of this low thermal budget technology to large area, modulable size, industrial quality Si wafers. Furthermore, the rapid thermal oxidation (RTO) is shown to result in good quality thin oxides with Si/SiO2 interface trap densities (Dit)<1011 cm-3 eV-1 near-midgap.

  3. Photon counting pixel and array in amorphous silicon technology for large area digital medical imaging applications

    Science.gov (United States)

    Yazdandoost, Mohammad Y.; Shin, Kyung W.; Safavian, Nader; Taghibakhsh, Farhad; Karim, Karim S.

    2010-04-01

    A single photon counting Voltage Controlled Oscillator (VCO) based pixel architecture in amorphous silicon (a-Si) technology is reported for large area digital medical imaging. The VCO converts X-ray generated input charge into an output oscillating frequency signal. Experimental results for an in-house fabricated VCO circuit in a-Si technology are presented and external readout circuits to extract the image information from the VCO's frequency output are discussed. These readout circuits can be optimized to reduce the fixed pattern noise and fringing effects in an imaging array containing many such VCO pixels. Noise estimations, stability simulations and measurements for the fabricated VCO are presented. The reported architecture is particularly promising for large area photon counting applications (e.g. low dose fluoroscopy, dental computed tomography (CT)) due to its very low input referred electronic noise, high sensitivity and ease of fabrication in low cost a-Si technology.

  4. Large area germanium detector arrays for lung counting: what is the optimum number of detectors?

    Science.gov (United States)

    Kramer, Gary H; Hauck, Barry M

    2007-01-01

    Using the Lawrence Livermore National Laboratory (LLNL) torso phantom to calibrate a lung counting system can lead to the conclusion that three large area (i.e. >70 mm diameter) Ge detectors will outperform a four-detector array and provide a lower MDA as a four-detector array of large area Ge detectors covers a significant portion of inactive tissue (i.e. non-lung tissue). The lungs of the LLNL phantom, which are approximately 10 cm too short compared with real lungs, also suggests that a two-detector array could be used under limited circumstances. When tested with modified lungs that are more human-like, it was found that the four-detector array showed the best counting efficiency and the lowest MDA. Fortunately, these findings indicate that, although the LLNL phantom's lungs are too short, there is no adverse impact on the calibration of a lung counter. PMID:17151008

  5. Large-area WSe2 electric double layer transistors on a plastic substrate

    KAUST Repository

    Funahashi, Kazuma

    2015-04-27

    Due to the requirements for large-area, uniform films, currently transition metal dichalcogenides (TMDC) cannot be used in flexible transistor industrial applications. In this study, we first transferred chemically grown large-area WSe2 monolayer films from the as-grown sapphire substrates to the flexible plastic substrates. We also fabricated electric double layer transistors using the WSe2 films on the plastic substrates. These transistors exhibited ambipolar operation and an ON/OFF current ratio of ∼104, demonstrating chemically grown WSe2 transistors on plastic substrates for the first time. This achievement can be an important first step for the next-generation TMDC based flexible devices. © 2015 The Japan Society of Applied Physics.

  6. [Exposure to asbestos in buildings in areas of Basilicata characterized by the presence of rocks containing tremolite].

    Science.gov (United States)

    Massaro, T; Baldassarre, A; Pinca, A; Martina, G L M; Fiore, S; Lettino, A; Cassano, F; Musti, M

    2012-01-01

    Lucania, in southern Italy, is characterized by areas with natural outcrops of rocks containing tremolite. The study aims to assess the risk of exposure to asbestos in the building workers in these areas through environmental sampling near sites for implementation of safety of roads built on serpentinite rocks and personal sampling in a group of persons who work in the building industry and a group of residents engaged in activities without contact with the ground. Near road sites was found the presence of airborne tremolite in 66% of environmental samples with peaks up to 31 ff/l. The analysis of personal samples showed the presence of tremolite in doses higher than the natural background in 100% of the building workers, while there were no fibers in the samples of residents employed in activities without soil disturbance. The study shows that the building in areas with naturally occurring asbestos determines a condition of significant occupational exposure to asbestos. Adequate safety measures for workers exposed are needed. PMID:23405718

  7. Linear antenna microwave plasma CVD deposition of diamond films over large areas

    Czech Academy of Sciences Publication Activity Database

    Kromka, Alexander; Babchenko, Oleg; Ižák, Tibor; Hruška, Karel; Rezek, Bohuslav

    2012-01-01

    Roč. 86, č. 6 (2012), s. 776-779. ISSN 0042-207X R&D Projects: GA ČR(CZ) GAP108/11/0794; GA AV ČR KAN400100701; GA MŠk LC510; GA AV ČR(CZ) IAAX00100902 Institutional research plan: CEZ:AV0Z10100521 Keywords : diamond * large area deposition * linear antenna microwave plasma Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.530, year: 2012

  8. A gas scintillation counter with imaging optics and large area UV-detector

    CERN Document Server

    Nickles, J; Bräuning-Demian, A; Breskin, Amos; Chechik, R; Dangendorf, V; Rauschnabel, K; Schmidt-Böcking, H

    2002-01-01

    We report on the improvements in the position sensitive readout of a xenon-filled gas scintillation proportional counter. Using an imaging optic for UV-light in the region of 170 nm, the position resolution could be improved by more than 30%. In addition, we have obtained first encouraging results for the use of the recently developed gas electron multiplier together with a CsI-photocathode as a large area UV-detector system.

  9. A gas scintillation counter with imaging optics and large area UV-detector

    Energy Technology Data Exchange (ETDEWEB)

    Nickles, J. E-mail: nickles@hsb.uni-frankfurt.de; Braeuning, H.; Braeuning-Demian, A.; Dangendorf, V.; Breskin, A.; Chechik, R.; Rauschnabel, K.; Schmidt-Boecking, H

    2002-01-21

    We report on the improvements in the position sensitive readout of a xenon-filled gas scintillation proportional counter. Using an imaging optic for UV-light in the region of 170 nm, the position resolution could be improved by more than 30%. In addition, we have obtained first encouraging results for the use of the recently developed gas electron multiplier together with a CsI-photocathode as a large area UV-detector system.

  10. Ultrasensitive gas detection of large-area boron-doped graphene

    OpenAIRE

    Lv, Ruitao; Chen, Gugang; Li, Qing; McCreary, Amber; Botello-Méndez, Andrés; Morozov, S. V.; Liang, Liangbo; Declerck, Xavier; Perea-López, Nestor; David A. Cullen; Feng, Simin; Elías, Ana Laura; Cruz-Silva, Rodolfo; Fujisawa, Kazunori; Endo, Morinobu

    2015-01-01

    The gas-sensing performance of graphene could be remarkably enhanced by incorporating dopants into its lattice based on theoretical calculations. However, to date, experimental progress on boron-doped graphene (BG) is still very scarce. Here, we achieved the controlled growth of large-area, high-crystallinity BG sheets and shed light on their electronic features associated with boron dopants at the atomic scale. As a proof-of-concept, it is demonstrated that boron doping in graphene could lea...

  11. Wavelength Scanning Interferometery for large area roll to roll metrology applications in photovoltaic manufacturing environment

    OpenAIRE

    Elrawemi, Mohamed; Blunt, Liam; Fleming, Leigh; Muhamedsalih, Hussam

    2014-01-01

    The wavelength scanning interferometer is currently being applied as a core metrology technology as part of the EU project NanoMend - Nanoscale Defect Detection, Cleaning and Repair for Large Area Substrates ̴500 mm width. NanoMend Project aims to develop technologies that are able to detect and correct micro and nano-scale defects in roll-to-roll produced films in order to improve product performance, yield and lifetime.

  12. Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures

    OpenAIRE

    Debora Pierucci; Hugo Henck; Naylor, Carl H.; Haikel Sediri; Emmanuel Lhuillier; Adrian Balan; Rault, Julien E.; Dappe, Yannick J.; François Bertran; Patrick Le Fèvre; A. T. Charlie Johnson; Abdelkarim Ouerghi

    2016-01-01

    Two-dimensional layered transition metal dichalcogenides (TMDCs) show great potential for optoelectronic devices due to their electronic and optical properties. A metal-semiconductor interface, as epitaxial graphene - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science, as it constitutes an outstanding platform to investigate the interlayer interaction in van der Waals heterostructures. Here, we study large area MoS2-graphene-heterostructures formed by...

  13. Detection efficiency evaluation for a large area neutron sensitive microchannel plate detector

    OpenAIRE

    Wang, Yiming; Yang, Yigang; Liu, Ren

    2015-01-01

    In this paper, the detection efficiency of a large area neutron sensitive microchannel plate detector has been evaluated. A 6LiF/ZnS detector was employed as the benchmark detector, the TOF spectra of these two detectors were simultaneously measured and the energy spectra were then deduced to calculate the detection efficiency curve of the nMCP detector. Tests show the detection efficiency@25.3 meV thermal neutron is 34% for this nMCP detector.

  14. Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates

    OpenAIRE

    Gabriele Fisichella; Salvatore Di Franco; Patrick Fiorenza; Raffaella Lo Nigro; Fabrizio Roccaforte; Cristina Tudisco; Condorelli, Guido G; Nicolò Piluso; Noemi Spartà; Stella Lo Verso; Corrado Accardi; Cristina Tringali; Sebastiano Ravesi; Filippo Giannazzo

    2013-01-01

    Chemical vapour deposition (CVD) on catalytic metals is one of main approaches for high-quality graphene growth over large areas. However, a subsequent transfer step to an insulating substrate is required in order to use the graphene for electronic applications. This step can severely affect both the structural integrity and the electronic properties of the graphene membrane. In this paper, we investigated the morphological and electrical properties of CVD graphene transferred onto SiO2 and o...

  15. Synthesis of large area graphene for high performance in flexible optoelectronic devices

    OpenAIRE

    Emre O. Polat; Osman Balci; Nurbek Kakenov; Hasan Burkay Uzlu; Coskun Kocabas; Ravinder Dahiya

    2015-01-01

    This work demonstrates an attractive low-cost route to obtain large area and high-quality graphene films by using the ultra-smooth copper foils which are typically used as the negative electrodes in lithium-ion batteries. We first compared the electronic transport properties of our new graphene film with the one synthesized by using commonly used standard copper foils in chemical vapor deposition (CVD). We observed a stark improvement in the electrical performance of the transistors realized ...

  16. A tool to estimate the Fermi Large Area Telescope background for short-duration observations

    OpenAIRE

    Vasileiou, V.

    2013-01-01

    The proper estimation of the background is a crucial component of data analyses in astrophysics, such as source detection, temporal studies, spectroscopy, and localization. For the case of the Large Area Telescope (LAT) on board the Fermi spacecraft, approaches to estimate the background for short (less than ~one thousand seconds duration) observations fail if they ignore the strong dependence of the LAT background on the continuously changing observational conditions. We present a (to be) pu...

  17. The European Large Area ISO Survey - ISOPHOT results using the MPIA-pipeline

    OpenAIRE

    Surace, C.; Heraudeau, P.; Lemke, D.; Oliver, S.; Rowan-Robinson, M.; Consortium, the ELAIS

    1998-01-01

    The European Large Area ISO Survey (ELAIS) will provide Infrared observations of 4 regions in the sky with ISO. Around 2000 Infrared sources have been detected at 7 and 15 microns (with ISOCAM), 90 and 175 microns (with ISOPHOT)) over 13 square degrees of the sky. We present the source extraction pipeline of the 90 microns ISOPHOT observations, describe and discuss the results obtained and derive the limits of the ELAIS observational strategy.

  18. Simulation-Based Optimization of Cure Cycle of Large Area Compression Molding for LED Silicone Lens

    OpenAIRE

    Min-Jae Song; Kwon-Hee Kim; Seok-Kwan Hong; Jeong-Won Lee; Jeong-Yeon Park; Gil-Sang Yoon; Heung-Kyu Kim

    2015-01-01

    Three-dimensional heat transfer-curing simulation was performed for the curing process by introducing a large area compression molding for simultaneous forming and mass production for the lens and encapsulants in the LED molding process. A dynamic cure kinetics model for the silicone resin was adopted and cure model and analysis result were validated and compared through a temperature measurement experiment for cylinder geometry with cure model. The temperature deviation between each lens cav...

  19. Solution processed large area field effect transistors from dielectrophoreticly aligned arrays of carbon nanotubes

    OpenAIRE

    Stokes, Paul; Silbar, Eliot; Zayas, Yashira M.; Khondaker, Saiful I.

    2008-01-01

    We demonstrate solution processable large area field effect transistors (FETs) from aligned arrays of carbon nanotubes (CNTs). Commercially available, surfactant free CNTs suspended in aqueous solution were aligned between source and drain electrodes using ac dielectrophoresis technique. After removing the metallic nanotubes using electrical breakdown, the devices displayed p-type behavior with on-off ratios up to ~ 2X10^4. The measured field effect mobilities are as high as 123 cm2/Vs, which...

  20. Frequency conversion through spontaneous degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin;

    2014-01-01

    Frequency conversion through spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers. Different FWM processes are observed, phasematching between fiber modes of orthogonal polarization, intermodal phasematching across bandgaps, and intramodal...... phasematching within the same transmission band as the one containing the pump laser. Furthermore first and second order Raman scattering is observed. The interplay between the different FWM processes and Raman scattering are investigated....