WorldWideScience

Sample records for building integrated pv

  1. Power of design - the future of building-integrated PV

    International Nuclear Information System (INIS)

    Abbate, Cinzia

    2001-01-01

    This paper discusses strategies to make building integrated photovoltaic (PV) systems more acceptable and to allow PV material to compete with conventional construction material. The history of developments in building integration and difficulties encountered by architects wishing to use PV products are explored, and the Dutch Amersfoot project in Utrecht involving a new suburb of 501 house covered with PV panels is described. Questions raised regarding architectural integration of PV systems, and PV systems and the construction market are discussed. The Italian PV programme, financial and political constraints, and the positioning of PV on existing structures are reported

  2. Building-integrated PV -- Analysis and US market potential

    International Nuclear Information System (INIS)

    Frantzis, L.; Hill, S.; Teagan, P.; Friedman, D.

    1994-01-01

    Arthur D Little, Inc., in conjunction with Solar Design Associates, conducted a study for the US Department of Energy (DOE), Office of Building Technologies (OBT) to determine the market potential for building-integrated photovoltaics (BIPV). This study defines BIPV as two types of applications: (1) where the PV modules are an integral part of the building, often serving as the exterior weathering skin, and (2) the PV modules are mounted on the existing building exterior. Both of these systems are fully integrated with the energy usage of the building and have potential for significant market penetration in the US

  3. Dissipation of heat from building integrated PV

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.M.L.

    2001-07-01

    The objectives of the project were to investigate methods for improving heat transfer and the reflection of heat from PV modules in building integrated situations and to develop the design of a building integrated PV element with improved heat transfer characteristics, with the aim of reducing the operating temperature of the PV cells. The prototypes developed for improving heat transfer have only shown small reductions in the PV cell operating temperature and these results have not been fully quantified due to problems associated with experimental testing. The improvement in the overall electrical performance of PV modules operating at lower temperatures is consequently even smaller. As a result, none of the prototypes can be considered to be economically viable. Based upon the theoretical and experimental results of this work, it is the recommendation of this project that no further work be conducted in improving BIPV performance through improved heat transfer of BIPV. (Author)

  4. Building Integrated PV and PV/Hybrid Products - The PV:BONUS Experience: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, H.; Pierce, L. K.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Successes and lessons learned from PV:BONUS (Building Opportunities in the United States in PV). This program has funded the development of PV or PV/hybrid products for building applications.

  5. PV and PV/hybrid products for buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, H. P.; Hayter, S. J.; Martin, R. L., Pierce, L. K.

    2000-05-15

    Residential, commercial, and industrial buildings combined are the largest consumers of electricity in the United States and represent a significant opportunity for photovoltaic (PV) and PV/hybrid systems. The U.S. Department of Energy (DOE) is conducting a phased research and product development program, Building Opportunities in the United States for Photovoltaics (PV:BONUS), focused on this market sector. The purpose of the program is to develop technologies and foster business arrangements integrating cost-effective PV or hybrid products into buildings. The first phase was completed in 1996 and a second solicitation, PV:BONUS2, was initiated during 1997. These projects are resulting in a variety of building-integrated products. This paper summarizes the recent progress of the seven firms and collaborative teams currently participating in PV:BONUS2 and outlines planned work for the final phase of their work.

  6. Integration of PV modules in existing Romanian buildings from rural areas

    Energy Technology Data Exchange (ETDEWEB)

    Fara, S.; Finta, D. [IPA SA Research Development, Engineering and Manufacturing for Automation Equipment and Systems, Bucharest (Romania); Fara, L.; Comaneci, D. [Polytechnic Univ. of Bucharest (Romania); Dabija, A.M. [Univ. of Architecture and Urbanism Ion Mincu, Bucharest (Romania); Tulcan-Paulescu, E. [West Univ. of Timisoara, Timisoara (Romania)

    2010-07-01

    Romania has launched a national research project to promote the use of distributed solar architecture and the use of BIPV systems. These systems include solar tunnels and active solar photovoltaic (PV) systems installed on the roofs and facades of buildings in rural areas. In contrast to other EU states, Romania does not have a photovoltaic building construction branch. The number of isolated cases are insufficient to identify a starting point regarding the PV market in the building industry. The main objective of the project is to demonstrate the efficiency of integrating various PV elements in buildings from rural areas, to test them and to make them known so that they can be used on a large scale. This will be accomplished by installing new products on 2 buildings in Bucharest and in 1 building in Timisoara. The PV modules will be integrated with the architecture. One of the buildings will be a historical building while the other 2 will be new buildings with different typologies. The installed power for each building will be of about 1.000 Wp, including some technologies with PV modules.

  7. Photovoltaics for Buildings Cutting-Edge PV

    International Nuclear Information System (INIS)

    Hayter, S. J.; Martin, R. L.

    1998-01-01

    Photovoltaic (PV) technology development for building-integrated applications (commonly called PV for Buildings) is one of the fastest growing areas in the PV industry. Buildings represent a huge potential market for photovoltaics because they consume approximately two-thirds of the electricity consumed in the US. The PV and buildings industries are beginning to work together to address issues including building codes and standards, integration, after-market servicing, education, and building energy efficiency. One of the most notable programs to encourage development of new PV-for-buildings products is the PV:BONUS program, supported by the US Department of Energy. Demand for these products from building designers has escalated since the program was initiated in 1993. This paper presents a range of PV-for-buildings issues and products that are currently influencing today's PV and buildings markets

  8. Towards a CEmark for PV building integrated systems

    NARCIS (Netherlands)

    Jol, J.C.; Bloem, J.J.; Cross, B.M.; Sandberg, M.; Wambach, K.; Wiesner, W.; Zolingen, van R.J.Ch.; Schalkwijk, van M.

    2000-01-01

    The European projects Prescript and Precede aim to pave the way for the development of a procedure to obtain a CE mark for building integrated PV. Prescript has carried out a survey of national building standards and performaed a series of tests on BIPV systems. Prescript has resulted in a proposal

  9. PV-PCM integration in glazed building. Co-simulation and genetic optimization study

    DEFF Research Database (Denmark)

    Elarga, Hagar; Dal Monte, Andrea; Andersen, Rune Korsholm

    2017-01-01

    . An exploratory step has also been considered prior to the optimization algorithm: it evaluates the energy profiles before and after the application of PCM to PV module integrated in glazed building. The optimization analysis investigate parameters such as ventilation flow rates and time schedule to obtain......The study describes a multi-objective optimization algorithm for an innovative integration of forced ventilated PV-PCM modules in glazed façade buildings: the aim is to identify and optimize the parameters that most affect thermal and energy performances. 1-D model, finite difference method FDM...

  10. Building opportunities in the U.S. for PV (PV:BONUS): A progress report

    International Nuclear Information System (INIS)

    Taylor, R.W.

    1994-01-01

    Five contract teams are developing photovoltaic (PV) products that will have a significant impact on building-integrated PV systems. The product lines that these teams are pursuing include roofing materials, building facade materials, PV integrated into modular homes, ac-PV modules, and utility-dispatchable PV systems. The objective of these efforts is to develop product and market opportunities that can provide for the introduction of PV into the buildings market sector at higher allowable installed systems costs than conventional ground- or roof-mounted systems. Each of the teams has a unique approach, and synergistic opportunities among teams are beginning to emerge. This paper reviews the product and market development efforts of these teams and describes the links between the product efforts and parallel analytical work to develop PV as a demand-side management option

  11. The RENUE resource centre. Design study of building-integrated PV in a zero-carbon exhibition building

    Energy Technology Data Exchange (ETDEWEB)

    Webb, R.

    2001-07-01

    Studies at the RENUE building in London are described. The RENUE project is a renewable energy and urban sustainability demonstration of comfortable and elegant buildings which are zero-carbon users. Building-Integrated Photovoltaic (BIPV) systems are a factor in the zero-CO{sub 2} building. The building should be of special interest to protagonists of renewable energy, building designers and the PV industry.

  12. Building integrated PV for commercial and institutional structures, a sourcebook for architects

    Energy Technology Data Exchange (ETDEWEB)

    Eiffert, P.; Kiss, G.

    2000-02-14

    This sourcebook on building-integrated photovoltaics (BIPV) is intended for architects and designers interested in learning more about today's sustainable solar buildings. The booklet includes 16 design briefs describing actual structures; they illustrate how electricity-generating BIPV products (such as special roofing systems, vertical-wall systems, skylights, and awnings, all of which contain PV cells, modules, and films) can be integrated successfully into many different kinds of buildings. It also contains basic information about BIPV technologies, an overview of US product development activities and development programs, descriptions of major software design tools, and a bibliography.

  13. Building integrated photovoltaics

    NARCIS (Netherlands)

    Ritzen, M.J.; Vroon, Z.A.E.P.; Geurts, C.P.W.; Reinders, Angèle; Verlinden, Pierre; Sark, Wilfried; Freundlich, Alexandre

    2017-01-01

    Photovoltaic (PV) installations can be realized in different situations and on different scales, such as at a building level. PV installations at the building level can either be added to the building envelope, which is called building added PV (BAPV), or they can be integrated into the building

  14. Institutional barriers for building integrated PV

    International Nuclear Information System (INIS)

    Mierlo, B. van

    2000-01-01

    Being an alternative for fossil fuels photovoltaics have to overcome traditional structures, procedures, cultures and values. As a new building material photovoltaics also have to deal with the structure and culture of the building sector. In this paper the institutional bottlenecks for the introduction of PV on a large scale are explored in five areas: financing, administration, structure of energy sector, architecture, communication and marketing. Nevertheless, on the whole the developments are encouraging. (author)

  15. Energy analysis of an improved concept of integrated PV panels in an office building in central Greece

    Energy Technology Data Exchange (ETDEWEB)

    Zogou, Olympia; Stapountzis, Herricos [University of Thessaly, Mechanical Engineering Department, Volos (Greece)

    2011-03-15

    During the last decade, steel constructions with glazed facades became popular for commercial buildings in Greece. Moreover, expensive metal, natural stone, marble, ceramic, granite as well as special glass is employed for aesthetic and energy efficiency reasons. This creates opportunities for the introduction of Photovoltaic (PV) modules in double facades. PV modules on south-facing building walls are better placed at a distance from the wall to allow heat rejection and avoid overheating and efficiency loss. Exploiting the rejected heat of the PV modules is also a challenge. In this paper, we examine an improved concept of incorporating PV modules to the south facades of an office building, exploiting both the electricity produced and the heat rejected by the module, to increase building energy efficiency. The PV modules are integrated to the building wall by means of a double facade, which employs intervening ducts for ventilation purposes. The ducts are heating outdoor air, which is employed to cover the ventilation needs of the building, as well as a part of the heating loads. Simulations for typical winter and summer weather and solar insolation conditions are carried out to investigate the building's energy performance improvements. (author)

  16. Energy analysis of an improved concept of integrated PV panels in an office building in central Greece

    International Nuclear Information System (INIS)

    Zogou, Olympia; Stapountzis, Herricos

    2011-01-01

    During the last decade, steel constructions with glazed facades became popular for commercial buildings in Greece. Moreover, expensive metal, natural stone, marble, ceramic, granite as well as special glass is employed for aesthetic and energy efficiency reasons. This creates opportunities for the introduction of Photovoltaic (PV) modules in double facades. PV modules on south-facing building walls are better placed at a distance from the wall to allow heat rejection and avoid overheating and efficiency loss. Exploiting the rejected heat of the PV modules is also a challenge. In this paper, we examine an improved concept of incorporating PV modules to the south facades of an office building, exploiting both the electricity produced and the heat rejected by the module, to increase building energy efficiency. The PV modules are integrated to the building wall by means of a double facade, which employs intervening ducts for ventilation purposes. The ducts are heating outdoor air, which is employed to cover the ventilation needs of the building, as well as a part of the heating loads. Simulations for typical winter and summer weather and solar insolation conditions are carried out to investigate the building's energy performance improvements.

  17. Examples of successful architectural integration of PV: Germany

    International Nuclear Information System (INIS)

    Hagemann, I.B.

    2004-01-01

    In Germany building-integrated photovoltaics (BIPV) are developing rapidly, and much progress has been achieved in the past five years. BIPV can be used today in different ways on both existing and new buildings. Architects and designers are discovering BIPV. With the help of custom-made products available on the German market they are beginning to explore the technical limits of an aesthetic and structural integration of PV in buildings. As a result some exciting high-profile building projects with PV have been built, for example, the small service pavilion Meereslauschen in Steinhude or the new headquarters building of the Wood Trade Association in Munich. These projects show that the use of PV is very varied and offers opportunities for creative architects. However non-technical problems still need to be solved to allow a meaningful and widespread application of PV in the built environment. To decrease costs it is essential to develop further standard BIPV components. The aim of such developments should be to replace standard PV modules by products in which PV and structural building elements are melded into one design and structural unit. (author)

  18. IEA Solar Heating and Cooling Programme Task 16: PV in Buildings

    International Nuclear Information System (INIS)

    Schoen, A.J.N.; Van der Weiden, T.C.J.

    1993-10-01

    In the title program (SHCP), initiated in 1977, twenty countries, including the European Union, participate in a broad spectrum of subjects in the field of thermal, photovoltaic (PV) and passive solar energy. Nineteen Tasks were started so far, of which eleven Tasks are finished. Task 16 deals with the architectural and electrotechnical integration of PV in buildings, aiming at a maximal contribution of solar energy to the energy supply of a building, knowledge increase and transfer with respect to the relation of PV with other components of the energy system of a building, and economic optimization. Task 16 is planned for the period 1990-1995 and is divided in Sub-Tasks A: System Design and Development; B: Building Integration; C: PV-Demonstration Buildings; and D: Technology Communication. In this report the Dutch activities of Task 16, coordinated by Ecofys, are discussed. Reports of 4 Expert Meetings and 3 Workshops are presented. A description (in English) of the first Dutch IEA Demonstration Building, the energy autonomous house in Woubrugge, is given. Finally attention is paid to the activities regarding the Ideas Competition for the design of buildings or urban areas with integrated PV systems. 6 appendices

  19. Optimal Solar PV Arrays Integration for Distributed Generation

    Energy Technology Data Exchange (ETDEWEB)

    Omitaomu, Olufemi A [ORNL; Li, Xueping [University of Tennessee, Knoxville (UTK)

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  20. Cost reduction in PV manufacturing. Impact on grid-connected and building-integrated markets

    International Nuclear Information System (INIS)

    Maycock, Paul D.

    1997-01-01

    In the past three years there have been several key events or changes that can lead to fully economic, massive deployment to the grid-connected and central PV markets. The factors discussed in this report include: (1) significant cost reduction in single crystal and polycrystal silicon so that modules profitably priced at $3.10-$3.30 per peak watt and installed grid-connected systems with installed cost of $5.50 per watt are being offered; (2) several new thin film plants - amorphous silicon, cadmium telluride, and copper indium diselenide are being built for 1996, 1997 production with greatly reduced costs; (3) government subsidized volume orders for PV in grid-connected houses (Japan, Germany, Switzerland, Italy, and the United States) provide volume (2000+ units per year) that lead to reduced costs; (4) environmental benefits for PV are being applied in Europe and Japan permitting 'early adopters' to enter the market; and (5) government and commercial acceptance of PV building integrated products, especially in Europe, are expanding PV markets. The combination of these forces lead to the prediction that an 'accelerated' market mode could start in the year 2000

  1. Simplified life-cycle analysis of PV systems in buildings: present situation and future trends

    International Nuclear Information System (INIS)

    Frankl, P.; Masini, A.; Gamberale, M.; Toccaceli, D.

    1998-01-01

    The integration of photovoltaic (PV) systems in buildings shows several advantages compared to conventional PV power plants. The main objectives of the present study are the quantitative evaluation of the benefits of building-integrated PV systems over their entire life-cycle and the identification of best solutions to maximise their energy efficiency and CO 2 mitigation potential. In order to achieve these objectives, a simplified life-cycle analysis (LCA) has been carried out. Firstly, a number of existing applications have been studied. Secondly, a parametric analysis of possible improvements in the balance-of-system (BOS) has been developed. Finally, the two steps have been combined with the analysis of crystalline silicon technologies. Results are reported in terms of several indicators: energy pay-back time, CO 2 yield and specific CO 2 emissions. The Indicators show that the integration of PV systems in buildings clearly increases the environmental benefits of present PV technology. These benefits will further increase with future PV technologies. Future optimised PV roof-integrated systems are expected to have an energy pay-back time of around 1-5 years (1 year with heat recovery) and to save during their lifetime more than 20 times the amount of CO 2 emitted during their manufacturing (34 times with heat recovery). (Author)

  2. The potential market for PV building products

    International Nuclear Information System (INIS)

    1998-01-01

    This study was carried out by ECOTEC Research and Consulting Limited (ECOTEC) in collaboration with the Newcastle Photovoltaic Application Centre (NPAC) and ECD Energy and Environment (ECD) under the Department of Trade and Industry's (DTI) New and Renewable Energy Programme (contract reference S/P2/00277/00/00). The aim was to assess the future market potential for building-integrated photovoltaic (BIPV) products in terms of current product availability, product development needs, the nature and size of the potential market, and the opportunities for government and the PV supply industry to work together to develop the market. The study itself comprised a review of existing BIPV products, an analysis of the development of the world market for BIPV, a market research survey of building professionals, and meetings of two 'focus groups' drawn from the PV 'supply side' and from buildings professionals. In principle, BIPV products can be used in virtually any type of building, but the main applications are considered to be housing and offices. (author)

  3. Building brighter PV business

    International Nuclear Information System (INIS)

    Hacker, R.

    2002-01-01

    The current status and future prospects of the UK market for solar photovoltaic (PV) electricity are briefly discussed. Through the Department of Trade and Industry (DTI), the UK Government has supported research and development (R and D) into PV for a number of years. This programme has now been extended to demonstrating PV systems on houses. Phase 2 - the domestic field trial programme - aims to monitor the performance of individual systems and the impact on a cluster of systems on the electricity network. New funding had allowed a trebling of the size of this programme, which involves both private developers and housing associations. The DTI is also working to promote PV on commercial buildings, eg the installation of BP Solar PV systems at BP petrol stations. The PV industry in the UK is technically strong and is working to overcome the barriers in the UK to greater uptake of the technology (including cost, conservatism, legal requirements and metering practices). Improvements are expected in a number of recent initiatives in the electricity industry to boost PV use and the PV industry is lobbying for PV to be included in the Enhanced Capital Allowances (ECA) scheme

  4. PV-CAD: an integrated tool for designing PV facades; PV-CAD - Ein integriertes Werkzeug zur Auslegung von PV-Fassaden

    Energy Technology Data Exchange (ETDEWEB)

    Giese, H.; Viotto, M. [Inst. fuer Solare Energieversorgungstechnik (ISET) e.V., Kassel (Germany); Esser, M.; Pukrop, D. [Univ. Oldenburg (Germany). Abt. Energie- und Halbleiterforschung; Stellbogen, D. [Zentrum fuer Sonnenergie- und Wasserstoff-Forschung, Stuttgart (Germany)

    1997-12-31

    PV-CAD provides PV system planners with a practice-oriented tool for an efficient design of PV facades. Being compatible with the standard programmes of the architects` and electrical engineering sectors it can be used on already existing systems and allows the user to draw on previously acquired knowedge. Its open interfaces permit the integration of further design tools. PV CAD works under Microsoft Windows for which it has the necessary graphic user interface. Its compliance to PC standards opens up a wide range of applications and permits its use also on inexpensive computers. Thanks to its promotion by the Federal Ministry for Education, Science, Research, and Technology under the research project ``Computer programmes for the design of photovoltaic facades`` PV-CAD is available at a moderate price. PV-CAD permits an efficient planning of solar facades and therefore has the potential to stimulate the use of PV on buildings. (orig.) [Deutsch] Mit PV-CAD steht dem Anlagenplaner ein anwendungsorientiertes Werkzeug zur Verfuegung, das eine rationelle Auslegung von PV-Fassaden ermoeglicht. Die Kompatibilitaet zu Standardprogrammen aus dem Architektur- und Elektrosektor erlaubt die Nutzung bereits vorhandener Systeme und damit erworbener Kenntnisse. Offene Schnittstellen gestatten die Einbindung weiterer Entwurfswerkzeuge. PV-CAD arbeitet unter Microsoft-Windows und verfuegt ueber die entsprechende grafische Benutzerschnittstelle. Die Kompatibilitaet zum PC-Standard eroeffnet eine sehr breite Anwenderbasis und ermoeglicht den Einsatz des Programms auch auf preiswerten Rechnern. Aufgrund der Foerderung durch das Bundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie im Rahmen des Forschungsprojekts `Rechnerprogramm zur Auslegung von Photovoltaik-Fassaden` steht PV-CAD preiswert zur Verfuegung. PV-CAD ermoeglicht eine effiziente Planung von Solarfassaden und kann daher dem PV-Einsatz in Gebaeuden weitere Impulse geben. (orig.)

  5. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

    International Nuclear Information System (INIS)

    Zahedi, A.

    2006-01-01

    Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies. The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising. The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply. [Author

  6. Integrated application of combined cooling, heating and power poly-generation PV radiant panel system of zero energy buildings

    Science.gov (United States)

    Yin, Baoquan

    2018-02-01

    A new type of combined cooling, heating and power of photovoltaic radiant panel (PV/R) module was proposed, and applied in the zero energy buildings in this paper. The energy system of this building is composed of PV/R module, low temperature difference terminal, energy storage, multi-source heat pump, energy balance control system. Radiant panel is attached on the backside of the PV module for cooling the PV, which is called PV/R module. During the daytime, the PV module was cooled down with the radiant panel, as the temperature coefficient influence, the power efficiency was increased by 8% to 14%, the radiant panel solar heat collecting efficiency was about 45%. Through the nocturnal radiant cooling, the PV/R cooling capacity could be 50 W/m2. For the multifunction energy device, the system shows the versatility during the heating, cooling and power used of building utilization all year round.

  7. Building integrated concentrating photovoltaics: A review

    International Nuclear Information System (INIS)

    Chemisana, Daniel

    2011-01-01

    For building integration, Concentrating Photovoltaic (CPV) systems can offer a host of advantages over conventional flat panel devices, the most notable being: a higher electrical conversion efficiency in the PV cells, better use of space, ease of recycling of constituent materials, and reduced use of toxic products involved in the PV cells' production process. However, the viability of Building-Integrated Concentrating PV (BICPV) systems is dependent on their ability to offer a comparative economic advantage over flat panel photovoltaic technologies whose market prices are decreasing from day to day and which offer other advantages such as ease of replacement of structural elements. A comparative analysis is presented of the main existing CPV systems' suitability for use in buildings, in which the different challenges specific to integration of each system are discussed. The systems are categorized by type of concentration technology and concentration factor. (author)

  8. Multifunctional a-Si PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Peippo, K; Lund, P; Vartiainen, E [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    The optimal use of the various forms of solar energy (passive, active, daylighting, photovoltaics) in buildings calls for an optimal integration of the technologies. As energy conservation potential in space heating may soon be exhausted, electricity efficiency and on-site generation will play an increasing role in energy-conscious building design. There, dispersed PV systems integrated into buildings show a significant market potential, due to a number of benefits: no extra land area is required, PV-array may replace conventional cladding materials and become a building element. Moreover, the produced PV-electricity is more valuable for the building owner than for an electric utility

  9. Building integrated multi PV/T/A solar system

    International Nuclear Information System (INIS)

    Ami Elazari

    2000-01-01

    Previous development in solar energy for residential applications proved that there is merit in further development and improvement of combined electricity and hot water and hot air collectors. The justification stems from the fact that waste heat is generated when PV cells are producing electricity but it decrease its efficiency dramatically, and any effective way to cool the cells can improve their efficiency and long while the heat that generated from this cooling process could be stored and used as standard solar hot water/air system. The core unit comprises of integrated PV cells mounted on a flat-plate collector for water and air, hot water storage tank hot air inlet pips to the house electric battery bank, inverter, connecting cables and controller. Double-glazing serving as solar trap to triple the amount of sun ray reaching the PV cells and other technical innovation make the system more cost effective and cost benefit for stand alone and grid connected domestic application. Two way interconnection with the electric grid like in all the roof top program may bring it to economic viability by selling excess electricity during the costly peak hours while buying low cost electricity during the night off-peak hours, and free electricity from the sun plus free hot water and hot air for domestic use as by-product. A basic domestic two-collector system may deliver up to 4 kWh of electricity and 12000 kcal of hot water and air daily. Some 22 systems are currently operating at various locations in Israel, some for 8 years with very good results. (Author)

  10. Luminescent solar concentrators for building-integrated photovoltaics

    Science.gov (United States)

    Meinardi, Francesco; Bruni, Francesco; Brovelli, Sergio

    2017-12-01

    The transition to fully energetically sustainable architecture through the realization of so-called net zero-energy buildings is currently in progress in areas with low population density. However, this is not yet true in cities, where the cost of land for the installation of ground photovoltaic (PV) is prohibitively high and the rooftop space is too scarce to accommodate the PV modules necessary for sustaining the electrical requirements of tall buildings. Thus, new technologies are being investigated to integrate solar-harvesting devices into building façades in the form of PV windows or envelope elements. Luminescent solar concentrators (LSCs) are the most promising technology for semi-transparent, electrodeless PV glazing systems that can be integrated 'invisibly' into the built environment without detrimental effects to the aesthetics of the building or the quality of life of the inhabitants. After 40 years of research, recent breakthroughs in the realization of reabsorption-free emitters with broadband absorption have boosted the performance of LSCs to such a degree that they might be commercialized in the near future. In this Perspective, we explore the successful strategies that have allowed this change of pace, examining and comparing the different types of chromophores and waveguide materials, and discuss the issues that remain to be investigated for further progress.

  11. When PV modules are becoming real building elements: White solar module, a revolution for BIPV (Presentation Recording)

    Science.gov (United States)

    Perret-Aebi, Laure-Emmanuelle; Escarré, Jordi; Li, Heng-Yu; Sansonnens, Laurent; Galliano, Federico; Cattaneo, Gianluca; Heinstein, Patrick; Nicolay, Sylvain; Bailat, Julien; Eberhard, Sébastien; Ballif, Christophe

    2015-09-01

    The use of photovoltaic (PV) is not anymore an option but a real need in the construction of nearly zero energy buildings. To date, the lack of PV products specifically designed for building integration, considering aesthetics and architectural aspects, is one important limiting factor allowing a massive deployment of PV in the built environment. Architects are continuously asking for new solutions to customize the colour of PV elements to better integrate them into the building skin. Among these colours, white is especially attractive as it is widely used in architecture for its elegance, versatility and fresh look. Until now, white solar modules were not considered to be an option and even never been though to be a technological possibility. Nonetheless, CSEM recently developed a new technology to make white solar modules a reality. Furthermore, the new Swiss company called Solaxess is now working on the industrialisation of this very innovative technology and the first products are expecting to be on the market at the end of 2015. The technology is based on the combination of two different elements: a solar cell able to convert solar infrared light into electricity and a selective filter which reflects and diffuse the whole visible spectrum. Any PV technology based on crystalline silicon can be used as they have a good response in the infrared. Approximately 55% of the current generated under standard test conditions comes from the infrared leading to conversion efficiencies above 11%. We will demonstrate, that thanks to this very innovative technology PV modules can become attractive and real active building elements and therefore meets the requirements of any future energy management through advanced building skins.

  12. BEopt-CA (Ex): A Tool for Optimal Integration of EE, DR and PV in Existing California Homes

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Velasco, Paulo Tabrares [National Renewable Energy Lab. (NREL), Golden, CO (United States); Springer, David [Davis Energy Group, Davis, CA (United States); Coates, Peter [Davis Energy Group, Davis, CA (United States); Bell, Christy [Davis Energy Group, Davis, CA (United States); Price, Snuller [Energy & Environmental Economics, San Francisco, CA (United States); Sreedharan, Priya [Energy & Environmental Economics, San Francisco, CA (United States); Pickrell, Katie [Energy & Environmental Economics, San Francisco, CA (United States)

    2014-04-01

    This project targeted the development of a software tool, BEopt-CA (Ex) (Building Energy Optimization Tool for California Existing Homes), that aims to facilitate balanced integration of energy efficiency (EE), demand response (DR), and photovoltaics (PV) in the residential retrofit1 market. The intent is to provide utility program managers and contractors in the EE/DR/PV marketplace with a means of balancing the integration of EE, DR, and PV

  13. PV integration into a CSP plant

    Science.gov (United States)

    Carvajal, Javier López; Barea, Jose M.; Barragan, Jose; Ortega, Carlos

    2017-06-01

    This paper describes a preliminary techno-economic analysis of the integration of a PV plant into an optimized Parabolic Trough Plant in order to reduce the online consumptions and thus, increase the net electricity injected into the grid. The idea is to assess the feasibility of such project and see what configuration would be the optimal. An extra effort has been made in terms of modelling as the analysis has to be done to the integrated CSP + PV plant instead of analyzing them independently. Two different technologies have been considered for the PV plant, fix and one-axis tracking. Additionally three different scenarios have been considered for the CSP plant auxiliary consumptions as they are essential for determining the optimal PV plant (the higher the auxiliary consumption the higher the optimal PV plant). As could be expected, the results for all cases with PV show an improvement in terms of electricity generation and also in terms of LCOE with respect to the CSP plant. Such improvement is slightly higher with tracking technology for this specific study. Although this exercise has been done to an already designed CSP plant (so only the PV plant had to be optimized), the methodology could be applied for the optimization of an integrated CSP + PV plant during the design phase.

  14. Highlight of Grid-connected PV systems in administrative buildings in Egypt

    Directory of Open Access Journals (Sweden)

    Dina Said

    2017-03-01

    Full Text Available Solar energy applications are becoming increasingly common in Egypt. The abundant sunshine in Egypt, as well as the increasing competitiveness of solar energy systems including- but not limited to photovoltaic (PV, – predicts that these technologies could be weighed to be raised in Egypt.PV systems are installed on roof tiles or other parts of building structures to supplement grid utility, reduce electric bills, and provide emergency back–up energy. Moreover, they simultaneously reduce significant amounts of CO2 emissions. It is foreseen, a number of residential and public buildings in Egypt are using solar power to cut electric utility bills significantly. The approximately payback period to recover the investment costs for PV systems is up to about 5 years.  In addition, it is more economical to use PV system than grid utility systems. The two components that determine the total initial price of a grid- connected PV system are the modules and the balance of systems (BOS. The BOS includes different components such as mounting frames, inverters and site- specific installation hardware.The Government of Egypt (GOE has endorsed the deployment of PV systems through three approaches. It started with a prime minister decree to install PV projects on one-thousand of the governmental buildings. This was followed by as an initiative called "Shamsk ya Masr", and finally the Feed-in Tariff (FiT projects.Following the prime minster decree the Egyptian Electricity Holding Company (EEHC and its affiliated companies took the lead to install PV systems at the top roof of their administrative buildings and interconnect these systems to the electricity network where the suitable locations have been selected for mounting them. About 90 PV systems have been already mounted with about a capacity of 9 MW. On the other hand, "Shamsk ya Masr" has considered energy efficiency (EE so as to complement the PV systems, which will be installed on administrative

  15. PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings

    International Nuclear Information System (INIS)

    Saber, Esmail M.; Lee, Siew Eang; Manthapuri, Sumanth; Yi, Wang; Deb, Chirag

    2014-01-01

    Air pollution and climate change increased the importance of renewable energy resources like solar energy in the last decades. Rack-mounted PhotoVoltaics (PV) and Building Integrated PhotoVoltaics (BIPV) are the most common photovoltaic systems which convert incident solar radiation on façade or surrounding area to electricity. In this paper the performance of different solar cell types is evaluated for the tropical weather of Singapore. As a case study, on-site measured data of PV systems implemented in a zero energy building in Singapore, is analyzed. Different types of PV systems (silicon wafer and thin film) have been installed on rooftop, façade, car park shelter, railing and etc. The impact of different solar cell generations, arrays environmental conditions (no shading, dappled shading, full shading), orientation (South, North, East or West facing) and inclination (between PV module and horizontal direction) is investigated on performance of modules. In the second stage of research, the whole PV systems in the case study are simulated in EnergyPlus energy simulation software with several PV performance models including Simple, Equivalent one-diode and Sandia. The predicted results by different models are compared with measured data and the validated model is used to provide simulation-based energy yield predictions for wide ranges of scenarios. It has been concluded that orientation of low-slope rooftop PV has negligible impact on annual energy yield but in case of PV external sunshade, east façade and panel slope of 30–40° are the most suitable location and inclination. - Highlights: • Characteristics of PV systems in tropics are analyzed in depth. • The ambiguity toward amorphous panel energy yield in tropics is discussed. • Equivalent-one diode and Sandia models can fairly predict the energy yield. • A general guideline is provided to estimate the energy yield of PV systems in tropics

  16. Impact of roof integrated PV orientation on the residential electricity peak demand

    International Nuclear Information System (INIS)

    Sadineni, Suresh B.; Atallah, Fady; Boehm, Robert F.

    2012-01-01

    Highlights: ► A study to demonstrate peak load reductions at the substation. ► A new residential energy efficient community named Villa Trieste is being developed. ► The peak demand from the homes has decreased by 38% through energy efficiency. ► Orientation of roof integrated PV has less influence on the summer peak demand. ► Increasing thermostat temperature during peak by 1 °C can significantly reduce peaks. -- Abstract: Peak electricity demand has been an issue in the Desert Southwest region of the US, due to extreme summer temperatures. To address this issue, a consortium was formed between the University of Nevada, Las Vegas, Pulte Homes, and NV Energy. An energy efficient residential community was developed by the team in Las Vegas with approximately 200 homes to study substation-level peak reduction strategies. A summer peak reduction of more than 65%, between 1:00 PM and 7:00 PM, compared to code standard housing developments is the targeted goal of the project. Approximately 50 homes are already built and some are occupied. The energy performances of the homes have been monitored and are presented in this paper. Several peak electric load reduction strategies such as energy efficiency in buildings, roof integrated photovoltaics (PV) and direct load control have been applied. Though all the homes in the developed community are installed with 1.8 kW p PV systems, the orientation of the PV system depends on the building orientation. Focus of this paper is to find the impact of PV orientation on the peak load from a building. In addition, different time-of-use (TOU) energy pricing options are offered by the local electrical utility company. Hence it is important to find an optimal pricing option for each building. A computer model has been developed for one of the homes in the new development using building energy simulation code, ENERGY-10. Calculations on the PV orientations have shown that a south and 220° (i.e. 40° west of due south

  17. A novel solar multifunctional PV/T/D system for green building roofs

    International Nuclear Information System (INIS)

    Feng, Chaoqing; Zheng, Hongfei; Wang, Rui; Yu, Xu; Su, Yuehong

    2015-01-01

    Highlights: • A novel transparent roof combines the solar PV/T/D system with green building design. • Novel photovoltaic-thermal roofing design can achieve excellent light control at noon. • The roof has no obvious influence on indoor light intensity in morning and afternoon. • Higher efficiency of solar energy utilization could be achieved with new roofing. - Abstract: A novel transparent roof which is made of solid CPC (Compound Parabolic Concentrator) PV/T/D (Photovoltaic/Thermal/Day lighting) system is presented. It combines the solar PV/T/D system with green building design. The PV/T/D system can achieve excellent light control at noon and adjust the thermal environment in the building, such that high efficiency utilization of solar energy could be achieved in modern architecture. This kind of roof can increase the visual comfort for building occupants; it can also avoid the building interior from overheating and dazzling at noon which is caused by direct sunlight through transparent roof. Optical simulation software is used to track the light path in different incidence angles. CFD (Computational Fluid Dynamics) simulation and steady state experiment have been taken to investigate the thermal characteristic of PV/T/D device. Finally, the PV/T/D experimental system was built; and the PV efficiency, light transmittance and air heating power of the system are tested under real sky conditions

  18. Feasibility Study of a Building-Integrated PV Manager to Power a Last-Mile Electric Vehicle Sharing System

    Directory of Open Access Journals (Sweden)

    Manuel Fuentes

    2017-01-01

    Full Text Available Transportation is one of the largest single sources of air pollution in urban areas. This paper analyzes a model of solar-powered vehicle sharing system using building-integrated photovoltaics (BIPV, resulting in a zero-emission and zero-energy mobility system for last-mile employee transportation. As a case study, an electric bicycle sharing system between a public transportation hub and a work center is modeled mathematically and optimized in order to minimize the number of pickup trips to satisfy the demand, while minimizing the total energy consumption of the system. The whole mobility system is fully powered with BIPV-generated energy. Results show a positive energy balance in e-bike batteries and pickup vehicle batteries in the worst day of the year regarding solar radiation. Even in this worst-case scenario, we achieve reuse rates of 3.8 people per bike, using actual data. The proposed system manages PV energy using only the batteries from the electric vehicles, without requiring supportive energy storage devices. Energy requirements and PV generation have been analyzed in detail to ensure the feasibility of this approach.

  19. Predictive Solar-Integrated Commercial Building Load Control

    Energy Technology Data Exchange (ETDEWEB)

    Glasgow, Nathan [EdgePower Inc., Aspen, CO (United States)

    2017-01-31

    This report is the final technical report for the Department of Energy SunShot award number EE0007180 to EdgePower Inc., for the project entitled “Predictive Solar-Integrated Commercial Building Load Control.” The goal of this project was to successfully prove that the integration of solar forecasting and building load control can reduce demand charge costs for commercial building owners with solar PV. This proof of concept Tier 0 project demonstrated its value through a pilot project at a commercial building. This final report contains a summary of the work completed through he duration of the project. Clean Power Research was a sub-recipient on the award.

  20. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gagnon, Pieter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    The commercial sector offers strong potential for solar photovoltaics (PV) owing to abundant available roof space suitable for PV and the opportunity to offset the sector's substantial retail electricity purchases. This report evaluated the breakeven price of PV for 15 different building types and various financing options by calculating electricity savings based on detailed rate structures for most U.S. utility territories (representing approximately two thirds of U.S. commercial customers). We find that at current capital costs, an estimated 1/3 of U.S. commercial customers break even in the cash scenario and approximately 2/3 break even in the loan scenario. Variation in retail rates is a stronger driver of breakeven prices than is variation in building load or solar generation profiles. At the building level, variation in the average breakeven price is largely driven by the ability for a PV system to reduce demand charges.

  1. Research and Development Needs for Building-Integrated Solar Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-01-01

    The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

  2. Prismatic TIR (total internal reflection) low-concentration PV (photovoltaics)-integrated façade for low latitudes

    International Nuclear Information System (INIS)

    Sabry, Mohamed

    2016-01-01

    Low-concentration Façade-integrated Photovoltaic system in the form of TIR (total internal reflection) prismatic segmented façade could play an effective role in reducing the direct component of solar radiation transmitting through buildings, hence reducing both cooling and artificial lighting load on such buildings. A prismatic segmented façade is capable of allowing diffused skylight to transmit through it to the building interior, while preventing most of the direct solar radiation and converting it into clean energy by means of the integrated PV (​photovoltaics) cells. A range of prismatic TIR segmented façades with different head angles has been designed based on the geographical latitude of the chosen location. Each façade configuration is simulated by ray-tracing technique and its performance is investigated against realistic direct solar radiation data in two clear sky days representing summer and winter of the targeted location. Ray tracing simulations revealed that all of the selected configurations could collect most of the direct solar radiation in summer. In contrary, larger head angle of the segmented façade could collect wider intervals around the noon time till reaching a head angle of 23° at which most of the incident direct solar radiation could be collected. - Highlights: • 5 different head angles of prismatic segmented PV-integrated Façade are ray-traced. • Transmitted and PV-collected solar radiation percentages are determined. • DNI daily profiles with associated solar altitudes and azimuth data are simulated. • Expected transmitted and PV collected solar radiation are calculated for the proposed segments.

  3. Statistical Analysis of Solar PV Power Frequency Spectrum for Optimal Employment of Building Loads

    Energy Technology Data Exchange (ETDEWEB)

    Olama, Mohammed M [ORNL; Sharma, Isha [ORNL; Kuruganti, Teja [ORNL; Fugate, David L [ORNL

    2017-01-01

    In this paper, a statistical analysis of the frequency spectrum of solar photovoltaic (PV) power output is conducted. This analysis quantifies the frequency content that can be used for purposes such as developing optimal employment of building loads and distributed energy resources. One year of solar PV power output data was collected and analyzed using one-second resolution to find ideal bounds and levels for the different frequency components. The annual, seasonal, and monthly statistics of the PV frequency content are computed and illustrated in boxplot format. To examine the compatibility of building loads for PV consumption, a spectral analysis of building loads such as Heating, Ventilation and Air-Conditioning (HVAC) units and water heaters was performed. This defined the bandwidth over which these devices can operate. Results show that nearly all of the PV output (about 98%) is contained within frequencies lower than 1 mHz (equivalent to ~15 min), which is compatible for consumption with local building loads such as HVAC units and water heaters. Medium frequencies in the range of ~15 min to ~1 min are likely to be suitable for consumption by fan equipment of variable air volume HVAC systems that have time constants in the range of few seconds to few minutes. This study indicates that most of the PV generation can be consumed by building loads with the help of proper control strategies, thereby reducing impact on the grid and the size of storage systems.

  4. PV monitoring at Jubilee Campus - Nottingham University

    Energy Technology Data Exchange (ETDEWEB)

    Riffat, S.B.; Gan, G.

    2002-07-01

    This report summarises the results of a project monitoring the efficiency of photovoltaic (PV) modules integrated in the roofs of atria to meet the energy consumption needs of ventilation fans in the academic buildings at the Jubilee Campus of the University of Nottingham. Details are given of the instrumentation of one atrium to allow the monitoring the effectiveness of the ventilation in cooling the PV arrays integrated in the atrium roof, the economic analysis of the benefit of cooling the PV system, and the use of computational fluid dynamics (CFD) modelling to predict the performance of the atrium. The design of the PV system, the calculated system efficiency, the high cost of atrium integrated PV power supplies, the periodic failure of the inverters, and the overheating of the PV array and the atrium space in the summer are discussed.

  5. NPC Based Design Optimization for a Net Zero Office Building in Hot Climates with PV Panels as Shading Device

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair

    2018-05-01

    Full Text Available Hot areas of the world receive a high amount of solar radiation. As a result, buildings in those areas consume more energy to maintain a comfortable climate for their inhabitants. In an effort to design net-zero energy building in hot climates, PV possesses the unique advantage of generating electrical energy while protecting the building from solar irradiance. In this work, to form a net-zero energy building (NZEB, renewable resources such as solar and wind available onsite for an existing building have been analyzed in a hot climate location. PV and wind turbines in various configurations are studied to form a NZEB, where PV-only systems offer better performance than Hybrid PV Wind systems, based on net present cost (NPC. The self-shading losses in PV placed on rooftop areas are analyzed by placing parallel arrays of PV modules at various distances in between them. The effect on building cooling load by rooftop PV panels as shading devices is investigated. Furthermore, self-shading losses of PV are compared by the savings in cooling loads using PV as shading. In the case study, 12.3% saving in the cooling load of the building is observed when the building rooftop is completed shaded by PV panels; annual cooling load decreased from 3.417 GWh to 2.996 GWh, while only 1.04% shaded losses are observed for fully shaded (FS buildings compared to those with no shading (NS, as PV generation decreases from 594.39 kWh/m2 to 588.21 kWh/m2. The net present cost of the project has been decreased from US$4.77 million to US$4.41 million by simply covering the rooftop completely with PV panels, for a net-zero energy building.

  6. Simulation of Power Produced by a Building Added PV System in Indonesia using virtual reality

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, Angelina H.M.E.

    2014-01-01

    In this study a PV system will be simulated using virtual reality software for PV system simulations -called VR4PV - to show the effectiveness of the modelling of PV systems on buildings which are placed in the tropics. The PV system used for this study has been installed in Papua, Indonesia and

  7. 60 kW{sub p} PV-system school centre Spalterhals Barsinghausen. Synergies in energetical retrofit of school building; 60-kW{sub p}-PV-Anlage Schulzentrum Spalterhals Barsinghausen. Synergien bei der energetischen Sanierung eines Schulgebaeudes

    Energy Technology Data Exchange (ETDEWEB)

    Blumenscheit, R.; Hettwer, C. [Stadt Barsinghausen (Germany); Diestelmeier, C.; Wiegmann, A. [Raumplan, Hannover (Germany); Decker, B.; Hennig, C.; Mack, M. [Solar Engineering Decker and Mack GmbH, Hannover (Germany)

    2004-07-01

    The completely building-integrated PV plant with a nominal power of 60.54 kW{sub p} uses synergies with constructional and energetical retrofit of a school building. The PV plant is operated by the town of Barsinghausen (30 km southwest of Hannover). The federal state of Lower Saxony gave a grant of 36,61%, the Hannover region of 12,39% to the total investment of 824.190 Euro (incl. building construction). The PV plant is divided into five units. PV modules serve as the curtain wall of heat-insulated building core (blue PV cold facade: 12.67 kW{sub p}, grey PV breastwork: 8,38 kW{sub p}). Semitransparent PV modules substitute the insulating glass shed lights of a music room (4,28 kW{sub p}) and the glass roofing of an inner court (12,17 kW{sub p} - all modules: Solarnova) giving an optimum of sun-shading and daylighting. Thin-film PV modules on plastic foils (23,04 kW{sub p} - Alwitra EVALON Solar, Unisolar amorphous Si cells) are tested as flat roof standard retrofit. The PV system has 29 string inverters mostly of SMA Sunny Boy family mounted near to the PV modules in operational rooms or in crawling cellars. The PV operator gets a reimbursement of 0,481 Euro per kWh PV energy according to EEG. The PV system is monitored in detail within 'Solaroffensive' of Lower Saxony. Visualization tableaus inform the public about actual irradiance, actual power and annual energy. (orig.) [German] Schulgebaeude und insbesondere grosse Schulzentren aus den 70er Jahren haben geeignete Dachflaechen zur Errichtung von grossen PV-Anlagen (typisch >1.000 m{sup 2}). Zugleich sind Schulen ein idealer Ort, um vor breitem Publikum (Schueler, Lehrer, Eltern) Planung, Installation und Betrieb einer PV-Anlage zu demonstrieren. In Barsinghausen, am Fusse des Deisters etwa 30 km suedwestlich von Hannover, entstand zwischen August 2001 und Maerz 2003 eine innovative PV-Modellanlage am Schulzentrum 'Am Spalterhals', die verschiedene Arten der PV-Gebaeudeintegration erprobt

  8. Retrofits for Energy Efficient Office Buildings: Integration of Optimized Photovoltaics in the Form of Responsive Shading Devices

    Directory of Open Access Journals (Sweden)

    Hardi K. Abdullah

    2017-11-01

    Full Text Available This study presents a retrofit strategy: integrating optimized photovoltaics (PV in the form of responsive shading devices using a dual-axis solar tracking system. A prototype-based model was fabricated to compare the efficiency of PV in this implementation with the conventional fixed installation. The office building, T1 Empire World in Erbil, was selected as a retrofit case study and for the application of the proposed integration system. In order to assess the effectiveness of the proposed retrofit method, the energy performance of the base case is simulated to be compared later with the energy performance simulations after the integration technique. The amount of generated electricity from the PV surfaces of the integrated shading elements is calculated. The energy simulations were performed using OpenStudio® (NREL, Washington, DC, USA, EnergyPlusTM (NREL, Washington, DC, USA, and Grasshopper/ Ladybug tools in which the essential results were recorded for the baseline reference, as well as the energy performance of the retrofitted building. The results emphasize that the PV-integrated responsive shading devices can maximize the efficiency of PV cells by 36.8% in comparison to the fixed installation. The integrated system can provide approximately 15.39% of the electricity demand for operating the building. This retrofit method has reduced the total site energy consumption by 33.2% compared to the existing building performance. Total electricity end-use of the various utilities was lowered by 33.5%, and the total natural gas end-use of heating demand was reduced by 30.9%. Therefore, the percentage reduction in electricity cooling demand in July and August is 42.7% due to minimizing the heat gain in summer through blocking the sun’s harsh rays from penetrating into interior spaces of the building. In general, this system has multiple benefits, starting with being extremely efficient and viable in generating sustainable alternative energy

  9. Integrated energy system for a high performance building

    Science.gov (United States)

    Jaczko, Kristen

    Integrated energy systems have the potential to reduce of the energy consumption of residential buildings in Canada. These systems incorporate components to meet the building heating, cooling and domestic hot water load into a single system in order to reduce energy losses. An integrated energy system, consisting of a variable speed heat pump, cold and hot thermal storage tanks, a photovoltaic/thermal (PV/T) collector array and a battery bank, was designed for the Queen's Solar Design Team's (QSDT) test house. The system uses a radiant floor to provide space- heating and sensible cooling and a dedicated outdoor air system provides ventilation and dehumidifies the incoming fresh air. The test house, the Queen's Solar Education Centre (QSEC), and the integrated energy system were both modelled in TRNSYS. Additionally, a new TRNSYS Type was developed to model the PV/T collectors, enabling the modeling of the collection of energy from the ambient air. A parametric study was carried out in TRNSYS to investigate the effect of various parameters on the overall energy performance of the system. These parameters included the PV/T array size and the slope of the collectors, the heat pump source and load-side inlet temperature setpoints, the compressor speed control and the size of the thermal storage tanks and the battery bank. The controls of the heat pump were found to have a large impact on the performance of the integrated energy system. For example, a low evaporator setpoint improved the overall free energy ratio (FER) of the system but the heat pump performance was lowered. Reducing the heat loss of the PV/T panels was not found to have a large effect on the system performance however, as the heat pump is able to lower the inlet collector fluid temperature, thus reducing thermal losses. From the results of the sensitivity study, a recommended system model was created and this system had a predicted FER of 77.9% in Kingston, Ontario, neglecting the energy consumption of

  10. Equilibrium thermal characteristics of a building integrated photovoltaic tiled roof

    Energy Technology Data Exchange (ETDEWEB)

    Mei, L.; Gottschalg, R.; Loveday, D.L. [Centre for Renewable Energy Systems Technology (CREST), Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom); Infield, D.G. [Institute of Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Davies, D.; Berry, M. [Solarcentury, 91-94 Lower Marsh Waterloo, London, SE1 7AB (United Kingdom)

    2009-10-15

    Photovoltaic (PV) modules attain high temperatures when exposed to a combination of high radiation levels and elevated ambient temperatures. The temperature rise can be particularly problematic for fully building integrated PV (BIPV) roof tile systems if back ventilation is restricted. PV laminates could suffer yield degradation and accelerated aging in these conditions. This paper presents a laboratory based experimental investigation undertaken to determine the potential for high temperature operation in such a BIPV installation. This is achieved by ascertaining the dependence of the PV roof tile temperature on incident radiation and ambient temperature. A theory based correction was developed to account for the unrealistic sky temperature of the solar simulator used in the experiments. The particular PV roof tiles used are warranted up to an operational temperature of 85 C, anything above this temperature will void the warranty because of potential damage to the integrity of the encapsulation. As a guide for installers, a map of southern Europe has been generated indicating locations where excessive module temperatures might be expected and thus where installation is inadvisable. (author)

  11. Energy performance of semi-transparent PV modules for applications in buildings

    Science.gov (United States)

    Fung, Yu Yan

    Owing to the increasing awareness on energy conservation and environmental protection, building-integrated photovoltaic (BIPV) has been developed rapidly in the past decade. A number of research studies have been conducted on the energy performance of BIPV systems. However, most of the previous studies focused on the systems that incorporated with opaque type PV modules, little attention has been devoted to semi-transparent type PV modules, which have been commonly integrated in modern architectures. This thesis aims at evaluating the energy performance of the semi-transparent BIPV modules, including heat gains to the indoor environment, power generation from the PV modules and daylight utilization. Solar radiation intensity on PV module's surfaces is an essential parameter for assessing energy performance of the PV modules. Different slope solar radiation models are analyzed and compared. The model that best suits Hong Kong situations is selected for the further development of the energy performance of the BIPV modules. The optimum orientation and tilted angle are determined in the analysis. In addition to the solar radiation models, a detailed investigation on the heat gain through the semi-transparent BIPV modules is carried out in this study. A one-dimensional transient heat transfer model, the SPVHG model, for evaluating the thermal performance of the semi-transparent BIPV modules is developed. The SPVHG model considers in detail the energy that is transmitted, absorbed and reflected in each element of the BIPV modules such as solar cells and glass layers. A computer program of the model is written accordingly. By applying the SPVHG model, the heat gain through the semi-transparent BIPV module of any thickness can be determined for any solar irradiance level. The annual performance can also be assessed by inputting annual weather data to the model. In order to verify the SPVHG model, laboratory tests have been carried out on semi-transparent BIPV modules. A

  12. MUNI Ways and Structures Building Integrated Solar Membrane Project

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was

  13. Guidelines for the Economic Evaluation of Building-Integrated Photovoltaic Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Eiffert, P.; International Energy Agency (IEA) PVPS Task 7

    2003-01-01

    This report identifies the economic parameters of building-integrated PV (BIPV) systems. The guidelines are structured in three major parts: the investment analysis (methods and ownership issues), benefits, and costs. Measurement and verification are also discussed briefly.

  14. Photovoltaics: PV takes off the UK

    International Nuclear Information System (INIS)

    Noble, Ray; Gregory, Jenny

    2000-01-01

    Despite historical ups and downs, there is still ambition to bring increasingly efficient photovoltaic (PV) systems to the market. PV for major remote telecommunications systems is now an established part of the market, many mobile phone systems are powered by PV and there is potential for increased use of home solar systems, especially in developing countries. Over the past few years, building-integrated PV (BIPV) has been on the increase. In 1999, global production from PV exceeded 200 MW and the UK installed capacity was greater than 1 MW. BIPV is a fast growing market and its characteristics and advantages are discussed. PV installations at Nottingham University, Greenwich Pavilion, BP Amoco Sunbury, Baglan Bay, BP filling stations, and Sainsbury's are described

  15. Seismic and Power Generation Performance of U-Shaped Steel Connected PV-Shear Wall under Lateral Cyclic Loading

    OpenAIRE

    Zhang, Hongmei; Dong, Jinzhi; Duan, Yuanfeng; Lu, Xilin; Peng, Jinqing

    2014-01-01

    BIPV is now widely used in office and residential buildings, but its seismic performance still remained vague especially when the photovoltaic (PV) modules are installed on high-rise building facades. A new form of reinforced concrete shear wall integrated with photovoltaic module is proposed in this paper, aiming to apply PV module to the facades of high-rise buildings. In this new form, the PV module is integrated with the reinforced concrete wall by U-shaped steel connectors through embedd...

  16. Energy Payback Time Calculation for a Building Integrated Semitransparent Thermal (BISPVT) System with Air Duct

    OpenAIRE

    Kanchan Mudgil; Deepali Kamthania

    2013-01-01

    This paper evaluates the energy payback time (EPBT) of building integrated photovoltaic thermal (BISPVT) system for Srinagar, India. Three different photovoltaic (PV) modules namely mono crystalline silicon (m-Si), poly crystalline silicon (p-Si), and amorphous silicon (a-Si) have been considered for calculation of EPBT. It is found that, the EPBT is lowest in m-Si. Hence, integration of m-Si PV modules on the roof of a room is economical.

  17. Effect of urban climate on building integrated photovoltaics performance

    International Nuclear Information System (INIS)

    Tian Wei; Wang Yiping; Ren Jianbo; Zhu Li

    2007-01-01

    It is generally recognized that BIPV (building integrated photovoltaics) has the potential to become a major source of renewable energy in the urban environment. The actual output of a PV module in the field is a function of orientation, total irradiance, spectral irradiance, wind speed, air temperature, soiling and various system-related losses. In urban areas, the attenuation of solar radiation due to air pollution is obvious, and the solar spectral content subsequently changes. The urban air temperature is higher than that in the surrounding countryside, and the wind speed in urban areas is usually less than that in rural areas. Three different models of PV power are used to investigate the effect of urban climate on PV performance. The results show that the dimming of solar radiation in the urban environment is the main reason for the decrease of PV module output using the climatic data of urban and rural sites in Mexico City for year 2003. The urban PV conversion efficiency is higher than that of the rural PV system because the PV module temperature in the urban areas is slightly lower than that in the rural areas in the case. The DC power output of PV seems to be underestimated if the spectral response of PV in the urban environment is not taken into account based on the urban hourly meteorological data of Sao Paulo for year 2004

  18. Stand-alone photovoltaic (PV) integrated with earth to air heat exchanger (EAHE) for space heating/cooling of adobe house in New Delhi (India)

    International Nuclear Information System (INIS)

    Chel, Arvind; Tiwari, G.N.

    2010-01-01

    This paper deals with an experimental outdoor annual performance evaluation of 2.32 kW P photovoltaic (PV) power system located at solar energy park in New Delhi composite climatic conditions. This PV system operates the daily electrical load nearly 10 kW h/day which comprises of various applications such as electric air blower of an earth to air heat exchanger (EAHE) used for heating/cooling of adobe house, ceiling fan, fluorescent tube-light, computer, submersible water pump, etc. The outdoor efficiencies, power generated and lost in PV system components were determined using hourly experimental measured data for 1 year on typical clear day in each month. These realistic data are useful for design engineers for outdoor assessment of PV system components. The energy conservation, mitigation of CO 2 emission and carbon credit potential of the existing PV integrated EAHE system is presented in this paper. Also, the energy payback time (EPBT) and unit cost of electricity were determined for both stand-alone PV (SAPV) and building roof integrated PV (BIPV) systems.

  19. Design of fibre reinforced PV concepts for building integrated applications

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; de Wit, H.; de Boer, Andries; Ossenbrink Sinke, W.; Helm, P.

    2009-01-01

    Fibre reinforced polymers present an interesting encapsulation medium for PV-modules. Glass fibres can provide increased strength and stiffness to thin polymer layers overcoming the brittleness and limited deformability of glass-panes. Glass fibre reinforced polymers allows for transparency over a

  20. PV cool-build

    Energy Technology Data Exchange (ETDEWEB)

    Cross, B.; Nuh, D.

    2004-07-01

    This report summarises the findings of a project to develop a method for calculating the operating temperature of building integrated photovoltaic (BIPV) modules/laminates which are estimated to operate above ambient temperature. The aim of the study was to minimise the temperature of the BIPV in order to increase the production of clean electricity. Details are given of a series of indoor experiments, computer modelling, and outdoor measurements. The production of a readily available, user-friendly design guide for architects and building designers is discussed.

  1. Solar on the brink : more and more engineers are being asked to integrate solar technologies into building designs

    International Nuclear Information System (INIS)

    Sinclair, I.

    2010-01-01

    Methods of integrating solar technologies into building designs were discussed in this article. Ontario's feed-in-tariff (FIT) program will make Ontario a centre for solar technology and is expected to generate new jobs in the alternative energy industry. While photovoltaic (PV) systems eliminate the need for building new electricity and distribution networks, PV systems are the least efficient solar technology in relation to economics, carbon dioxide (CO 2 ) offsets, and energy generation. Many buildings in Canada have significant ventilation air heating loads that are not best served by heat recovery technologies. The economic performance of solar thermal systems can only be understood in relation to the operational efficiency of a building's heating plant. Solar PV systems can provide returns on investment when considered alongside Ontario's FIT program tariffs. Without the tariffs, many payback periods are in excess of PV system product lifetimes. Maintenance contracts and budgets must be carefully considered when commissioning solar energy projects. 3 figs.

  2. Integrating solar PV (photovoltaics) in utility system operations: Analytical framework and Arizona case study

    International Nuclear Information System (INIS)

    Wu, Jing; Botterud, Audun; Mills, Andrew; Zhou, Zhi; Hodge, Bri-Mathias; Heaney, Mike

    2015-01-01

    A systematic framework is proposed to estimate the impact on operating costs due to uncertainty and variability in renewable resources. The framework quantifies the integration costs associated with sub-hourly variability and uncertainty as well as day-ahead forecasting errors in solar PV (photovoltaics) power. A case study illustrates how changes in system operations may affect these costs for a utility in the southwestern United States (Arizona Public Service Company). We conduct an extensive sensitivity analysis under different assumptions about balancing reserves, system flexibility, fuel prices, and forecasting errors. We find that high solar PV penetrations may lead to operational challenges, particularly during low-load and high solar periods. Increased system flexibility is essential for minimizing integration costs and maintaining reliability. In a set of sensitivity cases where such flexibility is provided, in part, by flexible operations of nuclear power plants, the estimated integration costs vary between $1.0 and $4.4/MWh-PV for a PV penetration level of 17%. The integration costs are primarily due to higher needs for hour-ahead balancing reserves to address the increased sub-hourly variability and uncertainty in the PV resource. - Highlights: • We propose an analytical framework to estimate grid integration costs for solar PV. • Increased operating costs from variability and uncertainty in solar PV are computed. • A case study of a utility in Arizona is conducted. • Grid integration costs are found in the $1.0–4.4/MWh range for a 17% PV penetration. • Increased system flexibility is essential for minimizing grid integration costs

  3. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Adnan; Othman, Mohd Yusof; Ruslan, Mohd Hafidz; Mat, Sohif; Sopian, Kamaruzzaman [Solar Energy Research Institute Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2011-01-15

    Flat plate photovoltaic/thermal (PV/T) solar collector produces both thermal energy and electricity simultaneously. This paper presents the state-of-the-art on flat plate PV/T collector classification, design and performance evaluation of water, air and combination of water and/or air based. This review also covers the future development of flat plate PV/T solar collector on building integrated photovoltaic (BIPV) and building integrated photovoltaic/thermal (BIPVT) applications. Different designs feature and performance of flat plate PV/T solar collectors have been compared and discussed. Future research and development (R and D) works have been elaborated. The tube and sheet design is the simplest and easiest to be manufactured, even though, the efficiency is 2% lower compared to other types of collectors such as, channel, free flow and two-absorber. It is clear from the review that for both air and water based PV/T solar collectors, the important key factors that influenced the efficiency of the system are the area where the collector covered, the number of passes and the gap between the absorber collector and solar cells. From the literature review, it is obvious that the flat plate PV/T solar collector is an alternative promising system for low-energy applications in residential, industrial and commercial buildings. Other possible areas for the future works of BIPVT are also mentioned. (author)

  4. PV ready roofing systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The integration of PV technology into roofs of houses has become very popular in the United States, Japan, Germany and The Netherlands. There could be a considerable market in the UK for these systems, given the large number of houses that are projected to be built in the next 10 years, and taking account of increased awareness of energy issues. A significant proportion of the market share of annual installed PV is for solar PV systems installed into homes (currently 15%), this is expected to rise to 23% (900MW) by 2010. The grid connected roof and building mounted facade systems represent the fastest growing market for PV systems in Europe. In conclusion, therefore, innovative approached for fixing PV technology onto roofs have been identified for both domestic roofs and for the commercial sector. With reference to production methodologies within the roofing industry, both approaches should be capable of being designed with PV-ready connections suitable for fixing PV modules at a later date. This will help overcome the key barriers of cost of installation, skills required and the lack of retrofit potential. Based on the results of this project, Sustainable Energy together with PV Systems are keen to take forward the full research and development of PV-ready systems for both the domestic and commercial sectors.

  5. Economical, environmental and technical analysis of building integrated photovoltaic systems in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Seng, Lim Yun [Department of Physical Science, Electrical and Electronic Engineering, Tunku Abdul Rahman University, 53300 Setapak, Kuala Lumpur (Malaysia); Lalchand, G.; Sow Lin, Gladys Mak [Malaysia Energy Centre, Building Integrated Photovoltaic Project (Malaysia)

    2008-06-15

    Malaysia has identified photovoltaic systems as one of the most promising renewable sources. A great deal of efforts has been undertaken to promote the wide applications of PV systems. With the recent launch of a PV market induction programme known as SURIA 1000 in conjunction with other relevant activities undertaken under the national project of Malaysia Building Integrated Photovoltaic (MBIPV), the market of PV systems begins to be stimulated in the country. As a result, a wide range of technical, environmental and economic issues with regard to the connection of PV systems to local distribution networks becomes apparent. Numerous studies were therefore carried out in collaboration with Malaysian Energy Centre to address a number of those important issues. The findings of the studies are presented in the paper and can be served as supplementary information to parties who are directly and indirectly involved in the PV sector in Malaysia. (author)

  6. Economical, environmental and technical analysis of building integrated photovoltaic systems in Malaysia

    International Nuclear Information System (INIS)

    Seng, Lim Yun; Lalchand, G.; Sow Lin, Gladys Mak

    2008-01-01

    Malaysia has identified photovoltaic systems as one of the most promising renewable sources. A great deal of efforts has been undertaken to promote the wide applications of PV systems. With the recent launch of a PV market induction programme known as SURIA 1000 in conjunction with other relevant activities undertaken under the national project of Malaysia Building Integrated Photovoltaic (MBIPV), the market of PV systems begins to be stimulated in the country. As a result, a wide range of technical, environmental and economic issues with regard to the connection of PV systems to local distribution networks becomes apparent. Numerous studies were therefore carried out in collaboration with Malaysian Energy Centre to address a number of those important issues. The findings of the studies are presented in the paper and can be served as supplementary information to parties who are directly and indirectly involved in the PV sector in Malaysia. (author)

  7. SOL-IND. Photovoltaics integrated in an industrialised building process. Final report; SOL-IND. Solceller integreret i industrielt byggeri. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Frederiksen, K.H.B.; Vestersager Engdal, J. (EnergiMidt A/S, Silkeborg (Denmark))

    2008-06-15

    The purpose of the project, EFP06 - Photovoltaics integrated in an industrialised building process (SOLIND), has been to examine the possibilities for PV (photovoltaics) in an industrialized building process. The project is an information gathering and development project with basis in knowledge about the possibilities for PV in relation to specific housing projects in Skanska Bolig A/S, including BoKlok, developed in cooperation with IKEA. During the project a workshop with participating architectural students has been carried through resulting in detailed concepts. The concepts have in general terms been introduced nationally to the press and were invited to a poster presentation at the world's largest PV conference. In addition to this, a number of prototypes are produced together with other presentation material. The projects has been divided into three phases. The report is divided into these three phases. 1) Knowledge gathering and unravelling 2) Analysis, development and evaluation, workshop for students. 3) Promotion and demonstration of results The main results are: 4) The project has resulted in increased knowledge about the possibilities with photovoltaics in industrialized building processes. 5) A number of concepts have been developed to fit PV in the project phase of an industrialized building process. 6) The most promising concepts has been demonstrated as prototypes in different scale together with other presentation materials The project continues in SOL-IND2, with the purpose to prepare and carry out an integration of a PV system in an industrialized building process. A subsidy is granted in 2008 from the EFP to prepare the construction. (au)

  8. Building integration photovoltaic module with reference to Ghana: using triple junction amorphous silicon

    OpenAIRE

    Essah, Emmanuel Adu

    2010-01-01

    This paper assesses the potential for using building integrated photovoltaic (BIPV) \\ud roof shingles made from triple-junction amorphous silicon (3a-Si) for electrification \\ud and as a roofing material in tropical countries, such as Accra, Ghana. A model roof \\ud was constructed using triple-junction amorphous (3a-Si) PV on one section and \\ud conventional roofing tiles on the other. The performance of the PV module and tiles \\ud were measured, over a range of ambient temperatures and solar...

  9. Design and Analysis of Photovoltaic (PV) Power Plant at Different Locations in Malaysia

    Science.gov (United States)

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.

    2018-05-01

    Power generation from sun oriented vitality through a photovoltaic (PV) system is ended up prevalent over the world due to clean innovation. Geographical location of Malaysia is very favorable for PV power generation system. The Malaysian government has also taken different steps to increase the use of solar energy especially by emphasizing on building integrated PV (BIPV) system. Comparative study on the feasibility of BIPV installation at the different location of Malaysia is rarely found. On the other hand, solar cell temperature has a negative impact on the electricity generation. So in this study cost effectiveness and initial investment cost of building integrated grid connected solar PV power plant in different regions of Malaysia have been carried. The effect of PV solar cell temperature on the payback period (PBP) is also investigated. Highest PBP is 12.38 years at Selangor and lowest PBP is 9.70 years at Sabah (Kota Kinabalu). Solar cell temperature significantly increases the PBP of PV plant and highest 14.64% and lowest 13.20% raise of PBP are encountered at Penang and Sarawak respectively.

  10. Annual performance of building-integrated photovoltaic/water-heating system for warm climate application

    International Nuclear Information System (INIS)

    Chow, T.T.; Chan, A.L.S.; Fong, K.F.; Lin, Z.; He, W.; Ji, J.

    2009-01-01

    A building-integrated photovoltaic/water-heating (BiPVW) system is able to generate higher energy output per unit collector area than the conventional solar systems. Through computer simulation with energy models developed for this integrative solar system in Hong Kong, the results showed that the photovoltaic/water-heating (PVW) system has economic advantages over the conventional photovoltaic (PV) installation. The system thermal performance under natural water circulation was found better than the pump-circulation mode. For a specific BiPVW system at a vertical wall of a fully air-conditioned building and with collectors equipped with flat-box-type thermal absorber and polycrystalline silicon cells, the year-round thermal and cell conversion efficiencies were found respectively 37.5% and 9.39% under typical Hong Kong weather conditions. The overall heat transmission through the PVW wall is reduced to 38% of the normal building facade. When serving as a water pre-heating system, the economical payback period was estimated around 14 years. This greatly enhances the PV market opportunities. (author)

  11. An analysis of the performance of a 2.6 kWp building integrated photovoltaic installation

    International Nuclear Information System (INIS)

    Sulaiman Shaari

    2000-01-01

    This paper presents a summary of an analysis of the performance results of a 2.6 kWp Building integrated Photovoltaic (BIPV) installation. The building has fifty Siemens M55 photovoltaic (PV) modules integrated as part of the roof of the building, grid-interactive via an SMA inverter. Data have been compiled and a detailed analysis of its performance was done using a dedicated BIPV computer model called PVSYST2.0. It was found that the general performance of the system was at the lower end of the spectrum mainly due to inherent architectural design of the building. This came by way of shading on the modules casted by shadow: of existing roofs of the building, and adverse effects from temperature increases on the modules due to the heating regimes in the building and lack of ventilation of the modules. The problem was exacerbated by an inverter-to-PV size ratio mismatch. In addition there had been some teething problems during the earlier periods of operation. Lessons from this experience are drawn up to serve as a precautionary note in designing other BIPV installations, especially valuable for applications in tropical climate countries, like Malaysia. (Author)

  12. Very Thin Flexible Coupled Inductors for PV Module Integrated GaN Converter

    DEFF Research Database (Denmark)

    Acanski, Milos; Ouyang, Ziwei; Popovic-Gerber, Jelena

    2012-01-01

    converter integrated directly into a low cost flexible PV module. Additional problems arise in this case, specifically in magnetics design, due to the requirements for very low profile flexible construction and limited thermal headroom. Overcoming these limitations presents a challenge, but can lead...... to a cost effective, reliable solution for PV systems with improved integration level and power density....

  13. The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material

    International Nuclear Information System (INIS)

    Jouhara, H.; Milko, J.; Danielewicz, J.; Sayegh, M.A.; Szulgowska-Zgrzywa, M.; Ramos, J.B.; Lester, S.P.

    2016-01-01

    A novel flat heat pipe design has been developed and utilised as a building envelope and thermal solar collector with and without (PV) bonded directly to its surface. The design of the new solar collector has been validated through full scale testing in Cardiff, UK where solar/thermal, uncooled PV and PV/T tests were carried out on three identical systems, simultaneously. The tests showed a solar/thermal energy conversion efficiency of around 64% for the collector with no PV and 50% for the system with the PV layer on it. The effect of cooling on the solar/electrical energy conversion efficiency was also investigated and an efficiency increase of about 15% was recorded for the cooled PV system due to the provided homogenous cooling. The new flat heat pipe solar collector is given the name “heat mat” and, in addition to being an efficient solar collector type, it is also designed to convert a building envelope materials to become energy-active. A full size roof that utilise this new building envelope material is reported in this paper to demonstrate the way this new collector is integrated as a building envelope material to form a roof. A thermal absorption test, in a controlled environment, from the ambient to the heat mat with no solar radiation is also reported. The test has proved the heat mat as an efficient thermal absorber from the ambient to the intermediate fluid that deliver the heat energy to the heat pump system. - Highlights: • A new flat heat pipe PV/T system that can be used as building materials is reported. • The new solar collector enhanced the performance of the PV by about 15%. • The new solar collector is capable of absorbing heat from ambient efficiently. • The new system is efficient from the solar/thermal conversion point of view.

  14. The impact of building-integrated photovoltaics on the energy demand of multi-family dwellings in Brazil

    International Nuclear Information System (INIS)

    Ordenes, Martin; Marinoski, Deivis Luis; Braun, Priscila; Ruther, Ricardo

    2007-01-01

    Brazil faces a continuous increase of energy demand and a decrease of available resources to expand the generation system. Residential buildings are responsible for 23% of the national electricity demand. Thus, it is necessary to search for new energy sources to both diversify and complement the energy mix. Building-integrated photovoltaic (BIPV) is building momentum worldwide and can be an interesting alternative for Brazil due its solar radiation characteristics. This work analyses the potential of seven BIPV technologies implemented in a residential prototype simulated in three different cities in Brazil (Natal, Brasilia and Florianopolis). Simulations were performed using the software tool EnergyPlus to integrate PV power supply with building energy demand (domestic equipment and HVAC systems). The building model is a typical low-cost residential building for middle-class families, as massively constructed all over the country. Architectural input and heat gain schedules are defined from statistical data (Instituto Brasileiro de Geografia e Estatistica - Brazilian Institute for Geography and Statistics (IBGE) and Sistema de Informacoes de Posses de Eletrodomesticos e Habitos de Consumo - Consumer Habits and Appliance Ownership Information System (SIMPHA)). BIPV is considered in all opaque surfaces of the envelope. Results present an interesting potential for decentralized PV power supply even for vertical surfaces at low-latitude sites. In each facade, BIPV power supply can be directly linked to local climatic conditions. In general, for 30% of the year photovoltaic systems generate more energy than building demand, i.e., during this period it could be supplying the energy excess to the public electricity grid. Contrary to the common belief that vertical integration of PV is only suitable for high latitude countries, we show that there is a considerable amount of energy to be harvested from vertical facades at the sites investigated. (Author)

  15. Fuzzy comprehensive evaluation for grid-connected performance of integrated distributed PV-ES systems

    Science.gov (United States)

    Lv, Z. H.; Li, Q.; Huang, R. W.; Liu, H. M.; Liu, D.

    2016-08-01

    Based on the discussion about topology structure of integrated distributed photovoltaic (PV) power generation system and energy storage (ES) in single or mixed type, this paper focuses on analyzing grid-connected performance of integrated distributed photovoltaic and energy storage (PV-ES) systems, and proposes a comprehensive evaluation index system. Then a multi-level fuzzy comprehensive evaluation method based on grey correlation degree is proposed, and the calculations for weight matrix and fuzzy matrix are presented step by step. Finally, a distributed integrated PV-ES power generation system connected to a 380 V low voltage distribution network is taken as the example, and some suggestions are made based on the evaluation results.

  16. Fabrication and laboratory-based performance testing of a building-integrated photovoltaic-thermal roofing panel

    International Nuclear Information System (INIS)

    Chen, Fangliang; Yin, Huiming

    2016-01-01

    Highlights: • A BIPVT solar panel is designed and fabricated for energy efficient buildings. • A high-speed manufacture method is developed to produce the functionally graded materials. • Laboratory tests demonstrate BIPVT’s energy efficiency improvement and innovations. • The PV efficiency is enhanced ∼24% through temperature control of the panel by water flow. • The combined electric and thermal efficiency reaches >75% of solar irradiation. - Abstract: A building integrated photovoltaic-thermal (BIPVT) multifunctional roofing panel has been developed in this study to harvest solar energy in the form of PV electricity as well as heat energy through the collection of warm water. As a key component of the multifunctional building envelope, an aluminum/high-density polyethylene (HDPE) functionally graded material (FGM) panel embedded with aluminum water tubes has been fabricated through the vibration-sedimentation approach. The FGM layer gradually transits material phases from well-conductive side (with aluminum dominated) to another highly insulated side (with HDPE). The heat in the PV cells can be easily transferred into the conductive side of the FGM and then collected by the water flow in the embedded tubes. Therefore, the operational temperature of the PV cells can be significantly lowered down, which recovers the PV efficiency in hot weather. In this way, the developed BIPVT panel is able to efficiently harvest solar energy in the form of both PV electricity and heat. The performance of a prototype BIPVT panel has been evaluated in terms of its thermal efficiency via warm water collection and PV efficiency via the output electricity. The laboratory test results demonstrate that significant energy conversion efficiency improvement can be achieved for both electricity generation and heat collection by the presented BIPVT roofing system. Overall, the performance indicates a very promising prospective of the new BIPVT multifunctional roofing panel.

  17. Establishment of key grid-connected performance index system for integrated PV-ES system

    Science.gov (United States)

    Li, Q.; Yuan, X. D.; Qi, Q.; Liu, H. M.

    2016-08-01

    In order to further promote integrated optimization operation of distributed new energy/ energy storage/ active load, this paper studies the integrated photovoltaic-energy storage (PV-ES) system which is connected with the distribution network, and analyzes typical structure and configuration selection for integrated PV-ES generation system. By combining practical grid- connected characteristics requirements and technology standard specification of photovoltaic generation system, this paper takes full account of energy storage system, and then proposes several new grid-connected performance indexes such as paralleled current sharing characteristic, parallel response consistency, adjusting characteristic, virtual moment of inertia characteristic, on- grid/off-grid switch characteristic, and so on. A comprehensive and feasible grid-connected performance index system is then established to support grid-connected performance testing on integrated PV-ES system.

  18. The choice of primary energy source including PV installation for providing electric energy to a public utility building - a case study

    Science.gov (United States)

    Radomski, Bartosz; Ćwiek, Barbara; Mróz, Tomasz M.

    2017-11-01

    The paper presents multicriteria decision aid analysis of the choice of PV installation providing electric energy to a public utility building. From the energy management point of view electricity obtained by solar radiation has become crucial renewable energy source. Application of PV installations may occur a profitable solution from energy, economic and ecologic point of view for both existing and newly erected buildings. Featured variants of PV installations have been assessed by multicriteria analysis based on ANP (Analytic Network Process) method. Technical, economical, energy and environmental criteria have been identified as main decision criteria. Defined set of decision criteria has an open character and can be modified in the dialog process between the decision-maker and the expert - in the present case, an expert in planning of development of energy supply systems. The proposed approach has been used to evaluate three variants of PV installation acceptable for existing educational building located in Poznań, Poland - the building of Faculty of Chemical Technology, Poznań University of Technology. Multi-criteria analysis based on ANP method and the calculation software Super Decisions has proven to be an effective tool for energy planning, leading to the indication of the recommended variant of PV installation in existing and newly erected public buildings. Achieved results show prospects and possibilities of rational renewable energy usage as complex solution to public utility buildings.

  19. Implementing Solar PV Projects on Historic Buildings and in Historic Districts

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, A.; Hotchkiss, E.; Walker, A.; Buddenborg, J; Lindberg, J.

    2011-09-01

    Many municipalities, particularly in older communities of the United States, have a large amount of historic buildings and districts. In addition to preserving these historic assets, many municipalities have goals or legislative requirements to procure a certain amount of energy from renewable sources and to become more efficient in their energy use; often, these requirements do not exempt historic buildings. This paper details findings from a workshop held in Denver, Colorado, in June 2010 that brought together stakeholders from both the solar and historic preservation industries. Based on these findings, this paper identifies challenges and recommends solutions for developing solar photovoltaic (PV) projects on historic buildings and in historic districts in such a way as to not affect the characteristics that make a building eligible for historic status.

  20. Grid integrated distributed PV (GridPV).

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J.; Coogan, Kyle

    2013-08-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  1. First steps in developing the niche market for PV in conservatories

    International Nuclear Information System (INIS)

    2002-06-01

    This report describes the findings of a project commissioned by the Department of Trade and Industry (DTI) to review and quantitatively assess the prospects and potential for the integration of photovoltaic (PV) modules and components into conservatories. This is considered one way of expanding the market for domestic PV installations in the UK. The report describes the outputs from the project's various work packages. These included: an assessment of the benefits provided by PVs in conservatories in terms of energy use, shading, simulations and aesthetics; the definition of design requirements for integrating PV; development of designs; market surveys of consumers, the conservatory industry and the house building industry; and the development of user guidelines

  2. Tropical Zero Energy Office Building

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter; Kristensen, Poul Erik

    2006-01-01

    The new headquarter for Pusat Tenaga Malaysia is designed to be a Zero Emission Office Building (ZEO). A full range of passive and active energy efficiency measures are implemented such that the building will need no more electricity than what can be produced via its own Building Integrated PV...... lighting. These measures include the use of high efficient lighting controlled according to demand, high efficiency pumps and fans, a high efficiency chiller, and use of energy efficient office equipment. The buildings PV system is connected to the grid. Solar electricity is exported to the grid during...... of 24 – 26 oC can be maintained throughout the office hours. The PV roof of the building serves multiple purposes. During daytime, the roof becomes the powerplant of the building, and during nighttime, the PV roof becomes the “cooling tower” for the chiller. The roof will be covered by a thin water film...

  3. Contribution à l’étude du couplage énergétique enveloppe / système dans le cas de parois complexes photovoltaïques (PC - PV)

    OpenAIRE

    Bigot , Dimitri

    2011-01-01

    This thesis presents a thermal and electrical modelling of PV walls integrated to buildings. The particularity of this model is that the heat transfer that occurs through the panel to the building is described so that both building and PV thermal modelling are fully coupled. This has the advantage of allowing the prediction of the impact of PV installation on the building temperature field and also the comfort inside it. The aim of this study is to show the impact of the PV panels in terms of...

  4. Seismic and Power Generation Performance of U-Shaped Steel Connected PV-Shear Wall under Lateral Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Hongmei Zhang

    2014-01-01

    Full Text Available BIPV is now widely used in office and residential buildings, but its seismic performance still remained vague especially when the photovoltaic (PV modules are installed on high-rise building facades. A new form of reinforced concrete shear wall integrated with photovoltaic module is proposed in this paper, aiming to apply PV module to the facades of high-rise buildings. In this new form, the PV module is integrated with the reinforced concrete wall by U-shaped steel connectors through embedded steel plates. The lateral cyclic loading test is executed to investigate the seismic behavior and the electric and thermal performance with different drift angles. The seismic behavior, including failure pattern, lateral force-top displacement relationship, and deformation capacity, was investigated. The power generation and temperature variation on the back of the PV module and both sides of the shear wall were also tested. Two main results are demonstrated through the experiment: (1 the U-shaped steel connectors provide enough deformation capacity for the compatibility of the PV module to the shear wall during the whole cyclic test; (2 the electricity generation capacity is effective and stable during this seismic simulation test.

  5. PV domestic field trial. Third annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    Crick, F.; Davies, N.; Munzinger, M.; Pearsall, N.; Martin, C.

    2004-07-01

    This report summaries the results of a field trials investigating the design, construction and operation of photovoltaic (PV) systems installed during 2003 to provide information for utilities, building developers and those involved in PV installations and operations. Topics examined include the appearance of the systems, their architectural integration, the different fixing methods, the cost effectiveness of the systems, problems encountered, and monitoring activities. Key issues discussed include communication and co-ordination between interested bodies, siting and location, and good practice. Details are given of monitoring inspection visits, and performance analysis.

  6. Operation of TUT Solar PV Power Station Research Plant under Partial Shading Caused by Snow and Buildings

    Directory of Open Access Journals (Sweden)

    Diego Torres Lobera

    2013-01-01

    Full Text Available A grid connected solar photovoltaic (PV research facility equipped with comprehensive climatic and electric measuring systems has been designed and built in the Department of Electrical Engineering of the Tampere University of Technology (TUT. The climatic measuring system is composed of an accurate weather station, solar radiation measurements, and a mesh of irradiance and PV module temperature measurements located throughout the solar PV facility. Furthermore, electrical measurements can be taken from single PV modules and strings of modules synchronized with the climatic data. All measured parameters are sampled continuously at 10 Hz with a data-acquisition system based on swappable I/O card technology and stored in a database for later analysis. The used sampling frequency was defined by thorough analyses of the PV system time dependence. Climatic and electrical measurements of the first operation year of the research facility are analyzed in this paper. Moreover, operation of PV systems under partial shading conditions caused by snow and building structures is studied by means of the measured current and power characteristics of PV modules and strings.

  7. Analysis and Monitoring Results of a Building Integrated Photovoltaic Façade Using PV Ceramic Tiles in Taiwan

    Directory of Open Access Journals (Sweden)

    Yen-Chieh Huang

    2014-01-01

    Full Text Available Single-crystal silicon-based solar cells laminated with tempered-glass and ceramic tiles for use in a building’s façade have been developed. The optical, thermal, and electrical properties of the proposed PV module are first evaluated, and then a wind-resistance test is carried out to evaluate the feasibility of installing it in Taiwan. The electrical and deflection characteristics of the proposed PV module did not change significantly after a 50 thermal cycling test and a 200-hour humidity-freeze test, based on IEC 61215 and a wind-resistance test. Finally, the electrical power generation ability of the proposed BIPV system with 1 kWp electrical power capacity was examined. Building information modeling software tools were used to simulate the BIPV system and carry out the energy analysis. The simulation results show a very consistent trend with regard to the actual monthly electricity production of the BIPV system designed in this work. The BIPV system was able to produce an accumulative electrical power of 185 kWh during the 6-month experimental period. In addition, the exterior temperature of the demonstration house was about 10°C lower than the surface of the BIPV system, which could reduce indoor temperature.

  8. Angle Resolved Performance Measurements on PV Glass and Modules

    DEFF Research Database (Denmark)

    Juutilainen, Line Tollund; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    The angular response of PV-modules has significant impact on the energy production. This is especially pronounced in BIPV where installation angles often are far from optimal. Nevertheless, a gain in energy yield may be obtained by choosing a proper glass as superstrate. In this work we present...... the concept of PV balconies as cost efficient and easy way of integrating PV into buildings. The experimental work consists of the fabrication of single cell mini modules with different glass covering, and characterizing their angular response in a custom made setup, where only the direct sunlight is used...... as a light source. As a special case we estimate the annual yield for each glass in the case of PV balconies for a specific geographical location and orientation of the module....

  9. A peaking-regulation-balance-based method for wind & PV power integrated accommodation

    Science.gov (United States)

    Zhang, Jinfang; Li, Nan; Liu, Jun

    2018-02-01

    Rapid development of China’s new energy in current and future should be focused on cooperation of wind and PV power. Based on the analysis of system peaking balance, combined with the statistical features of wind and PV power output characteristics, a method of comprehensive integrated accommodation analysis of wind and PV power is put forward. By the electric power balance during night peaking load period in typical day, wind power installed capacity is determined firstly; then PV power installed capacity could be figured out by midday peak load hours, which effectively solves the problem of uncertainty when traditional method hard determines the combination of the wind and solar power simultaneously. The simulation results have validated the effectiveness of the proposed method.

  10. Building-Integrated Solar Energy Devices based on Wavelength Selective Films

    Science.gov (United States)

    Ulavi, Tejas

    A potentially attractive option for building integrated solar is to employ hybrid solar collectors which serve dual purposes, combining solar thermal technology with either thin film photovoltaics or daylighting. In this study, two hybrid concepts, a hybrid photovoltaic/thermal (PV/T) collector and a hybrid 'solar window', are presented and analyzed to evaluate technical performance. In both concepts, a wavelength selective film is coupled with a compound parabolic concentrator (CPC) to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber. The visible portion of the spectrum is transmitted through the concentrator to either a thin film Cadmium Telluride (CdTe) solar panel for electricity generation or into the interior space for daylighting. Special attention is given to the design of the hybrid devices for aesthetic building integration. An adaptive concentrator design based on asymmetrical truncation of CPCs is presented for the hybrid solar window concept. The energetic and spectral split between the solar thermal module and the PV or daylighting module are functions of the optical properties of the wavelength selective film and the concentrator geometry, and are determined using a Monte Carlo Ray-Tracing (MCRT) model. Results obtained from the MCRT can be used in conjugation with meteorological data for specific applications to study the impact of CPC design parameters including the half-acceptance angle thetac, absorber diameter D and truncation on the annual thermal and PV/daylighting efficiencies. The hybrid PV/T system is analyzed for a rooftop application in Phoenix, AZ. Compared to a system of the same area with independent solar thermal and PV modules, the hybrid PV/T provides 20% more energy, annually. However, the increase in total delivered energy is due solely to the addition of the thermal module and is achieved at an expense of a decrease in the annual electrical efficiency from 8.8% to 5.8% due to shading by

  11. Global PV Market Development

    International Nuclear Information System (INIS)

    Schmidt, F.

    2009-01-01

    particularly affected by the current over capacity. Up to now, China has failed to develop an efficient concept that could stimulate the domestic demand. The surprising promotion scheme made public by the government in March 2009 is probably nothing more than a first attempt to walk into the direction of long-term PV promotion. A premise is that the plant is installed on or in a building. Thus the focus of the promotion is set on building integrated photovoltaic. In fact, an additional tariff for open space plants is currently being discussed but a final decision is still to be made. Moreover, the program is restricted to installations in 2009. Next year the government wants to decide on further promotion schemes. Until then, market players hope that the program represents the starting signal for long-term PV promotion and the establishment of a domestic market in China.(author).

  12. Numerical investigation of dust pollution on a solar photovoltaic (PV) system mounted on an isolated building

    International Nuclear Information System (INIS)

    Lu, Hao; Lu, Lin; Wang, Yuanhao

    2016-01-01

    Highlights: • Effects of dust pollution on PV panels mounted on building roofs were investigated by CFD. • The dust deposition rates first increased and then decreased with the increase of dust size. • The gravity has different influences on dust deposition rates of large and small dusts. • The influence of released dust number on dust deposition rate is less than 8%. • A simple model was developed to estimate the PV efficiency reduction ratio by dust pollution. - Abstract: Dust deposition on a solar photovoltaic (PV) system mounted on the windward roof of an isolated building was investigated by CFD simulation. The SST k-ω turbulence model with UDF inlet profiles and the discrete particle model (DPM) were adopted to simulate the wind flow fields and the dust deposition behavior, respectively. The CFD wind flow velocity profiles around the building were in good agreement with experimental results reported in the literature. The effects of various dust particle sizes, differing quantities of released dust particles, and the force of gravity on the rates of dust deposition upon the PV panels were investigated in detail. It was found that the dust deposition rate first rose and then declined with the increase of dust particle size. The maximum deposition rate was about 0.28% for 10 μm dust, and the minimum deposition rate was about 0.13% for 50 μm dust. Gravity also had a significant effect on the rate of dust deposition for large-particle dust (d_p > 5 μm), and the rate could reach 75% for 50 μm dust. However, the effect of gravity on dust deposition was less than 5% for small-particle dust (d_p < 5 μm). The effect of releasing differing quantities of dust particles on the dust deposition rate was less than 8%. Moreover, the mechanisms by which dust was deposited on the PV roof were analyzed and discussed. Finally, a simple empirical model was developed to estimate the PV efficiency reduction ratios in relation to exposure time, as based on this

  13. Monitoring of PV systems at the Centre for Renewable Energy and Eco-Energy House

    Energy Technology Data Exchange (ETDEWEB)

    Riffat, S.B.; Omer, S.A.; Wilson, R.

    2001-07-01

    This report summarises the results of an examination of the design, installation and operation of two building integrated photovoltaic (PV) systems at the University of Nottingham. Details are given of the thin film, glass Tedlar PV system installed at the Centre, the average system performance, the installation of the monocrystalline roof slate PV system at the Eco-Energy House, and annualised costs for both systems. A holistic approach to building design, a solution to client and installer uncertainty, training to enhance the skills of related trades, the provision of guidance on the minimum acceptable standard of documentation, and the guaranteeing of a minimum level of performance by the system supplier are among the recommendations given.

  14. Economic and Environmental Assessment of a 1 MW Grid Connected Rooftop Solar PV System for Energy Efficient Building in Bangladesh

    Science.gov (United States)

    Chakraborty, Sanjib; Hosain, Rubayet; Rahman, Toufiqur; Rabbi, Ahmead Fazle

    This paper evaluates the potentiality of a 1 MW grid connected rooftop solar PV system for an Energy Efficient Building in Bangladesh, which was estimated by utilizing NASA SSE solar radiation data, PVsyst simulation software and RETScreen simulation software. Economic and environmental viability for a ten-storied building with roof area of 6,500 m2 in the Capital City of Bangladesh, Dhaka was assessed by using the RETScreen simulation software. The yearly electricity production of the proposed system was 1,581 MWh estimated by PVsyst where the technical prospective of gird-connected solar PV in Bangladesh was calculated as about 50,174 MW. The economic assessments were determined the simple payback in such a way that the generated electricity first fulfills the demand of the building, and then the rest of the energy is supplied to the grid. The result indicates that the roof top solar PV system for an Energy efficient building in Dhaka city has a favorable condition for development both in economic and environmental point of view.

  15. Photovoltaics in buildings - international market and state of the art

    International Nuclear Information System (INIS)

    Toggweiler, Peter

    1999-01-01

    The author examines the use of PV technology in buildings and stresses the importance of PV integration into the architectural design. The status of European collaboration is briefly reviewed with emphasis on IEA Task VII: PV in the built environment

  16. Building PV markets: customers and prices

    International Nuclear Information System (INIS)

    Haas, Reinhard

    2002-01-01

    What makes market deployment strategies for PV successful? A group of specialists (from IEA Task 7) has been looking at the progress made so far. Here, in the first of two articles based on their report, the author presents some of their findings, including benefits and barriers for defined groups of customers; how customers for PV systems are identified, and what they are willing to pay. It also looks at current prices in different countries, and their possible trends. (Author)

  17. Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system

    International Nuclear Information System (INIS)

    Ibrahim, Adnan; Fudholi, Ahmad; Sopian, Kamaruzzaman; Othman, Mohd Yusof; Ruslan, Mohd Hafidz

    2014-01-01

    Highlights: • Performances analysis of BIPVT solar collector based on energy and exergy analyses. • A new absorber design of BIPVT solar collector is presented. • BIPVT solar collector is produced primary-energy saving efficiency from about 73% to 81%. • PVT energy efficiency varies between 55% and 62% where as the variation in the PVT exergy efficiency is from 12% to 14%. • The improvement potential is between 98 and 404 W. - Abstract: Building integrated photovoltaic thermal (BIPVT) system has been designed to produce both electricity and hot water and later integrated to building. The hot water is produced at the useful temperatures for the applications in Malaysia such as building integrated heating system and domestic hot water system as well as many industrial including agricultural and commercial applications. The photovoltaic thermal (PVT) system comprises of a high efficiency multicrystal photovoltaic (PV) module and spiral flow absorber for BIPVT application, have been performed and investigated. In this study, it was assumed that the absorber was attached underneath the flat plate single glazing sheet of polycrystalline silicon PV module and water has been used as a heat transfer medium in absorber. Performances analysis of BIPVT system based on energy and exergy analyses. It was based on efficiencies including energy and exergy, and exergetic improvement potential (IP) based on the metrological condition of Malaysia has been carried out. Results show that the hourly variation for BIPVT system, the PVT energy efficiency of 55–62% is higher than the PVT exergy efficiency of 12–14%. The improvement potential increases with increasing solar radiation, it is between 98 and 404 W. On the other hand, BIPVT system was produced primary-energy saving efficiency from about 73% to 81%

  18. Photovoltaic module with integrated power conversion and interconnection system - the European project PV-MIPS

    OpenAIRE

    Henze, N.; Engler, A.; Zacharias, P.

    2006-01-01

    Within the 6th framework program funded by the European Commission the project PV-MIPS (Photovoltaic Module with Integrated Power Conversion System) was launched in November 2004. Together with eleven European partners from Germany, Austria, Greece and the Netherlands a solar module with integrated in-verter shall be developed that can feed solar electricity directly into the grid. The challenging objective of the project is to reduce the total costs of a PV system. At the same time lifetime ...

  19. Modelling the heat dynamics of a monitored Test Reference Environment for Building Integrated Photovoltaic systems using stochastic differential equations

    DEFF Research Database (Denmark)

    Lodi, C.; Bacher, Peder; Cipriano, J.

    2012-01-01

    reduce the ventilation thermal losses of the building by pre-heating the fresh air. Furthermore, by decreasing PV module temperature, the ventilation air heat extraction can simultaneously increase electrical and thermal energy production of the building. A correct prediction of the PV module temperature...... and heat transfer coefficients is fundamental in order to improve the thermo-electrical production.The considered grey-box models are composed of a set of continuous time stochastic differential equations, holding the physical description of the system, combined with a set of discrete time measurement......This paper deals with grey-box modelling of the energy transfer of a double skin Building Integrated Photovoltaic (BIPV) system. Grey-box models are based on a combination of prior physical knowledge and statistics, which enable identification of the unknown parameters in the system and accurate...

  20. Investigation the Advantages of CPV for Building Integrated PV : 28th European Photovoltaic Solar Energy Conference

    NARCIS (Netherlands)

    S. van der Craats; R.G. Catau; Piet Sonneveld; J.V. Sahedi; A.R. Sparemberger

    2013-01-01

    The objective of this concept is a significant reduction of energy consumption in greenhouses and buildings with large facades and windows by using available solar energy. The scope of this investigation is to study the advantages of a building integrated CPV system. The basic idea is that a larger

  1. BEopt-CA (Ex): A Tool for Optimal Integration of EE, DR and PV in Existing California Homes

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, C.; Horowitz, S.; Maguire, J.; Tabares-Velasco, P.; Springer, D.; Coates, P.; Bell, C.; Price, S.; Sreedharan, P.; Pickrell, K.

    2014-04-01

    Opportunities for combining energy efficiency, demand response, and energy storage with PV are often missed, because the required knowledge and expertise for these different technologies exist in separate organizations or individuals. Furthermore, there is a lack of quantitative tools to optimize energy efficiency, demand response and energy storage with PV, especially for existing buildings. As technology costs evolve (e.g., the ongoing reduction in the cost of PV), design strategies need to be adjusted accordingly based on quantitative analysis.

  2. Understanding innovation system build up. The rise and fall of the Dutch PV Innovation System

    International Nuclear Information System (INIS)

    Negro, S.O.; Vasseur, V.; Hekkert, M.P.; Van Sark, W.G.J.H.M.

    2009-01-01

    Renewable energy technologies have a hard time to break through in the existing energy regime. In this paper we focus on analysing the mechanisms behind this problematic technology diffusion. We take the theoretical perspective of innovation system dynamics and apply this to photovoltaic solar energy technology (PV) in the Netherlands. The reason for this is that there is a long history of policy efforts in The Netherlands to stimulate PV but results in terms of diffusion of PV panels is disappointingly low, which clearly constitutes a case of slow diffusion. The history of the development of the PV innovation system is analysed in terms of seven key processes that are essential for the build up of innovation systems. We show that the processes related to knowledge development are very stable but that large fluctuations are present in the processes related to 'guidance of the search' and 'market formation'. Surprisingly, entrepreneurial activities are not too much affected by fluctuating market formation activities. We relate this to market formation in neighbouring countries and discuss the theoretical implications for the technological innovation system framework.

  3. Distribution transformer lifetime analysis in the presence of demand response and rooftop PV integration

    Directory of Open Access Journals (Sweden)

    Behi Behnaz

    2017-01-01

    Full Text Available Many distribution transformers have already exceeded half of their expected service life of 35 years in the infrastructure of Western Power, the electric distribution company supplying southwest of Western Australia, Australia. Therefore, it is anticipated that a high investment on transformer replacement happens in the near future. However, high renewable integration and demand response (DR are promising resources to defer the investment on infrastructure upgrade and extend the lifetime of transformers. This paper investigates the impact of rooftop photovoltaic (PV integration and customer engagement through DR on the lifetime of transformers in electric distribution networks. To this aim, first, a time series modelling of load, DR and PV is utilised for each year over a planning period. This load model is applied to a typical distribution transformer for which the hot-spot temperature rise is modelled based on the relevant standard. Using this calculation platform, the loss of life and the actual age of distribution transformer are obtained. Then, various scenarios including different levels of PV penetration and DR contribution are examined, and their impacts on the age of transformer are reported. Finally, the equivalent loss of net present value of distribution transformer is formulated and discussed. This formulation gives major benefits to the distribution network planners for analysing the contribution of PV and DR on lifetime extension of the distribution transformer. In addition, the provided model can be utilised in optimal investment analysis to find the best time for the transformer replacement and the associated cost considering PV penetration and DR. The simulation results show that integration of PV and DR within a feeder can significantly extend the lifetime of transformers.

  4. Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China

    International Nuclear Information System (INIS)

    Zhao, Bin; Hu, Mingke; Ao, Xianze; Pei, Gang

    2017-01-01

    Highlights: •A specific spectral characteristic for both PV and RC was proposed. •The PV/RC hybrid system based on spectral characteristic is original. •A thermal model of the system was established and the performance was analyzed. •The performance comparison with the conventional PV system was conducted. •The system shows considerable performance for both PV and RC. -- Abstract: Building-integrated photovoltaic/thermal (BIPV/T) technology has been receiving considerable research attention because of its ability to generate electricity and thermal energy simultaneously. However, space cooling is crucial for buildings in hot regions where space heating is of little use. This study proposed a building-integrated photovoltaic–radiative cooling system (BIPV–RC) that can generate electricity via photovoltaic (PV) conversion during daytime and generate cooling energy via radiative cooling (RC) during nighttime to satisfy the demand in such areas. The selective plate, which is the main component of the BIPV–RC system, exhibits high spectral absorptivity (emissivity) in the PV conversion band of crystalline silicon solar cells and in the atmospheric window band (i.e., 0.3–1.1 μm and 8–13 μm), as well as low spectral absorptivity (emissivity) in other bands. A quasi-steady-state mathematical model was built, and its performance under realistic ambient conditions was analyzed. The electrical efficiencies of the BIPV–RC and conventional BIPV systems were then compared under different solar radiations. Comparison results show that the annual electricity production and cooling energy gain of the BIPV–RC system in Hefei reached 156.74 kW h m −2 (equivalent to 564.26 MJ m −2 ) and 579.91 MJ m −2 , respectively. The total electricity production and cooling energy gain of this system are 96.96% higher than those of the BIPV system. Parametric studies show that the precipitable water vapor amount has remarkable effects on the nocturnal RC performance

  5. Integration, Validation, and Application of a PV Snow Coverage Model in SAM

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Janine M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ryberg, David Severin [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    Due to the increasing deployment of PV systems in snowy climates, there is significant interest in a method capable of estimating PV losses resulting from snow coverage that has been verified for a variety of system designs and locations. Many independent snow coverage models have been developed over the last 15 years; however, there has been very little effort verifying these models beyond the system designs and locations on which they were based. Moreover, major PV modeling software products have not yet incorporated any of these models into their workflows. In response to this deficiency, we have integrated the methodology of the snow model developed in the paper by Marion et al. (2013) into the National Renewable Energy Laboratory's (NREL) System Advisor Model (SAM). In this work, we describe how the snow model is implemented in SAM and we discuss our demonstration of the model's effectiveness at reducing error in annual estimations for three PV arrays. Next, we use this new functionality in conjunction with a long term historical data set to estimate average snow losses across the United States for two typical PV system designs. The open availability of the snow loss estimation capability in SAM to the PV modeling community, coupled with our results of the nationwide study, will better equip the industry to accurately estimate PV energy production in areas affected by snowfall.

  6. Prioritized rule based load management technique for residential building powered by PV/battery system

    Directory of Open Access Journals (Sweden)

    T.R. Ayodele

    2017-06-01

    Full Text Available In recent years, Solar Photovoltaic (PV system has presented itself as one of the main solutions to the electricity poverty plaguing the majority of buildings in rural communities with solar energy potential. However, the stochasticity associated with solar PV power output owing to vagaries in weather conditions is a major challenge in the deployment of the systems. This study investigates approach for maximizing the benefits of a Stand-Alone Photovoltaic-Battery (SAPVB system via techniques that provide for optimum energy gleaning and management. A rule-based load management scheme is developed and tested for a residential building. The approach allows load prioritizing and shifting based on certain rules. To achieve this, the residential loads are classified into Critical Loads (CLs and Uncritical Loads (ULs. The CLs are given higher priority and therefore are allowed to operate at their scheduled time while the ULs are of less priority, hence can be shifted to a time where there is enough electric power generation from the PV arrays rather than the loads being operated at the time period set by the user. Four scenarios were created to give insight into the applicability of the proposed rule based load management scheme. The result revealed that when the load management technique is not utilized as in the case of scenario 1 (Base case, the percentage satisfaction of the critical and uncritical loads by the PV system are 49.8% and 23.7%. However with the implementation of the load management scheme in scenarios 2, 3 and 4, the percentage satisfaction of the loads (CLs, ULs are (93.8%, 74.2%, (90.9%, 70.1% and (87.2%, 65.4% for scenarios 2, 3 and 4, respectively.

  7. The realization of three special photovoltaic (PV) pilot projects. The roles and learning experiences of parties involved

    International Nuclear Information System (INIS)

    Geuzendam, C.; Van Mierlo, B.

    1995-11-01

    Experiences with the following three demonstration projects, carried out in the Netherlands, are inventorized and evaluated: (1) 16 private grid-connected PV-systems in existing houses within the framework of the project of the Organization for Renewable Energy (ODE, abbreviated in Dutch); (2) five private grid-connected roof-integrated PV-systems in renovated buildings in Leiden; and (3) the integration of PV in an acoustic baffle along the high-way A-27 near De Bilt. Attention is paid to the decision making processes, the most important actors, the management of the projects and what is learned from the experiences

  8. Integrating Solar PV in Utility System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  9. Building opportunities for photovoltaics in the U.S. Final report [PV BONUS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Nicklas

    1999-09-08

    The objective of the North Carolina's PV Bonus Team was to develop and demonstrate a commercially viable, building-integrated, photovoltaic system that, in addition to providing electricity, would capture and effectively utilize the thermal energy produced by the photovoltaic array. This project objective was successfully achieved by designing, testing, constructing, and monitoring two roof integrated photovoltaic systems--one on a Applebee's Restaurant in Salisbury, North Carolina and the second on a Central Carolina Bank in Bessemer City, North Carolina. The goal of Innovative Design is to now use these successful demonstrations to facilitate entry of building integrated, pv/thermal systems into the marketplace. The strategy was to develop the two systems that could be utilized in future applications. Both systems were designed and then constructed at the North Carolina Solar Center at North Carolina State University. After extensive testing at the North Carolina Solar Center, the systems were moved to the actual construction sites and implemented. The Applebee's Restaurant system was designed to substitute for the roof assembly of a low sloping, south-facing sunspace roof that typically incorporated clay tile. After monitoring the installed system for one year it was determined that the 1.2 kilowatt (peak) system produces an average peak reduction of 1 kilowatt (rated peak is 1.7 kiloWatts), saves 1,529 kilowatt-hours of electricity, and offsets 11,776 kilowatt-hours of thermal energy savings used to pre-heat water. A DC fan connected directly to eight of the thirty-two amorphous modules moves air through air passages mounted on the backside of the modules and into a closed loop duct system to a heat exchanger. This heat exchanger is, in turn, connected to a pre-heat hot water tank that is used to heat the water for the restaurant. The Central Carolina Bank system was designed to substitute for the roof assembly of the drive-in window area of the

  10. Task 9. Deployment of photovoltaic technologies: co-operation with developing countries. PV for rural electrification in developing countries - A guide to capacity building requirements

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.; Gunning, R. [IT Power Ltd, The Manor house, Chineham (United Kingdom); Stapleton, G. [Global Sustainable Energy Solutions Pty Ltd, GSES, Ulladulla 2539 (Australia)

    2003-03-15

    This report for the International Energy Agency (IEA) made by Task 9 of the Photovoltaic Power Systems (PVPS) programme takes a look at the topic of 'capacity building' in rural electrification projects. Capacity building is defined here as the development of an organisation's or individual's core knowledge, skills and capabilities in order to build and enhance the organisation's effectiveness and sustainability. This document identifies capacity building measures that should be undertaken as an integral component of a PV-based rural electrification implementation programme. Capacity building is to be facilitated through the provision of technical support activities, training, specific technical assistance and resource networking. The assessment of existing knowledge and the identification of training needs are discussed and training needs and their implementation by governmental and commercial players is discussed. Eleven case studies complete the report.

  11. Optimized design and control of an off grid solar PV/hydrogen fuel cell power system for green buildings

    Science.gov (United States)

    Ghenai, C.; Bettayeb, M.

    2017-11-01

    Modelling, simulation, optimization and control strategies are used in this study to design a stand-alone solar PV/Fuel Cell/Battery/Generator hybrid power system to serve the electrical load of a commercial building. The main objective is to design an off grid energy system to meet the desired electric load of the commercial building with high renewable fraction, low emissions and low cost of energy. The goal is to manage the energy consumption of the building, reduce the associate cost and to switch from grid-tied fossil fuel power system to an off grid renewable and cleaner power system. Energy audit was performed in this study to determine the energy consumption of the building. Hourly simulations, modelling and optimization were performed to determine the performance and cost of the hybrid power configurations using different control strategies. The results show that the hybrid off grid solar PV/Fuel Cell/Generator/Battery/Inverter power system offers the best performance for the tested system architectures. From the total energy generated from the off grid hybrid power system, 73% is produced from the solar PV, 24% from the fuel cell and 3% from the backup Diesel generator. The produced power is used to meet all the AC load of the building without power shortage (system produces 18.2% excess power that can be used to serve the thermal load of the building. The proposed hybrid power system is sustainable, economically viable and environmentally friendly: High renewable fraction (66.1%), low levelized cost of energy (92 /MWh), and low carbon dioxide emissions (24 kg CO2/MWh) are achieved.

  12. Vestas Power Plant Solutions Integrating Wind, Solar PV and Energy Storage

    DEFF Research Database (Denmark)

    Petersen, Lennart; Hesselbæk, Bo; Martinez, Antonio

    2018-01-01

    This paper addresses a value proposition and feasible system topologies for hybrid power plant solutions integrating wind, solar PV and energy storage and moreover provides insights into Vestas hybrid power plant projects. Seen from the perspective of a wind power plant developer, these hybrid...... solutions provide a number of benefits that could potentially reduce the Levelized Cost of Energy and enable entrance to new markets for wind power and facilitate the transition to a more sustainable energy mix. First, various system topologies are described in order to distinguish the generic concepts...... for the electrical infrastructure of hybrid power plants. Subsequently, the benefits of combining wind and solar PV power as well as the advantages of combining variable renewable energy sources with energy storage are elaborated. Finally, the world’s first utility-scale hybrid power plant combining wind, solar PV...

  13. Rooftop PV system. Final technical progress report, Phase II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    Under this four-year PV:BONUS Program, ECD and United Solar are developing and demonstrating two new lightweight flexible building integrated Photovoltaic (BIPV) modules specifically designed as exact replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and address the even larger roofing replacement market. The modules are designed to be installed by roofing contractors without special training which minimizes the installation and balance of system costs. The modules will be fabricated from high-efficiency, multiple-junction a-Si alloy solar cells developed by ECD and United Solar. Under the Phase I Program, which ended in March 1994, we developed two different concept designs for rooftop PV modules: (1) the United Solar overlapping (asphalt shingle replacement) shingle-type modules and (2) the ECD metal roof-type modules. We also developed a plan for fabricating, testing and demonstrating these modules. Candidate demonstration sites for our rooftop PV modules were identified and preliminary engineering designs for these demonstrations were developed; a marketing study plan was also developed. The major objectives of the Phase II Program, which started in June 1994 was (1) to develop, test, and qualify these new rooftop modules; (2) to develop mechanical and electrical engineering specifications for the demonstration projects; and (3) to develop a marketing/commercialization plan.

  14. Studying the Impact of Distributed Solar PV on Power Systems using Integrated Transmission and Distribution Models: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Himanshu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Palmintier, Bryan S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krad, Ibrahim [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnamurthy, Dheepak [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-24

    This paper presents the results of a distributed solar PV impact assessment study that was performed using a synthetic integrated transmission (T) and distribution (D) model. The primary objective of the study was to present a new approach for distributed solar PV impact assessment, where along with detailed models of transmission and distribution networks, consumer loads were modeled using the physics of end-use equipment, and distributed solar PV was geographically dispersed and connected to the secondary distribution networks. The highlights of the study results were (i) increase in the Area Control Error (ACE) at high penetration levels of distributed solar PV; and (ii) differences in distribution voltages profiles and voltage regulator operations between integrated T&D and distribution only simulations.

  15. Whole systems appraisal of a UK Building Integrated Photovoltaic (BIPV) system: Energy, environmental, and economic evaluations

    International Nuclear Information System (INIS)

    Hammond, Geoffrey P.; Harajli, Hassan A.; Jones, Craig I.; Winnett, Adrian B.

    2012-01-01

    Energy analysis, environmental life-cycle assessment (LCA) and economic appraisals have been utilised to study the performance of a domestic building integrated photovoltaic (BIPV) system on a ‘whole systems’ basis. Energy analysis determined that the system paid back its embodied energy in just 4.5 years. LCA revealed that the embodied impacts were offset by the electricity generated to provide a net environmental benefit in most categories. Only carcinogens, ecotoxicity and minerals had a small net lifetime burden. A financial analysis was undertaken from the householder's perspective, alongside cost-benefit analysis from a societal perspective. The results of both indicated that the systems are unlikely to pay back their investment over the 25 year lifetime. However, the UK is in an important period (2010/11) of policy transition with a move away from the ‘technology subsidies’ of the Low Carbon Buildings Programme (LCBP) and towards a ‘market development policy’ of feed-in tariffs. Representing the next stage on an innovation S-curve this is expected to facilitate rapid PV uptake, as experienced in countries such as Germany, Denmark, and Spain. The results of the present study clearly demonstrate the importance of the new government support scheme to the future uptake of BIPV. - Highlights: ► LCA and economic appraisals of a UK domestic building integrated PV system. ► Energy analysis determined that the system paid back its embodied energy in 4.5 years. ► UK moved towards a market development policy of feed-in tariffs. ► Financial analysis shows the importance of the new FiT scheme to the uptake of PV.

  16. Grid Integrated Distributed PV (GridPV) Version 2.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J.; Coogan, Kyle

    2014-12-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  17. Design Features of Product-Integrated PV: An Evaluation of Various Factors under Indoor Irradiance Conditions

    OpenAIRE

    Apostolou, G.

    2016-01-01

    This thesis explores the field of product-integrated photovoltaics (PIPV), a term which is used for all types of products that contain solar cells in one or more of their surfaces, aiming at providing power during the product’s use. Product-integrated photovoltaics (PIPV) began to be widely introduced around 2000, although the use of PV systems in products dates back to the 70s. PIPV includes products such as PV-powered boats, aircrafts, cars, bicycles, camping tents, street lights, recycling...

  18. The potential of solar PV in Ontario

    International Nuclear Information System (INIS)

    McMonagle, R.

    2005-01-01

    Canada has lagged behind other industrialized nations in the growth of solar energy markets. Currently, over 78 per cent of the global market for solar energy is for grid-connected applications where power is fed into the electrical distribution network. Less than 3.5 per cent of the Canadian solar market is grid-connected. This report investigated the potential size of the photovoltaic (PV) market in Ontario given adequate support from both governments and utilities. The forecast was based on sustainable growth levels that the solar industry as a whole might maintain over an extended period of time. It was suggested that it is technically feasible to install over 3000 MW of PV in single, detached homes in the province, which could generate over 3200 GWh each year. If the right policy conditions were put in place, the technical potential for PV on all buildings in Ontario is over 14,000 MW by 2025, which would generate over 13,000 GWh annually. Support mechanisms such as the Advanced Renewable Tariff (ART) or Standard Offer Contracts (SOC) will enable the PV industry to build capacity. Future markets for PV include new homes, commercial buildings and the existing housing stock. With a properly designed system, it is forecasted that the deployment of PV by 2025 could result in the involvement of 400,000 homes with over 1200 MW of installed capacity and over 290 MW installed annually by 2025. Recommendations to Ontario Power Authority's (OPA) report supply mix report focused on the use of SOCs as the appropriate support mechanism to start building solar capacity in Ontario, as projections using SOCs would see Ontario following the growth patterns of other nations. It was concluded that the OPA report does not acknowledge the current growth rates of PV globally, nor does it fully consider the potential of PV in Ontario. 9 refs., 8 figs

  19. Architecturally integrated PV system at the Ford Bridgend Engine Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, K.; Phillips, R.

    2001-07-01

    The aim of the project was to design and install a solar photovoltaic (PV) plant that could be retrofitted into an existing factory and to evaluate the cost and advantages of using the most recent advances in photovoltaic technology as follows: to demonstrate the use of the latest mono crystalline silicon technology within a large scale manufacturing environment, with the long term view of designing a state of the art installation for use in an environmentally sensitive {sup F}actory of the Future{sup .} To determine the performance and operating costs of a photovoltaic plant in northern latitudes thus providing data for the potential use of similar integrated systems elsewhere in the UK and Northern Europe. To evaluate the long term behaviour of an integrated system and its component parts. To demonstrate the feasibility of retrofitting PV roof lights into a fully operational manufacturing plant. To provide natural daylight into the manufacturing facility thereby improving the working environment, enhancing productivity and reducing the electrical lighting load within the plant during daylight hours. (author)

  20. Economic Comparison of Two Business Models for Implementation of Small Integrated PV Systems

    International Nuclear Information System (INIS)

    Matak, N.; Krajacic, G.; Jerkic, E.; Duic, N.

    2016-01-01

    We compared two different models for the implementation of small photovoltaic solar systems in the Croatia. The new prosumer model presented in the new Croatian law on the Renewable Energy Sources and Highly Efficient Cogeneration (OG 100/15) and PV ESCO model which is similar to net metering. The PV ESCO model is developed from authors to determine possibility to raise payback period of small integrated PV systems. The comparison was done on a 15-minute basis and there were compared values of Simple Payback Period (SPP) for different locations and systems size considering electricity demand and market prices. Internal Rate of Return (IRR) and Net Present Value (NPV) were compared for 4 different cases. Conducted comparison showed that PV ESCO model is always more favourable for the owner of PV system in terms of lower SPP and higher IRR and NPV. It has been noticed that for systems higher than 5 kWp use of PV ESCO model is recommended. For smaller systems it is not always clear which model should be used, since some losses are generated in the system on the side of the electricity supply company. For smaller systems from 2 to 5 kWp, PV ESCO model has SPP from 7.5 to 13 years and SPP value for the prosumer model is 8.7 to 15 years. This difference is higher when comparing PV system from 6 to 10 kWp. SPP for PV ESCO model, in that case, is from 10 to 13 years and in the prosumer model is from 17.5 to 28 years.(author).

  1. Design and optical performance of a nonimaging Fresnel transmissive concentrator for building integration applications

    Energy Technology Data Exchange (ETDEWEB)

    Chemisana, Daniel, E-mail: daniel.chemisana@macs.udl.cat [Applied Physics Section of the Polytechnic School (EPS), University of Lleida, 25001 Lleida (Spain); Ignasi Rosell, Joan [Applied Physics Section of the Polytechnic School (EPS), University of Lleida, 25001 Lleida (Spain)

    2011-09-15

    Highlights: {yields} The designed concentrator has an important potential for building integration. {yields} The device concentrates radiation toward a static receiver. {yields} Tracking performed by a single driver, representing an important mechanical advantage. {yields} The system reaches a global optical efficiency value of 56.38%. - Abstract: A transmissive Fresnel reflector is designed to match the needs of building integration for concentrating photovoltaic (PV), thermal (T) or hybrid photovoltaic/thermal (PVT) generation. The device concentrates radiation toward a static receiver by means of an array of reflectors which rotate collectively. All rotation axes are coplanar and parallel. A deep analytical ray tracing study has been made of the design characteristics and concentrator performance, thus determining the configuration which optimises efficiency. Numerous ray tracing numerical simulations have been performed which contrast and support the analytical results.

  2. Design and optical performance of a nonimaging Fresnel transmissive concentrator for building integration applications

    International Nuclear Information System (INIS)

    Chemisana, Daniel; Ignasi Rosell, Joan

    2011-01-01

    Highlights: → The designed concentrator has an important potential for building integration. → The device concentrates radiation toward a static receiver. → Tracking performed by a single driver, representing an important mechanical advantage. → The system reaches a global optical efficiency value of 56.38%. - Abstract: A transmissive Fresnel reflector is designed to match the needs of building integration for concentrating photovoltaic (PV), thermal (T) or hybrid photovoltaic/thermal (PVT) generation. The device concentrates radiation toward a static receiver by means of an array of reflectors which rotate collectively. All rotation axes are coplanar and parallel. A deep analytical ray tracing study has been made of the design characteristics and concentrator performance, thus determining the configuration which optimises efficiency. Numerous ray tracing numerical simulations have been performed which contrast and support the analytical results.

  3. Design of A Grid Integrated PV System with MPPT Control and Voltage Oriented Controller using MATLAB/PLECES

    Science.gov (United States)

    Soreng, Bineeta; Behera, Pradyumna; Pradhan, Raseswari

    2017-08-01

    This paper presents model of a grid-integrated photovoltaic array with Maximum Power Point Tracker (MPPT) and voltage oriented controller. The MPPT of the PV array is usually an essential part of PV system as MPPT helps the operating point of the solar array to align its maximum power point. In this model, the MPPT along with a DC-DC converter lets a PV generator to produce continuous power, despite of the measurement conditions. The neutral-point-clamped converter (NPC) with a boost converter raises the voltage from the panels to the DC-link. An LCL-filter smoothens the current ripple caused by the PWM modulation of the grid-side inverter. In addition to the MPPT, the system has two more two controllers, such as voltage controller and a current controller. The voltage control has a PI controller to regulate the PV voltage to optimal level by controlling the amount of current injected into the boost stage. Here, the grid-side converter transfers the power from the DC-link into the grid and maintains the DC-link voltage. Three-phase PV inverters are used for off-grid or designed to create utility frequency AC. The PV system can be connected in series or parallel to get the desired output power. To justify the working of this model, the grid-integrated PV system has been designed in MATLAB/PLECS. The simulation shows the P-V curve of implemented PV Array consisting 4 X 20 modules, reactive, real power, grid voltage and current.

  4. Designing with solar power a source book for building integrated photovoltaics (BIPV)

    CERN Document Server

    Prasad, Deo

    2014-01-01

    Designing with Solar Power is the result of international collaborative research and development work carried out within the framework of the International Energy Agency's Photovoltaic Power Systems Programme (PVPS) and performed within its Task 7 on 'Photovoltaic power systems in the built environment'.Each chapter of this precisely detailed and informative book has been prepared by an international expert in a specific area related to the development, use and application of building-integrated photovoltaics (BiPV). Chapters not only cover the basics of solar power and electrical concepts, bu

  5. Evaluating 5-Years Performance Monitoring of 1 MW Building Integrated PV Project in Nieuwland, Amersfoort, the Netherlands

    OpenAIRE

    van Sark, W.G.J.H.M.; de Keizer, A.C.; ter Horst, E.; Molenbroek, E.C.

    2007-01-01

    The performance of about 400 decentralised PV systems has been evaluated for a period of five years (2001-2006). The systems are situated in the urban area Nieuwland in the town of Amersfoort in the Netherlands and are part of one of the largest decentralised PV projects in the world. The evaluated systems are situated in eight sections and are characterized by different architectural designs, tilt and azimuth angles. In six of the sections the majority of the systems perform well. Data indic...

  6. The new IEA research programme on PV systems in buildings; Das neue Forschungsprogramm der internationalen Energieagentur zu Photovoltaik an Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Laukamp, H.; Erge, T. [Fraunhofer-Inst. fuer Solare Energiesysteme, Freiburg (Germany). Abt. fuer Photovoltaische Systeme und Messtechnik

    1998-02-01

    The International Energy Agency coordinates and supports the cooperation of OECD countries in energy politics and energy technologies by technology-oriented scientific programmes (`implementing agreements`). Under these agreements subject-oriented scientific projects (`tasks`) are carried out. Within the `Photovoltaic Power Systems Programme` the Task VII (Photovoltaics in the Built Environment) has just begun. The Fraunhofer ISE was contracted to coordinate the German contribution to Task VII and to organize information transfer to interested German institutions. So far Task VII focussed on a selection of architecturally outstanding PV buildings, on developing criteria to assess their quality and on a critical review of planned PV buildings. (orig.) [Deutsch] Die Internationale Energieagentur foerdert die Zusammenarbeit der OECD Laender in der Energiepolitik und bei den Energietechnologien, durch gemeinsam vereinbarte technologiespezifische Programme (`Implementing Agreements`). Die Programme werden durch Projekte (`Tasks`) konkretisiert. Im Programm `Photovoltaic Power Systems` wird derzeit Task VII `Photovoltaics in the Built Environment` begonnen. Das Fraunhofer ISE wurde gebeten, die deutsche Beteiligung hieran zu koordinieren und den Informationstransfer zu interessierten deutschen Firmen und Instituten zu organisieren. Schwerpunkte bisheriger Arbeiten lagen bei der Auswahl architektonisch herausragender PV-Gebaeude, bei der Erarbeitung von Kriterien zu ihrer Beurteilung und bei der kritischen Diskussion geplanter PV-Gebaeude. (orig.)

  7. Impacts of Voltage Control Methods on Distribution Circuit’s Photovoltaic (PV Integration Limits

    Directory of Open Access Journals (Sweden)

    Anamika Dubey

    2017-10-01

    Full Text Available The widespread integration of photovoltaic (PV units may result in a number of operational issues for the utility distribution system. The advances in smart-grid technologies with better communication and control capabilities may help to mitigate these challenges. The objective of this paper is to evaluate multiple voltage control methods and compare their effectiveness in mitigating the impacts of high levels of PV penetrations on distribution system voltages. A Monte Carlo based stochastic analysis framework is used to evaluate the impacts of PV integration, with and without voltage control. Both snapshot power flow and time-series analysis are conducted for the feeder with varying levels of PV penetrations. The methods are compared for their impacts on (1 the feeder’s PV hosting capacity; (2 the number of voltage violations and the magnitude of the largest bus voltage; (3 the net reactive power demand from the substation; and (4 the number of switching operations of feeder’s legacy voltage support devices i.e., capacitor banks and load tap changers (LTCs. The simulation results show that voltage control help in mitigating overvoltage concerns and increasing the feeder’s hosting capacity. Although, the legacy control solves the voltage concerns for primary feeders, a smart inverter control is required to mitigate both primary and secondary feeder voltage regulation issues. The smart inverter control, however, increases the feeder’s reactive power demand and the number of LTC and capacitor switching operations. For the 34.5-kV test circuit, it is observed that the reactive power demand increases from 0 to 6.8 MVAR on enabling Volt-VAR control for PV inverters. The total number of capacitor and LTC operations over a 1-year period also increases from 455 operations to 1991 operations with Volt-VAR control mode. It is also demonstrated that by simply changing the control mode of capacitor banks, a significant reduction in the unnecessary

  8. With building integrated photovoltaic in a daylight optimized passive house to energy autonomy; Mit gebaeudeintegrierter PV im tageslichtoptimierten Passivhaus zur bilanziellen Energieautarkie

    Energy Technology Data Exchange (ETDEWEB)

    Miloni, R.P. [Miloni Lichtplanung und Architektur, Hausen (Switzerland)

    2008-07-01

    With the introduction of a cost recovering energy feeding law, new possibilities open up for the building integration of photovoltaics and for the solar power generation at the ''Point of sale ''. Still, the appropriate Swiss market is marginal. Not all legal, technical and financial hurdles are removed. Here the photovoltaics with its building integration is in touch with an emotional factor of revaluation: An integration of photovoltaics adresses the building owner beyond their technical-economic value at a culturally abstract level - a wing of a butterfly oscillating in the sunlight also touches on a completely different level. Exactly the same the integration of photovoltaics makes the building to a unique piece of jewellery. In the pioneer phase of the photovoltaics market, architectonically successful integrations of photovoltaics succeeded in a break-through of the solar power generation. Photovoltaics at building coverings is more than a ''fashion '': it becomes a lever arm, with which the solarization of our society transports significant values. Apart from rational-technical considerations this effect has to be used to favour a broad application of photovoltaics with the building integration more purposefully.

  9. The value of electricity generated from photovoltaic power systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The overall aim of the study was to determine the true value of electricity generated from PV power systems integrated into buildings in the UK, to identify to whom that value accrues, and to assess the market potential that this represents and how it might best be realised. In this way, the study aims to help the UK government to better understand where greatest potential exists for PV building integration, what the potential benefits are, and how future dissemination activities and support programmes can best exploit these opportunities. (author)

  10. PV window - Development and demonstrations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haugaard, P.

    2011-05-15

    Using the results from the EU project RenewTransnet, which focused on the development of a pane with integrated solar cells, the goal of this project is to develop these principles into a window solution. This window solution is targeted to Danish building tradition and architecture. It is expected that an elegant PV-window solution for both new and retrofit buildings is developed during this project, and which appearance can be customized to each building. Based on results from a related projects carried out by Gaia Solar, the window solution will have the potential of being approximately 30% cheaper than similar products on the market. In this project this price reduction is the objective of the development of a window solution. The project team has succeeded in developing a 2-layer PV-window with glass / glass lamination with EVA as foil, which is 35% cheaper than similar products on the market. Since the price for the frame-profile does not differ significantly at market level, the price comparison is made on the basis of the developed PV-pane. The objective of 30 % price reduction in relation to similar products on the market is met. A special production process to the making glass/glass lamination with EVA as foil has been developed, in which a frame is put around the module which intends both to remove the unwanted tension along the edges, and to prevent the significant spillage of EVA from the module under pressure and prevent the invasive bubbles along the edge of module. Since the developed production method for making glass/glass modules with EVA is simple, a further cost reduction will primarily be in a reduction of the price of the cell. The project process has resulted in the development of a product, which due to continuous restrictions in the building regulations, will be very attractive in future buildings. (LN)

  11. Analysis of Photovoltaic Applications in Zero Energy Building Cases of IEA SHC/EBC Task 40/Annex 52

    Directory of Open Access Journals (Sweden)

    Jin-Hee Kim

    2015-07-01

    Full Text Available A Net Zero Energy Building (NZEB considerably reduces the building energy load through high efficiency equipment and passive elements such as building orientation, high insulation, natural daylighting, and ventilation in order to achieve zero energy balance with on-site energy production from renewable energy systems applied to the building. For a Zero Energy Building (ZEB, the heating energy demand can be significantly reduced with high insulation and air tightness, while the cooling energy demand can be curtailed by applying shading device, cross ventilation, etc. As such, the electrical energy demand for a ZEB is relatively higher than its heat energy demand. Therefore, the application of a Renewable Energy System (RES to produce electricity is necessary for a ZEB. In particular, Building Integrated Photovoltaic (BIPV systems that generate electricity can play an important role for achieving zero energy balance in buildings; BIPVs are multi-functional and there are many ways to apply them into buildings. This study comprehensively analyzes photovoltaic (PV applications in ZEB cases through the International Energy Agency Solar Heating and Cooling Programme (IEA SHC/Energy in Buildings and Communities Programme (EBC Task 40/Annex 52 activities, which include PV installation methods, PV cell type, and electricity generation. The most widely applied RES is the PV system, corresponding to 29 out of a total of 30 cases. Among the roof type PV systems, 71% were non-integrated. In addition, 14 of the 27 cases in which PV systems were applied, satisfied over 100% of the electricity energy demand from the PV system and were found to generate surplus electrical power.

  12. Long-term field test of solar PV power generation using one-axis 3-position sun tracker

    KAUST Repository

    Huang, B.J.

    2011-09-01

    The 1 axis-3 position (1A-3P) sun tracking PV was built and tested to measure the daily and long-term power generation of the solar PV system. A comparative test using a fixed PV and a 1A-3P tracking PV was carried out with two identical stand-alone solar-powered LED lighting systems. The field test in the particular days shows that the 1A-3P tracking PV can generate 35.8% more electricity than the fixed PV in a partly-cloudy weather with daily-total solar irradiation HT=11.7MJ/m2day, or 35.6% in clear weather with HT=18.5MJ/m2day. This indicates that the present 1A-3P tracking PV can perform very close to a dual-axis continuous tracking PV (Kacira et al., 2004). The long-term outdoor test results have shown that the increase of daily power generation of 1A-3P tracking PV increases with increasing daily-total solar irradiation. The increase of monthly-total power generation for 1A-3P sun tracking PV is between 18.5-28.0%. The total power generation increase in the test period from March 1, 2010 to March 31, 2011, is 23.6% in Taipei (an area of low solar energy resource). The long-term performance of the present 1X-3P tracking PV is shown very close to the 1-axis continuous tracking PV in Taiwan (Chang, 2009). If the 1A-3P tracking PV is used in the area of high solar energy resource with yearly-average HT>17MJ/m2day, the increase of total long-term power generation with respect to fixed PV will be higher than 37.5%. This is very close to that of dual-axis continuous tracking PV. The 1A-3P tracker can be easily mounted on the wall of a building. The cost of the whole tracker is about the same as the regular mounting cost of a conventional rooftop PV system. This means that there is no extra cost for 1A-3P PV mounted on buildings. The 1A-3P PV is quite suitable for building-integrated applications. © 2011 Elsevier Ltd.

  13. Kauai Island Utility Co-op (KIUC) PV integration study.

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Abraham; Mousseau, Tom (Knoxville, TN)

    2011-08-01

    This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

  14. Campus and community micro grids integration of building integrated photovoltaic renewable energy sources: Case study of Split 3 area, Croatia - part A

    Directory of Open Access Journals (Sweden)

    Gašparović Goran

    2016-01-01

    Full Text Available Micro grids interconnect loads and distributed energy resources as a single controllable entity. New installations of renewable energy sources (RES in urban areas, such as Building Integrated Photovoltaic (BIPV, provide opportunities to increase energy independence and diversify energy sources in the energy system. This paper explores the integration of RES into two case study communities in an urban agglomeration to provide optimal conditions to meet a share of the electrical loads. Energy planning case studies for decentralized generation of renewable energy are conducted in H2RES energy planning software for hourly energy balances. The results indicate that BIPV and PV in the case study communities can cover about 17% of the recorded electrical demand of both areas. On a yearly basis, there will be a 0.025 GWh surplus of PV production with a maximum value of 1.25 MWh in one hour of operation unless grid storage is used. This amounts to a total investment cost of 13.36 million EUR. The results are useful for proposing future directions for the various case study communities targeting sustainable development.

  15. The case for better PV forecasting

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2016-01-01

    Rising levels of PV penetration mean increasingly sophisticated forecasting technologies are needed to maintain grid stability and maximise the economic value of PV systems. The Grid Integration working group of the European Technology and Innovation Platform – Photovoltaics (ETIP PV) shares the ...

  16. Energy efficiency design strategies for buildings with grid-connected photovoltaic systems

    Science.gov (United States)

    Yimprayoon, Chanikarn

    The building sector in the United States represents more than 40% of the nation's energy consumption. Energy efficiency design strategies and renewable energy are keys to reduce building energy demand. Grid-connected photovoltaic (PV) systems installed on buildings have been the fastest growing market in the PV industry. This growth poses challenges for buildings qualified to serve in this market sector. Electricity produced from solar energy is intermittent. Matching building electricity demand with PV output can increase PV system efficiency. Through experimental methods and case studies, computer simulations were used to investigate the priorities of energy efficiency design strategies that decreased electricity demand while producing load profiles matching with unique output profiles from PV. Three building types (residential, commercial, and industrial) of varying sizes and use patterns located in 16 climate zones were modeled according to ASHRAE 90.1 requirements. Buildings were analyzed individually and as a group. Complying with ASHRAE energy standards can reduce annual electricity consumption at least 13%. With energy efficiency design strategies, the reduction could reach up to 65%, making it possible for PV systems to meet reduced demands in residential and industrial buildings. The peak electricity demand reduction could be up to 71% with integration of strategies and PV. Reducing lighting power density was the best single strategy with high overall performances. Combined strategies such as zero energy building are also recommended. Electricity consumption reductions are the sum of the reductions from strategies and PV output. However, peak electricity reductions were less than their sum because they reduced peak at different times. The potential of grid stress reduction is significant. Investment incentives from government and utilities are necessary. The PV system sizes on net metering interconnection should not be limited by legislation existing in

  17. Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply

    DEFF Research Database (Denmark)

    Lund, Henrik

    2006-01-01

    This article presents the results of analyses of large-scale integration of wind power, photo voltaic (PV) and wave power into a Danish reference energy system. The possibility of integrating Renewable Energy Sources (RES) into the electricity supply is expressed in terms of the ability to avoid...... ancillary services are needed in order to secure the electricity supply system. The idea is to benefit from the different patterns in the fluctuations of different renewable sources. And the purpose is to identify optimal mixtures from a technical point of view. The optimal mixture seems to be when onshore...... wind power produces approximately 50% of the total electricity production from RES. Meanwhile, the mixture between PV and wave power seems to depend on the total amount of electricity production from RES. When the total RES input is below 20% of demand, PV should cover 40% and wave power only 10%. When...

  18. Overview of Recent Grid Codes for PV Power Integration

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut; Kerekes, Tamas; Sera, Dezso

    2012-01-01

    The challenge to bring down the cost of produced photovoltaic (PV) power had a major impact on the PV market and in consequence the grid operators experienced higher and higher PV power penetration. The growing share of this decentralized generation plants started to affect the grid stability...

  19. Environmental and ecological life cycle inventories of present and future PV systems in Europe for sustainability policies

    International Nuclear Information System (INIS)

    Frankl, P.; Lombardelli, S.; Corrado, A.

    2004-01-01

    The current use of Life Cycle Inventories (LCI) for the calculation of external costs and energy system modelling and planning is limited by two main factors: 1) lack of harmonization and transparency in the methodology used in LCA studies. 2) lack of transparent and updated and database on recent and emerging PV technologies (and other renewable and distributed generation technologies). These issues have been addressed and overcome by the recent EU research project ECLIPSE. With respect to photovoltaic (PV) systems, four main PV technologies (mc-Si, sc-Si, thin film a-Si, CIS) with different applications (ground-mounted power plants, retrofit and integrated building integrated systems) and derived configurations were analyzed, for a total of 47 system configurations. Each main technology is described in a report, which presents results in detailed and transparent manner, highlighting the crucial parameters which influence LCI results. The latter confirm the low life cycle emissions level and the very high value of PV systems towards sustainable energy systems for the future. (authors)

  20. Economic viability of a residential building integrated photovoltaic generator in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ziuku, Sosten; Meyer, Edson L. [Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700 (South Africa)

    2012-07-01

    A photovoltaic (PV) generator was integrated onto the north facing roof of an energy efficient house in South Africa. The building integrated photovoltaic generator (BIPV) supplies power to the household loads and the grid and is also the roof facade. This paper presents an economic evaluation of the viability of the BIPV system using methods of investment analysis. The capital cost and life cycle cost of energy were found to be ZAR 52 631-58/kWp and ZAR 1-94/kWh respectively. The payback period was 8 years and adjusted internal rate of return 9.3%. Parametric sensitivity analysis revealed that a 50% decrease in module price results in a 29% reduction in life cycle cost of energy and more than 50% reduction in payback period.

  1. PV-hybrid and mini-grid

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    ) Optimization of a wind/diesel hybrid configuration in a remote grid with battery implementation: Case study of Melinka Island; (23) Provisional acceptance of installations and online data submission of PV and hybrid kits in remote areas of Latin-America under the EC's EURO-SOLAR programme; (24) Experience of the Canary Islands in the development of insular 100 % RES systems and micro-grids; (25) Assessment of photovoltaic hybrid power systems in the United States; (26) Solar hybrid school project in East Malaysia; (27) Eigg Island - Electrification of a British Island by a unique PV wind hydro diesel hybrid system; (28) A pragmatic performance reporting approach for describing PV hybrid systems within mini-grids: Work in progress from IEA's PVPS Task 11 Act. 31; (29) Hybrid renewable energy systems for the supply of services in rural settlements of Mediterranean partner countries. The HYRESS project - The case study of the hybrid system - Micro grid in Egypt. Beside these lectures, the following poster contributions were presented: (1) Performance of conventional MPPT techniques in the presence of partial shielding; (2) Photovoltaic and thermal collector (PV/T) hybrid system's performance analysis under the mild climate conditions of Izmir City; (3) Influential parameters on a building integrated hybrid PVT concentrator; (4) The solution to combine and manage renewable energies in hybrid applications and mini-grids; (5) Stabilization of distribution networks with PV and vanadium redox-battery backup systems - Simulation and first experiences; (6) Control, monitoring and data acquisition architecture design for clean production of hydrogen from mini-wind energy; (7) Remote Telecom System including photovoltaic energy and H{sub 2} production by electrolysis; (8) Effective combination of solar and wind energy systems; (9) Standardisation of distributed grid support - An analogous approach for the smart grid; (10) Optimizing energy management of decentralized

  2. Fresh ideas needed: building the PV market in Africa

    International Nuclear Information System (INIS)

    Hankins, M.

    2006-01-01

    The reasons why sales of photovoltaics in Africa are miniscule compared with those in Europe, America, Japan and China are analysed and suggestions for ways of developing the African market are put forward. Although there have been some PV off-grid installations, on-grid systems are almost non-existent. The PV market in Africa has been constrained by a lack of a sound government policy and a lack of incentives for the private sector. It is suggested that Africa should study the success of PVs in other parts of the world and that governments, utilities and large consumers should initiate new projects to develop both small off-grid and large on-grid systems. The PV potential in Africa is massive, but at present it is not being realised. (author)

  3. How to Estimate Demand Charge Savings from PV on Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, Pieter J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bird, Lori A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    Rooftop photovoltaic (PV) systems are compensated through retail electricity tariffs - and for commercial and industrial customers, these are typically comprised of three components: a fixed monthly charge, energy charges, and demand charges. Of these, PV's ability to reduce demand charges has traditionally been the most difficult to estimate. In this fact sheet we explain the basics of demand charges, and provide a new method that a potential customer or PV developer can use to estimate a range of potential demand charge savings for a proposed PV system. These savings can then be added to other project cash flows, in assessing the project's financial performance.

  4. The impact of Zero Energy Buildings on the Scandinavian energy system

    International Nuclear Information System (INIS)

    Seljom, Pernille; Lindberg, Karen Byskov; Tomasgard, Asgeir; Doorman, Gerard; Sartori, Igor

    2017-01-01

    This paper investigates how an extensive implementation of net Zero Energy Buildings (ZEBs) affects cost-optimal investments in the Scandinavian energy system towards 2050. Analyses are done by a stochastic TIMES model with an explicit representation of the short-term uncertainty related to electricity supply and heat demand in buildings. We define a nearly ZEB to be a highly efficient building with on-site PV production. To evaluate the flexibility requirement of the surrounding energy system, we consider no use of energy storage within the ZEBs. The results show that ZEBs reduce the investments in non-flexible hydropower, wind power and Combined Heat and Power, and increase the use of direct electric heating and electric boilers. With building integrated PV production of 53 TWh in 2050, ZEBs increase the Scandinavian electricity generation by 16 TWh and increase the net electricity export by 19 TWh. Although the increased production reduces the electricity prices, the low heat demand in ZEBs gives a drop in the electricity consumption by 4 TWh in 2050. Finally, the results demonstrate that the Scandinavian energy system is capable of integrating a large amount of ZEBs with intermittent PV production due to the flexible hydropower in Norway and Sweden. - Highlights: • We analyse cost-optimal integration of ZEBs in the Scandinavian energy system. • We capture impact of short-term uncertainty on long-term investment decisions. • ZEBs reduce the investments in the electricity and heating sector. • The Scandinavian electricity sector is capable of integrating ZEBs with PV. • The operation of the flexible hydropower is changed with ZEBs.

  5. An energy self-sufficient public building using integrated renewable sources and hydrogen storage

    International Nuclear Information System (INIS)

    Marino, C.; Nucara, A.; Pietrafesa, M.; Pudano, A.

    2013-01-01

    %. From the above, it can be deduced that, in the aim to obtain a quick, effective penetration of hydrogen into the market, it is at the moment indispensable to enact incentivizing policies, attributing to hydrogen production fares able to cover the additional costs due to its production, storage and reconversion. - Highlights: ► We present a self-sufficient system for renewable energy production in buildings. ► PV and eolic plants are integrated with electrolyzer, storage system and fuel cells. ► We analyze two configurations of the system: only PV panels or with wind generators. ► We compare wind generators with PV panels in relation to Italian Government fares. ► We carry out the energetic, economic and environmental analysis of the systems

  6. An analysis on how proposed requirements for near zero energy buildings manages PV electricity in combination with two different types of heat pumps and its policy implications – A Swedish example

    International Nuclear Information System (INIS)

    Thygesen, Richard; Karlsson, Björn

    2017-01-01

    This paper presents an analysis on how exhaust air- and ground source- heat pumps in combination with PV-systems affects the specific energy demand of buildings with the proposed Swedish near zero energy building definition and its policy implications. It also presents a method on how to estimate the contribution from the photovoltaic-system on the reduction of the specific energy demand of the building. A challenge with the proposed near zero energy building definition is that it is not clearly defined how it manages photovoltaic electricity as a mean to reduce the specific energy demand of buildings. The results suggest that the building with the ground source heat pump and heat recovery ventilation has the lowest specific energy demand. The proposed definition will give an advantage to system combinations comprised of heat pumps and PV-systems and this will lead to the possibility to build less insulated buildings with higher heat losses than for a building with a non-electrical heating system. A higher share of heat pumps can lead to lower electricity production in Sweden because of lost heating loads in district heating systems and a higher electricity demand. - Highlights: • We analyzed how the proposed Swedish NZE building definition manages PV electricity. • The building with a GSHP has the lowest specific energy demand. • Two different assumptions on the usage of PV electricity was used. • The difference between the two assumptions is 6 kWh/m"2 for both the GSHP and EAHP.

  7. Annual technical report. PV domestic field trial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This report describes progress at the first five sites of the UK photovoltaic (PV) domestic field trial. All five sites are generating electricity, but one has not yet been commissioned and two sites are not yet monitoring performance. The BedZED development has roof-mounted PV modules and PV cells installed in sealed double-glazing. Solar slates/tiles have been installed at the Laing Homes development in Montagu Road, where the designer has sought to minimise the visual impact of the PV system on the roofs. At Hunters Moon, PV modules have been retrofitted and some unforeseen difficulties have arisen. PV is an integral part of the roof design at the state-of-the-art low energy development by Integer Houses at Greenfields. Corn Croft uses a British mounting system to facilitate integration of the modules flush with the roof. Installation issues and the progress of the trial are discussed.

  8. Integrated photovoltaic (PV) monitoring system

    Science.gov (United States)

    Mahinder Singh, Balbir Singh; Husain, NurSyahidah; Mohamed, Norani Muti

    2012-09-01

    The main aim of this research work is to design an accurate and reliable monitoring system to be integrated with solar electricity generating system. The performance monitoring system is required to ensure that the PVEGS is operating at an optimum level. The PV monitoring system is able to measure all the important parameters that determine an optimum performance. The measured values are recorded continuously, as the data acquisition system is connected to a computer, and data is stored at fixed intervals. The data can be locally used and can also be transmitted via internet. The data that appears directly on the local monitoring system is displayed via graphical user interface that was created by using Visual basic and Apache software was used for data transmission The accuracy and reliability of the developed monitoring system was tested against the data that captured simultaneously by using a standard power quality analyzer device. The high correlation which is 97% values indicates the level of accuracy of the monitoring system. The aim of leveraging on a system for continuous monitoring system is achieved, both locally, and can be viewed simultaneously at a remote system.

  9. Variations of PV Panel Performance Installed over a Vegetated Roof and a Conventional Black Roof

    Directory of Open Access Journals (Sweden)

    Mohammed J. Alshayeb

    2018-05-01

    Full Text Available The total worldwide photovoltaic (PV capacity has been growing from about 1 GW at the beginning of the twenty-first century to over 300 GW in 2016 and is expected to reach 740 GW by 2022. PV panel efficiency is reported by PV manufacturers based on laboratory testing under Standard Testing Condition with a specific temperature of 25 °C and solar irradiation of 1000 W/m2. This research investigated the thermal interactions between the building roof surface and PV panels by examining the differences in PV panel temperature and energy output for those installed over a green roof (PV-Green and those installed over a black roof (PV-Black. A year-long experimental study was conducted over the roof of an educational building with roof mounted PV panels with a system capacity of 4.3 kW to measure PV underside surface temperature (PV-UST, ambient air temperature between PV panel and building roof (PV-AT, and PV energy production (PV-EP. The results show that during the summer the PV-Green consistently recorded lower PV-UST and PV-AT temperatures and more PV-EP than PV-Black. The average hourly PV-EP difference was about 0.045 kWh while the maximum PV-EP difference was about 0.075 kWh, which represents roughly a 3.3% and 5.3% increase in PV-EP. For the entire study period, EP-Green produced 19.4 kWh more energy, which represents 1.4% more than EP-Black.

  10. Integration of Photovoltaics in Buildings—Support Policies Addressing Technical and Formal Aspects

    Directory of Open Access Journals (Sweden)

    Thorsten Schuetze

    2013-06-01

    Full Text Available The integration of photovoltaic (PV generators in the envelope of a building by means of building-integrated photovoltaics (BIPV offers an immense potential, both in market development and the production of renewable electric energy that is close to the point of electricity consumption. In Germany, for example, by integrating photovoltaics in buildings up to 50% of the electricity demand can be covered. The political support of BIPV would contribute to the development and installation of BIPV components and therefore also promote the development of new business areas for industries dealing with components used in building envelopes and photovoltaic generators. BIPV can be separated into three different integration types: “technical”, “formal” and “technical & formal”. Political instruments for the support of PV-installations, particularly BIPV are discussed in this paper using Germany and France as examples. Due to successful financial support policies, PV became the most powerful electricity production technology in Germany. In France, the unique financial support of BIPV is resulting in an exemplary development and growth of certified BIPV components available on the market and, from a technical, aesthetic architectural and legal certainty point of view, facilitating the easy and widespread integration of photovoltaic generators in buildings.

  11. Building Integrated Photovoltaics: A Concise Description of the Current State of the Art and Possible Research Pathways

    Directory of Open Access Journals (Sweden)

    Bjørn Petter Jelle

    2015-12-01

    Full Text Available Building integrated photovoltaics (BIPV offer an aesthetical, economical and technical solution to integrate solar cells harvesting solar radiation to produce electricity within the climate envelopes of buildings. Photovoltaic (PV cells may be mounted above or onto the existing or traditional roofing or wall systems. However, BIPV systems replace the outer building envelope skin, i.e., the climate screen, hence serving simultanously as both a climate screen and a power source generating electricity. Thus, BIPV may provide savings in materials and labor, in addition to reducing the electricity costs. Hence, for the BIPV products, in addition to specific requirements put on the solar cell technology, it is of major importance to have satisfactory or strict requirements of rain tightness and durability, where building physical issues like e.g., heat and moisture transport in the building envelope also have to be considered and accounted for. This work, from both a technological and scientific point of view, summarizes briefly the current state-of-the-art of BIPV, including both BIPV foil, tiles, modules and solar cell glazing products, and addresses possible research pathways for BIPV in the years to come.

  12. Voltage rise mitigation for solar PV integration at LV grids

    DEFF Research Database (Denmark)

    Yang, Guangya; Marra, Francesco; Juamperez Goñi, Miguel Angel

    2015-01-01

    Solar energy from photovoltaic (PV) is among the fastest developing renewable energy systems worldwide. Driven by governmental subsidies and technological development, Europe has seen a fast expansion of solar PV in the last few years. Among the installed PV plants, most of them are situated...

  13. Simulation and performance analysis of 110 kWp grid-connected photovoltaic system for residential building in India: A comparative analysis of various PV technology

    Directory of Open Access Journals (Sweden)

    Akash Kumar Shukla

    2016-11-01

    Full Text Available System simulation is necessary to investigate the feasibility of Solar PV system at a given location. This study is done to evaluate the feasibility of grid connected rooftop solar photovoltaic system for a residential Hostel building at MANIT, Bhopal, India (Latitude: 23° 16′ N, Longitude: 77° 36′ E. The study focuses on the use of Solargis PV Planner software as a tool to analyze the performance a 110 kWp solar photovoltaic rooftop plant and also compares the performances of different PV technologies based on simulated energy yield and performance ratio. Solargis proves to easy, fast, accurate and reliable software tool for the simulation of solar PV system.

  14. Control of a Multi-Functional Inverter for Grid Integration of PV and Battery Energy Storage System

    DEFF Research Database (Denmark)

    Mousazadeh, Seyyed Yousef; Firoozabadi, Mehdi Savaghebi; Beirami, A.

    2015-01-01

    This paper presents a multi-functional control of a DC/AC inverter for Power Quality compensation of nonlinear and unequal local loads and grid integration of hybrid photovoltaic (PV) and battery energy storage systems. Multi-layer neural network estimator and a DC/DC converter are used for maximum...... is used for delivering desire power to the grid. For compensation aim, instantaneous active and reactive power theory (p-q) is used. Via the algorithm, the DC/AC inverter not only can be controlled to inject the power of battery and PV, but also it is used as shunt active filter for compensating unequal...... power point tracking (MPPT) of PV array. The power system is 3-phase 4-wires and the DC/AC inverter is chosen 4-leg three phase inverter which has good performance in presence of zero sequence components. Battery energy storage is connected to PV system in common DC bus and a power management strategy...

  15. Experimental integrated photovoltaic systems

    International Nuclear Information System (INIS)

    Pop-Jordanov, Jordan; Markovska, Natasha; Dimitrov, D.; Kocev, K.; Dimitrovski, D.

    2000-01-01

    Recently, the interest in building-integrated photovoltaic installations has started to increase within governmental and municipality authorities, as well as some industrial companies. To serve a national public-awareness program of solar electricity promotion and education, the indigenous solar energy potential, optimization of possible PV installation, and three test cases of building-integrated grid-connected experimental facilities have been studied. The results showed the feasibility and performance of the proposed concepts. (Original)

  16. Integrating Responsive Building Elements in Buildings

    DEFF Research Database (Denmark)

    Haase, Matthias; Amato, Alex; Heiselberg, Per

    2006-01-01

    energy strategies to develop guidelines and procedures for estimation of environmental performance of responsive building elements and integrated building concepts This paper introduces the ideas of this collaborative work and discusses its usefulness for Hong Kong and China. Special focus was put...

  17. Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-01

    The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

  18. Performance evaluation of the 1 MW building integrated PV project in Nieuwland, Amersfoort, the Netherlands, January 2001 – February 2006

    OpenAIRE

    de Keizer, A.C.; ter Horst, E.; van Sark, W.G.J.H.M.

    2008-01-01

    The performance of 463 decentralised PV systems with a total installed peak power of 1.2 MWp, has been evaluated for a period of five years (2001-2006). The systems are situated in the urban area Nieuwland in the town of Amersfoort in the Netherlands and are part of one of the largest decentralised PV projects in the world. The evaluated systems are situated in eight sections and are characterized by different architectural designs, tilt and azimuth angles. In six of the sections the majority...

  19. An Integrated GIS, optimization and simulation framework for optimal PV size and location in campus area environments

    International Nuclear Information System (INIS)

    Kucuksari, Sadik; Khaleghi, Amirreza M.; Hamidi, Maryam; Zhang, Ye; Szidarovszky, Ferenc; Bayraksan, Guzin; Son, Young-Jun

    2014-01-01

    Highlights: • The optimal size and locations for PV units for campus environments are achieved. • The GIS module finds the suitable rooftops and their panel capacity. • The optimization module maximizes the long-term profit of PV installations. • The simulation module evaluates the voltage profile of the distribution network. • The proposed work has been successfully demonstrated for a real university campus. - Abstract: Finding the optimal size and locations for Photovoltaic (PV) units has been a major challenge for distribution system planners and researchers. In this study, a framework is proposed to integrate Geographical Information Systems (GIS), mathematical optimization, and simulation modules to obtain the annual optimal placement and size of PV units for the next two decades in a campus area environment. First, a GIS module is developed to find the suitable rooftops and their panel capacity considering the amount of solar radiation, slope, elevation, and aspect. The optimization module is then used to maximize the long-term net profit of PV installations considering various costs of investment, inverter replacement, operation, and maintenance as well as savings from consuming less conventional energy. A voltage profile of the electricity distribution network is then investigated in the simulation module. In the case of voltage limit violation by intermittent PV generations or load fluctuations, two mitigation strategies, reallocation of the PV units or installation of a local storage unit, are suggested. The proposed framework has been implemented in a real campus area, and the results show that it can effectively be used for long-term installation planning of PV panels considering both the cost and power quality

  20. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    Science.gov (United States)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  1. Product integrated PV: the future is design and styling

    NARCIS (Netherlands)

    Eggink, Wouter; Reinders, Angelina H.M.E.

    2016-01-01

    In this paper we explore how PV powered products have been designed in the past. For this purpose we have drawn a historical time line of the design features of PV powered products in the context of main stream design and styling. Our time frame is 1970 till 2016, focusing in first instance on

  2. Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system

    International Nuclear Information System (INIS)

    Yang, Tingting; Athienitis, Andreas K.

    2015-01-01

    Highlights: • BIPV/T system thermal efficiency is 5% higher using two inlets compared to one. • BIPV/T thermal efficiency is 7.6% higher using semi-transparent than opaque PV. • Detailed air temperature profile in BIPV/T channel is obtained. • Nusselt number correlations are developed. - Abstract: An experimental study of thermal characteristics of a novel two-inlet air-based open-loop building integrated photovoltaic/thermal (BIPV/T) system using a full-scale solar simulator is presented. Experimental prototypes of one-inlet and two-inlet BIPV/T systems were constructed for conducting comparative experiments. Variations of BIPV/T systems are also investigated including systems employing opaque mono-crystalline silicon photovoltaic (PV) panels and systems employing semi-transparent mono-crystalline PV panels. Experimental results demonstrate that an equivalent two-inlet system with frameless PV panels can increase the thermal efficiency by 5% compared to a conventional one-inlet system, and that the BIPV/T system with semi-transparent PV panels achieves 7.6% higher thermal efficiency due to the absorption of some solar radiation at the bottom surface in the BIPV/T system cavity. Also, the two-inlet BIPV/T design is easily implemented and does not add significant cost. Detailed air temperature measurements reveal that the mixing of the warm outlet air from the first section and the cool ambient air drawn in from the second inlet contributes to the improved performance of the two-inlet system. Based on a thermal network model of the BIPV/T system and experimental data, correlations are developed for the convective heat transfer coefficients in the two sections. These are necessary for further analysis and development of BIPV/T system with multiple inlets.

  3. Rooftop PV system. PV:BONUS Phase 3B, final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    Under the PV:BONUS Program, ECD and United Solar developed, demonstrated and commercialized two new lightweight, flexible BIPV modules specifically designed as replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and can be used to address the even larger roofing-replacement market. An important design feature of these modules, which minimizes the installation and balance-of-system costs, is their ability to be installed by conventional roofing contractors without special training. The modules are fabricated from high-efficiency, triple-junction spectrum-splitting a-Si alloy solar cells developed by ECD and United Solar. These cells are produced on thin, flexible stainless steel substrates and encapsulated with polymer materials. The Phase 3 program began in August 1995. The principal tasks and goals of this program, which have all been successfully completed by ECD and United Solar, are described in the body and appendices of this report.

  4. Smoothing out the volatility of South Africa's wind and PV energy resources

    CSIR Research Space (South Africa)

    Bofinger, S

    2015-10-01

    Full Text Available Solar PV & wind are the cheapest new-build options per kWh in South Africa. By 2020, a mix of PV, wind and flexible gas (LNG-based) costs the same as new coal, even without any value given to excess wind/PV energy. South Africa has abundant solar...

  5. Impact of PID on industrial rooftop PV-installations

    Science.gov (United States)

    Buerhop, Claudia; Fecher, Frank W.; Pickel, Tobias; Patel, Tirth; Zetzmann, Cornelia; Camus, Christian; Hauch, Jens; Brabec, Christoph J.

    2017-08-01

    Potential induced degradation (PID) causes severe damage and financial losses even in modern PV-installations. In Germany, approximately 19% of PV-installations suffer from PID and resulting power loss. This paper focuses on the impact of PID in real installations and how different evaluated time intervals influence the performance ratio (PR) and the determined degradation rate. The analysis focuses exemplarily on a 314 kWp PV-system in the Atlantic coastal climate. IR-imaging is used for identifying PID without operation interruption. Historic electric performance data are available from a monitoring system for several years on system level, string level as well as punctually measured module string IV- curves. The data sets are combined for understanding the PID behavior of this PV plant. The number of PID affected cells within a string varies strongly between 1 to 22% with the string position on the building complex. With increasing number of PID-affected cells the performance ratio decreases down to 60% for daily and monthly periods. Local differences in PID evolution rates are identified. An average PR-reduction of -3.65% per year is found for the PV-plant. On the string level the degradation rate varied up to 8.8% per year depending on the string position and the time period. The analysis reveals that PID generation and evolution in roof-top installations on industrial buildings with locally varying operation conditions can be fairly complex. The results yield that local operating conditions, e.g. ambient weather conditions as well as surrounding conditions on an industrial building, seem to have a dominating impact on the PID evolution rate.

  6. Distributed control of PV strings with module integrated converters in presence of a central MPPT

    DEFF Research Database (Denmark)

    Sera, Dezso; Mathe, Laszlo; Blaabjerg, Frede

    2014-01-01

    In some cases it is unavoidable that part of the rooftop PV array is periodically shadowed by an adjacent object, greatly reducing yield. Usually, the time and amount of shadowing is known, and is considered as extra loss due to the location. Module Integrated Converter (MIC) systems are known...

  7. Impact of fuel-dependent electricity retail charges on the value of net-metered PV applications in vertically integrated systems

    International Nuclear Information System (INIS)

    Nikolaidis, Alexandros I.; Milidonis, Andreas; Charalambous, Charalambos A.

    2015-01-01

    Retail electricity charges inevitably influence the financial rationale of using net-metered photovoltaic (PV) applications since their structure as well as their level may vary significantly over the life-cycle of a customer-sited PV generation system. This subsequently introduces a further uncertainty for a ratepayer considering a net-metered PV investment. To thoroughly comprehend this uncertainty, the paper employs a top-down approach – in vertically integrated environments – to model the volatility of partially hedged electricity charges and its subsequent impact on the value of bill savings from net-metered PV systems. Besides the utility's pricing strategy and rate structures, particular emphasis is given in modeling the fossil fuel mix component that introduces a significant source of uncertainty on electricity charges and thus on the value of bill savings of net-metered, customer-sited, PV applications. - Highlights: • A top-down approach of developing traditional electricity charges is provided. • The combined effect of pricing strategies, rate structures and fuels is examined. • Fossil fuel prices can substantially affect the net metering compensation. • A financial risk assessment for net-metered PV systems is performed

  8. Model Predictive Controller for Active Demand Side Management with PV Self-consumption in an Intelligent Building

    DEFF Research Database (Denmark)

    Zong, Yi; Mihet-Popa, Lucian; Kullmann, Daniel

    2012-01-01

    This paper presents a Model Predictive Controller (MPC) for electrical heaters’ predictive power consumption including maximizing the use of local generation (e.g. solar power) in an intelligent building. The MPC is based on dynamic power price and weather forecast, considering users’ comfort...... settings to meet an optimization objective such as minimum cost and minimum reference temperature error. It demonstrates that this MPC strategy can realize load shifting, and maximize the PV self-consumption in the residential sector. With this demand side control study, it is expected that MPC strategy...

  9. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, Thomas Hoff [Clean Power Research, L.L.C., Napa, CA (United States); Kankiewicz, Adam [Clean Power Research, L.L.C., Napa, CA (United States)

    2016-02-26

    Four major research objectives were completed over the course of this study. Three of the objectives were to evaluate three, new, state-of-the-art solar irradiance forecasting models. The fourth objective was to improve the California Independent System Operator’s (ISO) load forecasts by integrating behind-the-meter (BTM) PV forecasts. The three, new, state-of-the-art solar irradiance forecasting models included: the infrared (IR) satellite-based cloud motion vector (CMV) model; the WRF-SolarCA model and variants; and the Optimized Deep Machine Learning (ODML)-training model. The first two forecasting models targeted known weaknesses in current operational solar forecasts. They were benchmarked against existing operational numerical weather prediction (NWP) forecasts, visible satellite CMV forecasts, and measured PV plant power production. IR CMV, WRF-SolarCA, and ODML-training forecasting models all improved the forecast to a significant degree. Improvements varied depending on time of day, cloudiness index, and geographic location. The fourth objective was to demonstrate that the California ISO’s load forecasts could be improved by integrating BTM PV forecasts. This objective represented the project’s most exciting and applicable gains. Operational BTM forecasts consisting of 200,000+ individual rooftop PV forecasts were delivered into the California ISO’s real-time automated load forecasting (ALFS) environment. They were then evaluated side-by-side with operational load forecasts with no BTM-treatment. Overall, ALFS-BTM day-ahead (DA) forecasts performed better than baseline ALFS forecasts when compared to actual load data. Specifically, ALFS-BTM DA forecasts were observed to have the largest reduction of error during the afternoon on cloudy days. Shorter term 30 minute-ahead ALFS-BTM forecasts were shown to have less error under all sky conditions, especially during the morning time periods when traditional load forecasts often experience their largest

  10. Projecting of PV facades in consideration of PV-specific operating conditions; Besonderheiten bei der Projektierung von Photovoltaik-Fassadenanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Decker, B.; Grimmig, B.; Mencke, D. [Institut fuer Solarenergieforschung GmbH Hameln/Emmerthal (ISFH), Emmerthal (Germany). Gruppe Photovoltaik-Systeme; Stellbogen, D. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany). Fachgebiet Photovoltaische Anlagentechnik

    1998-02-01

    PV facades can provide several additional functions such as weather protection, thermal insulation, daylighting or sun protection. On the other hand, specific operating conditions for PV facades must be taken into account when selecting components and designing the system. Depending on ventilation conditions, there is a large range of maximum module temperatures. South-oriented PV facades receive about 30% less yearly irradiation than an optimally inclined PV generator, hence reflection losses are approximately 4% higher. The maximum of yearly irradiation lies only in the 400-600 W/m{sup 2} range. Surrounding buildings and/or vegetation can impair performance of the PV-facades. For a south-oriented PV facade an annual yield in the range of 470-560 kwh/kW{sub p}.a has been prodicted which was verified by operating results of eight PV facades. (orig.) [Deutsch] Photovoltaik (PV) Fassaden ermoeglichen neben der Stromerzeugung zusaetzliche Funktionen wie Wetterschutz bzw. Waermedaemmung des Gebaeudes oder Tageslichtnutzung bzw. Sonnenschutz der Innenraeume. Allerdings muessen fassadenspezifische Betriebsbedingungen, bei der Komponentenauswahl und Systemauslegung beruecksichtigt werden. Unterschiedliche Hinterlueftungsbedingungen fuehren zu einer grossen Bandbreite der maximalen Modultemperatur. PV-Suedfassaden empfangen etwa 30% weniger Jahreseinstrahlung als ein optimal geneigter PV-Generator. Die Haelfte der jaehrlichen Einstrahlung trifft mit Einfallswinkeln groesser 50 auf die vertikal angeordneten Module wodurch die Reflexionsverluste um ca. 4% hoeher sind. Das Maximum der Jahreseinstrahlung liegt nur um 400-600 W/m{sup 2} und erreicht selten Werte ueber 800 W/m{sup 2}. Umliegende Gebaeude oder Vegetation koennen zu Teilabschattungen des Generators fuehren. Fuer eine vertikale PV-Suedfassade wird ein Jahresenergieertrag in Hoehe von 470-560 kWh/kW{sub p}.a prognostiziert, der anhand der Betriebsergebnisse von acht PV-Fassadenanlagen verifiziert werden konnte

  11. Integrated Three-Port DC-DC Converter for Photovoltaic (PV) Battery Stand-alone Systems

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2016-01-01

    of solar energy. Moreover, a novel transformer configuration enables variable turns ratio controlled by the phase between the two current excitations subjected to the primary windings, allowing a wider input/output range. 1 kW experimental prototype has been built to demonstrate a wellmanaged power flow......Several power sources such as PV solar arrays and battery are often used to manage the power flow for a photovoltaic (PV) based stand-alone power system due to the fluctuation nature of solar energy resource, and deliver a continuous power to the users in an appropriate form. Traditionally, three...... different single-input single-output (SISO) dc/dc converters would have been used. To reduce the cost and improve the power density of the system, an integrated three-port isolated dc/dc converter is proposed in this paper. It can realize all functions of the energy delivery due to the fluctuation nature...

  12. Efficiency and Throughput Advances in Continuous Roll-to-Roll a-Si Alloy PV Manufacturing Technology: Final Subcontract Report, 22 June 1998 -- 5 October 2001

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, T.

    2002-04-01

    This report describes a roll-to-roll triple-junction amorphous silicon alloy PV manufacturing technology developed and commercialized by Energy Conversion Devices (ECD) and United Solar Systems. This low material cost, roll-to-roll production technology has the economies of scale needed to meet the cost goals necessary for widespread use of PV. ECD has developed and built six generations of a-Si production equipment, including the present 5 MW United Solar manufacturing plant in Troy, Michigan. ECD is now designing and building a new 25-MW facility, also in Michigan. United Solar holds the world's record for amorphous silicon PV conversion efficiency, and manufactures and markets a wide range of PV products, including flexible portable modules, power modules, and innovative building-integrated PV (BIPV) shingle and metal-roofing modules that take advantage of this lightweight, rugged, and flexible PV technology. All of United Solar's power and BIPV products are approved by Underwriters Laboratories and carry a 10-year warranty. In this PVMaT 5A subcontract, ECD and United Solar are addressing issues to reduce the cost and improve the manufacturing technology for the ECD/United Solar PV module manufacturing process. ECD and United Solar identified five technology development areas that would reduce the module manufacturing cost in the present 5-MW production facility, and also be applicable to future larger-scale manufacturing facilities.

  13. Designing PV powered LED products - Integration of PV technology in innovative products

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; de Boer, Andries; de Winter, Arjan; Haverlag, Marco; Ossenbrink Sinke, W.; Helm, P.

    2009-01-01

    This study covers the design of innovative product concepts based on a combination of PV and LED technology. The products were developed in a project that took place in 2008 and 2009 during a cooperation of the University of Twente with Philips Lighting. It is shown that surprisingly unpredictable -

  14. Grid Integration of PV Power based on PHIL testing using different Interface Algorithms

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut; Kerekes, Tamas; Sera, Dezso

    2013-01-01

    to be more active in grid support. Therefore, a better understanding and detailed analysis of the PV systems interaction with the grid is needed; hence power hardware in the loop (PHIL) testing involving PV power became an interesting subject to look into. To test PV systems for grid code (GC) compliance......Photovoltaic (PV) power among all renewable energies had the most accelerated growth rate in terms of installed capacity in recent years. Transmission System Operators (TSOs) changed their perspective about PV power and started to include it into their planning and operation, imposing PV systems...

  15. PSCAD Modules Representing PV Generator

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2013-08-01

    Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

  16. New Analysis Finds Synergistic Relationship Between High PV Penetration and

    Science.gov (United States)

    photovoltaics (PV) to the electric power grid could increase the potential for energy storage to meet peak based on very limited knowledge," said Paul Denholm, NREL senior analyst and lead author of the PV and storage interact will help build the knowledge base for system planners in all states

  17. A Techno-Economic Analysis of Photovoltaic System Design as Specifically Applied to Commercial Buildings in Ireland

    Directory of Open Access Journals (Sweden)

    Jonathan Blackledge

    2012-11-01

    Full Text Available This paper evaluates the viability of installing photovoltaic (PV systems in existing commercial buildings in Dublin. Data collected from previously installed photovoltaic systems at the Dublin Institute of Technology was analysed in order to determine the potential solar resource available in Ireland. A 1.1 kWp photovoltaic system installed in Dublin can produce over 900 kWh of electricity in a given year depending on the available solar resource for that year. A feasibility study was conducted in Dublin city centre in order to evaluate the technical, financial and environmental aspects of integrating a PV system into an existing building. The intention is that the results from this work will help in demonstrating the benefits and challenges associated with installing PV systems in existing commercial buildings in Ireland.

  18. Large scale integration of photovoltaics in cities

    International Nuclear Information System (INIS)

    Strzalka, Aneta; Alam, Nazmul; Duminil, Eric; Coors, Volker; Eicker, Ursula

    2012-01-01

    Highlights: ► We implement the photovoltaics on a large scale. ► We use three-dimensional modelling for accurate photovoltaic simulations. ► We consider the shadowing effect in the photovoltaic simulation. ► We validate the simulated results using detailed hourly measured data. - Abstract: For a large scale implementation of photovoltaics (PV) in the urban environment, building integration is a major issue. This includes installations on roof or facade surfaces with orientations that are not ideal for maximum energy production. To evaluate the performance of PV systems in urban settings and compare it with the building user’s electricity consumption, three-dimensional geometry modelling was combined with photovoltaic system simulations. As an example, the modern residential district of Scharnhauser Park (SHP) near Stuttgart/Germany was used to calculate the potential of photovoltaic energy and to evaluate the local own consumption of the energy produced. For most buildings of the district only annual electrical consumption data was available and only selected buildings have electronic metering equipment. The available roof area for one of these multi-family case study buildings was used for a detailed hourly simulation of the PV power production, which was then compared to the hourly measured electricity consumption. The results were extrapolated to all buildings of the analyzed area by normalizing them to the annual consumption data. The PV systems can produce 35% of the quarter’s total electricity consumption and half of this generated electricity is directly used within the buildings.

  19. Energy performance of water hybrid PV/T collectors applied to combisystems of Direct Solar Floor type

    Energy Technology Data Exchange (ETDEWEB)

    Fraisse, G.; Johannes, K. [Laboratoire Optimisation de la Conception et Ingenierie de l' Environnement, Ecole Superieure d' Ingenieurs de Chambery, Campus Scientifique Savoie Technolac, 73376 Le Bourget du Lac Cedex (France); Menezo, C. [Centre de Thermique de Lyon, Domaine Scientifique de La Doua, Bat. Freyssinet, 20, Avenue A. Einstein, 69621 Villeurbanne Cedex (France)

    2007-11-15

    The integration of photovoltaic (PV) modules in buildings allows one to consider a multifunctional frame and then to reduce the cost by substitution of components. In order to limit the rise of the cell operating temperature, a photovoltaics/thermal (PV/T) collector combines a solar water heating collector and PV cells. The recovered heat energy can be used for heating systems and domestic hot water. A combination with a Direct Solar Floor is studied. Its low operating temperature level is appropriate for the operating conditions of the mono- or poly-crystalline photovoltaic modules which are selected in that study. However, for a system including a glass covered collector and localised in Macon area in France, we show that the annual photovoltaic cell efficiency is 6.8% which represents a decrease of 28% in comparison with a conventional non-integrated PV module of 9.4% annual efficiency. This is obviously due to a temperature increase related to the cover. On the other hand, we show that without a glass cover, the efficiency is 10% which is 6% better than a standard module due to the cooling effect. Moreover, in the case of a glazed PV/T collector with a conventional control system for Direct Solar Floor, the maximum temperature reached at the level of the PV modules is higher than 100{sup o}C. This is due to the oversize of the collectors during the summer when the heating needs are null, i.e. without a heated swimming pool for example. This temperature level does not allow the use of EVA resin (ethylene vinyl acetate) in PV modules due to strong risks of degradation. The current solution consists of using amorphous cells or, if we do not enhance the thermal production, uncovered PV/T collector. Further research led to water hybrid PV/T solar collectors as a one-piece component, both reliable and efficient, and including the thermal absorber, the heat exchanger and the photovoltaic functions. (author)

  20. Efficient outdoor performance of esthetic bifacial a-Si:H semi-transparent PV modules

    International Nuclear Information System (INIS)

    Myong, Seung Yeop; Jeon, Sang Won

    2016-01-01

    Highlights: • 1.43 m"2 a-Si:H semi-transparent PV modules with emotionally inoffensive and esthetically pleasing colors are developed. • Seasonal outdoor performance of the developed colorful PV modules is measured and simulated. • The bifacial TBC a-Si:H semi-transparent PV module performs at a superior annual electrical energy output. • An impressive performance ratio of 124.5% is achieved by surpassing a simulated prediction considerably. - Abstract: We developed bifacial transparent back contact (TBC) hydrogenated amorphous silicon (a-Si:H) semi-transparent glass-to-glass photovoltaic (PV) modules with emotionally inoffensive and esthetically pleasing colors have been developed by combining the transparent back contact and color of the back glass. Due to the high series resistance of the transparent back contact, the bifacial TBC a-Si:H semi-transparent PV modules had a lower rated power after light soaking than the monofacial opaque (metal) back contact (OBC) a-Si:H semi-transparent PV modules fabricated using the additional laser scribing patterns. However, the TBC a-Si:H semi-transparent PV module produced a higher annual electrical energy output than the OBC a-Si:H semi-transparent PV module thanks to bifacial power generation during the outdoor field test. In particular, the performance ratio of the TBC a-Si:H semi-transparent PV module measured at the optimal tilt angle of 30° surpassed its simulated prediction by a drastically high value of 124.5%. At a higher tilt angle of 85°, bifacial power generation produced a higher deviation between the measured and simulated annual performance of the TBC a-Si:H semi-transparent PV module. Since the reflected albedo has a tendency to increase toward higher tilt angles, bifacial power generation can compensate for the loss of lower direct plane-of-array irradiation at a higher tilt angle. Therefore, the TBC a-Si:H semi-transparent PV module is suitable for the vertically mounted building integrated

  1. Feasibility Study of Grid Connected PV-Biomass Integrated Energy System in Egypt

    Science.gov (United States)

    Barakat, Shimaa; Samy, M. M.; Eteiba, Magdy B.; Wahba, Wael Ismael

    2016-10-01

    The aim of this paper is to present a feasibility study of a grid connected photovoltaic (PV) and biomass Integrated renewable energy (IRE) system providing electricity to rural areas in the Beni Suef governorate, Egypt. The system load of the village is analyzed through the environmental and economic aspects. The model has been designed to provide an optimal system configuration based on daily data for energy availability and demands. A case study area, Monshaet Taher village (29° 1' 17.0718"N, 30° 52' 17.04"E) is identified for economic feasibility in this paper. HOMER optimization model plan imputed from total daily load demand, 2,340 kWh/day for current energy consuming of 223 households with Annual Average Insolation Incident on a Horizontal Surface of 5.79 (kWh/m2/day) and average biomass supplying 25 tons / day. It is found that a grid connected PV-biomass IRE system is an effective way of emissions reduction and it does not increase the investment of the energy system.

  2. Built-in future: integration, technical and market-development issues for PV

    International Nuclear Information System (INIS)

    Nordmann, T.

    2005-01-01

    Although large ground-mounted multi-megawatt photovoltaic plants have become common, it is argued that integration of photovoltaics into the fabric of buildings is their optimum use. In Germany, with its well-established grid network, there is a marked imbalance in the deployment of photovoltaics and only 1% are integrated into the roofs or facades of buildings. A similar pattern is found in most other countries in central Europe and the article seeks to discover the reasons for this. The situation in Japan is different in that the relatively high cost of electricity has encouraged a robust market for domestic photovoltaics. It is argued that the market for building-integrated photovoltaics in Europe has massive potential

  3. Accelerating residential PV expansion: supply analysis for competitive electricity markets

    International Nuclear Information System (INIS)

    Payne, Adam; Williams, Robert H.; Duke, Richard

    2001-01-01

    Photovoltaic (PV) technology is now sufficiently advanced that market support mechanisms such as net metering plus a renewable portfolio standard (RPS) could induce rapid PV market growth in grid-connected applications. With such support mechanisms, markets would be sufficiently large that manufacturers could profitably build and operate 100 MW p /yr PV module factories, and electricity costs for residential rooftop PV systems would compare favorably with residential electricity prices in certain areas (e.g., California and the greater New York region in the US). This prospect is illustrated by economic and market analyses for one promising technology (amorphous silicon thin-film PV) from the perspectives of both module manufacturers and buyers of new homes with rooftop PV systems. With public policies that reflect the distributed and environmental benefits offered by PV-and that can sustain domestic PV market demand growth at three times the historical growth rate for a period of the order of two decades - PV could provide 3% of total US electricity supply by 2025. (Author)

  4. Current limitations of trend curve analysis for the prediction of reactor PV embrittlement

    International Nuclear Information System (INIS)

    Gold, R.; McElroy, W.N.

    1986-02-01

    In operating light water reactor (LWR) commercial power plants, neutron radiation induces embrittlement of the pressure vessel (PV) and its support structures. As a consequence, LWR-PV integrity is a primary safety consideration. LWR-PV integrity is a significant economic consideration since the PV and its support structures are nonreplaceable power plant components and embrittlement of these components can therefore limit the effective operating lifetime of the plant

  5. Integrated building energy systems design considering storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Chris; Lai, Judy; Aki, Hirohisa (Lawrence Berkeley National Laboratory (United States)). e-mail: MStadler@lbl.gov; Siddiqui, Afzal (Dept. of Statistical Science at Univ. College London (United Kingdom))

    2009-07-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g. PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO{sub 2} emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO{sub 2} emissions. The problem is solved for a given test year at representative customer sites, e.g. nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research project performed for the U.S. Dept. of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO{sub 2} minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

  6. Integrated Building Energy Systems Design Considering Storage Technologies

    International Nuclear Information System (INIS)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

    2009-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research project performed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site

  7. Commercialization and business development of grid-connected PV at SMUD

    International Nuclear Information System (INIS)

    Osborn, D.E.

    1998-01-01

    SMUD has completed its first 5 year, 6 MW PV commercialization effort based on the sustained, orderly development of the utility PV market. SMUD has begun a 5 year, 10 MW program designed to complete a process that will result in PV being at a market competitive price by 2002 and as a sustainable business opportunity for SMUD. As part of this effort, by the end of 1997, SMUD had installed over 450 PV systems totaling 6 MW. These included over 420 residential rooftop systems as well as commercial buildings, parking lots and substation systems. Under its new Business Plan, SMUD has signed contracts for an additional 10 MW of PV systems for 1998 through 2002 with cost decreasing to less than $3/W. As part of its new competitive business strategy responding to changes the utility industry is undergoing, SMUD has incorporated PV as a key business opportunity. SMUD has established partnerships with its customers through the PV Pioneer green pricing program, with DOE and UPVG through TEAM-UP and Million Solar Roofs to advance PV commercialization and to develop rooftops as PV power plant sites and with other utilities through its PV Partnership program

  8. Energy balance of photovoltaic elements integrated in buildings; Energiebilanz gebaeudeintegrierter Photovoltaik

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    A planning tool for the thermal characteristics of integrated PV modules was to be developed and validated by measurements which provides U and g values as well as heating and cooling loads of such external wall or roof elements. In a cooperative project with medium-sized producers of PV wall systems, two different wall systems (i.e. insulating glass and ventilated warm external walls) were analyzed. [German] In dem Forschungsvorhaben sollte ein messtechnisch validiertes Planungswerkzeug fuer die thermischen Kennwerte von gebaeudeintegrierten Photovoltaikmodulen entwickelt werden, welches Bauteilkennwerte (U- und g-Werte) sowie moegliche Heiz- und Kuehllasten solcher Fassaden- oder Dachsysteme liefert. Durch die Zusammenarbeit mit mittelstaendischen PV-Fassadenherstellern sollten zwei Fassadensysteme - Isolierglasverbund und hinterlueftete Warmfassade - an konkreten Projekten messtechnisch erfasst und analysiert werden. (orig.)

  9. Advances in integration of photovoltaic power and energy production in practical systems

    Science.gov (United States)

    Fartaria, Tomas Oliveira

    This thesis presents advances in integration of photovoltaic (PV) power and energy in practical systems, such as existing power plants in buildings or directly integrated in the public electrical grid. It starts by providing an analyze of the current state of PV power and some of its limitations. The work done in this thesis begins by providing a model to compute mutual shading in large PV plants, and after provides a study of the integration of a PV plant in a biogas power plant. The remainder sections focus on the work done for project PVCROPS, which consisted on the construction and operation of two prototypes composed of a PV system and a novel battery connected to a building and to the public electrical grid. These prototypes were then used to test energy management strategies and validate the suitability of the two advanced batteries (a lithium-ion battery and a vanadium redox ow battery) for households (BIPV) and PV plants. This thesis is divided in 7 chapters: Chapter 1 provides an introduction to explain and develop the main research questions studied for this thesis; Chapter 2 presents the development of a ray-tracing model to compute shading in large PV elds (with or without trackers); Chapter 3 shows the simulation of hybridizing a biogas plant with a PV plant, using biogas as energy storage; Chapters 4 and 5 present the construction, programming, and initial operation of both prototypes (Chapter 4), EMS testing oriented to BIPV systems (Chapter 5). Finally, Chapters 6 provides some future lines of investigation that can follow this thesis, and Chapter 7 shows a synopsis of the main conclusions of this work.

  10. Numerical investigation of heat pipe-based photovoltaic–thermoelectric generator (HP-PV/TEG) hybrid system

    International Nuclear Information System (INIS)

    Makki, Adham; Omer, Siddig; Su, Yuehong; Sabir, Hisham

    2016-01-01

    Highlights: • Integration of TE generators with a heat pipe-based PV module as a hybrid system is proposed. • Numerical transient modeling based on the energy balance equations of the system was performed. • Integration of TE generators with PV module aid operating the solar cells at a steady level in harsh conditions. - Abstract: Photovoltaic (PV) cells are able to absorb about 80% of the solar spectral irradiance, however, certain percentage accounts for electricity conversion depending on the cell technology employed. The remainder energy however, can elevate the silicon junction temperature in the PV encapsulation perilously, resulting in deteriorated performance. Temperature rise at the PV cell level is addressed as one of the most critical issues that can seriously degrade and shortens the life-time of the PV cells, hence thermal management of the PV module during operation is considered essential. Hybrid PV designs which are able to simultaneously generate electrical energy and utilize the waste heat have been proven to be the most promising solution. In this study, theoretical investigation of a hybrid system comprising of thermoelectric generator integration with a heat pipe-based Photovoltaic/Thermal (PV/T) absorber is proposed and evaluated. The system presented incorporates a PV panel for direct electricity generation, a heat pipe for excessive heat absorption from the PV cells and a thermoelectric generator (TEG) performing direct heat-to-electricity conversion. A mathematical model based on the energy balance within the system is developed to evaluate the performance of the hybrid integration and the improvements associated with the thermal management of PV cells. Results are presented in terms of the overall system efficiency compared to a conventional PV panel under identical operating conditions. The integration of TEG modules with PV cells in such way aid improving the performance of the PV cells in addition to utilizing the waste

  11. PV-WEB: internet-based PV information tool

    International Nuclear Information System (INIS)

    Cowley, P.

    2003-01-01

    This report gives details of a project to create a web-based information system on photovoltaic (PV) systems for the British PV Association (PV-UK) for use by decision makers in government, the utilities, and the housing and construction sectors. The project, which aims to provide an easily accessible tool for UK companies, promote PV technology, increase competitiveness, and identify market opportunities, is described. The design of the web site and its implementation and the evolution are discussed, along with the maintenance of the site by PV-UK and the opportunities offered to PV-UK Members

  12. PV-WEB: internet-based PV information tool

    Energy Technology Data Exchange (ETDEWEB)

    Cowley, P

    2003-07-01

    This report gives details of a project to create a web-based information system on photovoltaic (PV) systems for the British PV Association (PV-UK) for use by decision makers in government, the utilities, and the housing and construction sectors. The project, which aims to provide an easily accessible tool for UK companies, promote PV technology, increase competitiveness, and identify market opportunities, is described. The design of the web site and its implementation and the evolution are discussed, along with the maintenance of the site by PV-UK and the opportunities offered to PV-UK Members.

  13. Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties

    International Nuclear Information System (INIS)

    Protopapadaki, Christina; Saelens, Dirk

    2017-01-01

    Highlights: • Comprehensive method includes variability in building and feeder characteristics. • Detailed, 10-min, Modelica-based simulation of buildings, heat pumps and networks. • Overloading and voltage issues appear from 30% heat pumps in rural Belgian feeders. • Analysis of load profiles reveals great impact of heat pump back-up heaters. • High correlation of building neighborhood properties with grid impact indicators. - Abstract: Heating electrification powered by distributed renewable energy generation is considered among potential solutions towards mitigation of greenhouse gas emissions. Roadmaps propose a wide deployment of heat pumps and photovoltaics in the residential sector. Since current distribution grids are not designed to accommodate these loads, potential benefits of such policies might be compromised. However, in large-scale analyses, often grid constraints are neglected. On the other hand, grid impact of heat pumps and photovoltaics has been investigated without considering the influence of building characteristics. This paper aims to assess and quantify in a probabilistic way the impact of these technologies on the low-voltage distribution grid, as a function of building and district properties. The Monte Carlo approach is used to simulate an assortment of Belgian residential feeders, with varying size, cable type, heat pump and PV penetration rates, and buildings of different geometry and insulation quality. Modelica-based models simulate the dynamic behavior of both buildings and heating systems, as well as three-phase unbalanced loading of the network. Additionally, stochastic occupant behavior is taken into account. Analysis of neighborhood load profiles puts into perspective the importance of demand diversity in terms of building characteristics and load simultaneity, highlighting the crucial role of back-up electrical loads. It is shown that air-source heat pumps have a greater impact on the studied feeders than PV, in terms

  14. Building integrated photovoltaic; Photovaltaique integre aux batiments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    Durable, modular and flexible in use, as demonstrated by the different case studies in this publication, photovoltaic can replace diverse building elements, from glass facades to weather proof roofs. This leaflet towards architects describes aesthetic, technical, economic and environmental interest of building integrated photovoltaic. (author)

  15. Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations

    International Nuclear Information System (INIS)

    Eke, Rustu; Senturk, Ali

    2013-01-01

    Highlights: • The first and the largest BIPV of Turkey were installed. • Single and triple junction amorphous module performances in BIPV applications are analyzed. • Total generated electricity of the BIPV system is measured as 103,702 kW h for 36 months of operation. • Annual energy rating is calculated as 856 kW h/kWp for a non-optimally oriented plant. • The PR of the system is found 0.74 and 0.81 for PV systems on towers and facade respectively. - Abstract: Mugla is located in south west Turkey at 37°13′N latitude and 28°36′E longitude with yearly sum of horizontal global irradiation exceeding 1700 kW h per square meter. Mugla has a Mediterranean Climate which is characterized by long, hot and dry summers with cool and wet winters. Mugla Sıtkı Kocman University is the largest “PV Park” in Turkey consisting of 100 kWp installed Photovoltaic Power Systems (PVPSs) with different PV applications. The 40 kWp building integrated photovoltaic (BIPV) system which is the first and largest in Turkey was installed on the façade and the two towers of the “Staff Block of the Education Faculty’s Building” of Mugla Sıtkı Kocman University in February 2008. Triple junction amorphous silicon photovoltaic modules are used on the façade and single junction amorphous silicon PV modules are used on the East and West towers of the building. In this paper, the 40 kWp BIPV system in Mugla, Turkey is presented, and its performance is evaluated. Energy rating (kW h/kWp energy yield), efficiencies and performance ratios of both applications are also evaluated for 36 months of operation. Daily, monthly and seasonal variations in performance parameters of the BIPV system in relation to solar data and meteorological parameters and outdoor performance of two reference modules (representing the modules on façade and towers) in a summer and a winter day are also investigated

  16. High-Penetration PV Integration Handbook for Distribution Engineers

    Energy Technology Data Exchange (ETDEWEB)

    Seguin, Rich [Electrical Distribution Design, Blacksburg, VA (United States); Woyak, Jeremy [Electrical Distribution Design, Blacksburg, VA (United States); Costyk, David [Electrical Distribution Design, Blacksburg, VA (United States); Hambrick, Josh [Electrical Distribution Design, Blacksburg, VA (United States); Mather, Barry [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-01

    This handbook has been developed as part of a five-year research project which began in 2010. The National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed together to analyze the impacts of high-penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to leverage the experience that SCE and the project team would gain during the significant installation of 500 MW of commercial scale PV systems (1-5 MW typically) starting in 2010 and completing in 2015 within SCE’s service territory through a program approved by the California Public Utility Commission (CPUC).

  17. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  18. Assessing the need for better forecasting and observability of pv

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2017-01-01

    In its review of the challenges and opportunities associated with massive deployment of solar PV generation, the Grid integration working group of the ETIP PV identified forecasting and observability as critical technologies for the planning and operation of the power system with large PV...... penetration. In this white paper ETIP PV set out to spell out in more details what features are needed from these technologies and what is the state of the art....

  19. The impact of high PV penetration levels on electrical distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Collinson, A; Beddoes, A; Thornycroft, J [Halcrow (United Kingdom); Strbac, G; Jenkins, N [UMIST, Manchester (United Kingdom); Verhoeven, B [KEMA (Netherlands)

    2002-07-01

    This report describes the results of a collaborative study by EA Technology, UMIST and Halcrow into the effects of large-scale connection of dispersed photovoltaic (PV) power systems on the national electricity supply network. The report is intended to help manufacturers and installers of PV systems and electricity companies to understand the issues associated with grid connection of PV power systems. The increased use of PV systems is expected to have a significant impact on the design, operation and management of electricity supply networks. The study examined three main areas: probability and risk analysis of islanding; PV and network voltage control (including analysis of voltage control in a commercial, domestic retrofit and domestic new build scenarios); and future low voltage network design and operational policies.

  20. PV Systems Reliability Final Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Sigifredo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schindelholz, Eric John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yang, Benjamin Bing-Yeh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The continued exponential growth of photovoltaic technologies paves a path to a solar-powered world, but requires continued progress toward low-cost, high-reliability, high-performance photovoltaic (PV) systems. High reliability is an essential element in achieving low-cost solar electricity by reducing operation and maintenance (O&M) costs and extending system lifetime and availability, but these attributes are difficult to verify at the time of installation. Utilities, financiers, homeowners, and planners are demanding this information in order to evaluate their financial risk as a prerequisite to large investments. Reliability research and development (R&D) is needed to build market confidence by improving product reliability and by improving predictions of system availability, O&M cost, and lifetime. This project is focused on understanding, predicting, and improving the reliability of PV systems. The two areas being pursued include PV arc-fault and ground fault issues, and inverter reliability.

  1. A thermal model for amorphous silicon photovoltaic integrated in ETFE cushion roofs

    International Nuclear Information System (INIS)

    Zhao, Bing; Chen, Wujun; Hu, Jianhui; Qiu, Zhenyu; Qu, Yegao; Ge, Binbin

    2015-01-01

    Highlights: • A thermal model is proposed to estimate temperature of a-Si PV integrated in ETFE cushion. • Nonlinear equation is solved by Runge–Kutta method integrated in a new program. • Temperature profiles varying with weather conditions are obtained and analyzed. • Numerical results are in good line with experimental results with coefficients of 0.821–0.985. • Reasons for temperature difference of 0.9–4.6 K are solar irradiance and varying parameters. - Abstract: Temperature characteristics of amorphous silicon photovoltaic (a-Si PV) integrated in building roofs (e.g. the ETFE cushions) are indispensible for evaluating the thermal performances of a-Si PV and buildings. To investigate the temperature characteristics and temperature value, field experiments and numerical modeling were performed and compared in this paper. An experimental mock-up composed of a-Si PV and a three-layer ETFE cushion structure was constructed and experiments were carried out under four typical weather conditions (winter sunny, winter cloudy, summer sunny and summer cloudy). The measured solar irradiance and air temperature were used as the real weather conditions for the thermal model. On the other side, a theoretical thermal model was developed based on energy balance equation which was expressed as that absorbed energy was equal to converted energy and energy loss. The corresponding differential equation of PV temperature varying with weather conditions was solved by the Runge–Kutta method. The comparisons between the experimental and numerical results were focusing on the temperature characteristics and temperature value. For the temperature characteristics, good agreement was obtained by correlation analysis with the coefficients of 0.821–0.985, which validated the feasibility of the thermal model. For the temperature value, the temperature difference between the experimental and numerical results was only 0.9–4.6 K and the reasons could be the dramatical

  2. Control of Single-Stage Single-Phase PV inverter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    In this paper the issue of control strategies for single-stage photovoltaic (PV) inverter is addressed. Two different current controllers have been implemented and an experimental comparison between them has been made. A complete control structure for the single-phase PV system is also presented......-forward; - and the grid current controller implemented in two different ways, using the classical proportional integral (PI) and the novel proportional resonant (PR) controllers. The control strategy was tested experimentally on 1.5 kW PV inverter....

  3. Renewable Energy and Energy Efficiency Technologies in Residential Building Codes: June 15, 1998 to September 15, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Wortman, D.; Echo-Hawk, L.

    2005-02-01

    This report is an attempt to describe the building code requirements and impediments to the application of EE and RE technologies in residential buildings. Several modern model building codes were reviewed. These are representative of the codes that will be adopted by most locations in the coming years. The codes reviewed for this report include: International Residential Code, First Draft, April 1998; International Energy Conservation Code, 1998; International Mechanical Code, 1998; International Plumbing Code, 1997; International Fuel Gas Code, 1997; National Electrical Code, 1996. These codes were reviewed as to their application to (1) PV systems in buildings and building-integrated PV systems and (2) active solar domestic hot water and space-heating systems. A discussion of general code issues that impact these technologies is also included. Examples of this are solar access and sustainability.

  4. Architecturally sensitive retrofitting of PV to a residential block in Greece to reduce its carbon footprint

    Science.gov (United States)

    Panopoulou, Ismini

    Photovoltaic power is a unique energy source, with wide distribution potential, which can be integrated within the fabric of individual buildings, transforming the power generation in a less large-scale and regionally located issue. As a result, photovoltaic power is a free, clean and silent electrical supply that can be introduced into cities and residential areas. Over the past years, grid-connected, distributed photovoltaic power systems have become an explosively growing sector worldwide. This trend is expected to be continued in the future and solar systems may become a common building element of building construction. In Greece, where the main focus of the project is concentrated, the extended sunshine and the incentives of the new Renewable Energy Sources law of 2006, give a different perspective in photovoltaic investments. In the case study of Vera Water Residence complex in Athens, the viability of an architecturally sensitive retrofitting of PV was examined, from both financial and environmental aspects. The project was concentrated in one of the complex's buildings which was modelled in TAS simulator in order for the annual heating and cooling loads to be estimated. A closer to the reality estimation of electricity demand was made through the annual electricity bills of the building. The proposed building integrated photovoltaic system was designed in terms of following and respecting the aesthetics of the existing architecture of the complex while being as efficient as possible. The annual energy output and C02 emissions reductions were then calculated through RETScreen software analysis according to the location of the project and the characteristics of the PV system. Finally, an economic analysis has been included to the study, considering the installation cost, the annual savings and the embodied energy of the system, in order for the payback period of the investment to be determined. Finally, a small sensitivity analysis concerning the effect of

  5. Photovoltaics in buildings: town planning considerations

    Energy Technology Data Exchange (ETDEWEB)

    Cradick, K.

    1999-07-01

    This report explores the significance of PV specifically from a town and country planning perspective. PV will become of interest to planners for a number of reasons. Installation of PV systems on the walls, roofs and windows of buildings will have implications for the design and appearance of buildings and the wider townscape. For this reason, it would be beneficial for the planning profession to have a general awareness of the rapidly expanding range of PV building products now available. A widespread use of the technology will raise a number of other practical planning considerations, such as the need to ensure that PV-equipped buildings are not overshadowed by subsequent development or maturing trees.The use of PV could bring planning benefits. For example, use of the technology could sometimes obviate the need to route overhead power supplies through sensitive landscapes to outlying rural settlement. As a renewable source of energy, the use of PV will be in harmony with Local Agenda 21 objectives and sustainability policies in development plans. This report is written for practising planners in local government, private practice and the voluntary sector, and has regard to the regulatory context within which planners operate. It does not seek to encourage members of the profession to exceed their powers by insisting upon the use of PV in new development. Instead, the report aims to provide an introduction to the technology so that planners may be conversant with the technology and understand both its potential and its limitations. (author)

  6. Operation of Grid-tied 5 kWDC solar array to develop Laboratory Experiments for Solar PV Energy System courses

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Jaime [Univ. of Texas Pan American, Edinburg, TX (United States)

    2012-12-14

    To unlock the potential of micro grids we plan to build, commission and operate a 5 kWDC PV array and integrate it to the UTPA Engineering building low voltage network, as a micro grid; and promote community awareness. Assisted by a solar radiation tracker providing on-line information of its measurements and performing analysis for the use by the scientific and engineering community, we will write, perform and operate a set of Laboratory experiments and computer simulations supporting Electrical Engineering (graduate and undergraduate) courses on Renewable Energy, as well as Senior Design projects.

  7. Heritage plaza parking lots improvement project- Solar PV installation

    Energy Technology Data Exchange (ETDEWEB)

    Hooks, Todd [Agua Caliente Indian Reservation, Palm Springs, CA (United States)

    2017-03-31

    The Agua Caliente Band of Cahuilla Indians (ACBCI or the “Tribe”) installed a 79.95 kW solar photovoltaic (PV) system to offset the energy usage costs of the Tribal Education and Family Services offices located at the Tribe's Heritage Plaza office building, 90I Tahquitz Way, Palm Springs, CA, 92262 (the "Project"). The installation of the Solar PV system was part of the larger Heritage Plaza Parking Lot Improvements Project and mounted on the two southern carport shade structures. The solar PV system will offset 99% of the approximately 115,000 kWh in electricity delivered annually by Southern California Edison (SCE) to the Tribal Education and Family Services offices at Heritage Plaza, reducing their annual energy costs from approximately $22,000 annually to approximately $200. The total cost of the proposed solar PV system is $240,000.

  8. An automated model for rooftop PV systems assessment in ArcGIS using LIDAR

    Directory of Open Access Journals (Sweden)

    Mesude Bayrakci Boz

    2015-08-01

    Full Text Available As photovoltaic (PV systems have become less expensive, building rooftops have come to be attractive for local power production. Identifying rooftops suitable for solar energy systems over large geographic areas is needed for cities to obtain more accurate assessments of production potential and likely patterns of development. This paper presents a new method for extracting roof segments and locating suitable areas for PV systems using Light Detection and Ranging (LIDAR data and building footprints. Rooftop segments are created using seven slope (tilt, ve aspect (azimuth classes and 6 different building types. Moreover, direct beam shading caused by nearby objects and the surrounding terrain is taken into account on a monthly basis. Finally, the method is implemented as an ArcGIS model in ModelBuilder and a tool is created. In order to show its validity, the method is applied to city of Philadelphia, PA, USA with the criteria of slope, aspect, shading and area used to locate suitable areas for PV system installation. The results show that 33.7% of the buildings footprints areas and 48.6% of the rooftop segments identi ed is suitable for PV systems. Overall, this study provides a replicable model using commercial software that is capable of extracting individual roof segments with more detailed criteria across an urban area.

  9. Integration of design applications with building models

    DEFF Research Database (Denmark)

    Eastman, C. M.; Jeng, T. S.; Chowdbury, R.

    1997-01-01

    This paper reviews various issues in the integration of applications with a building model... (Truncated.)......This paper reviews various issues in the integration of applications with a building model... (Truncated.)...

  10. Proposing offshore photovoltaic (PV) technology to the energy mix of the Maltese islands

    International Nuclear Information System (INIS)

    Trapani, Kim; Millar, Dean L.

    2013-01-01

    Highlights: ► Significant cost and carbon savings for offshore PV integration. ► Maximum savings at circa 315 MW for thin film PV integration. ► Minimum generating capacity of turbines significant in cost of electricity. ► Part-load efficiencies of current system could hugely limit the integration of renewables. - Abstract: The islands of Malta are located in the Mediterranean basin enjoying 5.3 kW h/m 2 /day of solar insolation, at a latitude of 35°50N. Electricity generation for the islands is dependent upon imported fossil fuels for combustion. The available solar resource could be exploited to offset the current generation of electricity using solar photovoltaic technology (PV). Due to the limited land availability onshore, the offshore environment surrounding the Maltese islands were considered for the installation of PV floating on the sea surface. The output from such an installation would have to be integrated with the existing conventional electricity generation infrastructure, which currently relies on gas and steam turbine technology. To assess the feasibility of floating PV being integrated with the existing fossil plant, monthly trend consumption data for Malta were analysed. The change in gasoil and heavy fuel oil (HFO) consumption resulting from the part load efficiency variation and the displacement of electricity generation from the PVs were estimated. A cost analysis was prepared for the system integration analysis specifically accounting for the reduction in combustion of fossil fuels at the power station and the capital expenditures and operating costs due to the floating PV installation. Aside from the basic cost-benefit of a floating PV installation, CO 2 savings are also considered

  11. Multilayer PV-storage Microgrids Algorithm for the Dispatch of Distributed Network

    Directory of Open Access Journals (Sweden)

    Yang Ping

    2016-01-01

    Full Text Available In recent years, due to the support of our country, PV-storage microgrid develops rapidly. However, the flexible network operation modes of PV-storage microgrid change flexibly and the operating characteristics with a large amout of sources is highly complicated. Based on the existing microgrid coordinate control methods, this paper proposes multilayer PV-storage microgrid algorithm for fitting dispatch of distributed network, which achieves maximum output of renewable energy when meeting the scheduling requirements of network, by building PV-storage microgrid type dynamic simulation system in a variety of conditions in PSCAD. Simulation results show that the heuristic algorithm proposed can achieve microgrid stable operation and satisfy the demands of the dispatch in distributed network.

  12. Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules

    DEFF Research Database (Denmark)

    Jimenez, M.J.; Madsen, Henrik; Bloem, J.J.

    2008-01-01

    This paper focuses on a method for linear or non-linear continuous time modelling of physical systems using discrete time data. This approach facilitates a more appropriate modelling of more realistic non-linear systems. Particularly concerning advanced building components, convective and radiati...... that a description of the non-linear heat transfer is essential. The resulting model is a non-linear first order stochastic differential equation for the heat transfer of the PV component....... heat interchanges are non-linear effects and represent significant contributions in a variety of components such as photovoltaic integrated facades or roofs and those using these effects as passive cooling strategies, etc. Since models are approximations of the physical system and data is encumbered...

  13. Addressing firefighter safety around solar PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B. [Sustainable Energy Technologies, Calgary, AB (Canada)

    2010-11-15

    The article discussed new considerations for installing photovoltaic (PV) systems that address the needs of fire service personnel. The presence of a PV system presents a multitude of dangers for firefighters, including electrical shock, the inhalation of toxic gases from being unable to cut a hole through the roof, falling debris and flying glass, and dead loading on a compromised structure and tripping on conduits. Mapping systems should be modified so that buildings with PV systems are identified for first responders, including firefighters who should learn that solar modules present an electrical hazard during the day but not at night; covering PV modules with foam or salvage covers may not shut the system down to a safe level; it takes a few moments for the power in PV modules to reduce to zero; and PV modules or conduit should never be cut, broke, chopped, or walked upon. The California Department of Forestry and Fire Protection recommends creating pathways and allowing easier access to the roof by setting the modules back from roof edges, creating a structurally sound pathway for firefighters to walk on and space to cut ventilation holes. However, the setback rule makes the economics of solar installation less viable for residential applications. The technological innovations aimed at addressing system safety all focus on limiting firefighter contact with live electrical components to within the extra-low-voltage (ELV) band. Some of the inverters on the market that support ELV system architecture were described. 1 fig.

  14. Impacts of PV Array Sizing on PV Inverter Lifetime and Reliability

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2017-01-01

    . However, oversizing the PV array will increase the loading of PV inverters, which may have undesired influence on the PV inverter lifetime and reliability. In that case, it may result in a negative impact on the overall PV energy cost, due to the increased maintenance for the PV inverters. This paper...... evaluates the lifetime of PV inverters considering the PV array sizing and installation sites, e.g., Denmark and Arizona. The results reveal that the PV array sizing has a considerable impact on the PV inverter lifetime and reliability, especially in Denmark, where the average solar irradiance level...

  15. Integration of fuel cells into residential buildings

    International Nuclear Information System (INIS)

    Bell, J.M.; Entchev, E.; Gusdorf, J.; Szadkowski, F.; Swinton, M.; Kalbfleisch, W.; Marchand, R.

    2004-01-01

    Integration of small combined heat and power systems (CHP) into residential buildings is challenging as the loads are small, the load diversity is limited and there are a number of unresolved issues concerning sizing, control, peak loads, emergency operation, grid connection and export, etc. Natural Resources Canada has undertaken an initiative to investigate and develop techniques for the integration of small CHP systems into residential buildings using a highly instrumented house modified to allow quick installation and thorough monitoring of CHP integration techniques as well determining the performance of the CHP systems themselves when operating in a house. The first CHP system installed was a Stirling engine residential CHP system. It was used to examine the completeness of the CHP modifications to the house, to evaluate various building integration techniques and to measure the performance of the CHP system itself. The testing demonstrated the modified house to be an excellent facility for the development of CHP building integration techniques and the testing of residential CHP systems. The Stirling engine CHP system was found to operate well and produce meaningful input to the house. A second system (residential fuel cell) is presently being installed and building integration techniques and the performance of the fuel cell will be tested over the coming year. (author)

  16. How to stimulate the South African rooftop PV market without putting electricity distributors' financial stability at risk

    CSIR Research Space (South Africa)

    Bischof-Niemz, Thomas

    2015-01-01

    Full Text Available PV, and the business case for the PV owner is de-risked at the same time. This all at no net costs to the system as compared to alternative new-build options. The concept is currently being discussed with the relevant government departments, the PV...

  17. Impacts of PV Array Sizing on PV Inverter Lifetime and Reliability

    OpenAIRE

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso; Blaabjerg, Frede

    2017-01-01

    In order to enable a more wide-scale utilization of PV systems, the cost of PV energy has to be comparable with other energy sources. Oversizing the PV array is one common approach to reduce the cost of PV energy, since it increases the PV energy yield during low solar irradiance conditions. However, oversizing the PV array will increase the loading of PV inverters, which may have undesired influence on the PV inverter lifetime and reliability. In that case, it may result in a negative impact...

  18. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. Grid-connected photovoltaic power systems: power value and capacity value of PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Groppi, F.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme takes a look at the power value and capacity value of photovoltaic power systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and dispersed PV power systems. This report summarises the results of a study aimed to assess the benefits that may be obtained when distributed PV production systems are present in a low-voltage grid. The basic aspects concerning the power-value and those related to the capacity-value are discussed. Data obtained from simulations are presented and discussed. A simple concept shows that great variation occurs if varying load patterns are taken into account. The power-value of PV generation in the grid varies instant by instant depending on the current level of power production and on the surrounding load conditions. Although the three case-studies considered do not cover all the possibilities of coupling between PV and loads, the results obtained show a good differentiation among users with PV production which leads to interesting conclusions.

  19. Innovation and technology transfer through global value chains: Evidence from China's PV industry

    International Nuclear Information System (INIS)

    Zhang, Fang; Gallagher, Kelly Sims

    2016-01-01

    China's success as a rapid innovation follower in the infant Photovoltaic (PV) industry surprised many observers. This paper explores how China inserted itself into global clean energy innovation systems by examining the case of the solar PV industry. The paper decomposes the global PV industrial value chain, and determines the main factors shaping PV technology transfer and diffusion. Chinese firms first entered PV module manufacturing through technology acquisition, and then gradually built their global competitiveness by utilizing a vertical integration strategy within segments of the industry as well as the broader PV value chain. The main drivers for PV technology transfer from the global innovation system to China are global market formation policy, international mobilization of talent, the flexibility of manufacturing in China, and belated policy incentives from China's government. The development trajectory of the PV industry in China indicates that innovation in cleaner energy technologies can occur through both global and national innovation processes, and knowledge exchange along the global PV value chain. - Highlights: •The value chain analytical approach is synergized with the theories of technology transfer and innovation systems. •A detailed review of how China integrated itself into the global solar PV innovation system is provided. •Four main factors shape PV technology transfer to China across various value chain segments. •Innovation in cleaner energy technologies is a combination of global and national innovation processes.

  20. Less CO2 by means of photovoltaic energy (PV)

    International Nuclear Information System (INIS)

    Alsema, E.A.; Van Brummelen, M.

    1992-11-01

    Regarding the title subject special attention is paid to the technical limitations of a fast introduction of the use of photovoltaic (PV) energy conversion. After a brief introduction on PV systems and the operation of a solar cell in chapter two, a state of the art is given of PV technology and possible price developments for PV modules and Balance-Of-System (BOS) components up to the year 2000 in chapters three and four. In chapter five the potential of installing grid-connected PV systems in the Netherlands is determined, taking into account the options of using existing buildings (PV systems on the roof), unexplored ground, in the verge of highways or railroads, industrial areas and airports. In chapter six non-economical bottlenecks for a large-scale introduction of grid-connected PV systems are discussed: the industrial production capacity for PV modules and other components, the fitting-in into the public electricity supply, and institutional aspects of installing PV systems on roofs. In chapter seven it is determined how much costs can be saved and CO 2 emission can be reduced when PV capacity is fitted-in into the Dutch electric power supply. The calculations are based on the Global Shift scenario. In chapter eight two scenarios (an optimistic scenario and a more realistic scenario) for the introduction of PV systems are outlined. For both scenarios the financial consequences and the contribution to the electric power supply are indicated. In chapter nine the net energy yield, being the result of the previously discussed introduction scenarios, is calculated, followed by a calculation of the avoided CO 2 emission, as well as the costs to avoid such emission. 25 figs., 15 tabs., 116 refs., 1 annex

  1. Techno-economic feasibility analysis of solar photovoltaic power generation for buildings

    International Nuclear Information System (INIS)

    Zhang, Xiongwen; Li, Menyu; Ge, Yuanfei; Li, Guojun

    2016-01-01

    Highlights: • A model for optimal component sizes of hybrid energy system (HES) is presented. • The techno-economic feasibility of PV for building in context of China is studied. • The use of PV reduces COE by 46% for customers in the commercial building. • The use of PV increases COE by 9.55% for customers in the residential building. - Abstract: The Building Added PV (BAPV) plays an important role for developing green buildings. This work conducts a techno-economic feasibility study of BAPV for commercial and residential building hybrid energy systems (HES). A component sizing model based on the optimal power dispatch simulations with the objective of minimum cost of energy (COE) is used to determine the component sizes of HES. The techno-economic performances of two HES composed of BAPV and batteries for residential and commercial buildings are investigated. The results show that the use of BAPV in the commercial building HES can reduce the electricity bill for customers owing to the government subsidies on PV as well as due to the similar characteristics of the load profile as to the solar radiation profile. However, due to temporal dislocation between the load and solar radiation patterns, the use of PV in the residential building HES may significantly increase the initial capital cost and replacement cost of battery, resulting in the COE of the residential building HES with BAPV even higher than the residential electricity price. The techno-economic performances of battery (e.g., the lifetime and capital cost) have more effect on the COE of the residential building HES than that of PV.

  2. OnToPV - a virtual guidance through the PV-plant ''Solardach New Munich Trade Fair''; OnToPV - eine virtuelle Fuehrung druch die PV-Anlage ''Solardach Neue Messe Muenchen''

    Energy Technology Data Exchange (ETDEWEB)

    Stich, C.; Becker, G.; Zehner, M. [Fachhochschule Muenchen (Germany). Fachbereich Elektrotechnik; Giesler, B. [Shell Solar GmbH, Muenchen (Germany); Weber, W.; Flade, F. [Solarenergiefoerderverein Bayern e.V., Muenchen (Germany)

    2003-07-01

    OnToPV is the project of an online tour guide through the PV-plant of the new Munich trade fair. The first focs was to provide an interactive circuit of a PV-plant. Within a virtual tour different areas of the plant should be made accessible over the internet. For this purpose a three-dimensional, multimedia guidance was developed for the PV-plant of the new Munich trade fair with informative diagrams, *.pdf-files and retrievable video-files. In such a way interested internet-users could experience with minimum system requirements, local- and time-independently the PV-plant in its structure and components and could receive different background informations in addition. From the view of the plant operators such an internet project serves on the one hand as an additional source of information where questions could be referred to and on the other hand as sort of advertisement for the technology and the PV-system. In addition the attractiveness of the internet appearance of the plant operator rises and the public awareness of such projects could increase. Seen from the user perspective - such an internet project gives private or business users the possibility to inform themselves interactively, purposefully and with the possibility to move through the plant on their own. Users could utilize the guidance through the plant without overcoming far geographical distances, saving time and money. Perhaps this source of information helps awaking a larger consciousness for renewable energies. The result OnToPV showed the various possibilities offered by projects of this kind in the internet. Ideas of possible extensions as for example the integration of current PV-plant operational data or of a virtual learning platform illustrate the perspectives of the project. Virtual guidance of this kind for various types of power plants are conceivable. (orig.)

  3. Integrated sustainable urban infrastructures in building projects

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Quitzau, Maj-Britt; Elle, Morten

    2007-01-01

    Current strategies in urban planning and development merely promote standardized building solutions, while failing to prioritize innovative approaches of integration between building projects and sustainable urban infrastructures. As a result of this, urban infrastructures – the urban veins...... – are outdated from a sustainability perspective. This paper looks into more holistic ways of approaching building projects and discuss whether this provide a basis for an increased integration of urban infrastructures within building projects. In our study, we especially emphasise how conventional ways...... of approaching building projects are influenced by lock-in of existing infrastructural systems and compare this with two examples of more holistic ways of approaching building projects, developed by two architecture firms. The paper points out that such holistic perspective in building projects provide...

  4. Comparative study of solar cooling systems with building-integrated solar collectors for use in sub-tropical regions like Hong Kong

    International Nuclear Information System (INIS)

    Fong, K.F.; Lee, C.K.; Chow, T.T.

    2012-01-01

    Highlights: ► Performance of building-integrated solar collectors analyzed. ► Comparisons made with solar collectors installed on roof. ► Use of building-integrated solar collectors increased the total primary consumption. ► Reduction in the building load could not compensate drop in solar collector output. ► Building-integrated solar collectors only used when roof space insufficient. -- Abstract: The performance of solar cooling systems with building-integrated (BI) solar collectors was simulated and the results compared with those having the solar collectors installed conventionally on the roof based on the weather data in Hong Kong. Two types of solar collectors and the corresponding cooling systems, namely the flat-plate collectors for absorption refrigeration and the PV panels for DC-driven vapour compression refrigeration, were used in the analysis. It was found that in both cases, the adoption of BI solar collectors resulted in a lower solar fraction (SF) and consequently a higher primary energy consumption even though the zone loads were reduced. The reduction in SF was more pronounced in the peak load season when the solar radiation was nearly parallel to the solar collector surfaces during the daytimes, especially for those facing the south direction. Indeed, there were no outputs from the BI flat-plate collectors facing the south direction between May and July. The more severe deterioration in the system performance with the BI flat-plate type collectors made them technically infeasible in terms of the energy-saving potential. It was concluded that the use of BI solar collectors in solar cooling systems should be restricted only to situations where the availability of the roof was limited or insufficient when applied in sub-tropical regions like Hong Kong.

  5. PV supply chain growing pains

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, A. [Matrix Energy Inc., Montreal, PQ (Canada)

    2010-11-15

    This article discussed issues involving the supply chain for photovoltaic (PV) equipment that is emerging in Ontario as a result of the Feed-in-Tariff (FIT) program that was launched in late 2009. The rapidly developing PV supply chain may not be taking a sustainable path. The domestic-content requirement is making manufacturers outlay capital to set up manufacturing in Ontario without reliable market data. Only a small number of dealer/installers have any meaningful experience designing and installing grid-tie PV. Until recently, wholesale distributors designed and supplied most grid-tie PV systems in Canada, and solar dealers/installers or electricians or electrical contractors did the installation. Instead of selling directly to dealer/installers, solar manufacturers should develop strong relationships with wholesalers, who have system design experience and product training. This would allow manufacturers to focus on their core strength, reach more customers, and keep lower inventory levels. Wholesale distributors in turn provide dealer/installers with expertise in product and system design, training from a range of manufacturers, marketing and logistics support, and immediate access to inventory. Manufacturers generally lack appropriate accounting, engineering, marketing, and logistics services to deal with a multitude of active accounts, and they are not structured to work with architects and engineers to do complete system design. Partnering with wholesale distributors allows manufacturers to take on the residential and small-scale commercial sectors by building brand awareness and increasing market share and sales across Canada. 2 figs.

  6. PV supply chain growing pains

    International Nuclear Information System (INIS)

    Wilkins, A.

    2010-01-01

    This article discussed issues involving the supply chain for photovoltaic (PV) equipment that is emerging in Ontario as a result of the Feed-in-Tariff (FIT) program that was launched in late 2009. The rapidly developing PV supply chain may not be taking a sustainable path. The domestic-content requirement is making manufacturers outlay capital to set up manufacturing in Ontario without reliable market data. Only a small number of dealer/installers have any meaningful experience designing and installing grid-tie PV. Until recently, wholesale distributors designed and supplied most grid-tie PV systems in Canada, and solar dealers/installers or electricians or electrical contractors did the installation. Instead of selling directly to dealer/installers, solar manufacturers should develop strong relationships with wholesalers, who have system design experience and product training. This would allow manufacturers to focus on their core strength, reach more customers, and keep lower inventory levels. Wholesale distributors in turn provide dealer/installers with expertise in product and system design, training from a range of manufacturers, marketing and logistics support, and immediate access to inventory. Manufacturers generally lack appropriate accounting, engineering, marketing, and logistics services to deal with a multitude of active accounts, and they are not structured to work with architects and engineers to do complete system design. Partnering with wholesale distributors allows manufacturers to take on the residential and small-scale commercial sectors by building brand awareness and increasing market share and sales across Canada. 2 figs.

  7. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    Science.gov (United States)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on 1) The utilization of a large area factory assembled PV panel, and 2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District's Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems.

  8. Dynamic integration of residential building design and green energies : the Bireth approach : building integrated renewable energy total harvest approach

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, K.P. [Hong Kong Univ., Hong Kong (China). Dept. of Architecture; Luk, C.L.P. [Chu Hai College of Higher Education, Hong Kong (China). Dept. of Architecture; Wong, S.T. [Hong Kong Univ., Hong Kong (China). Div. of Arts and Humanities, SPACE; Chung, S.L.; Fung, K.S.; Leung, M.F. [Hong Kong Inst. of Vocational Education, Hong Kong (China)

    2006-07-01

    Renewable energy sources that are commonly used in buildings include solar energy, wind energy and rainwater collection. High quality environmentally responsive residential buildings are designed to provide good insulation in winter and solar shading in summer. However, this study demonstrated that the green energy design in residential buildings is not usually well integrated. For example, windows with clear double or triple glazed glass, allow good penetration of sunlight during the day in winter, but are not further dynamically insulated for when the sun goes down to avoid heat loss from the building. Additionally, good solar static shading devices often block much needed daylight on cloudy winter days. These examples emphasize the lack of an integrated approach to gain the best advantage of green energies and to minimize energy costs in residential buildings. This study addressed issues facing the integrated approach with particular reference to the design of a small residential building in rural Beijing. The design included a new approach for interpreting a traditional Beijing court yard house in the modern Beijing rural context, while integrating multi-responding innovative green energy applications derived from first principles. This paper also presented a proposal for a village house in Hong Kong to harvest as much renewable energies as possible, primarily wind energy and solar energy, that come into contact with the building. The purpose was to work towards a renewable energy approach for buildings, namely the Bireth approach, which will benefit practically all houses by making them zero energy houses. The paper described the feasibility of integrating renewable energies in buildings to fulfill performance requirements such improving ventilation, providing warm interiors, drying clothes, or storing solar and wind energies into power batteries. The challenges facing the development of a proposed micro solar hot air turbine were also presented. 15 refs., 6

  9. Quantification, challenges and outlook of PV integration in the power system: a review by the European PV Technology Platform

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Baccaro, Federica; De Felice, Matteo

    2015-01-01

    Integration in the power system has become a limiting factor to the further development of photovoltaics. Proper quantification is needed to evaluate both issues and solutions; the share of annual electricity demand is widely used but we found that some of the metrics which are related to power...... rather than energy better reflect the impact on networks. Barriers to wider deployment of PV into power grids can be split between local technical issues (voltage levels, harmonics distortion, reverse power flows and transformer loading) and system-wide issues (intermittency, reduction of system...... resilience). Many of the technical solutions to these issues rely on the inverters as actuators (e.g., for control of active and reactive power) or as interfaces (e.g., for local storage). This role requires further technical standardisation and needs to be taken into account in the planning of power...

  10. LonWorks as Fieldbus for PV-Installations; LonWorks als Feldbus fuer PV-Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Bergen, Ch. von

    2003-07-01

    The growing market for photovoltaics increasingly requires suitable quality controls covering plant operators, planners and installers, as well as the electric utilities. Additionally, the interest of the general public in the behaviour of photovoltaic (PV) plants is growing. This includes information from everyday practice. Alongside data retrieval, other themes such as the operative management of the unit and energy management become increasingly important for grid-connected PV systems. Todays measuring systems are not compatible with each other. Data communication between different PV plants with computer-aided analysis- and visualisation programmes is very complicated. LonWorks was introduced by Motorola and Toshiba in 1991. Today it leads the world market for field bus systems. With plug and play, components by several manufacturers can easily be incorporated into a LonWorks network. Today more than 3,500 companies use LonWorks technology. The goal of this project is to introduce the very popular LonWorks technology as a new standard for PV applications. The first objective was to develop a LonWorks interface for our Convert inverters and to connect them into a small network. In a second step we installed a LonWorks system at the 260 kW{sub p} PV plant 'Felsenau' in Berne, Switzerland. All 68 inverters are controlled over power line with LonWorks. The on-site PC acts as LonWorks DataServer and making remote information monitoring and data gathering possible. As soon as a functional error occurs, an alarm will be transmitted via modem to the SMSC (Short Message Service Centre). After two years of operation we can say that all expectations were fulfilled by our new system. Knowledge gained from this project has shown that LonWorks has lived up its considerable promise and can be regarded as a high-quality piece of technology. Integration into an overall system is technically very easy. To do this, however, relatively expensive software solutions have

  11. Concentrated solar power plants impact on PV penetration level and grid flexibility under Egyptian climate

    Science.gov (United States)

    Moukhtar, Ibrahim; Elbaset, Adel A.; El Dein, Adel Z.; Qudaih, Yaser; Mitani, Yasunori

    2018-05-01

    Photovoltaic (PV) system integration in the electric grid has been increasing over the past decades. However, the impact of PV penetration on the electric grid, especially during the periods of higher and lower generation for the solar system at the middle of the day and during cloudy weather or at night respectively, limit the high penetration of solar PV system. In this research, a Concentrated Solar Power (CSP) with Thermal Energy Storage (TES) has been aggregated with PV system in order to accommodate the required electrical power during the higher and lower solar energy at all timescales. This paper analyzes the impacts of CSP on the grid-connected PV considering high penetration of PV system, particularly when no energy storages in the form of batteries are used. Two cases have been studied, the first when only PV system is integrated into the electric grid and the second when two types of solar energy (PV and CSP) are integrated. The System Advisor Model (SAM) software is used to simulate the output power of renewable energy. Simulation results show that the performance of CSP has a great impact on the penetration level of PV system and on the flexibility of the electric grid. The overall grid flexibility increases due to the ability of CSP to store and dispatch the generated power. In addition, CSP/TES itself has inherent flexibility. Therefore, CSP reduces the minimum generation constraint of the conventional generators that allows more penetration of the PV system.

  12. Performance evaluation of the 1 MW building integrated PV project in Nieuwland, Amersfoort, the Netherlands, January 2001 – February 2006

    NARCIS (Netherlands)

    de Keizer, A.C.; ter Horst, E.; van Sark, W.G.J.H.M.

    2008-01-01

    The performance of 463 decentralised PV systems with a total installed peak power of 1.2 MWp, has been evaluated for a period of five years (2001-2006). The systems are situated in the urban area Nieuwland in the town of Amersfoort in the Netherlands and are part of one of the largest decentralised

  13. Energetic performance analysis of a commercial water-based photovoltaic thermal system (PV/T) under summer conditions

    Science.gov (United States)

    Nardi, I.; Ambrosini, D.; de Rubeis, T.; Paoletti, D.; Muttillo, M.; Sfarra, S.

    2017-11-01

    In the last years, the importance of integrating the production of electricity with the production of sanitary hot water led to the development of new solutions, i.e. PV/T systems. It is well known that hybrid photovoltaic-thermal systems, able to produce electricity and thermal energy at the same time with better energetic performance in comparison with two separate systems, present many advantages for application in a residential building. A PV/T is constituted generally by a common PV panel with a metallic pipe, in which fluid flows. Pipe accomplishes two roles: it absorbs the heat from the PV panel, thus increasing, or at least maintaining its efficiency; furthermore, it stores the heat for sanitary uses. In this work, the thermal and electrical efficiencies of a commercial PV/T panel have been evaluated during the summer season in different days, to assess the effect of environmental conditions on the system total efficiency. Moreover, infrared thermographic diagnosis in real time has been effected during the operating mode in two conditions: with cooling and without cooling; cooling was obtained by natural flowing water. This analysis gave information about the impact of a non-uniform temperature distribution on the thermal and electrical performance. Furthermore, measurements have been performed in two different operating modes: 1) production of solely electrical energy and 2) simultaneous production of thermal and electrical energy. Finally, total efficiency is largely increased by using a simple solar concentrator nearby the panel.

  14. PV potential and potential PV rent in European regions

    DEFF Research Database (Denmark)

    Hansen, Anders Chr.; Thorn, Paul

    2013-01-01

    The paper provides a GIS based model for assessing the potentials of photovoltaic electricity in Europe by NUTS 2 regions. The location specific energy potential per PV-­‐panel area is estimated based on observations of solar irradiation, conversion efficiency, levelised costs and the social value...... of PV-­‐electricity. Combined with the potential density of PV-­‐panel area based on land cover and environental restrictions, the PV energy potential and the potential PV ressource rent is calculated. These calculations enbable the model to estimate the regional patterns at NUTS 2 level...

  15. Comparison of the energy and environmental impact by integrating a H_2 vehicle and an electric vehicle into a zero-energy building

    International Nuclear Information System (INIS)

    Cao, Sunliang

    2016-01-01

    Highlights: • Integrating a commercial-scale H_2 vehicle (HV) or electric vehicle (EV) into a ZEB. • Simultaneously fulfilling net-zero energy building and absolute-zero energy vehicle. • Energy performance comparison between the ZEBs with HV, EV, and no vehicle. • The energy matching-enhancing solutions for integrating the HV or EV with the ZEB. • Solutions for improving the matching and relieving the negative impact on the grid. - Abstract: The boundary extension of a zero-energy building to integrate a new energy vehicle will facilitate the realization of the target set by the EU 2050 roadmap. In this study, either a hydrogen vehicle (HV) or an electric vehicle (EV) is integrated into a renewable-supported building system with appropriate control strategies. The focused variables in this study are renewable energy capacities, vehicle system options, extents to utilize vehicle storages for domestic purposes, and the Excess REe-HW recharging strategies. The analysing aspects include the energy and environmental impact as well as the energy matching and the grid interactions. The results show that the annual net-zero energy/emission balance can be met by a 16, 12, and 12 kW rated wind turbine, or by a 195.8, 160.2, and 142.4 m"2 PV, for the building with the HV, the EV and no vehicle (NV), respectively. The building with the HV will be more demanding in meeting the balance due to the less efficient HV system than that with the EV. Moreover, better matching for the zero-energy system can be achieved by relieving the condition to discharge the vehicle storages for domestic usages and by using the Excess REe-HW recharging strategy. However, their negative effect will be a slight increase in the annual net-energy consumption, due to an increased loss from both the HV/EV integrated system and the thermal storage.

  16. Three integrated photovoltaic/sound barrier power plants. Construction and operational experience; Drei integrierte PV-Schallschutz Versuchsfelder. Bau und Erprobung

    Energy Technology Data Exchange (ETDEWEB)

    Nordmann, T.; Froelich, A.; Clavadetscher, L.

    2002-07-01

    After an international ideas competition by TNC Switzerland and Germany in 1996, six companies where given the opportunity to construct a prototype of their newly developed integrated PV-sound barrier concepts. The main goal was to develop highly integrated concepts, allowing the reduction of PV sound barrier systems costs, as well as the demonstration of specific concepts for different noise situations. This project is strongly correlated with a German project. Three of the concepts of the competition are demonstrated along a highway near Munich, constructed in 1997. The three Swiss installations had to be constructed at different locations, reflecting three typical situations for sound barriers. The first Swiss installation was the world first Bi-facial PV-sound barrier. It was built on a highway bridge at Wallisellen-Aubrugg in 1997. The operational experience of the installation is positive. But due to the different efficiencies of the two cell sides, its specific yield lies somewhat behind a conventional PV installation. The second Swiss plant was finished in autumn 1998. The 'zig-zag' construction is situated along the railway line at Wallisellen in a densely inhabited area with some local shadowing. Its performance and its specific yield is comparatively low due to a combination of several reasons (geometry of the concept, inverter, high module temperature, local shadows). The third installation was constructed along the motor way A1 at Bruettisellen in 1999. Its vertical panels are equipped with amorphous modules. The report show, that the performance of the system is reasonable, but the mechanical construction has to be improved. A small trial field with cells directly laminated onto the steel panel, also installed at Bruettisellen, could be the key development for this concept. This final report includes the evaluation and comparison of the monitored data in the past 24 months of operation. (author)

  17. Commercial breaks: building the market for PV in Africa

    International Nuclear Information System (INIS)

    Hankins, M.

    2001-01-01

    The article focuses on the huge potential market for off-grid photovoltaics in Africa, in the sub-Saharan region in particular. However, so far the potential market remains largely untapped and several multimillion-dollar projects aimed at developing the market have been disappointing. The result has been a reduction in the activities of PV companies in Africa. The article seeks reasons for the lack of success and offers suggestions for improving the situation

  18. Technology for Building Systems Integration and Optimization – Landscape Report

    Energy Technology Data Exchange (ETDEWEB)

    William Goetzler, Matt Guernsey, Youssef Bargach

    2018-01-31

    BTO's Commercial Building Integration (CBI) program helps advance a range of innovative building integration and optimization technologies and solutions, paving the way for high-performing buildings that could use 50-70% less energy than typical buildings. CBI’s work focuses on early stage technology innovation, with an emphasis on how components and systems work together and how whole buildings are integrated and optimized. This landscape study outlines the current body of knowledge, capabilities, and the broader array of solutions supporting integration and optimization in commercial buildings. CBI seeks to support solutions for both existing buildings and new construction, which often present very different challenges.

  19. Background information to the installers guide for small scale mains connected PV

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This report contains background information used by BRE, EA Technology, Halcrows and Sundog when compiling guidance for the UK's New and Renewable Energy Programme on the installation of small-scale photovoltaics (PV) in buildings. The report considers: relevant standards; general safety issues; fire and safety issues, including the fire resistance of PV modules; PV module ratings such as maximum voltage and maximum current; DC cabling; the DC disconnect; the DC junction box; fault analysis; general and AC side earthing; DC earthing; lightning and surge suppression; inverters; AC modules; AC systems; getting connection; mounting options; and installation issues.

  20. Building automation: Photovoltaic assisted thermal comfort management system for energy saving

    International Nuclear Information System (INIS)

    Khan, M Reyasudin Basir; Jidin, Razali; Shaaya, Sharifah Azwa; Pasupuleti, Jagadeesh

    2013-01-01

    Building automation plays an important key role in the means to reduce building energy consumption and to provide comfort for building occupants. It is often that air conditioning system operating features ignored in building automation which can result in thermal discomfort among building occupants. Most automation system for building is expensive and incurs high maintenance cost. Such system also does not support electricity demand side management system such as load shifting. This paper discusses on centralized monitoring system for room temperature and photovoltaic (PV) output for feasibility study of PV assisted air conditioning system in small office buildings. The architecture of the system consists of PV modules and sensor nodes located at each room. Wireless sensor network technology (WSN) been used for data transmission. The data from temperature sensors and PV modules transmitted to the host personal computer (PC) wirelessly using Zigbee modules. Microcontroller based USB data acquisition device used to receive data from sensor nodes and displays the data on PC.

  1. Building automation: Photovoltaic assisted thermal comfort management system for energy saving

    Science.gov (United States)

    Reyasudin Basir Khan, M.; Jidin, Razali; Pasupuleti, Jagadeesh; Azwa Shaaya, Sharifah

    2013-06-01

    Building automation plays an important key role in the means to reduce building energy consumption and to provide comfort for building occupants. It is often that air conditioning system operating features ignored in building automation which can result in thermal discomfort among building occupants. Most automation system for building is expensive and incurs high maintenance cost. Such system also does not support electricity demand side management system such as load shifting. This paper discusses on centralized monitoring system for room temperature and photovoltaic (PV) output for feasibility study of PV assisted air conditioning system in small office buildings. The architecture of the system consists of PV modules and sensor nodes located at each room. Wireless sensor network technology (WSN) been used for data transmission. The data from temperature sensors and PV modules transmitted to the host personal computer (PC) wirelessly using Zigbee modules. Microcontroller based USB data acquisition device used to receive data from sensor nodes and displays the data on PC.

  2. Solar building construction. Special edition of the journal 'Sonnenenergie'; Solares Bauen. Sonderheft der Sonnenenergie

    Energy Technology Data Exchange (ETDEWEB)

    Rust, A. (comp.)

    2003-10-01

    This special issue of October 2003 reviews solar architecture, planning, applications, technology, market and knowledge. Subjects: Falkenweg housing development; Q-Cells solar factory; Modehaus Zara building; Haus Westermayr McCready building; Federal Environmental Office building, Dessau; 'Haus im Himmel' building; NRW state representatives building in Berlin; Zero-emission building 'Sunny Woods', Zurich; Hellerau workshop buildings, Dresden; HOCHTIEF PRISMA Haus building, Frankfurt; Solar government buildings, Berlin; SOLARBAU programme; Energy supply concepts based on photovoltaic power supply; Solar cooling; Photovoltaic lamellas; Solar building construction; Solar contracting; Solar building modernisation; Integrated PV systems in Europe; Living in passive buildings; Funding programmes for renewable energy sources and building construction. (orig./AKF)

  3. Large Scale Solar Power Integration in Distribution Grids : PV Modelling, Voltage Support and Aggregation Studies

    NARCIS (Netherlands)

    Samadi, A.

    2014-01-01

    Long term supporting schemes for photovoltaic (PV) system installation have led to accommodating large numbers of PV systems within load pockets in distribution grids. High penetrations of PV systems can cause new technical challenges, such as voltage rise due to reverse power flow during light load

  4. Spatio-temporal analysis of regional PV generation

    DEFF Research Database (Denmark)

    Nuño Martinez, Edgar; Cutululis, Nicolaos Antonio

    2016-01-01

    Photovoltaic (PV) power is growing in importance worldwide and hence needs to be represented in operation and planning of power system. As opposed to traditional generation technologies, it is characterized by exhibiting both a high variability and a significant spatial dependence. This paper...... presents a fundamental analysis of regional solar generation time series, aiming to potentially facilitate large-scale solar integration. It will focus on characterizing the underlying dependence structure at the system level as well as describing both statistical and temporal properties of regional PV...

  5. A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance

    International Nuclear Information System (INIS)

    Fan, Yuling; Xia, Xiaohua

    2017-01-01

    Highlights: • A multi-objective optimization model for building envelope retrofit is presented. • Facility performance degradation and maintenance is built into the model. • A rooftop PV system is introduced to produce electricity. • Economic factors including net present value and payback period are considered. - Abstract: Retrofitting existing buildings with energy-efficient facilities is an effective method to improve their energy efficiency, especially for old buildings. A multi-objective optimization model for building envelope retrofitting is presented. Envelope components including windows, external walls and roofs are considered to be retrofitted. Installation of a rooftop solar panel system is also taken into consideration in this study. Rooftop solar panels are modeled with their degradation and a maintenance scheme is studied for sustainability of energy and its long-term effect on the retrofitting plan. The purpose is to make the best use of financial investment to maximize energy savings and economic benefits. In particular, net present value, the payback period and energy savings are taken as the main performance indicators of the retrofitting plan. The multi-objective optimization problem is formulated as a non-linear integer programming problem and solved by a weighted sum method. Results of applying the designed retrofitting plan to a 50-year-old building consisting of 66 apartments demonstrated the effectiveness of the proposed model.

  6. SunShot 2030 for Photovoltaics (PV): Envisioning a Low-cost PV Future

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Frew, Bethany A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, James [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Woodhouse, Michael A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-12

    In this report we summarize the implications, impacts, and deployment potential of reaching the SunShot 2030 targets for the electricity system in the contiguous United States. We model 25 scenarios of the U.S. power sector using the Regional Energy Deployment Systems (ReEDS) and Distributed Generation (dGen) capacity expansion models. The scenarios cover a wide range of sensitivities to capture future uncertainties relating to fuel prices, retirements, renewable energy capital costs, and load growth. We give special attention to the potential for storage costs to also rapidly decline due to its large synergies with low-cost solar. The ReEDS and dGen models project utility- and distributed-scale power sector evolution, respectively, for the United States. Both models have been designed with special emphasis on capturing the unique traits of renewable energy, including variability and grid integration requirements. Across the suite of scenarios modeled, we find that reaching the SunShot 2030 target has the potential to lead to significant capacity additions of PV in the United States. By 2050, PV penetration levels are projected to reach 28-46 percent of total generation. If storage also sees significant reductions in cost, then the 2050 solar penetration levels could reach 41-64 percent. PV deployment is projected to occur in all of the lower 48 states, though the specific deployment level is scenario dependent. The growth in PV is projected to be dominated by utility-scale systems, but the actual mix between utility and distributed systems could ultimately vary depending on how policies, system costs, and rate structures evolve.

  7. Solar PV Power Forecasting Using Extreme Learning Machine and Information Fusion

    OpenAIRE

    Le Cadre , Hélène; Aravena , Ignacio; Papavasiliou , Anthony

    2015-01-01

    International audience; We provide a learning algorithm combining distributed Extreme Learning Machine and an information fusion rule based on the ag-gregation of experts advice, to build day ahead probabilistic solar PV power production forecasts. These forecasts use, apart from the current day solar PV power production, local meteorological inputs, the most valuable of which is shown to be precipitation. Experiments are then run in one French region, Provence-Alpes-Côte d'Azur, to evaluate ...

  8. Photovoltaics for Buildings: Key Issues in Pursuit of Market Readiness

    International Nuclear Information System (INIS)

    Sheila, J.; Hayter, P.E.

    1998-01-01

    The photovoltaic (PV) industry is rapidly beginning to recognize the market potential of the buildings sector. New PV-for-buildings products have recently become commercially available, and numerous products that are under development will be introduced within the next 5 years. To ensure that these new products will be adopted and used in common building practices, the PV industry should recognize and address important buildings industry issues. These issues include building codes and standards, after-market servicing, education, and warranties and insurance policies. Photovoltaic systems are also still very expensive. The simplest method for increasing their value for a building is to decrease the building's electrical loads through energy efficiency and conservation. Meeting these goals can only be accomplished through partnerships with the U.S. Department of Energy (DOE), private industry, and public institutions

  9. Proceedings of the Canadian Solar Buildings Conference : the 31. annual conference of the Solar Energy Society of Canada Inc. and the 1. Canadian Solar Buildings Research Network conference

    International Nuclear Information System (INIS)

    Athienitis, A.; Charron, R.; Karava, P.; Stylianou, M.; Tzempelikos, A.

    2006-01-01

    The first conference organized by the newly established Canadian Solar Buildings Research Network (SBRN) was held in conjunction with the thirty-first annual conference of the Solar Energy Society of Canada Inc (SESCI). The conference was attended by top researchers from 10 Canadian Universities to promote innovative research and development in solar energy applications and to advance the awareness of solar energy in Canada. It featured special events such as trade shows, photovoltaic workshops, a course in ESP-r simulation, tours of solar houses and other events focused on the economic, environmental and socio-economic benefits of solar technology, including the potential to reduce greenhouse gas emissions. SBRN was founded on the premise that university researchers should focus on solar energy applications for buildings. Several presentations proposed action plans to accelerate the implementation of solar energy through the use of innovative building technologies and sustainable energy policies. Other major issues of interest were also discussed, including the development of the net-zero energy solar home and grid-connection issues. The sessions of the conference were entitled: solar thermal systems; solar electricity; building integrated photovoltaic systems; design issues and tools; integrating PV and solar thermal in buildings; daylighting and solar radiation modeling; fenestration and shading; PV manufacturing and solar electricity resources. The proceedings featured 41 refereed papers and 13 poster presentations, all of which have been catalogued separately for inclusion in this database. refs., tabs., figs

  10. Accelerating residential PV expansion: demand analysis for competitive electricity markets

    International Nuclear Information System (INIS)

    Duke, Richard; Williams, Robert; Payne, Adam

    2005-01-01

    This article quantifies the potential market for grid-connected, residential photovoltaic (PV) electricity integrated into new homes built in the US. It complements an earlier supply-side analysis by the authors that demonstrates the potential to reduce PV module prices below $1.5/W p by scaling up existing thin-film technology in 100 MW p /yr manufacturing facilities. The present article demonstrates that, at that price, PV modules may be cost effective in 125,000 new home installations per year (0.5 GW p /yr). While this market is large enough to support multiple scaled up thin-film PV factories, inefficient energy pricing and demand-side market failures will inhibit prospective PV consumers without strong public policy support. Net metering rules, already implemented in many states to encourage PV market launch, represent a crude but reasonable surrogate for efficient electricity pricing mechanisms that may ultimately emerge to internalize the externality benefits of PV. These public benefits include reduced air pollution damages (estimated costs of damage to human health from fossil fuel power plants are presented in Appendix A), deferral of transmission and distribution capital expenditures, reduced exposure to fossil fuel price risks, and increased electricity system reliability for end users. Thus, net metering for PV ought to be implemented as broadly as possible and sustained until efficient pricing is in place. Complementary PV 'buydowns' (e.g., a renewable portfolio standard with a specific PV requirement) are needed to jumpstart regional PV markets

  11. Seven thematic sheets 'solar and building' to understand the stakes of solar for the building industry

    International Nuclear Information System (INIS)

    2016-01-01

    In order to highlight the interest of solar energy for building for commissioning clients and public authorities, in terms of quality and competitiveness, this document proposes seven sheets which respectively address: the positive energy building, the development of solar energy in buildings with local authorities, photovoltaic self-consumption, the competitiveness of solar PV, an offer of quality by professionals of the solar PV, the competitiveness of solar heating. Each sheet proposes an overview of stakes, technical solutions, and local or professional commitment, and formulates some proposals for the future

  12. Overview of Grid Codes for Photovoltaic Integration

    DEFF Research Database (Denmark)

    Zheng, Qianwei; Li, Jiaming; Ai, Xiaomeng

    2017-01-01

    The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration in differ......The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration...

  13. A thermo economic analysis of a PV-hydrogen system feeding the energy requests of a residential building in an isolated valley of the Alps

    International Nuclear Information System (INIS)

    Santarelli, M.; Macagno, S.

    2004-01-01

    The subject of this paper is an economic analysis of a model of a stand alone energy system based only on a renewable source (solar irradiance) integrated with a system for the production of hydrogen. The purpose of this system is to supply the complete electric and part of the heat requests of a small residential user in a remote area (an isolated building in a valley of the Alps in Italy) during a complete year of operation without integration of a traditional energy system based on fossil fuels. The system analysed is composed of a PV array integrated with an electrolyser, with a tank where the hydrogen is stored as compressed gas and with a proton exchange membrane fuel cell. Such a system has no pollutant emissions and is environmentally friendly. A simulation program has been developed to design the system and to analyse the technical and economic performance during a complete year of operation. The economic analysis is developed using thermo economic analysis. This procedure joins some aspects of exergy analysis with some economic information, such as the fuel market costs and the investment and maintenance costs of the components of the energy plant. Using this methodology, it is possible to obtain some information on the economic behaviour of the plant and to analyse in depth the process of cost formation of all system flows, in particular those of the final products. The thermo economic analysis can be performed to evaluate the different economic behaviour of the system in different operating conditions (e.g. during daylight hours or in evening hours). In this paper, the analysis has been effected considering a representative day for each month of operation and two significant hours (1:00 p.m. and 8:00 p.m.) in order to consider two opposite situations (with and without solar irradiance) with high energy demands by the user. Moreover, a sensitivity analysis has been developed to calculate the variation of the cost of the final energy products (and of the

  14. Integration of Hybrid PV/Wind Generation System Using Fuzzy MPPT in Grid Connected System for Remote Area

    Directory of Open Access Journals (Sweden)

    Soedibyo

    2016-01-01

    Full Text Available Photovoltaic and wind are renewable energy resources that widely used and grow rapidly in fulfilling electricity demand. Powers from both technologies depend on sunlight intensity and wind speed. For small scale power generation, DC voltage from both technologies is low and requires step-up converter to raise DC voltage ratio before converted into AC voltage. To optimize this system, step-up converter must have high ratio and efficiency to a distance of wide voltage input. This paper proposed an operation simulation and arrangement of DC-DC converter along with DC-AC from hybrid source PV-Wind which integrated to grid utilities without using storage device. High Gain Integrated Cascade Boost (HGICB is DC-DC converter that has quadratic voltage ratio and used in this research. Then DC link connected to Voltage Source Inverter (VSI which interconnected with utility grid and controlled by current control method. The total installed capacity of hybrid source is 4.4 kW. Wind turbine uses PMSG along with full bridge rectifier. To maximize and stabilize the generated power, MPPT fuzzy is used. Result from the simulation shows that converter capable to maintain maximum power whether from PV and wind turbine which canalized to utility grid in various irradiation condition, wind speed, and grid load alteration.

  15. Interband cascade (IC) photovoltaic (PV) architecture for PV devices

    Science.gov (United States)

    Yang, Rui Q.; Tian, Zhaobing; Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.; Klem, John F.

    2015-10-20

    A photovoltaic (PV) device, comprising a PV interband cascade (IC) stage, wherein the IC PV stage comprises an absorption region with a band gap, the absorption region configured to absorb photons, an intraband transport region configured to act as a hole barrier, and an interband tunneling region configured to act as an electron barrier. An IC PV architecture for a photovoltaic device, the IC PV architecture comprising an absorption region, an intraband transport region coupled to the absorption region, and an interband tunneling region coupled to the intraband transport region and to the adjacent absorption region, wherein the absorption region, the intraband transport region, and the interband tunneling region are positioned such that electrons will flow from the absorption region to the intraband transport region to the interband tunneling region.

  16. Design procedures of hybrid PV/SMES system

    International Nuclear Information System (INIS)

    Hamad, Ismail; El-Sayas, M. A.

    2006-01-01

    This paper presents accurate procedures to determine the design parameters of an autonomous hybrid PV/SMES system. Integrating Superconductive magnetic energy storage as a recent storage technology with photovoltaic power system enhances the PV output utilization during the solar radiation fluctuations period. this is because of SMES fast response to any PV output fluctuation. The load demand is supplied either from PV plant or through SMES or from both. Imposed to the technical and economical constrains, the optimum solar cells area and the proper capacity and rating of SMES system are assessed. Regarding solar radiation profile, clear and cloudy days are accurately considered for investigation. Three indices are suggested to express the cloudy and fluctuations conditions. These indices represent the non-utilized PV energy due to clouds (x), fluctuation period (T f ) and location of fluctuations period(t s t). The incremental changes in the design parameters are computed for any variation in these indices. Differentiation between the role of BS and SMES in affecting the results is determined and quantitatively analyzed. The results of clear day condition with SMES are the bas quantities for these changes. Complete analysis of the most effective parameters is presented. Eventually, mathematical models are deduced for each parameter which assists in predicting its behavior against the independent variable.(Author)

  17. Sustainable recycling technologies for Solar PV off-grid system

    Science.gov (United States)

    Uppal, Bhavesh; Tamboli, Adish; Wubhayavedantapuram, Nandan

    2017-11-01

    Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP) recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology) while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  18. An Analysis of Open World PvP in LOTRO's PvMP as a Case Study for PvP Games

    Directory of Open Access Journals (Sweden)

    Toh Weimin

    2014-11-01

    Full Text Available This article focuses on the analysis of emergent gameplay, based on a case study of the author's subjective gameplay experience of Player versus Monster Player (PvMP in The Lord of the Rings Online (LOTRO. The argument presented here is that although there is a core system of Player versus Player (PvP which LOTRO shares with other online games, each type of online game has a specific kind of PvP system which attracts players to engage in the gameplay. For instance, the open world sandbox type of PvP attracts certain players to play in LOTRO's PvMP. One of the main aims of this study is thus to investigate some of the core systems of PvP gameplay in open world sandbox PvP. In this article, LOTRO is shown to offer unique opportunities for studying emergent gameplay in open world games, with particular relevance to PvP studies. Two of the core systems of PvP discussed include the design of the simple gameplay rules to support emergent gameplay, and the community's attitudes towards player's behaviours. The types of emergent gameplay discussed include free play versus negotiated fair play, the players' utilisation of strategies in open world PvP to support collaborative and competitive gameplay, and the changing dynamics of open ended gameplay. It is hoped that the analysis provided in this article would form the­ basis of future work on a more general framework for understanding PvP in other online games.

  19. Fire resistant PV shingle assembly

    Science.gov (United States)

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  20. PV/T slates - Laboratory measurements; PV/T-Schiefer. Labormessungen

    Energy Technology Data Exchange (ETDEWEB)

    Kropf, S.

    2003-07-01

    This comprehensive, illustrated report for the Swiss Federal Office of Energy (SFOE) is one a series of five reports dealing with increasing the overall efficiency of photovoltaic (PV) installations by also using the heat collected by the dark-coloured PV panels. The work reported on addresses open questions on the use of the heat and its optimal use. This report deals with an experimental outdoor set-up and reviews in-situ measurements made on a prototype of a ventilated PV-tile system (PV/T-Slates). The report describes the configuration and construction of the experimental PV-tiled roof and the measurement system used to measure its electrical and thermal performance. The results of the measurements made are presented in detail in graphical form. The influence of various factors such as air-slit width and mounting angle are discussed.

  1. Determining roof surfaces suitable for the installation of PV (photovoltaic) systems, based on LiDAR (Light Detection And Ranging) data, pyranometer measurements, and distribution network configuration

    International Nuclear Information System (INIS)

    Srećković, Nevena; Lukač, Niko; Žalik, Borut; Štumberger, Gorazd

    2016-01-01

    Proliferation of distributed generation units, integrated within the distribution network requires increased attention to their proper placements. In urban areas, buildings' rooftops are expected to have greater involvement in the deployment of PV (photovoltaic) systems. This paper proposes a novel procedure for determining roof surfaces suitable for their installation. The PV potential of roof surfaces is assessed based on Light Detection And Ranging (LiDAR) data and pyranometer measurements. Then, the time-dependent PV generation profiles, electricity distribution network configuration, and time-dependent loading profiles are used together over time-steps for selecting those roof surfaces with the highest PV potential, which would lead to the highest reduction of network losses per year. The presented procedure was implemented within a real urban area distribution network. The results obtained confirmed that PV potential assessment could be an insufficient criterion when selecting those roof surfaces suitable for the installation of PV systems. In order to obtain relevant results, network configuration and time-dependent loading and generation profiles must be considered as well. - Highlights: • Roof surfaces, suitable for installation of PV systems are evaluated and ranked. • Improved PV potential based procedure is proposed for their selection in urban areas. • Time-dependent network loading and PV generation profiles are considered. • Losses in a real electricity network are minimized in the optimization procedure. • Final selection of ranked roof surfaces is based on results of optimization.

  2. Investigation of building energy autonomy in the sahelian environment

    International Nuclear Information System (INIS)

    Coulibaly, O; Koulidiati, J; Ouedraogo, A; Kuznik, F; Baillis, D

    2012-01-01

    In this study, the energy generation of a set of photovoltaic panels is compared with the energy load of a building in order to analyse its autonomy in the sahelian environment when taking into account, the orientation, the insulation and the energy transfer optimisation of its windows. The Type 56 TRNSYS multizone building model is utilized for the energy load simulation and the Type 94 model of the same code enables the coupling of photovoltaic (PV) panels with the building. Without insulation, the PV energy generation represents 73.52 and 111.79% of the building electric energy load, respectively for poly-crystalline and mono-crystalline panels. For the same PV characteristics and when we insulate the roof and the floor, the energy generation increases to represent successively 121.09 and 184.13%. In the meantime, for building without insulation and with insulate the roof, the floor and 2 cm insulated walls, the energy consumption ratios decrease respectively from 201.13 to 105.20 kWh/m 2 /year. The investigations finally show that it is even possible to generate excess energy (positive energy building) and reduce the number and incident surface area of the PV panels if we conjugate the previous model with building passive architectural design mode (orientation, solar protection ...).

  3. Plasmodium vivax Tryptophan Rich Antigen PvTRAg36.6 Interacts with PvETRAMP and PvTRAg56.6 Interacts with PvMSP7 during Erythrocytic Stages of the Parasite.

    Directory of Open Access Journals (Sweden)

    Kriti Tyagi

    Full Text Available Plasmodium vivax is most wide spread and a neglected malaria parasite. There is a lack of information on parasite biology of this species. Genome of this parasite encodes for the largest number of tryptophan-rich proteins belonging to 'Pv-fam-a' family and some of them are potential drug/vaccine targets but their functional role(s largely remains unexplored. Using bacterial and yeast two hybrid systems, we have identified the interacting partners for two of the P. vivax tryptophan-rich antigens called PvTRAg36.6 and PvTRAg56.2. The PvTRAg36.6 interacts with early transcribed membrane protein (ETRAMP of P.vivax. It is apically localized in merozoites but in early stages it is seen in parasite periphery suggesting its likely involvement in parasitophorous vacuole membrane (PVM development or maintenance. On the other hand, PvTRAg56.2 interacts with P.vivax merozoite surface protein7 (PvMSP7 and is localized on merozoite surface. Co-localization of PvTRAg56.2 with PvMSP1 and its molecular interaction with PvMSP7 probably suggest that, PvTRAg56.2 is part of MSP-complex, and might assist or stabilize the protein complex at the merozoite surface. In conclusion, the PvTRAg proteins have different sub cellular localizations and specific associated functions during intra-erythrocytic developmental cycle.

  4. Plasmodium vivax Tryptophan Rich Antigen PvTRAg36.6 Interacts with PvETRAMP and PvTRAg56.6 Interacts with PvMSP7 during Erythrocytic Stages of the Parasite

    Science.gov (United States)

    Tyagi, Kriti; Hossain, Mohammad Enayet; Thakur, Vandana; Aggarwal, Praveen; Malhotra, Pawan; Mohmmed, Asif; Sharma, Yagya Dutta

    2016-01-01

    Plasmodium vivax is most wide spread and a neglected malaria parasite. There is a lack of information on parasite biology of this species. Genome of this parasite encodes for the largest number of tryptophan-rich proteins belonging to ‘Pv-fam-a’ family and some of them are potential drug/vaccine targets but their functional role(s) largely remains unexplored. Using bacterial and yeast two hybrid systems, we have identified the interacting partners for two of the P. vivax tryptophan-rich antigens called PvTRAg36.6 and PvTRAg56.2. The PvTRAg36.6 interacts with early transcribed membrane protein (ETRAMP) of P.vivax. It is apically localized in merozoites but in early stages it is seen in parasite periphery suggesting its likely involvement in parasitophorous vacuole membrane (PVM) development or maintenance. On the other hand, PvTRAg56.2 interacts with P.vivax merozoite surface protein7 (PvMSP7) and is localized on merozoite surface. Co-localization of PvTRAg56.2 with PvMSP1 and its molecular interaction with PvMSP7 probably suggest that, PvTRAg56.2 is part of MSP-complex, and might assist or stabilize the protein complex at the merozoite surface. In conclusion, the PvTRAg proteins have different sub cellular localizations and specific associated functions during intra-erythrocytic developmental cycle. PMID:26954579

  5. Lighting and shading of PV systems in buildings: Visualisation, calculation of shading losses, optimisation; Licht und Schatten auf ``PV in Gebaeuden``: Visualisierung, Ertragsprognose, Optimierung

    Energy Technology Data Exchange (ETDEWEB)

    Reise, C. [Fraunhofer-Inst. fuer Solare Energiesysteme, Freiburg (Germany). Abt. fuer Photovoltaische Systeme und Messtechnik

    1998-02-01

    Integrating photovoltaic generators in buildings often requires a specific assessment of the local solar resource. In built-up areas, partial shading of the generator area sometimes cannot be avoided. A combination of the simulation tools RADIANCE and INSEL provides both a perfect visualization and an accurate estimation of shading losses, on the basis of the same numerical model of the building. Thus, simulation techniques help to meet both the aesthetical and the technical requirements of a building construction. (orig.) [Deutsch] Die Integration von photovoltaischen Generatoren in Gebaeude erfordert oft eine besondere Bewertung der lokalen Einstrahlungsverhaeltnisse. In einer dicht bebauten Umgebung kann eine zeitweise Teilverschattung der Generatorflaechen oft nicht vermieden werden. Eine Kombination der Simulationsprogramme RADIANCE und INSEL ermoeglicht die architektonisch vollwertige Visualisierung und Durchfuehrung einer praezisen (Minder-)Ertragsprognose fuer gebaeudeintegrierte Photovoltaik auf der Basis desselben numerischen Gebaeudemodells. Die detaillierte Simulation traegt dazu bei, aesthetische und technische Anforderungen an die Gebaeudekonstruktion in Einklang zu bringen. (orig.)

  6. Solar PV power forecasting using extreme machine learning and experts advice fusion

    OpenAIRE

    Le Cadre, Hélène; Aravena Solís, Ignacio Andrés; Papavasiliou, Anthony; European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning

    2015-01-01

    We provide a learning algorithm combining distributed Extreme Learning Machine and an information fusion rule based on the aggregation of experts advice, to build day ahead probabilistic solar PV power production forecasts. These forecasts use, apart from the current day solar PV power production, local meteorological inputs, the most valuable of which is shown to be precipitation. Experiments are then run in one French region, Provence-Alpes-Côte d’Azur, to evaluate the algorithm performance...

  7. Building integrated photovoltaics (BIPV). Review, potentials, barriers and myths

    Energy Technology Data Exchange (ETDEWEB)

    Heinstein, Patrick; Ballif, Christophe [Ecole Polytechnique Federale de Lausanne (EPFL), Neuchatel (Switzerland). Photovoltaics and Thin Film Electronics Lab.; Perret-Aebi, Laure-Emmanuelle [CSEM, Neuchatel (Switzerland). PV-Center

    2013-07-01

    To date, none of the predictions that have been made about the emerging BIPV industry have really hit the target. The anticipated boom has so far stalled and despite developing and promoting a number of excellent systems and products, many producers around the world have been forced to quit on purely economic grounds. The authors believe that after this painful cleansing of the market, a massive counter trend will follow, enlivened and carried forward by more advanced PV technologies and ever-stricter climate policies designed to achieve energy neutrality in a cost-effective way. As a result, the need for BIPV products for use in construction will undergo first a gradual and then a massive increase. The planning of buildings with multifunctional, integrated roof and facade elements capable of fulfilling the technical and legal demands will become an essential, accepted part of the architectonic mainstream and will also contribute to an aesthetic valorisation. Until then, various barriers need to be overcome in order to facilitate and accelerate BIPV. Besides issues related to mere cost-efficiency ratio, psychological and social factors also play an evident role. The goal of energy change linked to greater use of renewables can be successfully achieved only when all aspects are taken into account and when visual appeal and energy efficiency thus no longer appear to be an oxymoron. (orig.)

  8. The PV market

    International Nuclear Information System (INIS)

    Hammond, B.

    1992-01-01

    This paper forecasts the photovoltaic (PV) market growth for the 1990s. Ten years of PV history are reviewed and used to establish market trends in terms of average selling price (ASP) and kilowatts shipped by market segment. The market is segmented into indoor consumer, stand-alone, and grid-connected applications. Indoor consumer presently represents a saturated market and is fairly predictable. The stand-alone market (i.e. not connected to the utility grid) is fairly stable and predictable. The utility PV market however is highly dependent on a number of market factors such as the cost of conventional energy the cost of PV systems utility acceptance of PV and regulatory controls. Government and institutional regulations, environmental issues, and OPEC and Middle East politics will have the greatest impact on the cost of conventional fuels. Private and federal investment in PV technology development could have a significant impact on the cost of PV systems. Forecasts are provided through the year 2000 for indoor consumer stand-alone and utility markets

  9. Design Process for Integrated Concepts with Responsive Building Elements

    DEFF Research Database (Denmark)

    Aa, Van der A.; Heiselberg, Per

    2008-01-01

    An integrated building concept is a prerequisite to come to an energy efficient building with a good and healthy IAQ indoor comfort. A design process that defines the targets and boundary conditions in the very first stage of the design and guarantees them until the building is finished and used...... is needed. The hard question is however: how to make the right choice of the combination of individual measures from building components and building services elements. Within the framework of IEA-ECBCS Annex 44 research has been conducted about the design process for integrated building concepts...

  10. Overview and analysis of current BIPV products: new criteria for supporting the technological transfer in the building sector

    Directory of Open Access Journals (Sweden)

    Pierluigi Bonomo

    2015-12-01

    Full Text Available The growing demand for nearly-Zero Energy Buildings is rapidly contributing to change the building skin from being a passive barrier towards a sensitive and active interface. Building Integrated Photovoltaics (BIPV is a unique solution for delivering clean, safe, affordable and decentralized electricity to people transforming the building surfaces in active solar collectors. Despite photovoltaic (PV technology and their basic usage are today known to everybody, the particular requirements for building integration have brought to the surface some issues over the years so that BIPV is still a niche market. Starting from this observation, the paper presents the results of an investigation on the current market of BIPV products for roofs and façade. The analysis aimed to identify the relevant possibilities the products today offer and the level of information that the producers make available within the technical description of BIPV systems. After disclosing the actual lack of information in comparison to conventional building products, the authors propose to implement a new “building-based” approach that could support the BIPV market by including a more comprehensive description of the product’s quality (today mainly comprising electrical and basic physical features. Such a “building-technology” perspective, also considering the recent normative framework in BIPV field, is expected to encourage the technological transfer of PV in the building sector by facilitating the daily work of architects, installers and the whole value chain.

  11. Thermal performances of ETFE cushion roof integrated amorphous silicon photovoltaic

    International Nuclear Information System (INIS)

    Hu, Jianhui; Chen, Wujun; Qiu, Zhenyu; Zhao, Bing; Zhou, Jinyu; Qu, Yegao

    2015-01-01

    Highlights: • Thermal performances of a three layer ETFE cushion integrated a-Si PV is evaluated. • Temperature of a-Si PV obviously affects temperature field and temperature boundary. • The maximum temperature difference of 3.4 K between measured and numerical results. • Main transport mechanisms in upper and lower chambers are convection and conduction. • Heat transfer coefficients of this roof are less than those of other ETFE cushion roofs. - Abstract: Thermal performances of the ETFE cushion roof integrated amorphous silicon photovoltaic (a-Si PV) are essential to estimate building performances, such as temperature distribution and heat transfer coefficient. To investigate these thermal performances, an experimental mock-up composed of a-Si PV and a three-layer ETFE cushion roof was built and the experiment was carried out under summer sunny condition. Meanwhile, numerical model with real boundary conditions was performed in this paper. The experimental results show that the temperature sequence of the three layers was the middle, top and bottom layer and that the PV temperature caused by solar irradiance was 353.8 K. This gives evidence that the PV has a significant effect on the temperature distribution. The experimental temperature was in good agreement with the corresponding location of the numerical temperature since the maximum temperature difference was only 3.4 K. Therefore, the numerical results were justified and then used to analyze the airflow characteristics and calculate the thermal performances. For the airflow characteristics, it is found that the temperature distribution was not uniform and the main transport mechanisms in the upper and lower chambers formed by the three layers were the convection and conduction, respectively. For the thermal performances, the surface convective heat transfer coefficients were obtained, which have validated that thermal performances of the three-layer ETFE cushion integrated a-Si PV are better than

  12. Design, production and materials of PV powered consumer products - the case of mass production (cd-rom)

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Akkerman, Remko; Palz, W.; Ossenbrink, H.; Helm, P.

    2005-01-01

    Though many options exist, the application of integrated PV systems in mass produced consumer products is still unusual and rare [1]. Therefore, to date, design and manufacturing aspects of product-integrated PV systems have been explored only to a very limited extent. The requirements for the

  13. Procedure for Measuring and Reporting the Performance of Photovoltaic Systems in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Deru, M.; Torcellini, P.; Hayter, S.

    2005-10-01

    This procedure provides a standard method for measuring and characterizing the long-term energy performance of photovoltaic (PV) systems in buildings and the resulting implications to the building's energy use. The performance metrics determined here may be compared against benchmarks for evaluating system performance and verifying that performance targets have been achieved. Uses may include comparison of performance with the design intent; comparison with other PV systems in buildings; economic analysis of PV systems in buildings; and the establishment of long-term performance records that enable maintenance staff to monitor trends in energy performance.

  14. Sustainable recycling technologies for Solar PV off-grid system

    Directory of Open Access Journals (Sweden)

    Uppal Bhavesh

    2017-01-01

    Full Text Available Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  15. A study on economic power dispatch grid connected PV power plant in educational institutes

    Science.gov (United States)

    Singh, Kuldip; Kumar, M. Narendra; Mishra, Satyasis

    2018-04-01

    India has main concerns on environment and escalation of fuel prices with respect to diminution of fossil fuel reserves and the major focus on renewable Energy sources for power generation to fulfill the present and future energy demand. Installation of PV power plants in the Educational Institutions has grown up drastically throughout India. More PV power plant are integrated with load and grid through net metering. Therefore, this paper is an analysis of the 75kWp PV plant at chosen buses, considering the need of minimum demand from the grid. The case study is carried out for different generation level throughout the day and year w.r.t load and climate changes, load sharing on grid. The economic dispatch model developed for PV plant integrated with Grid.

  16. Building Integrated Photovoltaic (BIPV) Roofs for Sustainability and Energy Efficiency

    Science.gov (United States)

    2014-04-01

    heated with a small 580,000 British Thermal Units (BTU) Parker water tube boiler . Two air handlers provide conditioned air to the space. The interior...such as PV adhesive failures . The PV system performed as expected, but is highly susceptible to soiling in low-slope roof applications. The BIPV system...roof, but was insufficient for unanticipated issues with the PV system, such as PV adhesive failures . The PV system performed as expected, but is

  17. Electrical production for domestic and industrial applications using hybrid PV-wind system

    International Nuclear Information System (INIS)

    Essalaimeh, S.; Al-Salaymeh, A.; Abdullat, Y.

    2013-01-01

    Highlights: ► Modeling and building hybrid system of PV and wind turbine. ► Investigation of the electrical generation under Amman–Jordan’s climate. ► Configuration of theoretical and actual characteristics of the hybrid system. ► Testing effects of dust, inclination and load on the electrical generation. ► Financial analysis for various applications. - Abstract: The present work shows an experimental investigation of using a combination of solar and wind energies as hybrid system for electrical generation under the Jordanian climate conditions. The generated electricity has been utilized for different types of applications and mainly for space heating and cooling. The system has also integration with grid connection to have more reliable system. Measurements included the solar radiation intensity, the ambient temperature, the wind speed and the output power from the solar PV panels and wind turbine. The performance characteristic of the PV panels has been obtained by varying the load value through a variable resistance. Some major factors have been studied and practically measured; one of them is the dust effect on electrical production efficiency for photovoltaic panels. Another factor is the inclination of the PV panels, where varying the angle of inclination has a seasonal importance for gathering the maximum solar intensity. Through mathematical calculation and the collected and measured data, a simple payback period has been calculated of the hybrid system in order to study the economical aspects of installing such a system under Jordanian climate conditions and for different usages and local tariffs including domestic, industrial and commercial applications. It was found through this work that the generated electricity of hybrid system and under Jordanian climate conditions can be utilized for electrical heating and cooling through split units and resistive heaters.

  18. Integration of solar energy in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Peippo, K.; Lund, P.; Mennola, T.; Vartiainen, E. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.; Rasinkoski, A.; Spiers, D.; Eenilae, P. [Neste Advanced Power Systems (Finland)

    1998-12-31

    New photovoltaic building elements were developed and the uses of various solar technologies in buildings were optimised with computational design tools. The novel amorphous silicon photovoltaic elements allow for economic integration of photovoltaics in large facades. The cost of grid-connected systems may be reduced by approximately 20 % through the advanced design approaches developed. (orig.)

  19. Assessing the PV business opportunities in Greece

    International Nuclear Information System (INIS)

    Patlitzianas, Konstantinos D.; Skylogiannis, Georgios K.; Papastefanakis, Dimitrios

    2013-01-01

    Highlights: • An approach of qualitative judgments for the PV opportunities through the assessing of the licenses’ value in Greece. • It can be supplied in other countries by applying different weights to the criteria. • It can be used by everyone in order to find a suitable PV investment without the need of experts in the field. - Abstract: Greece, as a member of the European Union (EU), has undertaken the obligation to meet the expected goals for the penetration of Renewable Energy Sources (RES) in the national energy balance in compliance with “20–20–20” goals (20% of the Gross Energy Consumption and 40% of the Gross Electricity Consumption should be covered by RES). Although the development of RES, and particularly of Photovoltaic (PV), in Greece during the last years has presented a satisfactory growth, the country is still far away from the above goals. The main reason for this delay is that – except the financial crisis – many licenses are inactive and waiting funding in order to be utilized. Additionally, the latest law (L.4152/2013) has forbidden the interconnection of new PV power Plants to the grid until the end of 2013. The above fact determines the significance of the existing PV Licenses in achieving the national goals. The aim of this paper is to present an integrated approach of qualitative judgments for the PV business opportunities through the assessing of the licenses’ value in Greece. The approach, which is based on a Multi Criteria Decision Making (MCDM) theory of quantifying multiple qualitative judgments, takes into account the real factors which can affect the expected production and cost of the PV installation and therefore the RoI (Return of Investment)

  20. Comparative Study Between Wind and Photovoltaic (PV) Systems

    Science.gov (United States)

    Taha, Wesam

    This paper reviews two renewable energy systems; wind and photovoltaic (PV) systems. The common debate between the two of them is to conclude which one is better, in terms of cost and efficiency. Therefore, comparative study, in terms of cost and efficiency, is attempted. Regarding total cost of both, wind and PV systems, many parameters must be taken into consideration such as availability of energy (either wind or solar), operation and maintenance, availability of costumers, political influence, and the components used in building the system. The main components and parameters that play major role in determining the overall efficiency of wind systems are the wind turbine generator (WTG), gearbox and control technologies such as power, and speed control. On the other hand, in grid-connected PV systems (GCPVS), converter architecture along with maximum power point tracking (MPPT) algorithm and inverter topologies are the issues that affects the efficiency significantly. Cost and efficiency analyses of both systems have been carried out based on the statistics available till today and would be useful in the progress of renewable energy penetration throughout the world.

  1. A stochastic method for battery sizing with uninterruptible-power and demand shift capabilities in PV (photovoltaic) systems

    International Nuclear Information System (INIS)

    Tan, Chee Wei; Green, Tim C.; Hernandez-Aramburo, Carlos A.

    2010-01-01

    This paper presents a stochastic simulation using Monte Carlo technique to size a battery to meet dual objectives of demand shift at peak electricity cost times and outage protection in BIPV (building integrated photovoltaic) systems. Both functions require battery storage and the sizing of battery using numerical optimization is popularly used. However, the weather conditions, outage events and demand peaks are not deterministic in nature. Therefore, the sizing of battery storage capacity should also be based on a probabilistic approach. The Monte Carlo simulation is a rigorous method to sizing BIPV system as it takes into account a real building load profiles, the weather information and the local historical outage distribution. The simulation is split into seasonal basis for the analysis of demand shifting and outage events in order to match the seasonal weather conditions and load profiles. Five configurations of PV (photovoltaic) are assessed that cover different areas and orientations. The simulation output includes the predicted PV energy yield, the amount of energy required for demand management and outage event. Therefore, consumers can base sizing decisions on the historical data and local risk of outage statistics and the success rate of meeting the demand shift required. Finally, the economic evaluations together with the sensitivity analysis and the assessment of customers' outage cost are discussed.

  2. Models for a stand-alone PV system[Photovoltaic

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Soerensen, P.; Hansen, L.H.; Bindner, H.

    2000-12-01

    This report presents a number of models for modelling and simulation of a stand-alone photovoltaic (PV) system with a battery bank verified against a system installed at Risoe National Laboratory. The work has been supported by the Danish Ministry of Energy, as a part of the activities in the Solar Energy Centre Denmark. The study is carried out at Risoe National Laboratory with the main purpose to establish a library of simple mathematical models for each individual element of a stand-alone PV system, namely solar cells, battery, controller, inverter and load. The models for PV module and battery are based on the model descriptions found in the literature. The battery model is developed at UMASS and is known as the Kinetic Battery Model (KiBaM). The other component models in the PV system are based on simple electrical knowledge. The implementation is done using Matlab/Simulink, a simulation program that provides a graphical interface for building models as modular block diagrams. The non-linear behaviour of the battery, observed in the measurements, is investigated and compared to the KiBaM model's performance. A set of linear Black box models are estimated based on the battery measurements. The performance of the best linear Black box model is compared to the KiBaM model. A validation of each of the implemented mathematical model is performed by an interactive analysis and comparison between simulation results and measurements, acquired from the stand-alone PV system at Risoe. (au)

  3. Reinforcement learning for optimal control of low exergy buildings

    International Nuclear Information System (INIS)

    Yang, Lei; Nagy, Zoltan; Goffin, Philippe; Schlueter, Arno

    2015-01-01

    Highlights: • Implementation of reinforcement learning control for LowEx Building systems. • Learning allows adaptation to local environment without prior knowledge. • Presentation of reinforcement learning control for real-life applications. • Discussion of the applicability for real-life situations. - Abstract: Over a third of the anthropogenic greenhouse gas (GHG) emissions stem from cooling and heating buildings, due to their fossil fuel based operation. Low exergy building systems are a promising approach to reduce energy consumption as well as GHG emissions. They consists of renewable energy technologies, such as PV, PV/T and heat pumps. Since careful tuning of parameters is required, a manual setup may result in sub-optimal operation. A model predictive control approach is unnecessarily complex due to the required model identification. Therefore, in this work we present a reinforcement learning control (RLC) approach. The studied building consists of a PV/T array for solar heat and electricity generation, as well as geothermal heat pumps. We present RLC for the PV/T array, and the full building model. Two methods, Tabular Q-learning and Batch Q-learning with Memory Replay, are implemented with real building settings and actual weather conditions in a Matlab/Simulink framework. The performance is evaluated against standard rule-based control (RBC). We investigated different neural network structures and find that some outperformed RBC already during the learning phase. Overall, every RLC strategy for PV/T outperformed RBC by over 10% after the third year. Likewise, for the full building, RLC outperforms RBC in terms of meeting the heating demand, maintaining the optimal operation temperature and compensating more effectively for ground heat. This allows to reduce engineering costs associated with the setup of these systems, as well as decrease the return-of-invest period, both of which are necessary to create a sustainable, zero-emission building

  4. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Mather, B. A.; Shah, S.; Norris, B. L.; Dise, J. H.; Yu, L.; Paradis, D.; Katiraei, F.; Seguin, R.; Costyk, D.; Woyak, J.; Jung, J.; Russell, K.; Broadwater, R.

    2014-06-01

    In 2010, the National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed to analyze the impacts of high penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to benefit from the experience that SCE and the project team would gain during the installation of 500 megawatts (MW) of utility-scale PV systems (with 1-5 MW typical ratings) starting in 2010 and completing in 2015 within SCE's service territory through a program approved by the California Public Utility Commission (CPUC). This report provides the findings of the research completed under the project to date.

  5. PV-HYBRID and MINI-GRID. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Within the 3rd European Conference at the Centre de Congres in Aix en Provence (France) between 11th and 12th May, 2006, the following lessons were held: (1) Small electric networks: European drivers and projects for the integration of RES and DG into the electricity grids of the future (Manuel Sanchez-Jimenez); (2) PV hybrid system within mini grids - IEA PVPS programme (Meuch Konraf); (3) Renewables for the developing world (Alvaro Ponce Plaza); (4) Rural electicity supply using photovoltaic / - Diesel hybrid systems: Attractive for investors in the renewable energy sector? (Andreas Hahn); (5) Economic analysis of stand-alone and grid-connected photovoltaic systems under current tariff structure of Taiwan (Yaw-Juen Wang); (6) Using wind-PV-diesel hybrid system for electrification of remote village in Western Libya (N.M. Kreama); (7) Venezuela's renewable energy program for small towns and rural areas ''Sembrando Luz'' (Jorge Torres); (8) AeroSmart5, the professional, sysem-compatible small-scale wind energy converter will be tested in field tests (Fabian Jochem); (9) Lifetime, test procedures and recommendations for optimal operating strategies for lead-acid-batteries in renewable energy systems - A survey on results from European projects from the 5th framework programme (Rudi Kaiser); (10) Prototype of a reversible fuel cell system for autonomous power supplies (Tom Smolinska); (11) Interconnection management in microgrids (Michel Vandenbergh); (12) Control strategy for a small-scale stand-alone power system based on renewable energy and hydrogen (Harald Miland); (13) Standard renewable electricity supply for people in rural areas - mini-grids in western provinces of China (Michael Wollny); (14) The Brava island a ''100% renewable energy'' project (Jean-Christian Marcel); (15) Breakthrough to a new era of PV-hybrid systems with the help of standardised components communication? (Michael Mueller); (16) Standardized

  6. Training and certification of PV installers in Europe

    International Nuclear Information System (INIS)

    Tsoutsos, Theocharis; Tournaki, Stavroula; Gkouskos, Zacharias; Masson, Gaetan; Holden, John; Huidobro, Ana; Stoykova, Evelina; Rata, Camelia; Bacan, Andro; Maxoulis, Christos; Charalambous, Anthi

    2013-01-01

    The European strategy for the coming decades sets specific targets for a sustainable growth, including reaching a 20% share of renewables in final energy consumption till 2020. To achieve this target, a number of initiatives and measures have been in force. Europe, is currently the largest market for PV systems with more than 75% of the annual worldwide installations in 2011. The favourable European policies as well as the Member States’ supporting legislations have resulted in high market growth for photovoltaics. Applying PV technologies however, requires high qualified technicians to install, repair and maintain them. Until today, national markets have been growing faster than the skilled PV installers force can satisfy. The PVTRIN, an Intelligent Energy Europe action, addresses these issues by developing a training and certification scheme for technicians active in the installation and maintenance of small scale PV systems. During the implementation of the action, a market research was conducted in the six participating countries in order to record the stakeholders’ attitudes, perceptions and considerations and to adapt the training methods, tools and materials to the national PV industry requirements and markets’ needs. Indicative results of this analysis as well as the current situation regarding relevant training and certification schemes are presented in this paper. - Highlights: ► Market research in six EU countries on PV professional Training and Certification needs. ► PVTRIN scheme integrates the national legislations and the market's needs. ► The different aspects (technical, institutional, financial) are presented

  7. Performance of PV panels for solar energy conversion at the South Pole

    Science.gov (United States)

    Peeran, Syed M.

    Expanding research facilities at the Amundson-Scott South pole station require increased electric power generation. Presently, electric power generation is by diesel generators using the JP8 fuel. As the station is accessible only for a short supply period during the austral summer, there are limitations upon the supply of fuel for power generation. This makes it necessary to seriously consider the use of the renewable energy sources. Although there is no sunlight for six months in the year, abundant solar energy is available during the remaining 6 months because of the clear skies, the clarity of air and the low humidity at the south pole. As the buildings at the south pole are built either without windows or with only porthole type windows, large areas on the walls and the roof are available for mounting the photovoltaic (PV) panels. In addition there is unlimited space around the station for constructing a PV panel 'farm'. In this paper four types of PV panels are evaluated; the 2-axis tracking panels, vertical 1-axis tracking panels, fixed vertical panels on the walls of buildings and mounted outdoors, and fixed horizontal panels on the roofs of the buildings. Equations are developed for the power output in KW/sq. ft and annual energy in kWh/sq. ft for each type of panel. The equations include the effects of the inclination of the sun above the horizon, the movement of the sun around the horizon, the direct, reflected and diffused components of the solar radiation, the characteristics of the solar cells and the types of dc/ac inverters used to interface the output of the cells with the existing ac power. A conceptual design of a 150-kW PV generation system suitable for the south pole is also discussed in this paper.

  8. State-of-the-art Review : Vol. 2B. Integrated Building Concepts

    DEFF Research Database (Denmark)

    van der Aa, Ad; Andresen, Inger; Asada, Hideo

    an overview of 23 case study buildings from 9 countries with integrated building concepts. The overview provides descriptions of the buildings and their contexts, a description of the integrated energy systems, and the overall performance of the building with respect to energy, indoor environment and costs......The purpose of this report is to give examples of integrated building concepts and related available performance data and information. The report does not aspire to give a complete overview of all possible integrated building concepts and processes. The buildings included in the report have been...... selected according to the knowledge of the participants in the project, as characteristic examples of the concepts and the challenges they represent. The report will be a common basis for the research and development work that is going to be carried out within the IEA Annex 44 project. The report contains...

  9. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions

    Science.gov (United States)

    Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C.

    2015-01-01

    This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper. PMID:26230694

  10. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions

    Directory of Open Access Journals (Sweden)

    Angel Molina-García

    2015-07-01

    Full Text Available This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors. Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper.

  11. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions.

    Science.gov (United States)

    Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C

    2015-07-29

    This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper.

  12. Study on an optimum ratio of PV output energy to WG output energy in PV/WG hybrid system; Taiyoko/furyoku hybrid hatsuden system no saiteki yoryohi ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, S [Kandenko Co. Ltd., Tokyo (Japan)

    1996-10-27

    A photovoltaic power (PV) and wind generated power (WG) are an unlimited clean energy source, yet their output is unstable depending on the fluctuation of weather conditions such as solar radiation and wind velocity. Consequently, a large-scale power storage equipment is necessitated leading to a high cost especially in an independent system. As a solution, a method is available in which PV and WG are combined so that the effect may be utilized for stabilizing the output of a system as a whole, at a site where a fluctuation pattern is different between photovoltaic energy and wind energy. In building a hybrid system by PV and WG, sites with such supplementary effect existing were selected from the viewpoint of stabilizing the fluctuation of the power generation in the long run; and then, an examination was made on the optimum PV capacity ratio (%Ppo) in each site. As a result, it revealed that the %Ppo had great bearing on a ratio of PV energy fluctuation to WG, which was converted to a numerical formula. A comparatively simple examination by means of meteorological data also indicated that the share ratio was possibly optimized between the quantities of PV and WG energy. 4 refs., 2 figs., 2 tabs.

  13. Multivariate Statistics and Supervised Learning for Predictive Detection of Unintentional Islanding in Grid-Tied Solar PV Systems

    Directory of Open Access Journals (Sweden)

    Shashank Vyas

    2016-01-01

    Full Text Available Integration of solar photovoltaic (PV generation with power distribution networks leads to many operational challenges and complexities. Unintentional islanding is one of them which is of rising concern given the steady increase in grid-connected PV power. This paper builds up on an exploratory study of unintentional islanding on a modeled radial feeder having large PV penetration. Dynamic simulations, also run in real time, resulted in exploration of unique potential causes of creation of accidental islands. The resulting voltage and current data underwent dimensionality reduction using principal component analysis (PCA which formed the basis for the application of Q statistic control charts for detecting the anomalous currents that could island the system. For reducing the false alarm rate of anomaly detection, Kullback-Leibler (K-L divergence was applied on the principal component projections which concluded that Q statistic based approach alone is not reliable for detection of the symptoms liable to cause unintentional islanding. The obtained data was labeled and a K-nearest neighbor (K-NN binomial classifier was then trained for identification and classification of potential islanding precursors from other power system transients. The three-phase short-circuit fault case was successfully identified as statistically different from islanding symptoms.

  14. Building-integrated renewable energy policy analysis in China

    Institute of Scientific and Technical Information of China (English)

    姚春妮; 郝斌

    2009-01-01

    With the dramatic development of renewable energy all over the world,and for purpose of adjusting energy structure,the Ministry of Construction of China plans to promote the large scale application of renewable energy in buildings. In order to ensure the validity of policy-making,this work firstly exerts a method to do cost-benefit analysis for three kinds of technologies such as building-integrated solar hot water (BISHW) system,building-integrated photovoltaic (BIPV) technology and ground water heat pump (GWHP). Through selecting a representative city of every climate region,the analysis comes into different results for different climate regions in China and respectively different suggestion for policy-making. On the analysis basis,the Ministry of Construction (MOC) and the Ministry of Finance of China (MOF) united to start-up Building-integrated Renewable Energy Demonstration Projects (BIREDP) in 2006. In the demonstration projects,renewable energy takes place of traditional energy to supply the domestic hot water,electricity,air-conditioning and heating. Through carrying out the demonstration projects,renewable energy related market has been expanded. More and more relative companies and local governments take the opportunity to promote the large scale application of renewable energy in buildings.

  15. New York Solar Smart DG Hub-Resilient Solar Project: Economic and Resiliency Impact of PV and Storage on New York Critical Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Kate; Burman, Kari; Simpkins, Travis; Helson, Erica; Lisell, Lars, Case, Tria

    2016-06-01

    Resilient PV, which is solar paired with storage ('solar-plus-storage'), provides value both during normal grid operation and power outages as opposed to traditional solar PV, which functions only when the electric grid is operating. During normal grid operations, resilient PV systems help host sites generate revenue and/or reduce electricity bill charges. During grid outages, resilient PV provides critical emergency power that can help people in need and ease demand on emergency fuel supplies. The combination of grid interruptions during recent storms, the proliferation of solar PV, and the growing deployment of battery storage technologies has generated significant interest in using these assets for both economic and resiliency benefits. This report analyzes the technical and economic viability for resilient PV on three critical infrastructure sites in New York City (NYC): a school that is part of a coastal storm shelter system, a fire station, and a NYCHA senior center that serves as a cooling center during heat emergencies. This analysis differs from previous solar-plus-storage studies by placing a monetary value on resiliency and thus, in essence, modeling a new revenue stream for the avoided cost of a power outage. Analysis results show that resilient PV is economically viable for NYC's critical infrastructure and that it may be similarly beneficial to other commercial buildings across the city. This report will help city building owners, managers, and policymakers better understand the economic and resiliency benefits of resilient PV. As NYC fortifies its building stock against future storms of increasing severity, resilient PV can play an important role in disaster response and recovery while also supporting city greenhouse gas emission reduction targets and relieving stress to the electric grid from growing power demands.

  16. Integrated engineering system for nuclear facilities building

    International Nuclear Information System (INIS)

    Tomura, H.; Miyamoto, A.; Futami, F.; Yasuda, S.; Ohtomo, T.

    1995-01-01

    In the construction of buildings for nuclear facilities in Japan, construction companies are generally in charge of the building engineering work, coordinating with plant engineering. An integrated system for buildings (PROMOTE: PROductive MOdeling system for Total nuclear Engineering) described here is a building engineering system including the entire life cycle of buildings for nuclear facilities. A Three-dimensional (3D) building model (PRO-model) is to be in the core of the system (PROMOTE). Data sharing in the PROMOTE is also done with plant engineering systems. By providing these basic technical foundations, PROMOTE is oriented toward offering rational, highquality engineering for the projects. The aim of the system is to provide a technical foundation in building engineering. This paper discusses the characteristics of buildings for nuclear facilities and the outline of the PROMOTE. (author)

  17. Sensorless PV Array Diagnostic Method for Residential PV Systems

    DEFF Research Database (Denmark)

    Sera, Dezso; Spataru, Sergiu; Mathe, Laszlo

    2011-01-01

    This work proposes a temperature and irradiance sensorless diagnostic method suitable for small residential PV installations, focusing on detection of partial shadows. The method works by detection of failures in crystalline silicone PV arrays by concomitant monitoring of some of their key...

  18. City and County Solar PV Training Program, Module 2: Screening and Identifying PV Projects

    Energy Technology Data Exchange (ETDEWEB)

    Elgqvist, Emma M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-09

    When screening and identifying PV projects, cities and counties should understand the different factors that impact the technical and economic potential of a PV project, the steps of the PV screening process, and how to use REopt Lite to screen a site for PV and storage project potential.

  19. PV glass curtain walls; Kenzai ittaigata taiyo denchi gaiheki no kaihatsu (glass curtain wall eno tekiyo)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T.; Iwai, T.; Ouchi, T.; Ito, T.; Nagai, T.; Shu, I. [Kajima Corp., Tokyo (Japan); Arai, T. [Showa Shell Sekiyu K.K., Tokyo (Japan); Ishikawa, N.; Tazawa, K.

    1997-12-20

    Reported in this article are PV (photovoltaic) modules now under development for integration into building walls. First of all, the power generating capability of PV modules and appropriate use of the generated power are studied, and the performance (resistance to fire or incombustibility, strength and durability, appearance and design, and dimensional standardization) that such outer wall materials are to be equipped with are determined. Next, module development, installation technique, computer graphics-aided facade designing, and real size module-using proof test are studied before installability, the power to be generated, and designs are finalized. In the development of modules, design evaluation involves the combining of various kinds of glass, solar cells, back sheets, and fillers, and the importance is confirmed of the prevention of insulation degradation around the modules. As for the methods of installation, the gasket method and aluminum sash method, etc., are tested. In the study of facade design, it is found that various expressions are possible by properly choosing gasket colors, module types, and kinds of glass to cover the openings. 1 ref., 6 figs., 3 tabs.

  20. A survey informed PV-based cost-effective electrification options for rural sub-Saharan Africa

    International Nuclear Information System (INIS)

    Opiyo, Nicholas

    2016-01-01

    A comprehensive survey is carried out in Kendu Bay area of Kenya to determine electrification patterns of a typical rural sub-Saharan Africa community and to determine the reasons behind such energy choices. The data from the survey is used to build a transition probability matrix (TPM) for different electrification states for Kendu Bay households. The TPM and the survey data are used to model temporal diffusion of PV systems and PV-based communal (mini/micro) grids in the area. Survey data show that majority of Kendu Bay residents shun the national grid due to high connection fees, unreliability of the system, and corruption; people who can afford-to choose small solar home systems for their basic electricity needs. Without any government policy intervention or help, simulation results show that once 100% electrification status has been achieved in Kendu Bay, only 26% of the residents will be found to be electrified through the national grid alone; the majority (38%) will be electrified through PV-based communal grids while the remaining 36% will be electrified through grid connected PV home systems (26%) or grid connected communal grids (10%). - Highlights: • A survey on sources of electricity in Kendu Bay area of Kenya is carried out. • Survey results are used to determine choices and sources of household electricity. • Factors affecting electrification are highlighted. • Survey data are used to build a transition probability matrix (TPM). • The TPM and data from the survey are used to model temporal PV diffusion.

  1. Analysis of PV system's values beyond energy - by country and stakeholder

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Polo, A.; Hass, R.; Suna, D.

    2008-03-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme and PV-Up-Scale analyses, identifies, evaluates and quantifies the major values and benefits of urban scale photovoltaics (PV) based on country and stakeholder specifics. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. The values evaluated and quantified in this report are categorised under the following groups: Avoiding fossil fuels, environmental benefits, benefits for electric utilities, industry development and employment benefits and the customer's individual benefits. The relevance of PV to meeting peak demand is discussed, as are the benefits for architects and building developers.

  2. High-Voltage DC-DC Converter Topology for PV Energy Utilization - Investigation and Implementation

    DEFF Research Database (Denmark)

    Sanjeevikumar, Padmanaban; Blaabjerg, Frede; Wheeler, Patrick

    2017-01-01

    This paper exploited the utilization of photovoltaic (PV) energy system with high-voltage (HV) output DC-DC converter. Classical boost converters are used for both renewable energy integration and HV applications, but limited by reducing output/efficiency in performance. Moreover, as parasitic...... elements suppress the power transfer ratio, converter needs to maximize the PV energy utilization. This investigation study focused to include additional parasitic elements (voltage-lift technique) to a standard DC-DC buck converter and to overcome all the above drawbacks to maximize the PV power...

  3. Implementation and Test of On-line Embedded Grid Impedance Estimation for PV-inverters

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian; Teodorescu, Remus; Blaabjerg, Frede

    2004-01-01

    to evaluate the grid impedance directly by the PV-inverter, providing a fast and low cost implementation. This principle theoretically provides a correct result of the grid impedance but when using it into the context of PV integration, different implementation issues strongly affect the quality...... of the results. This paper presents a new impedance estimation method including typical implementation problems encountered and it also presents adopted solutions for on-line grid impedance measurement. Practical tests on an existing PV-inverter validate the chosen solutions....

  4. PV power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the international seminar of the Ostbayerisches Technologie-Transfer-Institut e.V. (OTTI) at 11th June, 2012 in Munich (Federal Republic of Germany), the following lectures were held: (1) Technical due diligence (Dietmar Obst); (2) Certification / rating system for large PV plants (Robert Pfatischer); (3) O and M requirements (Lars Rulf); (4) IR photography for large scale systems (Bernhard Weinreich); (5) New market models for PV systems - direct marketing and sales of PV electricity (Martin Schneider); (6) Needs and benefits for plant certification for grid connection and operation (Christoph Luetke-Lengerich); (7) Lare volume module testing / Screening in the field and workshop (Semir Merzoug); (8) Dismantling costs of large scale PV plants (Siegfried Schimpf).

  5. Integrating Building Information Modeling and Green Building Certification: The BIM-LEED Application Model Development

    Science.gov (United States)

    Wu, Wei

    2010-01-01

    Building information modeling (BIM) and green building are currently two major trends in the architecture, engineering and construction (AEC) industry. This research recognizes the market demand for better solutions to achieve green building certification such as LEED in the United States. It proposes a new strategy based on the integration of BIM…

  6. A High Performance PSO-Based Global MPP Tracker for a PV Power Generation System

    Directory of Open Access Journals (Sweden)

    Kuei-Hsiang Chao

    2015-07-01

    Full Text Available This paper aims to present an improved version of a typical particle swarm optimization (PSO algorithm, such that the global maximum power point (MPP on a P-V characteristic curve with multiple peaks can be located in an efficient and precise manner for a photovoltaic module array. A series of instrumental measurements are conducted on variously configured arrays built with SANYO HIP2717 PV modules, either unshaded, partially shaded, or malfunctioning, as the building blocks. There appear two, triple and quadruple peaks on the corresponding P-V characteristic curves. Subsequently, the tracking performance comparisons, made by some practical experiments, indicate the superiority of this improved MPP tracking algorithm over the typical one.

  7. Lithium Ion Batteries Ageing Analysis when used in a PV Power Plants

    DEFF Research Database (Denmark)

    Beltran, H.; Swierczynski, Maciej Jozef; Aparicio, N.

    2012-01-01

    This paper analyzes the integration of lithium ion (Li-ion) batteries into large scale grid-connected PV plants. It performs a systematic analysis on both the operation improvement obtained by a PV+ES power plant and the ageing experienced by the Li-ion batteries used as Energy Storage (ES) system...... when operating under different energy management strategies (EMS). In this paper, the PV+ES power plant structure is presented and the selection of Li-on batteries as ES system (ESS) is justified. Moreover, the simulation model used for studying the Li-ion battery ageing is explained and tested...

  8. A Review of the Dutch Ecosystem for Building Integrated Photovoltaics

    NARCIS (Netherlands)

    Osseweijer, Floor J W; Van Den Hurk, Linda B P; Teunissen, Erik J H M; Van Sark, Wilfried G J H M

    2017-01-01

    Building integrated photovoltaics (BIPV) is one of the most promising solutions to generate renewable electricity in the built environment. BIPV applications can replace regular building components into prefab integrated components that at the same time generate electricity, contributing to the

  9. Co-simulation of innovative integrated HVAC systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Trcka, Marija; Hensena, Jan L.M.; Wetter, Michael

    2010-06-21

    Integrated performance simulation of buildings HVAC systems can help in reducing energy consumption and increasing occupant comfort. However, no single building performance simulation (BPS) tool offers sufficient capabilities and flexibilities to analyze integrated building systems and to enable rapid prototyping of innovative building and system technologies. One way to alleviate this problem is to use co-simulation, as an integrated approach to simulation. This article elaborates on issues important for co-simulation realization and discusses multiple possibilities to justify the particular approach implemented in the here described co-simulation prototype. The prototype is validated with the results obtained from the traditional simulation approach. It is further used in a proof-of-concept case study to demonstrate the applicability of the method and to highlight its benefits. Stability and accuracy of different coupling strategies are analyzed to give a guideline for the required coupling time step.

  10. System performance of a three-phase PV-grid-connected system installed in Thailand. Data monitored analysis

    International Nuclear Information System (INIS)

    Boonmee, Chaiyant; Watjanatepin, Napat; Plangklang, Boonyang

    2009-01-01

    PV-grid-connected systems are worldwide installed because it allows consumer to reduce energy consumption from the electricity grid and to feed the surplus energy back into the grid. The system needs no battery so therefore the system price is very cheap comparing to other PV systems. PV-grid-connected systems are used in buildings that already hooked up to the electrical grid. Finding efficiency of the PV-grid-connected system can be done by using a standard instrument which needs to disconnect the PV arrays from the grid before measurement. The measurement is also difficult and we lose energy during the measurement. This paper will present the system performance of a PV-grid-connected system installed in Thailand by using a monitoring system. The monitored data are installed by acquisition software into a computer. Analysis of monitored data will be done to find out the system performance without disconnecting the PV arrays from the system. The monitored data include solar radiation, PV voltage, PV current, and PV power which has been recorded from a 5 kWp system installed of amorphous silicon PV at Rajamangala University of Technology Suvarnabhumi, Nonthaburi, Thailand. The system performance of the system by using the data monitored is compared to the standard instrument measurement. The paper will give all details about system components, monitoring system, and monitored data. The result of data analysis will be fully given. (author)

  11. A New Control Method to Mitigate Power Fluctuations for Grid Integrated PV/Wind Hybrid Power System Using Ultracapacitors

    Science.gov (United States)

    Jayalakshmi, N. S.; Gaonkar, D. N.

    2016-08-01

    The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.

  12. IEA Task 7. Activity leader and information dissemination. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, R.; Ruyssevelt, P.; Munro, D.

    2002-07-01

    This report summarised the findings of Task 7 of the International Energy Agency Photovoltaic (PV) Power Systems Programme concerning the economic viability of photovoltaic systems in buildings and the enhancement of solar architecture and the technical quality of PV power systems. Details are given of the participation of a UK contractor in the work, and the objectives of the UK involvement which cover the building of UK PV products, their competitiveness, and awareness and involvement of the building industry in PV buildings. The UK contribution to activities concerning commercial building integration concepts; guidelines, standardisation, certification and safety; and the organisation of a UK based international PV design competition are described. The major outputs from Task 7 are listed and include a book entitled 'Designing with Solar Power', a wide range of building integrated PV case studies, workshops, a database, and educational resources.

  13. The informed application of building-integrated wind power

    Energy Technology Data Exchange (ETDEWEB)

    Breshears, J.; Briscoe, C. [Zimmer Gunsal Frasca Architects, Portland, OR (United States)

    2009-07-01

    This paper reported on an exercise that was undertaken to integrate small-scale wind turbines into the design of an urban high-rise in Portland, Oregon. Wind behaviour in the urban environment is very complex, as the flow of wind over and around buildings often triggers multiple transitions of the air from laminar flow to turbulent. The study documented the process of moving beyond a simplistic approach to a truly informed application of building-integrated wind generation. The 4 key issues addressed in the study process were quantifying the geographical wind regime; predicting wind flow over the building; turbine selection; and pragmatics regarding the design of roof mounting to accommodate structural loads and mitigate vibration. The results suggested that the turbine array should produce in the range of only 1 per cent of the electrical load of the building. 13 refs., 11 figs.

  14. Final Technical Report: PV Fault Detection Tool.

    Energy Technology Data Exchange (ETDEWEB)

    King, Bruce Hardison [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Christian Birk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  15. PV Obelisk - Information system with photovoltaics; PV-Obelisk Orientierungssystem mit Photovoltaik

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, D.; Rasmussen, J.

    2004-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the development of an information system powered by a photovoltaic (PV) array. As an innovative approach, the 'PV-Obelisk' project is the combination of PV with a multi-functional pillar made of natural stone in an aesthetic way. The PV modules serve both as a power supply and as a design element. Two initial prototypes led the way to a third, optimised consumer configuration that was planned to guarantee maximum user frequency. Test operation in front of the 'Heidiland' motor way restaurant confirmed the market analyses made and delivered the expected results. The product, whose three LCD displays are updated via a mobile telephony-based text-message system, proved its technical reliability and showed a high user frequency. Because of the high overall energy consumption, PV power can only partially contribute to the energy supply needed. Various compromises in the technical and aesthetic areas are discussed that were made for the sake of product acceptance in the market. The range of application areas for such a 'PV Obelisk' are discussed and the need for early co-ordination with urban planners is stressed.

  16. Solar eclipse. The rise and 'dusk' of the Dutch PV innovation system

    Energy Technology Data Exchange (ETDEWEB)

    Negro, S.O.; Hekkert, M.P. [Department of Innovation Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Vasseur, V. [International Centre for Integrated Assessment and Sustainable Development, University Maastricht, P.O. Box 616, 6200 MD Maastricht (Netherlands); Van Sark, W.G.J.H.M. [Department of Science, Technology and Society, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)

    2012-07-01

    In this paper, we take the theoretical perspective of innovation system dynamics and apply this to Photovoltaic (PV) solar energy technology in the Netherlands. The history of the development of the PV innovation system is analysed in terms of seven key processes that are essential for the build-up of innovation systems. We show that large fluctuations are present in the processes related to guidance of the search and market formation. Surprisingly, entrepreneurial activities are not too much affected by fluctuating market formation activities. We relate this to market formation in neighbouring countries and discuss the implications for policy making.

  17. Novel Methods to Determine Feeder Locational PV Hosting Capacity and PV Impact Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coogan, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seuss, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Often PV hosting capacity analysis is performed for a limited number of distribution feeders. For medium - voltage distribution feeders, previous results generally analyze less than 20 feeders, and then the results are extrapolated out to similar types of feeders. Previous hosting capacity research has often focused on determining a single value for the hosting capacity for the entire feeder, whereas this research expands previous hosting capacity work to investigate all the regions of the feeder that may allow many different hosting capacity values wit h an idea called locational hosting capacity (LHC)to determine the largest PV size that can be interconnected at different locations (buses) on the study feeders. This report discusses novel methods for analyzing PV interconnections with advanced simulati on methods. The focus is feeder and location - specific impacts of PV that determine the locational PV hosting capacity. Feeder PV impact signature are used to more precisely determine the local maximum hosting capacity of individual areas of the feeder. T he feeder signature provides improved interconnection screening with certain zones that show the risk of impact to the distribution feeder from PV interconnections.

  18. Large scale PV plants - also in Denmark. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Ahm, P [PA Energy, Malling (Denmark); Vedde, J [SiCon. Silicon and PV consulting, Birkeroed (Denmark)

    2011-04-15

    Large scale PV (LPV) plants, plants with a capacity of more than 200 kW, has since 2007 constituted an increasing share of the global PV installations. In 2009 large scale PV plants with cumulative power more that 1,3 GWp were connected to the grid. The necessary design data for LPV plants in Denmark are available or can be found, although irradiance data could be improved. There seems to be very few institutional barriers for LPV projects, but as so far no real LPV projects have been processed, these findings have to be regarded as preliminary. The fast growing number of very large scale solar thermal plants for district heating applications supports these findings. It has further been investigated, how to optimize the lay-out of LPV plants. Under the Danish irradiance conditions with several winter months with very low solar height PV installations on flat surfaces will have to balance the requirements of physical space - and cost, and the loss of electricity production due to shadowing effects. The potential for LPV plants in Denmark are found in three main categories: PV installations on flat roof of large commercial buildings, PV installations on other large scale infrastructure such as noise barriers and ground mounted PV installations. The technical potential for all three categories is found to be significant and in the range of 50 - 250 km2. In terms of energy harvest PV plants will under Danish conditions exhibit an overall efficiency of about 10 % in conversion of the energy content of the light compared to about 0,3 % for biomass. The theoretical ground area needed to produce the present annual electricity consumption of Denmark at 33-35 TWh is about 300 km2 The Danish grid codes and the electricity safety regulations mention very little about PV and nothing about LPV plants. It is expected that LPV plants will be treated similarly to big wind turbines. A number of LPV plant scenarios have been investigated in detail based on real commercial offers and

  19. Building integration of PCM for natural cooling of buildings

    International Nuclear Information System (INIS)

    Álvarez, Servando; Cabeza, Luisa F.; Ruiz-Pardo, Alvaro; Castell, Albert; Tenorio, José Antonio

    2013-01-01

    Highlights: ► A brief overview of PCM solutions for buildings is provided. ► Some weaknesses of existing PCM solutions for buildings were identified. ► New solutions for PCM integration in buildings are proposed. ► Proposed solutions overcome identified weaknesses of existing solutions. - Abstract: The use of night cooling ventilation in addition of phase change materials (PCMs) is a very powerful strategy for reducing the cooling demand of buildings. Nevertheless, there are inherent drawbacks in the way things have been doing so far: (a) The limited area of contact between PCM and the air; (b) the very low convective heat transfer coefficients which prevents the use of significant amounts of PCM and (c) the very low utilization factor of the cool stored due to the large phase shift between the time when cool is stored and time when it is required by the building. In this paper, we present innovative solutions using PCM to overcome the above situation. Compared with existing solutions, innovative solutions proposed, increase the contact area between PCM and air by a factor of approximately 3.6, increase the convective heat transfer coefficient significantly, and improve the utilization factor due to the inclusion of active control systems which allow the cold stored be actually used when required

  20. Energy balance of the global photovoltaic (PV) industry--is the PV industry a net electricity producer?

    Science.gov (United States)

    Dale, Michael; Benson, Sally M

    2013-04-02

    A combination of declining costs and policy measures motivated by greenhouse gas (GHG) emissions reduction and energy security have driven rapid growth in the global installed capacity of solar photovoltaics (PV). This paper develops a number of unique data sets, namely the following: calculation of distribution of global capacity factor for PV deployment; meta-analysis of energy consumption in PV system manufacture and deployment; and documentation of reduction in energetic costs of PV system production. These data are used as input into a new net energy analysis of the global PV industry, as opposed to device level analysis. In addition, the paper introduces a new concept: a model tracking energetic costs of manufacturing and installing PV systems, including balance of system (BOS) components. The model is used to forecast electrical energy requirements to scale up the PV industry and determine the electricity balance of the global PV industry to 2020. Results suggest that the industry was a net consumer of electricity as recently as 2010. However, there is a >50% that in 2012 the PV industry is a net electricity provider and will "pay back" the electrical energy required for its early growth before 2020. Further reducing energetic costs of PV deployment will enable more rapid growth of the PV industry. There is also great potential to increase the capacity factor of PV deployment. These conclusions have a number of implications for R&D and deployment, including the following: monitoring of the energy embodied within PV systems; designing more efficient and durable systems; and deploying PV systems in locations that will achieve high capacity factors.

  1. Design of a Net-Metering and PV Exhibit for the 2005 Solar Decathlon

    Energy Technology Data Exchange (ETDEWEB)

    Wassmer, M.; Warner, C.

    2005-01-01

    In the 2005 Solar Decathlon competition, 19 collegiate teams will design, build, and operate grid-independent homes powered by photovoltaic (PV) arrays on the National Mall. The prominence of grid-interconnected systems in the marketplace has provided the impetus for the development of a net-metering exhibit to be installed and operated during the competition. The exhibit will inform the visiting public about PV basics and appropriate alternatives to grid-independent systems. It will consist of four interactive components. One will be designed to educate people about the principles of net metering using a small PV array, a grid-interactive inverter, and a variable load. Additional components of the exhibit will demonstrate the effects of orientation, cloud cover, and nighttime on performance. The nighttime component will discuss appropriate storage options for different applications.

  2. Safety design integrated in the building delivery system

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2013-01-01

    . The purpose of this article is to demonstrate how safety and health can be integrated in the design phases integrated in the management delivery systems within construction, The method for the research was to go through the building delivery system step by step and create a normative description of what, when......In construction, it is important to view safety and health as an integrated part of the way that “designers” are working. The designers cowers architects, constructors, engineers and others who carry out their consulting services in the design phase of a construction project. The philosophy...... and how to fully integrate safety in each part of the process. The result is a concept and guideline including control forms for how to integrate safety design in the Building Delivery System plus what to do and when. The concept has been tested in an educational context. The practical value...

  3. How to stimulate the South African rooftop PV market without putting electricity distributors’ financial stability at risk [Conference presentation

    CSIR Research Space (South Africa)

    Bischof-Niemz, Sebastian T

    2015-09-01

    Full Text Available in three important ways: • Embedded Solar PV can be deployed very quickly • Favourable lifetime costs (at 5.7–6.4 €/kWh) compared to other new build options • Large amounts of capacity can be deployed. This value cannot be unlocked because...Wh Electricity bill 8,000 kWh/yr *0.09 €/kWh – ~ Residential load 12,000 kWh/yr 8,000 kWh/yr 10,000 kWh/yr 12,000 kWh/yr 4 ,0 0 0 Self-consumption Gross PV generation PV inverter PV panels 6 kWp Source: CSIR analysis Grid energy Solar energy Payments...

  4. Building concepts for a transition towards energy neutrality in 2050

    Energy Technology Data Exchange (ETDEWEB)

    De Boer, B.J.; Paauw, J. [TNO Built Environment and Geosciences, Delft (Netherlands); Opstelten, I.J.; Bakker, E.J. [Energy research Centre of the Netherlands ECN, Petten (Netherlands)

    2007-03-15

    In this paper building concepts for the near future are described which enable the transition towards a net energy neutral building sector in the Netherlands by the year 2050. With 'net energy neutrality' is meant that, on a yearly basis, the total energy consumption in the built environment is compensated by local renewable energy production e.g. by using solar thermal (T), photovoltaic (PV), PVT and/or wind. A study concerning the feasibility of a 'net energy neutral built environment by 2050' set the energetic ambitions for the building concepts to be developed. This resulted in different concepts for residential buildings and for office-buildings. The building concepts are based on passive house technology to minimise the heating and cooling demand, and make optimal use of active and passive solar energy. Concepts for new to build domestic buildings are in fact energy producing to compensate for the remaining energy demand of existing, renovated dwellings. In all concepts the 'trias energetica' or 'energy pyramid' served as a general guideline, striving for minimisation of energy demand, maximal usage of renewable energy and usage of fossil fuels as efficiently as possible. Different full roof integrated options for using solar energy (PV, T or PVT) with variable storage options have been compared by making simulations with a dynamic simulation programme, to gain insight on their impact on energy, building engineering and economic impact. Also different possibilities for installations to fulfil the heating demand for the space heating and DHW demand are compared. For each concept, the resulting primary energy profiles for space heating and cooling, domestic hot water, electricity consumption for lighting, ventilation and household appliances are given.

  5. Ten questions concerning integrating smart buildings into the smart grid

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Thomas M.; Boudreau, Marie-Claude; Helsen, Lieve; Henze, Gregor; Mohammadpour, Javad; Noonan, Doug; Patteeuw, Dieter; Pless, Shanti; Watson, Richard T.

    2016-11-01

    Recent advances in information and communications technology (ICT) have initiated development of a smart electrical grid and smart buildings. Buildings consume a large portion of the total electricity production worldwide, and to fully develop a smart grid they must be integrated with that grid. Buildings can now be 'prosumers' on the grid (both producers and consumers), and the continued growth of distributed renewable energy generation is raising new challenges in terms of grid stability over various time scales. Buildings can contribute to grid stability by managing their overall electrical demand in response to current conditions. Facility managers must balance demand response requests by grid operators with energy needed to maintain smooth building operations. For example, maintaining thermal comfort within an occupied building requires energy and, thus an optimized solution balancing energy use with indoor environmental quality (adequate thermal comfort, lighting, etc.) is needed. Successful integration of buildings and their systems with the grid also requires interoperable data exchange. However, the adoption and integration of newer control and communication technologies into buildings can be problematic with older legacy HVAC and building control systems. Public policy and economic structures have not kept up with the technical developments that have given rise to the budding smart grid, and further developments are needed in both technical and non-technical areas.

  6. Building Technologies Research and Integration Center (BTRIC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Building Technologies Research and Integration Center (BTRIC), in the Energy and Transportation Science Division (ETSD) of Oak Ridge National Laboratory (ORNL),...

  7. Supporting Theory Building in Integrated Services Research

    Science.gov (United States)

    Robinson, Mark; Atkinson, Mary; Downing, Dick

    2008-01-01

    This literature review was commissioned by the National Foundation for Educational Research (NFER) to draw together current and recent studies of integrated working, in order to build an overview of the theories and models of such working. The review is important for current work on evaluating the early impact of integrated children's services and…

  8. Intelligence, integration & industrialisation for the building services technologies of the future

    DEFF Research Database (Denmark)

    Marsh, Rob

    2007-01-01

    The hypothesis of this paper is that the construction sector's industrial transformation needs to focus on integrating building services technologies in the buildings of the future. This can be achieved by analysing developments in intelligent building services, exploring design strategies...... for effectively integrating building services, and by developing new industrialised solutions for building services technologies. This paper is based on current Danish research and practice, and it is based on linking research knowledge on building services to knowledge on user needs, building design and new...

  9. PV Thermal systems: PV panels supplying renewable electricity and heat

    NARCIS (Netherlands)

    Helden, van W.G.J.; Zolingen, van R.J.C.; Zondag, H.A.

    2004-01-01

    With PV Thermal panels sunlight is converted into electricity and heat simultaneously. Per unit area the total efficiency of a PVT panel is higher than the sum of the efficiencies of separate PV panels and solar thermal collectors. During the last 20 years research into PVT techniques and concepts

  10. Best practices for mitigating soiling risk on PV power plants

    KAUST Repository

    AlDowsari, A.

    2015-09-24

    Solar power generates proven, predictable and economical energy and new innovations have made solar PV power plants easy to deploy, integrate and maintain. Areas with large solar energy potential are among the dustiest in the world. At first glance, solar would be a natural fit in many of these environments but humidity, airborne dust, and wind of these regions often bring high soiling rates that can accumulate to reduce performance by up to 10% per month on average, where soiling can be a major loss factor that affects the energy yield for PV plants especially in humid and dusty climates. Therefore, to achieve the desired performance ratio and obtain stable generation, mitigation solutions are proposed to overcome dust issues that affect the performance of PV plants. This makes PV module cleaning a key component for long-term plant performance and sustainable profitability. In this paper, a review of the mechanisms and mitigation solutions to overcome soiling on solar installations using real-world testing and verification is investigated with emphasis on dry type cleaning methods. © 2014 IEEE.

  11. A PV temperature prediction model for BIPV configurations, comparison with other models and experimental results

    OpenAIRE

    Kaplanis, Socrates; Kaplani, Eleni

    2018-01-01

    The temperatures of c-Si and pc-Si BIPV configurations of different manufacturers were studied when operating under various environmental conditions. The BIPV configurations formed part of the roof in a Zero Energy Building, (ZEB), hanged over windows with varying inclination on a seasonal basis and finally two identical 0.5kWp PV generators were mounted on a terrace in two modes: fixed inclination and sun-tracking. The PV and ambient temperatures, Tpv and Ta, respectively, the intensity of t...

  12. Comparison of three different methods of perturbing the potential vorticity field in mesoscale forecasts of Mediterranean heavy precipitation events: PV-gradient, PV-adjoint and PV-satellite

    Science.gov (United States)

    Vich, M.; Romero, R.; Richard, E.; Arbogast, P.; Maynard, K.

    2010-09-01

    Heavy precipitation events occur regularly in the western Mediterranean region. These events often have a high impact on the society due to economic and personal losses. The improvement of the mesoscale numerical forecasts of these events can be used to prevent or minimize their impact on the society. In previous studies, two ensemble prediction systems (EPSs) based on perturbing the model initial and boundary conditions were developed and tested for a collection of high-impact MEDEX cyclonic episodes. These EPSs perturb the initial and boundary potential vorticity (PV) field through a PV inversion algorithm. This technique ensures modifications of all the meteorological fields without compromising the mass-wind balance. One EPS introduces the perturbations along the zones of the three-dimensional PV structure presenting the local most intense values and gradients of the field (a semi-objective choice, PV-gradient), while the other perturbs the PV field over the MM5 adjoint model calculated sensitivity zones (an objective method, PV-adjoint). The PV perturbations are set from a PV error climatology (PVEC) that characterizes typical PV errors in the ECMWF forecasts, both in intensity and displacement. This intensity and displacement perturbation of the PV field is chosen randomly, while its location is given by the perturbation zones defined in each ensemble generation method. Encouraged by the good results obtained by these two EPSs that perturb the PV field, a new approach based on a manual perturbation of the PV field has been tested and compared with the previous results. This technique uses the satellite water vapor (WV) observations to guide the correction of initial PV structures. The correction of the PV field intents to improve the match between the PV distribution and the WV image, taking advantage of the relation between dark and bright features of WV images and PV anomalies, under some assumptions. Afterwards, the PV inversion algorithm is applied to run

  13. Optimization of partially shaded PV array using a modified P&O MPPT algorithm

    Directory of Open Access Journals (Sweden)

    Abdelaziz YOUCEF

    2016-07-01

    Full Text Available A photovoltaic (PV array generated power is directly affected by temperature, solar irradiation, shading, and array configuration. In practice, PV arrays could be partially shaded by could, buildings, trees and other utilities. In this case, multiple maximums appear in the P-V curve, a global maximum and one or several local maximums. The “perturb and observe“ (P&O maximum power point tracking (MPPT algorithm cannot differentiate between a global and a local maximum and it is therefore ineffective when partial shading occurs. First, this paper presents an original mathematical model of the P-V curve of a partially shaded PV array, that was used to perform a simulation study in order to show the P&O algorithm inability to track the global MPP of a PV array solar system under partial shading for low shading irradiation levels, then an adaptation sub algorithm is proposed to be added to the P&O algorithm in order to give it the ability to track the global MPP. This sub algorithm moves the operating point imposed by the partial shading configuration to a point in the vicinity of the global MPP in order to be easily tracked by the P&O algorithm. In the simulation, a PV array with a hundred modules has been considered by using a light, a medium then a severe shading configuration. The results obtained indicate that the proposed modified P&O algorithm is able to track the global MPP for the considered shading configurations and for any shading irradiation level.

  14. Performance of PV-Trombe wall in winter correlated with south facade design

    International Nuclear Information System (INIS)

    Sun, Wei; Ji, Jie; Luo, Chenglong; He, Wei

    2011-01-01

    PV-Trombe wall (PVTW) is a novel version of Trombe-wall. Photovoltaic cells on the cover glazing of the PVTW can convert solar radiation into electricity and heat simultaneously. A window on the south facade can also introduce solar heat into the room in the winter season. Experiment has been conducted to study the temperature field of a building with both southern facing window and the PVTW. A dynamic numerical model is developed for the simulation of the whole building system. The temperature of the indoor air is found to be vertically stratified from the measurement. The nodal model is adopted to calculate the temperature profile in the room. The simulation results are in good agreement with the experimental data. The different south facade designs affect the thermal efficiency of the PVTW significantly from the numerical simulation. With a southern facing window, the thermal efficiency of the PVTW is reduced by 27% relatively. The increase of PV coverage on the glazing can reduce the thermal efficiency of the TW by up to 17%. By taking account of electric conversion, the total efficiency of solar utilization is reduced by 5% at most while the glazing is fully covered with PV cells. The electric conversion efficiency of the PVTW achieves 11.6%, and is slightly affected by south facade designs.

  15. Systematic framework for the efficient integration of wind technologies into buildings

    Directory of Open Access Journals (Sweden)

    Ashraf A. ELMokadem

    2016-03-01

    Full Text Available The renewed interest that is being paid by architects, project developers and local governments to integrate wind turbines with buildings is mainly required a framework to unify much data, criteria and variables to ease the design process to many architects. Therefore, this paper introduces and elaborates the systematic framework towards the efficient integration of wind technologies into new building. Moreover, it evaluates the framework effectiveness by comparing the current status of wind technologies integration into a building with the suggested status if the framework is followed.

  16. A Novel Hybrid Model for Short-Term Forecasting in PV Power Generation

    Directory of Open Access Journals (Sweden)

    Yuan-Kang Wu

    2014-01-01

    Full Text Available The increasing use of solar power as a source of electricity has led to increased interest in forecasting its power output over short-time horizons. Short-term forecasts are needed for operational planning, switching sources, programming backup, reserve usage, and peak load matching. However, the output of a photovoltaic (PV system is influenced by irradiation, cloud cover, and other weather conditions. These factors make it difficult to conduct short-term PV output forecasting. In this paper, an experimental database of solar power output, solar irradiance, air, and module temperature data has been utilized. It includes data from the Green Energy Office Building in Malaysia, the Taichung Thermal Plant of Taipower, and National Penghu University. Based on the historical PV power and weather data provided in the experiment, all factors that influence photovoltaic-generated energy are discussed. Moreover, five types of forecasting modules were developed and utilized to predict the one-hour-ahead PV output. They include the ARIMA, SVM, ANN, ANFIS, and the combination models using GA algorithm. Forecasting results show the high precision and efficiency of this combination model. Therefore, the proposed model is suitable for ensuring the stable operation of a photovoltaic generation system.

  17. Optimized controllers for enhancing dynamic performance of PV interface system

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Attia

    2018-05-01

    Full Text Available The dynamic performance of PV interface system can be improved by optimizing the gains of the Proportional–Integral (PI controller. In this work, gravitational search algorithm and harmony search algorithm are utilized to optimal tuning of PI controller gains. Performance comparison between the PV system with optimized PI gains utilizing different techniques are carried out. Finally, the dynamic behavior of the system is studied under hypothetical sudden variations in irradiance. The examination of the proposed techniques for optimal tuning of PI gains is conducted using MATLAB/SIMULINK software package. The main contribution of this work is investigating the dynamic performance of PV interfacing system with application of gravitational search algorithm and harmony search algorithm for optimal PI parameters tuning. Keywords: Photovoltaic power systems, Gravitational search algorithm, Harmony search algorithm, Genetic algorithm, Artificial intelligence

  18. Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building

    International Nuclear Information System (INIS)

    Ogunjuyigbe, A.S.O.; Ayodele, T.R.; Akinola, O.A.

    2016-01-01

    Highlights: • Genetic Algorithm is used for tri-objective design of hybrid energy system. • The objective is minimizing the Life Cycle Cost, CO_2 emissions and dump energy. • Small split diesel generators are used in place of big single diesel generator. • The split diesel generators are aggregable based on certain set of rules. • The proposed algorithm achieves the set objectives (LCC, CO_2 emission and dump). - Abstract: In this paper, a Genetic Algorithm (GA) is utilized to implement a tri-objective design of a grid independent PV/Wind/Split-diesel/Battery hybrid energy system for a typical residential building with the objective of minimizing the Life Cycle Cost (LCC), CO_2 emissions and dump energy. To achieve some of these objectives, small split Diesel generators are used in place of single big Diesel generator and are aggregable based on certain set of rules depending on available renewable energy resources and state of charge of the battery. The algorithm was utilized to study five scenarios (PV/Battery, Wind/Battery, Single big Diesel generator, aggregable 3-split Diesel generators, PV/Wind/Split-diesel/Battery) for a typical load profile of a residential house using typical wind and solar radiation data. The results obtained revealed that the PV/Wind/Split-diesel/Battery is the most attractive scenario (optimal) having LCC of $11,273, COE of 0.13 ($/kW h), net dump energy of 3 MW h, and net CO_2 emission of 13,273 kg. It offers 46%, 28%, 82% and 94% reduction in LCC, COE, CO_2 emission and dump energy respectively when compared to a single big Diesel generator scenario.

  19. SIZING AND COSTING OPTIMISATION OF A TYPICAL WIND/PV HYBRID ELECTRICITY GENERATION SYSTEM FOR A TYPICAL RESIDENTIAL BUILDING IN URBAN ARMIDALE NSW, AUSTRALIA

    Directory of Open Access Journals (Sweden)

    Yasser Maklad

    2014-04-01

    Full Text Available This study investigates the wind and solar electricity generation availability and potentiality for residential buildings in Armidale NSW, Australia. The main purpose of this study is to design an appropriate wind-PV hybrid system to cover the electricity consumption of typical residential buildings of various occupancy rates and relevant various average electrical daily consumption. In order to do achieve that, monthly average solar irradiance monthly average wind speed historical data observed at weather station belongs to the Australian bureau of meteorology in Armidale town over a fourteen years period from 1997–2010. Simulation of solar photovoltaic panels and wind turbines were conducted to obtain the optimal hybrid system sizing and best efficient with lowest cost. Correlations between the solar and wind power data were carried out on an hourly, daily, and monthly basis. It is shown that the hybrid system can be applied for the efficient and economic utilization of wind and solar renewable energy sources.

  20. High Penetration Solar PV Deployment Sunshine State Solar Grid Initiative (SUNGRIN)

    Energy Technology Data Exchange (ETDEWEB)

    Meeker, Rick [Nhu Energy, Inc., Tallahassee, FL (United States); Florida State Univ., Tallahassee, FL (United States); Steurer, Mischa [Florida State Univ., Tallahassee, FL (United States); Faruque, MD Omar [Florida State Univ., Tallahassee, FL (United States); Langston, James [Florida State Univ., Tallahassee, FL (United States); Schoder, Karl [Florida State Univ., Tallahassee, FL (United States); Ravindra, Harsha [Florida State Univ., Tallahassee, FL (United States); Hariri, Ali [Florida State Univ., Tallahassee, FL (United States); Moaveni, Houtan [New York Power Authority (NYPA), New York (United States); University of Central Florida, Florida Solar Energy Center, Cocoa, FL (Unitied States); Click, Dave [ESA Renewables, LLC, Sanford, FL (United States); University of Central Florida, Florida Solar Energy Center, Cocoa, FL (United States); Reedy, Bob [University of Central Florida, Florida Solar Energy Center, Cocoa, FL (United States)

    2015-05-31

    The report provides results from the Sunshine State Solar Grid Initiative (SUNGRIN) high penetration solar PV deployment project led by Florida State University’s (FSU) Center for Advanced Power Systems (CAPS). FSU CAPS and industry and university partners have completed a five-year effort aimed at enabling effective integration of high penetration levels of grid-connected solar PV generation. SUNGRIN has made significant contributions in the development of simulation-assisted techniques, tools, insight and understanding associated with solar PV effects on electric power system (EPS) operation and the evaluation of mitigation options for maintaining reliable operation. An important element of the project was the partnership and participation of six major Florida utilities and the Florida Reliability Coordinating Council (FRCC). Utilities provided details and data associated with actual distribution circuits having high-penetration PV to use as case studies. The project also conducted foundational work supporting future investigations of effects at the transmission / bulk power system level. In the final phase of the project, four open-use models with built-in case studies were developed and released, along with synthetic solar PV data sets, and tools and techniques for model reduction and in-depth parametric studies of solar PV impact on distribution circuits. Along with models and data, at least 70 supporting MATLAB functions have been developed and made available, with complete documentation.

  1. Final Report Report: Smart Grid Ready PV Inverters with Utility Communication

    Energy Technology Data Exchange (ETDEWEB)

    Seal, Brian [Electric Power Research Inst. (EPRI), Knovville, TN (United States); Huque, Aminul [Electric Power Research Inst. (EPRI), Knovville, TN (United States); Rogers, Lindsey [Electric Power Research Inst. (EPRI), Knovville, TN (United States); Key, Tom [Electric Power Research Inst. (EPRI), Knovville, TN (United States); Riley, Cameron [Electric Power Research Inst. (EPRI), Knovville, TN (United States); Li, Huijuan [Electric Power Research Inst. (EPRI), Knovville, TN (United States); York, Ben [Electric Power Research Inst. (EPRI), Knovville, TN (United States); Purcell, Chris [BPL Global, Inc., Canonsburg, PA (United States); Pacific, Oliver [Spirae, Inc., Fort Collins, CO (United States); Ropp, Michael [Northern Plains Power Technologies, Brookings, SD (United States); Tran, Teresa [DTE Energy, Detroit, MI (United States); Asgeirsson, Hawk [DTE Energy, Detroit, MI (United States); Woodard, Justin [National Grid, Warwick (United Kingdom); Steffel, Steve [Pepco Holdings, Inc., Washington, DC (United States)

    2016-03-30

    In 2011, EPRI began a four-year effort under the Department of Energy (DOE) SunShot Initiative Solar Energy Grid Integration Systems - Advanced Concepts (SEGIS-AC) to demonstrate smart grid ready inverters with utility communication. The objective of the project was to successfully implement and demonstrate effective utilization of inverters with grid support functionality to capture the full value of distributed photovoltaic (PV). The project leveraged ongoing investments and expanded PV inverter capabilities, to enable grid operators to better utilize these grid assets. Developing and implementing key elements of PV inverter grid support capabilities will increase the distribution system’s capacity for higher penetration levels of PV, while reducing the cost. The project team included EPRI, Yaskawa-Solectria Solar, Spirae, BPL Global, DTE Energy, National Grid, Pepco, EDD, NPPT and NREL. The project was divided into three phases: development, deployment, and demonstration. Within each phase, the key areas included: head-end communications for Distributed Energy Resources (DER) at the utility operations center; methods for coordinating DER with existing distribution equipment; back-end PV plant master controller; and inverters with smart-grid functionality. Four demonstration sites were chosen in three regions of the United States with different types of utility operating systems and implementations of utility-scale PV inverters. This report summarizes the project and findings from field demonstration at three utility sites.

  2. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ardani, Kristen B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-03

    The installed cost of solar photovoltaics (PV) has fallen rapidly in recent years and is expected to continue declining in the future. In this report, we focus on the potential for continued PV cost reductions in the residential market. From 2010 to 2017, the levelized cost of energy (LCOE) for residential PV declined from 52 cents per kilowatt-hour (cents/kWh) to 16 cents/kWh (Fu et al. 2017). The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office (SETO) recently set new LCOE targets for 2030, including a target of 5 cents/kWh for residential PV. We present a roadmap for achieving the SETO 2030 residential PV target. Because the 2030 target likely will not be achieved under business-as-usual trends (NREL 2017), we examine two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof replacement and installing PV as part of the new home construction process. Within both market segments, we identify four key cost-reduction opportunities: market maturation, business model integration, product innovation, and economies of scale. To assess the potential impact of these cost reductions, we compare modeled residential PV system prices in 2030 to the National Renewable Energy Laboratory's (NREL's) quarter one 2017 (Q1 2017) residential PV system price benchmark (Fu et al. 2017). We use a bottom-up accounting framework to model all component and project-development costs incurred when installing a PV system. The result is a granular accounting for 11 direct and indirect costs associated with installing a residential PV system in 2030. All four modeled pathways demonstrate significant installed-system price savings over the Q1 2017 benchmark, with the visionary pathways yielding the greatest price benefits. The largest modeled cost savings are in the supply chain, sales and marketing, overhead, and installation labor cost categories. When we translate these

  3. Application of Sensitivity Analysis in Design of Integrated Building Concepts

    DEFF Research Database (Denmark)

    Heiselberg, Per; Brohus, Henrik; Hesselholt, Allan Tind

    2007-01-01

    analysis makes it possible to identify the most important parameters in relation to building performance and to focus design and optimization of integrated building concepts on these fewer, but most important parameters. The sensitivity analyses will typically be performed at a reasonably early stage...... the design requirements and objectives. In the design of integrated building concepts it is beneficial to identify the most important design parameters in order to more efficiently develop alternative design solutions or more efficiently perform an optimization of the building performance. The sensitivity...

  4. SunShot 2030 for Photovoltaics (PV): Envisioning a Low-Cost PV Future

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Frew, Bethany A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, James [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zuboy, Jarrett; Woodhouse, Michael A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-01

    This presentation summarizes the findings from the report 'SunShot 2030 for Photovoltaics (PV): Envisioning a Low-cost PV Future.' This presentation was given as a webinar on September 26, 2017.

  5. Economic PV - a shift in thinking

    International Nuclear Information System (INIS)

    Maycock, P.

    1999-01-01

    This article argues that photovoltaic (PV) technology is already economically viable contrary to current opinion. A table of world PV module shipments for 1990 to 1998 by market sector is presented, and use of PV modules in consumer electronics such as calculators, battery trickle chargers, and garden lights; in communications and signals (eg. microwave repeaters, cellular communication); and in the residential sector in fluorescent lights, radios etc. are discussed. The early adopters of PV technology, and the value placed on PV devices by consumers are considered. Details of PV manufacturing costs for 1997, and forecasts for 2000 and 2010 are tabulated

  6. Design and optimization of zero-energy-consumption based solar energy residential building systems

    Science.gov (United States)

    Zheng, D. L.; Yu, L. J.; Tan, H. W.

    2017-11-01

    Energy consumption of residential buildings has grown fast in recent years, thus raising a challenge on zero energy residential building (ZERB) systems, which aim at substantially reducing energy consumption of residential buildings. Thus, how to facilitate ZERB has become a hot but difficult topic. In the paper, we put forward the overall design principle of ZERB based on analysis of the systems’ energy demand. In particular, the architecture for both schematic design and passive technology is optimized and both energy simulation analysis and energy balancing analysis are implemented, followed by committing the selection of high-efficiency appliance and renewable energy sources for ZERB residential building. In addition, Chinese classical residential building has been investigated in the proposed case, in which several critical aspects such as building optimization, passive design, PV panel and HVAC system integrated with solar water heater, Phase change materials, natural ventilation, etc., have been taken into consideration.

  7. Integrating advanced facades into high performance buildings

    International Nuclear Information System (INIS)

    Selkowitz, Stephen E.

    2001-01-01

    Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability

  8. Integrated energy design of the building envelope

    Energy Technology Data Exchange (ETDEWEB)

    Vraa Nielsen, M.

    2012-07-01

    This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research project analysed how the implementation of technical knowledge early in the building design process can quantify the effect of a building's facades on its energy efficiency and indoor climate and thereby facilitate a more qualified design development. The project was structured in the following way: 1) the importance of integrating knowledge in the early stages of design, and how it can be done; 2) understanding the facade's typology; and 3) the complex notion of comfort. The project touched not only on the technical capabilities and requirements governing facade design, but also the process by which it takes place. This was done by applying the methodology of Integrated Energy Design (IED) and analysing its applicability in the design of facades. A major part of the project was an actual engagement in the architectural process to test out incorporating a consciousness about energy and comfort as part of a more holistic performance evaluation. The research project illustrates the great potential in taking passive properties into account through a geometrical optimisation inherent in the development of the architectural concept. It demonstrates that integration of technical knowledge at the early stages of design not only can qualify the geometrical processing, but also facilitate the design development of the facade. Thereby a more holistic performance optimisation can be obtained through parameters such as overall facade geometry and orientation, functional organisation, room height and depth, facade layout, window geometry and transparency, design of the window aperture, etc. Through the wide range of affiliated project involved in at the architectural firm over

  9. PV module mounting method and mounting assembly

    Science.gov (United States)

    Lenox, Carl J.S.; Johnson, Kurt M.

    2013-04-23

    A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.

  10. Building Integrated Design Practice under the Concept of Sustainable Development

    Science.gov (United States)

    Liu, Xuexin

    2018-03-01

    With the continuous development of social economy, people are more demanding for architecture. Some advanced design concepts are gradually applied to the design of buildings. Under the concept of sustainable development, building integration design has also been widely used to promote the rapid development of architectural design. Integrated design concepts and sustainable development concepts play an important role to meet people’s requirements. This article will explore the concept of sustainable development under the concept of integrated architectural design and practice analysis, propose appropriate measures.

  11. GIS methodology and case study regarding assessment of the solar potential at territorial level: PV or thermal?

    Directory of Open Access Journals (Sweden)

    Loïc Quiquerez

    2015-06-01

    Full Text Available This paper presents a GIS-based methodology for assessing solar photovoltaic (PV and solar thermal potentials in urban environment. The consideration of spatial and temporal dimensions of energy resource and demand allows, for two different territories of the Geneva region, to determine the suitable building roof areas for solar installations, the solar irradiance on these areas and, finally, the electrical and/or thermal energy potentials related to the demand. Results show that the choice of combining PV and solar thermal for domestic hot water (DHW is relevant in both territories. Actually, the installation of properly sized solar thermal collectors doesn’t decrease much the solar PV potential, while allowing significant thermal production. However, solar collectors for combined DHW and space heating (SH require a much larger surface and, therefore, have a more important influence on the PV potential.

  12. Collaborative Knowledge Building and Integral Theory: On Perspectives, Uncertainty, and Mutual Regard

    Directory of Open Access Journals (Sweden)

    Tom Murray

    2006-06-01

    Full Text Available Uncertainty in knowing and communicating affect all aspects of modern life. Ubiquitous and inevitable uncertainty, including ambiguity and paradox, is particularly salient and important in knowledge building communities. Because knowledge building communities represent and evolve knowledge explicitly, the causes, effects, and approaches to this “epistemological indeterminacy” can be directly addressed in knowledge building practices. Integral theory’s approach (including “methodological pluralism” involves accepting and integrating diverse perspectives in ways that transcend and include them. This approach accentuates the problems of epistemological indeterminacy and highlights the general need to deal creatively with it. This article begins with a cursory analysis of textual dialogs among integral theorists, showing that, while integral theory itself points to leading-edge ways of dealing with epistemological indeterminacy, the knowledge building practices of integral theorists, by and large, exhibit the same limitations as traditional intellectual discourses. Yet, due to its values and core methods, the integral theory community is in a unique position to develop novel and more adequate modes of inquiry and dialog. This text explores how epistemological indeterminacy impacts the activities and products of groups engaged in collaborative knowledge building. Approaching the issue from three perspectives–mutual understanding, mutual agreement, and mutual regard—I show the interdependence of those perspectives and ground them in relation to integral theory’s concerns. This article proposes three phases of developing constructive alternatives drawn from the knowledge building field: awareness of the phenomena, understanding the phenomena, and offering some tools (and some hope for dealing with it. Though here I focus on the integral theory community (or communities, the conclusions of the article are meant to be applicable to any

  13. Collaborative Knowledge Building and Integral Theory:On Perspectives,Uncertainty, and Mutual Regard

    Directory of Open Access Journals (Sweden)

    Tom Murray

    2006-06-01

    Full Text Available Uncertainty in knowing and communicating affect all aspects of modern life. Ubiquitous and inevitable uncertainty, including ambiguity and paradox, is particularly salient and important in knowledge building communities. Because knowledge building communities represent and evolve knowledge explicitly, the causes, effects, and approaches to this “epistemological indeterminacy” can be directly addressed in knowledge building practices. Integral theory's approach (including “methodological pluralism” involves accepting and integrating diverse perspectives in ways that transcend and include them. This approach accentuates the problems of epistemological indeterminacy and highlights the general need to deal creatively with it. This article begins with a cursory analysis of textual dialogs among integral theorists, showing that, while integral theory itself points to leading-edge ways of dealing with epistemological indeterminacy, the knowledge building practices of integral theorists, by and large, exhibit the same limitations as traditional intellectual discourses. Yet, due to its values and core methods, the integral theory community is in a unique position to develop novel and more adequate modes of inquiry and dialog. This text explores how epistemological indeterminacy impacts the activities and products of groups engaged in collaborative knowledge building. Approaching the issue from three perspectives—mutual understanding, mutual agreement, and mutual regard—I show the interdependence of those perspectives and ground them in relation to integral theory’s concerns. This article proposes three phases of developing constructive alternatives drawn from the knowledge building field: awareness of the phenomena, understanding the phenomena, and offering some tools (and some hope for dealing with it. Though here I focus on the integral theory community (or communities, the conclusions of the article are meant to be applicable to any

  14. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Science.gov (United States)

    2010-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  15. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building

  16. Performance analysis of a 11.2 kWp roof top grid-connected PV system in Eastern India

    Directory of Open Access Journals (Sweden)

    Renu Sharma

    2017-11-01

    Full Text Available Barren land and roof tops of buildings are being increasingly used worldwide to install solar panels for generating electricity. One such step has been taken by Siksha ‘O’Anusandhan University, Bhubaneswar (Latitude 20.24° N and Longitude 80.85° E by installing a 11.2 kWp grid connected solar power system during February, 2014. This PV system is tilted at an angle of 21° on the top floor of a 25 metre height building. This system was installed This paper presents the results of this grid connected photovoltaic system which was monitored between September 2014 to August 2015. The entire electricity generated by the system was fed into the state grid. The different parameters of the system studied include PV module efficiency, array yield, final yield, inverter efficiency and performance ratio of the system. The total energy generated during this period was found to be 14.960 MWh and the PV module efficiency, inverter efficiency and performance ratio were found to be 13.42%, 89.83% and 0.78 respectively.

  17. Market dynamics, innovation, and transition in China's solar photovoltaic (PV) industry

    DEFF Research Database (Denmark)

    Zou, Hongyang; Du, Huibin; Ren, Jingzheng

    2017-01-01

    development from the perspective of technological innovation. By incorporating a Technological Innovation System (TIS) approach, the analysis performed here complements the previous literature, which has not provided agrounded itself in a theoretical framework for associated analyses. In addition......China’s photovoltaic (PV) industry has undergone dramatic development in recent years and is now the global market leader in terms of newly added capacity. However, market diffusion and adoption in China is not ideal. This paper examines the blocking and inducement mechanisms of China’s PV industry......, to determine the current market dynamics, we closely examine the market concentration trends as well as the vertical and horizontal integration of upstream and downstream actors and calculate the market concentration of the upstream and downstream integration (74.8% and 36.3%). The results of applying the TIS...

  18. Numerical study of PV/T-SAHP system

    Institute of Scientific and Technical Information of China (English)

    Gang PEI; Jie JI; Ke-liang LIU; Han-feng HE; Ai-guo JIANG

    2008-01-01

    In order to utilize solar energy effectively and to achieve a higher electrical efficiency by limiting the operating temperature of the photovoltaic (PV) panel, a novel photovoltaic/thermal solar-assisted heat pump (PV/T-SAHP) system was proposed and constructed. The hybrid solar system generates electricity and thermal energy simultaneously. A distributed parameters model of the PV/T-SAHP system was developed and applied to analyze the system dynamic performance in terms of PV action, photothermal action and Rankine cycle processes. The simulation results indicated that the coefficient of performance (COP) of the proposed PV/T-SAHP can be much better than that of the conventional heat pump. Both PV-efficiency and photothermic efficiency have been improved considerably. The results also showed that the performance of this PV/T-SAHP system was strongly influenced by the evaporator area, tube pitch and tilt angle of the PV/T evaporator, which are the key factors in PV/T-SAHP system optimization and PV/T evaporator design.

  19. Design optimization of grid-connected PV inverters

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2011-01-01

    The DC/AC inverters are the key elements in grid-connected PV energy production systems. In this paper, new design optimization techniques focused on transformerless (very high efficiency) PV inverters are proposed. They have been developed based on an analysis of the deficiencies of the current......, state-of-the-art PV inverters design technology, which limits the amount of PV energy supplied into the electric grid. The influences of the electric grid regulations and standards and the PV array operational characteristics on the design of grid-connected PV inverters have also been considered....... The simulation results verify that the proposed optimization techniques enable the maximization of the PV energy injected into the electric grid by the optimized PV installation....

  20. A case study of utility PV economics

    International Nuclear Information System (INIS)

    Wenger, H.; Hoff, T.; Osborn, D.E.

    1997-01-01

    This paper presents selected results from a detailed study of grid-connected photovoltaic (PV) applications within the service area of the Sacramento Municipal Utility District. The intent is to better understand the economics and markets for grid-connected PV systems in a utility setting. Research results include: Benefits calculations for utility-owned PV systems at transmission and distribution voltages; How the QuickScreen software package can help utilities investigate the viability of distributed PV; Energy production and capacity credit estimates for fixed and tracking PV systems; Economics and rate impacts of net metering residential PV systems; Market potential estimates for residential rooftop PV systems; and Viability and timing of grid-connected PV commercialization paths

  1. Safety design integrated in the Building Delivery System

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2012-01-01

    phases of the building delivery system by using the principle of the lean construction modelling. The method for the research was to go through the lean construction building delivery system step by step and create a normative description of what to do, when to do and how to do to fully integration...... of safety in each process. The group of participants who created the description had a high experience in a combination of research, safety and health in general and especial in construction and knowledge of the lean construction processes both from the clients perspective as well as from the designers...... and the consultants. The result is a concept and guideline including control schemes for how to integrate safety design in the lean construction building delivery system including what to do and when. The concept has been tested in an educational context and found useful by the designers. The practical value...

  2. Topology and Control of Transformerless High Voltage Grid-connected PV System Based on Cascade Step-up Structure

    DEFF Research Database (Denmark)

    Yang, Zilong; Wang, Zhe; Zhang, Ying

    2017-01-01

    -up structure, instead of applying line-frequency step-up transformer, is proposed to connect PV directly to the 10 kV medium voltage grid. This series-connected step-up PV system integrates with multiple functions, including separated maximum power point tracking (MPPT), centralized energy storage, power...

  3. Solar PV. Innovators talking; Zon PV. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on solar PV [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar zon PV.

  4. Solar PV. Innovators talking; Zon PV. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on solar PV [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar zon PV.

  5. Firefighter Safety for PV Systems

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Sera, Dezso; Spataru, Sergiu

    2015-01-01

    An important and highly discussed safety issue for photovoltaic (PV) systems is that as long as the PV panels are illuminated, a high voltage is present at the PV string terminals and cables between the string and inverters that is independent of the state of the inverter's dc disconnection switch...

  6. In the balance. The social costs and benefits of PV

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, C. [ECN Solar Energy, Petten (Netherlands)

    2013-10-16

    For more than a decade, the growth in PV markets surpassed expectations. Then, in 2012, the European market declined for the first time compared with the previous year. As policymakers' support for PV hesitates over the costs to society of this technology, it is timely to take an overview of the social costs and benefits, also referred to as the 'external costs', of PV electricity. In this article, these costs are put into perspective vis-a-vis those associated with conventional electricity-generating technologies. The external costs of electricity can be broken down into: (1) the environmental and health costs; (2) the costs of subsidies and energy security; and (3) the costs for grid expansion and reliability. Included in these costs are the increased insurance, health, social and environmental costs associated with damages to health, infrastructure and environment, as well as tax payments that subsidize producers of electricity or fuels, their markets and the electricity infrastructure. A life cycle assessment (LCA) of the environmental impact is used in the quantification of the associated environmental and health costs. Because the environmental footprint of PV electricity is highly dependent on the electricity mix used in PV module fabrication, the environmental indicators are calculated for PV electricity manufactured using different electricity mixes, and compared with those for the European electricity mix (UCTE), and electricity generated by burning 100% coal or 100% natural gas. In 2012 USD, coal electricity requires 19-29 eurocent/kWh above the market price, compared with 1-1.6 eurocent/kWh for PV manufactured with 100% coal electricity. The sum of the subsidies, avoided fossil-fuel imports and energy security, and the economic stimulation associated with PV electricity deployment, amounts to net external benefits. Integrating high penetrations of renewables, with the same reliability as we have today, appears to be fully feasible and

  7. Sizing energy storage systems to make PV tradable in the Iberian electricity market

    Energy Technology Data Exchange (ETDEWEB)

    Beltram, H.; Perez, E.; Aparicio, N.; Vidal, R.; Belenguer, E. [Universitat Jaume I (UJI), Castello de la Plana (Spain). Electrical Engineering Area; Piqueres, T. [Energia Solar Aplicada (ESA), Valencia (Spain). Technical Dept.

    2012-07-01

    The work presented in this paper is intended to provide some reference values for the ratings required by an energy storage system, to be integrated in a large-scale PV power plant placed at any location of the Iberian Peninsula, to operate it according to an energy management strategy (EMS) whic allowed its participation in the Iberian electricity market while minimizing the economic penalties. The proposed EMS produces a constant-by-hours power reference to be tracked by the PV plant with storage and, in that way, mitigate the stochastic nature of the PV production. This operation mode will enable PV power plants to take part reliably in the different electricity markets, profiting the intraday market sessions to continuously refine the power production commitment. Different configurations of the EMS are analysed, introducing on each of them different meteorologically-based adjustments which allow minimizing the energy capacity required by the storage system. The proposals are analysed through one-year long simulations which use real-world data and PV power forecasting models extracted from solar databases. (orig.)

  8. Energy plus standard in buildings constructed by housing associations?

    International Nuclear Information System (INIS)

    Stutterecker, Werner; Blümel, Ernst

    2012-01-01

    In order to achieve national, European and international energy goals, energy efficiency strategies in the building sector have to be implemented. The passive house standard and low energy standards are already successfully established in single dwelling houses. These high performance standards are starting to penetrate into the sector of housing associations. A case study about an apartment building constructed by a housing association is presented here. It describes the monitoring concept and the results of the 1st year of monitoring. Depending on the definition of the zero energy building standard (extent of loads included in the balancing), the building could be classified as an energy plus building or as a building, which uses more energy, than is supplied by on-site generation. If the building's total energy use (including user specific loads) is defined as load, only 34.5% of these loads were provided by the net energy output of the PV system. If only the heating energy demand is defined as load, the PV system even yielded a surplus of 45.6% of the energy load. -- Highlights: ► Energy monitoring of an apartment building constructed by a housing association. ► Planned as a Passive House with a semi-central ventilation system with decentralized heat pump technology. ► Total end energy demand of the building was 43 kWh/(m² a). ► Total net energy generation by the PV system was 15 kWh/(m² a). ► Apartment no. 1: 52% of the energy demand were used for heating and ventilation.

  9. Approaches to Integrated Building Design Environments

    DEFF Research Database (Denmark)

    Bagger-Petersen, Susanne C; Andersen, Tom

    1996-01-01

    This report discusses functional requirements and specification which needs to be defined and fulfilled to initiate development of an integrated building design environment. The purpose is to outline specifications for further discussion and development. The report documents the first phase...... in an ongoing project at the Technical University of Denmark. The overall project objective is to provide a theoretically well-founded prototype of an integrated IT-system which can serve as a device of feedback from practice and as a test-bed for the developed concept and architecture....

  10. Model validation of solar PV plant with hybrid data dynamic simulation based on fast-responding generator method

    Directory of Open Access Journals (Sweden)

    Zhao Dawei

    2016-01-01

    Full Text Available In recent years, a significant number of large-scale solar photovoltaic (PV plants have been put into operation or been under planning around the world. The model accuracy of solar PV plant is the key factor to investigate the mutual influences between solar PV plants and a power grid. However, this problem has not been well solved, especially in how to apply the real measurements to validate the models of the solar PV plants. Taking fast-responding generator method as an example, this paper presents a model validation methodology for solar PV plant via the hybrid data dynamic simulation. First, the implementation scheme of hybrid data dynamic simulation suitable for DIgSILENT PowerFactory software is proposed, and then an analysis model of solar PV plant integration based on IEEE 9 system is established. At last, model validation of solar PV plant is achieved by employing hybrid data dynamic simulation. The results illustrate the effectiveness of the proposed method in solar PV plant model validation.

  11. National Survey Report of PV Power Applications in France 2012. Photovoltaic Power Applications in France - National Survey Report 2012

    International Nuclear Information System (INIS)

    Durand, Yvonnick

    2013-05-01

    The PV power of all grid-connected photovoltaic systems installed in 2012 stood at 1 079 MW. This represented a 38 % fall compared with 2011. New grid-connected distributed systems, the majority of which were building-integrated, represented a total power of 756 MW, while grid-connected centralised ground-based power plants accounted for 323 MW. New PV installations in mainland France accounted for 35 % of total new electricity production capacity commissioned in 2012. The off-grid stand-alone photovoltaic system sector remains marginal with around 0,2 MW installed. The cumulative power capacity of all photovoltaic systems in operation at the end of 2012 stood at 4 003 MW (281 724 systems) representing an increase of 37% compared with 2011. Residential systems less than or equal to 3 kW accounted for 86% of all installations and 16 % of total power capacity, while systems exceeding 250 kW accounted for 0,3% of all installations and 44% of total capacity. In 2012, photovoltaic electricity production accounted for 0,7% of France's total electricity production. In France, the estimated average price of European-manufactured photovoltaic modules stood at 0,72 EUR/W in 2012. The fall in prices observed over the last two years has led to substantial growth in the medium-power and high-power systems sector. The turnkey price stood at around 3,7 EUR/W in 2012 for building-integrated residential systems (IAB) using European modules. The price of simplified building-integrated systems (ISB) on commercial and industrial buildings stood at 2,0 EUR/W, and at 1,6 EUR/W for high-power grid-connected ground-mounted systems (all prices mentioned are exclusive of VAT). The French photovoltaic component industry faced stiff international competition in 2012. The industrial value chain has, on the whole, remained relatively unscathed, but small installation companies have been the worst affected. Upstream of the PV sector, photovoltaic-grade silicon manufacturing is currently at

  12. Integrated Building Energy Systems Design Considering Storage Technologies

    OpenAIRE

    Stadler, Michael

    2009-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 em...

  13. Final Report: Towards an Emergent Model of Technology Adoption for Accelerating the Diffusion of Residential Solar PV

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Varun [Univ. of Texas, Austin, TX (United States)

    2016-08-15

    This project sought to enable electric utilities in Texas to accelerate diffusion of residential solar photovoltaic (PV) by systematically identifying and targeting existing barriers to PV adoption. A core goal of the project was to develop an integrated research framework that combines survey research, econometric modeling, financial modeling, and implementation and evaluation of pilot projects to study the PV diffusion system. This project considered PV diffusion as an emergent system, with attention to the interactions between the constituent parts of the PV socio-technical system including: economics of individual decision-making; peer and social influences; behavioral responses; and information and transaction costs. We also conducted two pilot projects, which have yielded new insights into behavioral and informational aspects of PV adoption. Finally, this project has produced robust and generalizable results that will provide deeper insights into the technology-diffusion process that will be applicable for the design of utility programs for other technologies such as home-energy management systems and plug-in electric vehicles. When we started this project in 2013 there was little systematic research on characterizing the decision-making process of households interested in adopting PV. This project was designed to fill that research gap by analyzing the PV adoption process from the consumers' decision-making perspective and with the objective to systematically identifying and addressing the barriers that consumers face in the adoption of PV. The two key components of that decision-making process are consumers' evaluation of: (i) uncertainties and non-monetary costs associated with the technology and (ii) the direct monetary cost-benefit. This project used an integrated approach to study both the non-monetary and the monetary components of the consumer decision-making process.

  14. On-grid PV implementation program. Phase I report, August 1994--January 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-29

    Southern California Edison Company (Edison) is finalizing a Cooperative Agreement with the U.S. Department of Energy (DOE) to develop high value On-Grid applications for electricity from Photovoltaics (PV). Edison`s efforts are the result of Edison`s long-standing commitment to the pursuit of Renewable Energy. Edison has been a world leader in the development and use of PV. As the technology becomes more commercial, Edison has been actively seeking more applications for PV. After strenuous effort, Edison has now received approval to offer off-grid PV packages within its service territory. In addition, Edison has been very interested in finding high-value on-grid PV applications that may have the potential to become cost effective as PV applications increase and prices decline. Such high-value applications at Edison and other utilities will accelerate the price reductions, which in turn will increase the number of cost-effective applications, driving towards a market competitive with traditional sources of energy. Edison`s efforts build upon the work done by Pacific Gas & Electric (PG&E) at their Kerman substation, but goes much further than that effort. Edison submitted its original proposal to the DOE on June 30, 1993. A revised proposal was submitted on February 1, 1994, in response to a letter from the DOE`s Director of Solar Energy, Robert H. Annan. In a letter dated March 30, 1994, from Paul K. Kearns, Head of Contracting Activity for the DOE`s Golden Field Office, the DOE conditionally approved certain pre-award contract costs. The Cooperative Agreement with DOE was executed on August 16, 1994.

  15. Photovoltaic-STATCOM with Low Voltage Ride through Strategy and Power Quality Enhancement in a Grid Integrated Wind-PV System

    Directory of Open Access Journals (Sweden)

    Lakshman Naik Popavath

    2018-04-01

    Full Text Available The traditional configurations of power systems are changing due to the greater penetration of renewable energy sources (solar and wind, resulting in reliability issues. At present, the most severe power quality problems in distribution systems are current harmonics, reactive power demands, and the islanding of renewables caused by severe voltage variations (voltage sag and swell. Current harmonics and voltage sag strongly affect the performance of renewable-based power systems. Various conventional methods (passive filters, capacitor bank, and UPS are not able to mitigate harmonics and voltage sag completely. Based on several studies, custom power devices can mitigate harmonics completely and slightly mitigate voltage sags with reactive power supplies. To ensure the generating units remain grid-connected during voltage sags and to improve system operation during abnormal conditions, efficient and reliable utilization of PV solar farm inverter as STATCOMs is needed. This paper elaborates the dynamic performance of a VSC-based PV-STATCOM for power quality enhancement in a grid integrated system and low voltage ride through (LVRT capability. LVRT requirements suggest that the injection of real and reactive power supports grid voltage during abnormal grid conditions. The proposed strategy was demonstrated with MATLAB simulations.

  16. PV market stimulation by training and creativity workshops

    Energy Technology Data Exchange (ETDEWEB)

    Pearsall, N

    2001-07-01

    Building integrated photovoltaic (BIPV) systems are expected to be a major route for the utilisation of solar energy in Europe. In order for BIPV to realise its full potential, it is necessary to increase the market size and this requires the development of appropriate market segments as they become financially viable. There may be accompanying market stimulation methods such as financing packages, tax reductions or other incentives. Thus it is important for the PV system designer and/or supplier to be aware of developing market segments and of methods to address these. The realisation of a BIPV project requires the interaction of several key players and consideration of many issues, including technical design, architectural acceptability, planning constraints, interfacing with existing electricity supply systems and financing. The aims of this project were: to promote consideration of the marketing aspect of BIPV when developing projects; to introduce a range of players in the sector to marketing techniques; and to initiate new project ideas to address market needs. These aims were addressed by the organisation of creativity workshops in which marketing issues could be discussed and participants could utilise marketing approaches in the development of project ideas. (author)

  17. PV market stimulation by training and creativity workshops

    International Nuclear Information System (INIS)

    Pearsall, N.

    2001-01-01

    Building integrated photovoltaic (BIPV) systems are expected to be a major route for the utilisation of solar energy in Europe. In order for BIPV to realise its full potential, it is necessary to increase the market size and this requires the development of appropriate market segments as they become financially viable. There may be accompanying market stimulation methods such as financing packages, tax reductions or other incentives. Thus it is important for the PV system designer and/or supplier to be aware of developing market segments and of methods to address these. The realisation of a BIPV project requires the interaction of several key players and consideration of many issues, including technical design, architectural acceptability, planning constraints, interfacing with existing electricity supply systems and financing. The aims of this project were: to promote consideration of the marketing aspect of BIPV when developing projects; to introduce a range of players in the sector to marketing techniques; and to initiate new project ideas to address market needs. These aims were addressed by the organisation of creativity workshops in which marketing issues could be discussed and participants could utilise marketing approaches in the development of project ideas. (author)

  18. PV/T slates - Pilot project in Steinhausen; PV/T-Schiefer. Pilotprojekt Steinhausen

    Energy Technology Data Exchange (ETDEWEB)

    Kropf, S.

    2003-07-01

    This comprehensive, illustrated report for the Swiss Federal Office of Energy (SFOE) is one a series of five reports dealing with increasing the overall efficiency of photovoltaic (PV) installations by also using the heat collected by the dark-coloured PV panels. The work reported on addresses open questions on the use of the heat and its optimal use. This report deals with a ventilated PV-tile system (PV/T-Slates) mounted on a garden shed in Steinhausen, Switzerland. The installation provides power and heat to the main house. The report describes the construction and operation of this pilot project and the results of measurements made on its electrical and thermal performance. The results of measurements made are presented in detail in graphical form and compared with the results of simulation. Suggestions are made for the optimisation of the system. Figures are presented on energy production and energy flows in graphical form.

  19. Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.

    Science.gov (United States)

    Fei, Juntao; Zhu, Yunkai

    2017-01-01

    In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.

  20. A Study of Incentive Policies for Building-Integrated Photovoltaic Technology in Hong Kong

    Directory of Open Access Journals (Sweden)

    Aotian Song

    2016-08-01

    Full Text Available Installing sustainable and renewable energy systems is a promising way of relieving Hong Kong’s dependence on imported fossil fuels. Solar photovoltaic (PV technology is a perfect solution for Hong Kong as it fits the economic and geographic situation. Through a review of the PV development history of five leading PV countries, Germany, Japan, Italy, Mainland China, and the USA, this paper serves as a useful policy toolbox to aid PV development. Based on the forerunners’ successful PV industry experiences and Hong Kong’s unique local situations, a series of incentive strategies were proposed for Hong Kong to help promote the utilization of solar PV systems by reducing the initial investment and providing reasonable subsidies at the initial stages and during the operation period of the PV systems. These results could be a practical reference for promoting renewable energy applications for local policy-makers.

  1. PV-BUK: Operating and maintenance costs of photovoltaic installations; PV-BUK - Betriebs- und Unterhaltskosten von PV-Anlagen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stettler, S.; Toggweiler, P. [Enecolo AG, Moenchaltorf (Switzerland); Ruoss, D.; Schudel, P. [Envision, Lucerne (Switzerland); Kottmann, A.; Steinle, F. [BE Netz AG, Lucerne (Switzerland)

    2008-03-15

    This final report elaborated for the Swiss Federal Office of Energy (SFOE) takes a look at the results of a project carried out to determine the costs for facility management, to estimate future cost development and to propose activities for the further reduction of the operation and maintenance costs of photovoltaic systems. Information on the cost situation was collected by literature study, as well as in interviews and surveys with photovoltaic (PV) experts and the owners of PV installations. The discussion of the results at a workshop with about 20 Swiss PV experts is noted. The results are presented and discussed. These show that operating costs per kWh decrease with the size of the PV system. Figures are quoted. The major part of the costs are quoted as being those for spare parts, especially for the inverter. The authors are of the opinion that, in future, costs for facility management will further decrease, as they are partly linked to capital and insurance costs. Potential for optimisation is said to exist in several areas of facility management such as, for example, in system monitoring and fast reaction in the case of malfunctions.

  2. Choosing the Right Integrator for Your Building Automation Project.

    Science.gov (United States)

    Podgorski, Will

    2002-01-01

    Examines the prevailing definitions and responsibilities of product, network, and system integrators for building automation systems; offers a novel approach to system integration; and sets realistic expectations for the owner in terms of benefits, outcomes, and overall values. (EV)

  3. Integral Design methodology for Industrial Collaboration Design of Sustainable Industrial Flexible Demountable buildings

    NARCIS (Netherlands)

    Zeiler, W.; Quanjel, E.M.C.J.; Bauer, M.; Lima, C.

    2007-01-01

    Starting in 1998 from developing and designing their own office Kropman, a major Dutch Building Services contractor, developed a new methodology for structuring and documenting integral design processes. Integral design is meant to integrate the different disciplines involved in the building design

  4. A net-zero building application and its role in exergy-aware local energy strategies for sustainability

    International Nuclear Information System (INIS)

    Kılkış, Şiir

    2012-01-01

    Highlights: ► Net-zero exergy targets are put forth for more energy-sufficient buildings and districts. ► A premier building that is the first LEED Platinum building in Turkey exemplifies this target. ► The building integrates low-exergy measures with PV/BIPV, CHP, GSHP, solar collectors and TES. ► Two districts in the south heating network of Stockholm are compared with this technology bundle. ► Net-zero exergy targets are related to a re-structuring of an exergy-aware energy value chain. - Abstract: Based on two case studies, this paper explores the nexus of exergy, net-zero targets, and sustainable cities as a means of analyzing the role of exergy-aware strategies at the building and district level. The first case study is a premier building in Ankara that is ready to meet the net-zero exergy target. It is also the first building in Turkey to receive the highest Platinum rating in Leadership in Energy and Environmental Design. A net-zero exergy building (NZEXB) is a building that has an annual sum of net-zero exergy transfer across the building-district boundary. This new target is made possible by lowered annual exergy consumption, (AEXC), and increased on-site production from a bundle of sustainable energy technologies. The modeled results of the building indicate that the reduced AEXC of 60 kW h/m 2 yr is met with on-site production of 62 kW h/m 2 yr. On-site production includes PV and building integrated PV, a micro-wind turbine, combined heat and power, GSHP, and solar collectors. Diversified thermal energy storage tanks further facilitate the exergy supply to meet with the exergy demand. The results of this case study provide key lessons to structure an energy value chain that is more aware of exergy, which are up-scalable to the district level when the bundle of sustainable energy technologies is zoomed out across a larger spatial area. These key lessons are then compared with the second case study of two districts in the south heating network

  5. Second update of the database of photovoltaic installations in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D; Bruhns, H

    2001-07-01

    This update of the database of photovoltaic (PV) installations in the UK developed by Altechnica for the Department of Trade and Industry has double the number of records of the previous edition, and focuses on the use of photovoltaic (PV) installations for buildings, for example using some form of a PV array, building integrated PV module, and building attached PV array. The growth in building related PV installations is examined along with the use of PV in telecommunication equipment, navigation buoys and light vessels, buildings, pumps for solar water heating systems, schools, lighthouses, and petrol stations. Details are given of the electronic data entry form for the database and the increase in the number of fields to allow additional information such as tilt angle and orientation area of the array to be added.

  6. Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM System through Temperature Regulation and Performance Enhancement of Photovoltaics

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2014-03-01

    Full Text Available The current research seeks to maintain high photovoltaic (PV efficiency and increased operating PV life by maintaining them at a lower temperature. Solid-liquid phase change materials (PCM are integrated into PV panels to absorb excess heat by latent heat absorption mechanism and regulate PV temperature. Electrical and thermal energy efficiency analysis of PV-PCM systems is conducted to evaluate their effectiveness in two different climates. Finally costs incurred due to inclusion of PCM into PV system and the resulting benefits are discussed in this paper. The results show that such systems are financially viable in higher temperature and higher solar radiation environment.

  7. Final Technical Report for Automated Manufacturing of Innovative CPV/PV Modules

    Energy Technology Data Exchange (ETDEWEB)

    Okawa, David [Cogenra Solar, Fremont, CA (United States)

    2017-12-15

    Cogenra’s Dense Cell Interconnect system was designed to use traditional front-contact cells and string them together into high efficiency and high reliability “supercells”. This novel stringer allows one to take advantage of the ~100 GW/year of existing cell production capacity and create a solar product for the customer that will produce more power and last longer than traditional PV products. The goal for this program was for Cogenra Solar to design and develop a first-of-kind automated solar manufacturing line that produces strings of overlapping cells or “supercells” based on Cogenra’s Dense Cell Interconnect (DCI) technology for their Low Concentration Photovoltaic (LCPV) systems. This will enable the commercialization of DCI technology to improve the efficiency, reliability and economics for their Low Concentration Photovoltaic systems. In this program, Cogenra Solar very successfully designed, developed, built, installed, and started up the ground-breaking manufacturing tools required to assemble supercells. Cogenra then successfully demonstrated operation of the integrated line at high yield and throughput far exceeding expectations. The development of a supercell production line represents a critical step toward a high volume and low cost Low Concentration Photovoltaic Module with Dense Cell Interconnect technology and has enabled the evaluation of the technology for reliability and yield. Unfortunately, performance and cost headwinds on Low Concentration Photovoltaics systems including lack of diffuse capture (10-15% hit) and more expensive tracker requirements resulted in a move away from LCPV technology. Fortunately, the versatility of Dense Cell Interconnect technology allows for application to flat plate module technology as well and Cogenra has worked with the DOE to utilize the learning from this grant to commercialize DCI technology for the solar market through the on-going grant: Catalyzing PV Manufacturing in the US With Cogenra

  8. Forecasting and observability: critical technologies for system operations with high PV penetration

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2016-01-01

    – Photovoltaics (ETIP PV) reviews the different use cases for these technologies, their current status, and the need for future developments. Power system operations require a real-time view of PV production for managing power reserves and for feeding shortterm forecasts. They also require forecasts on all......Forecasting and monitoring technologies for photovoltaics are required on different spatial and temporal scales by multiple actors, from the owners of PV systems to transmission system operators. In this paper the Grid integration working group of the European Technology and Innovation Platform...... timescales from the short (for dispatching purposes), where statistical models work best, to the very long (for infrastructure planning), where physics-based models are more accurate. Power system regulations are driving the development of these techniques. This application also provides a good basis...

  9. Integrating Building Information Modeling and Augmented Reality to Improve Investigation of Historical Buildings

    Directory of Open Access Journals (Sweden)

    Francesco Chionna

    2015-12-01

    Full Text Available This paper describes an experimental system to support investigation of historical buildings using Building Information Modeling (BIM and Augmented Reality (AR. The system requires the use of an off-line software to build the BIM representation and defines a method to integrate diagnostic data into BIM. The system offers access to such information during site investigation using AR glasses supported by marker and marker-less technologies. The main innovation is the possibility to contextualize through AR not only existing BIM properties but also results from non-invasive tools. User evaluations show how the use of the system may enhance the perception of engineers during the investigation process.

  10. Update of the database of photovoltaic installations in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D.; Bruhns, H.

    1999-07-01

    The article describes an updated database of photovoltaic (PV) installations in the UK. The database contains more than 300 records representing over 40,000 photovoltaic installations with more than 100 buildings that use photovoltaic arrays. Figures show: (i) a chart of cumulative PV applications to date; (ii) a chart of cumulative installations in the database; (iii) the growth of Building Integrated PV installed to date; (iv) the cumulative growth of peak power of PV for buildings installed every year since 1985; (v) the distribution by application of all PV installations in the database and (vi) the various applications of PV installations.

  11. Optimization of PV-based energy production by dynamic PV-panel/inverter configuration

    DEFF Research Database (Denmark)

    Paasch, Kasper; Nymand, Morten; Haase, Frerk

    This paper investigates the possible increase in annual energy production of a PV system with more than one MPPT (maximum power point tracker) input channels under Nordic illumination conditions, in case a concept of dynamic switching of the PV panels is used at the inputs of the inverters....

  12. Energy and behavioral impacts of integrative retrofits for residential buildings: What is at stake for building energy policy reforms in northern China?

    International Nuclear Information System (INIS)

    Xu, Peng; Xu, Tengfang; Shen, Pengyuan

    2013-01-01

    Based upon the results from extensive building monitoring and surveys on occupant’s behaviors in a representative nine-story apartment building in northern China, building energy simulations were performed to evaluate the impacts of integrative retrofits implemented. Integrative retrofits required by the newer building energy standard produced significant heating-energy savings (i.e., 53%) when compared with baseline buildings commonly built in early 1980s. Taking into account district-heating-system upgrades as part of integrative retrofit measures, a representative apartment building was 66% more efficient than the baseline building. Contrary to expectation, little behavioral change was found in response to the provisions of monetary incentive, billing-method reform, or metering of heating energy use in individual apartment units. Yet this paper identified sizable energy savings potential if occupants’ behavioral changes were to actually happen. This indicates that provisions of financial incentives or individual metering were insufficient for triggering substantial behavioral changes leading toward more energy savings in the current buildings. It is recommended that innovative energy policies, technology upgrades, and education would be needed to promote behavioral changes toward additional energy savings. Finally, measures and strategies to further enhance thermal integrity criteria (e.g., insulations of roof and balcony) are recommended in China’s future building energy policy reforms. - Highlights: ► Integrative retrofits significantly reduce residential heating energy in north China. ► Energy effects of retrofits, incentive, billing and behavioral changes were studied. ► Monetary incentive, control or metering technologies did not lead to behavior change. ► Potential energy savings due to occupants’ behavioral changes are sizable. ► Thermal integrity needs to be enhanced in future building standards and policies.

  13. Performance Analysis of a Photovoltaic-Thermal Integrated System

    International Nuclear Information System (INIS)

    Radziemska, E.

    2009-01-01

    The present commercial photovoltaic solar cells (PV) converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is highly desirable to obtain efficiency increase. The total efficiency of 60-80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV). In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings the destroyed exergy has been called energy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiencies in a system. This information, which cannot be provided by other means (e.g., an energy analysis), is very useful for the improvement and cost-effectiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solar watt module.

  14. Performance Analysis of a Photovoltaic-Thermal Integrated System

    Directory of Open Access Journals (Sweden)

    Ewa Radziemska

    2009-01-01

    Full Text Available The present commercial photovoltaic solar cells (PV converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is higly desirable to obtain efficiency increase. The total efficiency of 60–80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV. In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings—the destroyed exergy has been called anergy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiences in a system. This information, which cannot be provided by other means (e.g., an energy analysis, is very useful for the improvement and cost-effictiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solarwatt module.

  15. Energy Production System Management - Renewable energy power supply integration with Building Automation System

    International Nuclear Information System (INIS)

    Figueiredo, Joao; Martins, Joao

    2010-01-01

    Intelligent buildings, historically and technologically, refers to the integration of four distinctive systems: Building Automation Systems (BAS), Telecommunication Systems, Office Automation Systems and Computer Building Management Systems. The increasing sophisticated BAS has become the 'heart and soul' of modern intelligent buildings. Integrating energy supply and demand elements - often known as Demand-Side Management (DSM) - has became an important energy efficiency policy concept. Nowadays, European countries have diversified their power supplies, reducing the dependence on OPEC, and developing a broader mix of energy sources maximizing the use of renewable energy domestic sources. In this way it makes sense to include a fifth system into the intelligent building group: Energy Production System Management (EPSM). This paper presents a Building Automation System where the Demand-Side Management is fully integrated with the building's Energy Production System, which incorporates a complete set of renewable energy production and storage systems.

  16. Treatment Conditions of Building Wastes in China and Its Integrated Management Measures

    Institute of Scientific and Technical Information of China (English)

    Liu Dan; Zha Kun; Li Qibin

    2006-01-01

    The status of utilization and disposal of the building wastes are introduced on the basis of analysis of its compositions, generation and effects on urban environment. The basic framework of the integrated building waste management, including control of the sources, reduction of the integrated process and final disposal, are proposed in view of the problems existing in recovery of the building wastes and the experiences from the developed countries.

  17. Integration Host Factor (IHF binds to the promoter region of the phtD operon involved in phaseolotoxin synthesis in P. syringae pv. phaseolicola NPS3121

    Directory of Open Access Journals (Sweden)

    Álvarez-Morales Ariel

    2011-05-01

    Full Text Available Abstract Background Pseudomonas syringae pv. phaseolicola, the causal agent of halo blight disease in beans, produces a toxin known as phaseolotoxin, in whose synthesis participate a group of genes organized within the genome in a region known as the "Pht cluster". This region, which is thought to have been acquired by horizontal gene transfer, includes 5 transcriptional units, two monocistronic (argK, phtL and three polycistronic (phtA, phtD, phtM, whose expression is temperature dependent. So far, the regulatory mechanisms involved in phaseolotoxin synthesis have not been elucidated and the only well-established fact is the requirement of low temperatures for its synthesis. In this work, we searched for regulatory proteins that could be involved in phaseolotoxin synthesis, focusing on the regulation of the phtD operon. Results In this study we identified the global regulator IHF (Integration Host Factor, which binds to the promoter region of the phtD operon, exerting a negative effect on the expression of this operon. This is the first regulatory protein identified as part of the phaseolotoxin synthesis system. Our findings suggest that the Pht cluster was similarly regulated in the ancestral cluster by IHF or similar protein, and integrated into the global regulatory mechanism of P. syringae pv. phaseolicola, after the horizontal gene transfer event by using the host IHF protein. Conclusion This study identifies the IHF protein as one element involved in the regulation of phaseolotoxin synthesis in P. syringae pv. phaseolicola NPS3121 and provides new insights into the regulatory mechanisms involved in phaseolotoxin production.

  18. NREL PV Working With Industry, Fourth Quarter 2000

    Energy Technology Data Exchange (ETDEWEB)

    Poole, L.

    2000-12-26

    NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The fourth quarter contains an article that is a followup to the IEEE PVSC conference held in Alaska in September 2000, an article about two new R and D initiatives, and an article on cooperative research efforts between the NCPV and the Solar Buildings and Concentrating Solar Power programs. The editorialist is Jim Rannels, Director of the Office of Power Technologies.

  19. Buck-Boost/Forward Hybrid Converter for PV Energy Conversion Applications

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Tseng

    2014-01-01

    Full Text Available This paper presents a charger and LED lighting (discharger hybrid system with a PV array as its power source for electronic sign indicator applications. The charger adopts buck-boost converter which is operated in constant current mode to charge lead-acid battery and with the perturb and observe method to extract maximum power of PV arrays. Their control algorithms are implemented by microcontroller. Moreover, forward converter with active clamp circuit is operated in voltage regulation condition to drive LED for electronic sign applications. To simplify the circuit structure of the proposed hybrid converter, switches of two converters are integrated with the switch integration technique. With this approach, the proposed hybrid converter has several merits, which are less component counts, lighter weight, smaller size, and higher conversion efficiency. Finally, a prototype of LED driving system under output voltage of 10 V and output power of 20 W has been implemented to verify its feasibility. It is suitable for the electronic sign indicator applications.

  20. Optimization of self-consumption and techno-economic analysis of PV-battery systems in commercial applications

    International Nuclear Information System (INIS)

    Merei, Ghada; Moshövel, Janina; Magnor, Dirk; Sauer, Dirk Uwe

    2016-01-01

    Highlights: • Optimization of self-consumption and the degree of self-sufficiency in commercial applications. • Technical and economic analyses for a PV-battery system. • Sensitivity analysis considering different sizes and prices of PV and battery systems. • Investigation of batteries to increase self-consumption today is not economic in the considered applications. - Abstract: Increasing costs of electricity supply from the local grid, the decreasing photovoltaic (PV) technology costs and the decreasing PV feed-in-tariff according to the current German Renewable Energy Sources Act (EEG) will in the future raise the monetary incentives to increase the self-consumption of PV energy. This is of great interest in commercial buildings as there mostly is sufficient place to install high capacities of photovoltaic panels on their own roofs. Furthermore, the electricity purchase price from the local grid for commercial consumers nowadays is about 20 €ct/kW h, which is higher than the cost of generation of electricity from solar panels (about 8–12 €ct/kW h). Additionally, the load profiles in commercial applications have a high correlation with the generated solar energy. Hence, there is a great opportunity for economic savings. This paper presents optimization results with respect to self-consumption and degree of self-sufficiency for a supermarket in Aachen, Germany. The optimization is achieved using real measurement data of load profile and solar radiation. Besides, techno-economic analyses and sensitivity analyses have been carried out to demonstrate the influence of different PV system sizes, PV system costs and interest rates. Moreover, to raise self-consumption different battery sizes with different battery system costs have been investigated and analysed for 2015 and 2025 scenarios as well. The results show that the installation of a PV system can reduce the electricity costs through self-consumption of self-generated PV energy. Also, applying

  1. The application situation and development prospect of china's solar photovoltaic building%我国太阳能光伏建筑的应用现状及前景

    Institute of Scientific and Technical Information of China (English)

    马燕; 陈华

    2012-01-01

    With the depletion of conventional energy , solar energy as a new type of green energy has become an important topic in China's energy research. Abundant solar energy resources provide good conditions for the development of China's solar PV industry. In the context of building energy consumption is increasing, solar PV modules integrated with building and building integrated solar will become China's future energ) saving measures.%随着常规能源的枯竭,太阳能作为一种新型的绿色能源已成为我国能源研究工作中的一个重要课题.丰富的太阳能资源为我国太阳能光伏产业的发展提供了良好的条件.在建筑能耗日益加重的背景下,将太阳能光伏组件与建筑有机结合,实现太阳能与建筑一体化将成为我国未来节能减排的重要措施.

  2. A Low-disturbance Diagnostic Function Integrated in the PV Arrays’ MPPT Algorithm

    DEFF Research Database (Denmark)

    Sera, Dezso; Mathe, Laszlo; Kerekes, Tamas

    2011-01-01

    This paper focuses on the estimation of series resistance changes for flat silicone PV panels or arrays during operation, without moving the operating point far away from the Maximum Power Point. The method is based on the measurement of the slope of the IV curve at a current level that differs...

  3. Development of a GIS Tool for High Precision PV Degradation Monitoring and Supervision: Feasibility Analysis in Large and Small PV Plants

    Directory of Open Access Journals (Sweden)

    Miguel de Simón-Martín

    2017-06-01

    Full Text Available It is well known that working photovoltaic (PV plants show several maintenance needs due to wiring and module degradation, mismatches, dust, and PV cell defects and faults. There are a wide range of theoretical studies as well as some laboratory tests that show how these circumstances may affect the PV production. Thus, it is mandatory to evaluate the whole PV plant performance and, then, its payback time, profitability, and environmental impact or carbon footprint. However, very few studies include a systematic procedure to quantify and supervise the real degradation effects and fault impacts on the field. In this paper, the authors first conducted a brief review of the most frequent PV faults and the degradation that can be found under real conditions of operation of PV plants. Then, they proposed and developed an innovative Geographic Information System (GIS application to locate and supervise them. The designed tool was applied to both a large PV plant of 108 kWp and a small PV plant of 9 kWp installed on a home rooftop. For the large PV plant, 24 strings of PV modules were modelized and introduced into the GIS application and every module in the power plant was studied including voltage, current, power, series and parallel resistances, fill factor, normalized PV curve to standard test conditions (STC, thermography and visual analysis. For the small PV installation three strings of PV panels were studied identically. It must be noted that PV modules in this case included power optimizers. The precision of the study enabled the researchers to locate and supervise up to a third part of every PV cell in the system, which can be adequately georeferenced. The developed tool allows both the researchers and the investors to increase control of the PV plant performance, to lead to better planning of maintenance actuations, and to evaluate several PV module replacement strategies in a preventive maintenance program. The PV faults found include hot

  4. Adiabatic Rearrangement of Hollow PV Towers

    Directory of Open Access Journals (Sweden)

    Eric A Hendricks

    2010-10-01

    Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane

  5. Intelligent energy buildings based on RES and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Kaplanis, S., E-mail: kaplanis@teipat.gr; Kaplani, E. [R.E.S. Laboratory, Mechanical Engineering Dept., Technological Educational Institute of Western Greece M. Alexandrou 1, Koukouli 26 334, Patra (Greece)

    2015-12-31

    The paper presents the design features, the energy modelling and optical performance details of two pilot Intelligent Energy Buildings, (IEB). Both are evolution of the Zero Energy Building (ZEB) concept. RES innovations backed up by signal processing, simulation models and ICT tools were embedded into the building structures in order to implement a new predictive energy management concept. In addition, nano-coatings, produced by TiO2 and ITO nano-particles, were deposited on the IEB structural elements and especially on the window panes and the PV glass covers. They exhibited promising SSP values which lowered the cooling loads and increased the PV modules yield. Both pilot IEB units were equipped with an on-line dynamic hourly solar radiation prediction model, implemented by sensors and the related software to manage effectively the energy source, the loads and the storage or the backup system. The IEB energy sources covered the thermal loads via a south façade embedded in the wall and a solar roof which consists of a specially designed solar collector type, while a PV generator is part of the solar roof, like a compact BIPV in hybrid configuration to a small wind turbine.

  6. Identifying city PV roof resource based on Gabor filter

    Science.gov (United States)

    Ruhang, Xu; Zhilin, Liu; Yong, Huang; Xiaoyu, Zhang

    2017-06-01

    To identify a city’s PV roof resources, the area and ownership distribution of residential buildings in an urban district should be assessed. To achieve this assessment, remote sensing data analysing is a promising approach. Urban building roof area estimation is a major topic for remote sensing image information extraction. There are normally three ways to solve this problem. The first way is pixel-based analysis, which is based on mathematical morphology or statistical methods; the second way is object-based analysis, which is able to combine semantic information and expert knowledge; the third way is signal-processing view method. This paper presented a Gabor filter based method. This result shows that the method is fast and with proper accuracy.

  7. Integrated Energy Design of the Building Envelope

    DEFF Research Database (Denmark)

    Nielsen, Martin Vraa

    This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research...

  8. Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T system against conventional photovoltaic (PV system

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-11-01

    Full Text Available Photovoltaic (PV semiconductor degrades in performance due to temperature rise. A super thin-conductive thermal absorber is therefore developed to regulate the PV working temperature by retrofitting the existing PV panel into the photovoltaic/thermal (PV/T panel. This article presented the parallel comparative investigation of the two different systems through both laboratory and field experiments. The laboratory evaluation consisted of one PV panel and one PV/T panel respectively while the overall field system involved 15 stand-alone PV panels and 15 retrofitted PV/T panels. The laboratory testing results demonstrated the PV/T panel could achieve the electrical efficiency of about 16.8% (relatively 5% improvement comparing with the stand-alone PV panel, and yield an extra amount of heat with thermal efficiency of nearly 65%. The field testing results indicated that the hybrid PV/T panel could enhance the electrical return of PV panels by nearly 3.5%, and increase the overall energy output by nearly 324.3%. Further opportunities and challenges were then discussed from aspects of different PV/T stakeholders to accelerate the development. It is expected that such technology could become a significant solution to yield more electricity, offset heating load freely and reduce carbon footprint in contemporary energy environment.

  9. Implementation of the first student-designed PV array in Canada

    International Nuclear Information System (INIS)

    Hadlock, C.; DeLoyde, J.; Dhir, T.

    2004-01-01

    This paper is a culmination of a 2-year project involving students, faculty, staff member, and private industry. Solar Technology Education Project (STEP) became the first student-led group to successfully install a 36-panel photovoltaic (PV) array on a Canadian University campus. The fundraising, design, and assembly of the PV array was entirely student driven. The project was completed in January 2004 with the installation of a 2 kW photovoltaic grid-tied array mounted to the roof of the University of Waterloo's Federation Hall, the largest student-run pub in North America. The photovoltaic array was a demonstration project to raise awareness about solar technology and the need for energy efficiency in buildings. It took two years to complete the project, which was implemented in three phases. The first phase was aimed at raising the required capital. The second phase included design and fabrication of the array. The third phase, still ongoing today, is the community outreach phase, which involves educating the surrounding communities about the project, solar technology, and the role of individuals in combating global warming. This paper examines the steps required for the implementation of a successful educational photovoltaic project, using the students' experience as a roadmap. A section highlighting what's next for STEP is also presented as the students attempt to build on the momentum from the project. The aim is to launch a solar thermal project on another University of Waterloo building to move one step closer to the ultimate goal of a sustainable campus

  10. Design of model based LQG control for integrated building systems

    NARCIS (Netherlands)

    Yahiaoui, A.; Hensen, J.L.M.; Soethout, L.L.; Paassen, van A.H.C.

    2006-01-01

    The automation of the operation of integrated building systems requires using modern control techniques to enhance the quality of the building indoor environments. This paper describes the theatrical base and practical application of an optimal dynamic regulator using modelbased Linear Quadratic

  11. Integrated evaluation of radiative heating systems for residential buildings

    International Nuclear Information System (INIS)

    Anastaselos, Dimitrios; Theodoridou, Ifigeneia; Papadopoulos, Agis M.; Hegger, Manfred

    2011-01-01

    Based on the need to reduce CO 2 emissions and minimize energy dependency, the EU Member States have set ambitious energy policies goals and have developed respective, specific regulations, in order to improve the energy performance of the building sector. Thus, specific measures regarding the buildings' envelope, the use of efficient HVAC technologies and the integration of renewable energy systems are being constantly studied and promoted. The effective combination of these three main aspects will consequently result in maximum energy efficiency. Germany has played a key role in this development, with intensive work focusing in the improvement of the energy behaviour of the residential building stock. In this paper, the use of radiative heating systems placing special emphasis on infrared is being studied as part of the energy renovation of residential buildings from the 1970's. This is done by applying an integrated assessment model to evaluate specific interventions regarding the improvement of the energy behaviour of the buildings' envelope and the use of radiative heating systems, based on a thorough Life Cycle Analysis according to criteria of energy, economic and environmental performance, as well as thermal comfort. -- Highlights: → Assessment of energy, economic and environmental performance of heating systems. → Life Cycle Analysis in combination with the quality of thermal comfort. → Effectiveness of interventions in already partially insulated buildings.

  12. Overview of Grid Codes for Photovoltaic Integration

    DEFF Research Database (Denmark)

    Zheng, Qianwei; Li, Jiaming; Ai, Xiaomeng

    2017-01-01

    The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration in differ...... in different grid codes are first investigated. On this basis, the future advocacy is concluded. Finally, several evaluation indices are proposed to quantify the grid code compliance so that the system operators can validate all these requirements by simulation....

  13. Photovoltaic building blocks

    DEFF Research Database (Denmark)

    Hanberg, Peter Jesper; Jørgensen, Anders Michael

    2014-01-01

    efficiency of about 15% for commercial Silicon solar cells there is still much to gain. DTU Danchip provides research facilities, equipment and expertise for the building blocks that comprises fabricating the efficient solar cell. In order to get more of the sun light into the device we provide thin film......Photovoltaics (PV), better known as solar cells, are now a common day sight on many rooftops in Denmark.The installed capacity of PV systems worldwide is growing exponentially1 and is the third most importantrenewable energy source today. The cost of PV is decreasing fast with ~10%/year but to make...... it directcompetitive with fossil energy sources a further reduction is needed. By increasing the efficiency of the solar cells one gain an advantage through the whole chain of cost. So that per produced Watt of power less material is spent, installation costs are lower, less area is used etc. With an average...

  14. The market for photovoltaic (PV) technology

    International Nuclear Information System (INIS)

    Frantzis, L.; Vejtasa, K.M.

    1993-01-01

    This paper describes a study that was intended to provide the Electric Power Research Institute (EPRI) with a market analysis for photovoltaic (PV) technologies under development by EPRI and others. The analysis was to focus on markets and factors leading to significant incremental growth for PV demand, large enough to support more efficient scale PV manufacturing capacity. EPRI anticipates that PV ultimately could provide grid-connected power, however, the 1995--2010 market dynamics are uncertain. The specific objectives of this study, therefore, were to: determine what major future domestic US markets for PV technologies will emerge and provide enough volume to support significant improvements in manufacturing costs through manufacturing economies of scale; provide insight on what is needed to gain acceptance of PV technologies for electric power generation in those major markets; provide insight on when investments in demonstration and manufacturing facilities should be made and what is needed to be successful in each element of the business that these markets could support (e.g., technology development, manufacturing, sales, installation, and service); and provide key insights on the requirements for commercial success of PV in the utility sector

  15. Intelligent voltage control in a DC micro-grid containing PV generation and energy storage

    OpenAIRE

    Rouzbehi, Kumars; Miranian, Arash; Candela García, José Ignacio; Luna Alloza, Álvaro; Rodríguez Cortés, Pedro

    2014-01-01

    This paper proposes an intelligent control scheme for DC voltage regulationin a DC micro-grid integrating photovoltaic (PV) generation, energy storage and electric loads. The maximum power generation of the PV panel is followed using the incremental conductance (IC) maximum power point tracking (MPPT) algorithm while a high-performance local linear controller (LLC)is developed for the DC voltage control in the micro-grid.The LLC, as a data-driven control strategy, controls the bidirectional c...

  16. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Austin; Prabakar, Kumaraguru; Nagarajan, Adarsh; Nepal, Shaili; Hoke, Anderson; Asano, Marc; Ueda, Reid; Ifuku, Earle

    2017-05-08

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods. Two Hawaiian Electric feeder models were converted to real-time models in the OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters that were modeled from characterization test data. The integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factor and volt-watt control settings on voltage regulation of the selected feeders. The results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.

  17. Large-scale building integrated photovoltaics field trial. First technical report - installation phase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the results of the first eighteen months of the Large-Scale Building Integrated Photovoltaic Field Trial focussing on technical aspects. The project aims included increasing awareness and application of the technology, raising the UK capabilities in application of the technology, and assessing the potential for building integrated photovoltaics (BIPV). Details are given of technology choices; project organisation, cost, and status; and the evaluation criteria. Installations of BIPV described include University buildings, commercial centres, and a sports stadium, wildlife park, church hall, and district council building. Lessons learnt are discussed, and a further report covering monitoring aspects is planned.

  18. Assessment of technical and economical viability for large-scale conversion of single family residential buildings into zero energy buildings in Brazil: Climatic and cultural considerations

    International Nuclear Information System (INIS)

    Pacheco, Miguel; Lamberts, Roberto

    2013-01-01

    This paper addresses the viability of converting single-family residential buildings in Brazil into zero energy buildings (ZEBs). The European Union and the United States aim ZEBs implementation to address ‘peak oil’ and environmental concerns. However, literature shows no agreement on a consensual definition of ZEB. Seeking a Brazilian ZEB definition, this paper addresses PassivHaus and thermal comfort standards for hot climates, source metrics for ZEB, Brazil′s energy mix, residential energy end uses and Brazilian legal framework for residential photovoltaic (PV) generation. Internal Rate of Return for PV systems in two Brazilian cities is calculated under various scenarios. It shows grid parity was reached from April 2012 to November 2012 assuming residential electric tariffs of that period and the financial conditions given by the Brazilian government for the construction of new dams in the Amazon and the lowest rates offered by Brazilian banks to private individuals. Governmental decision to lower electric residential tariffs in November 2012 reduced the scope of grid parity. Later revocation of a tax exemption in April 2013 ended grid parity in Brazil. It concludes, conversely to developed countries, it is the volatile Brazilian energy policy, instead of economical barriers, the main obstacle for ZEB viability in Brazil. - Highlights: • Critique on super insolated buildings as a good solution for hot climates. • PV parity already reached in some parts of Brazil. • Proposal for a zero energy building definition for Brazil. • Critique of the source metric for energy balance in zero energy buildings. • Average roof area in Brazil enough for PV array to meet average energy consumption

  19. City and County Solar PV Training Program, Module 1: Goal Setting and Clarification

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-02-12

    This module will help attendees understand nuances between different types of renewable energy goals, the importance of terminology when setting and announcing goals, the value of formally clarifying priorities, and how priorities may impact procurement options. It is the first training in a series intended to help municipal staff procure solar PV for their land and buildings.

  20. Building integration of concentrating solar systems for heating applications

    International Nuclear Information System (INIS)

    Tsoutsou, Sapfo; Infante Ferreira, Carlos; Krieg, Jan; Ezzahiri, Mohamed

    2014-01-01

    A new solar collection system integrated on the façade of a building is investigated for Dutch climate conditions. The solar collection system includes a solar façade, a receiver tube and 10 Fresnel lenses. The Fresnel lenses Fresnel lenses considered were linear, non-imaging, line – focused with a system tracking the position of the sun that ensures vertical incidence of the direct solar radiation on the lenses. For the heating system a double-effect absorption heat pump, which requires high temperature of the heating fluid, was used, working with water and lithium-bromide as refrigerant and solution respectively. The Fresnel lens system is connected with the absorption heat pump through a thermal energy storage tank which accumulates the heat from the Fresnel lens system to provide it to the high pressure generator of the absorption heat pump. - Highlights: • The integration of Fresnel lenses in solar thermal building façades is investigated. • Using building integrated Fresnel lenses, 43% heating energy can be saved. • Energy savings in Mediterranean countries are significantly larger. • The absorption heat pump could make great contribution to energy savings for Dutch climate conditions

  1. On the relationship factor between the PV module temperature and the solar radiation on it for various BIPV configurations

    Science.gov (United States)

    Kaplanis, S.; Kaplani, E.

    2014-10-01

    Temperatures of c-Si, pc-Si and a-Si PV modules making part of a roof in a building or hanging outside windows with various inclinations were measured with respect to the Intensity of the solar radiation on them under various environmental conditions. A relationship coefficient f was provided whose values are compared to those from a PV array operating in a free standing mode on a terrace. A theoretical model to predict f was elaborated. According to the analysis, the coefficient f takes higher values for PV modules embedded on a roof compared to the free standing PV array. The wind effect is much stronger for the free standing PV than for any BIPV configuration, either the PV is part of the roof, or placed upon the roof, or is placed outside a window like a shadow hanger. The f coefficient depends on various parameters such as angle of inclination, wind speed and direction, as well as solar radiation. For very low wind speeds the effect of the angle of inclination, β, of the PV module with respect to the horizontal on PV temperature is clear. As the wind speed increases, the heat transfer from the PV module shifts from natural flow to forced flow and this effect vanishes. The coefficient f values range from almost 0.01 m2°C/W for free standing PV arrays at strong wind speeds, vW>7m/s, up to around 0.05 m2°C/W for the case of flexible PV modules which make part of the roof in a BIPV system.

  2. On the relationship factor between the PV module temperature and the solar radiation on it for various BIPV configurations

    International Nuclear Information System (INIS)

    Kaplanis, S.; Kaplani, E.

    2014-01-01

    Temperatures of c-Si, pc-Si and a-Si PV modules making part of a roof in a building or hanging outside windows with various inclinations were measured with respect to the Intensity of the solar radiation on them under various environmental conditions. A relationship coefficient f was provided whose values are compared to those from a PV array operating in a free standing mode on a terrace. A theoretical model to predict f was elaborated. According to the analysis, the coefficient f takes higher values for PV modules embedded on a roof compared to the free standing PV array. The wind effect is much stronger for the free standing PV than for any BIPV configuration, either the PV is part of the roof, or placed upon the roof, or is placed outside a window like a shadow hanger. The f coefficient depends on various parameters such as angle of inclination, wind speed and direction, as well as solar radiation. For very low wind speeds the effect of the angle of inclination, β, of the PV module with respect to the horizontal on PV temperature is clear. As the wind speed increases, the heat transfer from the PV module shifts from natural flow to forced flow and this effect vanishes. The coefficient f values range from almost 0.01 m 2° C/W for free standing PV arrays at strong wind speeds, v W >7m/s, up to around 0.05 m 2° C/W for the case of flexible PV modules which make part of the roof in a BIPV system

  3. On the relationship factor between the PV module temperature and the solar radiation on it for various BIPV configurations

    Energy Technology Data Exchange (ETDEWEB)

    Kaplanis, S., E-mail: kaplanis@teipat.gr; Kaplani, E., E-mail: kaplanis@teipat.gr [Renewable Energy Systems Lab., Mechanical Engineering Dept., Technological Educational Institute of Western Greece, Koukouli 26 334, Patra (Greece)

    2014-10-06

    Temperatures of c-Si, pc-Si and a-Si PV modules making part of a roof in a building or hanging outside windows with various inclinations were measured with respect to the Intensity of the solar radiation on them under various environmental conditions. A relationship coefficient f was provided whose values are compared to those from a PV array operating in a free standing mode on a terrace. A theoretical model to predict f was elaborated. According to the analysis, the coefficient f takes higher values for PV modules embedded on a roof compared to the free standing PV array. The wind effect is much stronger for the free standing PV than for any BIPV configuration, either the PV is part of the roof, or placed upon the roof, or is placed outside a window like a shadow hanger. The f coefficient depends on various parameters such as angle of inclination, wind speed and direction, as well as solar radiation. For very low wind speeds the effect of the angle of inclination, β, of the PV module with respect to the horizontal on PV temperature is clear. As the wind speed increases, the heat transfer from the PV module shifts from natural flow to forced flow and this effect vanishes. The coefficient f values range from almost 0.01 m{sup 2°}C/W for free standing PV arrays at strong wind speeds, v{sub W}>7m/s, up to around 0.05 m{sup 2°}C/W for the case of flexible PV modules which make part of the roof in a BIPV system.

  4. Optimization of PV/Wind/Battery stand-alone system, using hybrid FPA/SA algorithm and CFD simulation, case study: Tehran

    International Nuclear Information System (INIS)

    Tahani, Mojtaba; Babayan, Narek; Pouyaei, Arman

    2015-01-01

    Highlights: • The utilization of an optimized Hybrid PV/Wind/Battery system has been studied. • The proposed system has been studied for a building in Tehran. • A novel hybrid optimization method, namely FPA/SA has been proposed. • The impact of inclined part of the roof on wind velocity is studied by CFD. • LPSP and Payback time were considered as objective functions in this study. - Abstract: Renewable energy hybrid systems are a promising technology toward sustainable and clean development. Due to stochastic behavior of renewable energy sources, optimization of their convertors has great importance for increasing system’s reliability and efficiency and also in order to decrease the costs. In this research study, it was aimed to study the utilization of an optimized hybrid PV/Wind/Battery system for a three story building, with an inclined surface on the edge of its roof, located in Tehran, capital of Iran. For this purpose, a new evolutionary based optimization technique, namely hybrid FPA/SA algorithm was developed, in order to maximize system’s reliability and minimize system’s costs. The new algorithm combines the approaches which are utilized in Flower Pollination Algorithm (FPA) and Simulated Annealing (SA) algorithm. The developed algorithm was validated using popular benchmark functions. Moreover the influence of PV panels tilt angle (which is equal to the slope of inclined part of the roof) is studied on the wind speed by using computational fluid dynamics (CFD) simulation. The outputs of CFD simulations are utilized as inputs for modeling wind turbine performance. The Loss of Power Supply Probability (LPSP) and Payback time are considered as objective functions, and PV panel tilt angle, number of PV panels and number of batteries are selected as decision variables. The results showed that if the tilt angle for PV panels is set equal to 30° and the number of PV panels is selected equal to 11 the fastest payback time which is 12 years and

  5. Evaluation of PV modules integrated with roofing materials; Kenzai ittaigata taiyo denchi module no hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Morizane, M.; Yagiura, T.; Nakashima, S.; Yagi, H.; Murata, K.; Uchihashi, K.; Tsuda, S.; Nakano, S. [Sanyo Electric Co. Ltd., Osaka (Japan); Ito, M.; Kurimoto, T.; Yamakawa, H.; Fujiwara, T. [Kubota Corp., Osaka (Japan)

    1997-11-25

    PV modules unified with building materials which are low in cost, easy to install and excellent in designing were developed and were evaluated in various tests. As to the basic structure of this module, seamless and unified construction with the back metal plate was adopted considering improvement in fire prevention and cost reduction. About the installation, module is easy to install by just fit connection with the frame, and easy to remove with no use of special tools. Concerning intensity and durability requested for this module, tests on reliability such as torsion strength and wind pressure resistance were conducted according to JIS standards, and it was confirmed that there were no problems. Also on the long-term durability, tests on long-term reliability were carried out by doubling test terms of the temperature/humidity cycle test, salt water resistance test, etc., and the reliability the same as that of the existing type was confirmed. In the verification test using a model house, no changes were seen in electrical characteristics and appearance, and waterproof was also favorable one and a half year after the installation. 4 refs., 7 figs., 5 tabs.

  6. Tropical field performance of dual-pass PV tray dryer

    Science.gov (United States)

    Iskandar, A. Noor; Ya'acob, M. E.; Anuar, M. S.

    2017-09-01

    Solar Photovoltaic technology has become the preferable solution in many countries around the globe to solve the ever increasing energy demand of the consumers. In line with the consumer need, food processing technology has huge potentials of integration with the renewable energy resources especially in drying process which consumes the highest electricity loads. Traditionally, the solar dryer technology was applied in agriculture and food industries utilizing the sun's energy for drying process, but this is highly dependable on the weather condition and surrounding factors. This work shares some field performance of the new design of portable dual-pass PV tray dryer for drying crops in an enclosed system. The dual-pass PV tray dryer encompass a lightweight aluminium box structure with dimensions of 1.1m (L) x 0.6m (W) x 0.2m (H) and can hold a load capacity of 300g - 3kg of crop depending on the types of the crops. Experiments of field performance monitoring were conducted in October -November 2016 which justifies a considerable reduction in time and crops quality improvement when using the dual-pass PV tray dryer as compared to direct-sun drying.

  7. Grid-Connected Semitransparent Building-Integrated Photovoltaic System: The Comprehensive Case Study of the 120 kWp Plant in Kunming, China

    Directory of Open Access Journals (Sweden)

    Yunfeng Wang

    2018-01-01

    Full Text Available A 120 kWp building-integrated photovoltaic (BIPV system was installed on the south facade of the Solar Energy Research Institute building in Yunnan Normal University. The area of the curtain wall was 1560 m2 (26 m × 60 m, which consisted of 720 semitransparent monocrystalline silicon double-glazing PV panels. This paper studied the yearly and monthly variations of power generation in terms of solar data and meteorological parameters. The total amount of power generation of the BIPV system measured from October 2014 to September 2015 was 64.607 MWh, and the simulation results with TRNSYS (Transient Systems Simulation Program provided the 75.515 MWh predicted value of annual electricity production with the meteorological database of Meteonorm, while, based on the average value of the performance ratio (PR of 60% and the life cycle assessment (LCA of the system, the energy payback time (EPBT of 9.38 years and the potential for pollutant emission reductions have been evaluated and the environmental cost is RMB ¥0.01053 per kWh. Finally, an economic analysis was carried out; the net present value (NPV and the economic payback time of the BIPV system were estimated to be RMB ¥359,347 and 15 years, respectively.

  8. Integration of Real-Time Data Into Building Automation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Stunder; Perry Sebastian; Brenda A. Chube; Michael D. Koontz

    2003-04-16

    The project goal was to investigate the possibility of using predictive real-time information from the Internet as an input to building management system algorithms. The objectives were to identify the types of information most valuable to commercial and residential building owners, managers, and system designers. To comprehensively investigate and document currently available electronic real-time information suitable for use in building management systems. Verify the reliability of the information and recommend accreditation methods for data and providers. Assess methodologies to automatically retrieve and utilize the information. Characterize equipment required to implement automated integration. Demonstrate the feasibility and benefits of using the information in building management systems. Identify evolutionary control strategies.

  9. Investigating the Impact of Shading Effect on the Characteristics of a Large-Scale Grid-Connected PV Power Plant in Northwest China

    Directory of Open Access Journals (Sweden)

    Yunlin Sun

    2014-01-01

    Full Text Available Northwest China is an ideal region for large-scale grid-connected PV system installation due to its abundant solar radiation and vast areas. For grid-connected PV systems in this region, one of the key issues is how to reduce the shading effect as much as possible to maximize their power generation. In this paper, a shading simulation model for PV modules is established and its reliability is verified under the standard testing condition (STC in laboratory. Based on the investigation result of a 20 MWp grid-connected PV plant in northwest China, the typical shading phenomena are classified and analyzed individually, such as power distribution buildings shading and wire poles shading, plants and birds droppings shading, and front-row PV arrays shading. A series of experiments is also conducted on-site to evaluate and compare the impacts of different typical shading forms. Finally, some feasible solutions are proposed to avoid or reduce the shading effect of PV system during operation in such region.

  10. An Integrated Decision-Making Model for the Location of a PV Solar Plant

    Directory of Open Access Journals (Sweden)

    Amy H. I. Lee

    2015-09-01

    Full Text Available Due to the increasing demand for electricity, the depletion of fossil fuels and the increase in environmental consciousness, generating power from renewable energy resources has become necessary. How to select the most appropriate site is a critical and foremost decision that must be made when setting up a renewable energy plant. This research proposes a two-stage framework for evaluating the suitability of renewable energy plant site alternatives. In the first stage, a fuzzy analytic hierarchy process (FAHP is adopted to set the assurance region (AR of the quantitative factors, and the AR is incorporated into data envelopment analysis (DEA to assess the efficiencies of plant site candidates. A few sites are selected for further analysis. In the second stage, experts are invited to evaluate the qualitative characteristics of the selected sites, and FAHP is used to calculate the priorities of these sites. Solar energy is one of the most promising renewable energy sources, because of its abundance, inexhaustibility, safety and cleanliness. Based on the proposed integrated decision-making model, a case study for selecting the most appropriate photovoltaic (PV solar plant site is examined.

  11. Designing PV Incentive Programs to Promote System Performance: AReview of Current Practice

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-11-12

    Some stakeholders continue to voice concerns about the performance of customer-sited photovoltaic (PV) systems, particularly because these systems typically receive financial support through ratepayer- or publicly-funded programs. Although much remains to be understood about the extent and specific causes of poor PV system performance, several studies of the larger programs and markets have shed some light on the issue. An evaluation of the California Energy Commission (CEC)'s Emerging Renewables Program, for example, found that 7% of systems, in a sample of 95, had lower-than-expected power output due to shading or soiling (KEMA 2005). About 3% of a larger sample of 140 systems were not operating at all or were operating well below expected output, due to failed equipment, faulty installation workmanship, and/or a lack of basic maintenance. In a recent evaluation of the other statewide PV incentive program in California, the Self-Generation Incentive Program, 9 of 52 projects sampled were found to have annual capacity factors less than 14.5%, although reasons for these low capacity factors generally were not identified (Itron 2005). Studies of PV systems in Germany and Japan, the two largest PV markets worldwide, have also revealed some performance problems associated with issues such as shading, equipment and installation defects, inverter failure, and deviations from module manufacturers' specifications (Otani et al. 2004, Jahn & Nasse 2004). Although owners of PV systems have an inherent incentive to ensure that their systems perform well, many homeowners and building operators may lack the necessary information and expertise to carry out this task effectively. Given this barrier, and the responsibility of PV incentive programs to ensure that public funds are prudently spent, these programs should (and often do) play a critical role in promoting PV system performance. Performance-based incentives (PBIs), which are based on actual energy production

  12. Interconnecting PV on New York City's Secondary Network Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K; Coddington, M; Burman, K; Hayter, S; Kroposki, B; Watson, and A

    2009-11-01

    less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1PV Deployment Analysis for New York City we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2. A Briefing for Policy Makers on Connecting PV to a Network Grid presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3. Technical Review of Concerns and Solutions to PV Interconnection in New York City summarizes common concerns of utility engineers and network experts about interconnecting PV systems to secondary networks. This section also contains detailed descriptions of nine solutions, including advantages and disadvantages, potential impacts, and road maps for deployment. Section 4. Utility Application Process Reviewlooks at utility interconnection application processes across the country and identifies administrative best practices for efficient PV interconnection.

  13. Tools for PV (photovoltaic) plant operators: Nowcasting of passing clouds

    Czech Academy of Sciences Publication Activity Database

    Paulescu, M.; Badescu, V.; Brabec, Marek

    2013-01-01

    Roč. 54, č. 1 (2013), s. 104-112 ISSN 0360-5442 R&D Projects: GA MŠk LD12009 Institutional support: RVO:67985807 Keywords : PV (photovoltaic) plants * Sunshine number * Nowcasting * ARIMA (Autoregressive Integrated Moving Average ) modeling Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 4.159, year: 2013

  14. PV Systems Reliability Final Technical Report: Ground Fault Detection

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  15. PV power system using hybrid converter for LED indictor applications

    International Nuclear Information System (INIS)

    Tseng, Sheng-Yu; Wang, Hung-Yuan; Chen, Chien-Chih

    2013-01-01

    Highlights: • This paper presents a LED indictor driving circuit with a PV arrays as its power source. • The perturb-and-observe method is adopted to extract the maximum power of PV arrays. • The proposed circuit structure has a less component counts and higher conversion efficiency. • A prototype of LED indictor driving circuit has been implemented to verify its feasibility. • The proposed hybrid converter is suitable for LED inductor applications. - Abstract: This paper presents a LED indictor driving circuit with a PV arrays as its power source. The LED indictor driving circuit includes battery charger and discharger (LED driving circuit). In this research, buck converter is used as a charger, and forward converter with active clamp circuit is adopted as a discharger to drive the LED indictor. Their circuit structures use switch integration technique to simplify them and to form the proposed hybrid converter, which has a less component counts, lighter weight, smaller size, and higher conversion efficiency. Moreover, the proposed hybrid converter uses a perturb-and-observe method to extract the maximum power from PV arrays. Finally, a prototype of an LED indictor driving circuit with output voltage of 10 V and output power of 20 W has been implemented to verify its feasibility. It is suitable for the LED inductor applications

  16. Experimental investigation of PV modules recycling; PV module recycle no jikkenteki kento

    Energy Technology Data Exchange (ETDEWEB)

    Unagida, H; Kurokawa, K [Tokyo University of Agriculture and Technology, Tokyo (Japan); Sakuta, K; Otani, K; Murata, K [Electrotechnical Laboratory, Tsukuba (Japan)

    1997-11-25

    Recycling, cost/energy analysis and recovery experiment were made on crystalline silicon PV modules with EVA(ethylene vinyl acetate)-laminated structure. The life of modules is dependent not on performance deterioration of PV cells themselves but on yellowing or poor transmittance of EVA caused by ultraviolet ray, and disconnection between cells by thermal stress. Recovery is carried out in 3 stages of cell, wafer and material. Recovery in the stages of cell and wafer results in considerable reduction of energy and cost. The recovery experiment was carried out using PV module samples prepared by cutting the modules into 25times15mm pieces after removing Al frames from the used modules, peeling back sheets and cutting off EVA. Since a nitric acid process at 70-80degC can dissolve EVA effectively, it is promising for reuse of surface glass and PV cells as they are. This process is also carried out under a condition around room temperature and pressure, contributing to cost reduction and energy saving for recycling. Generation of harmful NOx is only a problem to be solved. 2 refs., 6 figs., 1 tab.

  17. Break-even analysis for the storage of PV in power distribution grids

    NARCIS (Netherlands)

    Nykamp, Stefan; Bakker, Vincent; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2014-01-01

    The integration of renewable energy systems poses major challenges on distribution grid operators. Because of the strong growth rates of the installation of photovoltaic (PV) and wind generators, huge needs for reinforcements in grids are expected. Next to conventional reinforcements (with

  18. Solar energy potential of the largest buildings in the United States

    Science.gov (United States)

    Wence, E. R.; Grodsky, S.; Hernandez, R. R.

    2017-12-01

    Sustainable pathways of land use for energy are necessary to mitigate climate change and limit conversion of finite land resources needed for conservation and food production. Large, commercial buildings (LCBs) are increasing in size and number throughout the United States (US) and may serve as suitable recipient environments for photovoltaic (PV) solar energy infrastructure that may support a low carbon, low land footprint energy transition. In this study, we identified, characterized, and evaluated the technical potential of the largest, commercial building rooftops (i.e., exceeding 110,000 m2) and their associated parking lots in the US for PV solar energy systems using Aurora, a cloud-based solar optimization platform. We also performed a case study of building-specific electricity generation: electricity consumption balance. Further, we quantified the environmental co-benefit of land sparing and associated avoided emissions (t-CO2-eq) conferred under the counterfactual scenario that solar development would otherwise proceed as a ground-mounted, utility-scale PV installation of equal nominal capacity. We identified and mapped 37 LCBs (by rooftop area) across 18 states in the US, spanning from as far north as the state of Minnesota to as far south as Florida. Rooftop footprints range from 427,297 to 113,689 m2 and have a cumulative surface area of 99.8 million ft2. We characterize the LCBs as either: distribution/warehouse, factory, shopping center, or administrative office/facility. Three of the 37 LCBs currently support rooftop PV and the numbers of associated, detached buildings number up to 38. This study elucidates the extent to which LCBs and their respective parking lots can serve as suitable sites for PV solar energy generation. Lastly, this study demonstrates research-based applications of the Aurora energy modeling platform and informs decision-making focused on redirecting energy development towards human-modified landscapes to prioritize land use for

  19. Polysun. PV, wind and power-heat-cogeneration in one design tool

    Energy Technology Data Exchange (ETDEWEB)

    Lacoste, Baptiste; Wolf, Andreas; Witzig, Andreas [Vela Solaris AG, Winterthur (Switzerland); Maerklin, Adrian [Envergate GmbH, Horn (Switzerland)

    2010-07-01

    In this article, the simulation software Polysun is presented, which by its fundamental concept favors the combination of several energy sources (e.g. PV, Solarthermal, oil/gas boiler) and consumers (heating, sanitary hot water, swimming pool) in one simulation setup. It is discussed how the state-of-the-art small wind turbines and power-heat-cogeneration shall be integrated into the simulation tool Polysun. A close collaboration between Vela Solaris and the manufacturer is important for model validation as well as for the building up of the Polysun component database. Wind measurement results are presented from the manufacturer Envergate, which is a typical partner of choice for such collaboration. The modular concept of Polysun provides the ideal basis for communicating the advantages of new hybrid systems in de-centralized electicity production both for educational purposes as well as in renewable energy system marketing and sales. Physics-based simulation and prediction of system performance helps in the decision phase and supports the implementation of modern energy efficient and/or renewable energy systems. (orig.)

  20. Performance of grid-tied PV facilities: A case study based on real data

    International Nuclear Information System (INIS)

    Díez-Mediavilla, M.; Dieste-Velasco, M.I.; Rodríguez-Amigo, M.C.; García-Calderón, T.; Alonso-Tristán, C.

    2013-01-01

    Highlights: • A new procedure to analyse the performance of PV facilities is presented. • It only requires limited amounts of data that are easily sourced. • Data sets on production were collected over two complete years. • The transformerless inverter outperforms the isolated inverter. - Abstract: A new procedure is presented to analyse the performance of grid-tied PV facilities. It needs limited amounts of data that are easily sourced and is based on knowledge of the analysed system and its mode of operation. The procedure is applied, in a case study, to compare real PV production at two 100 kW p grid-connected PV installations. Located in the same geographical region, the installation of these two facilities followed the same construction criteria – PV panels, panel support system and wiring – and the facilities were exposed to the same atmospheric temperature and solar radiation. They differ with regard to their inverter technology: one facility uses an inverter with an integrated transformer system and the other uses a transformerless inverter. The results show that the transformerless inverter system performed better than the isolated system by a factor of 1.2%, which, in economic terms, represents more than 2000 €/year

  1. A Practical Irradiance Model for Bifacial PV Modules

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Bill; MacAlpine, Sara; Deline, Chris; Asgharzadeh, Amir; Toor, Fatima; Riley, Daniel; Stein, Joshua; Hansen, Clifford

    2017-06-21

    A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be added to the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using ray tracing software.

  2. An investigation of the maximum penetration level of a photovoltaic (PV) system into a traditional distribution grid

    Science.gov (United States)

    Chalise, Santosh

    Although solar photovoltaic (PV) systems have remained the fastest growing renewable power generating technology, variability as well as uncertainty in the output of PV plants is a significant issue. This rapid increase in PV grid-connected generation presents not only progress in clean energy but also challenges in integration with traditional electric power grids which were designed for transmission and distribution of power from central stations. Unlike conventional electric generators, PV panels do not have rotating parts and thus have no inertia. This potentially causes a problem when the solar irradiance incident upon a PV plant changes suddenly, for example, when scattered clouds pass quickly overhead. The output power of the PV plant may fluctuate nearly as rapidly as the incident irradiance. These rapid power output fluctuations may then cause voltage fluctuations, frequency fluctuations, and power quality issues. These power quality issues are more severe with increasing PV plant power output. This limits the maximum power output allowed from interconnected PV plants. Voltage regulation of a distribution system, a focus of this research, is a prime limiting factor in PV penetration levels. The IEEE 13-node test feeder, modeled and tested in the MATLAB/Simulink environment, was used as an example distribution feeder to analyze the maximum acceptable penetration of a PV plant. The effect of the PV plant's location was investigated, along with the addition of a VAR compensating device (a D-STATCOM in this case). The results were used to develop simple guidelines for determining an initial estimate of the maximum PV penetration level on a distribution feeder. For example, when no compensating devices are added to the system, a higher level of PV penetration is generally achieved by installing the PV plant close to the substation. The opposite is true when a VAR compensator is installed with the PV plant. In these cases, PV penetration levels over 50% may be

  3. PV Horizon : Proceedings of the Workshop on Photovoltaic Hybrid Systems. CD ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The aim of this workshop was to share information on current photovoltaic (PV) and hybrid system technology, and to present information on international experience and trends in research and development. It brought together 70 experts from Canada, the United States, several European countries, Japan and Australia. Currently, PV hybrid systems are used for stand-alone projects in telecommunication applications, remote housing, and leisure lodges. The applications for these sectors are well known and the technology is cost effective. Other applications are for micro-grid applications such as small remote islands, village power and tourist resorts. The costs for these types of applications can also be effective as long as the power demand is relatively low. A keynote presentation which highlighted the current application of PV hybrid systems, was followed by three sessions dealing with international experience with hybrid systems, the research and development opportunities for hybrid systems, and visual presentations on a range of subjects dealing with PV hybrid systems, their components, system integration, standards, guidelines, and control system issues. It was noted that the future for renewables looks bright, particularly for developing countries. Their use will also reduce the environmental footprint of remote power solutions. refs., tabs., figs.

  4. Integrated management of information inside maintenance processes. From the building registry to BIM systems

    Directory of Open Access Journals (Sweden)

    Cinzia Talamo

    2014-10-01

    Full Text Available The paper presents objec- tives, methods and results of two researches dealing with the improvement of integrated information management within maintenance processes. Focusing on information needs regarding the last phases of the building process, the two researches draft approaches characterizing a path of progressive improve- ment of strategies for integration: from a building registry, unique for the whole construction process, to an integrated management of the building process with the support of BIM systems.

  5. Countermeasure for Surplus Electricity of PV using Replacement Battery of EVs

    Science.gov (United States)

    Takagi, Masaaki; Iwafune, Yumiko; Yamamoto, Hiromi; Yamaji, Kenji; Okano, Kunihiko; Hiwatari, Ryouji; Ikeya, Tomohiko

    In the power sector, the national government has set the goal that the introduction of PV reaches 53 million kW by 2030. However, large-scale introduction of PV will cause several problems in power systems such as surplus electricity. We need large capacity of pumped storages or batteries for the surplus electricity, but the construction costs of these plants are very high. On the other hand, in the transport sector, Electric Vehicle (EV) is being developed as an environmentally friendly vehicle. To promote the diffusion of EV, it is necessary to build infrastructures that can charge EV in a short time; a battery switch station is one of the solutions to this problem. At a station, the automated switch platform will replace the depleted battery with a fully-charged battery. The depleted battery is placed in a storage room and recharged to be available to other drivers. In this study, we propose the use of station's battery as a countermeasure for surplus electricity of PV and evaluate the economic value of the proposed system. We assumed that 53 million kW of PV is introduced in the nationwide power system and considered two countermeasures for surplus electricity: (1) Pumped storage; (2) Battery of station. The difference in total annual cost between Pumped case and Battery case results in 792.6 billion yen. Hence, if a utility leases the batteries from stations fewer than 792.6 billion yen, the utility will have the cost advantage in Battery case.

  6. PV-DSM: Policy actions to speed commercialization

    International Nuclear Information System (INIS)

    Hoff, T.; Wenger, H.J.; Keane, D.M.

    1993-01-01

    Pacific Gas and Electric Company (PG ampersand E) recently applied Demand-Side Management (DSM) evaluation techniques to photovoltaic (PV) technology to develop the concept of photovoltaics as a Demand-Side Management option (PV-DSM). The analysis demonstrated that PV-DSM has the potential to be economically attractive. Two criticisms in response to that analysis are that the assumptions of 25 year financing and a 25 year evaluation period are unrealistic. This paper responds to those criticisms and documents the mathematical relationships to calculate the value of PV-DSM from a customer's perspective. It demonstrates how regulatory and government agencies could implement policies to resolve both issues and speed PV commercialization

  7. PV Obelisk - Information system with photovoltaics

    International Nuclear Information System (INIS)

    Ruoss, D.; Rasmussen, J.

    2004-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the development of an information system powered by a photovoltaic (PV) array. As an innovative approach, the 'PV-Obelisk' project is the combination of PV with a multi-functional pillar made of natural stone in an aesthetic way. The PV modules serve both as a power supply and as a design element. Two initial prototypes led the way to a third, optimised consumer configuration that was planned to guarantee maximum user frequency. Test operation in front of the 'Heidiland' motor way restaurant confirmed the market analyses made and delivered the expected results. The product, whose three LCD displays are updated via a mobile telephony-based text-message system, proved its technical reliability and showed a high user frequency. Because of the high overall energy consumption, PV power can only partially contribute to the energy supply needed. Various compromises in the technical and aesthetic areas are discussed that were made for the sake of product acceptance in the market. The range of application areas for such a 'PV Obelisk' are discussed and the need for early co-ordination with urban planners is stressed

  8. The vital role of manufacturing quality in the reliability of PV modules

    Science.gov (United States)

    Rusch, Peter

    2014-10-01

    The influence of manufacturing quality on the reliability of PV modules coming out of today's factories has been, and is still, under estimated among investors and buyers. The main reason is perception. Contrary to popular belief, PV modules are not a commodity. Module quality does differ among module brands. Certification alone does not guarantee the quality or reliability of a module. Cost reductions in manufacturing have unequivocally affected module quality. And the use of new, cheaper materials has had a measureable impact on module reliability. The need for meaningful manufacturing quality standards has been understood by the leading technical institutions and important industry players. The fact that most leading PV panel manufacturers have been certified according to ISO 9001 has led to some level of improvement and higher effectiveness. The new ISO 9001 PV QMS standards will be a major step in providing a tool to assess PV manufacturers' quality management systems. The current lack of sufficient standards has still got a negative influence on the quality of modules being installed today. Today every manufacturer builds their modules in their own way with little standardization or adherence to quality processes and methods, which are commonplace in other manufacturing industries. Although photovoltaic technology is to a great extent mature, the way modules are being produced has changed significantly over the past few years and it continues to change at a rapid pace. Investors, financiers and lenders stand the most to gain from PV systems over the long-term, but also the most to lose. Investors, developers, EPC, O&M and solar asset management companies must all manage manufacturing quality more proactively or they will face unexpected risks and failures down the road. Manufacturing quality deserves more transparency and attention, as it is a major driver of module performance and reliability. This paper will explain the benefits of good manufacturing

  9. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Austin A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Prabakar, Kumaraguru [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagarajan, Adarsh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nepal, Shaili [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hoke, Anderson F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Asano, Marc [Hawaiian Electric Company; Ueda, Reid [Hawaiian Electric Company; Ifuku, Earle [Hawaiian Electric Company

    2017-10-03

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods, which combine the fidelity of hardware tests with the flexibility of computer simulation. This paper summarizes a study wherein two Hawaiian Electric feeder models were converted to real-time models using an OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters based on characterization test data. The integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factor and volt-watt control settings on voltage regulation of the selected feeders using physical inverters. Selected results are presented in this paper, and complete results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.

  10. The new NOZ-PV: Market-oriented

    International Nuclear Information System (INIS)

    Ter Horst, E.

    1995-01-01

    In the proposal for the new National Research Program for Photovoltaics (NOZ-PV) 1995-1999 the focus is on four subjects: solar cell technology, the industrial support, the stimulation of autonomous, favorable applications and markets for PV, and the realization of a training program PV in the Built Areas. The program will be carried out as a market-oriented program. 1 tab., 2 figs

  11. Emissions and encapsulation of cadmium in CdTe PV modules during fires

    Energy Technology Data Exchange (ETDEWEB)

    Fthenakis, V.M.; Fuhrmann, M.; Heiser, J.; Fitts, J.; Wang, W. [Brookhaven National Laboratory, Upton, NY (United States). Environmental Sciences Dept.; Lanzirotti, A. [University of Chicago, Chicago, IL (United States). Consortium for Advanced Radiation Resources

    2005-12-15

    Fires in residential and commercial properties are not uncommon. If such fires involve the roof, photovoltaic arrays mounted on the roof will be exposed to the flames. The amount of cadmium that can be released in fires involving CdTe PV and the magnitude of associated health risks has been debated. The current study aims in delineating this issue. Previous thermogravimetric studies of CdTe, involved pure CdTe and single-glass PV modules. The current study is based on glass-glass CdTe PV modules which are the only ones in the market. Pieces of commercial CdTe photovoltaic (PV) modules, sizes 25x3 cm, were heated to temperatures up to 1100{sup o}C to simulate exposure to residential and commercial building fires. The temperature rate and duration in these experiments were defined according to standard protocols. Four different types of analysis were performed to investigate emissions and redistribution of elements in the matrix of heated CdTe PV modules: (1) measurements of sample weight loss as a function of temperature; (2) analyses of Cd and Te in the gaseous emissions; (3) Cd distribution in the heated glass using synchrotron X-ray fluorescence microprobe analysis; and (4) chemical analysis for Cd and Te in the acid-digested glass. These experiments showed that almost all (i.e., 99.5%) of the cadmium content of CdTe PV modules was encapsulated in the molten glass matrix; a small amount of Cd escaped from the perimeter of the samples before the two sheets of glass melted together. Adjusting for this loss in full-size modules, results in 99.96% retention of Cd. Multiplying this with the probability of occurrence for residential fires in wood-frame houses in the US (e.g., 10{sup -4}), results in emissions of 0.06 mg/GWh; the probability of sustained fires and subsequent emissions in adequately designed and maintained utility systems appears to be zero. (Author)

  12. A Combined Optical, Thermal and Electrical Performance Study of a V-Trough PV System—Experimental and Analytical Investigations

    Directory of Open Access Journals (Sweden)

    Haitham M. Bahaidarah

    2015-04-01

    Full Text Available The objective of this study was to achieve higher efficiency of a PV system while reducing of the cost of energy generation. Concentration photovoltaics was employed in the present case as it uses low cost reflectors to enhance the efficiency of the PV system and simultaneously reduces the cost of electricity generation. For this purpose a V-trough integrated with the PV system was employed for low concentration photovoltaic (LCPV. Since the electrical output of the concentrating PV system is significantly affected by the temperature of the PV cells, the motivation of the research also included studying the ability to actively cool PV cells to achieve the maximum benefit. The optical, thermal and electrical performance of the V-trough PV system was theoretically modeled and validated with experimental results. Optical modeling of V-trough was carried out to estimate the amount of enhanced absorbed radiation. Due to increase in the absorbed radiation the module temperature was also increased which was predicted by thermal model. Active cooling techniques were studied and the effect of cooling was analyzed on the performance of V-trough PV system. With absorbed radiation and module temperature as input parameters, electrical modeling was carried out and the maximum power was estimated. For the V-trough PV system, experiments were performed for validating the numerical models and very good agreement was found between the two.

  13. Energy Management Strategy for Micro-Grids with PV-Battery Systems and Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jose Luis Torres-Moreno

    2018-02-01

    Full Text Available This paper analyzes the impact of photovoltaic (PV systems on storage and electric vehicles in micro-grids. As these kinds of systems are becoming increasingly popular in the residential sector, the development of a new generation of equipment, such as more efficient batteries or solar panels, makes further study necessary. These systems are especially interesting in commercial or office buildings, since they have a more repetitive daily pattern of electricity consumption, which usually occurs within the maximum solar radiation hours. Based on this need, a novel control strategy aimed at efficiently managing this kind of micro-grid is proposed. The core of this strategy is a rule-based controller managing the power flows between the grid and the batteries of both the PV system and the electric vehicle. Through experimental data and simulations, this strategy was tested under different scenarios. The selected testbed consisted of the laboratory of a research center, which could be easily scalable to the entire building. Results showed the benefits of using an electric vehicle as an active agent in energy balance, leading to a reduction of the energetic costs of a micro-grid.

  14. Sacramento Municipal Utility District PV and Smart Grid Pilot at Anatolia

    Energy Technology Data Exchange (ETDEWEB)

    Rawson, Mark; Sanchez, Eddie Paul

    2013-12-30

    Under DE-FOA-0000085 High Penetration Solar Deployment, the U. S. Department of Energy funded agreements with SMUD and Navigant Consulting, SunPower, GridPoint, the National Renewable Energy Laboratory, and the California Energy Commission for this pilot demonstration project. Funding was $5,962,409.00. Cost share of $500,000 was also provided by the California Energy Commission. The project has strategic implications for SMUD, other utilities and the PV and energy-storage industries in business and resource planning, technology deployment and asset management. These implications include: -At this point, no dominant business models have emerged and the industry is open for new ideas. -Demonstrated two business models for using distributed PV and energy storage, and brainstormed several dozen more, each with different pros and cons for SMUD, its customers and the industry. -Energy storage can be used to manage high penetrations of PV and mitigate potential issues such as reverse power flow, voltage control violations, power quality issues, increased wear and tear on utility equipment, and system wide power supply issues. - Smart meters are another tool utilities can use to manage high penetrations of PV. The necessary equipment and protocols exist, and the next step is to determine how to integrate the functionality with utility programs and what level of utility control is required. - Time-of-use rates for the residential customers who hosted energy storage systems did not cause a significant change in energy usage patterns. However, the rates we used were not optimized for PV and energy storage. Opportunities exist for utilities to develop new structures.

  15. PV in a sports arena; PV im Hexenkessel

    Energy Technology Data Exchange (ETDEWEB)

    Hoeche, B.

    2008-05-19

    The German soccer club Werder Bremen is reconstructing its stadium. Apart from higher spectator comfort and a better atmosphere, there will also be PV systems on the roof and external walls of the arena. (orig.)

  16. Integrating Renewable Energy Requirements Into Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, John R.; Hand, James R.; Halverson, Mark A.

    2011-07-01

    This report evaluates how and when to best integrate renewable energy requirements into building energy codes. The basic goals were to: (1) provide a rough guide of where we’re going and how to get there; (2) identify key issues that need to be considered, including a discussion of various options with pros and cons, to help inform code deliberations; and (3) to help foster alignment among energy code-development organizations. The authors researched current approaches nationally and internationally, conducted a survey of key stakeholders to solicit input on various approaches, and evaluated the key issues related to integration of renewable energy requirements and various options to address those issues. The report concludes with recommendations and a plan to engage stakeholders. This report does not evaluate whether the use of renewable energy should be required on buildings; that question involves a political decision that is beyond the scope of this report.

  17. Optimal allocation and adaptive VAR control of PV-DG in distribution networks

    International Nuclear Information System (INIS)

    Fu, Xueqian; Chen, Haoyong; Cai, Runqing; Yang, Ping

    2015-01-01

    Highlights: • A methodology for optimal PV-DG allocation based on a combination of algorithms. • Dealing with the randomicity of solar power energy using CCSP. • Presenting a VAR control strategy to balance the technical demands. • Finding the Pareto solutions using MOPSO and SVM. • Evaluating the Pareto solutions using WRSR. - Abstract: The development of distributed generation (DG) has brought new challenges to power networks. One of them that catches extensive attention is the voltage regulation problem of distribution networks caused by DG. Optimal allocation of DG in distribution networks is another well-known problem being widely investigated. This paper proposes a new method for the optimal allocation of photovoltaic distributed generation (PV-DG) considering the non-dispatchable characteristics of PV units. An adaptive reactive power control model is introduced in PV-DG allocation as to balance the trade-off between the improvement of voltage quality and the minimization of power loss in a distribution network integrated with PV-DG units. The optimal allocation problem is formulated as a chance-constrained stochastic programming (CCSP) model for dealing with the randomness of solar power energy. A novel algorithm combining the multi-objective particle swarm optimization (MOPSO) with support vector machines (SVM) is proposed to find the Pareto front consisting of a set of possible solutions. The Pareto solutions are further evaluated using the weighted rank sum ratio (WRSR) method to help the decision-maker obtain the desired solution. Simulation results on a 33-bus radial distribution system show that the optimal allocation method can fully take into account the time-variant characteristics and probability distribution of PV-DG, and obtain the best allocation scheme

  18. The PV market - Past, present, and future

    International Nuclear Information System (INIS)

    Hammond, B.

    1992-01-01

    This paper forecasts the photovoltaic (PV) market growth for the 1900's. Ten years of PV history are reviewed and used to establish market trends in terms of average selling price (ASP) and kilowatts shipped by market segment. The market is segmented into indoor consumer, stand-alone, and grid-connected applications. Indoor consumer presently represents a saturated market and is fairly predictable. The stand-alone market (i.e. not connected to the utility grid) is fairly stable and predictable. The utility PV market, however, is highly dependent on a number of market factors such as the cost of conventional energy, the cost of PV systems, utility acceptance of PV, and regulatory controls. Government and institutional regulations, environmental issues, OPEC and Middle East politics will have the greatest impact on the cost of conventional fuels. Private and federal investment in PV technology development could have a significant impact on the cost of PV systems. Forecasts are provided through the year 2000 for indoor consumer, stand-alone, and utility markets. PV has unique attributes which make it a desirable source of energy in specific applications. It is a renewable source of energy, non-polluting, very reliable, predictable, low maintenance, modular, and has a very low operating cost. The energy source (sunlight) is distributed around the globe. Its limitations are high initial cost, no inherent energy storage, and low energy density

  19. Grid-Tied PV System with Energy Optimization

    OpenAIRE

    Maryam Shahjehan; Waleed Shahjehan; Muhammad Naeem Arbab

    2017-01-01

    International audience; Electricity that is generated from coal, natural gas and fossil fuel has an impact on human health and also causes global warming. The integration of renewable energy sources with the grid is a good solution to these problems. This approach is known as smart grid. Sources of renewable energy such as wind or PV are not able to provide a continuous supply of energy to the load due to periodic or seasonal variations. Connecting these renewable sources to the grid can help...

  20. Optimal Design of Modern Transformerless PV Inverter Topologies

    DEFF Research Database (Denmark)

    Saridakis, Stefanos; Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    the operational lifetime period of the PV installation, is also considered in the optimization process. According to the results of the proposed design method, different optimal values of the PV inverter design variables are derived for each PV inverter topology and installation site. The H5, H6, neutral point...... clamped, active-neutral point clamped and conergy-NPC PV inverters designed using the proposed optimization process feature lower levelized cost of generated electricity and lifetime cost, longer mean time between failures and inject more PV-generated energy into the electric grid than their nonoptimized......The design optimization of H5, H6, neutral point clamped, active-neutral point clamped, and conergy-NPC transformerless photovoltaic (PV) inverters is presented in this paper. The components reliability in terms of the corresponding malfunctions, affecting the PV inverter maintenance cost during...

  1. Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid

    Science.gov (United States)

    Kuwayama, Akira

    The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.

  2. A GUI Based Software for Sizing Stand Alone AC Coupled Hybrid PV-Diesel Power System under Malaysia Climate

    Science.gov (United States)

    Syafiqah Syahirah Mohamed, Nor; Amalina Banu Mohamat Adek, Noor; Hamid, Nurul Farhana Abd

    2018-03-01

    This paper presents the development of Graphical User Interface (GUI) software for sizing main component in AC coupled photovoltaic (PV) hybrid power system based on Malaysia climate. This software provides guideline for PV system integrator to design effectively the size of components and system configuration to match the system and load requirement with geographical condition. The concept of the proposed software is balancing the annual average renewable energy generation and load demand. In this study, the PV to diesel generator (DG) ratio is introduced by considering the hybrid system energy contribution. The GUI software is able to size the main components in the PV hybrid system to meet with the set target of energy contribution ratio. The rated powers of the components to be defined are PV array, grid-tie inverter, bi-directional inverter, battery storage and DG. GUI is used to perform all the system sizing procedures to make it user friendly interface as a sizing tool for AC coupled PV hybrid system. The GUI will be done by using Visual Studio 2015 based on the real data under Malaysia Climate.

  3. A Fuzzy-Based PI Controller for Power Management of a Grid-Connected PV-SOFC Hybrid System

    Directory of Open Access Journals (Sweden)

    Shivashankar Sukumar

    2017-10-01

    Full Text Available Solar power generation is intermittent in nature. It is nearly impossible for a photovoltaic (PV system to supply power continuously and consistently to a varying load. Operating a controllable source like a fuel cell in parallel with PV can be a solution to supply power to variable loads. In order to coordinate the power supply from fuel cells and PVs, a power management system needs to be designed for the microgrid system. This paper presents a power management system for a grid-connected PV and solid oxide fuel cell (SOFC, considering variation in the load and solar radiation. The objective of the proposed system is to minimize the power drawn from the grid and operate the SOFC within a specific power range. Since the PV is operated at the maximum power point, the power management involves the control of SOFC active power where a proportional and integral (PI controller is used. The control parameters of the PI controller Kp (proportional constant and Ti (integral time constant are determined by the genetic algorithm (GA and simplex method. In addition, a fuzzy logic controller is also developed to generate appropriate control parameters for the PI controller. The performance of the controllers is evaluated by minimizing the integral of time multiplied by absolute error (ITAE criterion. Simulation results showed that the fuzzy-based PI controller outperforms the PI controller tuned by the GA and simplex method in managing the power from the hybrid source effectively under variations of load and solar radiation.

  4. Environmental impact of PV cell waste scenario.

    Science.gov (United States)

    Bogacka, M; Pikoń, K; Landrat, M

    2017-12-01

    Rapid growth of the volume of waste from PV cells is expected in the following years. The problem of its utilization seems to be the most important issue for future waste management systems. The environmental impacts of the PV recycling scenario are presented in the manuscript. The analysis is based on the LCA approach and the average data available in specialized databases for silicon standard PV cell is used. The functional unit includes parameters like: efficiency, composition, surface area. The discussion on the environmental impact change due to the location of the PV production and waste processing plants is presented in the manuscript. Additionally, the discussion on the environmental effect of substituting different energy resources with PV cells is presented in the manuscript. The analysis of the PV cell life cycle scenario presented in the article was performed using the SIMA PRO software and data from Ecoinvent 3.0 database together with additional data obtained from other sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Novel laboratory mouse papillomavirus (MusPV) infection.

    Science.gov (United States)

    Ingle, A; Ghim, S; Joh, J; Chepkoech, I; Bennett Jenson, A; Sundberg, J P

    2011-03-01

    Most papillomaviruses (PVs) are oncogenic. There are at least 100 different human PVs and 65 nonhuman vertebrate hosts, including wild rodents, which have species-specific PV infections. Florid papillomatosis arose in a colony of NMRI-Foxn1(nu)/Foxn1(nu) (nude) mice at the Advanced Centre for Treatment Research and Education in Cancer in India. Lesions appeared at the mucocutaneous junctions of the nose and mouth. Histologically, lesions were classical papillomas with epidermal hyperplasia on thin fibrovascular stalks in a verrucous pattern. Koilocytotic cells were observed in the stratum granulosum of the papillomatous lesions. Immunohistochemically, these abnormal cells were positive for PV group-specific antigens. With transmission electron microscopy, virus particles were observed in crystalline intranuclear inclusions within keratinocytes. The presence of a mouse PV, designated MusPV, was confirmed by amplification of PV DNA with degenerative primers specific for PVs. This report is the first of a PV and its related disease in laboratory mice.

  6. PV Working with Industry, 2nd Quarter, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Poole, L.; Moon, S.

    2000-06-29

    NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The Second Quarter, 2000, issue is titled ``Our Shared PV Future''. It contains a review of several important PV-related meetings held in the prior three months: the NCPV Program Review, the 16 European PV Conference, and year-2000 Earth Day activities in Denver, CO. The editorialist is Paul Maycock, Publisher of PV News.

  7. Concentrating PV/T Hybrid System for Simultaneous Electricity and Usable Heat Generation: A Review

    Directory of Open Access Journals (Sweden)

    Longzhou Zhang

    2012-01-01

    Full Text Available Photovoltaic (PV power generation is one of the attractive choices for efficient utilization of solar energy. Considering that the efficiency and cost of PV cells cannot be significantly improved in near future, a relatively cheap concentrator to replace part of the expensive solar cells could be used. The photovoltaic thermal hybrid system (PV/T, combining active cooling with thermal electricity and providing both electricity and usable heat, can enhance the total efficiency of the system with reduced cell area. The effect of nonuniform light distribution and the heat dissipation on the performance of concentrating PV/T was discussed. Total utilization of solar light by spectral beam splitting technology was also introduced. In the last part, we proposed an integrated compound parabolic collector (CPC plate with low precision solar tracking, ensuring effective collection of solar light with a significantly lowered cost. With the combination of beam splitting of solar spectrum, use of film solar cell, and active liquid cooling, efficient and full spectrum conversion of solar light to electricity and heat, in a low cost way, might be realized. The paper may offer a general guide to those who are interested in the development of low cost concentrating PV/T hybrid system.

  8. Regulatory potential for increasing small scale grid connected photovoltaic (PV) deployment in Australia

    International Nuclear Information System (INIS)

    Sivaraman, Deepak; Horne, Ralph E.

    2011-01-01

    The last decade has seen significant innovation and change in regulatory incentives to support photovoltaic deployment globally. With high fossil fuel dependency and abundant solar resource availability in Australia, grid connected photovoltaics are a viable low carbon technology option in existing electricity grids. Drawing on international examples, the potential to increase grid PV deployment through government response and regulation is explored. For each renewable energy certificate (REC) earned by small scale photovoltaics until 2012, the market provides four additional certificates under the current banded renewable targets. Our analysis indicates that REC eligibility is not accurately estimated currently, and an energy model is developed to calculate the variance. The energy model estimates as much as 26% additional REC's to be obtained by a 3 kWp PV system, when compared to the currently used regulatory method. Moreover, the provision of REC's increases benefits to PV technologies, in the process distorting CO 2 abatement (0.21 tonne/REC) by 68%, when PV displaces peaking natural gas plants. Consideration of the secondary effects of a banded structure on emissions trading market is important in the context of designing a range of initiatives intended to support a transition to a low carbon electricity sector. - Research Highlights: →Grid connected photovoltaics hedge spikes in peak demand summer electricity prices. →Nationwide feed in tariff and new building regulations needed to increase PV deployment. →Australia has transitioned from a solar rebate to a banded solar credit structure. →The currently used regulatory deeming method underestimates REC eligibility by 27%. →The banded structure can potentially distort CO 2 abatement by as much as 68%.

  9. Integration between electric vehicle charging and PV system to increase self-consumption of an office application

    International Nuclear Information System (INIS)

    Roselli, Carlo; Sasso, Maurizio

    2016-01-01

    Highlights: • The interaction between a PV plant and office including EV charging is investigated. • An energy analysis on daily driving distance basis of the EV is performed. • An environmental analysis on daily driving distance basis of the EV is considered. - Abstract: The paper analyzes the introduction of a photovoltaic system satisfying electric, space heating and cooling demand of an office building located in southern Italy. The electric load is due to an electric heat pump, used to satisfy space heating and cooling load, a pure electric demand (personal computers, printers, lighting, etc.) and an electric vehicle charged during working hours. Dynamic simulations to evaluate the energy and environmental performance of the analyzed system considering different photovoltaic peak powers (4.5–9.0 kW), electric vehicle distance per day (40–120 km) and charging mode is carried out. The solar based system shows primary energy saving and equivalent carbon dioxide emission reduction higher than 40% in comparison to the reference conventional system based on a natural gas fired boiler, an electric chiller and a diesel car. The results highlight that the solar energy system is more competitive when DC charging system is provided.

  10. Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review

    Directory of Open Access Journals (Sweden)

    Joud Al Dakheel

    2017-10-01

    Full Text Available Active shading systems in buildings have emerged as a high performing shading solution that selectively and optimally controls daylight and heat gains. Active shading systems are increasingly used in buildings, due to their ability to mainly improve the building environment, reduce energy consumption and in some cases generate energy. They may be categorized into three classes: smart glazing, kinetic shading and integrated renewable energy shading. This paper reviews the current status of the different types in terms of design principle and working mechanism of the systems, performance, control strategies and building applications. Challenges, limitations and future opportunities of the systems are then discussed. The review highlights that despite its high initial cost, the electrochromic (EC glazing is the most applied smart glazing due to the extensive use of glass in buildings under all climatic conditions. In terms of external shadings, the rotating shading type is the predominantly used one in buildings due to its low initial cost. Algae façades and folding shading systems are still emerging types, with high initial and maintenance costs and requiring specialist installers. The algae façade systems and PV integrated shading systems are a promising solution due to their dual benefits of providing shading and generating electricity. Active shading systems were found to save 12 to 50% of the building cooling electricity consumption.

  11. Comparison of sensorless dimming control based on building modeling and solar power generation

    International Nuclear Information System (INIS)

    Lee, Naeun; Kim, Jonghun; Jang, Cheolyong; Sung, Yoondong; Jeong, Hakgeun

    2015-01-01

    Artificial lighting in office buildings accounts for about 30% of the total building energy consumption. Lighting energy is important to reduce building energy consumption since artificial lighting typically has a relatively large energy conversion factor. Therefore, previous studies have proposed a dimming control using daylight. When applied dimming control, method based on building modeling does not need illuminance sensors. Thus, it can be applied to existing buildings that do not have illuminance sensors. However, this method does not accurately reflect real-time weather conditions. On the other hand, solar power generation from a PV (photovoltaic) panel reflects real-time weather conditions. The PV panel as the sensor improves the accuracy of dimming control by reflecting disturbance. Therefore, we compared and analyzed two types of sensorless dimming controls: those based on the building modeling and those that based on solar power generation using PV panels. In terms of energy savings, we found that a dimming control based on building modeling is more effective than that based on solar power generation by about 6%. However, dimming control based on solar power generation minimizes the inconvenience to occupants and can also react to changes in solar radiation entering the building caused by dirty window. - Highlights: • We conducted sensorless dimming control based on solar power generation. • Dimming controls using building modeling and solar power generation were compared. • The real time weather conditions can be considered by using solar power generation. • Dimming control using solar power generation minimizes inconvenience to occupants

  12. Computer integrated construction at AB building in reprocessing plant

    International Nuclear Information System (INIS)

    Takami, Masahiro; Azuchi, Takehiro; Sekiguchi, Kenji

    1999-01-01

    JNFL (Japan Nuclear Fuel Limited) is now processing with construction of the spent nuclear fuel reprocessing plant at Rokkasho Village in Aomori Prefecture, which is coming near to the busiest period of construction. Now we are trying to complete the civil work of AB Building and KA Building in a very short construction term by applying CIC (Computer Integrated Construction) concept, in spite of its hard construction conditions, such as the massive and complicated building structure, interferences with M and E (Mechanical and Electrical) work, severe winter weather, remote site location, etc. The key technologies of CIC are three-dimensional CAD, information network, and prefabrication and mechanization of site work. (author)

  13. Wafer integrated micro-scale concentrating photovoltaics

    Science.gov (United States)

    Gu, Tian; Li, Duanhui; Li, Lan; Jared, Bradley; Keeler, Gordon; Miller, Bill; Sweatt, William; Paap, Scott; Saavedra, Michael; Das, Ujjwal; Hegedus, Steve; Tauke-Pedretti, Anna; Hu, Juejun

    2017-09-01

    Recent development of a novel micro-scale PV/CPV technology is presented. The Wafer Integrated Micro-scale PV approach (WPV) seamlessly integrates multijunction micro-cells with a multi-functional silicon platform that provides optical micro-concentration, hybrid photovoltaic, and mechanical micro-assembly. The wafer-embedded micro-concentrating elements is shown to considerably improve the concentration-acceptance-angle product, potentially leading to dramatically reduced module materials and fabrication costs, sufficient angular tolerance for low-cost trackers, and an ultra-compact optical architecture, which makes the WPV module compatible with commercial flat panel infrastructures. The PV/CPV hybrid architecture further allows the collection of both direct and diffuse sunlight, thus extending the geographic and market domains for cost-effective PV system deployment. The WPV approach can potentially benefits from both the high performance of multijunction cells and the low cost of flat plate Si PV systems.

  14. Flexible packaging for PV modules

    Science.gov (United States)

    Dhere, Neelkanth G.

    2008-08-01

    Economic, flexible packages that provide needed level of protection to organic and some other PV cells over >25-years have not yet been developed. However, flexible packaging is essential in niche large-scale applications. Typical configuration used in flexible photovoltaic (PV) module packaging is transparent frontsheet/encapsulant/PV cells/flexible substrate. Besides flexibility of various components, the solder bonds should also be flexible and resistant to fatigue due to cyclic loading. Flexible front sheets should provide optical transparency, mechanical protection, scratch resistance, dielectric isolation, water resistance, UV stability and adhesion to encapsulant. Examples are Tefzel, Tedlar and Silicone. Dirt can get embedded in soft layers such as silicone and obscure light. Water vapor transmittance rate (WVTR) of polymer films used in the food packaging industry as moisture barriers are ~0.05 g/(m2.day) under ambient conditions. In comparison, light emitting diodes employ packaging components that have WVTR of ~10-6 g/(m2.day). WVTR of polymer sheets can be improved by coating them with dense inorganic/organic multilayers. Ethylene vinyl acetate, an amorphous copolymer used predominantly by the PV industry has very high O2 and H2O diffusivity. Quaternary carbon chains (such as acetate) in a polymer lead to cleavage and loss of adhesional strength at relatively low exposures. Reactivity of PV module components increases in presence of O2 and H2O. Adhesional strength degrades due to the breakdown of structure of polymer by reactive, free radicals formed by high-energy radiation. Free radical formation in polymers is reduced when the aromatic rings are attached at regular intervals. This paper will review flexible packaging for PV modules.

  15. Interharmonics from Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2017-01-01

    As the penetration level of grid-connected Photovoltaic (PV) systems increases, the power quality is one of the major concerns for system operators and the demands are becoming even stricter. The impact of interharmonics on the grid has been acknowledged in recent research when considering a large......-scale adoption of PV inverters. However, the origins of interharmonics remain unclear. Thus, this paper performs tests on a commercial PV inverter to explore interharmonic generation and more important investigates the mechanism of interharmonic emission. The investigation reveals that the perturbation...... of the solutions. Simulation results indicate that the constant-voltage MPPT method is the most suitable solution to the mitigation of interharmonics introduced by the MPPT operation, as it avoids the perturbation in the PV voltage during operation....

  16. Experience with building integrated solar collectors; Erfaring med bygningsintegrerte solfangere

    Energy Technology Data Exchange (ETDEWEB)

    Simonsen, Ingeborg; Time, Berit; Andresen, Inger

    2011-07-01

    The main objective of the research 'Zero Emission Buildings' ZEB is to develop products and solutions that provide buildings with zero greenhouse gas emissions associated with the production, operation and disposal. Can we make this happen must the building produce more energy than it needs to compensate for greenhouse gas emissions from the production of materials and the actual construction.To build up knowledge on experience with building integrated solar collectors in Norway, we have in this study made interviews with suppliers and manufacturers of solar collectors and some building owners. Since the focus is on climate shell, we have limited the study to include solar collectors to replace a part of the cladding or roofing. Construction upstairs roofing, outside facade or freestanding rack is not considered as building integrated in this context. The providers we have been in contact with appeals to slightly different parts of the market. This is reflected in the product's development, assembly and approach to the calculation of energy delivery. Overall, providers may offer a range of products suitable for both the professional and skilled carpenter, the interested 'man in the street' . The feedback we have received shows generally good experiences with the product and the installation. Because of the preliminary short operating periods of the investigated plants we have little data on energy supply from these plants. In summary, we can say that the knowledge and the products are available and it is up to use to use them.(Author)

  17. Supporting Building Portfolio Investment and Policy Decision Making through an Integrated Building Utility Data Platform

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Azizan [Carnegie Mellon Univ., Pittsburgh, PA (United States); Lasternas, Bertrand [Carnegie Mellon Univ., Pittsburgh, PA (United States); Alschuler, Elena [US DOE; View Inc; Loftness, Vivian [Carnegie Mellon Univ., Pittsburgh, PA (United States); Wang, Haopeng [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mo, Yunjeong [Carnegie Mellon Univ., Pittsburgh, PA (United States); Wang, Ting [Carnegie Mellon Univ., Pittsburgh, PA (United States); Zhang, Chenlu [Carnegie Mellon Univ., Pittsburgh, PA (United States); Sharma, Shilpi [Carnegie Mellon; Stevens, Ivana [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-03-18

    The American Recovery and Reinvestment Act stimulus funding of 2009 for smart grid projects resulted in the tripling of smart meters deployment. In 2012, the Green Button initiative provided utility customers with access to their real-time1 energy usage. The availability of finely granular data provides an enormous potential for energy data analytics and energy benchmarking. The sheer volume of time-series utility data from a large number of buildings also poses challenges in data collection, quality control, and database management for rigorous and meaningful analyses. In this paper, we will describe a building portfolio-level data analytics tool for operational optimization, business investment and policy assessment using 15-minute to monthly intervals utility data. The analytics tool is developed on top of the U.S. Department of Energy’s Standard Energy Efficiency Data (SEED) platform, an open source software application that manages energy performance data of large groups of buildings. To support the significantly large volume of granular interval data, we integrated a parallel time-series database to the existing relational database. The time-series database improves on the current utility data input, focusing on real-time data collection, storage, analytics and data quality control. The fully integrated data platform supports APIs for utility apps development by third party software developers. These apps will provide actionable intelligence for building owners and facilities managers. Unlike a commercial system, this platform is an open source platform funded by the U.S. Government, accessible to the public, researchers and other developers, to support initiatives in reducing building energy consumption.

  18. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  19. Reaction of common bean lines to Xanthomonas axonopodis pv. phaseoli and Curtobacterium flaccumfaciens pv. flaccumfaciens

    Directory of Open Access Journals (Sweden)

    Tamires Ribeiro

    2016-12-01

    Full Text Available The aim of this study was to evaluate the resistance of 58 common bean lines against common bacterial blight (Xanthomonas axonopodis pv. phaseoli and bacterial wilt (Curtobacterium flaccumfaciens pv. flaccumfaciens. The experimental design consisted of completely randomized blocks, with four replications per pathogen. The results were subjected to variance analysis by the F test at 1% probability. Significant differences between the treatments indicated different resistance levels among the lines against both pathogens. According to the Scott-Knott test, six lines were resistant to Xanthomonas axonopodis pv. phaseoli, 14 moderately resistant, and 38 susceptible. To Curtobacterium flaccumfaciens pv. flaccumfaciens, 11 lines were resistant, 26 moderately resistant and 21 susceptible. Among these, the lines Pr10-3-4/1, Pr10-5-2/1 and Pr10-5- 2/2 of the black bean group and C10-2-4/2 of the Carioca group were resistant to both major bacterial diseases affecting common bean in Brazil.

  20. A Practical Irradiance Model for Bifacial PV Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Bill; MacAlpine, Sara; Deline, Chris; Asgharzadeh, Amir; Toor, Fatima; Riley, Daniel; Stein, Joshua; Hansen, Clifford

    2017-06-15

    A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors (CFs) to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be added to the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using the RADIANCE ray tracing program.

  1. Model predictive control for power fluctuation supression in hybrid wind/PV/battery systems

    DEFF Research Database (Denmark)

    You, Shi; Liu, Zongyu; Zong, Yi

    2015-01-01

    A hybrid energy system, the combination of wind turbines, PV panels and battery storage with effective control mechanism, represents a promising solution to the power fluctuation problem when integrating renewable energy resources (RES) into conventional power systems. This paper proposes a model...

  2. Exploration of Team Integration in Spanish Multifamily Residential Building Construction

    OpenAIRE

    Pellicer, Eugenio; Sanz Benlloch, María Amalia; Esmaeili, B.; MOLENAAR, KEITH ROBERT

    2016-01-01

    Project delivery team integration generally involves early involvement of general contractors and key specialty contractors in the design process. Team integration has been found to improve an owner’s probability of success. However, during difficult economic times, owners can forego early team involvement and move toward low bid procurement to take advantage of competitive markets. This study explores the performance of integrated teams in the Spanish multifamily building constructi...

  3. Sunny Woods, Zurich: photovoltaics integrated in metal roofing; Projekt Sunny Woods, Zuerich - Photovoltaik-Anlage in Blechdach integriert

    Energy Technology Data Exchange (ETDEWEB)

    Naef, R.; Kaempfen, B. [Naef Energietechnik, Architekturbuero, Zuerich (Switzerland)

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project aimed at providing proof that the energy needs of an four-storey apartment house built to so-called 'passive-house' zero-energy-consumption standards could be met using energy from a photovoltaic (PV) installation integrated in the building's metal roof. The building's energy-relevant characteristics are briefly presented and its 300 m{sup 2} roof with its 504, 32 W{sub p} amorphous triple-cell solar panels is described. The performance of the photovoltaic installation is analysed. The system supplies excess power to the electricity mains in summer which is then drawn again in winter. Each apartment has its own segment of the PV installation. Figures are presented on total solar power production and on data collected for one of the apartments with respect to comfort and electricity consumption.

  4. The Use of Feature Parameters to Asses Barrier Properties of ALD coatings for Flexible PV Substrates

    International Nuclear Information System (INIS)

    Blunt, Liam; Fleming, Leigh; Elrawemi, Mohamed; Robbins, David

    2014-01-01

    This paper reports on the recent work carried out as part of the EU funded NanoMend project. The project seeks to develop integrated process inspection, cleaning, repair and control systems for nano-scale thin films on large area substrates. In the present study flexible photovoltaic films have been the substrate of interest. Flexible PV films are the subject of significant development at present and the latest films have efficiencies at or beyond the level of Si based rigid PV modules. These flexible devices are fabricated on polymer film by the repeated deposition, and patterning, of thin layer materials using roll-to-roll processes, where the whole film is approximately 3um thick prior to encapsulation. Whilst flexible films offer significant advantages in terms of mass and the possibility of building integration (BIPV) they are at present susceptible to long term environmental degradation as a result of water vapor transmission through the barrier layers to the CIGS (Copper Indium Gallium Selenide CuIn x Ga (1-x) Se 2 ) PV cells thus causing electrical shorts and efficiency drops. Environmental protection of the GIGS cell is provided by a thin (40nm) barrier coating of Al 2 O 3 . The highly conformal aluminium oxide barrier layer is produced by atomic layer deposition (ALD) where, the ultra-thin Al 2 O 3 layer is deposited onto polymer thin films before these films encapsulate the PV cell. The surface of the starting polymer film must be of very high quality in order to avoid creating defects in the device layers. Since these defects reduce manufacturing yield, in order to prevent them, a further thin polymer coating (planarization layer) is generally applied to the polymer film prior to deposition. The presence of surface irregularities on the uncoated film can create defects within the nanometre-scale, aluminium oxide, barrier layer and these are measured and characterised. This paper begins by reporting the results of early stage measurements conducted to

  5. PV installations, protection and the code

    Energy Technology Data Exchange (ETDEWEB)

    Silecky, L. [Mersen, Toronto, ON (Canada)

    2010-12-15

    This article discussed the need for improved standards in Ontario's solar industry to ensure safety for the systems and also safety for the workers. Photovoltaic cells used in solar arrays can now deliver between 50 vDC to 600 vDC. The workings of such a high voltage photocell must be understood in order to understand its protection needs. Since PVs are semiconductors and susceptible to damage from short circuits and overloads, a fast-acting overcurrent protective device (OCPD) should be used. Combiner boxes are also needed to provide a clean method of safely connecting all the wires that are needed in the system, including surge protection and a means of isolation between the PV array and the inverter. Section 50 of the Canadian Electrical Code outlines the requirements for solar PV systems, but it does not mention the protection of DC circuits, including DC fuse protectors which are manufactured to provide a high degree of protection for the PV array. As the photovoltaic (PV) market continues to grow in Ontario, the PV industry also has a responsibility to ensure it is in compliance with codes and standards related to photovoltaic systems. This author suggested that Article 690 of the National Electric Code (NEC) is a good document to use when determining the requirements for PV systems. 3 figs.

  6. INTEGRATED ASSESSMENT OF BUILDINGS QUALITY IN THE CONTEXT OF SUSTAINABLE DEVELOPMENT PRINCIPLES

    Directory of Open Access Journals (Sweden)

    Mária Kozlovská

    2014-12-01

    Full Text Available Purpose: The aim of the paper is to analyse the assumptions for integrated assessment of buildings quality in the context of sustainable development principles. The sustainable (or “green” buildings are cost effective, environmentally friendly and conserving natural resources. The buildings are comfortable for the users, are also healthy and optimally integrated into socio-cultural environment; thereby have long maintained their high added value – for investors, owners as well as users.Design methodology/approach: The methodology of the paper consists in analyses of certification systems that assess buildings sustainability within wider environmental, economic and social relations. An effort to increase the quality of construction and to provide objectified assessment with measurable and comparable results has evoked the origin and development of the tools for buildings sustainability assessment. In the case study, there are analysed the approaches into assessment of one from few certified sustainable projects in Slovakia “EcoPoint Office Center Kosice”. The results are destined for potential investors perhaps even for present owners that have ambitions and responsibility for building sustainability principles performance when designing and using their properties.Findings: The results of the research imply identification of the key characteristics expressing the comprehensive quality of the building and are leading to specification of practical and social implications that are provided by the sustainability philosophy.Originality/value: The force of the paper is to mention the approaches into integrated assessment of construction quality in the context of sustainability principles and the importance of their more extensive implementation in Slovakia. The approaches into the sustainability principles performance as well as the real benefits of the sustainable building are declared through case study of the building EcoPoint Office

  7. Solar Energy Technology Office Portfolio Review: Promotion of PV Soft Cost Reductions in the Southeastern US

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-20

    From 2016-2021, the installed solar capacity in South Carolina will mushroom from less than 20 megawatts to more than 300 megawatts. Concurrently, the number of customer-sited, load-centered solar generation is expected to grow from less than 500 statewide to as many as 10,000 by 2021. This growth is anticipated to be the direct result of a landmark state policy initiative, Act 236, passed by the South Carolina General Assembly and signed into law by the Governor in June of 2014. Local policy makers in South Carolina are ill-equipped to handle the onslaught of solar permitting and zoning requests expected over the next five years. Similarly, the state’s building inspectors, first responders, and tax assessors know little about photovoltaic (PV) technology and best practices. Finally, South Carolina’s workforce and workforce trainers are underprepared to benefit from the tremendous opportunity created by the passage of Act 236. Each of these deficits in knowledge of and preparedness for solar PV translates into higher “soft costs” of installed solar PV in South Carolina. Currently, we estimate that the installed costs of residential rooftop solar are as much as 25 percent higher than the national average. The Savannah River National Laboratory (SRNL), together with almost a dozen electricity stakeholders in the Southeast, proposes to create a replicable model for solar PV soft cost reduction in South Carolina through human capacity-building at the local level and direct efforts to harmonize policy at the inter-county or regional level. The primary goal of this effort is to close the gap between South Carolina installed costs of residential rooftop solar and national averages. The secondary goal is to develop a portable and replicable model that can be applied to other jurisdictions in the Southeastern US.

  8. Experimental grid connected PV system power analysis

    Science.gov (United States)

    Semaoui, Smail; Abdeladim, Kamel; Arab, Amar Hadj; Boulahchich, Saliha; Amrouche, Said Ould; Yassaa, Noureddine

    2018-05-01

    Almost 80 % of Algerian territory is appropriate for the exploitation of solar energy. The Algerian energetic strategy provides a substantial injection of PV electricity to the national grid. Currently, about 344 MWp of PV arrays which corresponds approximately to 2,34 km2 of module surfaces, are connected on electricity grid over the national territory. The Algerian Northern regions are characterized by strong pollution and high humidity. These phenomena affect the energetic productivity of PV generator. The objective of our study is to analyze experimental grid connected PV system power in coastal locations. Hence, experiments have been conducted on three identical PV systems to determine the electrical performances. Transformer-less inverters are the most attractive for the ground-based photovoltaic (PV) system due to their efficiencies, reduced cost and weight. Besides, the absence of the galvanic isolation generates problems of capacitive leakage current on the AC side and the degradation of the insulation resistance on the DC side of the inverter. In this work, experimental study of the behavior of single-phase inverters without transformers is presented. The main objective of this work is to study the degradation of the insulation resistance at the input of the inverter, and the capacitive leakage current at the output of the inverter. This study was achieved at the CDER on a rainy day of 15/03/2017, on the first PV plant connected to the low voltage network in Algeria. This investigation can help forecasting the PV array energetic production by taking into account natural conditions.

  9. Topology Optimization of Building Blocks for Photonic Integrated Circuits

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2005-01-01

    Photonic integrated circuits are likely candidates as high speed replacements for the standard electrical integrated circuits of today. However, in order to obtain a satisfactorily performance many design prob- lems that up until now have resulted in too high losses must be resolved. In this work...... we demonstrate how the method of topology optimization can be used to design a variety of high performance building blocks for the future circuits....

  10. China PV Business and Applications Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sherring, Chris (Sherring Energy Associates)

    1999-08-30

    This report provides an overview of photovoltaics (PV) business and applications in China. Although more than 70 million people in China are without access to grid electricity, many of the unelectrified regions benefit from considerable renewable resources, including good solar insolation. Current annual PV sales are still modest, however, and are estimated to be between 2.0 and 2.5 megawatts. This and other significant PV data, including information regarding the current status of key aspects of Chinese businesses, markets, and distribution channels, are included in the report. Detailed company profiles of Chinese business organizations and summaries of visits made to these companies (as well as to more remote sites in Inner Mongolia to examine PV usage by the end-use customer) in September-October 1998 are also presented.

  11. Robust PV Degradation Methodology and Application

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Dirk [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Deline, Christopher A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kimball, Greg [SunPower; Anderson, Mike [SunPower

    2017-11-15

    The degradation rate plays an important role in predicting and assessing the long-term energy generation of PV systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this manuscript, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year (YOY) rate calculation. We show the method to provide reliable degradation rate estimates even in the case of sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.

  12. Optical properties of ITO nanocoatings for photovoltaic and energy building applications

    Science.gov (United States)

    Kaplani, E.; Kaplanis, S.; Panagiotaras, D.; Stathatos, E.

    2014-10-01

    Targeting energy savings in buildings, photovoltaics and other sectors, significant research activity is nowadays focused on the production of spectral selective nanocoatings. In the present study an ITO coating on glass substrate is prepared from ITO powder, characterized and analysed. The spectral transmittance and reflectance of the ITO coated glass and of two other commercially developed ITO coatings on glass substrate were measured and compared. Furthermore, a simulation algorithm was developed to determine the optical properties of the ITO coatings in the visible, solar and near infrared regions in order to assess the impact of the ITO coatings in the energy performance of buildings, and particularly the application in smart windows. In addition, the current density produced by a PV assuming each of the ITO coated glass served as a cover was computed, in order to assess their effect in PV performance. The preliminary ITO coating prepared and the two other coatings exhibit different optical properties and, thus, have different impact on energy performance. The analysis assists in a better understanding of the desired optical properties of nanocoatings for improved energy performance in PV and buildings.

  13. An Adaptive Intelligent Integrated Lighting Control Approach for High-Performance Office Buildings

    Science.gov (United States)

    Karizi, Nasim

    An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems in buildings could lead to more than 50% energy savings. This research work demonstrates an innovative adaptive integrated lighting control approach which could achieve significant energy savings and increase indoor comfort in high performance office buildings. In the first phase of the study, a predictive algorithm was developed and validated through experiments in an actual test room. The objective was to regulate daylight on a specified work plane by controlling the blind slat angles. Furthermore, a sensor-based integrated adaptive lighting controller was designed in Simulink which included an innovative sensor optimization approach based on genetic algorithm to minimize the number of sensors and efficiently place them in the office. The controller was designed based on simple integral controllers. The objective of developed control algorithm was to improve the illuminance situation in the office through controlling the daylight and electrical lighting. To evaluate the performance of the system, the controller was applied on experimental office model in Lee et al.'s research study in 1998. The result of the developed control approach indicate a significantly improvement in lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office model, compared to two static strategies when the blinds were left open and closed during the whole year respectively.

  14. Optimal Design of Modern Transformerless PV Inverter Topologies

    OpenAIRE

    Saridakis, Stefanos; Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    The design optimization of H5, H6, neutral point clamped, active-neutral point clamped, and conergy-NPC transformerless photovoltaic (PV) inverters is presented in this paper. The components reliability in terms of the corresponding malfunctions, affecting the PV inverter maintenance cost during the operational lifetime period of the PV installation, is also considered in the optimization process. According to the results of the proposed design method, different optimal values of the PV inver...

  15. Evaluating Maximum Photovoltaic Integration in District Distribution Systems Considering Optimal Inverter Dispatch and Cloud Shading Conditions

    DEFF Research Database (Denmark)

    Ding, Tao; Kou, Yu; Yang, Yongheng

    2017-01-01

    . However, the intermittency of solar PV energy (e.g., due to passing clouds) may affect the PV generation in the district distribution network. To address this issue, the voltage magnitude constraints under the cloud shading conditions should be taken into account in the optimization model, which can......As photovoltaic (PV) integration increases in distribution systems, to investigate the maximum allowable PV integration capacity for a district distribution system becomes necessary in the planning phase, an optimization model is thus proposed to evaluate the maximum PV integration capacity while...

  16. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.; Yang, P.E.; Lin, Y.P.; Lin, B.Y.; Chen, H.J.; Lai, R.C.; Cheng, J.S.

    2011-01-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well

  17. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goodrich, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-11-30

    The installed capacity of global and U.S. photovoltaic (PV) systems has soared in recent years, driven by declining PV prices and government incentives. The U.S. Department of Energy’s (DOE) SunShot Initiative aims to make PV cost competitive without incentives by reducing the cost of PV-generated electricity by about 75% between 2010 and 2020. This summary report—based on research at Lawrence Berkeley National Laboratory (LBNL) and the National Renewable Energy Laboratory (NREL)—examines progress in PV price reductions to help DOE and other PV stakeholders manage the transition to a market-driven PV industry, and to provide clarity surrounding the wide variety of potentially conflicting data available about PV system prices.

  18. A New Building-Integrated Wind Turbine System Utilizing the Building

    Directory of Open Access Journals (Sweden)

    Jeongsu Park

    2015-10-01

    Full Text Available This paper proposes an innovative building-integrated wind turbine (BIWT system by directly utilizing the building skin, which is an unused and unavailable area in all conventional BIWT systems. The proposed system has been developed by combining a guide vane that is able to effectively collect the incoming wind and increase its speed and a rotor with an appropriate shape for specific conditions. To this end, several important design issues for the guide vane as well as the rotor were thoroughly investigated and accordingly addressed in this paper. A series of computational fluid dynamics (CFD analyses was performed to determine the optimal configuration of the proposed system. Finally, it is demonstrated from performance evaluation tests that the prototype with the specially designed guide vane and rotor for the proposed BIWT system accelerates the wind speed to a sufficient level and consequently increases the power coefficient significantly. Thus, it was confirmed that the proposed system is a promising environment-friendly energy production system for urban areas.

  19. The Value of Transparency in Distributed Solar PV Markets

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zamzam, Ahmed S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-01

    Market transparency refers to the degree of customer awareness of product options and fair market prices for a given good. In The Value of Transparency in Distributed Solar PV Markets, we use residential solar photovoltaic (PV) quote data to study the value of transparency in distributed solar PV markets. We find that improved market transparency results in lower installation offer prices. Further, the results of this study suggest that PV customers benefit from gaining access to more PV quotes.

  20. Reactor building integrity testing: A novel approach at Gentilly 2 - principles and methodology

    International Nuclear Information System (INIS)

    Collins, N.; Lafreniere, P.

    1991-01-01

    In 1987, Hydro-Quebec embarked on an ambitious development program to provide the Gentilly 2 nuclear power station with an effective, yet practical reactor building Integrity Test. The Gentilly 2 Integrity Test employs an innovative approach based on the reference volume concept. It is identified as the Temperature Compensation Method (TCM) System. This configuration has been demonstrated at both high and low test pressure and has achieved extraordinary precision in the leak rate measurement. The Gentilly 2 design allows the Integrity Test to be performed at a nominal 3 kPa(g) test pressure during an (11) hour period with the reactor at full power. The reactor building Pressure Test by comparison, is typically performed at high pressure 124 kPa(g)) in a 7 day window during an annual outage. The Integrity Test was developed with the goal of demonstrating containment availability. Specifically it was purported to detect a leak or hole in the 'bottled-up' reactor building greater in magnitude than an equivalent pipe of 25 mm diameter. However it is considered feasible that the high precision of the Gentilly 2 TCM System Integrity Test and a stable reactor building leak characteristic will constitute sufficient grounds for the reduction of the Pressure Test frequency. It is noted that only the TCM System has, to this date, allowed a relevant determination of the reactor building leak rate at a nominal test pressure of 3 kPa(g). Classical method tests at low pressure have lead to inconclusive results due to the high lack of precision